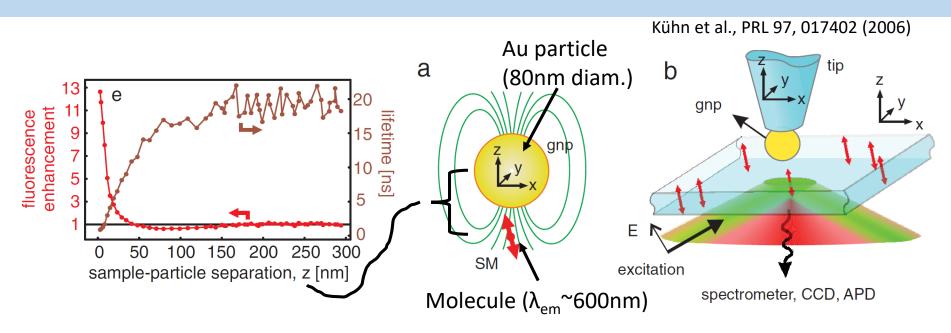
Administrative details

• Today two paper presentations

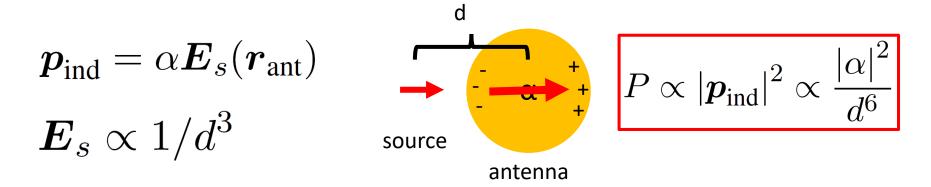
On the menu today

Recap:


Decay rate engineering with optical antennas

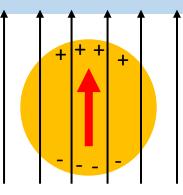
- The local density of optical states (LDOS)
- Optical antennas
 - Simple picture: dipole moment booster
 - Dipolar scattering theory and radiation damping
 - More detailed picture: LDOS of a dipolar scatterer

Coupled dipole model


Quantum efficiency

Optical antennas for LDOS engineering

- Metallic nanoparticles can act as "antennas" and boost decay rate of quantum emitters in their close proximity
- Effect confined to length scale of order $\lambda/10$

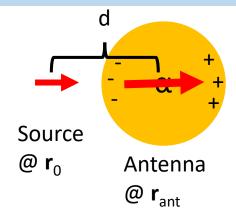

Optical antennas as dipole moment boosters

Optical antenna is a dipole moment booster!

The electrodynamic polarizability

$$\boldsymbol{\alpha}_{\mathrm{eff}}^{-1} = \boldsymbol{\alpha}_{0}^{-1} - \mathrm{i}\,\mathrm{Im}\,\overleftrightarrow{\boldsymbol{G}}(\boldsymbol{r}_{0},\boldsymbol{r}_{0})$$

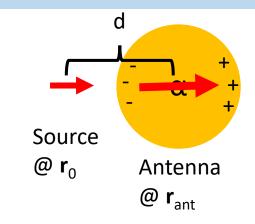
- This is a recipe to amend any electrostatic polarizability α_0 with a radiation damping term to ensure energy conservation
- Electrodynamic polarizability depends on position within photonic system
- Radiation correction is small for weak scatterers (small α_0)
- Radiation correction is significant for strong scatterers (large α_0)


Radiation correction as a scattering series

Optical antennas – a cleaner derivation

Calculate rate enhancement via power enhancement

$$\langle P
angle = rac{\omega}{2} \mathrm{Im} \left[oldsymbol{p}^* \cdot oldsymbol{E}(oldsymbol{r}_0)
ight]$$


$$\overleftarrow{\underline{G}} = \omega^2 \mu \mu_0 \overleftarrow{G}$$

Optical antennas – a cleaner derivation

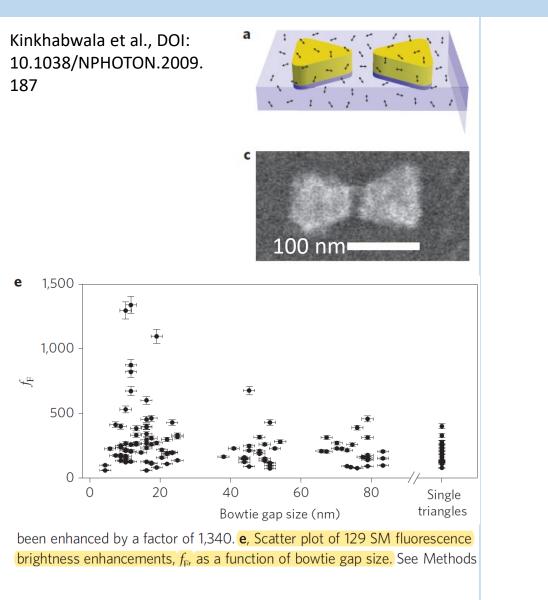
Calculated rate enhancement (equals power enhancement):

$$\frac{P}{P_0} = 1 + \frac{A}{d^6} \frac{\operatorname{Im} \alpha}{\operatorname{Im} \underline{G}_0}$$

- Rate enhancement goes with the imaginary part of polarizability
- Rate enhancement goes with inverse source-antenna distance d⁻⁶

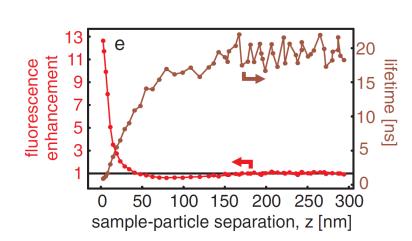
```
Wait a minute!
Didn't we say earlier that the enhancement for a strong antenna should go as |\alpha|^2?
True. But for a strong scatterer \mathrm{Im}\,\alpha\propto |\alpha|^2
```

Optical antennas ...


- Modulate LDOS on sub- λ length scale
- Can boost decay rates of quantum emitters
- Can direct the emission of quantum emitters
- Rely on resonances in the polarizability of their constituents

The polarizability of strong dipolar scatterers ...

- has to take radiation effects into account
- depends on position within photonic system


The coupled-dipole model

The quantum efficiency and source brightness

Kühn et al., PRL 97, 017402 (2006)

spectrometer, CCD, APD

Е

excitation