

Forecasting of Smart Meter Time Series Based on Neural Networks

Thierry Zufferey^{1,2}, Andreas Ulbig^{1,2}, Stephan Koch^{1,2}, Gabriela Hug¹

¹Power Systems Laboratory, ETH Zurich; ²Adaptricity AG

1 Introduction

Traditional power networks

- Distribution System Operators (DSOs) monitor energy flows on a medium- or high-voltage level for an ensemble of consumers
- · Low-voltage grid is regarded as a black box

Modern power networks

- Smart meters (SMs) record the consumption of individual customers connected to the low- and medium-voltage grid with high temporal resolution
- → Previously unattainable degree of detail in state estimation
- → The behaviour of (an aggregation of) single consumers can be predicted

2 Method overview

Project context

- Based on the work of Zufferey et al.1
- SM data gathered from about 30k residential loads by IWB, the DSO of the City of Basel
- SM data processed by the ETH spinoff Adaptricity²

Features extraction (residential loads)

- · Value on previous day(s) at the same time
- Mean of previous week(s) on the same weekday and at the same time
- Calendar features, i.e. hour of the day, weekday, month and public holiday

Note: very limited influence of weather data

Artificial Neural Networks (ANNs)

→ most successful machine learning algorithm for short-term load forecasting³

Software support	H2O ⁴ + Azure VM
ANN model	Multilayer Perceptron (MLP)
# hidden layers	1
# neurons (hidden)	200
Activation function	rectifier max(0,x)
Training algorithm	stochastic gradient descent with backpropagation

Fig. 1. Characteristics of the forecasting analysis

Fig. 2. Two ways of combining forecasting and aggregation

Fig. 3. Forecasting approach

3 Results and discussion

Key results

- Low accuracy with individual residential loads due to stochastic home appliances
- Constant performance (MAPE ≈ 5%) from an aggregation of 1,000 loads and larger
- Underestimation of the actual aggregate consumption at the weekend
- Very similar performance of versions a and b for any aggregation size

Fig. 4. Performance evaluation

Fig. 5. Prediction outcomes according to the spatial aggregation level (version b)

4 Conclusion

Here are the main outcomes of this poster and the related paper¹:

- Considerably improved forecasting accuracy with aggregate load profiles in comparison to individual households, even for small aggregation sizes
- Reduced computational cost and no loss of accuracy by aggregating profiles before the neural network performs forecasting (version b)
- Better performance by aggregating profiles of similar shapes
- Analogous results for commercial and industrial loads as well PV systems, assuming an appropriate features selection

5 References

- 1. T. Zufferey, A. Ulbig, S. Koch, G. Hug: Forecasting of Smart Meter Time Series Based on Neural Networks. In: Data Analytics for Renewable Energy Integration, 19-23 September 2016, Riva del Guarda, Italy
- 2. Adaptricity AG, https://www.adaptricity.com/
- P. Koponen, A. Mutanen, H. Niska: Assessment of Some Methods for Short-Term Load Forecasting. In: IEEE PES ISGT Europe 2014
- 4. H2O.ai, https://www.h2o.ai

