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► Introduction to Three-Phase PFC Rectifier Systems 
► Passive and Hybrid Rectifier Systems 

Outline 
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●  Multi-Domain Simulator Based Design (GECKO) 
 

► Unidir. Phase-Modular PFC Rectifier Systems 
► Unidir. Boost-Type Two- and Three-Level Active PFC Rectifier Syst. 

► Unidir. Buck-Type PFC Rectifier Systems 
► Summary of Unidir. Rectifier Systems 

► Bidirectional PFC Rectifier Systems 
► Extension to AC/DC/AC and AC/AC Converter Systems 
► Conclusions / Questions / Discussion  
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Part 1 
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Three-Phase 
PFC Rectifier Systems 
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Unidirectional Rectifier Systems 
 ► Passive Systems 
 ► Hybrid Systems 
 ► Active PFC Systems 
 ► Comparative Evaluation 
 
Bidirectional Rectifier Systems 
 ► Two-Level Converters 
 ► Three-Level Converters 

Outline 
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► Classification of Unidirectional Rectifier Systems 
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■  Phase-Modular Systems 

■   Definitions and Characteristics 

● Passive Rectifier Systems -  Line Commutated Diode Bridge/Thyristor Bridge - Full/Half Controlled 
-  Low Frequency Output Capacitor for DC Voltage Smoothing 
-  Only Low Frequency Passive Components Employed for Current 
   Shaping, No Active Current Control 
-  No Active Output Voltage Control 

● Hybrid Rectifier Systems -  Low Frequency and Switching Frequency Passive Components and/or 
-  Mains Commutation (Diode/Thyristor Bridge - Full/Half Controlled) 
   and/or Forced Commutation 
-  Partly Only Current Shaping/Control and/or Only Output Voltage Control 
-  Partly Featuring Purely Sinusoidal Mains Current  

●  Active Rectifier Systems -  Controlled Output Voltage 
-  Controlled (Sinusoidal) Input Current 
-  Only Forced Commutations / Switching Frequ. Passive Components 

-  Only One Common Output Voltage for All Phases 
-  Symmetrical Structure of the Phase Legs  
-  Phase (and/or Bridge-)Legs Connected either in Star or Delta 

► Classification of Unidirectional Rectifier Systems 

■  Direct Three-Phase Syst. 

-  Phase Rectifier Modules of Identical Structure 
-  Phase Modules connected in Star or in Delta 
-  Formation of Three Independent Controlled DC Output Voltages 
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► Classification of Unidirectional Rectifier Systems 
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► Diode Bridge Rectifier with Capacitive Smoothing 

ULL = 3 x 400 V 
fN = 50 Hz 
Pout = 2.5 kW  (R=125 Ω) 
C = 1 mF; 40 µF 
Xc/R = 0.025; 0.636 
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► Diode Bridge Rectifier / DC-Side Inductor and Output Capacitor 

ULL = 3 x 400 V 
fN = 50 Hz 
Pout = 2.5 kW  (R=125 Ω) 
C =  1 mF 
L = 5 mH; 20 mH 
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► Diode Bridge Rectifier / AC-Side Inductor and Output Capacitor 

ULL = 3 x 400 V 
fN = 50 Hz 
Pout = 2.5 kW  (R=125 Ω) 
C =  1 mF 
L = 2 mH; 20 mH 
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► Passive 3rd Harmonic Injection 
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● Minimum THD of Phase Current for iy = 1/2 I 
● THDmin = 5 % 

► Passive 3rd Harmonic Injection 
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► Classification of Unidirectional Rectifier Systems 
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► Auto-Transformer-Based-12-Pulse Rectifier Systems 

■  AC-Side Interphase Transf. (Impr. DC Voltage) 

■  DC-Side Interphase Transf. (Impr. DC Current) 

20A/Div ia ib ic 

0.5ms/Div 

DC-Side Interphase Transformer can 
be omitted in Case of Full Transformer 
Isolation of Both Diode Bridges  
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► Classification of Unidirectional Rectifier Systems 
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► Diode Bridge and DC-Side Electronic Inductor (EI) 

+  Only Fract. of Output Power Processed 
+  High Efficiency and Power Density 
  
–  Not Output Voltage Control 
–  EMI Filtering Required 
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■  Control Structure 

●  Current Control could Theoretically Emulate Infinite Inductance Value but Damping 
    (Parallel Ohmic Component) has to be Provided for Preventing Oscillations 

► Diode Bridge and DC-Side Electronic Inductor (EI) 
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ULL = 3 x 400 V 
Po = 5 kW 
fs = 70 kHz 
C = 4 x 330 µF /100 V 

η = 98.3 % 
λ = 0.955 
THD = 28.4 % 

ia 

2ms/div 

■  Experimental Results 

► Diode Bridge and DC-Side Electronic Inductor (EI) 

5A/Div 
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Fundamental Frequency Equivalent Circuit 

■  MERS Concept (Magnetic Energy Recovery Switch) 

► Diode Bridge and DC-Side EI or Electronic Capacitor   
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●  Switching Frequency DC-Side Inductors  
●  Proper Control of the EIT Allows to Achieve Purely Sinusoidal  Mains Current ! 

► 12-Pulse Rectifier Employing Electr. Interphase Transformer (EIT) 
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► Classification of Unidirectional Rectifier Systems 
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● No Output Voltage Control 
● Mains Current Close to Sinusoidal Shape 

● Controlled Output Voltage   
● Purely Sinusoidal Shape of Mains Current 

e.g.:    i1 = I + 3/2 iy 
           i2 = I – 3/2 iy 
 
CCL:    3iy = i1 – i2   

► Active 3rd Harmonic Injection into All Phases 

Minnesota Rectifier 
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● Current Control Implemention with Boost-Type DC/DC Converter (Minnesota Rectifier) or 
    with Buck-Type Topology 

 

► Active 3rd Harmonic Injection into All Phases 
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+  Purely Sinusoidal Mains Current (Only for Const. Power Load) 
+  Low Current Stress on Active Semicond. / High Efficiency 
+  Low Complexity 
 

-  No Output Voltage Control 

► Active 3rd Harmonic Inj. Only into One Phase  (I) 

●  T+, T- Could be Replaced by Passive Network 
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 ■ Proof of Sinusoidal Mains Current Shape for 

- Current to be Inj. Into Phase b: 

- Local Avg. Ind. Voltage / Bridge  
     Leg (T+, T-) Output Voltage: 

- Bridge Leg Voltage Formation: 

- Bridge Leg Current Formation: 

- Constant Power Load Current: 

and/or 

■  Sinusoidal Mains Current:  

Condition: 

 
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3 Different States Regarding the Current Paths  
with Relative On-Times     ,      , and 

T+ on, T- off 
T+ off, T- on 
T + off, T- off 
T + on, T- on 

●  4 Different Switching States: 

 ■  Proof of Sinusoidal Mains Current Shape for                 (1) 

► Active 3rd Harmonic Inj. Only into One Phase  (II) 

■  Boost-Type Topology 

+  Controlled Output Voltage 
+  Purely Sinusoidal Mains Current  
 
 

-    Power Semiconductors Stressed  
    with Line-to-Line and/or Full  
    Output Voltage 
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 ■  Proof of Sinusoidal Mains Current Shape for                  (2) 

-  Current to be Injected into b: 

-  Inductor Voltages: 

-  Bridge Leg (T+, T-): Voltage Form.: 

-  Current Formation in T+: 

-  Constant Power, Load Current: 

Condition: 

 
■  Sinusoidal Mains Current:  
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-  Higher Number of Active 
      Power Semiconductors than 
       Active Buck-Type PWM Rect. 
     (but Only T+, T- Operated with 
       Switching Frequency) 

► Active 3rd Harmonic Inj. Only into One Phase (III) 

● Patent Pending 

UN,LL= 400Vrms 
Upn= 400VDC 

P=10kW 

+  Controlled Output Voltage 
+  Purely Sinusoidal Mains Current 
 
 

+  Low Current Stress on the 
    Inj. Current Distribution 
    Power Transistors / High Eff. 
 

+  Low Control Complexity 

●  Switches Distributing the Injected Current could be Replaced by Passive Network 

■  Buck-Type Topology 
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 ■  Proof of Sinusoidal Mains Current Shape for 

- Current to be Inj. into Phase b: 

- Local Avg. Ind. Voltage : 

- Current Formation: 

- Voltage Formation: 

 

 

T+  
T- 

Duty Cycles: 

    = const.  →         = const.      = const.   
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► Classification of Unidirectional Rectifier Systems 
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► Diode Bridge Combined with DC/DC Boost Converter 

■   Other Diode Bridge Output Current Impressing DC/DC Converter Topologies  
     (e.g. SEPIC, Cuk) result in Same Mains Current Shape 

ULL = 3 x 400 V (fN = 50 Hz) 
Pout = 10 kW 
λ =  0.952 
THD= 32 % 
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► Half-Controlled Rectifier Bridge Boost Converter 

Sector A: 

Sector B: 

●  Sinusoidal Current Control Only in Sectors 
    with 2 Positive Phase Voltages, e.g. in Sector B 
 
●  In other Sectors, Only One Phase Current  
    could be Shaped, e.g. in Sector A 
 
+  Controlled Output Voltage (U > √6 Û) 
+  Low Complexity (e.g. Single Curr. Sensor) 
+  Low Conduction Losses 
 
–  Block Shaped Mains Current 
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■   Current Control Concepts 

Option 1:  All Switches Simultaneously Controlled with Same Duty-Cycle (Synchr. Modulation) 

Option 2:  Only Phase with most Positive Voltage is Modulated, Switch of Phase with most Neg. Voltage 
                 is Cont. Turned on for Lowering Conduction Losses in Case of Switch Implementation 
                 with MOSFETs.  Middle Phase Switch is OFF;  Results in Block Shaped Mains Current 

► Half-Controlled Rectifier Bridge Boost-Type Converter 

Control Acc. to Option 2 
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► Boost-Type Auto-Transf.-Based 12-Pulse Hybrid Rectifier  

+  Output Voltage Controlled 
+  Sinusoidal Mains Current Shaping Possible 
 
-  Active Converter Stage Processes Full Output Power 
-  Low Frequency Magnetics Employed 

■  Impressed Diode Bridge Output Voltages  



36/268 

0.5ms/div 

20A/Div 

Input Currents 

ULL = 3 x 115 V (400 Hz) 
Po = 10 kW 
Uo = 520 V 
fs = 60 kHz 
THDi = 3.1% 

■  Experimental Results (Impressed Diode Bridge Output Voltages)  

Duty Cycle 
Variation 

► Boost-Type Auto-Transf.-Based 12-Pulse Hybrid Rectifier  
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►  Wide Varity of Further Topologies for Pulse Multiplication (e.g. 12p  36p) which 
      Process Only Part of Output Power but don´t Provide Output Voltage Control 

+  Output Voltage Controlled 
+  Sinusoidal Mains Current Shaping Possible 
 
-  Active Converter Stage Processes Full Output Power 
-  Low Frequency Magnetics Employed 

► Boost-Type Auto-Transf.-Based 12-Pulse Hybrid Rectifier  

■  Impressed Diode Bridge Output Currents  



38/268 

► Classification of Unidirectional Rectifier Systems 
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●  Topology Limits Input Current Shaping to  
    Intervals  with Positive Phase Voltage 
 
    Sector 1: Only ia could be Controlled 
    Sector 2: ia and ib could be Controlled 
 
●  Low Complexity Control: Only Current of  
    Phase with most Positive Voltage Controlled;  
    Switch of Phase with most Neg. Voltage Turned 
    On Cont. for Providing a Free-Wheeling Path 
 

► Half-Controlled Rectifier Bridge Buck-Type Converter 

+  Controlled Output Voltage 
+  Low Complexity 
+  Low Conduction Losses 
 
–  Block Shaped Mains Current 
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Coffee Break ! 
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► Classification of Unidirectional Rectifier Systems 
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■  Δ-Rectifier 

■  Y-Rectifier 

●  Individual DC Output Voltages of the Phase Units 
●  Isolated DC/DC Converter Stages Required for Forming Single DC Output 

► Phase-Modular Rectifier Topologies 
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AC-Side Equivalent Circuit 

●  Basic AC-Side Behavior Analogous to Direct Three-Phase Three-Level Rectifier Systems 

► Y-Rectifier   
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■  Cond. States for  ia>0, ib<0, ic<0  in Dep. on Transistor Switching States (Sa Sb Sc) 

Switching States (011) and (100) 
(010) (011) (001) (000) 

(111) (110) (101) (100) 

► Y-Rectifier   

●  Redundant Concerning Formation 
      of uab, ubc, uca 
 

●  Inverse Concerning Charging of Ca 
    and Cc (and Cb) 
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(shown at the Example of Phase a) 

! 

■  Equivalent Circuit and Voltage Formation 

► Y-Rectifier   
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●  Voltage of the Star Point N’ Defined by u0 (CM-Voltage) 

■  Equivalent Circuit and Voltage Formation 

► Y-Rectifier   
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■  Modulation and Voltage Formation 

●  Addition of m0 Increases Modulation Range from Ûa = U to Ûa = 2/√3U 
●  Potential of Star Point N’ Changes with LF (     ) and Switching Frequency (u0,~) 

► Y-Rectifier   
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■  Balancing of Phase-Module DC-Output 
       Voltages by DC Component of u0 (m0) 

● No Influence on the AC-Side Current  
    Formation– Allows Balancing of the Module 
    Output Voltages Independent of Input 
    Current Shaping 
 

m0 = 0 

m0  0 

► Y-Rectifier   

● m0 Only Changes the On-Time of Redundant 
Switching Stages, e.g. (100) and (011) 
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VDC,a 

VDC,b 

VDC,c 

► Y-Rectifier 
■  Control Structure / 2-out-of-3 Output Voltage Balancing 

E.g.: 

● Output Voltage Balancing Considers  
    Only Output Cap. Voltage of Phase with 

Max. Voltage (e.g. Phase a) and Phase  
    with Min. Voltage (e.q. Phase b). 
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► Y-Rectifier 
■  Experimental Verification of Output Voltage Balancing 

UN = 3 x 230 V (50 Hz) 
Po = 3 x 1 kW 
Uo = 400 V 
fs = 58 kHz 
L = 2.8 mH (on AC-side) 
C = 660 µF 

Input Phase Currents, Control Signal i0, Output Voltages 

• Symm. Loading   Pa = Pb = Pc = 1000 W 
• Asymm. Loadng  Pa = 730 W, Pb = Pc = 1000 W  

iN,i: 1 A/div 
VDC,i: 100 V/div 

2 ms/div 

Symm. Loading Asymm. Loading 
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●  Connection of Each Module to All Phases / Rated Power also Available for Phase Loss ! 

► Δ-Rectifier 
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■  Derivation of Equivalent Circuit / Circulating Current Component i0 

► Δ-Rectifier 

Def.: 

●  Mains Phase Current Formed by          ,        , 
                                                 and   ua, ub, uc 
●  Circulating Current i0 Formed by u0 
 
 
 

●  u0 and/or i0, which does not Appear in ia, ib and ic, can be  
    Maximized by Proper Synchron. of Module PWM Carrier Signals; 
    Accordingly, Switching Frequency Components of         ,         and         
    are Minimized 
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●  Equiv. Conc. No-Load Voltage at Terminals a, b, c (No Circ. Current i0, i.e. No Voltage Drop across LΔ 

●  Equiv. Y-Voltage Syst. should not Contain Zero Sequ. Comp. 

●  Equiv. Concerning Input Impedance between any Terminals 

■  Y-Equivalent Circuit Describing Mains Current Formation 

! 

► Δ-Rectifier 
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■  Circulating Current Max. / Minimization of Mains Current Ripple 

● For Proper Phase Shift of Module PWM Carrier  
    Signals a Share of the Line-to-Line Current Ripple 
    can be Confined into the Delta Connection. 

ULL = 3 x 480 V (50 Hz) 
Po = 5 kW 
Uo = 800 V 
fs = 25 kHz 
L = 2.1 mH (on AC-Side) 

iab 

iab- i0 

i0 

iab 

iab- i0 

i0 

► Δ-Rectifier 
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■  Experimental Results 

iab 

2 ms/div 

ia, iab, ica: 5 A/div;      ia-ia,(1), i0: 2 A/div 

ia 
ica 

i0 

ia-ia,(1) 

- Formation of Input Phase Current ia = iab - ica 
- Circulating Zero Sequence Current i0 

► Δ-Rectifier 

ULL = 3 x 480 V (50 Hz) 
Po = 5 kW 
Uo = 800 V 
fs = 25 kHz 
L = 2.1 mH (on AC-Side) 
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► Classification of Unidirectional Rectifier Systems 
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●  Improvement of Mains Current Shape by 6th Harmonic 
    Duty Cycle Modulation or Boundary Mode Operation 
 
●  Reduction of EMI Filtering Effort by Interleaving 

ULL = 3 x 400 V (50Hz) 
Po = 2.5 kW 
Uo = 800 V 
THDi = 13.7 % 

► Single-Switch + Boost-Type DCM Converter Topology 

+  Low Complexity / Single Switch 
+  No PWM, Constant Duty Cycle Operation 
+  No Current Measurement 
 
–  High Peak Current Stress 
–  Low Frequ. Distortion of Mains Currents / Dep. on Upn/Û 
–  High EMI Filtering Effort 



58/268 

+  Interleaving Reduces Switching Frequency Input Current Ripple 
+  For Low Power Only One Unit Could be Operated – Higher Efficiency 
 
–  Low Frequency Mains Current Distortion Still Remaining 
–  Relatively High Implementation Effort 

► Two Interleaved Single-Switch Boost-Type DCM Converter Stages 
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ULL = 3 x 400 V 
Po = 2.5 kW 
Uo = 700 V 
THDi = 9 % 

+  Slightly Lower THDI for same Upn/ÛN Component 
    as  Single-Switch DCM Converter 
–  Large Switching Frequency CM Output Voltage Comp. 
–  High Input Capacitor Current Stress 

► Two-Switch Boost-Type DCM Converter Topology 

●  Artificial Capacitive Neutral  Point N 
●  Decoupling of the Phases 
●  Pros and Cons. as for Single-Switch Converter 
●  T+ and T-  Could also be Gated Simultaneously 
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► Classification of Unidirectional Rectifier Systems 
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Two-Level CCM Boost-Type PFC Rectifier Systems 
• Y-Switch Rectifier 
• Δ-Switch Rectifier 
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► Y-Switch Rectifier 

● Proper Control of Power Transistors Allows Formation of PWM Voltages at    ,     ,     and/or 
Impression of Sinusoidal Mains Current  
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● -Switch Rectifier Features Lower Conduction  
    Losses Compared to Y-Switch System 
 
● Active Switch Could be Implemented with  
    Six-Switch Power Module 

► Δ-Switch Rectifier 
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●  Reference Voltages, i.e. the Output of the Phase Current Controllers Need to be Transformed into 
    Δ-Quantities 
 

●  Mains Currents Controlled in Phase with Mains Voltages ua, ub, uc 
 
 
 

●  Voltage Formation at a, b, c is Determined by Switching State of          ,          ,          and AND Input 
     Current Direction/Magnitude 
●  Always Only Switches Corresponding to Highest and Lowest Line-to-Line Voltage are Pulsed 
●  Switch of Middle Phase Turned Off Continuously 
 

■  Equivalent Circuit / Mains Current Control 

► Δ-Switch Rectifier 
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■  Modulation 

► Δ-Switch Rectifier 

ULL = 115 V (400Hz) 
Po = 5 kW 
Uo = 400 V 
fs = 72 kHz 
 
Power Density: 2.35 kW/dm3 
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1ms/Div 

100 V /Div 

10 A /Div 

THDI = 2.3% 

■  Experimental Analysis 

► Δ-Switch Rectifier 

ULL = 115 V (400Hz) 
Po = 5 kW 
Uo = 400 V 
fs = 72 kHz 
 
Power Density: 2.35 kW/dm3 
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Three-Level Boost-Type CCM PFC Rectifier System 

•  Derivation of Circuit Topologies 
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► Derivation of Three-Level Rectifier Topologies (1) 

● Sinusoidal Mains Current Shaping Requires Independent Controllability of the Voltage  
    Formation of the Phases 
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●  Three-Level Characteristics 

► Derivation of Three-Level Rectifier Topologies (2) 

+  Low Input Inductance Requ.  
+  Low Switching Losses,  
+  Low EMI 
 

–  Higher Circuit Complexity  
–  Control of Output Voltage Center Point Required 
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Three-Level PFC Rectifier Analysis 

• Input Voltage Formation 
• Modulation / Sinusoidal Input Current Shaping 
• Output Center Point Formation 
• Control 
• Design Considerations 
• EMI Filtering 
• Digital Control 
• Experimental Analysis 
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●  Voltage Formation  
 
 
 
 

is Determined by Phase Switching State  
AND  Direction of Phase Current 

► Input Voltage Formation 

sa = 0 
Ta+, Ta-: OFF 
        = +½U 

sa = 1 
Ta+, Ta-: ON 
        = 0 

sa = 0 
Ta+, Ta-: OFF 
        = -½U 

sa = 1 
Ta+, Ta-: ON 
        = 0 
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• DF+:     Limited to U+ via Parasitic  Diode of Ta+ 
     
• DN+:    Not Dir. Def. by Circuit Structure 
• DN-:     Not Dir. Def. by Circuit Structure 
 
• DF-:     Limited to U- via Paras. Diode of Ta- 
• Ta+:     Limited to U+ via DF+ 
• Ta-:        Limited to U- via DF- 

► Semiconductor Blocking Voltage Stress 

■ Blocking Voltage Definition 

sa = 0 
Ta+, Ta-: OFF 
        = +½U 

sa = 1 
Ta+, Ta-: ON 
        = 0 

sa = 0 
Ta+, Ta-: OFF 
        = -½U 

sa = 1 
Ta+, Ta-: ON 
        = 0 
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► Impression of Input Current Fund. (Ohmic Fund. Mains Behavior) 

●  Difference of Mains Voltage (e.g.  ua) and 
    Mains Frequency Comp. of Voltage Formed  
    at Rectifier Bridge Input (e.g.        ) 
    Impresses Mains Current (e.g. ia) 

 δ = 0,1°… 0,3° (50/60 Hz) 
 δ = 1°… 3°       (360 Hz … 800 Hz) 
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• Def. of Modulation Index: 

► PWM / Formation of ua, ub, uc / AC-Side Equiv. Circuit (1) 

• Zero-Sequence Signal to Achieve Ext. Mod. Range 

• Generation of u0, i.e. 3rd Harmonic Signal 
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Low Frequency Zero Sequence Component 
for Extending the Modulation Range from 
                 (Sinusoidal Modulation) to 
      

Impression of Mains Current Fundamental 
in Combination with ua, ub, uc 

Causing the Switching Frequ. 
Ripple of the Mains Currents and/or 
DM Filtering Requirement Note: 

Switching Frequency CM Voltage Fluctuation 
of the Output  Resulting in CM Current and/or 
CM Filtering Requirement  

► PWM / Formation of ua, ub, uc / AC-Side Equiv. Circuit (2) 



76/268 

► Time Behavior of the Components of Voltages      ,     , 
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● Derivation of Low-Frequency Component       of Center Point Current Assuming a 3rd Harmonic 
 Component of    (as Employed for Increasing the Modulation Range) 

Assumption: 

(relative on-time of Ta+) 

(relative on-time of Tb+) 

(relative on-time of Tc+) 

●      , i.e. PWM incl.  3rd Harm., Reduces      and Extends the Modulation Range 

► Local Average Value of Center Point Current 

RMS of       minimal for   
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● Switching States (100), (011) are Forming 
Identical Voltages              but Inverse 
Centre Point Currents 

● Control of       by Changing the Partitioning 
    of Total On-Times of (100) and (011) 

● Consider e.g. 

● Corresponding 
 Switching States 
 and Resulting 
 Currents Paths 

(000), iM = 0 (001), iM = ia (010),  iM = -ib 

(111),  iM = 0 (110), iM = ic (101),  iM = ib 

► Cond. States within a Pulse Period / Center Point Current Formation 

(011),  iM = ia 

(100),  iM = -ia 
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System Control 
• Control Structure 
• Balancing of the Partial Output Voltages 
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●  Output Voltage Control 
●  Mains Phase Current Control 
●  Control of Output Center Point Potential 
    (Balancing of U+, U-) 

●  Control of ia, ib, ic Relies on      ,       ,    
●  Control of uM Relies on      (DC Component) 
●  No Cross Coupling of both Control Loops 

► Control Structure 
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●  Control via DC Component of u0, i.e. by Adding m0 to the Phase Modulation Signals 
    i.e. by Inversely Changing the Rel. On-Times of (100) and (011), δ(100) and δ(011), without 
    taking Influence on the Total On-Time δ(100) + δ(011). 

●  Assumption:   ia > 0, ib < 0, ic < 0 

► Control of Potential uM of Output Voltage Center Point 
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● Assumption: 

●  Output Voltage Unbalance Results in Increasing On-Time of Ta+ and Decreasing Off-Times of Tb- and 
     Tc- so that the Voltages        ,        ,        are Formed as in the Symmetric Case (ΔU = 0) and/or the 
     Mains Phase Currents Remain at Sinusoidal Shape 
 
●  Resulting      Reduces ΔU, i.e.  Self Stability Guaranteed    

 

► Control of Output Voltage Center Point Potential uM 



83/268 

●  System Tolerates Load Unbalance Dependent on the Voltage Transfer Ratio (U+ + U-)/Û and/or 
    the Value of The Modulation Index M 

► Admissible Unbalance of Loading of U+ and U- 
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Design Guidelines 
• Current Stress on the Components 
• Transistor Selection 
• Output Pre-Charging at Start-up 
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■   6-Switch Circuit Topology 

► Current Stress on Power Semiconductors 

●  Output Voltage > √3 Ûmax (typ. 1.2 √3 Ûmax);  Ûmax: Ampl. of  Max. Mains Phase Voltage 
●  Required Blocking Capability of All Semiconductors:  ½ U 
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■   3-Switch Circuit Topology 

► Current Stress on Power Semiconductors 

●  Output Voltage > √3 Ûmax (typ. 1.2 √3 Ûmax);  Ûmax: Ampl. of  Max. Mains Phase Voltage 
●  Required Blocking Capability of All Semiconductors:  ½ U 
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●  Nonlinear Output Capacitance Coss of MOSFET 
    (CoolMOS) has to be Charged at Turn-off 
 
●  Large Turn-Off Delay for Low Currents (e.g. Delay 
    of CoolMOS IPP60R099  (@ IDS = 1.3 A): 11% of 
    Switching Cycle @ fs = 500 kHz 
 
●  Results in PWM Volt. and/or Input Curr. Distortion 

IDS =1.3 A 

ULL = 3 x 400 V (50 Hz), fs    = 1 MHz, Po  = 10 kW 

C*oss=Coss/AChip 

► Nonlin. Coss of Superjunct. MOSFETs Causes Input Curr. Distortion 



88/268 

●  Lower Mains Diode DN- is Replaced by Thyristor 
●  Inrush Current is Limited by Rpre 
●  Switches are not Gated During Start-Up 
●  Start-up Sequence is Required 

U 
100V/Div 

IN,1 
10A/Div 

DSP-States 

Offset Comp. 
Soft Start Run Stop    Precharge 

► Pre-Charging of Output Capacitors / Start-Up Sequence 
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Digital Control Issues 
• Implementation Using a DSP vs. Using an FPGA 
• Sampling Strategy 
• Controller Requirements 
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■  Calculation of Controller Outputs 
 

●  Current Controller 
●  Voltage Controller 
●  Balancing of Output Voltages 
 

■  Startup – Sequence 
 
■  Observe Error Conditions 
 

●  Over-Voltage at the Output 
●  Over-Current 
●  Over-Temperature 
●  Output Voltage Unbalance 

► Software Tasks 
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+  Using ADC„s of DSP 
+  PWM Modules of DSP for PWM Gen. 
  
–  Sequential Calculation 
–  Limited Calculation Capability 

►  Parallelization of Controller Calculation Required 

EMC Input Filter

A B C

UN1

iN1

DF-

T
h
y

N
-

DN+

DF+

TM+

TM-

U0 /2

U0 /2

C+

C-

MP

Lboost

+

-

p

n

A1 B1 C1

► Digital Control Employing a Single DSP 
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●  External ADCs Required 
●  Calculation Capability Nearly Unlimited 
 
●  Example Timing VR1000 (fs = 1 MHz): 

► Implementation Using a Single FPGA 
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EMC Input Filter

A B C

UN1

iN1

DF-

T
h
y
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-

DN+

DF+

TM+

TM-

U0 /2

U0 /2

C+

C-

MP

Lboost

+

-

p

n

A1 B1 C1

● Single DSP Implementation ● FPGA-Based Implementation 

+  No External ADCs Required 
+  Easy Debugging 
+  Implementation using C 
 

–  Limited Calculation Capability  
–  Glue Logic can Not be Included 

+  Calc. Capability Nearly Unlimited 
+  Glue Logic can be Included 
 

–  External ADCs Required 
–  Debugging Not Easily Possible 

► Implementation Using an FPGA vs. a Single DSP 
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●  Sampling at the Pulse Period Midpoint  
    (Symmetric) PWM, Direct Sampling of 
    Fundamental 
 

●  Single Update or Double Update Possible 
 

●  Current Control of All Three Phases has to 
    be Done in 1 Cycle 

●  PI-Type Controller Shows Problems With Integral  
    Part at Current Zero Crossing 
 

●  P-Type  Controller + Input Voltage Feed Forward 
    Shows Good Results and can be Extended to  
    P+Lag Controller (Improves Performance) 

■  Current Controller 

►  Sampling Strategy / Current Controller 

■  Sampling Strategy 
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■  Output Voltage Controller 
 

●  Generates Conductance  ge  for Ref. Value of Current Controller 
●  Design for No Steady State Deviation  
●  Needs to be Able to Handle Loss of a Mains Phase (Bandwidth << 2fN) 
●  Should show Good Dynamical Behavior at Load-Steps 

        
         PI-Type  – Controller is a Good Choice 

■  Balancing of the Output Voltages 
 

●  Generates Controller Output u0 (m0) 
●  Design for No Steady State Deviation 
●  Bandwidth has to be Set Lower than Three Times Mains Frequency fN (Bandwidth << 3fN) 
●  Should Show Lowest Dynamic of all Control Loops 

        
       PI-Type  – Controller is a Good Choice 

► Output Voltage Controller / Balancing of Partial Output Voltages 
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► Example of Implementation Using an FPGA (VR250) 
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EMI Filtering 
• DM Filtering 
• CM Filtering   
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●  DM and CM Filter Stages 
 
●  Connection of Output Voltage Midpoint M 
    to Artificial Mains Star-Point N’ 
 

 No High-Frequency CM-Voltage at M 
 Capacitance of CFB Not Limited by 
     Safety Standards 
 
●  Parasitic Capacitances have to be Considered 
    for CM-Filter Design 

► EMI Filtering Concept 
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●  DM Equivalent Circuit 

●  Required DM Attenuation, e.g. for 
    fs = 1 MHz (VR1000) 

► DM Filter Design 

●  DM Filter Structure 
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● CM Equivalent Circuit 

●  Required CM Attenuation 

CFB = 220 nF 

► CM Filter Design 
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► EMI Filter Structure for VR1000 Rectifier System 

●  3 Stage DM Filter 
●  2 Filter Stages for CM Filter 

–  3 x CM Inductors in Series to Implement Proposed Filter Concept 
–  Additional CM Filter Stage Required Due to Parasitic Capacitances 



102/268 

Experimental Analysis 
• Power Density / Efficiency Pareto Limit  
• Experimental Analysis – VR250 
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■ Generation 1 – 4 of VIENNA Rectifier Systems fs = 50 kHz 
ρ = 3 kW/dm3 

fs = 72 kHz 
ρ = 4.6 kW/dm3 

fs = 250 kHz 
ρ = 10 kW/dm3 

      (164 W/in3) 
Weight = 3.4 kg 

fs = 1 MHz 
ρ = 14.1 kW/dm3 

Weight = 1.1 kg 

●  Switching Frequency of fs = 250 kHz Offers Good   
    Compromise Concerning Power Density / Weight per  
    Unit Power, Efficiency  and Input Current Quality THDi 

► Experimental Analysis 
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●  Specifications 
 
 ULL = 3 x 400 V 
 fN =  50 Hz … 60 Hz or 360 Hz … 800 Hz 
 Po = 10 kW 
 Uo = 2 x 400 V 
 fs = 250 kHz 
 
●  Characteristics 
 
 η = 96.8 % 
 THDi = 1.6 % @ 800 Hz 
        10 kW/dm3 
        3.3 kg (≈3 kW/kg) 

Dimensions:    195 x 120 x 42.7 mm3 

► Demonstrator – VR250 (1) 
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●  Specifications 
 
 ULL = 3 x 400 V 
 fN =  50 Hz … 60 Hz or 360 Hz … 800 Hz 
 Po = 10 kW 
 Uo = 2 x 400 V 
 fs = 250 kHz 
 
●  Characteristics 
 
 η = 96.8 % 
 THDi = 1.6 % @ 800 Hz 
        10 kW/dm3 
        3.3 kg (≈3 kW/kg) 

Dimensions:    195 x 120 x 42.7 mm3 

► Demonstrator – VR250 (2) 
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5A/Div 

200V/Div 
5ms/Div 

PO = 4kW 
UN = 230V 
fN = 50Hz 
UO = 800V 

THDi = 1.1% 

► Mains Behavior @ fN = 50 Hz 
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10A/Div 

200V/Div 
0.5ms/Div 

PO = 10kW 
UN = 230V 
fN = 400Hz 
UO = 800V 
THDi = 1.4% 

 
10A/Div 

200V/Div 
1ms/Div 

PO = 10kW 
UN = 230V 
fN = 800Hz 
UO = 800V 
THDi = 1.6% 

► Mains Behavior @ fN = 400Hz / 800Hz    
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●  Efficiency @ fN = 800 Hz 

●  Input Current Quality @ fN = 800 Hz 

► Demonstrator Performance (VR250)  
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20 ms/Div 

Uo 
250 V/div 

I N 
5 A/div 

20 ms/Div 

Uo 
250 V/div 

I N 
5 A/div 

► Demonstrator (VR250) Control Behavior 

●  Mains Phase Loss 

●  Mains Phase Return 
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► Demonstrator (VR250) EMI Analysis 

●  Total Emissions ●  DM Emissions ●  CM Emissions 
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Coffee Break ! 
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► Classification of Unidirectional Rectifier Systems 
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Buck-Type CVM PFC Rectifier System 

•  Derivation of Circuit Topologies 
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► Derivation of the Circuit Topology (1) 

■   Insertion of Switches in Series to the Diodes 

+ DC Current Distribution to Phases a, b, c 
 can be Controlled 
+ Control of Output Voltage 

  
–  Pulsating Input Currents / EMI Filtering Requ. 
–  Relatively High Conduction Losses 
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● Insertion of 4Q-Switches on the AC-Side in Order to  
    Enable Control of the DC Current Distribution to Phases a, b, c 

(1) 

(2) 

(3) 

► Derivation of the Circuit Topology (2) 



116/268 

■  Circuit Extensions 

● Internal Filtering of CM Output 
 Voltage Component 

● Integration of Boost-Type 
 Output Stage 
 
● Wide Output Voltage 
 Range, i.e. also 

► Derivation of the Circuit Topology (3) 

■ Circuit Extensions Shown for 3-Switch Topology, but is also Applicable to 6-Switch Topology 

●  Sinusoidal Mains  
    Current also in Case of 
    Phase Loss 
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Buck-Type PFC Rectifier Analysis 

• Modulation  
• Input Current Formation 
• Output Voltage Formation 
• Experimental Analysis 
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● Consider 60°-Wide Segment of the 
Mains Period; Suitable Switching 
States Denominated by (sa, sb, sc) 

● Clamping and “Staircase-Shaped” Link Voltage in Order to Minimize the Switching Losses 

(111) (110) (100) 

(101) (011) also: (010) 
 (011) 

► Modulation Scheme 

-  Assumption: 

-  Phase c for                          etc. 

-  Phase a for                       , 

●  Clamping to Phase with Highest  
    Absolute Voltage Value, i.e.  
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- Ohmic Mains Behavior: 

- Example: 

► Input Current and Output Voltage Formation (1) 

- Assumption: 
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► Input Current and Output Voltage Formation (2) 

●  Output Voltage is Formed by Segments of the 
  Input Line-to-Line Voltages 
 

●  Output Voltage Shows Const. Local Average Value 

- Output Voltage Formation: 

- Assumption: 
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■  Ultra-Efficient Demonstrator System 

► Experimental Results 

ULL = 3 x 400 V (50 Hz) 
Po = 5 kW 
Uo = 400 V 
fs = 18 kHz 
L = 2 x 0.65 mH 
 
 = 98.8% (Calorimetric Measurement) 
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■  Ultra-Efficient Demonstrator System 

► Experimental Results 

ULL = 3 x 400 V (50 Hz) 
Po = 5 kW 
Uo = 400 V 
fs = 18 kHz 
L = 2 x 0.65 mH 
 
 = 98.8% (Calorimetric Measurement) 
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Summary of Unidirectional 
PFC Rectifier Systems 

•  Block Shaped Input Current Systems 
•  Sinusoidal Input Current Systems 
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Boost-Type 

Buck-Type 

Buck+Boost-Type 

 
+  Controlled Output Voltage 
+  Low Complexity  
+  High Semicond. Utilization 
+  Total Power Factor λ ≈ 0.95 
–  THDI ≈ 30% 

► Block Shaped Input Current Rectifier Systems 



125/268 

Boost-Type 

Unregulated 
Output 

+  Controlled Output Voltage 
+  Relatively Low Control Complexity  
+  Tolerates Mains Phase Loss 
 

–  2-Level Characteristic 
–  Power Semiconductors Stressed with Full  
    Output Voltage 

+  Controlled Output Voltage 
+  3-Level Characteristic 
+  Tolerates Mains Phase Loss 
+  Power Semicond. Stressed with Half  
    Output Voltage 
 

–  Higher Control Complexity 

+  Low Current Stress on Power Semicond. 
+  In Principal No DC-Link Cap. Required 
+  Control Shows Low Complexity 
 

–  Sinusoidal Mains Current Only for Const. 
    Power Load 
–  Power Semicond. Stressed with Full 
    Output Voltage 
–  Does Not Tolerate Loss of a Mains Phase 

► Sinusoidal Input Current Rectifier Systems (1) 

Boost-Type 
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Buck-Type 

Buck+Boost-Type 

+  Allows to Generate Low Output Voltages 
+  Short Circuit Current Limiting Capability 
 

–  Power Semicond. Stressed with LL-Voltages 
–  AC-Side Filter Capacitors / Fundamental 
    Reactive Power Consumption 

+  See Buck-Type Converter 
+  Wide Output Voltage Range 
+  Tolerates Mains Phase Loss, i.e. Sinusoidal 
    Mains Current also for 2-Phase Operation 
 

–  See Buck-Type Converter (6-Switch Version 
    of Buck Stage Enables Compensation of AC- 
    Side Filter Cap. Reactive Power) 

► Sinusoidal Input Current Rectifier Systems (2) 
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Coffee Break ! 
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Bidirectional PFC  
Rectifier Systems 
•  Boost-Type Topologies 
•  Buck-Type Topologies 
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Boost-Type Topologies 
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► Classification of Bidirectional Boost-Type Rectifier Systems 
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► Derivation of Two-Level Boost-Type Topologies 

●  Output Operating Range 
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► Derivation of Three-Level Boost-Type Topologies 

●  Output Operating Range 
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●  Two-Level  Three-Level Converter Systems 
 
+ Reduction of Device Blocking Voltage Stress 
+ Lower Switching Losses 
+ Reduction of Passive Component Volume 
 
 
–  Higher Conduction Losses 
–  Increased Complexity and Implementation Effort 

+  State-of-the-Art Topology for LV Appl. 
+  Simple, Robust, and Well-Known 
+  Power Modules and Auxiliary Components 
 Available from Several Manufacturers 
 
-  Limited Maximum Switching Frequency 
-  Large Volume of Input Inductors   

► Comparison of Two-Level/Three-Level NPC Boost-Type Rectifier Systems 

●  Two-Level Converter Systems 
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+ Active Distribution of the Switching Losses Possible 
+ Better Utilization of the Installed Switching Power Devices 
 
–  Higher Implementation Effort Compared to NPC Topology 

► Active Neutral Point Clamped (ANPC) Three-Level Boost-Type System 
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+ Semiconductor Losses for Low Switching Frequencies 
 Lower than for NPC Topologies 
+ Can be Implemented with Standard Six-Pack Module 
 
–  Requires Switches for 2 Different Blocking Voltage Levels 

►  T-Type Three-Level Boost-Type Rectifier System 
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+  Lower Number of Components (per Voltage Level) 
+  For Three-Level Topology only Two Output Terminals 
 
–  Volume of Flying Capacitors  
–  No Standard Industrial Topology  

► Three-Level Flying Capacitor (FC) Boost-Type Rectifier System 
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► Three-Level Bridge-Leg Inductor (BLI) Boost-Type Rectifier System 

+  Lower Number of Components (per Voltage Level) 
+  For Three-Level Topology only Two Output Terminals 
 
–  Additional Volume due to Coupled Inductors 
–  Semiconductor Blocking Voltage Equal to DC Link Voltage 
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► Multi-Level Topologies are Commonly Used for Medium Voltage Applications but Gain 
             Steadily in Importance also for Low-Voltage Renewable Energy Applications 

–  More Semiconductors 
–  More Gate Drive Units 
–  Increased Complexity 
–  Capacitor Voltage Balancing Required 
–  Increased Cost 

+  Losses are Distributed over Many Semicond. 
 Devices; More Even Loading of the Chips  
 Potential for Chip Area Optimization for Pure 
    Rectifier Operation 
+  High Efficiency at High Switching Frequency 
+  Lower Volume of Passive Components 

● Moderate Increase of the Component Count 
    with the T-Type Topology   

►  Pros and Cons of Three-Level vs. Two-Level Boost-Type Rectifier Systems 

Consideration for 10kVA/400VAC Rectifier 
Operation; Min. Chip Area, Tj,max= 125°C   
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Buck-Type Topologies 
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●    System also Features Boost-Type Operation 

●  Output Operating Range 

► Derivation of Unipolar Output Bidirectional Buck-Type Topologies 
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► Derivation of Unipolar Output Bidirectional Buck-Type Topologies 

●  Output Operating Range 
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End of Part 1 
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Three-Phase AC-AC 
PWM Converter Systems 
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Basics of AC/DC/AC Converter Systems 
 ► Voltage DC-Link (V-BBC) 
 ► Current DC-Link (I-BBC) 
 
 

Derivation/Analysis of AC/AC MC Topologies 
 ► Indirect Matrix Converter (IMC) 
 ► Conv. Matrix Converter (CMC) 
 
 

Comparative Evaluation 
 ► V-BBC  vs. CMC/IMC  
 

Outline 
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Classification of Three-Phase AC-AC Converters 

■  Converters with DC-Link 
■  Hybrid Converters  
■  Indirect / Direct Matrix Converters 
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DC-Link AC-AC Converter Topologies  

! ! ! 

► V-BBC 

► I-BBC 
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Symmetric Three-Phase Mains  

Phase Voltages Phase Currents 

Instantaneous Power 
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All-SiC JFET I-BBC Prototype  

DC Link Inductor 
320 H/6 A 

► Pout = 2.9 kVA 
► fS = 200 kHz 
► 2.4 kVA / liter  (42 W/in3)  
► 230 x 80 x 65 mm3 

Uin  = 400 V 
Iin = 4.3 A 

Uout = 400 V 

200V/div 
5A/div 
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Basic Matrix Converter Topologies  
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V-BBC 
Voltage Space Vectors 

Modulation 
DC-Link Current 
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! 

VSI Space Vector Modulation  (1) 

! 

Output Voltage Reference Value 

23 = 8 Switching States 

-  Switching with 
   Interlock Delay 
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VSI Space Vector Modulation  (2) 
Switching State Sequence 

Relative On-times 

Formation of the Output Voltage 



176/268 

VSI Space Vector Modulation  (3) 

Discontinuous Modulation 

Freewheeling On-time 

Space Vector Orientation 

Modulation Limit 
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DC-Link Current Shape 

! 

Local Average Value 

VSI Space Vector Modulation  (4) 
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! 
Local DC-Link Current Shape 

! 

VSI Space Vector Modulation  (5) 
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VSI DC-Link Current 
Waveform   
Influence of Output 
Voltage Phase  Displacement 
2 on DC-Link Current 
Waveform 
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VSI Functional Equivalent Circuit 

Voltage Conversion 

Current Conversion 

Load 
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I-BBC 
Current Space Vectors 

Modulation 
DC Link Voltage 
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CSR Commutation & Equivalent Circuit 

Forced Commutation 

Natural Commutation 

Equivalent Circuit 

-  32 = 9 Switching States 
-  Overlapping Switching 
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CSR Space Vector Modulation  (1) 

Input Current Reference Value 

! 
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Formation of the Input Current  

Relative On-times 

Space Vector Orientation 

CSR Space Vector Modulation  (2) 
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CSR Space Vector Modulation  (3) 

Switching State Sequence 

DC-Link Voltage Formation 
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! 

! 

CSR Space Vector Modulation  (4) 

Local DC-Link Voltage Shape 
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CSR DC-Link  
Voltage 
Waveform   

! 

Influence of Input 
Current Phase  Displacement 
1 on DC-Link Voltage 
Waveform 
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Voltage Conversion 

Current Conversion 

Mains 

CSR Functional Equivalent Circuit 
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Fundamental Frequency Front End  
F     

3E 

Derivation of MC Topologies 
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Classification of Three-Phase AC-AC Converters 

■  Converter without DC-Link Capacitor 
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++ 
─ 

- - 

F3E Topology  /  
Mains Behavior 

! 

P. Ziogas           [12] 
T. Lipo      [13, 18, 20] 
B. Piepenbreier [15] 
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Indirect Matrix Converter – IMC  
Space Vectors 
Modulation 
Simulation 

Experimental Results 
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Classification of Three-Phase AC-AC Converters 

■  Indirect Matrix Converter  
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IMC Topology Derivation  

► Extension of  F3E-Topology 
► Bidirectional CSR Mains Interface ! 

J. Holtz         [16] 
K. Shinohara [17] 
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IMC Properties  
► Positive DC-Link Voltage Required ! 
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IMC Voltage and Current Space Vectors  
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IMC Space Vector Modulation  (1)  
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IMC Space Vector 
Modulation  (2)  

► Zero Current Commutation 
► Zero Voltage Commutation 

! 
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DC-Link Voltage     u = uac 
DC-Link Current     i  = iA 

(100) (ac) 

IMC Zero DC-Link Current 
Commutation  (1) 

PWM 
Pattern 

120°of  
Mains  
Period 

DC link  
Voltage & 

Current 
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120°of  
Mains  
Period 

DC link  
Voltage & 

Current 

IMC Zero DC-Link Current 
Commutation  (2) 

DC-Link Voltage     u = uac 
DC-Link Current     i  = - iC 

(110) (ac) 

PWM 
Pattern 
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120°of  
Mains  
Period 

DC link  
Voltage & 

Current 

IMC Zero DC-Link Current 
Commutation  (3) 

DC-Link Voltage     u = uac 
DC-Link Current     i  = 0 

(111) (ac) 

PWM 
Pattern 
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120°of  
Mains  
Period 

DC link  
Voltage & 

Current 

IMC Zero DC-Link Current 
Commutation  (4) 

DC-Link Voltage     u = uab 
DC-Link Current     i  = 0 

(111) (ab) 

PWM 
Pattern 
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120°of  
Mains  
Period 

DC link  
Voltage & 

Current 

DC-Link Voltage     u = uab 
DC-Link Current     i  = - iC 

(110) (ab) 

IMC Zero DC-Link Current 
Commutation  (5) 

PWM 
Pattern 
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DC-Link Voltage     u = uab 
DC-Link Current     i  =  iA 

IMC Zero DC-Link Current 
Commutation  (6) 

120°of  
Mains  
Period 

DC link  
Voltage & 

Current 
(100) (ab) 

PWM 
Pattern 
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Summary 
 
  Simple and Robust Modulation Scheme 
    Independent of Commutation Voltage 
    Polarity or Current Flow Direction 
 
  Negligible Rectifier Stage Switching 
    Losses Due to Zero Current Commutation 

120°of  
Mains  
Period 

DC link  
Voltage & 

Current 

PWM 
Pattern 

IMC Zero DC-Link Current 
Commutation  (7) 
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IMC Space Vector Modulation Calculation     

Output Voltage Ref. Value 

Input Current Ref. Angle 

Mains Voltage 

Assumptions 

Load Behavior 

PWM Pattern is Specific for each Combination of Input Current and Output Voltage Sectors 
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Freewheeling Limited to Output Stage 

Input Current Formation 

Desired Input Current 

Resulting Rectifier Stage  
Relative On-Times 

Absolute On-Times 



208/268 

Mains Voltage 

Available DC Link Voltage Values   

Select Identical Duty Cycles of Inverter 
Switching States (100), (110) in τac and τab 
for Maximum Modulation Range 

  Switch Conducting 
 the Largest Current is Clamped 

 (over π/3-wide Interval)  
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Voltage Space Vectors Related to 
Active Inverter Switching States 

Output Voltage Formation  

Local DC-link Voltage Average Value 

Calculation of the Inverter Active Switching State On-Times can be 
directly based on ū ! 
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DC-Link Voltage Local Average Value 

Simulation of DC-Link Voltage 
and Current Time Behavior 

Minimum of DC-Link Voltage 
Local Average Value  

Resulting IMC Output Voltage Limit  
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Resulting Inverter Stage 
Relative On-Times 

Resulting Inverter Stage  
Absolute On-Times 
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DC-link Voltage Local Average Value 

Equal DC-link Current Local 
Average Values for Inverter 
Active Switching States 

Local Average Value of 
Input Current in a  

Resulting Input Phase 
Current Amplitude 

Power Balance of Input 
and Output Side 
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IMC Simulation Results 

! 
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Input filter

Heatsink

Fans

Output connectors

Control boards

 2.9 kW/dm3
=~

Input RMS voltage        400V 
Output Power                   6.8 kVA 
Rectifier Switching Frequency    12.5 kHz 
Inverter Switching Frequency     25 kHz 

2.9 kW/dm3 

48 W/in3 

Efficiency   95% 

RB-IGBT IMC Experimental Results  (1) 
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U12 = 400V 
Pout = 1.5 kW 
fout = 120 Hz 
fS = 12.5 kHz / 25kHz 

Output Current      

DC Link Voltage 

Input Current      

100 V/div 
5A/div 

RB-IGBT IMC Experimental Results  (2) 
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High Output Voltage Modulation  (HVM) 

Low Output Voltage Modulation (LVM) 

Three-Level Modulation 

2 1
3ˆ ˆ0

2
U U 

2 1
1ˆ ˆ0
2

U U 

2 1
1 3ˆ ˆ
2 2

U U 

► LV and Three-Level Medium Voltage Modulation 

Weighted Combination of HVM and LVM 

Alternative Modulation Schemes    
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Conventional Matrix Converter - CMC 
Modulation 

Multi-Step Commutation 
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Classification of Three-Phase AC-AC Converters 

    
■  Conventional Matrix Converter  



219/268 

Conventional Matrix Converter – CMC 

►  Quasi Three-Level Characteristic 
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CMC Classification of Switching States 

Freewheeling States 

Group II 

Group III 

Generating Stationary  
Output Voltage and Input 
Current Space Vectors 

Generating Rotating 
Space Vectors 

Positive Sequence 

Negative Sequence 

Group I 
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CMC Stationary Space Vectors 

Output Voltage Space Vectors Input Current Space Vectors 
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►  Indirect Space Vector Modulation 
P. Ziogas  [12] 
L. Huber / D. Borojevic 

Correspondence of 
Switching States 

CMC/IMC Relation  (1) 
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Correspondence of 
Switching States 

► IMC 

► CMC 

► IMC 

► CMC 

CMC/IMC Relation  (2) 
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CMC Multi-Step 
Commutation 

J. Oyama / T. Lipo 
N. Burany 
P. Wheeler 
W. Hofmann 

►  Four-Step Commutation 
►  Two-Step Commutation 

Example:  u- Dependent  
                   Commutation 
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4-Step Commutation of CMC  (1)  

    Constraints  
 
  No Short Circuit of Mains Phases 
  No Interruption of Load Current 

Example:  i-Dependent Commutation 

Assumption:   i > 0, uab < 0,     aA  bA 
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    Constraints  
 
  No Short Circuit of Mains Phases 
  No Interruption of Load Current 

4-Step Commutation of CMC  (2)  

1st  Step:  Off 

Assumption:   i > 0, uab < 0,     aA  bA 



227/268 

1st  Step:  Off 
2nd Step:  On 

    Constraints  
 
  No Short Circuit of Mains Phases 
  No Interruption of Load Current 

4-Step Commutation of CMC  (3)  

Assumption:   i > 0, uab < 0,     aA  bA 
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1st  Step:  Off 
2nd Step:  On 
3rd  Step:  Off 

    Constraints  
 
  No Short Circuit of Mains Phases 
  No Interruption of Load Current 

4-Step Commutation of CMC  (4)  

Assumption:   i > 0, uab < 0,     aA  bA 
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Sequence Depends on 
Direction of Output Current ! 

1st  Step:  Off 
2nd Step:  On 
3rd  Step:  Off 
4th Step:  On 

    Constraints  
 
  No Short Circuit of Mains Phases 
  No Interruption of Load Current 

4-Step Commutation of CMC  (5)  

Assumption:   i > 0, uab < 0,     aA  bA 
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All-SiC JFET Conventional direct Matrix Converter 

► Pout = 3 kVA,  = 93.1% (at 200 kHz) 
 
► fS,nom= 144 kHz (fS,design= 200 kHz) 
► 3 kVA/dm3 (50W/in3) with 1200 V/6 A SiC JFET 
►  8 kVA/dm3 (135W/in3) with 1200 V/ 20 A SiC JFET 
► 273 x 82 x 47mm3 = 1.05 dm3 (64 in3) 

Measurements @ Uin= 115 V RMS, 400 Hz 

AC out 

AC in 

Output CM 
(dv/dt) Filter 

Auxiliary 
Supply 

Integrated 
Input EMI Filter 
(CISPR Class A) 

Gate Drives 

Input 
Capacitors 

Input  
Voltage 

 200 V/div 

Input 
 Current 
2 A/div 

Output 
 Current 
2 A/div 
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Control Properties of AC-AC Converters  (1) 

Voltage DC-Link B2B Conv. (V-BBC) Matrix Converter (CMC/IMC) 

DC/DC Control Equiv. Circ. 

► Boost-Buck-Type Converter 
 

► Max. Output Voltage can be Maintained 
     during Low Mains Condition 

► Buck-Type Converter 
 

► Maximum Output Voltage is 
      Limited by  Actual Input Voltage Û2 = 0.866 ∙ Û1 
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Control Properties of AC-AC Converters   (2) 

DC-DC Equivalent Circuits 

! 

! 

! 

! Uncontrolled 
Input Filter 

IMC 

I-BBC 

V-BBC 

CMC 
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■  Voltage DC-Link B2B Converter (V-BBC) ■  Matrix Converter (CMC / IMC) 

► Input Current (in Phase 
      with Input Voltage) 
 

► DC-Link Voltage 
 

 
► Output Current (Torque  
      and Speed of the Motor) 

► Output Current (Torque  
      and Speed of the Motor) 2 Cascaded 

Control Loops 

2 Cascaded 
Control loops 

2 Cascaded 
Control Loops 

► Optional: Input Current 
 (Formation of Input Current 
      still Depends on the Impressed 
      Output Current) 

Control Properties of AC-AC Converters  (3) 
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Comparative Evaluation 
DC Link Converters  
Matrix Converters 
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Bidirectional Power Flow Unidirectional Power Flow 

Elevators 

Escalators Cranes 

Roller Test Benches 

Automation Production Machinery 

Pumps and Compressors 

Ventilation and AC 

Renewable Energy 

MEA 

 
60% of Worldwide Ind. Energy 

  Used by Electric Motor Drives! [a] 

 

Application Areas of Three-Phase PWM Converters 

[a] “Study on Worldwide Energy Consumption”, ECPE Workshop, 2008 
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[b]: Based on “ECPE Roadmap on Power Electronics, 2008” 

Motor

Co
nv

er
te

r

Power Semiconductors 

Cooling System 
and Mounting 

Control and Gate 
Drive Circuitry 

Passive Components 

●  Holistic Converter System Comparisons 
     are (still) Rarely Found 
 

●   Comprehensive Comparisons Involves a 
 Multi-Domain Converter Design 
 

●   Voltage-Source-Type Converter Topologies 
 are Widely Used  
  

► Cost Allocation of VFD Converters ► Status Quo  Motivation  

●   Bidirectional Three-Phase AC/DC/AC and 
 AC/AC Converters 
 

●   Low Voltage Drives 
 

●   Power Level from 1 kVA to few 10 kVA 

► Focus of the Investigation 

Motivation 

[b] 
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■  Define Application / Mission Profile   
 
 
 

     -  M-n Operating Rage 
        (Continuous / Overload Requirement) 
     -  Torque at Standstill 
     -  Motor Type   
     -  etc. 
 
■  Compare Required Total Silicon Area (e.g. for TJ < 150°C, TC = 95°C) 
 

    -  Guarantee Optimal Partitioning of Si Area between IGBTs and Diodes 

• M-n Operating Range 
• Mission Profile 
• etc. 

• Semiconductor Type, Data 
• Thermal Properties 
• EMI Specifications 
• Converter Type, Motor Type (Losses)  
• Modulation Scheme  
• etc.  

• Total Si Area – Figure-Of-Merit 
• Operating Efficiency 
• Average Mission Efficiency 
• Total Mission Energy Losses 
• EMI  Filter Volume 
• Costs 

Virtual Converter 
Evaluation Platform 

Power Semicon- 
ductors  30% 

Cooling System 
and Mounting 

Control and Gate 
Driver Circuitry 

Passive 
Components 

Comparative Evaluation – Virtual Converter Evaluation Platform 
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Current Source Back-to-Back Converter (I-BBC) 

Conventional (Direct) 
Matrix Converter (CMC) 

Voltage Source Back-to-Back Converter (V-BBC) 
“State-of-the-Art” Converter System 

With Intermediate Energy Storage Without Intermediate Energy Storage 

Indirect Matrix Converter (IMC) 
VSR (Boost) VSI (Buck) CSR (Buck) VSI (Buck) 

CSR (Buck) CSI (Boost) 

(Buck) 

U2,max = 0.866 U1 

U2,max = 0.866 U1 

Considered Converter Topologies – V-BBC, I-BBC, IMC, and CMC 
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Converter Comparison Overview 

Semiconductor Chip Area (TJ, TS) 
Power Module 
Heat Sink (TA, TS) 
Gate Driver 

Semiconductor and Cooling System Design / Optimization  

Energy Storage 
Control 
Power Quality 
Reactive Power 
EMI & Filter Topology 
Loading Limits  Lifetime 
Thermal Properties 

Converter 
Topology 

Modulation 
Scheme 

Operating 
Point 

Drive System 
Specs 

Semiconduc- 
tor Losses 

Passive Component and EMI Filter Design / Optimization  

Passive 
Components 

4 Topologies 

Optimized 
SPV 



240/268 

OP1/OP5 Nominal Motor/Generator Operation (90% U2,max) 
OP2/OP4 Motor/Generator Operation for f2 = f1 
OP3 Motor Operation at Stand-still f2 = 0 

Torque Speed Plane 

► 3 x 400 V / 50 Hz, 15 kVA 
 fsw = [8 … 72] kHz 
 UDC = 700 V (VSBBC) 
 
► PMSM, Matched to Converter 
 (LS in mH range, 2  0°) 
 
► EMI Standard, CISPR 11 
 QP Class B (66 dB at 150 kHz) 
 
► Ambient Temperature TA = 50°C 
 Sink Temperature TS = 95°C 
 Max. Junction Temperature TJ,max =150°C 
 (for TA = 20°C  TS = 65°C, TJ,max = 20°C) 

Main Converter Specifications 

Comparative Evaluation (1) – Specifications and Operating Points 
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Comparative Evaluation (2) – Semicond. Area Based Comparison 

AChip = 5.0 cm2

OP1 = 95.5%
AChip = 4.4 cm2

OP1 = 94.2%
AChip = 2.9 cm2

OP1 = 96.7%

VLBBC, OP3

AChip = 7.9 cm2AChip = 6.1 cm2AChip = 5.0 cm2

AChip = 4.7 cm2

OP5 = 95.6%
AChip = 4.4 cm2

OP5 = 94.2%
AChip = 3.0 cm2

OP5 = 96.8%

CLBBC, OP3 IMC, OP3

VLBBC, OP1 CLBBC, OP1 IMC, OP1

VLBBC, OP5 CLBBC, OP5 IMC, OP5

T
64%

D
36%

T
65%

D
35%

T
60%

D
40%

T
55%

D
45%

T
62%

D
38%

T
56%

D
44%

T
57%

D
43%

T
64%

D
36%

T
64%

D
36%

AChip = 4.4 cm2

CLBBC, OP1&5

T
64%

D
36%

T
62%

D
38%

IMC, OP1&5

AChip = 5.9 cm2

T
63%

D
37%

VLBBC, OP1&5

AChip = 3.4 cm2

► Minimum Chip Area Required to Fulfill the 
 Junction Temperature Limit TJ,max (150°C)  

ETH Zurich [49] 
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Simulation with 
ICEPAK and GECKO 

Semiconductor Database 
 

■ 1200 V Si IGBT4 and EmCon4 Diodes (Infineon) 
■  1200 V normally-on SiC JFET (SiCED) 
 

Semiconductor and Cooling System Modeling 

Cooling Performance 

System Level Component Level 

Losses as f (Achip, I, U, and TJ) 

Transient Thermal Impedance 

Diode 

IGBT 

Scaling of Chip Area 
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Comp. Evaluation (3) – Semiconductor Chip Areas (OP1 & OP5) 

Conduction Losses 

Switching Losses 

Resulting 
Sensitivities 

1200 V Si IGBT4 and EmCon4 Diodes 1200 V Normally-On SiC JFETs (SiCED) 

I-BBC V-BBC I-BBC V-BBC 
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► For OP1 (P2N = 15 kVA) and OP3 (Stand-Still) 

Comparative Evaluation (4) – Torque Envelope for Equal Achip 

8 kHz: AChip 6 cm2, Referenced to IMC 32 kHz: Available Chip Area AChip 6 cm2 

CMC 

V-BBC 

I-BBC 
IMC 

V-BBC 

IMC 

I-BBC 

CMC 

Note:   Design at Thermal Limit – A More  Conservative Design would be Applied for a Product! 



245/268 

Verification by Electro-Thermal Simulation Shown for IMC 

Junction Temperatures OP1 

TJ,T  @ 5 Hz 

TJ,T  @ 50 Hz 
TJ,T  @ 150 Hz 

TJ,D  @ 150 Hz 

► Suggested Algorithm to   
 Optimally Select the Semicon-
 ductor Chip Area Matches well 
 at OP1 and OP3  

Trend Line 

Evaluated for OP1 @ 8 kHz 

Torque Limit 

Torque at OP1 and OP3 

► Suggested Algorithm allows for  
 Accurate Torque Estimation 
 at OP1 and OP3  
 
► Torque Limit Line Requires 
 a Thermal Impedance Model of 
 the Module (R-C Network) 

IMC 
CMC 
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► CISPR 11 (Compliant to IEC/EN) 
 EMI Standard for CE 
► Filter Design Margin 
 DM Design Margin: 6 dB 
 CM Design Margin: 8-10 dB 

System Level Component Level 

EMI Input Filter Topology 

L0,Imax 
Top,max = 100°C 

IC,rms,max 
du/dt |max 
Top = 70°C 
MTTF data 

Top,max = 100°C 

► Ripple-Based (CF,inp, CF,out, LB) 
► Reactive Power (CF,inp) 
► Control-Based  (CDC, LDC) 
► Energy-Based  (CDC, LDC) 

Design Criteria and Constraints 

Passive Component and EMI Input Filter Modeling 
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Comparative Evaluation (5) – Attenuation, Volume of Passives 

Volume of Passive Components 

I-BBC V-BBC MC (IMC/CMC) 

●  V-BBC Requ. 15 dB More Atten. 

V-BBC 
I-BBC 
MC 
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Efficiency vs. Switching Frequency Volume vs. Switching Frequency 

► V-BBC: Local Optimum at 35 kHz for SiC JFETs 
► MC: Significant Volume Reduction 

-35%  
-20%  

Comparative Evaluation (6) – Total Efficiency and Volume 

V-BBC 
I-BBC 
MC 

V-BBC 
I-BBC 
MC 
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Multi-Domain Simulation Software 
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3D-Thermal 
FEM Solver 

Thermal 
Impedance 

Matrix 

Fast Circuit 
Simulator 

HF Magnetics  
Design 
Toolbox 

3D-Electromagn.  
Parasitics 
Extraction 

Reduced 
Order 

Impedance 
Matrix 

EMC Filter  
Design 
Toolbox 

Heatsink 
Design 
Toolbox 

Reliability 
Analysis 
Toolbox 

Device & Material Database 
Control Toolbox 
Optimization Toolbox 

Input 
Topology / Device Models / Control Circuit / 3D-Geometry / Materials  

Post Processing 
Design Metrics, Sensitivity Calculation, Optimization 
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Overview of Gecko-Software Demonstration 
 
►  Gecko-CIRCUITs: Basic Functionality 
 
 
►  Indirect Matrix Converter (IMC) 
 
 
 
 

      -  IMC Simulation with Controlled AC Machine 
      -  Specify Semiconductor Characteristics 
      -  Simulate Semiconductor Junction Temperature 
      -  etc. 
 
 
 
 
 
 
 
 
 
 
 
►  Gecko EMC: Basic Functionality 



252/268 

Further Information Regarding Gecko-Research 

www.gecko-research.com 
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Gecko-Research Application Notes   (1) 

Overview of 
AC-AC Converters 
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Gecko-Research Application Notes   (2) 

Useful Hints for e.g. How to Implement Sector Detection for SV Modulation 

► JAVA Code Block   
 
●  Integration of Complex Control Code;  
      Enhances Overview and Transparency 
 

●  Code can Virtually be Copied to DSP C-Code 
    Generator (Minor Syntax Adaptations) 
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Power Electronics Converter Optimization 

     Goal: Optimization Toolbox 
 
► Guided Step-by-Step Converter Design Procedure to Enable Optimal Utilization of Technological 
      Base and Optimal Matching between Design Specifications and Final Performance 

ETH Zurich [50] 
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Conclusions 
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Through of  
Disillusionment 

   1970´s  
●  Invention of Matrix  
     Converter Topology 

   1990     
●  Multi-Step Commutation 
●  Indirect Space Vector Modulation 
●  Indirect Matrix Converter 

   1995 
●  Reverse Blocking IGBTs 
●  Handling of Unbalanced Mains 

   2000  
●  Sparse Matrix Converter 
●  Three-Level Matrix Converter 

    2005 –  
●   Hybrid Matrix Converter  
●   More Complicated Topologies 
●   Refinements 
●   Holistic Comparisons [51-54]  

Hype Cycle of Technologies 
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RB-IGBT 
IXRH40N120 

IGBT 
FII50-12E 

► EMI Filter 
► Clamp Circuit 

Conclusions  (1) 
►  MC  is  NOT an All-SiC Solution  
 
 
 
 

      -  Industry Engineers Missing Experience 
      -  86% Voltage Limit / Application of Specific Motors / Silicon Area 
      -  Limited Fault Tolerance 
      -  Braking in Case of Mains Failure 
      -  Costs and Complexity Challenge 
      -  Voltage DC Link Converter could be Implemented with Foil Capacitors 
 
►  MC  does NOT offer a Specific Advantage without Drawback 

CCM,1
Y2 250V
4.7nF

A

B

C

CDM,1
X2 250V

CDM,2
X2 250V

CCM,3
Y2 250V
1nF

CDM,2d

X2 250V

LDM,1
Micrometals T132-26
32 turns

LDM,1d

Micrometals T94-26
22 turns

LCM,2
VAC 500F W380
3x7 turns

LCM,3
VAC 500F W490
3x4 turns

RDM,1d

RDM,2d

1W

M
a

in
s

a

b

c

IXRH40N120

Sap Sbp Scp

SpcSpb

Sna Snb Snc

ScnSbnSan

FI
I5

0-
12

E

SpA SpB SpC

SAn SBn SCn

Spa

Aux. 

power

supply

Drt,n

Drt,p

RCM,1RCM,2CCM,2
Y2 250V
4.7nF

18  1W 18  1W

18 0.68  4W

1 F 1 F 10 F
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► Research MUST Address Comprehensive System Evaluations 
 
 
 
 

     -  MC Promising for High Switching Frequency 
     -  Consider Specific Application Areas 
     -  Consider Life Cycle Costs     
     -  etc. 
 
► V-BBC is a Tough Competitor 
 
► F3E Might Offer a Good Compromise  
 
►  Most Advantageous Converter Concept Depends on Application 
 and on whether a CUSTOM Drive Design is Possible 
 

► Integration of Multiple Functions (as for MC) Nearly ALWAYS 
 Requires a Trade-off 

Conclusions  (2) 
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End of Part 2 
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Thank You ! 
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