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1 Introduction 3 Results and discussion

Traditional power networks
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+ Distribution System Operators (DSOs) monitor energy flows on a medium- or + Low accuracy with individual residential

high-voltage level for an ensemble of consumers
+ Low-voltage grid is regarded as a black box
Modern power networks

+ Smart meters (SMs) record the consumption of individual customers
connected to the low- and medium-voltage grid with high temporal resolution

=> Previously unattainable degree of detail in state estimation

= The behaviour of (an aggregation of) single consumers can be predicted

2 Method overview

Project context
« Based on the work of Zufferey et al.

» SM data gathered from about 30k residential loads
by IWB, the DSO of the City of Basel

« SM data processed by the ETH spinoff Adaptricity?
Data Cleaning

loads due to stochastic home appliances

Constant performance (MAPE = 5%) from
an aggregation of 1,000 loads and larger

Underestimation of the actual aggregate
consumption at the weekend

Very similar performance of versions a
and b for any aggregation size
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Fig. 4. Performance evaluation
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Features extraction (residential loads)
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Fig. 5. Prediction outcomes according to the spatial aggregation level (version b)

Artificial Neural Networks (ANNS)

= most successful machine learning algorithm for
short-term load forecasting?®

Conclusion

Software support H20* + Azure VM y

ANN model Multilayer Perceptron (MLP) Features Extraction

Here are the main outcomes of this poster and the related paper::

# hidden layers 1 » Considerably improved forecasting accuracy with aggregate load profiles in
e (e 200 —_— H:|:|:| comparison to individual households, even for small aggregation sizes

stochastic gradient descent A 4
with backpropagation Forecasting and
Aggregation

Reduced computational cost and no loss of accuracy by aggregating profiles
before the neural network performs forecasting (version b)

Activation function rectifier max(0,x)

Training algorithm Better performance by aggregating profiles of similar shapes

Analogous results for commercial and industrial loads as well PV systems,
assuming an appropriate features selection

Fig. 1. Characteristics of the forecasting analysis
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version a version b

Fig. 2. Two ways of combining forecasting and aggregation
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