
Chapter 3

Constitutive Relations

Maxwell’s equations define the fields that are generated by currents and charges.

However, they do not describe how these currents and charges are generated.

Thus, to find a self-consistent solution for the electromagnetic field, Maxwell’s

equations must be supplemented by relations that describe the behavior of matter

under the influence of fields. These material equations are known as constitutive

relations.

The constitutive relations express the secondary sources P and M in terms of

the fields E and H, that is P = f [E] and M = f [H].1 According to Eq. (1.20) this

is equivalent to D = f [E] and B = f [E]. If we expand these relations into power

series
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we find that the lowest-order term depends linearly on E. In most practical situ-

ations the interaction of radiation with matter is weak and it suffices to truncate

the power series after the linear term. The nonlinear terms come into play when

the fields acting on matter become comparable to the atomic Coulomb potential.

This is the territory of strong field physics. Here we will entirely focus on the linear

properties of matter.

1In some exotic cases we can have P = f [E, H] and M = f [H, E], which are so-called bi-
isotropic or bi-anisotropic materials. These are special cases and won’t be discussed here.
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3.1 Linear Materials

The most general linear relationship between D and E can be written as

D(r, t) = ε0

∞
∫

−∞

0
∫

−∞

ε̃(r−r′, t−t′) E(r′, t′) d3r′ dt′ , (3.2)

which states that the response D at the location r and at time t not only depends

on the excitation E at r and t, but also on the excitation E in all other locations

r′ and all previous times t′. The integrals represent summations over all space

and over all previous times. For reasons of causality (no response before excita-

tion), the time integral only runs to t′ = 0. The response function ε̃ is a tensor of

rank two. It maps a vector E onto a vector D according to Di =
∑

j ε̃ijEj, where

{i, j} ∈ {x, y, z}. A material is called temporally dispersive if its response function

at time t depends on previous times. Similarly, a material is called spatially dis-

persive if its response at r depends also on other locations. A spatially dispersive

medium is also designated as a nonlocal medium.

Note that Eq. (3.2) is a convolution in space and time. Using the Fourier trans-

form with respect to both time and space, that is,

D̂(kx, ky, kz, ω) =
1

(2π)4
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D(x, y, z, t) eikxx eikyy eikzz eiωt dx dy dz dt , (3.3)

allows us to rewrite Eq. (3.2) as

D̂(k, ω) = ε0 ε(k, ω) Ê(k, ω) , (3.4)

where ε is the Fourier transform of ε̃. Note that the response at (k, ω) now only de-

pends on the excitation at (k, ω) and not on neighboring (k′, ω′). Thus, a nonlocal

relationship in space and time becomes a local relationship in Fourier space! This

is the reason why life often is simpler in Fourier space.

Spatial dispersion, i.e. a nonlocal response, is encountered near material sur-

faces or in objects whose size is comparable with the mean-free path of electrons.

In general, nonlocal effects are very difficult to account for. In most cases of inter-

est the effect is very weak and we can safely ignore it. Temporal dispersion, on
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the other hand, is a widely encountered phenomenon and it is important to take it

accurately into account. Thus, we will be mostly concerned with relationships of

the sort

D̂(r, ω) = ε0 ε(ω) Ê(r, ω) , (3.5)

where ε(ω) is called the dielectric function, also called the relative electric permit-

tivity. Similarly, for the magnetic field we obtain

B̂(r, ω) = µ0 µ(ω) Ĥ(r, ω) , (3.6)

with µ(ω) being the relative magnetic permeability. Notice that the spectral repre-

sentation of Maxwell’s equations [ (2.25)–(2.28)] is formally identical to the com-

plex notation used for time-harmonic fields [ (2.31)–(2.34)] . Therefore, Eqs. (3.5)

and (3.6) also hold for the complex amplitudes of time-harmonic fields

D(r) = ε0ε(ω)E(r) , B(r) = µ0µ(ω)H(r) (3.7)

However, these equations generally do not hold for time-dependent fields E(r, t)!

One can use (3.7) for time-dependent fields only if dispersion can be ignored, that

is ε(ω) = ε and µ(ω) = µ. The only medium that is strictly dispersion-free is vac-

uum.

3.1.1 Electric and Magnetic Susceptibilities

The linear relationships (3.7) are often expressed in terms of the electric and mag-

netic susceptibilites χe and χm, respectively. These are defined as

P(r) = ε0χe(ω)E(r) , M(r) = χm(ω)H(r) . (3.8)

Using the relations (1.20) we find that ε = (1 + χe) and µ = (1 + χm).

3.1.2 Conductivity

The conductivity σ relates an induced conduction current jbond in a linear fashion

to an exciting field E. Similar to Eq. (3.7), this relationship can be represented as

jcond(r) = σ(ω)E(r) . (3.9)



36 CHAPTER 3. CONSTITUTIVE RELATIONS

It turns out that the conduction current is accounted for by the imaginary part of

ε(ω) as we shall show in the following.

Let us explicitly split the current density j into a source and a conduction cur-

rent density according to Eq. (1.11). Maxwell’s curl equation for the magnetic

field (2.33) then becomes

∇×H(r) = −iωD(r) + jcond(r) + j0(r) . (3.10)

We now introduce the linear relationships (3.7) and (3.9) and obtain

∇× H(r) = −iωε0ε(ω)E(r) + σ(ω)E(r) + j0(r)

= −iωε0

[

ε(ω) + i
σ(ω)

ε0ω

]

E(r) + j0(r) . (3.11)

Thus, we see that the conductivity acts like the imaginary part of the electric per-

meability and that we can simply accommodate σ in ε by using a complex dielectric

function

[ε′ + iσ/(ωε0)] → ε (3.12)

where ε′ denotes the purely real polarization-induced dielectric constant. In the

complex notation one does not distinguish between conduction currents and po-

larization currents. Energy dissipation is associated with the imaginary part of the

dielectric function (ε′′) whereas energy storage is associated with its real part (ε′′).

With the new definition of ε, the wave equations for the complex fields E(r) and

H(r) in linear media are

∇× µ(ω)−1 ∇×E(r) − k2
0 ε(ω) E(r) = iωµ0 j0(r) , (3.13)

∇× ε(ω)−1 ∇×H(r) − k2
0µ(ω)H(r) = ∇× ε(ω)−1 j0(r) , (3.14)

where k0 = ω/c denotes the vacuum wavenumber. Note that these equations are

also valid for anisotropic media, i.e. if ε and µ are tensors.

If µ is isotropic then we can multiply Eq. (3.13) on both sides with µ. Fur-

thermore, if there are no sources we can drop j0 and obtain the Helmholtz equa-

tion (2.12), but with the difference that now k2 = k2
0 εµ, that is,

∇2E(r) + k2 E(r) = ∇2E(r) + k2
0 n

2E(r) = 0 (3.15)
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where n =
√
εµ is called index of refraction.

Conductors

The conductivity σ is a measure for how good a conductor is. For example, quartz

has a conductivity of σSiO2 = 10−16 A / V m, and the conductivity of copper is

σAu = 108 A / V m. These values are different by 24 orders of magnitude! There

are hardly any other physical parameters with a comparable dynamic range.

The net charge density ρ inside a conductor is zero, no matter wether it trans-

ports a current or not. This seems surprising, but it directly follows from the charge

conservation (1.36) and Gauss’ law (1.32). Combining the two equations and us-

ing j = σE and D = ε0εE yields

∂

∂t
ρ(t) = − σ

ε0ε
ρ(t) , (3.16)

which has the solution

ρ(t) = ρ(t = 0) e−t σ/(ε0ε) . (3.17)

Thus, any charge inside the conductor dissipates within a time of Tρ = ε0ε/σ. For

a perfect conductor, σ → ∞ and hence ρ(t) = 0. For realistic conductors with finite

σ the characteristic time is Tρ ∼ 10−19 s, which is so short that it can be neglected.

When a charge moves through a conductor it undergoes collisions with the lat-

tice. After a collision event, the charge is accelerated by the external field until

it is slowed down by the next collision. For good conductors (copper), the time

between collisions is typically in the order of τ ∼ 10−14 s. The sequence of acceler-

ation and deceleration events results in a finite velocity vd for the charge, called the

drift velocity. The current density due to a charge density moving at finite speed

is j = q vd n, where n2 is the charge density, i.e. the number of charges per unit

volume. The drift velocity vd is proportional to the driving field E and the propor-

tionality constant is called mobility µ3. Thus, σ = nqµ.

2Not to be confused with the index of refraction n.
3Not to be confused with the magnetic permittivity µ.
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In a good conductor the polarization current ∂P/∂t can be neglected because

it is much smaller than the conduction current j. In terms of a complex dielectric

constant ε = ε′ + iε′′ (c.f. Eq. 3.12) this implies that ε′′ ≫ |ε′|, that is, σ ≫ |ω ε0ε
′|.

Evidently, the higher the frequency ω is, the more challenging it gets to fulfill this

condition. In fact, at optical frequencies, metals are no longer good conductors and

they are dominated by the polarization current. At lower frequencies, however, it

is legitimate to ignore the polarization current when dealing with good conductors.

Ignoring ∂P/∂t is equivalent to ignoring the real part of the complex dielectric

function (3.12), which implies k2 = (ω/c)2µε ≈ i (ω/c)2(µσ / ωε0). Consequently,

the Helmholtz equation (3.15) reads as

∇2E(r) + iωσµ0µ E(r) = 0 , (3.18)

and because of j = σE the same equation holds for the current density j. Note

that we’re using complex equation and that j(r, t) = Re{j(r) exp[−iω t]}.

Let us now consider a semi-infinite conductor, as illustrated in Fig. 3.1. This

situation corresponds to a small section of a wire’s surface. The conductor has a

surface at x = 0 and transports a current j(r) in the z direction. Because of the

x

y

j
z

z

Figure 3.1: Current density j = jz nz flowing along the surface of a conductor.
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invariance in y and z we set jz(x) = A exp[B x] and insert into Eq. (3.18). Noting

that
√
i = (1 + i)/

√
2 we obtain

jz(x) = jz(x = 0) e−(i−1) x/Ds with Ds =

√

2

σµ0µω
. (3.19)

The length Ds is called the skin depth. Since |jz(x)/jz(0)| = exp[−x/Ds] it de-

scribes the penetration of fields and currents into the metal. Evidently, for a perfect

conductor (σ → ∞) the skin depth becomes Ds = 0, that is, all the current is trans-

ported on the surface of the metal. Ds also decreases with increasing frequency

ω, but eventually the result (3.19) becomes inaccurate because the polarization

current ∂P/∂t becomes stronger than the conduction current. In wires of finite

diameter the skin depth also depends on the curvature of the wire. At low frequen-

cies, the conductance of a wire scales with the cross-section of the wire, but at

high frequencies, the current is confined to the surface of the wire and hence the

conductance scales with the circumference.
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