
Chapter 5

Energy and Momentum

The equations established so far describe the behavior of electric and magnetic

fields. They are a direct consequence of Maxwell’s equations and the properties

of matter. Although the electric and magnetic fields were initially postulated to

explain the forces in Coulomb’s and Ampere’s laws, Maxwell’s equations do not

provide any information about the energy content of an electromagnetic field. As

we shall see, Poynting’s theorem provides a plausible relationship between the

electromagnetic field and its energy content.

5.1 Poynting’s Theorem

If the scalar product of the field E and Eq. (1.34) is subtracted from the scalar

product of the field H and Eq. (1.33) the following equation is obtained

H · (∇× E) −E · (∇×H) = −H · ∂B
∂t

− E · ∂D
∂t

− j · E . (5.1)

Noting that the expression on the left is identical to ∇ · (E × H), integrating both

sides over space and applying Gauss’ theorem the equation above becomes

∫

∂V

(E× H) ·n da = −
∫

V

[

H · ∂B
∂t

+ E · ∂D
∂t

+ j · E
]

dV (5.2)

Although this equation already forms the basis of Poynting’s theorem, more insight

is provided when B and D are substituted by the generally valid equations (1.20).
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Eq. (5.2) then reads as
∫

∂V

(E × H) ·n da +
∂

∂t

∫

V

1

2

[

D · E + B · H
]

dV = −
∫

V

j · E dV (5.3)

− 1

2

∫

V

[

E · ∂P
∂t

−P · ∂E
∂t

]

dV − µ0

2

∫

V

[

H · ∂M
∂t

−M · ∂H
∂t

]

dV.

This equation is a direct conclusion of Maxwell’s equations and has therefore the

same validity. Poynting’s theorem is more or less an interpretation of the equation

above. The left hand side has the general appearance of a conservation law, sim-

ilar to the conservation of charge encountered previously in Eq. (1.1).

If we set D = ε0εE and B = µ0µH then the second integrand becomes

(1/2) [ε0ε|E|2 + µ0µ|H|2], which is recognized as the sum of electric and magnetic

energy density. Thus, the second term in Eq. (5.3) corresponds to the time rate of

change of electromagnetic energy in the volume V and, accordingly, the first term

is the flux of energy in or out of V . The remaining terms on the right side are equal

to the rate of energy dissipation inside V . According to this interpretation

W =
1

2

[

D ·E + B · H
]

(5.4)

represents the density of electromagnetic energy, and

S = (E × H) (5.5)

is the energy flux density. S is referred to as the Poynting vector, discovered in

1883 by John Poynting and independently by Oliver Heaviside. In principle, the curl

of any vector field can be added to S without changing the conservation law (5.3),

but it is convenient to make the choice as stated in (5.5).

If the medium within V is linear and non-dispersive, the two last terms in

Eq. (5.3) equal zero and the only term accounting for energy dissipation is j · E.

To understand this term, we consider the work done per unit time on a single

charge q. In terms of the velocity v of the charge and the force F acting on it,

the work per unit time is dW/dt = F · v. Using the Lorentz force in Eq. (1) gives

dW/dt = qE · v + q [v × B] · v. Because [v × B] · v = [v × v] · B = 0 we obtain
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F = q v · E, which corresponds to the j · E term in Eq. (5.3).Thus, we find that the

magnetic field does no work and that it is only the electric field that gives rise to

dissipation of electromagnetic energy. The energy removed from the electromag-

netic field is transferred to the charges in matter and ultimately to other forms of

energy, such as heat.

In most practical applications we are interested in the mean value of S, that is,

the value of S averaged over several oscillation periods. This quantity describes

the net power flux density and is needed, for example, for the evaluation of radiation

patterns. Assuming that the fields are harmonic in time, linear and non-dispersive,

then the two last terms in Eq. (5.3) disappear. Furthermore, we assume that the

energy density (5.4) only accounts for polarization and magnetization currents that

a re loss-free, that is, all losses are associated with the j·E term. The time average

of Eq. (5.3) then becomes

∫

∂V

〈S(r)〉·n da = −1

2

∫

V

Re {j∗(r)·E(r)} dV (5.6)

where we have used complex notation. The term on the right defines the mean

energy dissipation within the volume V . 〈S〉 represents the time average of the

Poynting vector

〈S(r)〉 =
1

2
Re {E(r) ×H∗(r)} (5.7)

The magnitude of 〈S〉 is called the intensity I(r) = |〈S(r)〉|.

In the far-field, that is, far from sources and material boundaries, the electro-

magnetic field can be locally approximated by a plane wave (see Section 2.1.1).

The electric and magnetic fields are in phase, perpendicular to each other, and the

ratio of their amplitudes is constant. 〈S〉 can then be expressed by the electric field

alone as

〈S(r)〉 =
1

2

1

Zi
|E(r)|2 nr =

1

2

√

ε0

µ0
ni |E(r)|2 (5.8)

where nr represents the unit vector in radial direction, ni =
√
εi µi is the index of

refraction, and Zi is the wave impedance (4.33).
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The surface integral of 〈S〉 correspond to the total power generated or dissi-

pated inside the enclosed surface, that is,

P̄ =

∫

∂V

〈S(r)〉·n da =

∫

∂V

I(r) da (5.9)

5.1.1 Example: Energy Transport by Evanescent Waves

Let us consider a single dielectric interface that is irradiated by a plane wave under

conditions of total internal reflection (TIR) (c.f. Section 4.4). For non-absorbing

media and for supercritical incidence, all the power of the incident wave is reflected.

One can anticipate that because no losses occur upon reflection at the interface

there is no net energy transport into the medium of transmittance. In order to

prove this fact we have to investigate the time-averaged energy flux across a plane

parallel to the interface. This can be done by considering the z-component of the

Poynting vector (cf. Eq. (5.7))

〈S〉z =
1

2
Re

(

ExH
∗
y − EyH

∗
x

)

, (5.10)

where all fields are evaluated in the upper medium, i.e. the medium of trans-

mittance. Applying Maxwell’s equation (2.32) to the special case of a plane or

evanescent wave, allows us to express the magnetic field in terms of the electric

field as

H =

√

ε0ε

µ0µ

[(

k

k

)

× E

]

. (5.11)

Introducing the expressions for the transmitted field components of E and H into

Eq. (5.10), it is straightforward to prove that 〈S〉z vanishes and that there is no net

energy transport in the direction normal to the interface.

On the other hand, when considering the energy transport along the interface

(〈S〉x), a non-zero result is found:

〈S〉x =
1

2

√

ε2µ2

ε1µ1
sin θ1

(

|ts|2
∣

∣

∣
E

(s)
1

∣

∣

∣

2

+ |tp|2
∣

∣

∣
E

(p)
1

∣

∣

∣

2
)

e−2γz . (5.12)

Thus, an evanescent wave transports energy along the surface, in the direction of

the transverse wavevector.
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5.1.2 Energy density in dispersive and lossy media

The two last terms in Eq. (5.3) strictly vanish only in a linear medium with no dis-

persion and no losses. The only medium fulfilling these conditions is vacuum. For

all other media, the last two terms only vanish approximately. In this section we

consider a linear medium with a frequency-dependent and complex ε and µ.

Let us return to the Poynting theorem stated in Eq. (5.2). While the left hand

side denotes the power flowing in or out of the volume V , the right hand side

denotes the power dissipated or generated in the volume V . The three terms on

the right hand side are of similar form and so we start by considering first the

electric energy term E · (∂D/∂t). The electric energy density wE at the time t is

wE(r, t) =

∫ t

−∞

E(r, t′) · ∂D(r, t′)

∂t′
dt′ . (5.13)

We now express the fields E and D in terms of their Fourier transforms as E(t′)=
∫

Ê(ω) exp[−iωt′] dω and D(t′) =
∫

D̂(ω) exp[−iωt′] dω, respectively. In the last ex-

pression we substitute ω = −ω′ and obtain D(t′)=
∫

D̂∗(ω′) exp[iω′t′] dω′, where we

used D̂(−ω′)= D̂∗(ω′) since D(t) is real (c.f. Eq. (2.22)). Using the linear relation

D̂ = ε0 εÊ and inserting the Fourier transforms in Eq. (5.13) yields

wE(r, t) = ε0

∫ ∞

−∞

∫ ∞

−∞

ω′ ε∗(ω′)

ω′ − ω
Ê(ω) · Ê∗(ω′) ei(ω′−ω)t dω′ dω , (5.14)

where we have carried out the differentiation and integration over time and as-

sumed that the fields were zero at t→ −∞. For later purposes it is advantageous

to represent the above result in different form. Using the substitutions u′ = −ω and

u = −ω′ and making use of Ê(−u)= Ê∗(u) and ε(−u)= ε∗(u) gives an expression

similar to Eq. (5.14) but in terms of u and u′. Finally, we add this expression to

Eq. (5.14) and take one half of the resulting sum, which yields

wE(r, t) =
ε0

2

∫ ∞

−∞

∫ ∞

−∞

[

ω′ε∗(ω′) − ωε(ω)

ω′ − ω

]

Ê(ω) · Ê∗(ω′) ei(ω′−ω)t dω′ dω . (5.15)

Similar expressions are obtained for the magnetic term H · (∂B/∂t) and the dissi-

pative term j ·E in Eq. (5.2).

If ε(ω) is a complex function then wE not only accounts for the energy density

built up in the medium but also for the energy transferred to the medium, such as
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heat dissipation. This contribution becomes indistinguishable from the term j ·E in

Eq. (5.2). Thus, the imaginary part of ε can be included in the conductivity σ (c.f.

Eq. (3.12)) and accounted for in the term j ·E through the linear relationship ĵ=σÊ.

Therefore, to discuss the energy density it suffices to consider only the real part of

ε, which we’re going to denote as ε′.

Let us now consider a monochromatic field represented by Ê(r, ω) = E0(r)[δ(ω−
ω0) + δ(ω + ω0)]/2. Inserting in Eq. (5.15) yields four terms: two that are constant

in time and two that oscillate in time. Upon averaging over an oscillation period

2π/ω0 the oscillatory terms vanish and only the constant terms survive. For these

terms we must view the expression in brackets in Eq. (5.15) as a limit, that is,

lim
ω′→ω

[

ω′ε′(ω′) − ωε′(ω)

ω′ − ω

]

=
d [ω ε′(ω)]

dω

∣

∣

∣

∣

ω=ω0

. (5.16)

Thus, the cycle average of Eq. (5.15) yields

w̄E(r) =
ε0

4

d [ω ε′(ω)]

dω

∣

∣

∣

∣

ω=ω0

|E0(r)|2 . (5.17)

A similar result can be derived for the magnetic term H · (∂B/∂t).

It can be shown that Eq. (5.17) also holds for quasi-monochromatic fields which

have frequency components ω only in a narrow range about a center frequency ω0.

Such fields can be represented as

E(r, t) = Re{Ẽ(r, t)} = Re{E0(r, t) e−iω0t} , (5.18)

which is known as the slowly varying amplitude approximation. Here, E0(r, t) is the

slowly varying (complex) amplitude and ω0 is the ’carrier’ frequency. The envelope

E0 spans over many oscillations of frequency ω0.

Expressing the field amplitudes in terms of time-averages, that is |E0|2 = 2 〈E(t)·
E(t)〉, we can express the total cycle-averaged energy density W̄ as

W̄ =

[

ε0
d [ωε′(ω)]

dω

〈

E · E
〉

+ µ0
d [ωµ′(ω)]

dω

〈

H · H
〉

]

(5.19)

where E = E(r, t) and H = H(r, t) are the time-dependent fields. Notice, that ω is

the center frequency of the spectra of E and H. For a medium with negligible dis-

persion this expression reduces to the familiar W̄ = (1/2) [εoε
′|E0|2+ µoµ

′ |H0|2],
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which follows from Eq. (5.4) using the dispersion-free constitutive relations. Be-

cause of d(ωε′)/dω > 0 and d(ωµ′)/dω > 0 the energy density is always positive,

even for metals with ε′ < 0.

5.2 The Maxwell Stress Tensor

In this section we use Maxwell’s equations to derive the conservation law for lin-

ear momentum in an electromagnetic field. The net force exerted on an arbitrary

object is entirely determined by Maxwell’s stress tensor. In the limiting case of an

infinitely extended object, the formalism renders the known formulas for radiation

pressure.

The general law for forces in electromagnetic fields is based on the conser-

vation law for linear momentum. To derive this conservation law we will consider

Maxwell’s equations in vacuum. In this case we have D = ε0E and B = µ0H.

Later we will relax this constraint. The conservation law for linear momentum is

entirely a consequence of Maxwell’s equations (1.16) - (1.19) and of the Lorentz

force law (5), which connects the electromagnetic world with the mechanical one.

If we operate on Maxwell’s first equation by ×ε0E, on the second equation by

×µ0H, and then add the two resulting equations we obtain

ε0(∇× E) ×E + µ0(∇× H) ×H = j× B − 1

c2

[

∂H

∂t
× E

]

+
1

c2

[

∂E

∂t
×H

]

(5.20)

We have omitted the arguments (r, t) for the different fields and we used ε0µ0 =

1/c2. The last two expressions in Eq. (5.20) can be combined to (1/c2) d/dt [E×H].

For the first expression in Eq. (5.20) we can write

ε0(∇× E) × E = (5.21)

ε0







∂/∂x(E2
x −E2/2) + ∂/∂y(ExEy) + ∂/∂z(ExEz)

∂/∂x(ExEy) + ∂/∂y(E2
y −E2/2) + ∂/∂z(EyEz)

∂/∂x(ExEz) + ∂/∂y(EyEz) + ∂/∂z(E2
z −E2/2)






− ε0E∇·E

= ∇ · [ε0EE − (ε0/2)E2
↔

I ] − ρE .
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where Eq. (1.32) has been used in the last step. The notation EE denotes the

outer product, E2 = E2
x + E2

y + E2
z is the electric field strength, and

↔

I denotes the

unit tensor. A similar expression can be derived for µ0(∇× H) × H. Using these

two expressions in Eq. (5.20) we obtain

∇· [ε0EE − µ0HH − 1

2
(ε0E

2 +µ0H
2)

↔

I ] =
d

dt

1

c2
[E×H] + ρE + j×B . (5.22)

The expression in brackets on the left hand side is called Maxwell’s stress tensor

in vacuum, usually denoted as
↔

T. In Cartesian components it reads as

↔

T =

[

ε0EE− µ0HH − 1

2
(ε0E

2 + µ0H
2)

↔

I

]

= (5.23)







ε0(E
2
x −E2/2) + µ0(H

2
x −H2/2) ε0ExEy + µ0HxHy

ε0ExEy + µ0HxHy ε0(E
2
y −E2/2) + µ0(H

2
y −H2/2)

ε0ExEz + µ0HxHz ε0EyEz + µ0HyHz

ε0ExEz + µ0HxHz

ε0EyEz + µ0HyHz

ε0(E
2
z −E2/2) + µ0(H

2
z −H2/2)







After integration of Eq. (5.22) over an arbitrary volume V which contains all sources

ρ and j we obtain
∫

V

∇·
↔

T dV =
d

dt

1

c2

∫

V

[E × H] dV +

∫

V

[ρE + j ×B] dV . (5.24)

The last term is recognized as the mechanical force (cf. Eq. (5)). The volume inte-

gral on the left can be transformed to a surface integral using Gauss’s integration

law
∫

V

∇·
↔

T dV =

∫

∂V

↔

T ·n da . (5.25)

∂V denotes the surface of V , n the unit vector perpendicular to the surface, and

da an infinitesimal surface element. We then finally arrive at the conservation law

for linear momentum

∫

∂V

↔

T (r, t) · n(r) da =
d

dt

[

Gfield + Gmech

]

(5.26)

Here, Gmech and Gfield denote the mechanical momentum and the field momentum,

respectively. In Eq. (5.26) we have used Newton’s expression of the mechanical
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force F = d/dtGmech and the definition of the field momentum (Abraham density)

Gfield =
1

c2

∫

V

[E ×H] dV (5.27)

This is the momentum carried by the electromagnetic field within the volume V . It

is created by the dynamic terms in Maxwell’s curl equations. The time-derivative

of the field momentum is zero when it is averaged over one oscillation period and

hence the average mechanical force becomes

〈F〉 =

∫

∂V

〈
↔

T (r, t)〉 · n(r) da (5.28)

with 〈...〉 denoting the time average. Equation (5.28) is of general validity. It allows

the mechanical force acting on an arbitrary body within the closed surface ∂V to

be calculated (see Figure 5.1). The force is entirely determined by the electric

and magnetic fields on the surface ∂V . It is interesting to note that no material

properties enter the expression for the force; the entire information is contained

in the electromagnetic field. The only material constraint is that the body is rigid.

If the body deforms when it is subject to an electromagnetic field we have to in-

clude electrostrictive and magnetostrictive forces. Since the enclosing surface is

B

∂
V

F

incident field

scattered field

Figure 5.1: The mechanical force F acting on the object B is entirely determined

by the electric and magnetic fields at an arbitrary surface ∂V enclosing B.
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arbitrary the same results are obtained whether the fields are evaluated at the sur-

face of the body or in the far-field. It is important to note that the fields used to

calculate the force are the self-consistent fields of the problem, which means that

they are a superposition of the incident and the scattered fields. Therefore, prior to

calculating the force, one has to solve for the electromagnetic fields. If the object

B is surrounded by a medium that can be represented accurately enough by the

dielectric constant ε and magnetic susceptibility µ, the mechanical force can be

calculated in the same way if we replace Maxwell’s stress tensor Eq. (5.23) by

↔

T = [ε0εEE − µ0µHH − 1

2
(ε0εE

2 + µ0µH
2)

↔

I ] (5.29)

5.3 Radiation pressure

Here, we consider the radiation pressure on a medium with an infinitely extended

planar interface as shown in Fig. 5.2. The medium is irradiated by a monochro-

matic plane wave at normal incidence to the interface. Depending on the material

properties of the medium, part of the incident field is reflected at the interface. In-

troducing the complex reflection coefficient r, the electric field outside the medium

can be written as the superposition of two counter-propagating plane waves

E(r, t) = E0 Re
{

[eikz + r e−ikz] e−iωt
}

nx . (5.30)

Using Maxwell’s curl equation (1.33) we find for the magnetic field

H(r, t) =
√

ε0/µ0 E0 Re
{

[eikz − r e−ikz] e−iωt
}

ny . (5.31)

To calculate the radiation pressure P we integrate Maxwell’s stress tensor on an

infinite planar surface A parallel to the interface as shown in Fig. 5.2. The radiation

pressure can be calculated by using Eq. (5.28) as

P nz =
1

A

∫

A

〈
↔

T (r, t)〉 · nz da . (5.32)

We do not need to consider a closed surface ∂V since we are interested in the

pressure exerted on the interface of the medium and not in the mechanical force
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k

E0

A

H0

nx

ny

nz

Figure 5.2: Configuration used to derive the radiation pressure.

acting on the medium. Using the fields of Eqs. (5.30) and (5.31) we find that the

first two terms in Maxwell’s stress tensor Eq. (5.23) give no contribution to the

radiation pressure. The third term yields

〈
↔

T (r, t)〉 · nz = −1

2
〈ε0E

2 + µ0H
2〉nz =

ε0

2
E2

0 [1 + |r|2]nz . (5.33)

Using the definition of the intensity of a plane wave I0 = (ε0/2)cE2
0 , c being the

vacuum speed of light, we can express the radiation pressure as

P =
I0
c

[1 + R] , (5.34)

with R = |r|2 being the reflectivity. For a perfectly absorbing medium we have

R = 0, whereas for a perfectly reflecting medium R = 1. Therefore, the radiation

pressure on a perfectly reflecting medium is twice as high as for a perfectly ab-

sorbing medium.

To conclude this chapter we should emphasize the importance of electromag-

netic energy and momentum. Energy and momentum are fundamental concepts

of physics that make transitions between different fields feasible. For example,

electromagnetic energy can be transferred to heat, which is a concept of ther-

modynamics, and electromagnetic momentum can be transferred to mechanical
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forces, which is a concept of classical mechanics. Electromagnetic energy and

momentum are also used in Lagrangian and Hamiltonian formalisms, which form

the stepping stones to quantum mechanics and quantum electrodynamics. Thus,

energy and momentum make it possible to transition between different fields of

physics. Such transitions cannot be accomplished by more standard electrical

concepts such as voltage and current.




