

Master / Semester Thesis

Quantum-Kinetic Simulations of Light-Matter Interactions

The Big Picture

Understanding light-matter interactions at the nanoscale is indispensable for the development of future optoelectronic devices, be it more efficient nanostructured photovoltaic cells, on-chip-photodiodes, or nano-LEDs. Due to their nanoscale footprint, accurate simulation of such devices requires one to capture all the quantum mechanical processes at play. To this end, quantum-kinetic simulations based on the non-equilibrium Green's function (NEGF) formalism are a powerful and versatile tool. A unified quantum-kinetic simulation framework, capturing light and matter at this level of theory can deliver device design guidelines that greatly reduce the development cost and allow a look at the cross-section of physics at play.

Project Description

Our quantum transport simulator is currently being extended to also include the effects of microscopic electronphoton scattering. We compute the optical degrees of freedom on a finite-element mesh and couple them to the electronic states, represented in a localized orbital basis. Unfortunately, even under approximation, the computation of the photon-electron scattering terms can take up a significant portion of the simulation time. We thus employ specialized numerical techniques and rely on HPC techniques to make as much use of paralellization/hardware acceleration as possible.

Type of Work

The type of work can be adjusted to your interests:

- First principles electronic structure calculations of 2D material heterostructures
- Theoretical investigation (developing computational models and/or analysis of algorithms)
- Hands-on code development

Prerequisites

We are looking for candidates with a strong interest in physics, computational materials science and software development. Fundamental knowledge of quantum mechanics and solid state physics are required. Programming skills in Python / C++ are highly desirable. Naturally, experience with quantum transport and density functional theory are advantageous.

Status: Available

Looking for 1 Semester/Master student Interested candidates please contact: Nicolas Vetsch <u>vetschn@iis.ee.ethz.ch</u> ETH Professor: Prof. Mathieu Luisier <u>mluisier@iis.ee.ethz.ch</u>