
Chapter 8

Waveguides and Resonators

The objective of resonators is to confine electromagnetic energy. On the other

hand, the purpose of waveguides is to guide electromagnetic energy. In both

cases, the desired functionality is achieved through material boundaries.

8.1 Resonators

Let us consider a rectangular box with sides Lx, Ly, and Lz, as shown in Fig. 8.1.

The interior of the box is filled with a linear and isotropic material characterized

by ε and µ. The walls of the box are perfectly reflecting, that is, the fields are not

able to penetrate into the walls. Furthermore, there are no sources present, which

implies that we’re looking for homogeneous solutions of the wave equation, that is,

solutions of the Helmholtz equation (3.15).

To solve the Helmholtz equation for the x component of the complex electric

field vector E we write

Ex(x, y, z) = E
(x)
0 X(x) Y (y)Z(z) , (8.1)

which is referred to as separation of variables. X, Y , and Z are dimensionless

functions and E
(x)
0 is a constant field amplitude. Inserting into [∇2 + k2]Ex = 0

yields
1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
+

1

Z

∂2Z

∂z2
+ k2 = 0 . (8.2)
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In order for this equation to hold for any x, y, and z we have to require that each

of the terms is constant. We set these constants to be −k2
x, −k2

y and −k2
z , which

implies

k2
x + k2

y + k2
z = k2 =

ω2

c2
n2(ω) . (8.3)

We obtain three separate equations for X, Y , and Z

∂2X /∂x2 + k2
xX = 0

∂2Y / ∂y2 + k2
yY = 0

∂2Z / ∂z2 + k2
zZ = 0 , (8.4)

with the solutions exp[±ikxx], exp[±ikyy], and exp[±ikzz]. Thus, the solutions for

Ex become

Ex(x, y, z) = E
(x)
0 [c1,x e−ikxx + c2,x eikxx] [c3,x e−ikyy + c4,x eikyy] [c5,x e−ikzz + c6,x eikzz] .

(8.5)

Electric fields cannot penetrate into a perfect conductor. Therefore, the boundary

condition (4.13) implies Ex(x = 0) = Ex(x = Lx) = 0, which turns Eq. (8.5) into

Ex(x, y, z) = E
(x)
0 sin[nπ x/Lx] [c3,x e−ikyy + c4,x eikyy] [c5,x e−ikzz + c6,x eikzz] , (8.6)
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Figure 8.1: A resonator with perfectly reflecting walls and side lengths Lx, Ly, and

Lz .
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with n being an integer. Similar solutions are found for Ey and Ez, namely,

Ey(x, y, z) = E
(y)
0 [c1,y e−ikxx + c2,y eikxx] sin[mπ y/Ly] [c5,y e−ikzz + c6,y eikzz] (8.7)

Ez(x, y, z) = E
(z)
0 [c1,z e−ikxx + c2,z eikxx] [c3,z e−ikyy + c4,z eikyy] sin[l π z/Lz]. (8.8)

Because ∇ · E = 0 for any x, y, and z we find

Ex(x, y, z) = E
(x)
0 sin[nπ x/Lx] sin[mπ y/Ly] sin[l π z/Lz]

Ey(x, y, z) = E
(y)
0 sin[nπ x/Lx] sin[mπ y/Ly] sin[l π z/Lz ]

Ez(x, y, z) = E
(z)
0 sin[nπ x/Lx] sin[mπ y/Ly] sin[l π z/Lz] , (8.9)

and
n

Lx

E
(x)
0 +

m

Ly

E
(y)
0 +

l

Lz

E
(z)
0 = 0 (8.10)

Using Eq. (8.3) we find the dispersion relation or mode structure of the resonator

π2

[

n2

L2
x

+
m2

L2
y

+
l2

L2
z

]

=
ω2

nml

c2
n2(ωnml) n,m, l ∈ {0, 1, 2, 3, ..} (8.11)

Thus, we find that the resonator supports only discrete frequencies ωnml, each as-

sociated with a mode (n,m, l) of the resonator. Note that n is used both for the

index of refraction and for the mode number in x.

8.1.1 The Density of States

Let us now consider a resonator with equal sides, that is, L = Lx +Ly +Lz. In this

case,

n2 +m2 + l2 =

[

ωnml Ln(ωnml)

π c

]2

. (8.12)

If n, m, and l were real numbers, then this equation defines a sphere of radius

r0 = [omeganml Ln(ωnml)/(π c)]. Indeed, for large numbers we can approximate

these numbers by real numbers. Let us now consider a specific mode given by

[n,m, l] and with angular frequency ω = ωnml and count the number of modes N

with frequencies smaller than ω. According to Eq. (8.12) this corresponds to the
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interior of a sphere with radius r0, and because n, m, and l are positive numbers

we have to count only 1/8-th of the sphere. Thus,

N(ω) =
1

8

[

4π

3
r3
0

]

2 . (8.13)

The ‘2’ at the end has been added because for each [n,m, l] there are two solutions

with different polarizations. This follows from Eq. (8.10). Inserting the expression

for r0 we find

N(ω) = V
ω3 n3(ω)

3π2 c3
, (8.14)

where V is the volume of the resonator. The number of different resonator modes

in the frequency interval [ω .. ω + ∆ω] becomes

dN(ω)

dω
∆ω = V

ω2 n3(ω)

π2 c3
∆ω , (8.15)

which states that there a many more modes for high frequencies ω. We now define

the number of modes ρ(ω) per unit volume V and unit frequency ∆ω. We obtain

ρ(ω) =
ω2 n3(ω)

π2 c3
(8.16)

which is generally referred to as the density of states (DOS). The number of modes

N in the volume V and in the frequency range [ω1 .. ω2] is then calculated as

N(ω) =

∫

V

∫ ω2

ω1

ρ(ω) dω dV . (8.17)

The density of states is of importance in blackbody radiation and is an important

concept to describe how efficient radiation interacts with matter. For example, the

power P̄ emitted by a dipole (c.f. Eq 6.46) can be expressed in terms of the density

of states as

P̄ =
π ω2

12 ε0 ε
|p| ρ(ω) (8.18)

As we discussed in Section 6.4, the amount of radiation released by a dipole de-

pends on the environment, and this dependence can be accounted for by the den-

sity of states rho. In other words, ρ depends on the specific environment and takes

on a value of ω2 / π2c3 in empty space (vacuum). Any objects placed into the empty

space will influence ρ and the ability of a dipole source to radiate.
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The resonator that we have analyzed possesses discrete frequencies ωmnl. In

reality, any resonator has losses, for example due to the absorption of electromag-

netic energy at the boundaries or due to radiation. As a consequence, the discrete

frequencies broaden and assume a finite line width ∆ω = 2γ. The quality factor,

or Q-factor of a line is defined as Q = ω/(2γ). It is a measure for how long elec-

tromagnetic energy can be stored in a resonator. The line shape of a mode is

generally a Lorentzian (see Section 6.7). The electric field in the cavity is therefore

an exponentially damped oscillation of the form

E(r, t) = Re

{

E0(r) exp

[

(iω0 −
ω0

2Q
) t

]}

, (8.19)

where ω0 represents one of the resonance frequencies ωmnl. The spectrum of the

stored energy density becomes

Wω(ω) =
ω2

0

4Q2

Wω(ω0)

(ω − ω0)2 + (ω0 / 2Q)2
. (8.20)

8.1.2 Cavity Perturbation

A sharp resonance is a key requirement for ultrasensitive detection in various ap-

plications. For example, watches and clocks use high-Q quartz crystals to mea-

sure time, some biosensing schemes make use of oscillating cantilevers to detect

adsorption of molecules, and atomic clocks use atomic resonances as frequency

standards. A perturbation of the resonator (cavity), for example due to particle

adsorption or a change of the index of refraction, leads to a shift of the resonance

frequency, which can be measured and used as a control signal for sensing.

To establish an understanding of cavity perturbation we consider the system

depicted in Fig. 8.2. A leaky cavity and its environment are characterized by a

spatially varying permittivity ε(r) and permeability µ(r). In the absence of any

perturbation the system assumes a resonance at frequency ω0 and the the fields

are described by

∇× E0 = iω0µ0µ(r)H0 , ∇×H0 = −iω0ε0ε(r)E0 , (8.21)

with E0(r, ω0) and H0(r, ω0) denoting the unperturbed complex field amplitudes. A

particle with material parameters ∆ε(r), ∆µ(r) constitutes a perturbation and gives
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rise to a new resonance frequency ω. Maxwell’s curl equations for the perturbed

system read as

∇× E = iωµ0 [µ(r)H + ∆µ(r)H] (8.22)

∇× H = −iωε0 [ε(r)E + ∆ε(r)E] . (8.23)

Notice that both ∆ε and ∆µ are zero outside of the volume occupied by the per-

turbation. Using ∇ · (A× B) = (∇× A) · B − (∇×B) · A we find

∇ · [E∗
0 × H− H∗

0 × E] = i(ω − ω0) [ε0ε(r)E
∗
0 · E + µ0µ(r)H∗

0 · H]

+ iω [E∗
0ε0∆ε(r)E + H∗

0µ0∆µ(r)H] . (8.24)

We now consider a fictitious spherical surface ∂V at very large distance from the

cavity and integrate Eq. (8.24) over the enclosed volume V (c.f. Fig. 8.2). Using

Gauss’ theorem, the left hand side of Eq. (8.24) becomes
∫

∂V

[H · (n ×E∗
0) + H∗

0 · (n ×E)] da = 0 (8.25)

where n is a unit vector normal to the surface ∂V . The above expression vanishes

because of the transversality of the field, i.e. (n×E∗
0) = (n×E) = 0 on the surface

ΔV

resonator

perturbation

∂V

enclosing surface

Figure 8.2: A resonator with resonance frequency ω0 interacts with an external

perturbation giving rise to a new resonance frequency ω. The calculation makes

use of a fictitious spherical surface at infinity.
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of the spherical surface. We thus arrive at the equation

ω − ω0

ω
= −

∫

V
[E∗

0 ε0∆ε(r)E + H∗
0µ0∆µ(r)H] dV

∫

V
[ε0ε(r)E∗

0 · E + µ0µ(r)H∗
0 · H] dV

, (8.26)

which is known as the Bethe-Schwinger cavity perturbation formula. Eq. (8.26) is

an exact formula, but because E and H are not known the equation cannot be

used in its form. Notice that because ∆ε and ∆µ are zero outside of the volume

occupied by the perturbation the integral in the nominator runs only over the vol-

ume of the perturbation ∆V . For situations where there are no radiation losses

and all the energy is contained inside the boundaries of a resonator the surface

∂V can be chosen to coincide with the boundaries.

We assume that the perturbation has a small effect on the cavity. Therefore we

write as a first-order approximation E = E0 and H = H0. After performing these

substitutions in Eq. (8.26) we find

ω − ω0

ω
≈ −

∫

∆V
[E∗

0 ε0∆ε(r)E0 + H∗
0µ0∆µ(r)H0] dV

∫

V
[ε0ε(r)E

∗
0 · E0 + µ0µ(r)H∗

0 · H0] dV
(8.27)

For a high-Q resonator the radiation losses are small and the integration volume

V can be taken over the boundaries of the resonator. To evaluate Eq. (8.27) we

first must solve for the fields E0(r),H0(r) of the unperturbed cavity. Interestingly,

for a weakly-dispersive medium the denominator of Eq. (8.27) denotes the total

energy of the unperturbed cavity (W0) whereas the nominator accounts for the

energy introduced by the perturbation (∆W ). Hence, (ω − ω0)/ω = −∆W/W0.

An increase of energy by ∆W causes the resonance frequency to red-shift to

ω = ω0 [W0/(W0 + ∆W )]. A blue-shift is possible by perturbing the cavity volume,

i.e. by removing ∆W from the cavity.

As an example let us consider a planar cavity with perfectly reflecting end faces

of area A and separated by a distance L. The fundamental mode λ = 2L has a

resonance frequency ω0 = πc/L, and the electric and magnetic fields inside the

cavity are calculated to be E0 sin[πz/L] and −i
√

ε0/µ0E0 cos[πz/L], respectively.

The coordinate z is perpendicular to the surfaces of the end faces. The denomi-

nator of Eq. (8.27) is easily determined to be V ε0E
2
0 , where V = LA. We place a

spherical nanoparticle with dielectric constant ∆ε and volume ∆V in the center of
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the cavity and assume that the field is homogeneous across the dimensions of the

particle. The nominator of Eq. (8.27) is calculated to be ∆V ∆ε ε0E
2
0 and the fre-

quency shift is determined to be (ω − ω0)/ω = −∆ε∆V/V . A better approximation

retains the perturbed fields E and H in the nominator of Eq. (8.26). Making use of

the quasi-static solution for a small spherical particle we write E = 3E0/(2 + ∆ε)

and obtain a frequency shift of (ω − ω0)/ω = −[3∆ε/(2 + ∆ε)] ∆V/V . In both cases

the resonance shift scales with the ratio of resonator and perturbation volumes.

8.2 Waveguides

Waveguides are used to carry electromagnetic energy from location A to location

B. They exist in form of wires, coaxial cables, parallel plates, or optical fibers. In

general, the transmission of radiation through free-space is subject to diffraction,

which results in spreading out of energy. Waveguides avoid this problem at the

expense of material structures that have to connect the locations A and B.

The simplest waveguide system is the two-wire transmission line. It can be

formulated in terms of distributed circuit elements, such as capacitances C and

inductances L. One can derive a one-dimensional wave equation for the current

and the voltage carried along the transmission line. The speed of propagation is

given by c = 1/
√
LC. Detailed discussions of transmission lines can be found in

many textbooks and we won’t derive or analyze it here. Instead, we will concen-

trate on parallel-plate waveguide and on hollow metal waveguides and then make

a transition to all-dielectric waveguides used in fiber-optic communication.

8.2.1 Parallel-Plate Waveguides

The parallel-plate waveguide that we consider here is illustrated in Fig. 8.3. It

consists of a medium characterized by the index of refraction n(ω) sandwiched be-

tween two ideally conducting plates. We will align our coordinate system such that

the wave propagates in direction of the z axis. As we shall see, one distinguishes

between two different solutions: 1) Waves that have no electric field in propagation
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direction z (TE modes), and 2) waves that have no magnetic field in propagation

direction z (TM modes).

TE Modes

For TE modes the electric field is parallel to the surface of the plates. As an ansatz

we choose a plane wave propagating at an angle θ towards the bottom plate

E1(x, y, z) = E0 ny exp[−ikx cos θ + ikz sin θ] , (8.28)

with k = n(ω)ω/c. The wave reflects at the bottom plate and then propagates

towards the top plate

E2(x, y, z) = −E0 ny exp[ikx cos θ + ikz sin θ] , (8.29)

where the sign change is due to the boundary condition, that is, the total parallel

E-field has to vanish. The sum of the fields becomes

E(x, y, z) = E1(x, y, z) + E2(x, y, z) = −2i E0 ny exp[ikz sin θ] sin[kx cos θ] .

(8.30)

While this field satisfies the boundary condition at the bottom surface, it does not

yet at the top plate x = d. Requiring that E(d, y, z) = 0 yields sin[kx cos θ] = 0,

which is fulfilled if

kd cos θ = nπ n ∈ {1, 2, .. } , (8.31)

which corresponds to a ‘quantization’ of the normal wavenumber kx = k cos θ

kxn = n
π

d
n ∈ {1, 2, .. } . (8.32)

x

y

z

d

k

Figure 8.3: A parallel-plate waveguide with plate separation d.
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Note that n = 0 is excluded because it yields a zero-field (trivial solution). Using

k2 = k2
z + k2

x, we find the the propagation constant kz of the field propagating in

between of the plates in z direction is

kzn =
√

k2 − n2 [π/d]2 n ∈ {1, 2, .. } (8.33)

As long as kzn is real the field will propagate along the z direction. However, when

nπ/d > k the propagation constant kzn is imaginary and the field will exponential

decay in direction of z, similar to evanescent waves discussed in Section 4.4. Be-

cause k ∝ ω it turns out that the waveguide acts as a high-pass filter. Frequencies

below the cut-off frequency

ωc =
nπ c

d n(ωc)
n ∈ {1, 2, .. } (8.34)

cannot propagate. In summary, the solutions of the wave equation for a system of

two parallel plates are characterized by a mode number n. We refer to the solu-

tions that have no electric field in propagation direction as TEn modes. Solutions

are found only for discrete frequencies ωn and for each mode there is a cut-off fre-

quency below which no propagation is possible. Note, that n(ωc) is the dispersive

index of refraction of the medium between the two plates.

For propagating fields with ω > ωc, the phase velocity is defined by the phase

factor exp[ikznz − iωt] as vph = ω/kzn. On the other hand, the energy of the field

and thus any information associated with it is transported at the group velocity

vg = dω/dkzn.

TM Modes

Let us now repeat the analysis for the case where the magnetic field is parallel to

the surface of the plates. Similar to Eq. (8.28) we write

H1(x, y, z) = H0 ny exp[−ikx cos θ + ikz sin θ] , (8.35)

The wave reflects at the bottom plate and then propagates towards the top plate

H2(x, y, z) = H0 ny exp[ikx cos θ + ikz sin θ] , (8.36)
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In contrast to Eq. (8.36) there is no sign change of H0 upon reflection at the bound-

ary. This follows from the boundary conditions (4.11) - (4.14).1 The sum of the

fields becomes

H(x, y, z) = H1(x, y, z)+H2(x, y, z) = 2H0 ny exp[ikz sin θ] cos[kx cos θ] , (8.37)

and the boundary conditions at the top interface z = d lead to the condition

kd cos θ = nπ n ∈ {0, 1, 2 .. } . (8.38)

In contrast to the quantization condition (8.31) for TE modes, we now also find

solutions for n = 0 (cos(0) 6= 0). Thus,

kzn =
√

k2 − n2 [π/d]2 n ∈ {0, 1, .. } (8.39)

The fundamental mode TM0 has no cut-off frequency whereas all higher order TM

do have a cut-off, similar to TE modes discussed above. The absence of a cut-off
1The electric field associated with H1 is E1 ∼ E0[sin θ, 0, cos θ]T , which upon reflection becomes

E2 ∼ E0[sin θ, 0,− cos θ]T because the parallel E-field at the boundary has to vanish. Consequently,
H0 remains unchanged upon reflection.
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Figure 8.4: Mode structure of a parallel-plate waveguide with plate separation d.

The vertical axis shows the real part of the normalized propagation constant. All

modes, with the exception of TM0 run into cut-off as the wavelength λ is increased

or the plate separation d is decreased.
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for the TM mode is a finding that is not restricted to two parallel plates, but holds

for any waveguide made of two electrically isolated metal electrodes. For example,

a coaxial cable has no cut-off, but a hollow metal waveguide (a pipe) does have a

cut-off.

8.2.2 Hollow Metal Waveguides

We now confine the lateral extent of the waveguide modes. The parallel-plate

waveguide then turns into a hollow metal waveguide as illustrated in Fig. 8.5. To

solve for the fields in such a waveguide structure we write

E(x, y, z) = Exy(x, y) e−ikzz . (8.40)

Inserting into the the Helmholtz equation (3.15) leads to

[

∇2
t + k2

t

]

Exy(x, y) = 0 , (8.41)

where ∇2
t = ∂2/∂x2+∂2/∂y2 is the transverse Laplacian and and kt = [k2

x+k2
y]

1/2 =

[k2 − k2
z ]

1/2 is the transverse wavenumber.

Next, we write the electric field in terms of a transverse vector in the (x,y) plane

and a longitudinal vector that points along the z axis, that is,

E = Et + Ez . (8.42)

z

x

y

Lx

Ly

Figure 8.5: A rectangular hollow metal waveguide.
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Here, Et = E × nz and Ez = (E · nz)nz. A similar expression can be written for

the magnetic field H. Inserting both expressions into Maxwell’s equations (2.31)

- (2.34), and assuming that the waveguide materials is linear and source-free, we

find

Exy
x = −Z ik

k2
t

∂Hxy
z

∂y
+
ikz

k2
t

∂Exy
z

∂x
(8.43)

Exy
y = Z

ik

k2
t

∂Hxy
z

∂x
+
ikz

k2
t

∂Exy
z

∂y
(8.44)

Hxy
x = Z−1 ik

k2
t

∂Exy
z

∂y
+
ikz

k2
t

∂Hxy
z

∂x
(8.45)

Hxy
y = −Z−1 ik

k2
t

∂Exy
z

∂x
+
ikz

k2
t

∂Hxy
z

∂y
. (8.46)

where Z is the wave impedance defined in Eq. (4.33). These equations show that

the transverse field components Exy
x , Exy

y and Hxy
x , Hxy

y derive from the longitudinal

field components Exy
z and Hxy

z . Thus, it is sufficient to solve for Exy
z and Hxy

z . So

far, the discussion was general, not restricted to any particular waveguide geome-

try. We next discuss the particular case of a rectangular hollow metal waveguide,

as illustrated in Fig. 8.5. Such waveguides are commonly used in the microwave

regime, which spans the frequency range of 1-100 GHz.

TE Modes

For TE waves the field Exy
z is zero. Thus, according to Eqs. (8.43) - (8.46) all field

components can be derived from Hxy
z . Following the discussion in Section 8.2.1

we find

Hxy
z (x, y) = H0z cos[kxx] cos[kyy] (8.47)

= H0z cos[
nπ

Lx

x] cos[
mπ

Ly

y] n,m ∈ {0, 1, 2 .. } ,

with the transverse wavenumber given by

k2
t = [k2

x + k2
y ] =

[

n2π2

L2
x

+
m2π2

L2
y

]

n,m ∈ {0, 1, 2 .. } , (8.48)
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similar to the mode structure of a resonator (Eq. 8.11). Accordingly, the frequen-

cies of the TEnm modes are

ωnm =
π c

n(ωnm)

√

n2

L2
x

+
m2

L2
y

n,m ∈ {0, 1, 2, ..} (8.49)

with n(ωnm) being the index of refraction. It turns out that n and m cannot both

be zero because the TE00 does not exist. Thus, the lowest frequency mode is the

TE01 or the TE10 mode. While the modes of a parallel-plate waveguide are formed

by the superposition of two plane waves, the fields of a hollow rectangular waveg-

uide follow from the superposition of four plane waves. Note that the condition

of a magnetic field parallel to the waveguide surfaces leads here to TE modes,

whereas in the case of two parallel plates it leads to TM modes.

The propagation constant (longitudinal wavenumber) is calculated as

kz =
√

k2 − k2
t =

√

ω2
nm

c2
n2(ωnm) −

[

n2π2

L2
x

+
m2π2

L2
y

]

n,m ∈ {0, 1, 2 .. } .

(8.50)

Since n, m cannot both be zero we find that all modes run into cut-off for low

enough frequencies ω. The lowest-order mode is generally referred to as the fun-

damental mode or the dominant mode.

Let us choose Lx > Ly. In this case, the fundamental mode is the TE01 mode

for which, according to Eqs. (8.43) - (8.46), the fields are determined as

Hxy
z = H0z cos[

π

Ly

y] (8.51)

Hxy
y = i(kz/k

2
t )H0z (π/Ly) sin[

π

Ly
y] (8.52)

Exy
x = −(ikZ/k2

t )H0z (π/Ly) sin[
π

Ly
y] (8.53)

Hxy
x = Exy

y = Exy
z = 0 .

According to Eq. (8.40), the total fields E and H are obtained by multiplying with

exp[−ikzz]. The fields of the TE01 mode are illustrated in Fig. 8.6.
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H
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y
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x = L
x
 / 2
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y

Figure 8.6: Fields of the fundamental TE01 mode. Adapted from Heald & Marion,

Classical Electromagnetic Radiation, Saunders College Publishing, 3rd ed. 1995.

TM Modes

Following the discussion in Section 8.2.1, the electric field of a TM mode is

Exy
z (x, y) = E0z sin[

nπ

Lx
x] sin[

mπ

Ly
y] n,m ∈ {1, 2 .. } . (8.54)

Mode indices n = 0 and m = 0 are forbidden because they lead to a zero-field

solution. Thus, the lowest-order TM mode is the TM11 mode.

8.2.3 Optical Waveguides

Because of absorption, metal waveguides become lossy at very hight frequencies.

Therefore, at optical frequencies (200− 800 THz) it is more favorable to guide elec-

tromagnetic radiation in dielectric structures. The waveguiding principle is based

on total internal reflection (TIR) between dielectric interfaces (see Section 4.4). In

order for a wave to be totally reflected at a boundary between two dielectrics with
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refractive indices n1 and n2 it must be incident from the optically denser medium

(n1 > n2) and propagate at an angle larger than the critical angle θc = arctan[n2/n1]

measured from the surface normal. In contrast to metal waveguides, TIR in dielec-

tric waveguides leads to evanescent fields that stretch out into the surrounding

medium with the lower index of refraction n2 (see Fig. 8.7). Thus, the boundary

conditions at the interfaces become more complex.

Optical fibers are axially symmetric, that is, they consist of a dielectric rod of in-

dex n1 (the core) surrounded by a medium of index n2 (the cladding). For claddings

of sufficient thickness the evanescent waves are strongly attenuated at the outer

boundaries and it is reasonable to approximate the cladding radius as being infi-

nite. The fields of an optical waveguide with circular cross section are described

by cylindrical Bessel functions Jn of order n. To keep things simple, we will not

analyze optical fibers with circular cross-sections. Instead, we focus on the di-

electric slab waveguide that consists of a dielectric layer with index n1 sandwiched

between two infinite dielectrics of index n2 < n1. The mode structure is different

but the physical principles are the same.

The waveguide fields have to satisfy the Helmholtz equation (3.15). Similar to

Section 8.2.1 we will separate the fields into transverse electric (TE) and trans-

verse magnetic (TM) solutions. In the former case the electric field has no vector

component along the waveguide axis z, whereas in the latter case the same holds

for the magnetic field. As illustrated in Fig. 8.7, a waveguide mode can be de-
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Figure 8.7: Optical step-index waveguide made of a dielectric with refractive in-

dex n1 surrounded by a dielectric with lower index of refraction n2. Waveguiding

originates from a sequence of total internal reflections.
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scribed by the superposition of four waves, namely two plane waves inside the

waveguide (0 < x < d), an evanescent wave in the medium above the waveguide

(x > d) and an evanescent wave below the waveguide (x < 0). The evanescent

waves above and below the waveguide ensure that no energy is radiated away

from the waveguide. Thus, the total field E is written in terms of partial fields

E1 ..E4 as

E(r) =











E1(r) x < 0

E2(r) + E2(r) 0 < x < d

E4(r) x > d

(8.55)

In the following we will discuss the TM and TE cases separately.

TM Modes

Denoting the k vector in the waveguide (medium 1) as k1 = [kx1, 0, kz] and outside

the waveguide (medium 2) as k2 = [kx2, 0, kz], the partial fields of a TM mode are

calculated as follows

E1 = E1







kz/k2

0

kx2/k2






e−ikx2x+ikzz, H1 =

E1

Z2







0

1

0






e−ikx2x+ikzz (8.56)

E2 = E2







kz/k1

0

kx1/k1






e−ikx1x+ikzz, H2 =

E2

Z1







0

1

0






e−ikx1x+ikzz (8.57)

E3 = E3







kz/k1

0

−kx1/k1






eikx1x+ikzz, H3 =

E3

Z1







0

1

0






eikx1x+ikzz (8.58)

E4 = E4







kz/k2

0

−kx2/k2






eikx2x+ikzz, H4 =

E4

Z2







0

1

0






eikx2x+ikzz (8.59)

Here we used the continuity of kz and the transversality of the fields (∇ · E =

ik · E = 0). To calculate the magnetic field we used Maxwell’s curl equation (2.32)

and assumed linear material equations (3.7). Note that in order for the fields to be

evanescent outside the waveguide we require kz > k2. On the other hand, for the
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fields to be propagating inside the waveguide we require kz < k2. Thus, waveguide

modes will exist only in the interval k2 < kz < k1.

Having defined the partial fields we know have to match them at the boundaries

x = 0 and x = d. The continuity of the parallel components of electric and magnetic

fields lead to











kx2/k2 −kx1/k1 kx1/k1 0

1/Z2 −1/Z1 −1/Z1 0

0 kx1/k1 exp[−ikx1d] −kx1/k1 exp[ikx1d] kx2/k2 exp[ikx2d]

0 1/Z1 exp[−ikx1d] 1/Z1 exp[ikx1d] −1/Z2 exp[ikx2d]





















E1

E2

E3

E4











= 0

(8.60)

This is a homogeneous system of linear equations, that is, an eigenvalue problem.

The reason why we end up with a homogeneous system of equations is the ab-

sence of an excitation, which means that there are no sources or incident fields.

Thus, we are looking for solutions that the system supports in absence of an ex-

ternal driving force, similar to an undriven harmonic oscillator. A homogeneous

system of equations has solutions only if the determinant of the matrix acting on

the eigenvector [E1, E2, E3, E4]
T vanishes, that is,

∣

∣

∣

∣

∣

∣

∣

∣

∣

kx2/k2 −kx1/k1 kx1/k1 0

1/Z2 −1/Z1 −1/Z1 0

0 kx1/k1 exp[−ikx1d] −kx1/k1 exp[ikx1d] kx2/k2 exp[ikx2d]

0 1/Z1 exp[−ikx1d] 1/Z1 exp[ikx1d] −1/Z2 exp[ikx2d]

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (8.61)

Writing out the expression for the determinant and arranging terms we obtain

1 +
(Z2kx2/k2 − Z1kx1/k1)

(Z2kx2/k2 + Z1kx1/k1)

(Z1 kx1/k1 − Z2kx2/k2)

(Z1kx1/k1 + Z2kx2/k2)
exp[2ikx1d] = 0 , (8.62)

which can be written in the form

1 + rp
ab(kz) r

p
bc(kz) e2ikx1d = 0 (8.63)

Here, rp
ab and rp

bc are the Fresnel reflection coefficients for p polarization, as de-

fined in Eq. (4.39). The subscript ‘ab’ indicates that the reflection is measured

between the upper medium (medium a in Fig. 8.7) and the waveguide (medium

b in Fig. 8.7). Similarly, the subscript ‘bc’ is the reflection coefficient measured
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between the waveguide and the lower medium (medium 3 in Fig. 8.7). Note that

kx1 =
√

k2
1 − k2

z =

√

ω2

c2
µ1ε1 − k2

z , kx2 =
√

k2
2 − k2

z =

√

ω2

c2
µ2ε2 − k2

z , (8.64)

and hence Eq. (8.63) defines the characteristic equation for the eigenvalues kz.

Every solution for kz defines a waveguide mode. It has to be emphasized that the

sign of the square roots in the expressions for kx1 and kx2 has to be chosen such

that the imaginary part is positive. This ensures that the fields decay exponentially

with distance from the waveguide (evanescent fields). The other sign would imply

an exponential increase, which would violate energy conservation.

TE Modes

A similar analysis can be applied for TE polarized fields, for which the electric field

is parallel to the boundaries. The resulting characteristic equation for kz is

1 + rs
ab(kz) r

s
bc(kz) e2ikx1d = 0 (8.65)
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Figure 8.8: Mode structure of a dielectric slab waveguide with n1 = 1.5 (glass) and

n2 = 1 (air). The vertical axis shows the real part of the normalized propagation

constant kz. There is no cut-off for the fundamental modes TM1 and TE1.
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with rp
ab and rp

bc being the Fresnel reflection coefficients for s polarization.

As shown in Fig. 8.8, the mode structure for the dielectric waveguide is similar

to the mode structure of a parallel-plate waveguide in Fig. 8.4. However, due to

the different Fresnel reflection coefficients for TE and TM modes, the curves for

TM and TE modes are no longer the same and split into separate curves. The

fundamental modes TE1 and TM1 have no cut-off and in the limit d/λ → 0 they

become plane waves (kz = k2). Similarly, in the limit d/λ→ ∞ the modes become

plane waves propagating in the higher dielectric (kz = k1).

8.2.4 Optical Fibers

In many regards the mode structure in optical fibers is similar to the mode structure

of a dielectric slab waveguide. There are, however, also some relevant differences.

First, an optical fiber is a waveguide that confines the electromagnetic field in two

dimensions which, according to Section 8.2.2, leads to two mode indices nm. One

of them specifies the angular dependence of the fields [sinmφ, cosmφ] and the

other one the radial dependence [Jn(ρ), H(1)
n (ρ)]. Second, besides pure TE and
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Figure 8.9: Attenuation in an optical fiber. Lowest propagation losses are obtained

at wavelengths of ∼ 1.3µm and ∼ 1.5µm.
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TM modes there are also hybrid modes, which are classified as HE and EH

modes. HE modes have TE flavor whereas the EH modes have more TM char-

acter.

There are two basic versions of optical fibers: gradient index fibers and step-

index fibers. The former has an index of refraction profile that varies gradually

with radius [n = n(ρ)], whereas the latter exhibits an abrupt transitions between

two refractive indices, similar to the slab waveguide. Step-index fibers are the

most commonly used fibers and usually the index difference is very small, that is

(n1 − n2)/n1 ≪ 1, which is referred to as the weakly guiding condition. Polarized

weakly guided modes are denoted as LPnm modes. A single-mode fiber supports

only the fundamental LP01 mode and all higher-order modes are suppressed by

the cut-off condition. Fig. 8.9 shows the propagation loss in a modern optical fiber.

The losses on the short-wavelength side are due to Rayleigh scattering and the

losses at the long wavelength end are due to infrared absorption. The bumps are

absorption bands of molecular bonds, such as OH−. The lowest attenuation is

obtained near 1.3 and 1.5 µm and is the reason why fiber-optic communication is

operated at these wavelengths.
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