Welcome again!

NANO-OPTICS

(227-0663-00)

Martin Frimmer (mfrimmer@ethz.ch) Photonics Laboratory
HPP M24

- Check out the "Orientation sheet" on Moodle

Administrative details

- 3 homework problems: find on Moodle, hand in on Moodle
- Dates for paper presentations fixed (please be available)
- Exams will take place in last week of semester (precise schedule to be published)
- You should have all necessary information to decide whether you want to follow this course. If you don't want to get credit/take the exam, please sign out of the course by Tuesday, 29 Sep. (You are welcome to keep following the lectures and I can add you as a guest in case you want to access the Moodle.)

Administrative details: Paper Presentations

- I will assign the students I haven't had feedback from
- I'll share the schedule as soon as possible

Today's question

Why do I not see the atoms that make up your skin when I look at you?

Maxwell's equations for complex fields

$$
\begin{aligned}
\nabla \cdot \mathbf{D}(\mathbf{r}) & =\rho(\mathbf{r}) \\
\nabla \times \mathbf{E}(\mathbf{r}) & =i \omega \mathbf{B}(\mathbf{r}) \\
\nabla \times \mathbf{H}(\mathbf{r}) & =-i \omega \mathbf{D}(\mathbf{r})+\mathbf{j}(\mathbf{r}) \\
\nabla \cdot \mathbf{B}(\mathbf{r}) & =0
\end{aligned}
$$

Note that I dropped the underscore for complex fields!

$$
\mathbf{D}(\mathbf{r})=\varepsilon_{0} \varepsilon(\omega) \mathbf{E}(\mathbf{r}) \quad \mathbf{B}(\mathbf{r})=\mu_{0} \mu(\omega) \mathbf{H}(\mathbf{r})
$$

Spectral representation:

$$
\hat{\mathbf{E}}(\mathbf{r}, \omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathbf{E}(\mathbf{r}, t) \mathrm{e}^{i \omega t} \mathrm{~d} t
$$

For monochromatic fields:

$$
\mathbf{E}(\mathbf{r}, t)=\operatorname{Re}\left\{\mathbf{E}(r) \mathrm{e}^{-\mathrm{i} \omega t}\right\}
$$

The Helmholtz equation, plane and evanescent waves

1. Plane waves: $\quad \mathbf{E}=\mathbf{E}_{0} \mathrm{e}^{ \pm \mathrm{ikr}}$
2. Speed of light:
$c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$
3. Dispersion relation: $k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=n^{2} \frac{\omega^{2}}{c^{2}}$
4. Refractive index: $n=\sqrt{\varepsilon \mu}$
for $\quad k_{x}^{2}+k_{y}^{2}>n^{2} \frac{\omega^{2}}{c^{2}}$

$$
\mathbf{E}(\mathbf{r}, t)=\operatorname{Re}\left\{\mathbf{E}_{0} \mathrm{e}^{ \pm i\left(k_{x} x+k_{y} y\right)-i \omega t}\right\} \mathrm{e}^{\mp\left|k_{z}\right| z}
$$

(a)

Simple imaging systems

On the menu today

- Motivation: Why nano-optics?
- Repetition: electromagnetism
- Optical imaging:
- Focusing by a lens
- Angular spectrum
- Paraxial approximation
- Gaussian beams
- Method of stationary phase
- The diffraction limit
- Fluorophores
- Example: Fluorescence microscopy
- Example: STED microscopy
- Example: Localization microscopy
- Example: Scanning probe microscopy

How does focusing by a lens work?

How does focusing by a lens work?

$$
\mathbf{E}(x, z=0)=E_{0}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \mathrm{e}^{\mathrm{i} k x \sin \left[\theta_{1}\right]}
$$

$\theta_{1}=0^{\circ}$

How does focusing by a lens work?

$$
\mathbf{E}(x, z=0)=E_{0}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \mathrm{e}^{\mathrm{i} k x \sin \left[\theta_{1}\right]}
$$

$\theta_{1}=20^{\circ}$

How does focusing by a lens work?

$$
\mathrm{E}(x, z=0)=E_{0}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \mathrm{e}^{\mathrm{i} k x \sin \left[\theta_{1}\right]}
$$

Intensity
$\theta_{1}= \pm 20^{\circ}$

How does focusing by a lens work?

How does focusing by a lens work?

$$
\mathrm{E}(x, z=0)=E_{0}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \mathrm{e}^{\mathrm{i} k x \sin \left[\theta_{1}\right]}
$$

Intensity
$\theta 1=0^{\circ}, \pm 45^{\circ}$

How does focusing by a lens work?

$$
\mathrm{E}(x, z=0)=E_{0}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \mathrm{e}^{\mathrm{i} k x \sin \left[\theta_{1}\right]}
$$

Intensity

How does focusing by a lens work?

$$
\mathrm{E}(x, z=0)=E_{0}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \mathrm{e}^{\mathrm{i} k x \sin \left[\theta_{1}\right]}
$$

Intensity

Angular spectrum

MATH :

$$
\begin{aligned}
& \hat{\mathrm{E}}\left(k_{x}, k_{y} ; z\right)=\frac{1}{4 \pi^{2}} \iint_{-\infty}^{\infty} \mathrm{E}(x, y, z) \mathrm{e}^{-i\left[k_{x} x+k_{y} y\right]} d x d y \\
& \mathbf{E}(x, y, z)=\int_{-\infty}^{\infty} \hat{\mathrm{E}}\left(k_{x}, k_{y} ; z\right) \mathrm{e}^{i\left[k_{x} x+k_{y} y\right]} d k_{x} d k_{y}
\end{aligned}
$$

Angular spectrum

MATH :

$$
\begin{aligned}
& \hat{\mathrm{E}}\left(k_{x}, k_{y} ; z\right)=\frac{1}{4 \pi^{2}} \iint_{-\infty}^{\infty} \mathrm{E}(x, y, z) \mathrm{e}^{-i\left[k_{x} x+k_{y} y\right]} d x d y \\
& \mathbf{E}(x, y, z)=\int_{-\infty}^{\infty} \hat{\mathrm{E}}\left(k_{x}, k_{y} ; z\right) \mathrm{e}^{i\left[k_{x} x+k_{y} y\right]} d k_{x} d k_{y}
\end{aligned}
$$

PHYS: $\quad\left(\nabla^{2}+k^{2}\right) \mathbf{E}(\mathbf{r})=0 \quad \longrightarrow \hat{\mathbf{E}}\left(k_{x}, k_{y} ; z\right)=\hat{\mathbf{E}}\left(k_{x}, k_{y} ; 0\right) \mathrm{e}^{ \pm i k_{z} z}$

Angular spectrum

MATH :

$$
\begin{aligned}
& \hat{\mathbf{E}}\left(k_{x}, k_{y} ; z\right)=\frac{1}{4 \pi^{2}} \iint_{-\infty}^{\infty} \mathrm{E}(x, y, z) \mathrm{e}^{-i\left[k_{x} x+k_{y} y\right]} d x d y \\
& \mathbf{E}(x, y, z)=\int_{-\infty}^{\infty} \int_{\mathrm{E}} \hat{\mathrm{E}}\left(k_{x}, k_{y} ; z\right) \mathrm{e}^{i\left[k_{x} x+k_{y} y\right]} d k_{x} d k_{y}
\end{aligned}
$$

PHYS: $\quad\left(\nabla^{2}+k^{2}\right) \mathbf{E}(\mathbf{r})=0 \quad \longrightarrow \hat{\mathbf{E}}\left(k_{x}, k_{y} ; z\right)=\hat{\mathbf{E}}\left(k_{x}, k_{y} ; 0\right) \mathrm{e}^{ \pm i k_{z} z}$

Together:

$$
\mathbf{E}(x, y, z)=\iint_{-\infty}^{\infty} \hat{\mathbf{E}}\left(k_{x}, k_{y} ; 0\right) \mathrm{e}^{i\left[k_{x} x+k_{y} y \pm k_{z} z\right]} \mathrm{d} k_{x} \mathrm{~d} k_{y}
$$

Angular spectrum

PHYS: $\quad\left(\nabla^{2}+k^{2}\right) \mathbf{E}(\mathbf{r})=0 \quad \longrightarrow \hat{\mathbf{E}}\left(k_{x}, k_{y} ; z\right)=\hat{\mathbf{E}}\left(k_{x}, k_{y} ; 0\right) \mathrm{e}^{ \pm i k_{z} z}$

Together:

$$
\mathbf{E}(x, y, z)=\iint_{-\infty}^{\infty} \hat{\mathbf{E}}\left(k_{x}, k_{y} ; 0\right) \mathrm{e}^{i\left[k_{x} x+k_{y} y \pm k_{z} z\right]} \mathrm{d} k_{x} \mathrm{~d} k_{y}
$$

Paraxial approximation

$$
\mathbf{E}(x, y, z)=\iint_{-\infty}^{\infty} \hat{\mathbf{E}}\left(k_{x}, k_{y} ; 0\right) \mathrm{e}^{i\left[k_{x} x+k_{y} y \pm k_{z} z\right]} \mathrm{d} k_{x} \mathrm{~d} k_{y}
$$

$$
\begin{aligned}
\text { mit } \quad & k_{z}=k \sqrt{1-\left(k_{x}^{2}+k_{y}^{2}\right) / k^{2}} \approx k-\frac{\left(k_{x}^{2}+k_{y}^{2}\right)}{2 k} \\
& k_{z}=k \cos \theta=k\left[1-\theta^{2} / 2+. .\right]
\end{aligned}
$$

$\longrightarrow \quad$ Fields propagate predominantly in z-direction!

Gaussian beams

$$
\mathbf{E}\left(x^{\prime}, y^{\prime}, 0\right)=\mathbf{E}_{o} \mathrm{e}^{-\frac{x^{\prime 2}+y^{\prime 2}}{w_{o}^{2}}}
$$

$$
\begin{aligned}
\longrightarrow \hat{\mathbf{E}}\left(k_{x}, k_{y} ; 0\right) & =\frac{1}{4 \pi^{2}} \iint_{-\infty}^{\infty} \mathbf{E}_{0} \mathrm{e}^{-\frac{x^{\prime 2}+y^{\prime 2}}{w_{0}^{2}}} \mathrm{e}^{-\mathrm{i}\left[k_{x} x^{\prime}+k_{y} y^{\prime}\right]} \mathrm{d} x^{\prime} \mathrm{d} y^{\prime} \\
& =\mathbf{E}_{o} \frac{w_{o}^{2}}{4 \pi} \mathrm{e}^{-\left(k_{x}^{2}+k_{y}^{2}\right) \frac{w_{o}^{2}}{4}}
\end{aligned}
$$

$$
\longrightarrow \mathbf{E}(x, y, z)=\mathbf{E}_{o} \frac{w_{o}^{2}}{4 \pi} \mathrm{e}^{i k z} \int_{-\infty}^{\infty} \int^{-\left(k_{x}^{2}+k_{y}^{2}\right)\left(\frac{w_{o}^{2}}{4}+\frac{i z}{2 k}\right)} \mathrm{e}^{i\left[k_{x} x+k_{y} y\right]} d k_{x} d k_{y}
$$

$$
\begin{aligned}
\int_{-\infty}^{\infty} \exp \left(-a x^{2}+\mathrm{i} b x\right) \mathrm{d} x & =\sqrt{\pi / a} \exp \left(-b^{2} / 4 a\right) \\
\int_{-\infty}^{\infty} x \exp \left(-a x^{2}+\mathrm{i} b x\right) \mathrm{d} x & =\mathrm{i} b \sqrt{\pi} \exp \left(-b^{2} / 4 a\right) /\left(2 a^{3 / 2}\right)
\end{aligned}
$$

The Gaussian Beam

Field in focal plane $\mathbf{z = 0}$:

$$
\mathbf{E}\left(x^{\prime}, y^{\prime}, 0\right)=\mathbf{E}_{o} \mathrm{e}^{-\left(x^{\prime 2}+y^{\prime 2}\right) / w_{0}^{2}}
$$

$$
\mathbf{E}(\rho, z)=\mathbf{E}_{o} \frac{w_{o}}{w(z)} \mathrm{e}^{-\frac{\rho^{2}}{w^{2}(z)}} \mathrm{e}^{i\left[k z-\eta(z)+k \rho^{2} / 2 R(z)\right]}
$$

$$
\begin{array}{rlr}
w(z) & =w_{o}\left(1+z^{2} / z_{o}^{2}\right)^{1 / 2} \quad \text { Beam waist } \\
R(z) & =z\left(1+z_{o}^{2} / z^{2}\right) \quad \text { Wavefront radius } \\
\eta(z) & =\arctan z / z_{o} \quad \text { Phase correction (Gouy phase) } \\
z_{o} & =\frac{k w_{o}^{2}}{2}: \quad & \text { Rayleigh length }
\end{array}
$$

The Gaussian Beam

$$
z_{o}=\frac{k w_{o}^{2}}{2} \quad \theta=\frac{2}{k w_{o}}
$$

The Gaussian Beam has one free parameter. Which one?

The Gaussian Beam

$$
z_{o}=\frac{k w_{o}^{2}}{2} \quad \theta=\frac{2}{k w_{o}}
$$

The Gaussian Beam has one free parameter. Which one?

Far-field

$$
\mathbf{E}_{\infty}\left(s_{x}, s_{y}\right)=-2 \pi \mathrm{i} k s_{z} \hat{\mathbf{E}}\left(k s_{x}, k s_{y} ; 0\right) \frac{\mathrm{e}^{\mathrm{i} k r}}{r}
$$

$$
\mathbf{s}=\left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r}\right)=\left(\frac{k_{x}}{k}, \frac{k_{y}}{k}, \frac{k_{z}}{k}\right)
$$

Example

$$
\begin{aligned}
\hat{\mathbf{E}}\left(k_{x}, k_{y} ; 0\right) & =\frac{\mathbf{E}_{0}}{4 \pi^{2}} \int_{-L_{y}}^{+L_{y}} \int_{-L_{x}}^{+L_{x}} \mathrm{e}^{-\mathrm{i}\left[k_{x} x^{\prime}+k_{y} y^{\prime}\right]} \mathrm{d} x^{\prime} \mathrm{d} y^{\prime} \\
& =\mathbf{E}_{0} \frac{L_{x} L_{y}}{\pi^{2}} \frac{\sin \left(k_{x} L_{x}\right)}{k_{x} L_{x}} \frac{\sin \left(k_{y} L_{y}\right)}{k_{y} L_{y}}
\end{aligned}
$$

$\mathbf{E}_{\infty}\left(s_{x}, s_{y}\right)=-\mathrm{i} k s_{z} \mathbf{E}_{0} \frac{2 L_{x} L_{y}}{\pi} \frac{\sin \left(k s_{x} L_{x}\right)}{k s_{x} L_{x}} \frac{\sin \left(k s_{y} L_{y}\right)}{k s_{y} L_{y}} \frac{\mathrm{e}^{\mathrm{i} k r}}{r}$

Example: Party-Party Goggles

Party-Party Goggles

Party-Party

SLM technology uses Fourier optics

Adaptive Version: Spatial light modulator (SLM)

A better description of focused fields

Better than Gaussian beams, but not much to do analytically.

