Statistical Learning for Optimization (and Control) An Active Set Approach

Seminar in Electric Power Systems

Line A. Roald (LANL)

with Sidhant Misra (LANL) and Yee Sian Ng (MIT)

June 6, 2018

Every Day Decision Making Problems

Energy System Optimization

Model predictive/optimal control

Every Day Decision Making Problems

Relies increasingly on solving optimization problems

Having **fast** and **reliable** solution processes matters!

Every Day Decision Making Problems

Motivating example:

Optimal operation of electric grids with variable renewable energy

The Optimal Power Flow Problem

Goal: Low cost operation, while enforcing technical limits

- *P_G*: Controllable generation
- **P**_D: System load
- *P_W*: Renewable generation (uncontrollable, fluctuating)
- *P*_{*L*}: Transmission line flow

Goal: Low cost operation, while enforcing technical limits

$$\begin{array}{ll} \min_{P_{G}} & C_{G}^{T}P_{G} & \text{minimize generation cost} \\ \text{s.t.} & \sum_{i=1}^{N_{B}} \left(P_{G(i)} + P_{W(i)} - P_{D(i)} \right) = 0 & \text{balanced operation} \\ & P_{G(g)} \leq P_{G(g)}^{max}, & \text{generator limits} \\ & P_{G(g)} \geq P_{G(g)}^{min}, & \text{generator limits} \\ & \forall g = 1, \dots, N_{G} & \\ & A_{(l,\cdot)}(P_{G} + P_{W} - P_{D}) \leq P_{L(l)}^{max}, & \text{transmission line limits} \\ & \forall l = 1, \dots, N_{L} & \end{array}$$

Renewable energy is unpredictable!

Resolve problem for each **Renewable energy is unpredictable!** new $\boldsymbol{\omega}$ to obtain $P_G^*(\boldsymbol{\omega})$ every 5-15 min $C_G^T P_G(\boldsymbol{\omega})$ $\min_{P_G(\boldsymbol{\omega})}$ minimize generation cost P_{G} s.t. $\sum_{i=1}^{N_B} (P_{G(i)}(\boldsymbol{\omega}) + P_{W(i)} + \boldsymbol{\omega}_{(i)} - P_{D(i)}) = 0$ balanced operation P_D P_L $P_{G(q)}(\boldsymbol{\omega}) \leq P_{G(q)}^{max}$ generator limits $P_{G(g)}(\boldsymbol{\omega}) \geq P_{G(g)}^{min}$, $P_W + \omega$ $\forall q = 1, \dots, N_G$ $A_{(l,\cdot)}(P_G(\boldsymbol{\omega}) + P_W + \boldsymbol{\omega} - P_D) \leq P_{L(l)}^{max},$ transmission line limits $A_{(l,\cdot)}(P_G(\boldsymbol{\omega}) + P_W + \boldsymbol{\omega} - P_D) \ge -P_{L(l)}^{max},$ $P_W + \omega$ $\forall l = 1, \dots, N_l$

OPF at T_1 , ω_1

 $\min_{P_G(\boldsymbol{\omega})} \quad C_G^T P_G(\boldsymbol{\omega})$

s.t. $\sum_{i=1}^{N_B} (P_{G(i)}(\boldsymbol{\omega}) + P_{W(i)} + \boldsymbol{\omega}_{(i)} - P_{D(i)}) = 0$

$$\begin{split} P_{G(g)}(\boldsymbol{\omega}) &\leq P_{G(g)}^{max}, \\ P_{G(g)}(\boldsymbol{\omega}) &\geq P_{G(g)}^{min}, \\ &\forall g = 1, \dots, N_G \\ A_{(l,\cdot)}(P_G(\boldsymbol{\omega}) + P_W + \boldsymbol{\omega} - P_D) &\leq P_{L(l)}^{max}, \\ A_{(l,\cdot)}(P_G(\boldsymbol{\omega}) + P_W + \boldsymbol{\omega} - P_D) &\geq -P_{L(l)}^{max}, \\ &\forall l = 1, \dots, N_L \end{split}$$

6/9/2018 | 10

OPF at T_1 , ω_1

OPF at T_2 , ω_2

 $C_G^T P_G(\boldsymbol{\omega})$

 $\min_{P_G(\boldsymbol{\omega})}$

$$\begin{split} \min_{P_G(\omega)} & C_G^T P_G(\omega) \\ \text{s.t.} & \sum_{i=1}^{N_B} \left(P_{G(i)}(\omega) + P_{W(i)} + \omega_{(i)} - P_{D(i)} \right) = 0 \\ & P_{G(g)}(\omega) \leq P_{G(g)}^{max}, \\ & P_{G(g)}(\omega) \geq P_{G(g)}^{min}, \\ & \forall g = 1, ..., N_G \end{split}$$

$$\begin{split} &A_{(l,\cdot)}(P_G(\omega)+P_W+\omega-P_D) \leq P_{L(l)}^{max}, \\ &A_{(l,\cdot)}(P_G(\omega)+P_W+\omega-P_D) \geq -P_{L(l)}^{max}, \\ &\forall \; l=1,\dots,N_L \end{split}$$

s.t.
$$\begin{split} \sum_{i=1}^{N_B} \left(P_{G(i)}(\omega) + P_{W(i)} + \omega_{(i)} - P_{D(i)} \right) &= 0 \\ P_{G(g)}(\omega) &\leq P_{G(g)}^{max}, \\ P_{G(g)}(\omega) &\geq P_{G(g)}^{min}, \\ \forall g = 1, \dots, N_G \\ A_{(l,\cdot)}(P_G(\omega) + P_W + \omega - P_D) &\leq P_{L(l)}^{max}, \\ A_{(l,\cdot)}(P_G(\omega) + P_W + \omega - P_D) &\geq -P_{L(l)}^{max}, \end{split}$$

 $\forall l = 1, \dots, N_L$

OPF at T_1 , ω_1

$$\begin{split} \min_{P_G(\omega)} & C_G^T P_G(\omega) \\ \text{s.t.} & \sum_{i=1}^{N_B} \left(P_{G(i)}(\omega) + P_{W(i)} + \omega_{(i)} - P_{D(i)} \right) = 0 \\ & P_{G(g)}(\omega) \leq P_{G(g)}^{max}, \end{split}$$

 $P_{G(g)}(\boldsymbol{\omega}) \ge P_{G(g)}^{min},$ $\forall g = 1, \dots, N_G$

$$\begin{split} &A_{(l,\cdot)}(P_G(\omega) + P_W + \omega - P_D) \leq P_{L(l)}^{max}, \\ &A_{(l,\cdot)}(P_G(\omega) + P_W + \omega - P_D) \geq -P_{L(l)}^{max}, \\ &\forall \ l = 1, \dots, N_L \end{split}$$

OPF at T_2 , ω_2

$$\begin{split} \min_{P_G(\omega)} & C_G^T P_G(\omega) \\ \text{s.t.} & \sum_{i=1}^{N_B} \left(P_{G(i)}(\omega) + P_{W(i)} + \omega_{(i)} - P_{D(i)} \right) = 0 \\ & P_{G(g)}(\omega) \leq P_{G(g)}^{max}, \\ & P_{G(g)}(\omega) \geq P_{G(g)}^{min}, \\ & \forall g = 1, \dots, N_G \\ & A_{(l,\cdot)}(P_G(\omega) + P_W + \omega - P_D) \leq P_{L(l)}^{max}, \\ & A_{(l,\cdot)}(P_G(\omega) + P_W + \omega - P_D) \geq -P_{L(l)}^{max}, \\ & \forall l = 1, \dots, N_L \end{split}$$

OPF at T_3 , ω_3

 $\min_{P_G(\boldsymbol{\omega})} \quad C_G^T P_G(\boldsymbol{\omega})$

s.t. $\sum_{i=1}^{N_B} (P_{G(i)}(\boldsymbol{\omega}) + P_{W(i)} + \boldsymbol{\omega}_{(i)} - P_{D(i)}) = 0$

$$\begin{split} P_{G(g)}(\boldsymbol{\omega}) &\leq P_{G(g)}^{max}\,,\\ P_{G(g)}(\boldsymbol{\omega}) &\geq P_{G(g)}^{min}\,,\\ \forall\,g=1,\dots,N_G \end{split}$$

$$\begin{split} &A_{(l,\cdot)}(P_G(\boldsymbol{\omega})+P_W+\boldsymbol{\omega}-P_D) \leq P_{L(l)}^{max}, \\ &A_{(l,\cdot)}(P_G(\boldsymbol{\omega})+P_W+\boldsymbol{\omega}-P_D) \geq -P_{L(l)}^{max}, \\ &\forall \ l=1,...,N_L \end{split}$$

OPF at T_1 , ω_1

$$\begin{split} \min_{P_G(\omega)} & C_G^T P_G(\omega) \\ \text{s.t.} & \sum_{i=1}^{N_B} \left(P_{G(i)}(\omega) + P_{W(i)} + \omega_{(i)} - P_{D(i)} \right) = 0 \\ & P_{G(g)}(\omega) \leq P_{G(g)}^{max}, \\ & P_{G(g)}(\omega) \geq P_{G(g)}^{min}, \end{split}$$

 $\forall g = 1, \dots, N_G$

$$\begin{split} &A_{(l,\cdot)}(P_G(\boldsymbol{\omega})+P_W+\boldsymbol{\omega}-P_D) \leq P_{L(l)}^{max}, \\ &A_{(l,\cdot)}(P_G(\boldsymbol{\omega})+P_W+\boldsymbol{\omega}-P_D) \geq -P_{L(l)}^{max}, \\ &\forall \ l=1,\dots,N_L \end{split}$$

OPF at T_2 , ω_2

$$\begin{split} \min_{P_{G}(\omega)} & C_{G}^{T}P_{G}(\omega) \\ \text{s.t.} & \sum_{i=1}^{N_{B}} \left(P_{G(i)}(\omega) + P_{W(i)} + \omega_{(i)} - P_{D(i)} \right) = 0 \\ & P_{G(g)}(\omega) \leq P_{G(g)}^{max}, \\ & P_{G(g)}(\omega) \geq P_{G(g)}^{min}, \\ & \forall g = 1, \dots, N_{G} \\ & A_{(l,\cdot)}(P_{G}(\omega) + P_{W} + \omega - P_{D}) \leq P_{L(l)}^{max}, \\ & A_{(l,\cdot)}(P_{G}(\omega) + P_{W} + \omega - P_{D}) \geq -P_{L(l)}^{max}, \\ & \forall l = 1, \dots, N_{I} \end{split}$$

OPF at T_3 , ω_3

 $\min_{P_G(\boldsymbol{\omega})} \quad C_G^T P_G(\boldsymbol{\omega})$

s.t. $\sum_{i=1}^{N_B} (P_{G(i)}(\boldsymbol{\omega}) + P_{W(i)} + \boldsymbol{\omega}_{(i)} - P_{D(i)}) = 0$

.....

$$\begin{split} P_{G(g)}(\boldsymbol{\omega}) &\leq P_{G(g)}^{max} \,, \\ P_{G(g)}(\boldsymbol{\omega}) &\geq P_{G(g)}^{min} \,, \\ \forall \, g = 1, \dots, N_G \end{split}$$

$$\begin{split} &A_{(l,\cdot)}(P_G(\boldsymbol{\omega})+P_W+\boldsymbol{\omega}-P_D) \leq P_{L(l)}^{max}, \\ &A_{(l,\cdot)}(P_G(\boldsymbol{\omega})+P_W+\boldsymbol{\omega}-P_D) \geq -P_{L(l)}^{max}, \\ &\forall \; l=1,\dots,N_L \end{split}$$

OPF at T_1 , ω_1

$$\begin{split} \min_{P_G(\omega)} & C_G^T P_G(\omega) \\ \text{s.t.} & \sum_{i=1}^{N_B} \left(P_{G(i)}(\omega) + P_{W(i)} + \omega_{(i)} - P_{D(i)} \right) = 0 \\ & P_{G(g)}(\omega) \leq P_{G(g)}^{max}, \\ & P_{G(g)}(\omega) \geq P_{G(g)}^{min}, \\ & \forall g = 1, \dots, N_G \end{split}$$

$$\begin{split} &A_{(l,\cdot)}(P_G(\boldsymbol{\omega})+P_W+\boldsymbol{\omega}-P_D) \leq P_{L(l)}^{max}, \\ &A_{(l,\cdot)}(P_G(\boldsymbol{\omega})+P_W+\boldsymbol{\omega}-P_D) \geq -P_{L(l)}^{max}, \\ &\forall \; l=1,\dots,N_L \end{split}$$

OPF at T_2 , ω_2

$$\begin{split} \min_{P_G(\omega)} & C_G^T P_G(\omega) \\ \text{s.t.} & \sum_{i=1}^{N_B} \left(P_{G(i)}(\omega) + P_{W(i)} + \omega_{(i)} - P_{D(i)} \right) = 0 \\ & P_{G(g)}(\omega) \leq P_{G(g)}^{max}, \\ & P_{G(g)}(\omega) \geq P_{G(g)}^{min}, \\ & \forall g = 1, \dots, N_G \\ & A_{(l,\cdot)}(P_G(\omega) + P_W + \omega - P_D) \leq P_{L(l)}^{max}, \\ & A_{(l,\cdot)}(P_G(\omega) + P_W + \omega - P_D) \geq -P_{L(l)}^{max}, \\ & \forall l = 1, \dots, N_l \end{split}$$

OPF at T_3 , ω_3

 $\min_{P_G(\boldsymbol{\omega})} \quad C_G^T P_G(\boldsymbol{\omega})$

s.t. $\sum_{i=1}^{N_B} (P_{G(i)}(\boldsymbol{\omega}) + P_{W(i)} + \boldsymbol{\omega}_{(i)} - P_{D(i)}) = 0$

$$\begin{split} P_{G(g)}(\boldsymbol{\omega}) &\leq P_{G(g)}^{max}\,,\\ P_{G(g)}(\boldsymbol{\omega}) &\geq P_{G(g)}^{min}\,,\\ \forall \,g=1,\ldots,N_G \end{split}$$

$$\begin{split} A_{(l,\cdot)}(P_G(\omega) + P_W + \omega - P_D) &\leq P_{L(l)}^{max}, \\ A_{(l,\cdot)}(P_G(\omega) + P_W + \omega - P_D) &\geq -P_{L(l)}^{max}, \\ \forall \ l = 1, \dots, N_L \end{split}$$

Can we use learning to speed up the solution process

by using information from past solutions $(\omega_i, P(\omega_i))$?

.

First attempt: Train a neural net

- This didn't work well...
 - Hard to enforce safety constraints
 - Projection of back into feasible domain \rightarrow sub-optimal solution
 - Sample complexity for the learning step is high

- General problems when applying machine learning!
 - Issues with constraint violation

Thomas Navidi Suvrat Bhooshan Aditya Garg

Predicting Solutions to the Optimal Power Flow Problem

...

Gradient boosting regression provided the highest accuracy based on the mean squared difference between each output to the true optimal solution. Over 90% of predictions were within 5% of the true solution. However, approximately 60% of predictions violated one of the network constraints. This is avoided by using the predicted solution as a starting point to the optimal power flow problem. A case study shows that with highly variable load due to renewable penetration, the computation time of runn

- General problems when applying machine learning!
 - Issues with constraint violation
 - Simplified (suboptimal) solutions

Thomas Navidi Suvrat Bhooshan Aditya Garg	
Unit Commitment using Nearest Neighbor as a Short-Term Proxy	Problem
5	uared difference
Gal Dalal [*] , Elad Gilboa [*] , Shie Mannor [*] , and Louis Wehenkel [†]	vithin 5% of the true
*Department of Electrical Engineering	c constraints. This is
[†] Montefiore Institute – Department of Electrical Engineering and Computer Science	ow problem. A case
University of Liège, L.Wehenkel@ulg.ac.be	nutation time of runn

- General problems when applying machine learning!
 - Issues with constraint violation
 - Simplified (suboptimal) solutions
 - Predict only infeasibility/ objective value

We have a parametric optimization problem

- can we use more information about the problem structure?

Think again:

How can we leverage pre-existing knowledge about the solution?

What do we already know?

Full mathematical model is known!

- Solution must satisfy physical laws
- Solution must respect safety constraints

 $\min_{P_{G}(\boldsymbol{\omega})} \quad C_{G}^{T} P_{G}(\boldsymbol{\omega})$ s.t. $\sum_{i=1}^{N_{B}} \left(P_{G(i)}(\boldsymbol{\omega}) + P_{W(i)} + \boldsymbol{\omega}_{(i)} - P_{D(i)} \right) = 0$ physical laws $P_{G(g)}(\boldsymbol{\omega}) \leq P_{G(g)}^{max}, \\ P_{G(g)}(\boldsymbol{\omega}) \geq P_{G(g)}^{min}, \\ \forall g = 1, \dots, N_{G}$ $A_{(l,\cdot)}(P_{G}(\boldsymbol{\omega}) + P_{W} + \boldsymbol{\omega} - P_{D}) \leq P_{L(l)}^{max}, \\ A_{(l,\cdot)}(P_{G}(\boldsymbol{\omega}) + P_{W} + \boldsymbol{\omega} - P_{D}) \geq -P_{L(l)}^{max}, \\ \forall l = 1, \dots, N_{L}$

What do we already know?

Full mathematical model is known!

- Solution must satisfy physical laws
- Solution must respect safety constraints

$$\begin{split} \min_{P_{G}(\boldsymbol{\omega})} & C_{G}^{T} P_{G}(\boldsymbol{\omega}) \\ \text{s.t.} & \sum_{i=1}^{N_{B}} \left(P_{G(i)}(\boldsymbol{\omega}) + P_{W(i)} + \boldsymbol{\omega}_{(i)} - P_{D(i)} \right) = 0 \\ & P_{G(g)}(\boldsymbol{\omega}) \leq P_{G(g)}^{max}, \\ & P_{G(g)}(\boldsymbol{\omega}) \geq P_{G(g)}^{min}, \\ & \forall g = 1, \dots, N_{G} \\ & A_{(l,\cdot)}(P_{G}(\boldsymbol{\omega}) + P_{W} + \boldsymbol{\omega} - P_{D}) \leq P_{L(l)}^{max}, \\ & A_{(l,\cdot)}(P_{G}(\boldsymbol{\omega}) + P_{W} + \boldsymbol{\omega} - P_{D}) \geq -P_{L(l)}^{max}, \\ & \forall l = 1, \dots, N_{L} \end{split}$$

- Inherently encodes problem constraints
- Finite number
- Meaningful physical interpretation

Recovering Feasible Solution from Active Set

DC Optimal Power Flow Problem

- Linear program with n variables \rightarrow there is a *basic feasible* optimal solution
- Active contraints: Power balance and (n-1) inequalities

```
 \min_{P_{G}(\boldsymbol{\omega})} \quad C_{G}^{T} P_{G}(\boldsymbol{\omega}) 
s.t.  \sum_{i=1}^{N_{B}} \left( P_{G(i)}(\boldsymbol{\omega}) + P_{W(i)} + \boldsymbol{\omega}_{(i)} - P_{D(i)} \right) = 0 
 P_{G(g)}(\boldsymbol{\omega}) \leq P_{G(g)}^{max}, 
 P_{G(g)}(\boldsymbol{\omega}) \geq P_{G(g)}^{min}, 
 \forall g = 1, \dots, N_{G} 
 A_{(l,\cdot)}(P_{G}(\boldsymbol{\omega}) + P_{W} + \boldsymbol{\omega} - P_{D}) \leq P_{L(l)}^{max}, 
 A_{(l,\cdot)}(P_{G}(\boldsymbol{\omega}) + P_{W} + \boldsymbol{\omega} - P_{D}) \geq -P_{L(l)}^{max}, 
 \forall l = 1, \dots, N_{L}
```

Recovering Feasible Solution from Active Set

DC Optimal Power Flow Problem

- Linear program with n variables \rightarrow there is a *basic feasible* optimal solution
- Active contraints: Power balance and (n-1) inequalities

Recovering Feasible Solution from Active Set

DC Optimal Power Flow Problem

- Linear program with n variables \rightarrow there is a *basic feasible* optimal solution
- Active contraints: Power balance and (n-1) inequalities

Similar Results for Quadratic Programs

$$\min_{\boldsymbol{p}} \frac{1}{2} \boldsymbol{p}^{T} \boldsymbol{Q} \boldsymbol{p} + (F\boldsymbol{\omega} + f)^{T} \boldsymbol{p}$$

s.t. $A\mathbf{p} \leq b + C\boldsymbol{\omega}$

The optimal solution $p^*(\omega)$ is a *piecewise affine* function of the uncertain parameters.

Each piece corresponds to a particular active set.

Regions in parameter space

M. Vrakopoulou and I. Hiskens, "Optimal policy-based control of generation and HVDC lines in power systems under uncertainty," IEEE PowerTech, Manchester, 2017

General Convex Programs

Active set encodes all information about the optimal solution

- «Minimal» information
- Number of active contraints $|\mathcal{A}|$ is typically significantly smaller than the full number of constraints m $|\mathcal{A}| \ll m$

Solve a relaxed optimization problem with only active constraints

New approach:

Use Active Set

as a stepping stone

to Learn Optimal Solution!

Realization $\boldsymbol{\omega}$

Candidates for optimal active set

Candidates for optimal active set

Obtain candidate solution $\tilde{p}_i(\omega)$ for each \mathcal{A}_i :

- LP: Solve set of linear equations
- General convex: Solve relaxed problem

Candidates for optimal active set

Obtain candidate solution $\tilde{p}_i(\omega)$ for each \mathcal{A}_i :

- LP: Solve set of linear equations
- General convex: Solve relaxed problem

Candidates for optimal active set

Obtain candidate solution $\tilde{p}_i(\omega)$ for each \mathcal{A}_i :

- LP: Solve set of linear equations
- General convex: Solve relaxed problem

Candidates for optimal active set

Obtain candidate solution $\tilde{p}_i(\omega)$ for each \mathcal{A}_i :

- LP: Solve set of linear equations
- General convex: Solve relaxed problem

Evaluate cost and feasibility

Candidates for optimal active set

Obtain candidate solution $\tilde{p}_i(\omega)$ for each \mathcal{A}_i :

- LP: Solve set of linear equations
- General convex: Solve relaxed problem

Evaluate cost and feasibility

Pick **best** solution

Using Machine Learning to Simplify Further

Realization ω

Classification: Finite number of possible classes

Related work on learning regions with constant lagrangian multipliers

X.Geng, L. Xie, "Learning the LMP-Load Coupling From Data: A Support Vector Machine Based Approach", IEEE TPWRS, 2016
Using Machine Learning to Simplify Further

Classification: Finite number of possible classes

Obtain solution only for most relevant active set(s): Develop good **local** approximation

Misra, Dvijotham, Molzahn, "Optimal Adaptive Linearizations of the AC Power Flow Equations", PSCC 2018

Hohmann, Warrington, Lygeros, «Optimal Linearizations of Power Systems with Uncertain Supply and Demand", May 2018

Limits of the Approach

Works well if the number of optimal active sets is **small**!

Total number of possible active sets is exponential ⊗

Many applications typically only have few optimal active sets! «Typical operation patterns»

Limits of the Approach

Works well if the number of optimal active sets is **small**!

Total number of possible active sets is exponential ☺

Many applications typically only have few optimal active sets! ③ «Typical operation patterns»

How do we know that we are dealing with a **nice** system?

How do we find the important active sets?

Using Sampling to Learn Important Active Sets

Probability distribution over input parameters

---- level sets of probability distribution

Probability distribution over input parameters

---- level sets of probability distribution

(in general not polyhedral)

Probability distribution over input parameters

---- level sets of probability distribution

Importance of active set: Probability that the active set is optimal $\mathbb{P}_{\omega}(\mathcal{A} = \mathcal{A}^{*}(\omega))$

Main goal: Discover a **collection of active sets** that together have high probabiliy of being optimal!

- J unobserved optimal active sets
 - ⁷ discovered optimal active sets
- samples of parameters

- J unobserved optimal active sets
 - ⁷ discovered optimal active sets
- samples of parameters

- J unobserved optimal active sets
 - ⁷ discovered optimal active sets
- samples of parameters

- J unobserved optimal active sets
 - ⁷ discovered optimal active sets
- samples of parameters

- J unobserved optimal active sets
 - ⁷ discovered optimal active sets
- samples of parameters

- J unobserved optimal active sets
 - ⁷ discovered optimal active sets
- samples of parameters

- unobserved optimal active sets
 - discovered optimal active sets
- samples of parameters

---- level sets of probability distribution

- J unobserved optimal active sets
 - discovered optimal active sets
- samples of parameters

Draw samples until «sufficient» optimal active sets have been discovered

---- level sets of probability distribution

- unobserved optimal active sets
 - discovered optimal active sets
- samples of parameters

Draw samples until «sufficient» optimal active sets have been discovered

How do we know when it is safe to stop?

Draw samples until «sufficient» optimal active sets have been discovered

How do we know when it is safe to stop?

Draw samples until «sufficient» optimal active sets have been discovered

How do we know when it is safe to stop?

Streaming Algorithm with Probabilistic Learning Guarantees

Streaming Algorithm with Probabilistic Guarantees

Considering *M* i.i.d. samples, we obtain a set of unique active sets A_i .

Streaming Algorithm with Probabilistic Guarantees

Considering *M* i.i.d. samples, we obtain a set of unique active sets A_i .

For the next W(M) i.i.d. samples, we calculate the «rate of discovery» $R_{M,W}$ of previously unobserved active sets: $R_{M,W} = \frac{N_{unobserved}}{N}$

Considering *M* i.i.d. samples, we obtain a set of unique active sets A_i .

For the next W(M) i.i.d. samples, we calculate the «rate of discovery» $R_{M,W}$ of previously unobserved active sets: $R_{M,W} = \frac{N_{unobserved}}{N}$

If rate of discovery is small enough $(R_{M,W} \le \alpha - \epsilon)$: Terminate

- lpha max. probability of unobserved active set
- max. difference between true and empirical probability of unobserved active sets

Streaming Algorithm with Probabilistic Guarantees

Considering *M* i.i.d. samples, we obtain a set of unique active sets A_i .

For the next W(M) i.i.d. samples, we calculate the «rate of discovery» $R_{M,W}$ of previously unobserved active sets: $R_{M,W} = \frac{N_{unobserved}}{N}$

If rate of discovery is small enough $(R_{M,W} \le \alpha - \epsilon)$: Terminate

If we have too many undiscovered active sets $(R_{M,W} > \alpha - \epsilon)$: M = M + 1

Streaming Algorithm with Probabilistic Guarantees

1. Guaranteed to terminate, no need to decide on the number of M samples apriori

2. Guaranteed to terminate fast for benign systems

If a (small) number of relevant active sets K_0 that contains more than $1 - \alpha_0$ probability mass, then with probability at least $1 - \delta - \delta_0$ the algorithm terminates in less iterations than

$$M = \frac{1}{\alpha - \alpha_0} \left(K_0 \log 2 + \log \frac{1}{\delta_0} \right)$$

Results for the

DC Optimal Power Flow Problem

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

		Nori	nal distr	ibution	Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$
Low-Complexity										
case3_1mbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941
High-Complexity										
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	-
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nori	nal distr	ibution		Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	
Low-Complexity											
case3_1mbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998	
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984	
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0	
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0	
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941	
High-Complexity											
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	-	
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897	
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901	
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-	

Few active sets!

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distr	ibution	Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$
Low-Complexity										
case3_1mbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941
High-Complexity										
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	-
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-

Few active sets!

Terminates fast.

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

		Nor	mal distr	ibution			Unife	orm disti			
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	Few active sets
Low-Complexity											
case3_lmbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	Terminates fast
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998	
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984	
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0	Some outliers:
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0	
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	Large number of
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	active sets
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941	
High-Complexity											
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	-	-
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897	
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901	
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-	

of

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

		Noi	mal distr	ibution			Unife	orm disti	ibution			
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	Few active sets!	
Low-Complexity												
case3_1mbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	_	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	Terminates fast.	
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0		
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0		
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998		
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984		
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0	Some outliers:	
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0		
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	Large number of	
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	active sets	
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941		
High-Complexity											Rate of discovery	
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	-	> 0.01	
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897		
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901		
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-		

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

		Nor	mal disti	ibution			Unife	orm disti	ribution			
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	Few active sets!	
Low-Complexity												
case3_lmbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0		
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	Terminates fast.	
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0		
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0		
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998		
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984		
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0	Some outliers:	
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0		
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	Large number of	
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	active sets	
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941		
High-Complexity											Rate of discovery	
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	-	> 0.01	
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897		
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901	Degeneracy?	
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-	Many small	
											generators	

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

		Nor	mal dist	ribution		Unif	orm dist	ribution		
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$
Low-Complexity case}_jmbd case5_pjm case14_ieee case30_ieee case39_epri case118_ieee case57_ieee case1888_rte case1951_rte case162_ieee_dtc		Nor ω~	mal dis $\mathcal{N}(0,\sigma$	stributio = 0.03	n d)		Unifα v ω ∈ ∣	orm dis vith sur [-0.09	otribution oport d, 0.09d	n []
Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distr	ibution	Uniform distribution						
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	
Low-Complexity											
case3_lmbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998	
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984	
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0	
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0	
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941	

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distr	ibution		Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	
Low-Complexity											
case3_1mbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998	
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984	
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0	
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0	
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941	

Few active sets!

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Noi	rmal distr	ibution		Uniform distribution					
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	
Low-Complexity											
case3_1mbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998	
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984	
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0	
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0	
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941	

Terminates fast.

Few active sets!

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

		on Uniform distribution							mal distribution Uniform distribution							Normal distribution					
Fow active sets!	$\mathbb{P}(p^*)$	$R_{M,W}$	W_M	M	K_M	$\mathbb{P}(p^*)$	$R_{M,W}$	W_M	M	K_M											
	0.0	0.0	13'259	1	1	1.0	0.0	13'259	1	1											
Terminates fast.	0.0	0.0	13'259	1	1	1.0	0.0	13'259	1	1											
	0.0	0.0	13'259	1	1	1.0	0.0	13'259	1	1											
	0.0	0.0	13'259	1	1	1.0	0.0	13'259	1	1											
	0.9998	0.0008	13'259	2	2	1.0	0.0	13'259	2	2											
_	0.9984	0.0019	13'259	4	2	1.0	0.0	13'259	33	2											
Some outliers:	0.0	0.0	13'259	46	3	0.9997	0.0003	13'259	2	2											
	0.0	0.0	13'259	10	3	0.0	0.0	13'259	6	3											
Large number of	0.9901	0.0084	13'259	63	11	0.9943	0.0069	13'259	47	5											
active sets	0.9926	0.0085	13'259	192	17	0.9925	0.0054	13'259	91	7											
	0.9941	0.0047	13'259	64	11	0.0	0.0	18'209	1456	10											
	-	0.0136	24'977	22'000	130	0.9931	0.0087	17'844	1258	19											
	0.9897	0.0099	22'789	9095	293	0.9919	0.0073	17'842	1257	24											
	0.9901	0.0099	22'040	6741	236	0.9909	0.0099	21'112	4649	174											
	-	0.0795	24'997	22'000	2993	-	0.0795	24'997	22'000	2993											

Low-Complexity case3_lmbd

case5_pjm case14_ieee case30_ieee case39_epri case118_ieee case57_ieee

case1888 rte

case1951_rte case162_ieee_dtc case24_ieee_rts High-Complexity case73_ieee_rts case300_ieee case200_pserc case240_pserc

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Noi	mal distr	ibution			Unife	orm disti	ibution			
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	Few active sets!	
Low-Complexity												
case3_1mbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	_	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	Terminates fast.	
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0		
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0		
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998		
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984		
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0	Some outliers:	
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0		
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	Large number of	
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	active sets	
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941		
High-Complexity											Rate of discovery	
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	-	> 0.01	
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897		
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901		
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-		

Max. undiscovered: $\alpha = 0.05$, Max. difference: $\epsilon = 0.04$

Termination: $R_{M,W} \leq 0.01$

		Nor	mal distı	ibution			Unife	orm disti			
	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	K_M	M	W_M	$R_{M,W}$	$\mathbb{P}(p^*)$	Few active sets
Low-Complexity											
case3_1mbd	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case5_pjm	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	Terminates fast
case14_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case30_ieee	1	1	13'259	0.0	1.0	1	1	13'259	0.0	0.0	
case39_epri	2	2	13'259	0.0	1.0	2	2	13'259	0.0008	0.9998	
case118_ieee	2	33	13'259	0.0	1.0	2	4	13'259	0.0019	0.9984	
case57_ieee	2	2	13'259	0.0003	0.9997	3	46	13'259	0.0	0.0	Some outliers:
case1888_rte	3	6	13'259	0.0	0.0	3	10	13'259	0.0	0.0	
case1951_rte	5	47	13'259	0.0069	0.9943	11	63	13'259	0.0084	0.9901	Large number of
case162_ieee_dtc	7	91	13'259	0.0054	0.9925	17	192	13'259	0.0085	0.9926	active sets
case24_ieee_rts	10	1456	18'209	0.0	0.0	11	64	13'259	0.0047	0.9941	
High-Complexity											Rate of discove
case73_ieee_rts	19	1258	17'844	0.0087	0.9931	130	22'000	24'977	0.0136	-	> 0.01
case300_ieee	24	1257	17'842	0.0073	0.9919	293	9095	22'789	0.0099	0.9897	
case200_pserc	174	4649	21'112	0.0099	0.9909	236	6741	22'040	0.0099	0.9901	Degeneracy?
case240_pserc	2993	22'000	24'997	0.0795	-	2993	22'000	24'997	0.0795	-	Many small

tliers: mber of ts liscovery acy? all generators...

IEEE 300 bus system with normally distributed load

Increasing parameter uncertainty = Increasing number of important active sets

«Power systems operation becomes more unpreditable and complex with increasing uncertainty»

General perception among system operators

• Active sets are useful for learning solutions to optimization problems

- Active sets encode the problem structure, including relevant constraints
- Solution efficiently recoverable from simpler optimization problem
- Finite number of relevant active sets («typically» few)

• Three-step machine learning procedure:

- 1. Learn active sets (offline learning) establish learnability of the task!
- 2. Find the right one (classification)
- 3. Recover optimal solution (simpler problem/approximation)

THANK YOU!

Line Roald, roald@lanl.gov

Yee Sian Ng, Sidhant Misra, Line Roald and Scott Backhaus, «Statistical Learning for DC Optimal Power Flow», accepted to Power System Computation Conference (PSCC), 2018

Sidhant Misra, Line Roald and Yee Sian Ng, «Learning for Convex Optimization», submitted to NIPS 2018