
Chapter 2

The Wave Equation

After substituting the fields D and B in Maxwell’s curl equations by the expressions

in (1.20) and combining the two resulting equations we obtain the inhomogeneous

wave equations

∇×∇× E +
1

c2

∂2E

∂t2
= −µ0

∂

∂t

(

j +
∂P

∂t
+ ∇× M

)

∇×∇× H +
1

c2

∂2H

∂t2
= ∇× j + ∇× ∂P

∂t
− 1

c2
∂2M

∂t2

(2.1)

(2.2)

where we have skipped the arguments (r, t) for simplicity. The expression in the

round brackets corresponds to the total current density

j = j +
∂P

∂t
+ ∇× M , (2.3)

where j is the source and the conduction current density, ∂P/∂t the polarization

current density, and ∇×M the magnetization current density. The wave equations

as stated in Eqs. (2.1) and (2.2) do not impose any conditions on the media and

hence are generally valid.

2.1 Homogeneous Solution in Free Space

We first consider the solution of the wave equations in free space, in absence of

matter and sources. For this case the right hand sides of the wave equations are
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20 CHAPTER 2. THE WAVE EQUATION

zero. The operation ∇ × ∇× can be replaced by the identity (1.27), and since in

free space ∇ · E = 0 the wave equation for E becomes

∇2E(r, t) − 1

c2

∂2

∂t2
E(r, t) = 0 (2.4)

with an identical equation for the H-field. Each equation defines three independent

scalar equations, namely one for Ex, one for Ey, and one for Ez.

In the one-dimensional scalar case, that is E(x, t), Eq. (2.4) is readily solved by

the ansatz of d’Alembert E(x, t) = E(x−ct), which shows that the field propagates

through space at the constant velocity c. To tackle three-dimensional vectorial

fields we proceed with standard separation of variables

E(r, t) = R(r)T (t) . (2.5)

Inserting into Eq. (2.4) equation leads to

c2
∇2R(r)

R(r)
− 1

T (t)

∂2T (t)

∂ t2
= 0 . (2.6)

The first term depends only on spatial coordinates r whereas the second one

depends only on time t. Both terms have to add to zero, independent of the values

of r and t. This is only possible if each term is constant. We will denote this

constant as −ω2. The equations for T (t) and R(r) become

∂2

∂ t2
T (t) + ω2 T (t) = 0 (2.7)

∇2R(r) +
ω2

c2
R(r) = 0 . (2.8)

Note that both R(r) and T (t) are real functions of real variables.

Eq. (2.7) is a harmonic differential equation with the solutions

T (t) = c′ω cos[ωt] + c′′ω sin[ωt] = Re{cω exp[−iωt]} , (2.9)

where c′ω and c′′ω are real constants and cω = c′ω + ic′′ω is a complex constant. Thus,

according to ansatz (2.5) we find the solutions

E(r, t) = R(r) Re{cω exp[−iωt]} = Re{cωR(r) exp[−iωt]} . (2.10)
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In what follows, we will denote cωR(r) as the complex field amplitude and abbrevi-

ate it by E(r). Thus,

E(r, t) = Re{E(r) e−iωt} (2.11)

Notice that E(r) is a complex field whereas the true field E(r, t) is real. The sym-

bol E will be used for both, the real time-dependent field and the complex spatial

part of the field. The introduction of a new symbol is avoided in order to keep the

notation simple. Eq. (2.11) describes the solution of a time-harmonic electric field,

a field that oscillates in time at the fixed angular frequency ω. Such a field is also

referred to as monochromatic field.

After inserting (2.11) into Eq. (2.4) we obtain

∇2E(r) + k2 E(r) = 0 (2.12)

with k = |k| = ω/c. This equation is referred to as Helmholtz equation.

2.1.1 Plane Waves

To solve for the solutions of the Helmholtz equation (2.12) we use the ansatz

E(r) = E0 e±ik·r = E0 e±i(kxx+kyy+kzz) (2.13)

which, after inserting into (2.12), yields

k2
x + k2

y + k2
z =

ω2

c2
(2.14)

The left hand side can also be represented by k · bfk = k2. For the following we

assume that kx, ky, and kz are real. After inserting Eq. (2.13) into Eq. (2.11) we

find the solutions

E(r, t) = Re{E0 e±ik·r−iωt} (2.15)

which are called plane waves or homogeneous waves. Solutions with the + sign

in the exponent are waves that propagate in direction of k = [kx, ky, kz] . They

are denoted outgoing waves. On the other hand, solutions with the − sign are

incoming waves and propagate against the direction of k.
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Although the field E(r, t) fulfills the wave equation it is not yet a rigorous solu-

tion of Maxwell’s equations. We still have to require that the fields are divergence

free, i.e. ∇·E(r, t) = 0. This condition restricts the k-vector to directions perpen-

dicular to the electric field vector (k·E0 = 0). Fig. 2.1 illustrates the characteristic

features of plane waves.

The corresponding magnetic field is readily found by using Maxwell’s equation

∇× E = iωµ0 H. We find H0 = (ωµ0)
−1 (k × E0), that is, the magnetic field vector

is perpendicular to the electric field vector and the wavevector k.

Let us consider a plane wave with real amplitude E0 and propagating in direc-

tion of the z axis. This plane wave is represented by E(r, t) = E0 cos[kz − ωt],

where k = |k| = ω/c. If we observe this field at a fixed position z then we’ll mea-

sure an electric field E(t) that is oscillating with angular frequency f = ω / 2π. On

the other hand, if we take a snapshot of this plane wave at t = 0 then we’ll ob-

serve a field that spatially varies as E(r, t = 0) = E0 cos[k z]. It has a maximum

at z = 0 and a next maximum at k z = 2π. The separation between maxima is

λ = 2π/k and is called the wavelength. After a time of t = 2π/ω the field reads

E(r, t = 2π/ω) = E0 cos[k z − 2π] = E0 cos[k z], that is, the wave has prop-

agated a distance of one wavelength in direction of z. Thus, the velocity of the

wave is v0 = λ/(2π/ω) = ω/k = c, the vacuum speed of light. For radio waves

k

E0

H0

λ

Figure 2.1: Illustration of a plane wave. In free space, the plane wave propagates

with velocity c in direction of the wave vector k = (kx, ky, kz). The electric field

vector E0, the magnetic field vector H0, and k are perpendicular to each other.
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λ ∼ 1 km, for microwaves λ ∼ 1 cm, for infrared radiation λ ∼ 10µm, for visible

light λ ∼ 500 nm, and for X-rays λ ∼ 0.1 nm, - the size range of atoms. Fig. 2.2

illustrates the length scales associated with the different frequency regions of the

electromagnetic spectrum.

A plane wave with a fixed direction of the electric field vector E0 is termed lin-

early polarized. We can form other polarizations states (e.g. circularly polarized

waves) by allowing E0 to rotate as the wave propagates. Such polarization states

can be generated by superposition of linearly polarized plane waves.

Plane waves are mathematical constructs that do not exist in practice because

their fields E and H are infinitely extended in space and therefore carry an infinite

amount of energy. Thus, plane waves are mostly used to locally visualize or ap-

proximate more complicated fields. They are the simplest form of waves and can

be used as a basis to describe other wave fields (angular spectrum representa-

tion). For an illustration of plane waves go to http://en.wikipedia.org/wiki/Plane wave.

Figure 2.2: Length-scales associated with the different frequency ranges of the

electromagnetic spectrum. From mynasadata.larc.nasa.gov.
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2.1.2 Evanescent Waves

So far we have restricted the discussion to real kx, ky, and kz. However, this restric-

tion can be relaxed. For this purpose, let us rewrite the dispersion relation (2.14)

as

kz =
√

(ω2/c2) − (k2
x + k2

y) . (2.16)

If we let (k2
x + k2

y) become larger than k2 = ω2/c2 then the square root no longer

yields a real value for kz. Instead, kz becomes imaginary. The solution (2.15) then

turns into

E(r, t) = Re{E0 e±i(kxx+kyy)−iωt} e∓|kz |z . (2.17)

These waves still oscillate like plane waves in the directions of x and y, but they

exponentially decay or grow in the direction of z. Typically, they have a plane of

origin z = const. that coincides, for example, with the surface of an insulator or

metal. If space is unbounded for z > 0 we have to reject the exponentially growing

solution on grounds of energy conservation. The remaining solution is exponen-

tially decaying and vanishes at z → ∞ (evanescere = to vanish). Because of their

exponential decay, evanescent waves only exist near sources (primary or sec-

ondary) of electromagnetic radiation. Evanescent waves form a source of stored

energy (reactive power). In light emitting devices, for example, we want to convert

k

E

kz

kx

ϕ

x

z

x

z(a) (b)

kx
2+ky

2 = k2

kx

ky

plane waves

evanescent waves

(c)

Figure 2.3: (a) Representation of a plane wave propagating at an angle ϕ to the

z axis. (b) Illustration of the transverse spatial frequencies of plane waves inci-

dent from different angles. The transverse wavenumber (k2
x + k2

y)
1/2 depends on

the angle of incidence and is limited to the interval [0 . . . k]. (c) The transverse

wavenumbers kx, ky of plane waves are restricted to a circular area with radius

k = ω/c. Evanescent waves fill the space outside the circle.
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evanescent waves into propagating waves to increase the energy efficiency.

To summarize, for a wave with a fixed (kx, ky) pair we find two different charac-

teristic solutions

Plane waves : ei [kxx + ky y] e±i |kz|z (k2
x + k2

y ≤ k2)

Evanescent waves : ei [kxx + ky y] e−|kz ||z| (k2
x + k2

y > k2) .
(2.18)

Plane waves are oscillating functions in z and are restricted by the condition k2
x +

k2
y ≤ k2. On the other hand, for k2

x + k2
y > k2 we encounter evanescent waves with

an exponential decay along the z-axis. Figure 2.3 shows that the larger the angle

between the k-vector and the z-axis is, the larger the oscillations in the transverse

plane will be. A plane wave propagating in the direction of z has no oscillations in

the transverse plane (k2
x + k2

y =0), whereas, in the other limit, a plane wave propa-

gating at a right angle to z shows the highest spatial oscillations in the transverse

plane (k2
x + k2

y = k2). Even higher spatial frequencies are covered by evanescent

waves. In principle, an infinite bandwidth of spatial frequencies (kx, ky) can be

achieved. However, the higher the spatial frequencies of an evanescent wave are,

the faster the fields decay along the z-axis will be. Therefore, practical limitations

make the bandwidth finite.

2.1.3 General Homogeneous Solution

A plane or evanescent wave characterized by the wave vector k = [kx, ky, kz] and

the angular frequency ω is only one of the many homogeneous solutions of the

wave equation. To find the general solution we need to sum over all possible plane

and evanescent waves, that is, we have to sum waves with all possible k and ω

E(r, t) = Re

{

∑

n,m

E0(kn, ωm) e±ikn·r−iωmt

}

with kn · kn = ω2
m/c

2 (2.19)

The condition on the right corresponds to the dispersion relation (2.14). Further-

more, the divergence condition requires that E0(kn, ωm) · kn = 0. We have added

the argument (kn, ωm) to E0 since each plane or evanescent wave in the sum is

characterized by a different complex amplitude.
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The solution (2.19) assumes that there is a discrete set of frequencies and

wavevectors. Such discrete sets can be generated by boundary conditions, for

example, in a cavity where the fields on the cavity surface have to vanish. In free

space, the sum in Eq. (2.19) becomes continuous and we obtain

E(r, t) = Re

{
∫

k

∫

ω

E0(k, ω) e±ik·r−iωt dω d3k

}

with k · k = ω2/c2 (2.20)

which has the appearance of a four-dimensional Fourier transform. Notice that E0

is now a complex amplitude density, that is, amplitude per unit frequency and unit

wave vector. The difference between (2.19) and (2.20) is the same as between

Fourier series and Fourier transforms.

2.2 Spectral Representation

Let us consider solutions that are represented by a continuous distribution of fre-

quencies ω, that is, solutions of finite bandwidth. For this purpose we go back to

the complex notation (2.11) for monochromatic fields and sum (integrate) over all

monochromatic solutions

E(r, t) = Re







∞
∫

−∞

Ê(r, ω) e−iωt dω







. (2.21)

We have replaced the complex amplitude E by Ê since we’re now dealing with an

amplitude per unit frequency, i.e. Ê = lim∆ω→0[E/∆ω]. We have also included ω in

the argument of Ê since each solution of constant ω has its own amplitude.

In order to eliminate the ‘Re’ sign in (2.21) we require that

Ê(r,−ω) = Ê∗(r, ω) , (2.22)

which leads us to

E(r, t) =

∫ ∞

−∞

Ê(r, ω) e−iωt dω (2.23)

This is simply the Fourier transform of Ê. In other words, E(r, t) and Ê(r, ω) form

a time-frequency Fourier transform pair. Ê(r, ω) is also denoted as the temporal
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spectrum of E(r, t). Note that Ê is generally complex, while E is always real. The

inverse transform reads as

Ê(r, ω) =
1

2π

∫ ∞

−∞

E(r, t) eiωt dt . (2.24)

Let us now replace each of the fields in Maxwell’s equations (1.32)–(1.35) by

their Fourier transforms. We then obtain

∇ · D̂(r, ω) = ρ̂(r, ω)

∇× Ê(r, ω) = iωB̂(r, ω)

∇× Ĥ(r, ω) = −iωD̂(r, ω) + ĵ(r, ω)

∇ · B̂(r, ω) = 0

(2.25)

(2.26)

(2.27)

(2.28)

These equations are the spectral representation of Maxwell’s equations. Once a

solution for Ê is found, we obtain the respective time-dependent field by the inverse

transform (2.23).

2.2.1 Monochromatic Fields

A monochromatic field oscillates at a single frequency ω. According to Eq. (2.11)

it can be represented by a complex amplitude E(r) as

E(r, t) = Re{E(r) e−iωt}

= Re{E(r)} cosωt+ Im{E(r)} sinωt

= (1/2)
[

E(r) e−iωt + E∗(r) eiωt
]

. (2.29)

Inserting the last expression into Eq. (2.24) yields the temporal spectrum of a

monochromatic wave

Ê(r, ω′) =
1

2
[E(r) δ(ω′ − ω) + E∗(r) δ(ω′ + ω)] . (2.30)

Here δ(x) =
∫

exp[ixt] dt/(2π) is the Dirac delta function. Iif we use Eq. (2.30)

along with similar expressions for the spectra of E, D, B, H, ρ0, and j0 in Maxwell’s
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equations (2.25)–(2.28) we obtain

∇ ·D(r) = ρ(r)

∇× E(r) = iωB(r)

∇× H(r) = −iωD(r) + j(r)

∇ · B(r) = 0

(2.31)

(2.32)

(2.33)

(2.34)

These equations are used whenever one deals with time-harmonic fields. They

are formally identical to the spectral representation of Maxwell’s equations (2.25)–

(2.28). Once a solution for the complex fields is found, the real time-dependent

fields are found through Eq. (2.11).

2.3 Interference of Waves

Detectors do not respond to fields, but to the intensity of fields, which is defined (in

free space) as

I(r) =

√

ε0

µ0

〈

E(r, t) · E(r, t)
〉

, (2.35)

with 〈..〉 denoting the time-average. For a monochromatic wave, as defined in

Eq. (2.29), this expression becomes

I(r) =
1

2

√

ε0

µ0
|E(r)|2 . (2.36)

with |E|2 = E · E∗. The energy and intensity of electromagnetic waves will be

discussed later in Chapter 5. Using Eq. (2.15), the intensity of a plane wave turns

out to be |E0|2 since kx, ky, and kz are all real. For an evanescent wave, however,

we obtain

I(r) =
1

2

√

ε0

µ0

|E0|2 e−2 kz z , (2.37)

that is, the intensity decays exponentially in z-direction. The 1/e decay length is

Lz = 1/(2kz) and characterizes the confinement of the evanescent wave.
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Next, we take a look at the intensity of a pair of fields

I(r) =
√

ε0/µ0

〈

[E1(r, t) + E2(r, t)] · [E1(r, t) + E2(r, t)]
〉

] (2.38)

=
√

ε0/µ0

[〈

E1(r, t) ·E1(r, t)
〉

+
〈

E2(r, t) · E2(r, t)
〉

+ 2
〈

E1(r, t) · E2(r, t)
〉]

= I1(r) + I2(r) + 2 I12(r)

Thus, the intensity of two fields is not simply the sum of their intensities! Instead,

there is a third term, a so-called interference term. But what about energy con-

servation? How can the combined power be larger than the sum of the individual

power contributions? It turns out that I12 can be positive or negative. Furthermore,

I12 has a directional dependence, that is, there are directions for which I12 is pos-

itive and other directions for which it is negative. Integrated over all directions, I12
cancels and energy conservation is restored.

Coherent Fields

Coherence is a term that refers to how similar two fields are, both in time and

space. Coherence theory is a field on its own and we won’t dig too deep here.

Maximum coherence between two fields is obtained if the fields are monochro-

matic, their frequencies are the same, and if the two fields have a well-defined

phase relationship. Let’s have a look at the sum of two plane waves of the same

frequency ω

E(r, t) = Re{
[

E1 eik1·r + E2 eik2·r
]

e−iωt} , (2.39)

E1 E2

x

k2k1

α β

x

I(x)

I
1
+ I

2

Figure 2.4: Interference of two plane waves incident at angles α and β. Left:

Interference pattern along the x-axis for two different visibilities, 0.3 and 1. The

average intensity is I1 + I2.
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and let’s denote the plane defined by the vectors k1 and k2 as the (x,y) plane. Then,

k1 = (kx1, ky1, kz1) = k(sinα, cosα, 0) and k2 = (kx2, ky2, kz2) = k(− sin β, cosβ, 0)

(see Figure 2.4). We now evaluate this field along the x-axis and obtain

E(x, t) = Re{
[

E1 eikx sinα + E2 e−ikx sinβ
]

e−iωt} , (2.40)

which corresponds to the intensity

I(x) =
1

2

√

ε0

µ0

∣

∣

[

E1 eikx sinα + E2 e−ikx sinβ
]∣

∣

2
(2.41)

= I1 + I2 +
1

2

√

ε0

µ0

[

E1 · E∗
2 eikx(sin α+sin β) + E∗

1 ·E2 e−ikx(sinα+sin β)
]

= I1 + I2 +
√

ε0/µ0 Re
{

E1 ·E∗
2 eikx(sin α+sinβ)

}

.

This equation is valid for any complex vectors E1 and E2. We next assume that the

two vectors are real and that they are polarized along the z-axis. We then obtain

I(x) = I1 + I2 + 2
√

I1 I2 cos[kx(sinα + sin β)] . (2.42)

The cosine term oscillates between +1 and -1. Therefore, the largest and smallest

signals are Imin = (I1 + I2) ± 2
√
I1 I2. To quantify the strength of interference one

defines the visibility

η =
Imax − Imin

Imax + Imin

, (2.43)

which has a maximum value of η = 1 for I1 = I2. The period of the interfer-

ence fringes ∆x = λ/(sinα + sin β) decreases with α and β and is shortest for

α = β = π/2, that is, when the two waves propagate head-on against each other.

In this case, ∆x = λ/2.

Incoherent Fields

Let us now consider a situation for which no interference occurs, namely for two

plane waves with different frequencies ω1 and ω2. In this case Eq. (2.39) has to be

replaced by

E(x, t) = Re{
[

E1 eik1x sinα−iω1t + E2 e−ik2x sin β−iω2t
]

} . (2.44)
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Evaluating the intensity yields

I(x) =
1

2

√

ε0

µ0

〈

∣

∣E1 eik1x sinα−iω1t + E2 e−ik2x sinβ−iω2t
∣

∣

2
〉

(2.45)

= I1 + I2 + 2
√

I1 I2 Re
{

ei [k1 sinα+k2 sin β]x
〈

ei (ω2−ω1) t
〉}

.

The expression 〈exp[i(ω2 − ω1)t]〉 is the time-average of a harmonically oscillating

function and yields a result of 0. Therefore, the interference term vanishes and the

total intensity becomes

I(x) = I1 + I2 , (2.46)

that is, there is no interference.

It has to be emphasized, that the two situations that we analyzed are extreme

cases. In practice there is no absolute coherence or incoherence. Any electromag-

netic field has a finite line width ∆ω that is spread around the center frequency ω.

In the case of lasers, ∆ω is a few MHz, determined by the spontaneous decay

rate of the atoms in the active medium. Thus, an electromagnetic field is at best

only partially coherent and its description as a monochromatic field with a single

frequency ω is an approximation.

2.4 Fields as Complex Analytic Signals

The relationship (2.22) indicates that the positive frequency region contains all

the information of the negative frequency region. If we restrict the integration in

Eq. (2.23) to positive frequencies, we obtain what is called a complex analytic

signal

E+(r, t) =

∫ ∞

0

Ê(r, ω) e−iωt dω , (2.47)

with the superscript ‘+’ denoting that only positive frequencies are included. Sim-

ilarly, we can define a complex analytic signal E− that accounts only for negative

frequencies. The truncation of the integration range causes E+ and E− to become

complex functions of time. Because E is real, we have [E+]∗ = E−. By taking the

Fourier transform of E+(r, t) and E−(r, t) we obtain Ê+(r, ω) and Ê−(r, ω), respec-

tively. It turns out that Ê+ is identical to Ê for ω > 0 and it is zero for negative
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frequencies. Similarly, Ê− is identical to Ê for ω < 0 and it is zero for positive fre-

quencies. Consequently, Ê = Ê+ + Ê−. In quantum mechanics, Ê− is associated

with the creation operator â† and Ê+ with the annihilation operator â.




