
Chapter 1

Maxwell’s Equations

Equations (6) summarize the knowledge of electromagnetism as it was understood

by the mid 19th century. In 1873, however, James Clerk Maxwell introduced a crit-

ical modification that kick-started an era of wireless communication.

1.1 The Displacement Current

Eq. (7) is a statement of current conservation, that is, currents cannot be generated

or destroyed, the net flux through a closed surface is zero. However, this law

is flawed. For example, let’s take a bunch of identical charges and hold them

together (see Fig. 1.1). Once released, the charges will speed out because of

Coulomb repulsion and there will be a net outward current. Evidently, the outward

current is balanced by the decrease of charge inside the enclosing surface ∂V ,

and hence, Eq. (7) has to be corrected as follows

∫

∂V

j(r, t) · n da = − ∂

∂t

∫

V

ρ(r, t) dV (1.1)

This equation describes the conservation of charge. It’s general form is found in

many different contexts in physics and we will encounter it again when we discuss

the conservation of energy (Poynting theorem).

Because Eq. (7) has been derived from Ampère’s law, we need to modify the
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10 CHAPTER 1. MAXWELL’S EQUATIONS

latter in order to end up with the correct conservation law of Eq. (1.1). This is where

Maxwell comes in. He added an additional term to Ampère’s law and arrived at

∫

∂A

B(r, t) · ds = µ0

∫

A

j(r, t) · n da +
1

c2
∂

∂t

∫

A

E(r, t) · n da , (1.2)

where 1/c2 = ε0µ0. The last term has the form of a time-varying current. Therefore,

ε0 ∂E/∂t is referred to as the displacement current.

We again apply this equation to the end faces of a small cube (c.f. Fig. 6) and,

as before, the left hand side vanishes. Thus,

µ0

∫

∂V

j(r, t) · n da +
1

c2
∂

∂t

∫

∂V

E(r, t) · n da = 0 . (1.3)

Substituting Gauss’ law from Eq. (6) for the second expression yields the desired

charge continuity equation (1.1).

In summary, replacing Ampère’s law in (6) by Eq. (1.2) yields a set of four equa-

tions for the fields E and B that are consistent with the charge continuity equation.

These four equations define what is called Maxwell’s integral equations.
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Figure 1.1: Illustration of charge conservation. A bunch of identical charges is

held together at t = 0. Once released, the charges will spread out due to Coulomb

repulsion, which gives rise to a net outward current flow.
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1.2 Interaction of Fields with Matter

So far we have discussed the properties of the fields E and B in free space. The

sources of these fields are charges ρ and currents j, so-called primary sources.

However, E and B can also interact with materials and generate induced charges

and currents. These are then called secondary sources.

To account for these secondary sources we write

ρtot = ρ + ρpol , (1.4)

where ρ is the charge density associated with primary sources. It is assumed that

these sources are not affected by the fields E and B. On the other hand, ρpol is

the charge density induced in matter through the interaction with the electric field.

It is referred to as the polarization charge density.1 On a microscopic scale, the

electric field slightly distorts the atomic orbitals in the material (see Fig. 1.2). On a

macroscopic scale, this results in an accumulation of charges at the surface of the

material (see Fig. 1.3). The net charge density inside the material remains zero.

To account for polarization charges we introduce the polarization P which, in

analogy to Gauss’ law in Eq. (6), is defined as
∫

∂V

P(r, t) · n da = −
∫

V

ρpol(r, t) dV . (1.5)

P has units of Cb/m2, which corresponds to dipole moment (Cb / m) per unit vol-

1The B-field interacts only with currents and not with charges.
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Figure 1.2: Microscopic polarization. An external electric field E distorts the orbital

of an atom. (a) Situation with no external field. (b) Situation with external field.
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ume (m3). Inserting Eqs. (1.4) and (1.5) into Gauss’ law yields
∫

∂V

[ε0E(r, t) + P(r, t)] · n da =

∫

V

ρ(r, t) dV . (1.6)

The expression in brackets is called the electric displacement

D = ε0E + P . (1.7)

Time-varying polarization charges give rise to polarization currents. To see this,

we take the time-derivative of Eq. (1.5) and obtain
∫

∂V

∂

∂t
P(r, t) · n da =

∂

∂t

∫

V

ρpol(r, t) dV , (1.8)

which has the same appearance as the charge conservation law (1.1). Thus, we

identify ∂P/∂t as the polarization current density

jpol(r, t) =
∂

∂t
P(r, t) . (1.9)

To summarize, the interaction of the E-field with matter gives rise to polarization

charges and polarization currents. The magnitude and the dynamics of these sec-

ondary sources depends on the material properties [P = f(E)], which is the sub-

ject of solid-state physics.

An electric field interacting with matter not only gives rise to polarization cur-

rents but also to conduction currents. We will denote the conduction current den-

sity as jcond. Furthermore, according to Ampère’s law, the interaction of matter with
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Figure 1.3: Macroscopic polarization. An external electric field E accumulates

charges at the surface of an object. (a) Situation with no external field. (b) Situation

with external field.
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magnetic fields can induce magnetization currents. We will denote the magneti-

zation current density as jmag. Taken all together, the total current density can be

written as

jtot(r, t) = j0(r, t) + jcond(r, t) + jpol(r, t) + jmag(r, t) , (1.10)

where j0 is the source current density. In the following we will not distinguish

between source current and conduction current and combine the two as

j(r, t) = j0(r, t) + jcond(r, t) . (1.11)

j is simply the current density due to free charges, no matter whether primary or

secondary. On the other hand, jpol is the current density due to bound charges,

that is, charges that experience a restoring force to a point of origin. Finally, jmag is

the current density due to circulating charges, associated with magnetic moments.

We now introduce (1.10) into Ampère’s modified law (1.2) and obtain

∫

∂A

B · ds = µ0

∫

A

[

j +

(

jpol + ε0
∂

∂t
E

)

+ jmag

]

· n da , (1.12)

where we have skipped the arguments (r, t) for simplicity. According to Eqs. (1.9)

and (1.7), the term inside the round brackets is equal to ∂D/∂t. To relate the

induced magnetization current to the B-field we define in analogy to Eq. (1.5)

∫

∂A

M(r, t) · ds =

∫

A

jmag(r, t) · n da , (1.13)

with M being the magnetization. Inserting into Eq. (1.12) and rearranging terms

leads to
∫

∂A

[

1

µ0
B− M

]

· ds =

∫

A

[

j +
∂

∂t
D

]

· n da , (1.14)

The expression in brackets on the left hand side is called the magnetic field

H =
1

µ0
B −M . (1.15)

It has units of A/m. The magnitude and the dynamics of magnetization currents

depends on the specific material properties [M = f(B)].
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1.3 Maxwell’s Equations in Integral Form

Let us now summarize our knowledge electromagnetism. Accounting for Maxwell’s

displacement current and for secondary sources (conduction, polarization and

magnetization) turns our previous set of four equations (6) into

∫

∂V

D(r, t) · n da =

∫

V

ρ(r, t) dV

∫

∂A

E(r, t) · ds = − ∂

∂t

∫

A

B(r, t) · n da

∫

∂A

H(r, t) · ds =

∫

A

[

j(r, t) +
∂

∂t
D(r, t)

]

· n da

∫

∂V

B(r, t) · n da = 0

(1.16)

(1.17)

(1.18)

(1.19)

The displacement D and the induction B account for secondary sources through

D(r, t) = ε0E(r, t) + P(r, t) , B(r, t) = µ0 [H(r, t) + M(r, t)] (1.20)

These equations are always valid since they don’t specify any material properties.

To solve Maxwell’s equations (1.16)-(1.19) we need to invoke specific material

properties, i.e. P = f(E) and M = f(B), which are denoted constitutive relations.

1.4 Maxwell’s Equations in Differential Form

For most of this course it will be more convenient to express Maxwell’s equations

in differential form. Using Stokes’ and Gauss’ theorems we can easily transform

Eq. (1.16)-(1.19). However, before doing so we shall first establish the notation

that we will be using.
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Differential Operators

The gradient operator (grad) will be represented by the nabla symbol (∇) and is

defined as a Cartesian vector

∇ ≡







∂/∂x

∂/∂y

∂/∂z






. (1.21)

It can be transformed to other coordinate systems in a straightforward way. Using

∇ we can express the divergence operator (div) as ∇· . To illustrate this, let’s

operate with ∇· on a vector F

∇ · F =







∂/∂x

∂/∂y

∂/∂z






·







Fx

Fy

Fz






=

∂

∂x
Fx +

∂

∂y
Fy +

∂

∂z
Fz . (1.22)

In other words, the divergence of F is the scalar product of ∇ and F.

Similarly, we express the rotation operator (rot) as ∇× which, when applied to

a vector F yields

∇× F =







∂/∂x

∂/∂y

∂/∂z






×







Fx

Fy

Fz






=







∂Fz/∂y − ∂Fy/∂z

∂Fx/∂z − ∂Fz/∂x

∂Fy/∂x− ∂Fx/∂y






. (1.23)

Thus, the rotation of F is the vector product of ∇ and F.

Finally, the Laplacian operator (∆) can be written as ∇ · ∇ = ∇2. Applied to a

scalar ψ we obtain

∇2ψ =







∂/∂x

∂/∂y

∂/∂z






·







∂ψ/∂x

∂ψ/∂y

∂ψ/∂z






=

∂2

∂x2
ψ +

∂2

∂y2
ψ +

∂2

∂z2
ψ . (1.24)

Very often we will encounter sequences of differential operators, such as ∇×∇×.

The following identities can be easily verified and are helpful to memorize

∇×∇ψ = 0 (1.25)

∇ · (∇× F) = 0 (1.26)

∇× (∇× F) = ∇(∇ · F) −∇2F . (1.27)

The last term stands for the vector ∇2F = [∇2Fx, ∇2Fy, ∇2Fz]
T .
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The Theorems of Gauss and Stokes

The theorems of Gauss and Stokes have been derived in Analysis II. We won’t

reproduce the derivation and only state their final forms

∫

∂V

F(r, t) · n da =

∫

V

∇ · F(r, t) dV Gauss′ theorem (1.28)

∫

∂A

F(r, t) · ds =

∫

A

[∇× F(r, t)] · n da Stokes′ theorem (1.29)

Using these theorems we can turn Maxwell’s integral equations (1.16)-(1.19) into

differential form.

Differential Form of Maxwell’s Equations

Applying Gauss’ theorem to the left hand side of Eq. (1.16) replaces the surface

integral over ∂V by a volume integral over V . The same volume integration is

performed on the right hand side, which allows us to write

∫

∂V

[∇ · D(r, t) − ρ(r, t)] dV = 0 . (1.30)

This result has to hold for any volume V , which can only be guaranteed if the

integrand is zero, that is,

∇ · D(r, t) = ρ(r, t) . (1.31)

This is Gauss’ law in differential form. Similar steps and arguments can be applied

to the other three Maxwell equations, and we end up with Maxwell’s equations in

differential form

∇ · D(r, t) = ρ(r, t)

∇×E(r, t) = − ∂

∂t
B(r, t)

∇× H(r, t) =
∂

∂t
D(r, t) + j(r, t)

∇ · B(r, t) = 0

(1.32)

(1.33)

(1.34)

(1.35)
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It has to be noted that it was Oliver Heaviside who in 1884 has first written Maxwell’s

equations in this compact vectorial form. Maxwell had written most of his equa-

tions in Cartesian coordinates, which yielded long and complicated expressions.

Maxwell’s equations form a set of four coupled differential equations for the

fields D, E, B, and H. The components of these vector fields constitute a set of

16 unknowns. Depending on the considered medium, the number of unknowns

can be reduced considerably. For example, in linear, isotropic, homogeneous and

source-free media the electromagnetic field is entirely defined by two scalar fields.

Maxwell’s equations combine and complete the laws formerly established by Fara-

day, Oersted, Ampère, Gauss, Poisson, and others. Since Maxwell’s equations are

differential equations they do not account for any fields that are constant in space

and time. Any such field can therefore be added to the fields.

Let us remind ourselves that the concept of fields was introduced to explain

the transmission of forces from a source to a receiver. The physical observables

are therefore forces, whereas the fields are definitions introduced to explain the

troublesome phenomenon of the “action at a distance”.

The conservation of charge is implicitly contained in Maxwell’s equations. Tak-

ing the divergence of Eq. (1.34), noting that ∇ · ∇ × H is identical zero, and sub-

stituting Eq. (1.32) for ∇ · D one obtains the continuity equation

∇ · j(r, t) +
∂

∂t
ρ(r, t) = 0 (1.36)

consistent with the integral form (1.1) derived earlier.
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