Administrative issues

- Exams: online vs. offline, please read my message on Moodle and let me know!
- Material relevant for exam:
 - Lecture (until and including 04 Dec)
 - Your own presentation
 - Homework problems

On the menu today

- A few more interesting aspects of optical antennas
 - Photon statistics

• Optical forces

Optical antennas – a cleaner derivation

Calculate rate enhancement via power enhancement

$$\langle P
angle = rac{\omega}{2} \mathrm{Im} \left[oldsymbol{p}^* \cdot oldsymbol{E}(oldsymbol{r}_0)
ight]$$

$$\overleftarrow{\underline{G}} = \omega^2 \mu \mu_0 \overleftarrow{G}$$

$$\frac{P}{P_0} = 1 + \frac{A}{d^6} \frac{\mathrm{Im}\,\alpha}{\mathrm{Im}\,\underline{G}_0}$$

From radio to optical antennas

- Single active element
- Field of active element polarizes passive elements
- Passive elements generate fields and polarize each other (selfconsistent solution)

Yagi-Uda antenna

Optical antennas for directional photon emission

Electron tunneling as a light source

Electron tunneling as a light source

Electrically driven optical antennas

Fig. 1 Visualization of the vdWQT device concept. **a** Illustration (not to scale) of a gold-few-layer h-BN-graphene vdWQT device, integrated with a (silver, PVP-coated) nanocube antenna. In this device configuration, the electronic LDOS is controlled by the hybrid vdW heterostructure whereas the optical LDOS is governed by the nanocube antenna. Applying a voltage V_b across the insulating few-layer h-BN crystal results in antenna-mediated photon emission (wavy arrows) due to quantum tunneling. **b**, **c** Measured spatial (**b**) and spectral (**c**) photon distribution from a nanocube antenna coupled to a vdWQT device, demonstrating a diffraction-limited spot and a narrow emission spectrum. The inset in **b** shows a line-cut, featuring a line-width (FWHM) of ~460 nm, close to the expected value of $\lambda/(2NA) \sim 480$ nm. Scale bar: 1 µm

Electrically driven optical antennas

LDOS is governed by the nanocube antenna. Applying a voltage $V_{\rm b}$ across the insulating few-layer h-BN crystal results in antenna-mediated photon emission (wavy arrows) due to quantum tunneling. b, c Measured spatial (b) and spectral (c) photon distribution from a nanocube antenna coupled to a vdWQT device, demonstrating a diffraction-limited spot and a narrow emission spectrum. The inset in **b** shows a line-cut, featuring a line-width (FWHM) of ~460 nm, close to the expected value of $\lambda/(2NA)$ ~ 480 nm. Scale bar: 1 μ m

Antennas – resonators with engineered radiation loss

PRL **110,** 177402 (2013)

PHYSICAL REVIEW LETTERS

week ending 26 APRIL 2013

Dielectric GaAs Antenna Ensuring an Efficient Broadband Coupling between an InAs Quantum Dot and a Gaussian Optical Beam

Mathieu Munsch, Nitin S. Malik, Emmanuel Dupuy, Adrien Delga, Joël Bleuse, Jean-Michel Gérard, and Julien Claudon* CEA-CNRS-UJF Group, Nanophysique et Semiconducteurs, CEA, INAC, SP2M, F-38054 Grenoble, France

Niels Gregersen and Jesper Mørk

Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, Building 343, 2800 Kongens Lyngby, Denmark

From resonators to antennas

Near-field antennas

- Sub-λ-sized resonators
- Naturally high radiation loss
- Problematic Ohmic losses

Cavity-based "antennas":

- λ-sized resonators
- Deliberately introduced radiation loss

From resonators to antennas

Near-field antennas

(2006)

SM

ctronics.com

- Sub-λ-sized resonators
- Naturally high radiation loss
- Problematic Ohmic losses

Cavity-based "antennas":

- λ -sized resonators
- Deliberately introduced radiation loss

Antennas are devices which mediate between far-field (=propagating) radiation and localized fields.

Antennas boost light-matter interaction. Use the concept of LDOS to discuss optical antennas.

14

Antennas – radio vs. optical

Antenna theory:	Maxwell	Maxwell
Resonance mechanisms:		
Sources:		

Antennas – radio vs. optical

Radio-electronics.com		A Curto et al., Science 329, 930 (2010) 200 nm QD area 0 0 0 Reflector Feed Directors
	Radio-antennas	Optical antennas
Antenna theory:	Maxwell	Maxwell
Resonance mechanisms:	REALISIE	Lukas Novotry and Bert Hecht Principles of
Sources:		
	CONSTANTINE A. BALANIS	CAMERICE

Antennas – radio vs. optical

	Radio-antennas	Optical antennas
Antenna theory:	Maxwell	Maxwell
Resonance mechanisms:	Geometric resonances	Geometric resonances Material resonances
Sources:	Classical current source	Quantum emitter

- Nano-optics with optical antennas relies on classical antenna theory due to the scale invariance of Maxwell's equations.
- Difference 1: Frequency dependence of the material constants. At radio frequencies we have practically perfect metals. At optical frequencies metals are imperfect and show material resonances.
- Difference 2: Emitters in the optical regime show quantum behavior.

Summary – light matter interaction

The emitter-environment interaction

Summary – light matter interaction

Properties of "light"

Properties of "light"

coherence

Wavelength/frequency

intensity

polarization

Propagation direction (k)

Photon statistics

www.photonics.ethz.ch

The Hanbury Brown-Twiss experiment

- Beam of light impinging on a 50/50 beamsplitter (BS)
- Record intensity I(t) in each arm after BS
- Calculate normalized cross correlation between signals I₁ and I₂

The second-order correlation function

- Beam of light impinging on a 50/50 beamsplitter (BS)
- Record intensity I(t) in each arm after BS
- Calculate normalized cross correlation between signals I₁ and I₂

The classical case

- Beam of light impinging on a 50/50 beamsplitter (BS)
- Record intensity I(t) in each arm after BS
- For a classical field $I_1(t) = I_2(t)$, so $g^{(2)}$ is intensity autocorrelation

- Beam of light impinging on a 50/50 beamsplitter (BS)
- Record intensity I(t) in each arm after BS
- For a classical field $I_1(t) = I_2(t)$, so $g^{(2)}$ is intensity autocorrelation

- Beam of light impinging on a 50/50 beamsplitter (BS)
- Record intensity I(t) in each arm after BS
- For a classical field $I_1(t) = I_2(t)$, so $g^{(2)}$ is intensity autocorrelation
- For long delay times

$$g^{(2)}(\tau \to \infty) = 1$$

- Beam of light impinging on a 50/50 beamsplitter (BS)
- Record intensity I(t) in each arm after BS
- For a classical field $I_1(t) = I_2(t)$, so $g^{(2)}$ is intensity autocorrelation
- For long delay times
- correlation at zero delay

$$g^{(2)}(\tau \to \infty) = 1$$

 $g^{(2)}(\tau = 0) \ge 1$

- Beam of light impinging on a 50/50 beamsplitter (BS)
- Record intensity I(t) in each arm after BS
- For a classical field $I_1(t) = I_2(t)$, so $g^{(2)}$ is intensity autocorrelation
- For long delay times
- correlation at zero delay
- global maximum at zero delay

 $g^{(2)}(\tau \to \infty) = 1$ $g^{(2)}(\tau = 0) \ge 1$ $g^{(2)}(0) \ge g^{(2)}(\tau)$

Intensity autocorrelation - the coherent case

- Perfectly monochromatic field $E(t)\propto\cos(\omega t)$
- Intensity is therefore

I(t) = const.

Intensity autocorrelation - the coherent case

- Perfectly monochromatic field $E(t)\propto\cos(\omega t)$
- Intensity is therefore

$$I(t) = \text{const.}$$

- Collection of sources
- Random phase ϕ_a

 $E(t) = E_0 \sum \exp\left[-i\Omega_a t - \phi_a\right]$ atoms

- Collection of sources
- Random phase ϕ_a

$$E(t) = E_0 \sum_{\text{atoms}} \exp\left[-i\Omega_a t - \phi_a\right]$$

• Gaussian distribution of emission frequencies

 $P(\Omega_a) \propto \exp\left[-(\Omega_0 - \Omega_a)^2 \tau_c^2\right]$

• Random phase ϕ_a

- atoms
- Gaussian distribution of emission frequencies

 $P(\Omega_a) \propto \exp\left[-(\Omega_0 - \Omega_a)^2 \tau_c^2\right]$

Intensity autocorrelation – counting photons

- n_i(t) is the number of photons on detector i at time t
- Interpret g⁽²⁾(τ) as the probability of detecting a photon on detector 2 at t= τ given that a photon was detected on detector 1 at t=0.

Counting photons – revisit coherent case

- n_i(t) is the number of photons on detector i at time t
- Interpret $g^{(2)}(\tau)$ as the probability of detecting a photon on detector 2 at $t = \tau$ given that a photon was detected on detector 1 at t=0.

Counting photons – coherent case

- n_i(t) is the number of photons on detector i at time t
- Interpret g⁽²⁾(τ) as the probability of detecting a photon on detector 2 at t= τ given that a photon was detected on detector 1 at t=0
- $g^{(2)}(\tau) = 1$ means that photons arrive with Poissonian distribution $P(n) = \frac{\langle n \rangle^n}{n!} \exp\left[-\langle n \rangle\right]$

Counting photons – chaotic case

- n_i(t) is the number of photons on detector i at time t
- Interpret g⁽²⁾(τ) as the probability of detecting a photon on detector 2 at t= τ given that a photon was detected on detector 1 at t=0

Counting photons – chaotic case

- n_i(t) is the number of photons on detector i at time t
- Interpret g⁽²⁾(τ) as the probability of detecting a photon on detector 2 at t= τ given that a photon was detected on detector 1 at t=0
- $g^{(2)}(\tau=0) > 0$ means that photons tend to arrive in bunches

- Assume source is a single emitter
- Single emitter can only emit one photon at a time

- Assume source is a single emitter
- Single emitter can only emit one photon at a time
- If there is a photon on D1 there cannot be a photon on D2 → antibunching

- Assume source is a single emitter
- Single emitter can only emit one photon at a time
- If there is a photon on D1 there cannot be a photon on D2 → antibunching
- Photon antibunching is at odds with classical electromagnetism

- Assume source is a single emitter
- Single emitter can only emit one photon at a time
- If there is a photon on D1 there cannot be a photon on D2 → antibunching
- Photon antibunching is at odds with classical electromagnetism
- $g^{(2)}(\tau=0) = 0$ is the signature of a single photon source

- Assume source is a single emitter
- Single emitter can only emit one photon at a time
- If there is a photon on D1 there cannot be a photon on D2 → antibunching
- Photon antibunching is at odds with classical electromagnetism
- $g^{(2)}(\tau=0) = 0$ is the signature of a single photon source
- What determines the rise time of $g^{(2)}(\tau)$?

Intensity correlation – counting single photons

• How do you know your emitter is a single photon source?

Intensity correlation – counting single photons

- How do you know your emitter is a single photon source? For n emitters: $g^2(0) = 1 \frac{1}{m}$
- How does the lifetime show up in the correlation function?

Intensity correlation – counting single photons

How do you know your emitter is a single photon source? For n emitters:

$$g^2(0) = 1 - \frac{1}{n}$$

How does the lifetime show up in the correlation function? Rise time is lifetime in the case of weak pumping.

Intensity correlation – summary

- Second-order correlation function measures temporal intensity correlation
- Bunching: photons tend to "arrive together", classically allowed/expected
- Antibunching: photons tend to "arrive alone", classically forbidden

Properties of "light"

coherence

Wavelength/frequency

intensity

polarization

Propagation direction (k)

Photon arrival times

www.photonics.ethz.ch