
Chapter 7

Angular Spectrum Representation

The angular spectrum representation is a mathematical technique to describe op-

tical fields in homogeneous media. Optical fields are described as a superposition

of plane waves and evanescent waves which are physically intuitive solutions of

Maxwell’s equations. The angular spectrum representation is found to be a very

powerful method for the description of laser beam propagation and light focusing.

Furthermore, in the paraxial limit, the angular spectrum representation becomes

identical with the framework of Fourier optics which extends its importance even

further.

In this chapter we will consider purely monochromatic fields of angular fre-

quency ω, which can be represented as complex fields E(r) according to (c.f.

Chapter 2)

E(r, t) = Re{E(r) e−iωt} . (7.1)

In situations where the field is not time-harmonic, we we simply replace the com-

plex field E(r) by the spectrum Ê(r, ω) and obtain the time-dependent field by

Fourier transformation (see Section 2.2).

By the angular spectrum representation we understand the series expansion of

an arbitrary field in terms of plane (and evanescent) waves with variable amplitudes

and propagation directions (see Section 2.1.3). Assume we know the electric field

E(r) at any point r = (x, y, z) in space. For example, E(r) can be the solution of

an optical scattering problem, as shown in Fig. 7.1, for which E = Einc + Escatt. In

the angular spectrum picture, we draw an arbitrary axis z and consider the field E
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96 CHAPTER 7. ANGULAR SPECTRUM REPRESENTATION

in a plane z=const. transverse to the chosen axis. In this plane we can evaluate

the two-dimensional Fourier transform of the complex field E(r) = E(x, y, z) as

Ê(kx, ky; z) =
1

4π2

∞
∫

−∞

∫

E(x, y, z) e−i [kxx+ kyy] dx dy , (7.2)

where x, y are the Cartesian transverse coordinates and kx, ky the corresponding

spatial frequencies or reciprocal coordinates. Similarly, the inverse Fourier trans-

form reads as

E(x, y, z) =

∞
∫

−∞

∫

Ê(kx, ky; z) ei [kxx + ky y] dkx dky . (7.3)

Notice that in the notation of Eqs. (7.2) and (7.3) the field E = (Ex, Ey, Ez) and its

Fourier transform Ê = (Êx, Êy, Êz) represent vectors. Thus, the Fourier integrals

hold separately for each vector component.

So far we have made no requirements about the field E, but we will assume that

in the transverse plane the medium is homogeneous, isotropic, linear and source-

free. Then, a time-harmonic, optical field with angular frequency ω has to satisfy

Einc

Escatt

z

z = const.

Figure 7.1: In the angular spectrum representation the fields are evaluated in

planes (z = const.) perpendicular to an arbitrarily chosen axis z.
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the vector Helmholtz equation (c.f. Eq. 2.12)

(∇2 + k2)E(r) = 0 , (7.4)

where k is determined by k = (ω/c)n and n =
√
µε is the index of refraction.

Inserting the Fourier representation of E(r) (Eq. 7.3) into the Helmholtz equation

and defining

kz ≡
√

(k2 − k2
x − k2

y ) with Im{kz} ≥ 0 , (7.5)

we find that the Fourier spectrum Ê evolves along the z-axis as

Ê(kx, ky; z) = Ê(kx, ky; 0) e±ikz z . (7.6)

The ± sign specifies that we have two solutions that need to be superimposed:

the + sign refers to a wave propagating into the half-space z > 0 whereas the −
sign denotes a wave propagating into z < 0. Equation (7.6) tells us that the Fourier

spectrum of E in an arbitrary image plane located at z=const. can be calculated by

multiplying the spectrum in the object plane at z = 0 by the factor exp(±ikzz). This

factor is called the propagator in reciprocal space. In Eq. (7.5) we defined that

the square root leading to kz renders a result with positive imaginary part. This

ensures that the solutions remain finite for z→±∞. Inserting the result of Eq. (7.6)

into Eq. (7.3) we finally find for arbitrary z

E(x, y, z) =

∞
∫

−∞

∫

Ê(kx, ky ; 0) ei [kxx+ kyy ± kzz] dkx dky (7.7)

which is known as the angular spectrum representation. In a similar way, we can

also represent the magnetic field H by an angular spectrum as

H(x, y, z) =

∞
∫

−∞

∫

Ĥ(kx, ky ; 0) ei [kxx + ky y ± kz z] dkx dky . (7.8)

By using Maxwell’s equation H = (iωµµ0)
−1 (∇×E) we find the following relation-

ship between the Fourier spectra Ê and Ĥ

Ĥx = Z−1
µε [(ky/k) Êz − (kz/k) Êy] , (7.9)

Ĥy = Z−1
µε [(kz/k) Êx − (kx/k) Êz] ,

Ĥz = Z−1
µε [(kx/k) Êy − (ky/k) Êx] ,
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where Zµε =
√

(µ0µ)/(ε0ε) is the wave impedance of the medium. Although the

angular spectra of E and H fulfill Helmholtz equation they are not yet rigorous

solutions of Maxwell’s equations. We still have to require that the fields are diver-

gence free, i.e. ∇·E = 0 and ∇·H = 0. These conditions restrict the k-vector to

directions perpendicular to the spectral amplitudes (k·Ê = k·Ĥ = 0).

For the case of a purely dielectric medium with no losses the index of refrac-

tion n is a real and positive quantity. The wavenumber kz is then either real or

imaginary and turns the factor exp(±i kz z) into an oscillatory or exponentially de-

caying function. For a certain (kx, ky) pair we then find two different characteristic

solutions: plane waves with k2
x + k2

y ≤ k2 and evanescent waves with k2
x + k2

y > k2

(see Section 2.1.2).

7.1 Propagation and Focusing of Fields

We have established that, in a homogeneous space, the spatial spectrum Ê of

an optical field E in a plane z = const. (image plane) is uniquely defined by the

spatial spectrum in a different plane z = 0 (object plane) according to the linear

relationship

Ê(kx, ky; z) = Ĥ(kx, ky; z) Ê(kx, ky; 0) , (7.10)

where Ĥ is the so-called propagator in reciprocal space

Ĥ(kx, ky; z) = e±ikzz (7.11)

also referred to as the optical transfer function (OTF) in free space. Remem-

ber that the longitudinal wavenumber is a function of the transverse wavenumber,

i.e. kz = [k2 − (k2
x + k2

y)]
1/2, where k = n k0 = nω/c = n 2π/λ. The ± sign indicates

that the field can propagate in positive and/or negative z direction. Equation (7.10)

can be interpreted in terms of linear response theory: Ê(kx, ky; 0) is the input, Ĥ

is a filter function, and Ê(kx, ky; z) is the output. The filter function describes the

propagation of an arbitrary spectrum through space. Ĥ can also be regarded as

the response function because it describes the field at z due to a point source at

z = 0. In this sense, it is directly related to the Green’s function
↔

G0.
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The filter Ĥ is an oscillating function for (k2
x + k2

y) < k2 and an exponentially

decreasing function for (k2
x + k2

y) > k2. Thus, if the image plane is sufficiently

separated from the object plane, the contribution of the decaying parts (evanescent

waves) is zero and the integration can be reduced to the circular area (k2
x + k2

y) ≤
k2. In other words, the image at z is a low pass filtered representation of the

original field at z = 0. The spatial frequencies (k2
x + k2

y) > k2 of the original field

are filtered out during propagation and the information on high spatial variations

gets lost. Hence, there is always a loss of information on propagating from near-

to far-field and only structures with lateral dimensions larger than

∆x ≈ 1

k
=

λ

2πn
(7.12)

can be imaged with sufficient accuracy. Here, n is the index of refraction. This

equation is qualitative and we will provide a more detailed discussion later. In

general, higher resolution can be obtained by a higher index of refraction of the

embodying system (substrate, lenses, etc.) or by shorter wavelengths. Theoreti-

cally, resolutions down to a few nanometers can be achieved by using far-ultraviolet

radiation or X-rays.

Let us now determine how the fields themselves evolve. For this purpose we

denote the transverse coordinates in the object plane at z = 0 as (x′, y′) and in the

image plane at z = const. as (x, y). The fields in the image plane are described

by the angular spectrum (7.7). We just have to express the Fourier spectrum

Ê(kx, ky ; 0) in terms of the fields in the object plane. Similarly to Eq. (7.2) this

Fourier spectrum can be represented as

Ê(kx, ky; 0) =
1

4π2

∞
∫

−∞

∫

E(x′, y′, 0) e−i [kxx′ + kyy′] dx′ dy′ . (7.13)

After inserting into Eq. (7.7) we find the following expression for the field E in the

image plane z = const.

E(x, y, z) =
1

4π2

∞
∫

−∞

∫

E(x′, y′; 0)

∞
∫

−∞

∫

ei [kx(x−x′)+ ky (y−y′)± kz z] dx′ dy′dkx dky

= E(x, y; 0) ∗ H(x, y; z) . (7.14)

This equation describes an invariant filter with the following impulse response
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(propagator in direct space)

H(x, y; z) =

∞
∫

−∞

∫

ei [kxx + ky y ± kz z] dkx dky . (7.15)

H is simply the inverse Fourier transform of the propagator in reciprocal space Ĥ

(7.11). The field at z = const. is represented by the convolution of H with the field

at z=0.

7.1.1 Paraxial Approximation

In many optical problems the light fields propagate along a certain direction z and

spread out only slowly in the transverse direction. Examples are laser beam prop-

agation or optical waveguide applications. In these examples the wavevectors

k = (kx, ky, kz) in the angular spectrum representation are almost parallel to the

z-axis and the transverse wavenumbers (kx, ky) are small compared to k. We can

then expand the square root of Eq. (7.5) in a series as

kz = k
√

1 − (k2
x + k2

y)/k
2 ≈ k −

(k2
x + k2

y)

2 k
. (7.16)

This approximation is called the paraxial approximation and it considerably simpli-

fies the analytical integration of the Fourier integrals. In the following we shall apply

the paraxial approximation to find a description for weakly focused laser beams.

7.1.2 Gaussian Beams

We consider a fundamental laser beam with a linearly polarized, Gaussian field

distribution in the beam waist

E(x′, y′, 0) = Eo e
−x′2+y′2

w2
0 , (7.17)

where E0 is a constant field vector in the transverse (x, y) plane. We have chosen

z = 0 at the beam waist. The parameter w0 denotes the beam waist radius. We
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can calculate the spatial Fourier spectrum at z = 0 as1

Ê(kx, ky; 0) =
1

4π2

∞
∫

−∞

∫

E0 e
−x′2+y′2

w2
0 e−i [kxx′ + kyy′] dx′ dy′

= E0
w2

0

4π
e−(k2

x+k2
y)

w2
0
4 , (7.18)

which is again a Gaussian function. We now insert this spectrum into the an-

gular spectrum representation Eq. (7.7) and replace kz by its paraxial expression

in Eq. (7.16)

E(x, y, z) = E0
w2

0

4 π
eikz

∞
∫

−∞

∫

e−(k2
x+k2

y)(
w2

0
4

+ iz
2 k

) ei [kxx + ky y] dkx dky , (7.19)

This equation can be integrated and gives as a result the familiar paraxial repre-

sentation of a Gaussian beam

E(x, y, z) =
E0 eikz

(1 + 2 iz/kw2
0)

e
−

(x2+y2)

w2
0

1

(1 + 2 iz/kw2
0
) . (7.20)

To get a better feeling for a paraxial Gaussian beam we set ρ2 = x2+y2, define a

new parameter z0 as

z0 =
k w2

0

2
, (7.21)

and rewrite Eq. (7.20) as

E(ρ, z) = E0
w0

w(z)
e
− ρ2

w2(z) ei [kz−η(z)+kρ2/2R(z)] (7.22)

with the following abbreviations

w(z) = w0(1 + z2/z2
0)

1/2 beam radius (7.23)

R(z) = z(1 + z2
0/z

2) wavefront radius

η(z) = arctan z/z0 phase correction

The transverse size of the beam is usually defined by the value of ρ =
√

x2 + y2

for which the electric field amplitude has decreased to a value of 1/e of its center

value

|E(x, y, z)| / |E(0, 0, z)| = 1/e . (7.24)
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It can be shown that the surface defined by this equation is a hyperboloid whose

asymptotes enclose an angle

θ =
2

kw0
(7.25)

with the z-axis. From this equation we can directly find the correspondence be-

tween the numerical aperture (NA = n sin θ) and the beam angle as NA ≈ 2n/kw0.

Here we used the fact that in the paraxial approximation, θ is restricted to small

beam angles. Another property of the paraxial Gaussian beam is that close to

the focus, the beam stays roughly collimated over a distance 2z0. z0 is called the

Rayleigh range and denotes the distance from the beam waist to where the beam

radius has increased by a factor of
√

2. It is important to notice that along the z-axis

(ρ = 0) the phases of the beam deviate from those of a plane wave. If at z→−∞
the beam was in phase with a reference plane wave, then at z→+∞ the beam will

be exactly out of phase with the reference wave. This phase shift is called Gouy

phase shift. The 180◦ phase change happens gradually as the beam propagates

through its focus. The phase variation is described by the factor η(z) in Eq. (7.23).

The tighter the focus the faster the phase variation will be.

A qualitative picture of a paraxial Gaussian beam and some of its characteris-

tics are shown in Fig. 7.2. It has to be emphasized that once the paraxial approx-

1
∫

∞

−∞
exp(−ax2 + ibx) dx =

√

π/a exp(−b2/4a) and
∫

∞

−∞
x exp(−ax2 + ibx) dx =

ib
√

π exp(−b2/4a)/ (2a3/2)

z

�θ ≈ 2/ kw0

ρ

2z0

ρ

1/e

w(z)

|E|

Figure 7.2: Illustration and main characteristics of a paraxial Gaussian beam. The

beam has a Gaussian field distribution in the transverse plane. The surfaces of

constant field strength form a hyperboloid along the z-axis.
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imation is introduced, the field E fulfills no longer Maxwell’s equations. The error

becomes larger the smaller the beam waist radius w0 is. Another important aspect

of Gaussian beams is that they do not exist, no matter how rigorous the theory that

describes them! The reason is that a Gaussian beam profile demands a Gaussian

spectrum. However, the Gaussian spectrum is infinite and contains evanescent

components that are not available in a realistic situation. Thus, a Gaussian beam

must always be regarded as an approximation. The tighter the focus, the broader

the Gaussian spectrum and the more contradictory the Gaussian beam profile will

be. The angular spectrum representation can be used to derive a rigorous descrip-

tion of focussed fields (e.g. Novotny, Principles of Nano-Optics).

7.2 Far-field Approximation

In this section we will derive the important result that Fourier Optics and Geomet-

rical Optics naturally emerge from the angular spectrum representation.

Consider a particular (localized) field distribution in the plane z = 0. The angu-

lar spectrum representation tells us how this field propagates and how it is mapped

onto other planes z = z0. Here, we ask what the field will be in a very remote plane.

Vice versa, we can ask what field will result when we focus a particular far-field onto

an image plane. Let us start with the familiar angular spectrum representation of

an optical field

E(x, y, z) =

∞
∫

−∞

∫

Ê(kx, ky ; 0) ei [kxx+ kyy ± kzz] dkx dky . (7.26)

We are interested in the asymptotic far-zone approximation of this field, i.e. in the

evaluation of the field in a point r = r∞ at infinite distance from the object plane.

The dimensionless unit vector s in the direction of r∞ is given by

s = (sx, sy, sz) =
(x

r
,
y

r
,
z

r

)

, (7.27)

where r= (x2 + y2 + z2)1/2 is the distance of r∞ from the origin. To calculate the

far-field E∞ we require that r → ∞ and rewrite Eq. (7.26) as

E∞(sx, sy) = lim
kr→∞

∫ ∫

(k2
x+k2

y)≤k2

Ê(kx, ky ; 0) eikr [ kx
k

sx +
ky
k

sy ± kz
k

sz ] dkx dky , (7.28)
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where sz =
√

1 − (s2
x + s2

y). Because of their exponential decay, evanescent waves

do not contribute to the fields at infinity. We therefore rejected their contribution and

reduced the integration range to (k2
x + k2

y) ≤ k2. The asymptotic behavior of the

double integral as kr→∞ can be evaluated by the method of stationary phase.

A clear outline of this method can be found in other textbooks (e.g. Born & Wolf,

Principles of Optics). Without going into details, the result of Eq. (7.28) can be

expressed as

E∞(sx, sy) = −2π ik sz Ê(ksx, ksy ; 0)
eikr

r
. (7.29)

This equation tells us that the far-fields are entirely defined by the Fourier spectrum

of the fields Ê(kx, ky ; 0) in the object plane if we replace kx → ksx and ky → ksy.

This simply means that the unit vector s fulfills

s = (sx, sy, sz) =

(

kx

k
,
ky

k
,
kz

k

)

, (7.30)

which implies that only one plane wave with the wavevector k = (kx, ky, kz) of

the angular spectrum at z = 0 contributes to the far-field at a point located in the

direction of the unit vector s (see Fig. 7.3). The effect of all other plane waves is

cancelled by destructive interference. This beautiful result allows us to treat the

field in the far-zone as a collection of rays with each ray being characterized by a

particular plane wave of the original angular spectrum representation (Geometrical

optics). Combining Eqs. (7.29) and (7.30) we can express the Fourier spectrum Ê

in terms of the far-field as

Ê(kx, ky ; 0) =
ir e−ikr

2πkz
E∞(

kx

k
,
ky

k
) , (7.31)

keeping in mind that the vector s is entirely defined by kx, ky. This expression can

be substituted into the angular spectrum representation (Eq. 7.26) as

E(x, y, z) =
ir e−ikr

2π

∫ ∫

(k2
x+k2

y)≤k2

E∞(
kx

k
,
ky

k
) ei [kxx+ kyy ± kzz] 1

kz

dkx dky (7.32)

Thus, as long as evanescent fields are not part of our system then the field E and

its far-field E∞ form essentially a Fourier transform pair at z = 0. The only devia-

tion is given by the factor 1/kz. In the approximation kz ≈ k, the two fields form a

perfect Fourier transform pair. This is the limit of Fourier Optics.
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As an example consider the diffraction at a rectangular aperture with sides 2Lx

and 2Ly in an infinitely thin conducting screen which we choose to be our object

plane (z=0). A plane wave illuminates the aperture at normal incidence from the

back. For simplicity we assume that the field in the object plane has a constant

field amplitude E0 whereas the screen blocks all the field outside of the aperture.

The Fourier spectrum at z=0 is then

Ê(kx, ky; 0) =
E0

4π2

∫ +Ly

−Ly

∫ +Lx

−Lx

e−i [kxx′ + kyy′] dx′ dy′

= E0
LxLy

π2

sin(kx Lx)

kx Lx

sin(ky Ly)

ky Ly
, (7.33)

With Eq. (7.29) we now determine the far-field as

E∞(sx, sy) = −ikszE0
2LxLy

π

sin(ksx Lx)

ksx Lx

sin(ksy Ly)

ksy Ly

eikr

r
, (7.34)

s

z 

z = 0 

Figure 7.3: Illustration of the far-field approximation. According to the angular

spectrum representation, a point in the source plane z = 0 emits plane waves in all

possible directions. However, a distant detector (kr ≫ 1) measures only the plane

wave that propagates towards it (in direction of unit vector s). The fields of all other

plane waves are canceled by destructive interference.
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which, in the paraxial limit kz ≈k, agrees with Fraunhofer diffraction.

Equation (7.29) is an important result. It links the near-fields of an object with

the corresponding far-fields. While in the near-field a rigorous description of fields

is necessary, the far-fields are well approximated by the laws of Geometrical Op-

tics.

7.3 Fresnel and Fraunhofer Diffraction

Diffraction refers to the observation that light rays break away from their geometri-

cal paths, which is to say, that the wave nature of radiation becomes relevant. In

this section we will discuss two important regimes of diffraction theory, Fresnel and

Fraunhofer diffraction.

The far-field approximation derived in the previous chapter has its limitations. It

has been assumed that the observation point is at infinite distance from the source

plane. However, how far do we have to go to be approximately at infinity? The best

z = 0 z = const.

zx’

y’

x

y
R

r

Figure 7.4: Coordinates used in discussion of Fresnel and Fraunhofer diffraction.
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is to look at this question geometrically and to consider the situation illustrated in

Fig. 7.4. R is the observation distance defined as the distance from the origin in the

source plane (e.g. center of an aperture) to the observer. On the other hand, r is

the true distance between source point (x′, y′, 0) and the observation point (x, y, z).

The square of r calculated as

r2 = (x− x′)2 + (y − y′)2 + z2 = R2

[

1 − 2(xx′ + yy′)

R2
+
x′2+ y′2

R2

]

. (7.35)

After taking the square root on both sides and invoking the paraxial approximation

we obtain

r(x′, y′) = = R − [x′(x/R) + y′(y/R)] +
x′2+ y′2

2R
+ .. . (7.36)

To determine the field at the observation point, we have to sum up the waves

emanating from different locations in the source plane (x′, y′). This yields integrals

of the form
∫

z=0

A(x′, y′)
exp[−ikr(x′, y′)]

r(x′, y′)
dx′ dy′ , (7.37)

where A(x′, y′) is some amplitude function. The ”summing up” of elementary

spherical waves is referred to as Huygens’ principle. Because of the large distance

between source and observer we can safely replace r(x′, y′) in the denominator by

R or z. However, we cannot apply this approximation to the exponent since we

would eliminate the effects of interference. Thus, we need to retain at least one of

the additional terms in the expansion of r in (7.36).

Let us denote the maximum extent of the sources at z = 0 as D, that is

D/2 = Max{
√

x′2 + y′2}. If the observation distance is sufficiently large (R ≫ D),

we can neglect the last term in Eq. (7.36) and we end up with Fraunhofer diffrac-

tion. On the other hand, if the last term is not negligible, we speak of Fresnel

diffraction. Fresnel diffraction becomes considerably more complicated because

the exponent depends on the square of the source plane coordinates.

The transition from Fresnel to Fraunhofer diffraction happens at a distance

z that roughly corresponds to the Rayleigh range z0 of a Gaussian beam (c.f.

Eq. 7.21), that is, the distance where the beam transitions into a spherical wave.

Expressing the beam waist as w0 = D/2 we obtain

z0 =
1

8
k D2 . (7.38)
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As an example, let us consider a laser beam with beam diameter of D = 3 mm

and wavelength λ = 532 nm (green). It turns out that z0 = 13 m, which is quite a

distance to reach the far field!

7.4 The Point-Spread Function

The point-spread function is a measure of the resolving power of an imaging sys-

tem. The narrower the point-spread function the better the resolution will be. As

the name implies, the point-spread function defines the spread of a point source. If

object plane image plane

x

n
1

n
2

k
1

k
2

z
f

2
f

1

p

p

n
1

n
2

θ
1 θ

2

f
1  

sin
 
θ

1
  =  f

2  
sin

 
θ

2

Figure 7.5: Calculation of the point-spread-function (PSF). The fields of a point

source are projected onto an image plane. Because of the loss of evanescent

waves and the finite angular collection angle of the imaging system, the point ap-

pears as a function with finite width.
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we have a radiating point source then the image of that source will appear to have

a finite size. This broadening is a direct consequence of spatial filtering. A point in

space is characterized by a delta function that has an infinite spectrum of spatial

frequencies kx, ky. On propagation from the source to the image, high-frequency

components are filtered out. Usually the entire spectrum (k2
x+k2

y)>k
2 associated

with the evanescent waves is lost. Furthermore, not all plane wave components

can be collected, which leads to a further reduction in bandwidth. The reduced

spectrum is not able to accurately reconstruct the original point source and the

image of the point will have a finite size.

The smallest radiating electromagnetic unit is a dipole. As shown in Fig. 7.5, to

calculate the point-spread function (PSF) we have to trace the dipole’s field through

an imaging system that focuses it onto an image plane. We will choose the origin

of coordinates (x, y, z) = (0, 0, 0) at the focus and use the angular spectrum repre-

sentation of Eq. (7.32) to calculate the fields in the image plane. It is convenient to

represent Eq. (7.32) in spherical coordinates by using the substitutions

kx = k2 sin θ2 cosφ, ky = k2 sin θ2 sin φ, kz = k2 cos θ2 . (7.39)

Furthermore, due to the symmetry of our problem it is favorable to express the

transverse coordinates (x, y) of the field point as

x = ρ cosϕ y = ρ sinϕ . (7.40)

Finally, we note that the integration in Eq. (7.32) runs over a plane, which is not a

constant-coordinate surface in spherical coordinates. We therefore transform the

planar integration surface into a spherical one using

1

kz
dkx dky = k2 sin θ2 dθ2 dφ , (7.41)

which is illustrated in Fig. 7.6.

Taken all together, the focal field represented by Eq. (7.32) can be written as

E(ρ, ϕ, z) =
ik2f2 e−ik2f2

2π

Max[θ2]
∫

0

2π
∫

0

E∞(θ2, φ) eik2z cos θ2 eik2ρ sin θ2 cos(φ−ϕ) sin θ2 dφ dθ2

(7.42)
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Here, we have replaced the distance r∞ between the focal point and the surface

of the reference sphere of the lens by the focal length f2. We have also limited

the integration over θ2 to the finite range [0 ..Max[θ2]] because any lens will have

a finite size. Furthermore, since all fields propagate in the positive z-direction we

retained only the + sign in the exponent of Eq. (7.32).

To evaluate Eq. (7.42) we need to insert the field E∞ of the dipole after it has

been refracted by the lens. To simplify the analysis we will ignore the vectorial

nature of dipole and its fields. Furthermore, we will assume that the imaging sys-

tem can be treated in the paraxial approximation, or small angle limit, for which

sin θ1 ≈ θ1 and sin θ2 ≈ θ2. Using the far-field term of Eq. (6.42) and ignoring the

angular dependence (scalar point source), the dipole field before refraction at the

lens is

E1 = − p k2
1

4πε0ε1

exp(ik1f1)

f1
. (7.43)

We trace this field through the lens and then insert it as E∞ into Eq. (7.42) above.

In essence, the dipole field is a field that uniformly illuminates the focusing lens,

that is E∞(θ2, φ) ≈ const.. Using the mathematical relation

2π
∫

0

eix cos(φ−ϕ) dφ = 2π J0(x) , (7.44)

we can carry out the integration over φ analytically. Here, J0 is the 0th-order Bessel

k
2
2  sinθ

2
 dθ

2
 dφ

kz

θ
2

dkx dky

dkx dky = cosθ
2
 [k

2
2  sinθ

2
 dθ

2
 dφ]

Figure 7.6: Illustration of the substitution (1/kz) dkx dky = k sin θ dθ dφ. The factor

1/kz = 1/(k cos θ) ensures that the differential areas on the plane and the sphere

stay equal.
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function. The final expression for the focal field now contains a single integration

over the variable θ2. Skipping the constant prefactors we obtain

E(ρ, ϕ, z) ∝
Max[θ2]
∫

0

eik2z cos θ2 J0(k2ρ sin θ2) sin θ2 dφ dθ2 . (7.45)

Using sin θ2≈θ2, setting z = 0 (image plane), and using
∫

xJ0(x)dx = xJ1(x) , (7.46)

we find the following result for the intensity in the image plane

lim
θmax≪π/2

∣

∣E(ρ, z=0)
∣

∣

2
=

π4

ε2
0n1n2

p2

λ6

NA4

M2

[

2
J1(2πρ̃)

(2πρ̃)

]2

, ρ̃ =
NA ρ
Mλ

(7.47)

Here, we have used a normalized coordinate ρ̃, which is expressed in terms of the

magnification M = (n1/n2)(f2/f1) and the numerical aperture

NA = n1 sin(Max[θ1]) . (7.48)

Note that sin(Max[θ1]) = (f2/f1) sin(Max[θ2]). The result (7.47) is the point-spread-

function, first derived by Abbe in 1873. Its functional form is given by the term in

object plane image plane

M ΔxΔx

Figure 7.7: Illustration of the resolution limit. Two simultaneously radiating point

sources separated by ∆r|| in the object plane generate a combined point-spread

function in the image plane. The two point sources are resolved if they can be

distinguished based on their image pattern.
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brackets which is known as the Airy function. It tells us that the image of a point

is no longer a point, but a function with a finite width. This width determines the

resolution of an imaging system. In essence, two points in the object plane have

to be separated by more than the width of the PSF in order to be distinguishable.

This is illustrated in Fig. 7.7.

The point-spread function can be measured by using a single quantum emitter,

such as a single molecule of quantum dot, as a point emitter. Fig. 7.8 shows such a

measurement together with a fit according to Eq. (7.47). The point-spread-function

has been recorded by using a NA = 1.3 lens to collect the fluorescence photons

from a single DiI molecule with center wavelength of λ ≈ 580 nm.

The width of the point-spread function ∆x is usually defined as the radial dis-
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Figure 7.8: Point-spread function measured with a single molecule point source.

Fluorescence photons emitted by a DiI molecule are collected with a NA = 1.3

objective lens. The center wavelength is λ ≈ 580 nm. The data points correspond

to a horizontal line cut through the center of the fluorescence rate image shown in

the inset. The solid curve corresponds to the Airy function.



7.4. THE POINT-SPREAD FUNCTION 113

tance for which the value of the paraxial point-spread function becomes zero, or

∆x = 0.6098
M λ

NA
. (7.49)

This width is also denoted as the Airy disk radius. It depends in a simple manner

on the numerical aperture, the wavelength and the magnification of the system.
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