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Synchronous electricity grid

Objective: To maintain energy supply demand balance reliably on a continuous basis
across time and space and to do so in the most economic way possible.
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Frequency control
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It all started with lock tests
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Irish Wind Capacity (MW)
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http://www.eirgridgroup.com/site-files/library/EirGrid/4289_EirGrid_GenCapStatement_v9_web.pdf

Adding non synchronous generation

Synchronous generator

=++ *;:'-t
50/60 HZ * '.-.--‘-‘1“ i
Does not add l
to system Inertia Fixed speed wind
Doubly fed induction turbine generator

generator wind turbine




Frequency variation due to wind
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Wind turbines inertial response
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Mullane, A. and O’Malley, M.J., “The inertial-response of induction-machine based wind-
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Frequency response
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How much kinetic energy is available?
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Fig. 1. Kinetic energy potentially available from wind generation as a function
of wind generation output (all data normalized to unity).

Doherty, R, Mullane, A., Lalor, G., Burke, D., Bryson, A. and O’Malley, M.J. “An Assessment of the Impact of Wind Generation on System Frequency”, IEEE Transactions on Power Systems, Vol. 25, pp. 452 — 460, 2010.



Lowest frequency (nadir) reached
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S (MW/Hz)

Frequency response — data
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Frequency response

MW,

f pm—emnt_f nadir postevent

— Wind penetration increases
— Stiffness decreases

Indicates increased vulnerability to a loss of generation
event

Also being observed in ERCOT. Sharma, S. Huang, SH.
Sarma, NDR, “System Inertial Frequency Response
Estimation and Impact of Renewable Resources in
ERCOT Interconnection.” IEEE Power and Energy Society
Meeting, July 24-28t, 2011, Detroit, USA.



FEreEerenm ﬂ

Frequency response USA

LENL-4142E

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

Typical Eastern Interconnection Frequency Excursion

Use of Frequency Response Metrics to Assess the 60.02 —]
Planning and Operating Requirements for
Reliable Integration of Variable Renewable
Generation

60.01

Toseph H. Eto, Principal Investigator G0
Laowrence Barkelgy National Laboramory

Jokn Uil
Jokn Undrili, LLC 50 99 IE r n [ e m

Peter Mackin, Fon Daschmans, Ben Williams,
Brian Haney, Fandall Hunt, Jff Ellis
Uiy Systems Efficiencies, Tnc.

59.98

Howard [lian
EngrgyMark, Inc.

Carlos Martinez =9.97
Eleceric Power Group, LLC

Mark O Malley

University Coilese Dubif 56 96
Katie Coughlin, Eristina Hamachi LaCommars

Lawrence Barkelgy National Laborasory

59.95

December 2010

29.94 r T T T T T

The work described in this report was fimded by the Federal Energy 0 L 12 13 24 30 36 42 48 5d &0
Fegulatory Commission, Office of Electric Eeliability. The Lawrence

Berkaley Narional Lahoratory is operated by the Universicy of Califormia for Seconds

the U5, Deparment of Enerzy under Coniract No. DE-AC02-05CH1 1231

Eto, J., J. Undrill, P. Mackin, R. Daschmans, B. Williams, B. Haney, R. Hunt, J. Ellis, H. lllian, C. Martinez, M. O'Malley, K. Coughlin, and K.H. LaCommare,"'Use of Frequency Response Metrics to Assess the Planning and Operating
Requirements for Reliable Integration of Variable Renewable Generation", Lawrence Berkley National Laboratory, Berkeley, 2010. http://www.ferc.gov/industries/electric/indus-act/reliability/frequencyresponsemetrics-report.pdf



http://www.ferc.gov/industries/electric/indus-act/reliability/frequencyresponsemetrics-report.pdf

: <
All Island Grid Study \' — -"‘ §

e -

January 2008




System Non Synchronous Penetration (SNSP) Limit

EIRERID)

All Island TSO Facilitation
of Renewables Studies
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Where is this going now

Load + Exports (MW)
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WS2A:

Generation
Portfolios

WS2B: Emissions savings

Management
Portfolio scenarios Study

WS1: Resource
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Portfolio choices (WS 2A)
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All island grid study — societal cost of adopting portfolios
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All island grid study
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Demand side has a portfolio effect
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Fig. 6. Least-cost electricity investment portfolios for
different gas prices, carbon prices, HP and ICE investment
costs with both electricity and heat demand.

“This also highlights the need on
the demand-side for market design
frameworks that reflect system
Investment requirements to
aggregators and/or consumers.”

Heinen, S. and M.J. O’Malley, “Complementarities of supply
and demand sides in integrated energy systems”, IEEE
Transactions Smart Grids, Vol. 10, pp. 1156 - 1165, 2019.



Centralised optimization may not be valid modelling paradigm

* DR involves a large number of self-interested decision makers and
stakeholders e.g the TSO, Load Aggregator/retailer, consumers etc.

e Centralized models assume a perfectly competitive market and, thus, do not
take into account the objectives of these stakeholders.

* It is important to reflect the strategic objectives of these various stakeholders
within a single framework.

Retailer’s Optimization
Problem
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Individual Consumer’s
Optimization Problem

Individual consumers would aim The TSO would aim to
to minimize their costs maximize total social welfare

M. B. Anwar, D. J. Burke and M. O’Malley, “A Multi-perspective Model for Evaluation of Residential Thermal Demand Response,” IEEE
Transactions on Smart Grid, in press, 2019.



Impact of increasing consumer flexibility

(A) Annual Generation Cost Reduction (€) (B) Annual Comfort Violation Cost (€) (C) Net Cost Saving (€)
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M. B. Anwar, D. J. Burke and M. O’Malley, “A Multi-perspective Model for Evaluation of Residential Thermal Demand Response,” IEEE
Transactions on Smart Grid, in press, 2019.



Maximising distribution network as an energy harvesting device
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Distribution network — it makes a difference where you put it
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How do you design a connection policy that is optimal?

Net Benefit

Firm €191,000,000
Non Firm €327,000,000
Firm + Non Firm €292,500,000

Keane, A., Denny, E. and O’Malley, M.J. “Quantifying the Impact of Connection Policy on Distributed Generation”, IEEE Transactions
on Energy Conversion, Vol. 22, pp. 189 - 196, 2007.



Data and models their future role
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Conclusions

Future electricity grids will require better/new data/models to deliver reliable,
sustainable and cost effective electricity to society

The need is on supply and demand side and across all aspects planning,
operations, markets, people, cyber, smart .......

We are not alone — industry have the data and practical models



