Administrative issues

* Exams: online vs. offline, please read my message on Moodle and let me
know!

* Material relevant for exam:
e Lecture (until and including 04 Dec)
* Your own presentation
* Homework problems



On the menu today

mmmmm) - A few more interesting aspects of optical antennas

* Photon statistics

e Optical forces



Optical antennas — a cleaner derivation

Calculate rate enhancement via power enhancement




From radio to optical antennas

Feed element Yagi-Uda antenna (1926)

p=oE

Passive directors

Passive reflectors

e Single active element
* Field of active element polarizes passive elements

* Passive elements generate fields and polarize each other (self-
consistent solution)



Yagi-Uda antenna

Reflector Taminiau et al., 2008
H

Directors
e

iLDDD ﬁﬂﬂﬂ

| —— Free space — Dipole antenna — Yagi-Uda |
80 p=0°




Optical antennas for directional photon emission

Yagi and Uda (1920s) Curto et al., Science 329, 930 (10)

emission

Radio-electronics.com

Passive scatterers Quantum emitter

Driven element

10°

Scale down size, scale up frequency

Metal nanoparticles

Experiment
. . Theory
e Optical antennas allow control of Air
directionality of light emission Glass
for quantum emitters
* Antenna is photonic .

environment that offers a large
density of states with specific k-
vector
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Electron tunneling as a light source



Electron tunneling as a light source
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Electrically driven optical antennas

Parzefall et al., https://doi.org/10.1038/s41467-018-08266-8
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Fig. 1 Visualization of the vdWQT device concept. a lllustration (not to scale) of a gold-few-layer h-BN-graphene vdWQT device, integrated with a (silver,
PVP-coated) nanocube antenna. In this device configuration, the electronic LDOS is controlled by the hybrid vdW heterostructure whereas the optical
LDOS is governed by the nanocube antenna. Applying a voltage V}, across the insulating few-layer h-BMN crystal results in antenna-mediated photon
emission (wavy arrows) due to quantum tunneling. b, ¢ Measured spatial (b) and spectral (¢) photon distribution from a nanocube antenna coupled to a
vdWQT device, demonstrating a diffraction-limited spot and a narrow emission spectrum. The inset in b shows a line-cut, featuring a line-width (F\WHM)
of ~460 nm, close to the expected value of A/(2NA) -~ 480 nm. Scale bar: Tpm
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Electrically driven optical antennas

Parzefall et al., https://doi.org/10.1038/s41467-018-08266-8
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vdWQT device, demonstrating a diffraction-limited spot and a narrow emission spectrum. The inset in b shows a line-cut, featuring a line-width (F\WHM)
of ~460 nm, close to the expected value of A/(2NA) -~ 480 nm. Scale bar: Tpm




Antennas — resonators with engineered radiation loss

week ending

PRL 110, 177402 (2013) PHYSICAL REVIEW LETTERS 26 APRIL 2013

Dielectric GaAs Antenna Ensuring an Efficient Broadband Coupling between an InAs
Quantum Dot and a Gaussian Optical Beam

Mathieu Munsch, Nitin S. Malik, Emmanuel Dupuy, Adrien Delga, Joél Bleuse, Jean-Michel Gérard, and Julien Claudon™
CEA-CNRS-UJF Group, Nanophysique et Semiconducteurs, CEA, INAC, SP2M, F-38054 Grenoble, France

Niels Gregersen and Jesper Mark
Department of memmc s Engineering, DTU Fotonik, Technical Un' ersity of Denmark, Building 343, 2800 Kongens Lyngby, Denmark
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From resonators to antennas

Near-field antennas Cavity-based “antennas”:

e Sub-A-sized resonators .
* Naturally high radiation loss .
 Problematic Ohmic losses

Kiihn et al., PRL97, 017402 (2006)

A-sized resonators
Deliberately introduced

radiation loss |] [|

www.photonics.ethz.ch 13
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From resonators to antennas

Near-field antennas Cavity-based “antennas”:
e Sub-A-sized resonators e A-sized resonators

* Naturally high radiation loss * Deliberately introduced
* Problematic Ohmic losses radiation loss

(2006)

g T .__«.;.?;;3;;. a:;f-;‘:i = -v".-i 4 290 02

2 ) (2010) F 1

Antennas are devices which mediate between
far-field (=propagating) radiation and localized
fields.

Antennas boost light-matter interaction.

Use the concept of LDOS to discuss optical
antennas.

www.photonics.ethz.ch 14
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Antennas — radio vs. optical

Curto et al., Science 329, 930 (2010)

QD area - 200nm

leee
Reflector Feed Directors

Antenna theory: Maxwell Maxwell

Resonance mechanisms:

Sources:
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Antennas — radio vs. optical

QDarea 5 -' byl

Reﬂector Feed Dlrectors

Antenna theory: Maxwell Maxwell

Resonance mechanisms:

Lukas Novotny and Bert Hecht
Principles of
Nano-Optics

SECOND EDITION

Sources:

www.photonics.ethz.ch 16



Antennas — radio vs. optical

m

QD area

o 200n

Reﬂector Feed Dlrectors

Antenna theory: Maxwell Maxwell

Resonance mechanisms: Geometric resonances Geometric resonances
Material resonances

Sources: Classical current source Quantum emitter

* Nano-optics with optical antennas relies on classical antenna theory due to
the scale invariance of Maxwell’s equations.
» Difference 1: Frequency dependence of the material constants.

At radio frequencies we have practically perfect metals.
At optical frequencies metals are imperfect and show material resonances.

» Difference 2: Emitters in the optical regime show quantum behavior.

www.photonics.ethz.ch 17



Summary — light matter interaction

Photon

Curto et al., Science 329, 930 (2010)

Kihn et al., PRL97, 017402 (2006)

QDarea 200nm

[ Reﬂector Feed Dlrectors

Vahala, Nature 424, 839

Quantum emission can be
tailored via the emitter’s
electromagnetic
environment.

Quantum emitters are
probes for their
electromagnetic
environment.

Radiation carries information about

* The emitter

* The emitter’s environment

* The emitter-environment interaction

www.photonics.ethz.ch 18



Summary — light matter interaction

Photon

Curto et al., Science 329, 930 (2010)

Kihn et al., PRL97, 017402 (2006)

OD area m

A'- __-200n

Reﬂector Feed Dlrectors

Vahala, Nature 424, 839

Quantum emitters are
probes for their
electromagnetic
environment.

Quantum emission can be
tailored via the emitter’s
electromagnetic
environment.

100 meV 1eV 10 eV
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Properties of “light”




Properties of “light”

coherence

Wavelength/frequency

intensity

polarization jom—
~ Propagation direction (k)

Photon statistics



The Hanbury Brown-Twiss experiment

50/50 beamsplitter
1,(t)

N Py
4(t) 3 |
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e Beam of light impinging on a 50/50 beamsplitter (BS)
* Record intensity I(t) in each arm after BS

* Calculate normalized cross correlation between signals |, and I,



The second-order correlation function

50/50 beamsplitter
1,(t)

g (r) =

<11 (t)]g(t

7))

(L1(2)) (12(2))

N DU
4(t) 3 |
il

e Beam of light impinging on a 50/50 beamsplitter (BS)

* Record intensity I(t) in each arm after BS

* Calculate normalized cross correlation between signals |, and I,




The classical case

50/50 beamsplitter

(8 (2) (1) —
NP ! T
|2(t)'Det.2 |

[N

e Beam of light impinging on a 50/50 beamsplitter (BS)

* Record intensity I(t) in each arm after BS

* For a classical field 1,(t) = 1,(t), so g? is intensity autocorrelation




Intensity autocorrelation - the classical case

50/50 beamsplltter 9(2) (7_) o <I(t)1(t —+ 7')>
\zmw aQr
z(t) ' Det. 2 |l _______ ©

W: g

* Beam of light impinging on a 50/50 beamsplitter (BS)

* Record intensity I(t) in each arm after BS

* For a classical field I,(t) = 1,(t), so g? is intensity autocorrelation




Intensity autocorrelation - the classical case

50/50 beamsplitter

\EDW

Det. 1

l,(t) ' Det. 2

[N

9 (7) =

* Beam of light impinging on a 50/50 beamsplitter (BS)

* Record intensity I(t) in each arm after BS

* For a classical field I,(t) = 1,(t), so g? is intensity autocorrelation

* Forlong delay times

g (r = 00) =1




Intensity autocorrelation - the classical case

50/50 beamsplitter
1,(t)

NPl
ﬂ Det. 1 >
l,(t) W -

[N

* Beam of light impinging on a 50/50 beamsplitter (BS)

* Record intensity I(t) in each arm after BS

* For a classical field I,(t) = 1,(t), so g? is intensity autocorrelation

* Forlong delay times

e correlation at zero delay

g (r = 00) =1

g (r=0)>1



Intensity autocorrelation - the classical case

50/50 beamsplitter
1,(t)
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* Beam of light impinging on a 50/50 beamsplitter (BS)

* Record intensity I(t) in each arm after BS

* For a classical field I,(t) = 1,(t), so g? is intensity autocorrelation

* Forlong delay times
e correlation at zero delay

* global maximum at zero delay

g (r = 00) =1

g (r=0)>1

9(2)(0) > 9(2) (1)




Intensity autocorrelation - the coherent case

50/50 beamsplitter

(1) g (7) = (LIt + 1))

2
—\— | (1(1)
I ﬂ Det. 1 >
Z(t)'Det.Z

|

« Perfectly monochromatic field E/(t) o< cos(wt)

e Intensity is therefore I(t) = const.



Intensity autocorrelation - the coherent case

50/50 beamsplitter (1) 9(2) (7‘) _ <I(t)1(t —+ 7')>
2
D 2_ (1))
ﬂ Det. 1 > :
1,(t) W - B
‘ : 0 9(2)(7_) =1 1

« Perfectly monochromatic field E/(t) o< cos(wt)

e Intensity is therefore I(t) = const.



Intensity autocorrelation - the chaotic case

2 _ UOIE+7))
e Collection of sources E(t) = Ej Z exp [—iQat — ¢5a]

« Random phase @, atoms



Intensity autocorrelation - the chaotic case

I(t)I(t+7
() — LOI )
(1))
* Collection of sources E(t) = E; Z exp [—iQat — ¢a]
« Random phase @, atoms

e Gaussian distribution of emission frequencies

P(Q) o exp [—(Qg — Qq)*77]

C



Intensity autocorrelation - the chaotic case

e Collection of sources E(t)

« Random phase @,

@)t + 7))

2) (1) —
7 =y

() =1+ exp [272/77]

= F Z exp =it — @q]

atoms

e Gaussian distribution of emission frequencies

P(Q) o exp [—(Qg — Qq)*77]

C



Intensity autocorrelation — counting photons

50/50 beamsplitter <n1 (t)n2 (t T T))

1,(t) g (r) =

L1

(n1(t)) (n2(t))

[

‘ Det. 1

l,(t) W -

i

* n,(t) is the number of photons on detector i at time t

* Interpret g?)(t) as the probability of detecting a photon on detector 2 at
t= 1 given that a photon was detected on detector 1 at t=0.



Counting photons — revisit coherent case

50/50 beamsplitter <n1 (t)n2 (t T T))

1,(t) ¢ (r) =
(n1(t)) (n2(t))
oo\ DI - :

O _
,(t) 'Det.z :1:
I () = 1

0 IT

* n,(t) is the number of photons on detector i at time t

* Interpret g?)(t) as the probability of detecting a photon on detector 2 at
t= 1 given that a photon was detected on detector 1 at t=0.
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Counting photons — coherent case

(n1(H)na(t + 7))

(n1(t)) (n2(t))

50/50 beamsplitter L(t) 9(2)(7_) _

0‘\‘ " H‘ ‘ 2
Det. 1 > i

O _
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I () = 1

0 IT

* n,(t) is the number of photons on detector i at time t

* Interpret g?)(t) as the probability of detecting a photon on detector 2 at
t= 1 given that a photon was detected on detector 1 at t=0

* g(2)(1) = 1 means that photons arrive with Poissonian distribution

P(n) = T exp [ (n)
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Counting photons — chaotic case

50/50 beamsplitter <n1 (t)n2 (t T T))

5 (t) g () =
o e DIl ¢

O _
l,(t) W > 1|

i

* n,(t) is the number of photons on detector i at time t

(n1(t)) (n2(t))

Det. 1

0

* Interpret g?)(t) as the probability of detecting a photon on detector 2 at
t= 1 given that a photon was detected on detector 1 at t=0
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Counting photons — chaotic case

(n1(H)na(t + 7))

" g?(r) = (n1 (1)) (na(t))

o JINTHE
‘ Det. 1 > I
1,(t) W - A

* n,(t) is the number of photons on detector i at time t

50/50 beamsplitter

* Interpret g?)(t) as the probability of detecting a photon on detector 2 at
t= 1 given that a photon was detected on detector 1 at t=0

* |g@)(1=0) > 0 means that photons tend to arrive in bunches
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Counting photons — a single quantum emitter

(n1(H)na(t + 7))

50/50 beamsplitter 9(2) (7_) _

1,(t)
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* Assume source is a single emitter

(n1(2)) (n2(t))

* Single emitter can only emit one photon at a time
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Counting photons — a single quantum emitter

50/50 beamsplitter 9(2) (7_) _ <n1 (t)TLQ (t + 7')>
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O
1,(t) W -

i

* Assume source is a single emitter

(n1(2)) (n2(t))

* Single emitter can only emit one photon at a time

* |f there is a photon on D1 there cannot be a photon on D2 2
antibunching
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Counting photons — a single quantum emitter

50/50 beamsplitter 9(2) (7_) _ <n1 (t)TLQ (t + 7')>

1,(t)
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Det. 1

O
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i

Assume source is a single emitter

(n1(2)) (n2(t))

Single emitter can only emit one photon at a time

If there is a photon on D1 there cannot be a photon on D2 -
antibunching

Photon antibunching is at odds with classical electromagnetism



Counting photons — a single quantum emitter

50/50 beamsplitter 9(2) (7_) _ <n1 (t)TLQ (t + 7')>
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Det. 1

O
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* Assume source is a single emitter

(n1(2)) (n2(t))

* Single emitter can only emit one photon at a time

* |f there is a photon on D1 there cannot be a photon on D2 2
antibunching

* Photon antibunching is at odds with classical electromagnetism

« g2)(1=0) = 0 is the signature of a single photon source



Counting photons — a single quantum emitter

- t t
50/50 beamsplitter (1) 9(2)(7_) _ <n1( )n2( + 7')>
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O
1,(t) W -
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* Assume source is a single emitter

(n1(2)) (n2(t))

* Single emitter can only emit one photon at a time

* |f there is a photon on D1 there cannot be a photon on D2 2
antibunching

* Photon antibunching is at odds with classical electromagnetism
« gl?(t=0) = 0 is the signature of a single photon source

* What determines the rise time of g?)(t)?



Intensity correlation — counting single photons

50/50 beamsplitter Beveratos, PhD thesis, Univ. Paris Sud (2002)
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* How do you know your emitter is a single photon source?
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Intensity correlation — counting single photons

50/50 beamsplitter Beveratos, PhD thesis, Univ. Paris Sud (2002)

ll(t)
Il |
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Det. 1

O
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i

 How do you know your emitter is a single photon source?
For n emitters: 5 1
9°(0)=1—-—

n
* How does the lifetime show up in the correlation function?
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Intensity correlation — counting single photons

50/50 beamsplitter Beveratos, PhD thesis, Univ. Paris Sud (2002)

ll(t)
Il |
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O
1,(t) W -

i

 How do you know your emitter is a single photon source?
For n emitters: 5 1
g (0)=1—-—
(0)=1--
* How does the lifetime show up in the correlation function?
Rise time is lifetime in the case of weak pumping.




Intensity correlation — summary

50/50 beamsplitter

(0
o o0 \ o "

Det. 1

O
1,(t) W -

i

* Second-order correlation function measures temporal intensity correlation

* Bunching: photons tend to “arrive together”, classically allowed/expected

* Antibunching: photons tend to “arrive alone”, classically forbidden
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Properties of “light”

coherence

Wavelength/frequency

intensity

polarization jom—
~ Propagation direction (k)

Photon arrival times
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