
Administrative issues

• Exams: online vs. offline, please read my message on Moodle and let me 
know!

• Material relevant for exam:
• Lecture (until and including 04 Dec)
• Your own presentation
• Homework problems
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On the menu today

• A few more interesting aspects of optical antennas

• Photon statistics

• Optical forces
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Optical antennas – a cleaner derivation
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From radio to optical antennas

• Single active element

• Field of active element polarizes passive elements

• Passive elements generate fields and polarize each other (self-
consistent solution)

5

Feed element

Passive directors

Passive reflectors

p=αE
Yagi-Uda antenna (1926)



Yagi-Uda antenna
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Taminiau et al., 2008



Optical antennas for directional photon emission

• Optical antennas allow control of 
directionality of light emission 
for quantum emitters

• Antenna is photonic 
environment that offers a large 
density of states with specific k-
vector
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Driven element
Passive scatterers

emission

Scale down size, scale up frequency

106

Yagi and Uda (1920s) Curto et al., Science 329, 930 (2010)

emission

Quantum emitter
Metal nanoparticles

Ra
di

o-
el

ec
tr

on
ic

s.
co

m



Electron tunneling as a light source
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Electron tunneling as a light source
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Parzefall et al., https://doi.org/10.1038/s41467-018-08266-8



Electrically driven optical antennas

•
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Parzefall et al., https://doi.org/10.1038/s41467-018-08266-8



Electrically driven optical antennas

•
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Parzefall et al., https://doi.org/10.1038/s41467-018-08266-8

Without silver cubes With silver cubes



Antennas – resonators with engineered radiation loss
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In the µwave-regime:

Total internal reflection Metallic reflection



From resonators to antennas
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Curto et al., Science 329, 930 (2010)
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Near-field antennas
• Sub-λ-sized resonators
• Naturally high radiation loss
• Problematic Ohmic losses
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Cavity-based “antennas”:
• λ-sized resonators
• Deliberately introduced 

radiation loss

Is this an antenna?



From resonators to antennas

www.photonics.ethz.ch 14

Va
ha

la
, N

at
ur

e 
42

4,
 8

39

Kü
hn

et
 a

l.,
 P

RL
 9

7,
 0

17
40

2 
(2

00
6)

M
un

sc
h

et
 a

l.,
 P

RL
 2

01
3

Curto et al., Science 329, 930 (2010)
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Is this an antenna?

Antennas are devices which mediate between 
far-field (=propagating) radiation and localized 
fields.
Antennas boost light-matter interaction.
Use the concept of LDOS to discuss optical 
antennas.

Near-field antennas
• Sub-λ-sized resonators
• Naturally high radiation loss
• Problematic Ohmic losses

Cavity-based “antennas”:
• λ-sized resonators
• Deliberately introduced 

radiation loss



Antennas – radio vs. optical
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Radio-antennas Optical antennas

Antenna theory: Maxwell Maxwell

Resonance mechanisms: Geometric resonances Geometric resonances
Material resonances

Sources: Classical current source Quantum emitter



Antennas – radio vs. optical
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Radio-antennas Optical antennas

Antenna theory: Maxwell Maxwell

Resonance mechanisms: Geometric resonances Geometric resonances
Material resonances

Sources: Classical current source Quantum emitter



Antennas – radio vs. optical
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Curto et al., Science 329, 930 (2010)
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• Nano-optics with optical antennas relies on classical antenna theory due to 
the scale invariance of Maxwell’s equations. 

• Difference 1: Frequency dependence of the material constants.
At radio frequencies we have practically perfect metals.
At optical frequencies metals are imperfect and show material resonances.

• Difference 2: Emitters in the optical regime show quantum behavior.

Radio-antennas Optical antennas

Antenna theory: Maxwell Maxwell

Resonance mechanisms: Geometric resonances Geometric resonances
Material resonances

Sources: Classical current source Quantum emitter



Summary – light matter interaction

Quantum emitters are 
probes for their 
electromagnetic 
environment.
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Curto et al., Science 329, 930 (2010)

Kühn et al., PRL 97, 017402 (2006)
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Quantum emission can be 
tailored via the emitter’s 
electromagnetic 
environment.

Radiation carries information about
• The emitter
• The emitter’s environment
• The emitter-environment interaction



Summary – light matter interaction

Quantum emitters are 
probes for their 
electromagnetic 
environment.
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Curto et al., Science 329, 930 (2010)

Kühn et al., PRL 97, 017402 (2006)
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tailored via the emitter’s 
electromagnetic 
environment.
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Properties of “light”
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Properties of “light”
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intensity

Wavelength/frequency

Propagation direction (k)
polarization

coherence

Photon statistics



The Hanbury Brown-Twiss experiment

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• Calculate normalized cross correlation between signals I1 and I2

www.photonics.ethz.ch 23

50/50 beamsplitter
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The second-order correlation function

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• Calculate normalized cross correlation between signals I1 and I2
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The classical case

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• For a classical field I1(t) = I2(t), so g(2) is intensity  autocorrelation
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50/50 beamsplitter
I1(t)

I2(t)
Det. 1

Det. 2



Intensity autocorrelation - the classical case

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• For a classical field I1(t) = I2(t), so g(2) is intensity  autocorrelation

• For long delay times 
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Intensity autocorrelation - the classical case

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• For a classical field I1(t) = I2(t), so g(2) is intensity  autocorrelation

• For long delay times 
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Intensity autocorrelation - the classical case

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• For a classical field I1(t) = I2(t), so g(2) is intensity  autocorrelation

• For long delay times 

• correlation at zero delay
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Intensity autocorrelation - the classical case

• Beam of light impinging on a 50/50 beamsplitter (BS)

• Record intensity I(t) in each arm after BS

• For a classical field I1(t) = I2(t), so g(2) is intensity  autocorrelation

• For long delay times 

• correlation at zero delay

• global maximum at zero delay 
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Intensity autocorrelation - the coherent case

• Perfectly monochromatic field 

• Intensity is therefore
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Intensity autocorrelation - the coherent case

• Perfectly monochromatic field 

• Intensity is therefore
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Intensity autocorrelation - the chaotic case

• Collection of sources

• Random phase
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Intensity autocorrelation - the chaotic case

• Collection of sources

• Random phase

• Gaussian distribution of emission frequencies
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Intensity autocorrelation - the chaotic case

• Collection of sources

• Random phase

• Gaussian distribution of emission frequencies
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Intensity autocorrelation – counting photons

• ni(t) is the number of photons on detector i at time t

• Interpret g(2)(τ) as the probability of detecting a photon on detector 2 at 
t= τ given that a photon was detected on detector 1 at  t=0.
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Counting photons – revisit coherent case

• ni(t) is the number of photons on detector i at time t

• Interpret g(2)(τ) as the probability of detecting a photon on detector 2 at 
t= τ given that a photon was detected on detector 1 at  t=0.
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Counting photons – coherent case

• ni(t) is the number of photons on detector i at time t

• Interpret g(2)(τ) as the probability of detecting a photon on detector 2 at 
t= τ given that a photon was detected on detector 1 at  t=0

• g(2)(τ) = 1 means that photons arrive with Poissonian distribution

www.photonics.ethz.ch 37

50/50 beamsplitter
I1(t)

I2(t)
1

τ

Det. 1

Det. 2

laser



Counting photons – chaotic case

• ni(t) is the number of photons on detector i at time t

• Interpret g(2)(τ) as the probability of detecting a photon on detector 2 at 
t= τ given that a photon was detected on detector 1 at  t=0
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Counting photons – chaotic case

• ni(t) is the number of photons on detector i at time t

• Interpret g(2)(τ) as the probability of detecting a photon on detector 2 at 
t= τ given that a photon was detected on detector 1 at  t=0

• g(2)(τ=0) > 0 means that photons tend to arrive in bunches
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Counting photons – a single quantum emitter

• Assume source is a single emitter

• Single emitter can only emit one photon at a time
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Counting photons – a single quantum emitter

• Assume source is a single emitter

• Single emitter can only emit one photon at a time

• If there is a photon on D1 there cannot be a photon on D2 
antibunching
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Counting photons – a single quantum emitter

• Assume source is a single emitter

• Single emitter can only emit one photon at a time

• If there is a photon on D1 there cannot be a photon on D2 
antibunching

• Photon antibunching is at odds with classical electromagnetism
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Counting photons – a single quantum emitter

• Assume source is a single emitter

• Single emitter can only emit one photon at a time

• If there is a photon on D1 there cannot be a photon on D2 
antibunching

• Photon antibunching is at odds with classical electromagnetism

• g(2)(τ=0) = 0 is the signature of a single photon source

www.photonics.ethz.ch 43

50/50 beamsplitter
I1(t)

I2(t)
1

τ

Det. 1

Det. 2



Counting photons – a single quantum emitter

• Assume source is a single emitter

• Single emitter can only emit one photon at a time

• If there is a photon on D1 there cannot be a photon on D2 
antibunching

• Photon antibunching is at odds with classical electromagnetism

• g(2)(τ=0) = 0 is the signature of a single photon source

• What determines the rise time of g(2)(τ)?
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Intensity correlation – counting single photons

• How do you know your emitter is a single photon source?
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Intensity correlation – counting single photons

• How do you know your emitter is a single photon source? 
For n emitters:

• How does the lifetime show up in the correlation function?
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Intensity correlation – counting single photons

• How do you know your emitter is a single photon source? 
For n emitters:

• How does the lifetime show up in the correlation function?
Rise time is lifetime in the case of weak pumping.
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Intensity correlation – summary 

• Second-order correlation function measures temporal intensity correlation

• Bunching: photons tend to “arrive together”, classically allowed/expected

• Antibunching: photons tend to “arrive alone”, classically forbidden
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Properties of “light”
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intensity

Wavelength/frequency

Propagation direction (k)
polarization

coherence

Photon arrival times
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