

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

APEC. 2011

Three-Phase PFC Rectifier and AC-AC Converter Systems

J. W. Kolar, M. Hartmann, and T. Friedli

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Outline

Part 1 _____

_

Three-Phase PFC Rectifier Systems

Outline

Unidirectional Rectifier Systems

- Passive Systems
- Hybrid Systems
- Active PFC Systems
- Comparative Evaluation

Bidirectional Rectifier Systems

- Two-Level Converters
- Three-Level Converters

Classification of Unidirectional Rectifier Systems

7/268

APEC 2011 —

Classification of Unidirectional Rectifier Systems

Definitions and Characteristics

• Passive Rectifier Systems	 Line Commutated Diode Bridge/Thyristor Bridge - Full/Half Controlled Low Frequency Output Capacitor for DC Voltage Smoothing Only Low Frequency Passive Components Employed for Current Shaping, No Active Current Control No Active Output Voltage Control
• Hybrid Rectifier Systems	 Low Frequency and Switching Frequency Passive Components and/or Mains Commutation (Diode/Thyristor Bridge - Full/Half Controlled) and/or Forced Commutation Partly Only Current Shaping/Control and/or Only Output Voltage Control Partly Featuring Purely Sinusoidal Mains Current
• Active Rectifier Systems	 Controlled Output Voltage Controlled (Sinusoidal) Input Current Only Forced Commutations / Switching Frequ. Passive Components
Phase-Modular Systems	 Phase Rectifier Modules of Identical Structure Phase Modules connected in Star or in Delta Formation of Three Independent Controlled DC Output Voltages
Direct Three-Phase Syst.	- Only One Common Output Voltage for All Phases

- Symmetrical Structure of the Phase Legs
 Phase (and/or Bridge-)Legs Connected either in Star or Delta

Classification of Unidirectional Rectifier Systems

Diode Bridge Rectifier with Capacitive Smoothing

Diode Bridge Rectifier / DC-Side Inductor and Output Capacitor

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Diode Bridge Rectifier / AC-Side Inductor and Output Capacitor

12/268

Passive 3rd Harmonic Injection

13/268

Passive 3rd Harmonic Injection

- Minimum THD of Phase Current for i_y = 1/2 I
 THD_{min} = 5 %

Classification of Unidirectional Rectifier Systems

Auto-Transformer-Based-12-Pulse Rectifier Systems

■ AC-Side Interphase Transf. (Impr. DC Voltage)

DC-Side Interphase Transf. (Impr. DC Current)

20 A/div 0.5 ms/div 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 11 13 15 17 19 21 23 25 27 29 31 1 3 5 7 9 Ordinal number of harmonics

LeCroy

Normalized input current

DC-Side Interphase Transformer can be omitted in Case of Full Transformer Isolation of Both Diode Bridges

Classification of Unidirectional Rectifier Systems

Diode Bridge and DC-Side Electronic Inductor (EI)

- + Only Fract. of Output Power Processed
 + High Efficiency and Power Density
- Not Output Voltage Control
- EMI Filtering Required

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ET

Diode Bridge and DC-Side Electronic Inductor (EI)

Control Structure

• Current Control could Theoretically Emulate Infinite Inductance Value but Damping (Parallel Ohmic Component) has to be Provided for Preventing Oscillations

Diode Bridge and DC-Side Electronic Inductor (EI)

 $U_{LL} = 3 \times 400 V$ $P_0 = 5 kW$ $f_s = 70 kHz$ $C = 4 \times 330 \mu F / 100 V$

8 7 6

5 4 3

2

0

Diode Bridge and DC-Side EI or Electronic Capacitor MERS Concept (Magnetic Energy Recovery Switch)

Fundamental Frequency Equivalent Circuit

0.25

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

12-Pulse Rectifier Employing Electr. Interphase Transformer (EIT)

- Switching Frequency DC-Side Inductors
 Proper Control of the EIT Allows to Achieve *Purely Sinusoidal* Mains Current !

Classification of Unidirectional Rectifier Systems

Active 3rd Harmonic Injection <u>into All Phases</u>

- No Output Voltage Control
- Mains Current Close to Sinusoidal Shape

e.g.: $i_1 = I + 3/2 i_y$ $i_2 = I - 3/2 i_y$ CCL: $3i_y = i_1 - i_2$

Minnesota Rectifier

- Controlled Output Voltage
- Purely Sinusoidal Shape of Mains Current

Active 3rd Harmonic Injection into All Phases

• Current Control Implemention with Boost-Type DC/DC Converter (*Minnesota Rectifier*) or with Buck-Type Topology

APEC 2011 -

► Active 3rd Harmonic Inj. Only into One Phase (I)

- + Purely Sinusoidal Mains Current (Only for Const. Power Load)
 + Low Current Stress on Active Semicond. / High Efficiency
- + Low Complexity

• T₊, T₋ Could be Replaced by Passive Network

Proof of Sinusoidal Mains Current Shape for $\omega t \in \left[0, \frac{\pi}{3}\right]$

 $i_{v} = -i_{b}$

- Current to be Inj. Into Phase b:

Power Electronic Systems

Laboratory

- Local Avg. Ind. Voltage / Bridge Leg (T+, T_) Output Voltage:
- Bridge Leg Voltage Formation:

- Bridge Leg Current Formation:

$$\bar{i}_{T_+} = k \cdot i_y = -k \cdot G \cdot u_{b0} = -G \cdot u_{b0} \frac{u_{bc}}{u_{ac}}$$

u_{ac}

 $\overline{u}_{L} \approx 0$ and/or $\overline{u}_{20} = u_{b0}$

 $\overline{u}_{20} = u_{b0} = k \cdot u_{a0} + (1 - k)u_{c0}$

 $u_{b0} = k \cdot u_{ac} + u_{c0}$

 $i + \bar{i}_{T_+} = G \cdot u_{a0} = i_a$

 $k = \frac{u_{bc}}{u_{bc}}$

- Constant Power Load Current:

Sinusoidal Mains Current:

$$i = \frac{P}{u_{ac}} = \frac{u_{ac} \cdot i_a + u_{bc} \cdot i_b}{u_{ac}}$$
$$= G \frac{u_a \cdot u_{ac} + u_b \cdot u_{bc}}{u_{ac}} = G \left(u_{a0} + u_{b0} \frac{u_{bc}}{u_{ac}} \right)$$

Condition:

$$i_a + i_b + i_c = 0$$

 $i_a a$
 $i_a a$
 $i_b b$
 $i_b b$
 $i_b c$

0

 $i_a = G \cdot u_{a0}$

 $i_b = G \cdot u_{b0}$

 $i_c = G \cdot u_{c0}$

26/268

► Active 3rd Harmonic Inj. Only <u>into One Phase</u> (II)

Boost-Type Topology

Power Electronic Systems

Laboratory

- + Controlled Output Voltage
- + Purely Sinusoidal Mains Current
- Power Semiconductors Stressed with Line-to-Line and/or Full Output Voltage

 L_1

- Proof of Sinusoidal Mains Current Shape for $\omega t \in \left[0, \frac{\pi}{3}\right]$ (1)
- 4 Different Switching States:

$$T_{+} \text{ on, } T_{-} \text{ off }$$

$$k_{1}$$

$$T_{+} \text{ off, } T_{-} \text{ on }$$

$$k_{2}$$

$$T_{+} \text{ on, } T_{-} \text{ off }$$

$$k_{3} = (1 - k_{1} - k_{2})$$

3 Different States Regarding the Current Paths with Relative On-Times k_1 , k_2 , and k_3

- K - Constant Power, Load Current: $\overline{i}_{T+} = k_1 i_v^* + (1 - k_1 - k_2) i_a^*$ - Current Formation in T₊: $\overline{i}_{T+} + \overline{i}^* = i_a^*$
 - **Condition:** $i_a^* + i_b^* + i_c^* = 0$

 $k_1 u_{ab} + k_2 (u_{ab} - U_{pn}) + (1 - k_1 - k_2) u_{ab} = 0$ - Bridge Leg (*T*₊, *T*₋): Voltage Form.: $k_2 = \frac{u_{ab}}{U_{nn}}$

 $i_{v}^{*} = -i_{b}^{*}$

- $\overline{u}_{L,1}^* \approx 0 \qquad \overline{u}_{L,2}^* \approx 0$
- Current to be Injected into b: - Inductor Voltages:
- Proof of Sinusoidal Mains Current Shape for $\omega t \in \left[0, \frac{\pi}{3}\right]$ (2)

$$\bar{k}_{1} = \frac{u_{bc}}{U_{pn}}$$

$$\bar{i} = \frac{P}{U_{pn}} = \frac{u_{ab}i_{a} - u_{bc}i_{c}}{U_{pn}} = -k_{1}i_{c} + k_{2}i_{a}$$

 $k_1 \left(u_{bc} - U_{pn} \right) + k_2 u_{bc} + \left(1 - k_1 - k_2 \right) u_{bc} = 0$

- Sinusoidal Mains Current:

 $i_a^* = G \cdot u_{a0}$

Active 3rd Harmonic Inj. Only <u>into One Phase</u> (III)

Buck-Type Topology

- + Controlled Output Voltage
- + Purely Sinusoidal Mains Current
- + Low Current Stress on the **Inj.** Current Distribution **Power Transistors / High Eff.**
- + Low Control Complexity
- Higher Number of Active **Power Semiconductors than** Active Buck-Type PWM Rect. (but Only T_+ , \tilde{T}_- Operated with Switching Frequency)

- Patent Pending
- Switches Distributing the Injected Current could be Replaced by Passive Network

 $U_{NII} = 400V_{rms}$

P=10kW

-10

-20

-30 0

5

10

15

20

t (ms)

25

30

35

40

Proof of Sinusoidal Mains Current Shape for $\omega t \in \left[0, \frac{\pi}{3}\right]$

- Current to be Inj. into Phase b: $i_v = -i_b$
- Current Formation:

$$\begin{array}{ll} i_y &= -i_b & \text{Duty Cycles:} & T_* \} k_1 \\ k_1 I = i_a & k_2 I = -i_c & & T_* \\ i_y = -(1-k_1)I + (1-k_2)I = -i_b & & i_a = G \cdot u_{a0} \\ i_b = G \cdot u_{b0} & & i_b = G \cdot u_{b0} \\ i_c = G \cdot u_{c0} & & i_c = G \cdot u_{c0} \end{array}$$

- Local Avg. Ind. Voltage :
- Voltage Formation:

$$\begin{split} \overline{u}_L &\approx 0 \\ k_1 u_a + (1 - k_1) u_b - (k_2 u_c + (1 - k_2) u_b) &= u_{pn} \\ k_1 u_{ab} - k_2 u_{cb} &= u_{pn} \\ i_a u_{ab} + i_c u_{cb} &= u_{pn} I \\ \hline i_a u_{ab} + i_c u_{cb} &= P \\ \hline i_a u_{ab} + i_c u_{cb} &= P \\ \hline \end{array} = \text{const.} \quad I = \text{const.} \rightarrow u_{pn} = \text{const.} \end{split}$$

Classification of Unidirectional Rectifier Systems

Power Electronic Systems Laboratory

Diode Bridge Combined with DC/DC Boost Converter

 Other Diode Bridge Output Current Impressing DC/DC Converter Topologies (e.g. SEPIC, Cuk) result in Same Mains Current Shape

Half-Controlled Rectifier Bridge Boost Converter

- Sinusoidal Current Control Only in Sectors with 2 Positive Phase Voltages, e.g. in Sector B
- In other Sectors, Only One Phase Current could be Shaped, e.g. in Sector A
- + Controlled Output Voltage (U > √6 Û)
 + Low Complexity (e.g. Single Curr. Sensor)
 + Low Conduction Losses
- Block Shaped Mains Current

Half-Controlled Rectifier Bridge Boost-Type Converter

- Current Control Concepts
- **Option 1: All Switches Simultaneously Controlled with Same Duty-Cycle (Synchr. Modulation)**
- Option 2: Only Phase with most Positive Voltage is Modulated, Switch of Phase with most Neg. Voltage is Cont. Turned on for Lowering Conduction Losses in Case of Switch Implementation with MOSFETs. Middle Phase Switch is OFF; Results in Block Shaped Mains Current

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **APEC** 2011

Boost-Type Auto-Transf.-Based 12-Pulse Hybrid Rectifier

Impressed Diode Bridge Output Voltages

- + Output Voltage Controlled+ Sinusoidal Mains Current Shaping Possible
- Active Converter Stage Processes Full Output Power
- Low Frequency Magnetics Employed

Boost-Type Auto-Transf.-Based 12-Pulse Hybrid Rectifier

Experimental Results (Impressed Diode Bridge Output Voltages)

Boost-Type Auto-Transf.-Based 12-Pulse Hybrid Rectifier

Impressed Diode Bridge Output Currents

- + Sinusoidal Mains Current Shaping Possible
- Active Converter Stage Processes Full Output Power
- Low Frequency Magnetics Employed
- ► Wide Varity of Further Topologies for Pulse Multiplication (e.g. 12p → 36p) which Process Only Part of Output Power but don't Provide Output Voltage Control

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Half-Controlled Rectifier Bridge Buck-Type Converter

- + Controlled Output Voltage
- + Low Complexity
- + Low Conduction Losses
- Block Shaped Mains Current

• Topology Limits Input Current Shaping to Intervals with Positive Phase Voltage

Sector 1: Only *i*_a could be Controlled Sector 2: *i*_a and *i*_b could be Controlled

• Low Complexity Control: Only Current of Phase with most Positive Voltage Controlled; Switch of Phase with most Neg. Voltage Turned On Cont. for Providing a Free-Wheeling Path

Coffee Break !

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

APEC 2011

Phase-Modular Rectifier Topologies

Y-Rectifier

- Individual DC Output Voltages of the Phase Units
 Isolated DC/DC Converter Stages Required for Forming Single DC Output

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

► Y-Rectifier

• Basic AC-Side Behavior Analogous to Direct Three-Phase Three-Level Rectifier Systems

Power Electronic Systems Laboratory

► Y-Rectifier

Cond. States for $i_a>0$, $i_b<0$, $i_c<0$ in Dep. on Transistor Switching States ($S_a S_b S_c$)

Switching States (011) and (100)

- Redundant Concerning Formation of $u_{\bar{a}\bar{b}}$, $u_{\bar{b}\bar{c}}$, $u_{\bar{c}\bar{a}}$
- Inverse Concerning Charging of C_a and C_c (and C_b)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

► Y-Rectifier

Equivalent Circuit and Voltage Formation

$$u_{\overline{a}} = \overline{u}_{\overline{a}} + u_{\overline{a},\sim}$$
$$u_{\overline{b}} = \overline{u}_{\overline{b}} + u_{\overline{b},\sim}$$
$$u_{\overline{c}} = \overline{u}_{\overline{c}} + u_{\overline{c},\sim}$$

$$u_{\overline{a}} = u'_{\overline{a}} + u_{0} \qquad u'_{\overline{a}} + u'_{\overline{b}} + u'_{\overline{c}} \stackrel{!}{=} 0$$
$$u_{\overline{b}} = u'_{\overline{b}} + u_{0}$$
$$u_{\overline{c}} = u'_{\overline{c}} + u_{0}$$

$$\overrightarrow{u}_{\overline{a}} = \overline{u}'_{\overline{a}} + \overline{u}_{0}$$
$$u_{\overline{a},\sim} = u'_{\overline{a},\sim} + u_{0,\sim}$$

(shown at the Example of Phase a)

ETH

46/268

APEC 2011

► Y-Rectifier

Equivalent Circuit and Voltage Formation

• Voltage of the Star Point N' Defined by u_0 (CM-Voltage)

► Y-Rectifier

Modulation and Voltage Formation

• Addition of m_0 Increases Modulation Range from $\hat{U}_a = U$ to $\hat{U}_a = 2/\sqrt{3}U$

• Potential of Star Point N' Changes with LF (\overline{u}_0) and Switching Frequency ($u_{0,\sim}$)

Power Electronic Systems Laboratory

► Y-Rectifier

- Balancing of Phase-Module DC-Output Voltages by DC Component of u₀ (m₀)
- U ma $2T_{s}$ $T_s=1/f$ $\overline{m}_0 = 0$ s_{a} $s_{\rm b}$ $s_{\rm C}$ (011)(011)(100)(010) L(010) (000)-(000) ma $\overline{m}_0 \neq 0$ $\overline{}$ $2T_s$ 37 $T_{\rm S}=1/f$ mo s_{a} $s_{\rm b}$ $s_{\rm C}$ (011)(100) $(010)^{]}$ ^L(010) (000)-(000)
- \overline{m}_0 Only Changes the On-Time of Redundant Switching Stages, e.g. (100) and (011)
- No Influence on the AC-Side Current Formation- Allows Balancing of the Module Output Voltages Independent of Input Current Shaping

► Y-Rectifier

• Output Voltage Balancing Considers Only Output Cap. Voltage of Phase with Max. Voltage (e.g. Phase *a*) and Phase with Min. Voltage (e.q. Phase *b*).

 $\frac{\pi}{3}$

ωt

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Experimental Verification of Output Voltage Balancing

- Symm. Loading P_a = P_b = P_c = 1000 W
 Asymm. Loading P_a = 730 W, P_b = P_c = 1000 W

 $U_{\rm N} = 3 \times 230 \text{ V} (50 \text{ Hz})$ $P_{\rm o} = 3 \times 1 \text{ kW}$ $U_0 = 400 V$ $f_{s} = 58 \text{ kHz}$ *L* = 2.8 mH (on AC-side) $C = 660 \, \mu F$

IN.R

Input Phase Currents, Control Signal i_0 , Output Voltages

VDC.T VDC.S VDC.R 10

i_{N,i}: 1 A/div

 V_{DC_i} : 100 V/div

Symm. Loading

Asymm. Loading

• Connection of Each Module to All Phases / Rated Power also Available for Phase Loss !

Laboratory

• Δ -Rectifier

Power Electronic Systems

Derivation of Equivalent Circuit / Circulating Current Component i₀

$$u_{\overline{a}b} = u'_{\overline{a}b} + u_0$$
$$u_{\overline{b}c} = u'_{\overline{b}c} + u_0$$
$$u_{\overline{c}a} = u'_{\overline{c}a} + u_0$$

Def.: $u'_{\overline{a}b} + u'_{\overline{b}c} + u'_{\overline{c}a} = 0$

- Mains Phase Current Formed by $u'_{\overline{a}b}$, $u'_{\overline{b}c}$, $u'_{\overline{c}a}$ and u_a , u_b , u_c
- Circulating Current *i*₀ Formed by *u*₀

$$u_0 = \frac{1}{3} \left(u_{\overline{a}b} + u_{\overline{b}c} + u_{\overline{c}a} \right)$$

 u₀ and/or i₀, which does not Appear in i_a, i_b and i_c, can be Maximized by Proper Synchron. of Module PWM Carrier Signals; Accordingly, Switching Frequency Components of u'_{ab}, u'_{bc} and u'_{ca} are Minimized

Y-Equivalent Circuit Describing Mains Current Formation

• Equiv. Conc. No-Load Voltage at Terminals a, b, c (No Circ. Current i_0 , i.e. No Voltage Drop across L_{Δ}

$$u_{ab} = u'_{\overline{a}b} = u_{\overline{a}'} - u_{\overline{b}'}$$
$$u_{bc} = u_{\overline{b}c} = u_{\overline{b}'} - u_{\overline{c}'}$$

• Equiv. Y-Voltage Syst. should not Contain Zero Sequ. Comp.

APEC 2011

• Equiv. Concerning Input Impedance between any Terminals

Circulating Current Max. / Minimization of Mains Current Ripple

 $U_{LL} = 3 \times 480 \text{ V} (50 \text{ Hz})$ $P_0 = 5 \text{ kW}$ $U_0 = 800 \text{ V}$ $f_s = 25 \text{ kHz}$ L = 2.1 mH (on AC-Side)

• For Proper Phase Shift of Module PWM Carrier Signals a Share of the Line-to-Line Current Ripple can be Confined into the Delta Connection.

Experimental Results

 $U_{LL} = 3 \times 480 \text{ V} (50 \text{ Hz})$ $P_0 = 5 \text{ kW}$ $U_0 = 800 \text{ V}$ $f_s = 25 \text{ kHz}$ L = 2.1 mH (on AC-Side)

 $i_{a},\,i_{\bar{a}b},\,i_{\bar{c}a}\!\!:\,5\text{ A/div};\qquad i_{a}\!\!-\!\!i_{a,(1)},\,i_{0}\!\!:\,2\text{ A/div}$

- Formation of Input Phase Current $i_a = i_{\overline{a}b} i_{\overline{c}a}$
- Circulating Zero Sequence Current i_0

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Single-Switch + Boost-Type DCM Converter Topology

- + Low Complexity / Single Switch+ No PWM, Constant Duty Cycle Operation
- + No Current Measurement
- High Peak Current Stress
- Low Frequ. Distortion of Mains Currents / Dep. on U_{pn}/\hat{U}
- High EMI Filtering Effort

- Improvement of Mains Current Shape by 6th Harmonic Duty Cycle Modulation or Boundary Mode Operation
- Reduction of EMI Filtering Effort by Interleaving

 $U_{LL} = 3 \times 400 \text{ V} (50 \text{Hz})$ $P_0^{LL} = 2.5 \text{ kW}$ $U_0 = 800 \text{ V}$ **THD**_i = 13.7 %

Two Interleaved Single-Switch Boost-Type DCM Converter Stages

- + Interleaving Reduces Switching Frequency Input Current Ripple
 + For Low Power Only One Unit Could be Operated Higher Efficiency
- Low Frequency Mains Current Distortion Still Remaining
 Relatively High Implementation Effort

Two-Switch Boost-Type DCM Converter Topology

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

<u>Two-Level</u> CCM Boost-Type PFC Rectifier Systems

- Y-Switch Rectifier
 Δ-Switch Rectifier

► Y-Switch Rectifier

• Proper Control of Power Transistors Allows Formation of PWM Voltages at \overline{a} , \overline{b} , \overline{c} and/or Impression of Sinusoidal Mains Current

► **Δ-Switch Rectifier**

- Δ -Switch Rectifier Features Lower Conduction Losses Compared to Y-Switch System
- Active Switch Could be Implemented with Six-Switch Power Module

ET

p

APEC, 2011

• Δ -Switch Rectifier

Equivalent Circuit / Mains Current Control

• Reference Voltages, i.e. the Output of the Phase Current Controllers Need to be Transformed into $\triangle\text{-}Quantities$

- Mains Currents Controlled in Phase with Mains Voltages u_a, u_b, u_c
- Voltage Formation at a, b, c is Determined by Switching State of $S_{\overline{a}\overline{b}\overline{a}}$, $S_{\overline{b}\overline{c}\overline{b}}$, $S_{\overline{c}\overline{a}\overline{c}}$ and AND Input Current Direction/Magnitude
- Always Only Switches Corresponding to Highest and Lowest Line-to-Line Voltage are Pulsed
- Switch of Middle Phase Turned Off Continuously

Modulation

 $U_{LL} = 115 V (400 Hz)$ $P_0 = 5 kW$ $U_0 = 400 V$ $f_S = 72 kHz$

Power Density: 2.35 kW/dm³

Experimental Analysis

 $U_{LL} = 115 V (400Hz)$ $P_0 = 5 kW$ $U_0 = 400 V$ $f_S = 72 kHz$

Power Density: 2.35 kW/dm³

<u>Three-Level</u> Boost-Type CCM PFC Rectifier System

• Derivation of Circuit Topologies

Derivation of Three-Level Rectifier Topologies (1)

• Sinusoidal Mains Current Shaping Requires Independent Controllability of the Voltage Formation of the Phases

Derivation of Three-Level Rectifier Topologies (2)

• Three-Level Characteristics

+ Low Input Inductance Requ.

 $+\frac{1}{2}U$

- + Low Switching Losses,
- + Low EMI
- Higher Circuit Complexity
 Control of Output Voltage Center Point Required

Three-Level PFC Rectifier Analysis

- Input Voltage Formation
- Modulation / Sinusoidal Input Current Shaping
- Output Center Point Formation
- Control
- Design Considerations
- EMI Filtering
- Digital Control
- Experimental Analysis

Input Voltage Formation

• Voltage Formation

$$u_{\overline{a}M} = (1 - s_a) \operatorname{sign}(i_a) \frac{U}{2}$$

is Determined by Phase Switching State AND Direction of Phase Current

*s*_a = 0

 T_{a+}, T_{a-} : OFF $u_{\overline{a}M} = -\frac{1}{2}U$

 $s_a = 1$ $T_{a+}, T_{a-}: ON$ $u_{\overline{a}M} = 0$

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Semiconductor Blocking Voltage Stress

Blocking Voltage Definition

- D_{F+} : Limited to U_+ via Parasitic Diode of T_{a+}
- D_{N+}: Not Dir. Def. by Circuit Structure
- D_N.: Not Dir. Def. by Circuit Structure
- *D*_{F-}: Limited to *U*₋ via Paras. Diode of *T*_{a-}
- T_{a+}: Limited to U₊ via D_{F+}
- Ta-: Limited to U_ via DF-

 $T_{a+}, T_{a-}: OFF$ $u_{\bar{a}M} = -\frac{1}{2}U$

s_a = 1 $T_{a+}, T_{a-}: ON$ $u_{\overline{a}M} = 0$

Impression of Input Current Fund. (Ohmic Fund. Mains Behavior)

APEC 2011

PWM / Formation of \bar{u}_{a} , \bar{u}_{b} , \bar{u}_{c} / AC-Side Equiv. Circuit (1)

• Def. of Modulation Index:

$$M = \frac{\hat{U}_{\overline{a}}}{\frac{1}{2}U} \qquad \left(0 \dots \frac{2}{\sqrt{3}}\right)$$

• Zero-Sequence Signal to Achieve Ext. Mod. Range

$$u_{\overline{a}\,0} = u'_{\overline{a}} + u_{0} \qquad u'_{\overline{a}} + u'_{\overline{b}} + u'_{\overline{c}} = 0$$

$$u_{\overline{b}\,0} = u'_{\overline{b}} + u_{0} \qquad u_{0} = \frac{1}{3} \Big(u_{\overline{a}\,0} + u_{\overline{b}\,0} + u_{\overline{c}\,0} \Big)$$

• Generation of *u*₀, *i.e.* 3rd Harmonic Signal

PWM / Formation of \bar{u}_{a} , \bar{u}_{b} , \bar{u}_{c} / AC-Side Equiv. Circuit (2)

$\overline{u}_a', \overline{u}_b', \overline{u}_c'$	Impression of Mains Current Fundamental in Combination with <i>u_a</i> , <i>u_b</i> , <i>u_c</i>	$u'_{\overline{a}} = u_{\overline{a}N'}$ $u'_{\overline{b}} = u_{\overline{b}N'}$ $u'_{\overline{c}} = u_{\overline{c}N'}$	$= \overline{u}_{\overline{a}}' + u_{\overline{a}}_{\sim}$ $= \overline{u}_{\overline{b}}' + u_{\overline{b}}_{\sim}$ $= \overline{u}_{\overline{c}}' + u_{\overline{c}}_{\sim}$
$\overline{u}_{a^{\sim}}^{\prime},\overline{u}_{b^{\sim}}^{\prime},\overline{u}_{c^{\sim}}^{\prime}$	Causing the Switching Frequ. Ripple of the Mains Currents and/or DM Filtering Requirement	Note:	$u_{NN'} = 0$
		$u_{\overline{a}0} = u'_{\overline{a}}$	+ <i>u</i> ₀
		$u_{\overline{b}0} = u_{\overline{b}}' + u_0$	
		$u_{\overline{c}0} = u_{\overline{c}}' + u_0$	
<u>u</u> 0	Low Frequency Zero Sequence Component for Extending the Modulation Range from $M = 01$ (Sinusoidal Modulation) to $M = 0\frac{2}{\sqrt{3}}$	u ₍	$u_0 = \overline{u}_0 + u_{0\sim}$
<i>u</i> _{0~}	Switching Frequency CM Voltage Fluctuation of the Output → Resulting in CM Current and/or CM Filtering Requirement		

• Time Behavior of the Components of Voltages $u_{\overline{a}}$, $u_{\overline{b}}$, $u_{\overline{c}}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Assumption: $i_a > 0, i_b < 0, i_c < 0$ $m_a = m'_a + m_0 = M_1 \cdot \cos(\omega t) + M_3 \cdot \cos(3\omega t)$ $m_b = m'_b + m_0 = M_1 \cdot \cos\left(\omega t - \frac{2\pi}{3}\right) + M_3 \cdot \cos(3\omega t)$ $M_1 = \frac{U}{\frac{1}{2}U}$ $M_3 = \frac{U_0}{\frac{1}{2}U}$ $m_c = m'_c + m_0 = M_1 \cdot \cos\left(\omega t + \frac{2\pi}{3}\right) + M_3 \cdot \cos\left(3\omega t\right)$ $\alpha_a = 1 - m_a$ (relative on-time of T_{a+}) $\overline{i}_M = \alpha_a \cdot i_a + \alpha_b \cdot i_b + \alpha_c \cdot i_c$ $\alpha_b = 1 - m_b$ (relative on-time of T_{b+}) $=(1-m_a)\cdot i_a+(1-m_b)\cdot i_b+(1-m_c)\cdot i_c$ $\alpha_c = 1 - m_c$ (relative on-time of T_{c+}) RMS of \overline{i}_M minimal for $\frac{M_3}{M_4} \approx \frac{1}{4}$
- m_0 , i.e. PWM incl. 3rd Harm., Reduces \overline{i}_M and Extends the Modulation Range

Power Electronic Systems

Laboratory

- Derivation of Low-Frequency Component \overline{i}_M of Center Point Current Assuming a 3rd Harmonic Component of u_0 as Employed for Increasing the Modulation Range)
- Local Average Value of Center Point Current

APEC 20'

Cond. States within a Pulse Period / Center Point Current Formation

 i_M

(001), $i_{\rm M} = i_{\rm a}$

- **Consider e.g.** $i_a > 0, i_b < 0, i_c < 0$
- Switching States (100), (011) are Forming Identical Voltages $u'_{\overline{a}}, u'_{\overline{b}}, u'_{\overline{c}}$ but Inverse Centre Point Currents i_M
- Control of *i_M* by Changing the Partitioning of Total On-Times of (100) and (011)

• Corresponding **Switching States** and Resulting **Currents Paths**

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

 i_M

 $(000), i_{M} = 0$

78/268

System Control

- Control Structure
- Balancing of the Partial Output Voltages

Control Structure

- Output Voltage Control Mains Phase Current Control
- Control of Output Center Point Potential (Balancing of U₊, U₋)
- Control of i_a, i_b, i_c Relies on u_a, u_b, u_c
 Control of u_M Relies on u₀ (DC Component)
 No Cross Coupling of both Control Loops

Control of Potential *u*_M of Output Voltage Center Point

• Assumption: $i_a > 0$, $i_b < 0$, $i_c < 0$

• Control via DC Component of u_0 , i.e. by Adding m_0 to the Phase Modulation Signals i.e. by Inversely Changing the Rel. On-Times of (100) and (011), $\delta_{(100)}$ and $\delta_{(011)}$, without taking Influence on the Total On-Time $\delta_{(100)} + \delta_{(011)}$.

Control of Output Voltage Center Point Potential u_M

- Output Voltage Unbalance Results in Increasing On-Time of T_{a^+} and Decreasing Off-Times of T_{b^-} and T_{c^-} so that the Voltages $\overline{u'}_{\overline{a}}$, $\overline{u'}_{\overline{b}}$, $\overline{u'}_{\overline{c}}$ are Formed as in the Symmetric Case ($\Delta U = 0$) and/or the Mains Phase Currents Remain at Sinusoidal Shape
- Resulting \bar{i}_M Reduces ΔU , i.e. Self Stability Guaranteed

► Admissible Unbalance of Loading of U₊ and U₋

• System Tolerates Load Unbalance Dependent on the Voltage Transfer Ratio $(U_+ + U_-)/\hat{U}$ and/or the Value of The Modulation Index M

APEC 2011

Design Guidelines

- Current Stress on the Components
- Transistor Selection
- Output Pre-Charging at Start-up

Current Stress on Power Semiconductors

6-Switch Circuit Topology

- Output Voltage > √3 Û_{max} (typ. 1.2 √3 Û_{max}); Û_{max}: Ampl. of Max. Mains Phase Voltage
 Required Blocking Capability of All Semiconductors: ½ U

Current Stress on Power Semiconductors

3-Switch Circuit Topology

- Output Voltage > $\sqrt{3} \hat{U}_{max}$ (typ. 1.2 $\sqrt{3} \hat{U}_{max}$); \hat{U}_{max} : Ampl. of Max. Mains Phase Voltage Required Blocking Capability of All Semiconductors: $\frac{1}{2}$ U

► Nonlin. C_{oss} of Superjunct. MOSFETs Causes Input Curr. Distortion

- Nonlinear Output Capacitance C_{oss} of MOSFET (CoolMOS) has to be Charged at Turn-off
- Large Turn-Off Delay for Low Currents (e.g. Delay of CoolMOS IPP60R099 (@ IDS = 1.3 A): 11% of Switching Cycle @ fs = 500 kHz
- Results in PWM Volt. and/or Input Curr. Distortion

5 $THD_{I} = 1.723 \ln (A_{Chip}) - 2.96$ IPP60R045CP Δ IPP60R075CP THD_{I} (%) IPP60R099CP IRFP27N60 IRFP21N60 2 $THD_{\rm I} = 1.29 \ln(A_{\rm Chip}) - 2.57$ - CoolMOS CP-series HV-MOSFET IRFP-type 0∟ 20 30 40 50 60 70 80 90 $A_{\rm Chip}$ (mm²)

Pre-Charging of Output Capacitors / Start-Up Sequence

- Lower Mains Diode D_{N-} is Replaced by Thyristor
 Inrush Current is Limited by R_{pre}
 Switches are not Gated During Start-Up
 Start-up Sequence is Required

Digital Control Issues

- Implementation Using a DSP vs. Using an FPGA
 Sampling Strategy
 Controller Requirements

Software Tasks

- Calculation of Controller Outputs
 - Current Controller

 - Voltage ControllerBalancing of Output Voltages
- Startup Sequence
- Observe Error Conditions
 - Over-Voltage at the Output
 - Over-Current
 - Over-Temperature
 - Output Voltage Unbalance

Digital Control Employing a Single DSP

Parallelization of Controller Calculation Required

Implementation Using a Single FPGA

- External ADCs Required
- Calculation Capability Nearly Unlimited
- Example Timing VR1000 ($f_s = 1 \text{ MHz}$):

Implementation Using an FPGA vs. a Single DSP

- Single DSP Implementation
- + No External ADCs Required
- + Easy Debugging
- + Implementation using C
- Limited Calculation Capability
- Glue Logic can Not be Included

- FPGA-Based Implementation
- + Calc. Capability Nearly Unlimited+ Glue Logic can be Included

- External ADCs RequiredDebugging Not Easily Possible

Power Electronic Systems Laboratory

Sampling Strategy / Current Controller

- Current Controller
- PI-Type Controller Shows Problems With Integral Part at Current Zero Crossing
- P-Type Controller + Input Voltage Feed Forward Shows Good Results and can be Extended to P+Lag Controller (Improves Performance)

$$K(s) = K_p \frac{1 + sT_D}{1 + sT_1}$$

- Sampling Strategy
- Sampling at the Pulse Period Midpoint (Symmetric) PWM, Direct Sampling of Fundamental
- Single Update or Double Update Possible
- Current Control of All Three Phases has to be Done in 1 Cycle

Output Voltage Controller / Balancing of Partial Output Voltages

Output Voltage Controller

- Generates Conductance g_e for Ref. Value of Current Controller
- Design for No Steady State Deviation
- Needs to be Able to Handle Loss of a Mains Phase (Bandwidth << 2fN)
- Should show Good Dynamical Behavior at Load-Steps

PI-Type - Controller is a Good Choice

Balancing of the Output Voltages

- Generates Controller Output u_0 (\overline{m}_0)
- Design for No Steady State Deviation
- Bandwidth has to be Set Lower than Three Times Mains Frequency f_N (Bandwidth << $3f_N$)
- Should Show Lowest Dynamic of all Control Loops

PI-Type - Controller is a Good Choice

Example of Implementation Using an FPGA (VR250)

EMI Filtering

- DM Filtering
 CM Filtering

EMI Filtering Concept

- DM and CM Filter Stages
- Connection of Output Voltage Midpoint *M* to Artificial Mains Star-Point *N'*
- → No High-Frequency CM-Voltage at *M*
- → Capacitance of C_{FB} Not Limited by Safety Standards
- Parasitic Capacitances have to be Considered for CM-Filter Design

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DM Filter Design

• DM Equivalent Circuit

• DM Filter Structure

• Required DM Attenuation, e.g. for fs = 1 MHz (VR1000) **CM Filter Design**

• CM Equivalent Circuit

*C*_{FB} = 220 nF

• **Required CM Attenuation**

APEC 2011

EMI Filter Structure for VR1000 Rectifier System

• 3 Stage DM Filter

2 Filter Stages for CM Filter

- 3 x CM Inductors in Series to Implement Proposed Filter Concept
 Additional CM Filter Stage Required Due to Parasitic Capacitances

Experimental Analysis

- Power Density / Efficiency Pareto Limit
 Experimental Analysis VR250

Experimental Analysis

■ Generation 1 – 4 of VIENNA Rectifier Systems

- Switching Frequency of f_s = 250 kHz Offers Good Compromise Concerning Power Density / Weight per Unit Power, Efficiency and Input Current Quality THD_i
- 100 50 kHz 98 250 kHz Efficiency η (%) 72 kHz 96 500 kHz 94 1 MHz 92 90 88 2 10 12 14 4 6 8 16 Power Density ρ (kW/dm³)

Demonstrator – VR250 (1)

• Specifications

 $U_{LL} = 3 \times 400 V$ $f_N = 50 Hz \dots 60 Hz \text{ or } 360 Hz \dots 800 Hz$ $P_o = 10 kW$ $U_o = 2 \times 400 V$ $f_s = 250 \text{ kHz}$

• Characteristics

η = 96.8 % THD_i = 1.6 % @ 800 Hz 10 kW/dm3 3.3 kg (≈3 kW/kg)

Dimensions: 195 x 120 x 42.7 mm³

Demonstrator – VR250 (2)

• Specifications

 $U_{LL} = 3 \times 400 V$ $f_N = 50 Hz \dots 60 Hz \text{ or } 360 Hz \dots 800 Hz$ $P_o = 10 kW$ $U_o = 2 \times 400 V$ $f_s = 250 \text{ kHz}$

• Characteristics

η = 96.8 % THD_i = 1.6 % @ 800 Hz 10 kW/dm3 3.3 kg (≈3 kW/kg)

Dimensions: 195 x 120 x 42.7 mm³

• Mains Behavior @ f_N = 50 Hz

Mains Behavior @ f_N = 400Hz / 800Hz

Demonstrator Performance (VR250)

• Input Current Quality @ f_N = 800 Hz

• Efficiency @ f_N = 800 Hz

Demonstrator (VR250) Control Behavior

Demonstrator (VR250) EMI Analysis

111/268

Coffee Break !

Classification of Unidirectional Rectifier Systems

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Buck-Type CVM PFC Rectifier System

• Derivation of Circuit Topologies

Derivation of the Circuit Topology (1)

Insertion of Switches in Series to the Diodes

- + DC Current Distribution to Phases a, b, c
- can be Controlled + Control of Output Voltage $0 \le u \le \frac{3}{2}\hat{U}$

- Pulsating Input Currents / EMI Filtering Requ.
 Relatively High Conduction Losses

115/268

Derivation of the Circuit Topology (2)

• Insertion of 4Q-Switches on the AC-Side in Order to Enable Control of the DC Current Distribution to Phases *a*, *b*, *c*

Power Electronic Systems Laboratory

Derivation of the Circuit Topology (3)

Circuit Extensions

- Integration of Boost-Type Output Stage
- Wide Output Voltage Range, i.e. also $U > \frac{3}{2}\hat{U}$
- Sinusoidal Mains Current also in Case of Phase Loss

\mathbf{e}

L

u

 $C \stackrel{L_+}{=} u_{\rm pn} [] R$

■ Circuit Extensions Shown for 3-Switch Topology, but is also Applicable to 6-Switch Topology

 $C \stackrel{+}{=} u_{pn} \prod R$

n

Buck-Type PFC Rectifier Analysis

- Modulation
- Input Current Formation
 Output Voltage Formation
 Experimental Analysis

Power Electronic Systems Laboratory

Modulation Scheme

- Consider 60°-Wide Segment of the Mains Period; Suitable Switching States Denominated by (s_a, s_b, s_c)
- Clamping to Phase with Highest Absolute Voltage Value, i.e.
- Phase *a* for $\omega t \in \left(-\frac{\pi}{6}, +\frac{\pi}{6}\right)$,
- Phase *c* for $\omega t \in \left(+\frac{\pi}{6}, +\frac{\pi}{2}\right)$ etc.
- Assumption: $\omega t \in \left(0, +\frac{\pi}{6}\right)$

• Clamping and "Staircase-Shaped" Link Voltage in Order to Minimize the Switching Losses

Input Current and Output Voltage Formation (1)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Input Current and Output Voltage Formation (2)

- Output Voltage Formation:

$$\overline{u} = u_{ab} \cdot \alpha_b + u_{ac} \cdot \alpha_c$$

$$P_{\text{link}} = P_{\text{input}}$$

$$\overline{u} \cdot I = \frac{3}{2} \cdot \hat{U} \cdot \hat{I}^*$$

$$\overline{u} = \frac{3}{2} \cdot \hat{U} \cdot \frac{\hat{I}^*}{I} = \frac{3}{2} \cdot \hat{U} \cdot M$$

- Output Voltage is Formed by Segments of the Input Line-to-Line Voltages
- Output Voltage Shows Const. Local Average Value

APEC 2011

Experimental Results

Ultra-Efficient Demonstrator System

 $U_{LL} = 3 \times 400 \text{ V} (50 \text{ Hz})$ $P_0 = 5 \text{ kW}$ $U_0 = 400 \text{ V}$ $f_s = 18 \text{ kHz}$ $L = 2 \times 0.65 \text{ mH}$

η = 98.8% (Calorimetric Measurement)

Experimental Results

Ultra-Efficient Demonstrator System

 $U_{LL} = 3 \times 400 \text{ V} (50 \text{ Hz})$ $P_0^{--} = 5 \text{ kW}$ $U_{0} = 400 V$ $f_{\rm s} = 18 \text{ kHz}$ L = 2 x 0.65 mH

η = 98.8% (Calorimetric Measurement)

Summary of Unidirectional PFC Rectifier Systems

- Block Shaped Input Current Systems
- Sinusoidal Input Current Systems

APEC 2011

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

APEC 2011

Power Electronic Systems Laboratory

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Sinusoidal Input Current Rectifier Systems (1)

Power Electronic Systems Laboratory

Sinusoidal Input Current Rectifier Systems (2)

 $u_{\rm pn}$

Buck-Type $0 \le U < 3/2 \hat{U}$

- + Allows to Generate Low Output Voltages
- + Short Circuit Current Limiting Capability
- Power Semicond. Stressed with LL-Voltages
- AC-Side Filter Capacitors / Fundamental Reactive Power Consumption

Buck+Boost-Type $U \ge 0$ 0 u_{pn}

- + See Buck-Type Converter
- + Wide Output Voltage Range
- + Tolerates Mains Phase Loss, i.e. Sinusoidal Mains Current also for 2-Phase Operation
- See Buck-Type Converter (6-Switch Version of Buck Stage Enables Compensation of AC-Side Filter Cap. Reactive Power)

127/268

Coffee Break !

Bidirectional PFC Rectifier Systems

- Boost-Type Topologies
 Buck-Type Topologies

Boost-Type Topologies

Classification of Bidirectional Boost-Type Rectifier Systems

Bridge-Leg Inductor (BLI) Converter

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Derivation of Two-Level Boost-Type Topologies

• Output Operating Range

Derivation of Three-Level Boost-Type Topologies

Comparison of Two-Level/Three-Level NPC Boost-Type Rectifier Systems

- Two-Level Converter Systems
- + State-of-the-Art Topology for LV Appl.
- + Simple, Robust, and Well-Known
- + Power Modules and Auxiliary Components Available from Several Manufacturers
- Limited Maximum Switching Frequency
- Large Volume of Input Inductors

- Two-Level \rightarrow Three-Level Converter Systems
- + Reduction of Device Blocking Voltage Stress
- + Lower Switching Losses
- + Reduction of Passive Component Volume
- Higher Conduction Losses
- Increased Complexity and Implementation Effort

Active Neutral Point Clamped (ANPC) Three-Level Boost-Type System

- + Active Distribution of the Switching Losses Possible
 + Better Utilization of the Installed Switching Power Devices
- Higher Implementation Effort Compared to NPC Topology

T-Type Three-Level Boost-Type Rectifier System

- + Semiconductor Losses for Low Switching Frequencies Lower than for NPC Topologies
- + Can be Implemented with Standard Six-Pack Module
- Requires Switches for 2 Different Blocking Voltage Levels

Three-Level Flying Capacitor (FC) Boost-Type Rectifier System

- + Lower Number of Components (per Voltage Level)
 + For Three-Level Topology only Two Output Terminals
- Volume of Flying Capacitors
 No Standard Industrial Topology

136/268

Three-Level Bridge-Leg Inductor (BLI) Boost-Type Rectifier System

- + Lower Number of Components (per Voltage Level)
- + For Three-Level Topology only Two Output Terminals
- Additional Volume due to Coupled Inductors
 Semiconductor Blocking Voltage Equal to DC Link Voltage

2-level

Pros and Cons of Three-Level vs. Two-Level Boost-Type Rectifier Systems

- + Losses are Distributed over Many Semicond.
 Devices; More Even Loading of the Chips →
 Potential for Chip Area Optimization for Pure Rectifier Operation
- + High Efficiency at High Switching Frequency
- + Lower Volume of Passive Components
- More Semiconductors
- More Gate Drive Units
- Increased Complexity
- Capacitor Voltage Balancing Required
- Increased Cost

Power Electronic Systems

Laboratory

• Moderate Increase of the Component Count with the T-Type Topology

Consideration for 10kVA/400V_{AC} Rectifier Operation; Min. Chip Area, $T_{j,max}$ = 125°C

Multi-Level Topologies are Commonly Used for Medium Voltage Applications but Gain Steadily in Importance also for Low-Voltage Renewable Energy Applications

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

3-lvl T-type

3-lvl NPC

Buck-Type Topologies

Derivation of Unipolar Output Bidirectional Buck-Type Topologies

• Output Operating Range

• System also Features Boost-Type Operation

 $\bar{+}I_{max}$

 u_{pn}

 $-I_{max}$

U

Derivation of Unipolar Output Bidirectional Buck-Type Topologies

Passive Rectifier Systems

- [1.1] P. Pejovic, "A Novel Low-Harmonic Three-Phase Rectifier," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.49, no.7, pp.955-965, Jul 2002.
- [1.2] P. Pejovic, P. Bozovic, D. Shmilovitz, "Low-Harmonic, Three-Phase Rectifier That Applies Current Injection and a Passive Resistance Emulator," IEEE Power Electronics Letters, vol.3, no.3, pp. 96-100, Sept. 2005.
- [1.3] P. Pejovic, Z. Janda, "Optimal Current Programming in Three-Phase High-Power-Factor Rectifier Based on Two Boost Converters," IEEE Transactions on Power Electronics, vol.13, no.6, pp.1152-1163, Nov 1998.
- [1.4] S. Kim, P. Enjeti, P. Packebush, and I. Pitel, "A New Approach to Improve Power Factor and Reduce Harmonics in a Three Phase Diode Rectifier Type Utility Interface," Record of the IEEE Industry Applications Society Annual Meeting, Pt. II, pp. 993-1000, 1993.
- [1.5] P. Pejovic Z. Janda, "Low Harmonic Three-Phase Rectifiers Applying Current Injection," Proc. of the Internat. Conf. on Power Electronics and Motion Control, Prague, 1998.
- [1.6] P. Pejovic and Z. Janda, "A Novel Harmonic-Free Three-Phase Diode Bridge Rectifier Applying Current Injection," Proc. of the 14th IEEE Appl. Power Electron. Conf. APEC'99, Dallas, USA, March 14-18, Vol. 1, pp. 241-247, 1999.
- [1.7] P. Pejovic, and Z. Janda, "An Improved Current Injection Network for Three-Phase High-Power-Factor Rectifiers that Apply Third Harmonic Current Injection," Letter to the Editor, IEEE Transactions on Industrial Electronics, Vol. 47, No. 2, pp. 497-499, 2000.
- [1.8] T. Sakkos and V. Sarv, "New Unity Power Factor Diode Rectifiers Using Ripple-Power Re-Rectification," in. Proc. of the 8th Internat. Conf. on Power Electron. and Variable Speed Drives, London, Sept. 18-19, pp. 378-381, 2000.
- [1.9] T. Sakkos, V. Sarv, and J. Soojärv, "Optimun Diode-Switched Active Filters for Power Factor Correction of Single- and Three-Phase Diode Recifiers with Capacitive Smoothing," in Proc. of the 7th European Conf. on Power Electron. and Appl., Trondheim, Norway, Vol. 2, pp. 870-875, 1997.

Hybrid Rectifier Systems (Electronic Reactance Based)

- [2.1] H. Ertl, J.W. Kolar, and F.C. Zach, "A Constant Output Current Three-Phase Diode Bridge Employing a Novel Electronic Smoothing Inductor," Proc. of the 40th Internat. Conf. on Power Conversion, Nuremberg, June 22-24, pp. 645–651 (1999).
- [2.2] K. Mino, M.L. Heldwein, and J.W. Kolar, "Ultra Compact Three-Phase Rectifier With Electronic Smoothing Inductor," Proc. of the 20th Annual IEEE Appl. Power Electron. Conf. and Exp. (APEC 2005), Vol.1, pp. 522-528 (2005).
- [2.3] R. Shimada, J.A. Wiik, T. Isobe, T. Takaku, N. Iwamuro, Y. Uchida, M. Molinas, T.M. Undeland, "A New AC Current Switch Called MERS with Low On-State Voltage IGBTs (1.54 V) for Renewable Energy and Power Saving Applications," Proc. of the 20th Internat. Symp. on Power Semicond. Devices and IC's, (ISPSD '08), pp.4-11, (2008).
- [2.4] T. Takaku, G. Homma, T. Isober, S. Igarashi, Y. Uchida, R. Shimada, "Improved Wind Power Conversion System Using Magnetic Energy Recovery Switch (MERS)," Proc. of the Industry Appl. Conf. 2005. 40th IAS Annual Meeting, Vol.3, pp. 2007-2012 (2005).
- [2.5] J.A. Wiik, F.D. Widjaya, T. Isobe, T. Kitahara, R. Shimada, "Series Connected Power Flow Control using Magnetic Energy Recovery Switch (MERS)," Proc. of the Power Conv. Conf. Nagoya, 2007 (PCC '07), pp.983-990 (2007).
- [2.6] J.A. Wiik, F.D. Wijaya, R. Shimada, "Characteristics of the Magnetic Energy Recovery Switch (MERS) as a Series FACTS Controller," IEEE Transactions on Power Delivery, vol.24, no.2, pp.828-836, (2009).

Hybrid Rectifier Systems (Active 3rd Harmonic Injection) (1)

- [2.7] H. Ertl, J.W. Kolar, and F.C. Zach, "A Constant Output Current Three-Phase Diode Bridge Employing a Novel Electronic Smoothing Inductor," Proc. of the 40th Internat. Conf. on Power Conversion, Nuremberg, June 22-24, pp. 645–651 (1999).
- [2.8] S. Hansen, P.J. Enjeti, J.H. Hahn, and F. Blaabjerg, "An Integrated Single-Switch Approach to Improve Harmonic Performance of Standard PWM Adjustable Speed Drives," Record of the 34th IEEE Industry Appl. Society Annual Meeting, Phoenix, USA, Oct. 3-7, Vol. 2, pp. 789–795 (1999).
- [2.9] A.M. El-Tamaly, P.N. Enjeti, and H.H. El-Tamaly, "An Improved Approach to Reduce Harmonics in the Utility Interface of Wind, Photovoltaic and Fuel Cell Power Systems," Proc. of the 15th IEEE Appl. Power Electron. Conf., New Orleans, USA, Feb. 6-10, Vol. 2, pp. 1059–1065 (2000).
- [2.11] Z. Janda and P. Pejovic, "A High Power Factor Three-Phase Rectifier based on Adaptive Current Injection Applying Buck Converter," Proc. of the 9th Internat. Conf. on Power Electron. and Motion Control, Kosice, Slovak Republic, Sept. 5-7, Vol. 3, pp. 140–144 (2000).
- [2.12] N. Mohan, "A Novel Approach to Minimize Line Current Harmonics in Interfacing Renewable Energy Sources with 3-Phase Utility Systems," Proc. of the IEEE Appl. Power Electron. Conf., pp. 852–858 (1992).
- [2.13] S. Kim, P. Enjeti, D. Rendusara, and I.J. Pitel, "A New Method to Improve THD and Reduce Harmonics Generated by Three-Phase Diode Rectifier Type Utility Interface," Record of the 29th IEEE Industry Appl. Society Annual Meeting, Denver, USA, Oct. 2-5, Vol. 2, pp. 1071–1077 (1994).
- [2.14] Y. Nishida, M. Nakaoka, Y. Ohgoe, and A. Maeda, "A Simple Three-Phase Boost-Mode PFC Rectifier," Record of the 31st IEEE Industry Appl. Acciety Annual Meeting, San Diego, USA, Oct. 6-10, Vol. 2, pp. 1056–1060 (1996).
- [2.15] M. Rastogi, R. Naik, and N. Mohan, "Optimization of a Novel DC-Link Current Modulated Interface with 3-Phase Utility Systems to Minimize Line Current Harmonics," Proc. of the Power Electron. Specialists Conf., Vol. I, pp. 162–167 (1992).
- [2.16] R. Naik, M. Rastogi, N. Mohan, R. Nilssen, C.P. Henze, "A Magnetic Device for Current Injection in a Three-Phase Sinusoidal Current Utility Interface," Record of the IEEE Industry Appl. society Annual Meeting, Toronto, Canada, Oct. 2-8, Pt. II, pp. 926–930 (1993).
- [2.17] M. Rastogi, R. Naik, and N. Mohan, "A Sinusoidal-Current Rectifier for Industrial and Distribution AC to DC Regulated DC Voltage," Internat. Symp. on Electric Power Engin., Stockholm, Sweden, Pt.: Power Electronics, pp. 197–200 (1995).
- [2.18] Y. Nišhida, "A New Simple Topology for Three-Phase Buck-Mode PFC," Proc. of the 11th IEEE Appl. Power Electron. Conf., San Jose, USA, March 3-7, Vol. 2, pp. 531-537 (1996).
- [2.19] H. Kanaan, H.F. Blanchette, K. Al-Haddad, R. Chaffai, and L. Duguay, "Modeling and Analysis of a Three-Phase Unity Power Factor Current Injection Rectifier using One Loop Control Strategy," Proc. of the 22nd IEEE Internat. Telecom. Energy Conf. Phoenix, USA, Sept. 10-14, pp. 518-525 (2000).

Hybrid Rectifier Systems (Active 3rd Harmonic Injection) (2)

- [2.20] J.-I. Itoh, I. Ashida, "A Novel Three-Phase PFC Rectifier Using a Harmonic Current Injection Method," IEEE Transactions on Power Electronics, Vol.23, No.2, pp.715-722, March 2008.
- [2.21] H. Yoo, S.-K. Sul, "A Novel Approach to Reduce Line Harmonic Current for a Three-phase Diode Rectifier-fed Electrolytic Capacitor-less Inverter, " Proc. of the IEEE Appl. Power Electronics Conf. and Exp. (APEC 2009), pp.1897-1903, 2009.
- [2.22] H. Yoo S.-K. Sul, "A New Circuit Design and Control to Reduce Input Harmonic Current for a Three-Phase AC Machine Drive System Having a very Small DC-link Capacitor, " Proc. Of the 25th Ann. IEEE Appl. Power Electron. Conf. and Exp. (APEC 2010), pp.611-618, 2010.
- [2.23] L.R. Chaar, N. Mohan, and C.P. Henze, "Sinusoidal current rectification in a very wide range three-phase AC input to a regulated DC output," Proc. of the 30thIndust. Appl. Conf. (IAS '95), 8-12 Oct 1995, Vol.3, pp.2341-2347.

Hybrid Rectifier Systems (Combination of Diode Bridge and DC/DC Converter)

- [2.23] A. Pietkiewicz and D. Tollik, "Three-Phase 7 kW Fan Cooled Telecom Rectifier with Active Power Factor Correction," Proc. of the Internat. Telecom. Energy Conf., Paris, Vol. 1, pp. 407-412 (1993).
- [2.24] A. Pietkiewicz and D. Tollik, "Cost/Performance Considerations for 3-Phase Input Current Shapers," Proc. of the 1st Internat. Telecom. Energy Special Conf., Berlin, Germany, April 11-15, pp. 165-170 (1994).
- [2.25] N. Bäckman and H. Thoršlund, "A New Light-Weight 100Å/48V Three-Phase Rectifier," Proc. of the Internat. Telecom. Energy Conference, pp. 92-97 (1991).
- [2.26] L.D. Salazar, P.D. Ziogas, and G. Joos, "On the Optimization of Switching Losses in DC-DC Boost Converters," Proc. of the IEEE Applied Power Electron. Conf., pp. 703-708 (1992).
- [2.27] W.E. Rippel, "Optimizing Boost Chopper Charger Design," IEEE Appl. Power Electron. Conf., Seminar 4: Electronic Power Factor Correction/Part 2 (1991).
- [2.28] J.C. Salmon, "A Variable Speed Drive Circuit Topology for Feeding a Three-Phase Inverter Bridge with Combined Current and Voltage DC Link," Proc. of the 5th European Conf. on Power Electron. and Appl., Brighton, UK, Sept. 13-16, Vol. 5, pp. 139-144 (1993).
- [2.29] J.W. Kolar, H. Ertl, und F.C. Zach, "Realization Considerations for Unidirectional Three-Phase PWM Rectifier Systems with Low Effects on the Mains," Proc. of the 6th Internat. Conf. on Power Electron. and Motion Control, Budapest, Oct. 1-3, Vol. 2, pp. 560 565 (1990).
- [2.30] M.E. Jacobs, R.W. Farrington, G.H. Fasullo, Y. Jiang, R.J. Murphy, V.J. Thottuvelil, and K.J. Timm "An Improved High-Efficiency Rectifier for Telecom Applications," Proc. of the 18th Internat. Telecom. Energy Conf., Oct. 6-10, Boston, USA, pp. 530-535 (1996).
- [2.31] J. Salmon, "PWM Inverter Harmonic Correction Topologies for Three-Phase Diode Rectifiers," Proc. of the 8th Intern. Conf. on Power Electron. and Variable Speed Drives, London, Sept. 18-19, pp. 299-304 (2000).

Hybrid Rectifier Systems (Multi-Pulse / Half Controlled Rectifier Systems)

- [2.32] S. Masukawa and S. Iida, "An Improved Three-Phase Diode Rectifier for Reducing AC Line Current Harmonics," in Proc. of the European Conf. on Power Electronics and Applications, Trondheim, Norway, Vol. 4, pp. 227–232, 1997.
- [2.33] C. Sewan, S.L. Bang, and P.N. Enjeti, "New 24-Pulse Diode Rectifier System for Utility Interface of High-Power AC Motor Drives," IEEE Trans. On Ind. Applications, Vol. 32, No. 2, pp. 531–541, 1997.
- [2.34] K. Oguchi, H. Hama, and T. Kubota, "Line-Side Reactor-Coupled Double Voltage-Fed Converter System with Ripple-Voltage Injection," Record of the 29th IEEE Power Electr. Specialists Conf., Fukuoka, Japan, Vol. 1, pp. 753–757, 1998.
- [2.35] J. Kikuchi, M.D. Manjrekar, and T.A. Lipo, "Performance Improvement of Half Controlled Three-Phase PWM Boost Rectifier," Proceedings of the 30th IEEE Power Electronics Specialists Conf., Charleston (SC), Vol. 1, pp. 319–324, 1999.
- [2.36] C.A. Munoz, I. Barbi, "A New High-Power-Factor Three-Phase AC-DC Converter: Analysis Design, and Experimentation," IEEE Transactions on Power Electronics, Vol. 14, No. 1, pp. 90–97, 1999.
- [2.37] K. Oguchi, G. Maeda, N. Hoshi, and T. Kubota, "Voltage-Phase Shifting Effect of Three-Phase Harmonic Canceling Reactors and Their Applications to Three-Level Diode Rectifiers," Record of the 34th IEEE Ind. Appl. Society Annual Meeting, Phoenix (AZ), Vol. 2, pp. 796–803, 1999.
- [2.38] G.R. Kamath, B. Runyan, and R. Wood, "A Compact Auto-Transformer-Based 12-Pulse Rectifier Circuit," in Proc. of the 27th Annual Conf. of the Ind. Electr. Society, Denver (CO), Vol. 2, pp. 1344–1349, 2001.
- [2.39] D.J. Perreault, and V. Caliskan, "Automotive Power Generation and Control," IEEE Transactions on Power Electronics, Vol. 19, No. 3, pp. 618–630, 2004.
- [2.40] S. Choi, "A Three-Phase Unity-Power-Factor Diode Rectifier with Active Input Current Shaping," IEEE Transactions on Ind. Electronics, Vol. 52, No. 6, pp. 1711–1714, 2005.
- [2.41] F. J. Chivite-Zabalza, "High Power Factor Rectification for Aerospace Systems," Ph.D. Thesis, The Univ. of Manchester, 2006.

Phase Modular Y-Rectifier (1)

- [3.1] D. Gauger, T. Froeschle, L. Illingworth, and E. Rhyne, "A Three-Phase Off-Line Switching Power Supply with Unity Power Factor and Low TIF," Proceedings of the International Telecommunications Energy Conference, Toronto, Oct. 19-22, pp. 115-121,1986.
- [3.2] R.A. Langley, J.D. van Wyk, J.J. Schoeman, "A High Technology Battery Charging System for Railway Signaling Applications," Proceedings of the 3rd European Conference on Power Electronics and Applications, Aachen, Germany, Vol. III, pp. 1433- 1434, 1989.
- [3.3] D. Chapman, D. James, and C.J. Tuck, "A High Density 48V 200A Rectifier with Power Factor Correction An Engineering Overview," Proceedings of the IEEE International Telecommunications Energy Conference, Paris, France, Vol. 1, pp. 118-125, 1993.
- [3.4] S.Y.R Hui, and H. Chung, "Paralleling Power Converters for AC-DC Step-Down Power Conversion with Inherent Power Factor Correction," Proceedings of the 7th European Conference on Power Electronics and Applications, Trondheim, Norway, Vol. 1, pp. 1.182-1.187, 1997.
- [3.5] D. S. L. Simonetti, J. Sebastian, and J. Uceda, "The Discontinuous Conduction Mode Sepic and Cuk Power Factor Preregulators: Analysis and Design," in IEEE Transactions on Industrial Electronics, Vol. 44, No. 5, pp. 630-637, 1997.
- [3.6] S.Y.R Hui, H. Chung, Y.K.E. Ho, and Y.S. Lee, "Modular Development of Single-Stage 3-Phase PFC using Single-Phase Step-Down Converters," Record of the 29th IEEE Power Electronics Specialists Conference, Fukuoka, Japan, May 17-22, Vol. 1, pp. 776-782, 1998.
- [3.7] M.Å. de Rooij, J.Å. Ferreira, and J.D. van Wyk, "A Three-Phase Soft-Switching Transformer Isolated Unity Power Factor Front End Converter," Record of the 29th IEEE Power Electronics Specialists Conference, Fukuoka, Japan, May 17-22, Vol. 1, pp. 798-804, 1998.
- [3.8] M. Karlsson, C. Thoren, and T. Wolpert, "A Novel Approach to the Design of Three-Phase AC/DC Power Converters with Unity Power Factor," Proceedings of the 21st IEEE International Telecommunications Energy Conference, Copenhagen, Denmark, June 6-9, paper no. 5-1,1999.
- [3.9] M.L. Heldwein, A.F. de Souza, and I. Barbi, "A Simple Control Strategy Applied to Three-Phase Rectifier Units for Telecommunication Applications using Single-Phase Rectifier Modules," Proceedings of the 30th IEEE Power Electronics Specialists Conference, Charleston (SC), USA, Vol.2, pp. 795-800, 1999.
- [3.10] Y.K.E. Ho, S.Y.R. Hui, and Y.S. Lee, "Characterization of Single-Stage 3-Phase Power Factor Correction Circuit Using Modular Single-Phase PWM DC-to-DC Converters," Proceedings of the 30th IEEE Power Electronics Specialists Conference, Charleston (SC), USA, Vol.2, pp. 704-708, 1999.

Phase Modular Y-Rectifier (2)

- [3.11] Y.K.E. Ho, S.Y.R. Hui, and Y.S. Lee, "Characterization of Single-Stage Three-Phase Power-Factor-Correction Circuit Using Modular Single-Phase PWM DC-to-DC Converters," IEEE Transactions on Power Electronics, Vol. 15, No. 1, pp. 62-71, 2000.
- [3.12] R. Greul, U. Drofenik, and J.W. Kolar, "Analysis and Comparative Evaluation of a Three-Level Unity Power Factor Y-Rectifier", in Proc. 25th International Telecommunications Energy Conference INTELEC 2003, pp. 421–428, 2003.
- [3.13] J. Biela, U. Drofenik, F. Krenn, J. Miniböck, and J.W. Kolar, "Novel Three-Phase Y-Rectifier Cyclic 2 Out of 3 DC Output Voltage Balancing", in Proc. 29th International Telecommunications Energy Conference INTELEC 2007, pp. 677–685, 2007.
- [3.14] R. Greul, S.D. Round, J.W. Kolar, "Analysis and Control of a Three-Phase Unity Power Factor Y-Rectifier", IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1900–1911, Sept. 2007.

Phase Modular Δ **-Rectifier**

- [3.15] M.J. Kocher, and R.L. Steigerwald, "An AC-to-DC Converter with High Quality Input Waveforms," IEEE Transactions on Industry Applications", Vol. IA-19, No. 4, pp. 586-599, 1983.
- [3.16] S.A. El-Hammamsy, "Coupled Inductor Rectification and Cycloconversion," Proceedings of the 3rd IEEE Applied Power Electronics Conference, Feb. 1-5, New Orleans, USA, pp. 258-266, 1988.
- [3.17] R. Ridley, S. Kern, and B. Fuld, "Analysis of a Wide Input Range Power Factor Correction Circuit for Three-Phase Applications," Proceedings of the IEEE Applied Power Electronics Conference, pp. 299-305, 1993.
- [3.18] B. Fuld, S. Kern, and R.A. Ridley, "Combined Buck and Boost Power Factor Controller for Three-Phase Input," Proceedings of the 5th European Conference on Power Electronics and Applications, Brighton, UK, Vol. 7, pp. 144-148, 1993.
- [3.19] D. York, E. Filer, and K. Haliburton, "A Three-Phase Input Power Processing Unit with Unity Power Factor and Regulated DC Output," Proceedings of the High Frequency Power Conversion Conference, pp. 349-356, 1994.
- [3.20] A.-Ch. Rufer and Ch.-B. Andrianirina, "A Symmetrical 3 Phase-2 Switch PFC-Power Supply for Variable Output Voltage," Proceedings of the 6th European Conference on Power Electronics and Applications, Sevilla, Spain, Sept. 19-21, Vol. 3, pp. 3.254-3.258, 1995.
- [3.21] E.S. de Andrade, D.C. Martins, and I. Barbi, "Isolated Three-Phase Rectifier Unit with High Power Factor", Proceedings of the 18th IEEE International Telecommunications Energy Conference, Boston, USA, Oct. 6-10, pp. 536-542, 1996.
- [3.22] M. Tognolini, M., and A.-Ch. Rufer, "A DSP-Based Control for a Symmetrical Three-Phase Two-Switch PFC-Power Supply for Variable Output Voltage," Proceedings of the 27th IEEE Power Electronics Specialists Conference, Baveno, Italy, June 23-27, Vol. II, pp. 1588-1594, 1996.
- [3.23] R. Ayyanar, et al., "Single-Stage Power-Factor-Correction Circuit Using Three Isolated Single-Phase SEPIC Converters Operating in CCM," Records of 2000 IEEE PESC, 2000.
- [3.24] J.W. Kolar, F. Stögerer, Y. Nishida, "Evaluation of a Delta-Connection of Three Single-Phase Unity Power Factor Rectifier Systems (Δ-Rectifier) in Comparison to a Direct Three-Phase Realization, Part I – Modulation Schemes and Input Current Ripple", in Proc. 7th European Power Quality Conference, pp. 101–108, 2001.
- [3.25] R. Greul, "Modulare Dreiphasen-Pulsgleichrichtersysteme", Ph.D. Thesis, Eidgenössische Technische Hochschule ETH Zürich, Switzerland, 2006.
- [3.26] R. Greul, S.D. Round, J.W. Kolar, "The Delta-Rectifier: Analysis, Control and Operation", IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1637–1648, Nov. 2006.

Direct Three-Phase Active PFC Converter (Boost-Type DCM Converters)

- [4.1] A. R. Prasad et al., "An Active Power Factor Correction Technique for Three-Phase Diode Rectifiers," IEEE Transactions on Power Electronics, Vol. 6, No. 1, pp. 83-92, 1991.
- [4.2] J.W. Kolar et al, "Space Vector-Based Analytical Analysis of the Input Current Distortion of a Three-Phase Discontinuous-Mode Boost Rectifier System," in IEEE PESC'93 Records, pp. 696-703.
- [4.3] J.W. Kolar, et al., "A Comprehensive Design Approach for a Three-Phase High-Frequency Single-Switch Discontinuous-Mode Boost Power Factor Corrector based on Analyticaly Derived Normalized Converter Component Ratings," IEEE Transactions on Industry Applications, Vol. 31, No. 3, 1995, pp. 569-582.
- [4.4] J. Sun, et al., "Harmonic reduction techniques for single-switch three-phase boost rectifiers," IAS'96, pp. 1225-1232.
- [4.5] Y. Jang and M.M. Jovanovic, "A comparative study of single-switch, three-phase, high-power-factor rectifiers," Proc. Of the IEEE Appl. Power Electronics Conf. (APEC'98), 1093-1099.
- [4.6] S. Gataric, et al., "Soft-switched single-switch three-phase rectifier with power factor correction," in Proceedings of IEEE Appl. Power Electron. Conf. (APEC'94), pp. 738-744.
- [4.7] E. H. Ismail, "A low-distortion three-phase multiresonant boost rectifier with zero-current switching," IEEE Transactions on Power Electronics, Vol. 13, No. 4, pp. 718-726, 1998.
- [4.8] H. Oishi et al., "Sepic-derived three-phase sinusoidal rectifier operating in discontinuous current conduction mode," in IEE Proceedings Electric Power Applications, Vol. 142, No. 4, pp. 239-245, 1995.
- [4.9] L. Malesani et al., "Three-Phase Power Factor Controller with Minimum Output Voltage Distortion," in Proceedings of INTELEC'93, pp. 463-468.
- [4.10] D. M. Xu, C. Yang, J. H. Kong, and Z. Qian, "Quasi Soft-Switching Partly Decoupled Three-Phase PFC with Approximate Unity Power Factor," In Proc. of the Appl. Power Electron. Conf. (APEC'98), pp. 953-957.
- [4.11] P. Barbosa, F. Canales, J.-C. Crebier, F.C. Lee, "Interleaved three-phase boost rectifiers operated in the discontinuous conduction mode: analysis, design considerations and experimentation," IEEE Transactions on Power Electronics, Vol.16, No.5, pp.724-734, Sep 2001.
- [4.12] P. Barbosa, F. Canales, F. Lee, "Analysis and evaluation of the two-switch three-level boost rectifier," Proc. of the 32nd Annual IEEE Power Electronics Specialists Conf. (PESC 2001), Vol. 3, pp.1659-1664, 2001.

Direct Active Three-Phase PFC Rectifier Systems (Two-Level CCM Boost-Type) (1)

- [5.1] J.W. Kolar, H. Ertl, F.C. Zach, "Realization Considerations for Unidirectional Three-Phase PWM Rectifier Systems with low *Effects on the Mains,"* Proc. of the 6th Int. Conf. on Power Electronics and Motion (PEMC 1990), Budapest.
- [5.2] M. Hartmann, J. Miniboeck, J.W. Kolar, "A Three-Phase Delta Switch Rectifier for More Electric Aircraft Applications *Employing a Novel PWM Current Control Concept,* "Proc. of 24th Annual IEEE Applied Power Electron. Conf. and Exp. (APEC 2009), 15-19 Feb. 2009, pp.1633-1640.
- [5.3] S.K.T. Miller, J. Sun, "Comparative study of three-phase PWM rectifiers for wind energy conversion," Proc. of the 21th Annual IEEE Applied 12 Power Electronics Conference and Exposition (APEC '06), 19-23 March 2006, pp.937-943.
- [5.4] J.C. Salmon, "Reliable 3-phase PWM Boost Rectifiers Employing a Stacked Dual Boost Converter Subtopology," IEEE Transactions on Industry Applications, Vol. 32, No. 3, pp.542-551, 1996.
- [5.5] I. Barbi, J.C. Fagundes, and C.M.T Cruz, "A Low Cost High Power Factor Three-Phase Diode Rectifier with Capacitive Load," Proc. of the IEEE Appl. Power Electron. Conf., Vol. 2, pp. 745-751 (1994).
- [5.6] W. Koczara, and P. Bialoskorski, "Modified Rectifiers with Unity Power Factor," Proc. of the Internat. Conf. on Power Electron. and Motion Control, "Warsaw, Poland, Sept. 20-22, Vol. 1, pp. 309-314 (1994).
- [5.7] J. Spanicek, and D. Platt, "Minimal Circuit for Power System Conditioning," Proc. of the Internat. Conf. on Power Electronics and Drive Systems, Singapore, Feb. 21-24, Vol. 1, pp. 543-548 (1995).
- [5.8] F. Lafitte, B. Dakyo, L. Protin, and Koczara, W, "Three-Phase Sinusoidal Current Absorption AC-DC Converter for High Power Supply for Telecommunication," Proc. of the 17th IEEE Internat. Telecom. Energy Conf., The Hague, The Netherlands, Oct. 29-Nov. 1, pp. 715-720 (1995).
- [5.9] D. Carlton, W.G. Dunford, M. Edmunds, "Continuous Conduction Mode Operation of a Three-Phase Power Factor Correction Circuit with Quasi Tridirectional Switches," Proc. of the 30th Annual IEEE Power Electronics Specialists Conf. (PESC 99), Aug 1999, vol.1, pp.205-210.
- [5.10] À. Lima, C. Cruz, F. Antunes, "A new low cost AC-DC Converter with High Input Power Factor," Proc. of the 22nd IEEE Internat. Conf. on Indust. Electron., Control, and Instrumentation (IECON'96), 5-10 Aug 1996, Vol.3, pp.1808-1813.
- [5.11] C. Qiao, K.M. Smedley, "A General Three-Phase PFC Controller for Rectifiers with a Parallel-Connected Dual Boost Topology, "IEEE Transactions on Power Electronics, Vol.17, No.6, Nov 2002, pp. 925-934.
- [5.12] N. Noor, J. Ewanchuk, J.C. Salmon, "PWM Current Controllers for a Family of 3-Switch Utility Rectifier Topologies," Proc. of the Canadian Conference on Electrical and Computer Engineering (CCECE2007), 22-26 April 2007, pp.1141-1144.
- [5.13] J.C. Salmon, "Comparative Evaluation of Circuit Topologies for 1-Phase and 3-Phase Boost Rectifiers Operated with a Low Current Distortion," Proc. of Canadian Conference on Electrical and Computer Engineering, Halifax, NS, Canada (1994), 25-28 Sep. 1994, Vol.1, pp. 30-33.

Direct Active Three-Phase PFC Rectifier Systems (Two-Level CCM Boost-Type) (2)

- [5.14] J.C. Salmon, "Comparative Evaluation of Circuit Topologies for 1-Phase and 3-Phase Boost Rectifiers Operated with a Low Current Distortion," Proc. of Canadian Conference on Electrical and Computer Engineering, Halifax, NS, Canada (1994), 25-28 Sep. 1994, Vol.1, pp. 30-33.
- [5.15] D. Carlton, W.G. Dunford, M. Edmunds, "Harmonic Reduction in the 3-Phase 3-Switches Boost-Delta Power Factor Correction Circuit Operating in Discontinuous Conduction mode," 20th Internat. Telecom. Energy Conf. (INTELEC 1998), pp.483-490.
- [5.16] Tao Lei, Xiao-Bin Zhang, Yan-Jun Dong, Jing-Hui Zhao, Hui Lin, "Study of High Power Factor Rectifiers Based on One Cycle Control in Aircraft Electric Power System," 12th Internat. Middle East Power System Conf. (MEPCON 2008), pp.325-329.
- [5.17] C.L. Chen, "A new Space-Vector-Modulated Control for a Unidirectional Three-Phase Switch-Mode Rectifier," IEEE Transactions on Industrial Electronics, Vol.45, No.2, Apr 1998, pp.256-262.
- [5.18] W. Koczara, "Unity Power Factor Three-Phase Rectifier," Proc. of the Internat. Power Quality Conf., Munich, pp. 79-88 (1992).
- [5.19] W. Koczara and P. Bialoskorski, "Controllability of the Simple Three-Phase Rectifier Operating with Unity Power Factor," Proc. of the 5th European Conf. on Power Electron. and Appl., Brighton, UK, Vol. 7, pp. 183-187 (1993).
- [5.20] G. Spiazzi and F. C. Lee, "Implementation of Single-Phase Boost Power Factor Correction Circuits in Three-Phase Applications," Proc. of the IEEE IECON'94, pp. 250-255 (1994).
- [5.20] B. Singh, B.N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, D.P. Kothari, "A review of three-phase improved power quality AC-DC converters," Industrial Electronics, IEEE Transactions on , vol.51, no.3, pp. 641- 660, June 2004.
- [5.21] J.W. Kolar, H. Ertl, "Status of the techniques of three-phase rectifier systems with low effects on the mains," Proc. of the 21st Internat. *Telecom. Energy Conf. (INTELEC '99),* pp.16 pp., Jun 1999.

Direct Active Three-Phase PFC Rectifier Systems (Three-Level CCM Boost-Type) (1)

- [6.1] E.L.M. Mehl and I. Barbi, "Design Oriented Analysis of a High Power Factor and Low Cost Three-Phase Rectifier," Proc. of the 27th IEEE Power Electron. Specialists Conf., Baveno, Italy, June 23-27, Vol. I, pp. 165-170 (1996).
- [6.2] F. Daniel, R. Chaffai, and K. Al-Haddad, "Three-Phase Diode Rectifier with Low Harmonic Distortion to Feed Capacitive Loads," Proc. of the 11th IEEE Appl. Power Electron. Conf., San Jose, USA, March 3-7, Vol. 2, pp. 932-938 (1996).
- [6.3] F. Daniel, R. Chaffai, K. Al-Haddad, and R. Parimelalagan, "A New Modulation Technique for Reducing the Input Current Harmonics of a Three-Phase Diode Rectifier with Capacitive Load," IEEE Transactions on Industry Applications, Vol. 33, No. 5, pp. 1185-1193 (1997).
- [6.4] K. Oguchi, T. Yoshizawa, N. Hośhi, and T. Kubota, "Programmed Pulse Width Modulation of Three-Phase Three-Level Diode Rectifiers," Proc. of the 9th Internat. Conf. on Power Electron. and Motion Control, Kosice, Slovak Republic, Sept. 5-7, Vol. 3, pp. 102-107 (2000).
- [6.5] Y. Zhao, Y. Li, and T.A. Lipo, "Force Commutated Three-Level Boost Type Rectifier," Record of the IEEE Industry Appl. Society Annual Meeting, Toronto, Canada, Vol. II, pp. 771-777 (1993).
- [6.6] J.W. Kolar and F.C. Zach, "A Novel Three-Phase Three-Switch Three-Level Unity Power Factor PWM Rectifier," Proc. of the 28th Internat. Power Conv. Conf., Nürnberg, 28. bis 30. Juni, S. 125 138 (1994).
- [6.7] J.W. Kolar and F.C. Zach, "A Novel Three-Phase Utility Interface Minimizing Line Current Harmonics of High-Power Telecommunications Rectifier Modules," Proc. of the 16th IEEE Internat. Telecom. Energy Conf., Vancouver, Canada, Oct. 30-Nov. 3, pp. 367 - 374 (1994).
- [6.8] J.W. Kolar, U. Drofenik, and F.C. Zach, "Space Vector Based Analysis of the Variation and Control of the Neutral Point Potential of Hysteresis Current Controlled Three-Phase/Switch/Level PWM Rectifier Systems," Proc. of the Internat. Conf. on Power Electronics and Drive Systems, Singapore, Feb. 21-24, Vol. 1, pp. 22 33 (1995).
- [6.9] J.W. Kolar, U. Drofenik, and F.C. Zach, "Current Handling Capability of the Neutral Point of a Three-Phase/Switch/Level Boost-Type PWM (VIENNA) Rectifier," Proc. of the 28th IEEE Power Electronics Conf., Baveno, Italy, June 24-27, Vol. II, pp. 1329 1336 (1996).
- [6.10] J.W. Kolar, U. Drofenik and F.C. Zach, "On the Interdependence of AC-Side and DC-Side Optimum Control of Three-Phase Neutral-Point-Clamped (Three-Level) PWM Rectifier Systems," Invited Paper, Proceedings of the 7th Internat. Power Electronics and Motion Control Conf., Budapest, Hungary, Sept. 2-4, Vol. 1, pp. 40 49 (1996).
- [6.11] J.W. Kolar, H. Sree, U. Drofenik, N. Mohan, and F.C. Zach, "A Novel Three-Phase Three-Switch Three-Level High Power Factor SEPIC-Type AC-to-DC Converter," Proc. of the 12th IEEE Appl. Power Electron. Conf., Atlanta, Feb. 23-27, Vol. 2, pp. 657 665 (1997).

Direct Active Three-Phase PFC Rectifier Systems (Three-Level CCM Boost-Type) (2)

- [6.12] U. Drofenik, R. Windauer, J.W. Kolar, E. Masada, and F.C. Zach, "Analysis and Comparison of Different Input Current Control Schemes for a Three-Phase/Switch/Level Boost-Type (VIENNA) Rectifier," Proc. of the 1st Internat. Congress on Energy, Power & Motion Control, Tel Aviv, Israel, May 5-6, pp. 35 - 41 (1997).
- [6.13] J.W. Kolar and U. Drofenik, "A New Switching Loss Reduced Discontinuous PWM Scheme for a Unidirectional Three-Phase/Switch/Level Boost-Type PWM (VIENNA) Rectifier," Proc. of the 21st IEEE Internat. Telecom. Energy Conf., Copenhagen, Denmark, June 6-9, Paper No. 29-2 (1999).
- [6.14] U. Drofenik, and J.W. Kolar, "Comparison of Not Synchronized Sawtooth Carrier and Synchronized Triangular Carrier Phase Current Control for the VIENNA Rectifier I," Record of the IEEE Internat. Symp. on Industr. Electronics, Bled, Slovenia, June 12-16, Vol. 1, pp. 13 - 19 (1999).
- [6.15] U. Drofenik and J.W. Kolar, "Influence of the Current-Dependency of the Inductance of the Input Inductors of Three-Phase PWM Rectifier Systems on the Modulation Scheme being Optimal Concerning the Mains Current Ripple RMS Value," Proc. of the International Power Electronics Conference, Tokyo, April 3-7, Vol. 2, pp. 1017 - 1022 (2000).
- [6.16] J.W. Kolar, F. Stögerer, J. Miniböck, and H. Ertl, "A Novel Concept for Reconstruction of the Input Phase Currents of a Three-Phase/Switch/Level PWM (VIENNA) Rectifier Based on Neutral Point Current Measurement," Proc. of the 31st IEEE Power Electronics Specialists Conf., Galway, Ireland, June 18-23, pp. 139 146 (2000).
- [6.17] J. Miniböck, F. Stögerer and J.W. Kolar, "A Novel Concept for Main's Voltage Proportional Input Current Shaping of a CCM Three-Phase PWM Rectifier Eliminating Controller Multipliers I. Basic Theoretical Considerations and Experimental Verification, "Proc. of the 16th Annual IEEE Appl. Power Electronics Conf. and Exp. (APEC 2001), Vol.1, pp.582-586 vol.1, 2001.
- [6.18] J. Miniböck, and J.W. Kolar, "Comparative Theoretical and Experimental Evaluation of Bridge Leg Topologies of a Three-Phase/Switch/Level PWM (VIENNA) Rectifier," Proc. of the 32nd Annual Power Electronics Specialists Conference, (PESC. 2001) Vol.3, no., pp.1641-1646 vol. 3, 2001.
- [6.19] F. Stógerer, J. Minibock, J.W. Kolar, "Implementation of a Novel Control Concept for Reliable Operation of a VIENNA Rectifier Under Heavily Unbalanced Mains Voltage Conditions," 32nd Annual Power Electronics Specialists Conference, (PESC. 2001), Vol.3, pp.1333-1338, 2001.
- [6.20] C. Qiao, and K.M. Smedley, "Three-Phase Unity-Power-Factor VIENNA Rectifier with Unified Constant Frequency Integration Control," Proc. of the IEEE Internat. Power Electronics Congress, Acapulco, Mexico, Oct. 15-19, pp. 125-130 (2000).
- [6.21] C. Qiao, and K.M. Smedley, "A General Three-Phase PFC Controller Part II. for Rectifiers with Series-Connected Dual-Boost Topology," Record of the 34th IEEE Industry Applications Society Annual Meeting, Phoenix, USA, Oct. 3-7, Vol. 4, pp. 2512-2519 (1999).

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Direct Active Three-Phase PFC Rectifier Systems (Three-Level CCM Boost-Type) (3)

- [6.22] M.L. Heldwein, S.A. Mussa, I. Barbi, "Three-Phase Multilevel PWM Rectifiers Based on Conventional Bidirectional Converters," IEEE Transactions on Power Electronics, Vol.25, No.3, pp.545-549, March 2010.
- [6.23] P. Ide, N. Froehleke, and H. Grotstollen, "Comparison of Selected 3-Phase Switched Mode Rectifiers," Proc. of the 19th IEEE Internat. Telecom. Energy Conf., Melbourne, Australia, Oct. 19-23, pp. 630-636 (1997).
- [6.24] P. Ide, N. Froehleke, N. and H. Grotstollen, "Investigation of Low Cost Control Schemes for a Selected 3-Level Switched Mode Rectifier," Proc. of the 19th IEEE Internat. Telecom. Energy Conference, Melbourne, Australia, Oct. 19-23, pp. 413-418 (1997).
- [6.25] P. Ide, N. Froehleke, H. Grotstollen, W. Korb, and B. Margaritis, "Analysis of Three-Phase/Three-Level Rectifiers at Low Load and Discontinuous Conduction Mode," Proc. of the IEEE Applied Power Electronics Conf., New Orleans, USA, Feb. 6-10, Vol. 1, pp. 197-204 (2000).
- [6.26] P. Ide, N. Froehleke, H. Grotstollen, W. Korb, and B. Margaritis, "Operation of a Three-Phase/Three-Level Rectifier in Wide Range and Single-Phase Applications," Proc. of the 25th Annual Conf. of the Industrial Electronics Society (IECON), San Jose, USA, Nov. 29 - Dec. 3, pp. 577-582 (1999).
- [6.27] W. Koczara, and P. Bialoskorski, "Multilevel Boost Rectifiers as a Unity Power Factor Supply for Power Electronics Drive and for Battery Charger," Proc. of the IEEE Internat. Symp. on Industrial Electronics, Budapest, Hungary, June 1-3, pp. 477-481 (1993).
- [6.28] M.S. Dawande, V.R. Kanetkar, and G.K. Dubey, "Three-Phase Switch Mode Rectifier with Hysteresis Current Control," IEEE Transactions on Power Electronics, Vol. 11, No. 3, pp. 466-471 (1996).
- [6.29] M. Milanovic and F. Mihalic, "Analysis of Switching Power Converter by Using a Switching Matrix Approach," Proc. of the 22nd IEEE Internat. Conf. on Industrial Electronics, Control and Instrumentation, Vol. 3, pp. 1770-1775 (1996).
- [6.30] J.C. Salmon, "Reliable 3-phase PWM Boost Rectifiers Employing a Series-Connected Dual Boost Converter Sub-Topology," Record of the 29th IEEE Industry Applications Society Annual Meeting, Denver, USA, Oct. 2-6, Vol. II, pp. 781-788 (1994).
- [6.31] J.C. Salmon, "*Circuit Topologies for PWM Boost Rectifiers Operated from 1-Phase and 3-Phase AC Supplies and Using Either Single or Split DC Rail Output Voltages*," Proc. of the 10th IEEE Applied Power Electronics Conference, Dallas, USA, March 5-9, Vol. 1, pp. 473-479 (1995).
- [6.32] J.C. Salmon, "A 3-Phase Buck-Boost Converter for Lowering the Input Current Distortion of a Voltage Source Inverter Drive," Record of the 30th IEEE Industry Applications Society Annual Meeting, Orlando, USA, Oct. 2-6, Vol. 3, pp. 2475-2482 (1995)

Direct Active Three-Phase PFC Rectifier Systems (Three-Level CCM Boost-Type) (4)

- [6.33] R. Burgos, Rixin Lai, Yunqing Pei, F. Wang, D. Boroyevich, J. Pou, "Space Vector Modulator for Vienna-Type Rectifiers Based on the Equivalence Between Two- and Three-Level Converters: A Carrier-Based Implementation," IEEE Transactions on Power Electronics, Vol.23, No.4, pp.1888-1898, July 2008.
- [6.34] Rixin Lai, F. Wang, R. Burgos, D. Boroyevich, Dong Jiang, Di Zhang, "Average Modeling and Control Design for VIENNA-Type Rectifiers Considering the DC-Link Voltage Balance," IEEE Transactions on Power Electronics, Vol.24, No.11, pp.2509-2522, Nov. 2009.
- [6.35] Rixin Lai, et. al, "A Systematic Topology Evaluation Methodology for High-Density Three-Phase PWM AC-AC Converters," IEEE Transactions on Power Electronics, Vol.23, No.6, pp.2665-2680, Nov. 2008.
- [6.36] P. Ide, F. Schafmeister, N. Frohleke, H. Grotstollen, "Enhanced Control Scheme for Three-Phase Three-Level Rectifiers at Partial Load," IEEE Transactions on Industrial Electronics, Vol.52, No.3, pp. 719-726, June 2005.
- [6.37] L. Dalessandro, S.D. Round, U. Drofenik, J.W. Kolar, "Discontinuous Space-Vector Modulation for Three-Level PWM Rectifiers, " IEEE Transactions on Power Electronics, Vol.23, No.2, pp.530-542, March 2008.
- [6.38] L. Dalessandro, S.D. Round, and Kolar, J.W "Center-Point Voltage Balancing of Hysteresis Current Controlled Three-Level *PWM Rectifiers,* " IEEE Transactions on *Power Electronics,* Vol.23, No.5, pp.2477-2488, Sept. 2008.
- [6.39] S.D. Round, P. Karutz, M.L. Heldwein, J.W. Kolar, "Towards a 30 kW/liter, Three-PhaseUnity Power Factor Rectifier," Proc. of the 4th Power Conversion Conf.(PCC'07), Nagoya, Japan, April 2 - 5, CD-ROM, ISBN: 1-4244-0844-X, (2007).
- [6.40] J.W. Kolar, U. Drofenik, J. Minibock, H. Ertl, "A New Concept for Minimizing High-Frequency Common-Mode EMI of Three-Phase PWM Rectifier Systems Keeping High Utilization of the Output Voltage," 15th Annual IEEE Appl. Power Electronics Conf. and Exp., (APEC 2000), Vol.1, no., pp.519-527 vol.1, 2000.
- [6.41] G. Gong, M.L.Heldwein, U. Drofenik, J. Minibock, K. Mino, J.W. Kolar, "Comparative Evaluation of Three-Phase High-Power-Factor AC-DC Converter Concepts for Application in Future More Electric Aircraft," IEEE Transaction on Industrial Electronics, Vol.52, No.3, pp. 727-737, June 2005.
- [6.42] M.L. Heldwein, J.W. Kolar, "Impact of EMC Filters on the Power Density of Modern Three-Phase PWM Converters," IEEE Transactions on Power Electronics, Vol.24, No.6, pp.1577-1588, June 2009.
- [6.43] M.L. Heldwein, S.A. Mussa, and I. Barbi, "Three-Phase Milti-Level PWM Rectifiers Based on Conventional Bidirectional Converters," IEEE Trans. On Power Electr., Vol. 25, No. 3, pp. 545–549, 2010.
- [6.44] J. Alahuhtala, J. Virtakoivu, T. Viitanen, M. Routimo, H. Tuusa, "Space Vector Modulated and Vector Controlled Vienna I Rectifier with Active Filter Function," Proc. of the Power Conv. Conf. - Nagoya, (PCC '07), 2-5 April 2007, pp.62-68.
- [6.45] J. Alahuhtala, H. Tuusa, "Four-Wire Unidirectional Three-Phase/Level/Switch (VIENNA) Rectifier," Proc. of the 32nd Ann. Conf. on IEEE Industrial Electronics (IECON 2006), 6-10 Nov. 2006, pp.2420-2425.

Direct Active Three-Phase PFC Rectifier Systems (Design Considerations)

- [6.46] J.W. Kolar, H. Ertl, and F.C. Zach, "Calculation of the Passive and Active Component Stress of Three-Phase PWM Converter Systems with High Pulse Rate," Proc. of the 3rd European Conf. on Power Electronics and Applications, Aachen, Germany, Oct. 9-12, Vol. 3, pp. 1303 1311 (1989).
- [6.47] J.W. Kolar, H. Ertl, and F.C. Zach, "Design and Experimental Investigation of a Three-Phase High Power Density High Efficiency Unity Power Factor PWM (VIENNA) Rectifier Employing a Novel Power Semiconductor Module," Proc. of the 11th IEEE Appl. Power Electronics Conf., San Jose, USA, March 3-7, Vol. 2, pp. 514 - 523 (1996).
- [6.48] J.W. Kolar, T.M. Wolbank, and M. Schrödl, "Analytical Calculation of the RMS Current Stress on the DC Link Capacitor of Voltage DC Link PWM Converter Systems," Proc. of the 9th Internat. Conf. on Electrical Machines and Drives, Canterbury, Sept. 1-3, pp. 81 89 (1999).
- [6.49] M. Hartmann, H. Ertl, J.W. Kolar, "EMI Filter Design for a 1 MHz, 10 kW Three-Phase/Level PWM Rectifier," To be published in the IEEE Transactions on Power Electronics.
- [6.50] M. Hartmann, S.D. Round, H. Ertl, J.W. Kolar, "Digital Current Controller for a 1 MHz, 10 kW Three-Phase VIENNA Rectifier," IEEE Transactions on Power Electronics, Vol.24, No.11, pp.2496-2508, Nov. 2009.
- [6.51] M. Hartmann, J.W. Kolar, "Analysis of the Trade-Off Between Input Current Quality and Efficiency of High Switching Frequency PWM Rectifiers," 2010 International Power Electronics Conference (IPEC), pp.534-541, 21-24 June 2010.
- [6.52] J. Minibock, J.W. Kolar, "Wide Input Voltage Range High Power Density High Efficiency 10 kW Three-Phase Three-Level Unity Power Factor PWM Rectifier," Proc. of the Power Electron. Spec. Conf. (PESC2002), Vol.4, pp. 1642- 1648, 2002.
- [6.53] P. Karutz, P. S.D. Round, M.L. Heldwein, J.W. Kolar, "Ultra Compact Three-phase PWM Rectifier," 22nd Annual IEEE Appl. Power Electron. Conf., (APEC 2007), pp.816-822, 2007.

Unidirectional Buck-Type PFC Rectifier Systems

- [7.1] L. Malesani and P. Tenti, "Three-Phase AC/DC PWM Converter with Sinusoidal AC Currents and Minimum Filter Requirements", IEEE Trans. Ind. Appl., vol. 23, no. 1, pp. 71–77, 1987.
- [7.2] J.W. Kolar and F.C. Zach, "A Novel Three-Phase Three Switch Three-Level Unity Power Factor Rectifier", in Proc. 28th International Power Conversion Conference, pp. 125–138, 1994.
- [7.3] S. Hiti, V. Vlatkovic, D. Borojevic, and F. C. Lee, "A New Control Algorithm for Three-Phase PWM Buck Rectifier with Input Displacement Factor Compensation", IEEE Trans. Power Electron., vol. 9, no. 2, pp. 173–180, Mar. 1994.
- [7.4] Y. Jang Y and R.W. Erickson, "New Single-Switch Three-Phase High-Power-Factor Rectifiers using Multi-Resonant Zero-Current Switching," IEEE Transactions on Power Electronics, Vol. 13, No. 1, pp. 194-201, 1998.
- [7.5] D. F. Wang and S. Yuvarajan, "Resonant boost input three-phase power factor corrector," APEC'98, pp. 958-962, 1998.
- [7.6] M. Baumann and J.W. Kolar, "Comparative Evaluation of Modulation Schemes for a Three-Phase Buck+Boost Power Factor Corrector Concerning the Input Capacitor Voltage Ripple," IEEE Power Electronics Specialists Conference, Vancouver, Canada, June 17-22, 2001.
- [7.7] M. Baumann, F. Stögerer, J.W. Kolar, and A. Lindemann, "Design of a Novel Multi-Chip Power Module for a Three- Phase Buck+Boost Unity Power Factor Utility Interface Supplying the Variable Voltage DC Link of a Square-Wave Inverter Drive," Proceedings of the Applied Power Electronics Conference, Anaheim, March 4-8, 2001.
- [7.8] M. Baumann, U. Drofenik, and J.W. Kolar, "New Wide Input Voltage Range Three-phase Unity Power Rectifier Formed by Integration of a Three-Switch Buck-Derived Front-End and a DC/DC Boost Converter Output Stage", in Proc. 22th European Power Quality Conference, pp. 461–470, 2001.
- [7.9] T. Nussbaumer, M.L. Heldwein, and J.W. Kolar, "Differential Mode EMC Input Filter Design for a Three-Phase Buck-Type Unity Power Factor PWM Rectifier", in Proc. 4th International Power Electronics and Motion Control Conference IPEMC 2004, pp. 1521–1526, 2004.
- [7.10] T. Nussbaumer, M. Baumann, and J.W. Kolar, "Comprehensive Design of Three-Phase Three-Switch Buck-Type PWM Rectifier", IEEE Trans. Power Electron., vol. 22, no. 2, pp. 551–562, Mar. 2007.
- [7.11] T. Callaway, J. Cass, R. Burgos, F. Wang, D. Boroyevich, "Three-Phase AC Buck Rectifier using Normally-On SiC JFETs at a 150 kHz Switching Frequency", in Proc. 38th IEEE Power Electronics Specialists Conference PESC 2007, pp. 2162–2167, 2007.
- [7.12] A. Stupar, T. Friedli, J. Miniböck, and J.W. Kolar, "Towards a 99% Efficient Three-Phase Buck-Type PFC Rectifier for 400 V DC Distribution Systems", to be published at APEC 2011.

Bidirectional Boost-Type PFC Rectifier Systems (1)

- [8.1] A. Nabae, I. Takahashi, and H. Akagi, "A New Neutral-Point-Clamped PWM Inverter", IEEE Trans. Ind. Appl. vol. 17, no. 5, Sept./Oct. 1981.
- [8.2] B. Fuld, "Aufwandsarmer Thyristor-Dreistufen-Wechselrichter mit geringen Verlusten", in etzArchiv, vol. 11, pp. 261–264, VDE Verlag, Berlin, Germany, 1989.
- [8.3] J.S. Lai and F.Z. Peng, "Multilevel converters A New Breed of Power Converters," IEEE Trans. Ind. Appl., vol. 32, pp. 509–517, May/June 1996.
- [8.4] S. Fukuda and Y. Matsumoto, "Optimal Regulator Based Control of NPC Boost Rectifiers for Unity Power Factor and Reduced Neutral Point Potential Variations", in Proc. Annual Meeting of the IEEE Industry Application Society IAS 1997, pp. 1455–1462, 1997.
- [8.5] B. Kaku, I. Miyashita, and S. Sone, "Switching Loss Minimized Space Vector PWM Method for IGBT Three-Level Inverter", IEE Proc. of Electric Power Applications, vol. 144, pp. 182–190, May 1997.
- [8.6] N. Celanovic and D. Boroyevich, "A Comprehensive Study of Neutral-Point Voltage Balancing Problem in Three-Level Neutral-Point Clamped Voltage Source PWM Inverters", IEEE Trans. Power Electron., vol. 15, pp. 242–249, Mar. 2000.
- [8.7] T. Brückner and S. Bernet, "Loss Balancing in Three-Level Voltage Source Inverters Applying Active NPC Switches", in Proc. 21st IEEE Power Electronics Specialists Conference, PESC 2001, pp. 1135–1140, 2001.
- [8.8] J. Pou, D. Boroyevich, and R. Pindado, "New Feedforward Space-Vector PWM Method to Obtain Balanced AC Output Voltages in a Three-Level Neutral-Point-Clamped Converter", IEEE Trans. on Ind. Electron., vol. 49, no. 5, pp. 102–1034, Oct. 2002.
- [8.9] P. Barbosa, P. Steimer, J. Steinke, M. Winkelnkemper, and N. Celanovic, "Active-Neutral-Point-Clamped (ANPC) Multilevel Converter Technology", in Proc. European Power Electronics and Applications Conference EPE 2005, pp. 1-10, 2005.
- [8.10] R. Teichmann and S. Bernet, "A Comparison of Three-Level Converters versus Two-Level Converters for Low-Voltage Drives, Traction and Utility Applications", IEEE Trans. Ind. Appl., vol. 41, pp. 855–865, May/June 2005.

APEIC 2011

Bidirectional Boost-Type PFC Rectifier Systems (2)

- [8.11] B.P. McGrath, T. Meynard, G. Gateau, D.G. Holmes, "Optimal Modulation of Flying Capacitor and Stacked Multicell Converters Using a State Machine Decoder", IEEE Trans. Power Electron., vol. 22, no. 2, p. 508–516, Mar. 2007.
- [8.12] J. Ewanchuk, J. Salmon, and A.M. Knight, "Performance of a High-Speed Motor Drive System Using a Novel Multilevel Inverter Topology", IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1706–1714, Sept/Oct. 2009.
- [8.13] M. Schweizer, T. Friedli, and J.W. Kolar, "Comparison and Implementation of a 3-level NPC Voltage Link Backto-Back Converter with SiC and Si Diodes", in Proc. of 25th IEEE Applied Power Electronics Conf. and Exposition APEC 2010, pp. 1527–1530, 2010.
- [8.14] M. Schweizer, I. Lizama, T. Friedli, and J.W. Kolar, "Comparison of the Chip Area Usage of 2-Level and 3-Level Voltage Source Converter Topologies", in Proc. 36th IEEE Industrial Electronics Conference IECON 2010, pp. 391–396, 2010.

Bidirectional Buck- and Buck-Boost Type PFC Rectifier Systems

- [8.15] T. Kataoka, K. Mizumachi, and S. Miyairi, "A Pulsewidth Controlled AC-to DC Converter to Improve Power Factor and Waveform of AC Line Current", IEEE Trans. Ind. Appl., vol. 15, pp. 670–675, Nov./Dec. 1979.
- [8.16] M. Hombu, S. Úeda, and A. Ueda, "A Current Source GTO Inverter with Sinusoidal Inputs and Outputs," Record of the IEEE Industry Applications Society Annual Meeting, pp. 1033–1039, 1985.
- [8.17] H. Inaba, S. Shima, A. Ueda, T. Ando, T. Kurosawa, and Y. Sakai, "A New Speed Control System for DC Motors using GTO Converter and Its Applications to Elevators", IEEE Trans. Ind. Appl., vol. IA-21, pp. 391–397, Mar./Apr. 1985.
- [8.18] G. Ledwich, "Current Source Inverter Modulation," IEEE Transactions on Power Electronics, Vol. 6, No. 4, pp. 618-623, 1991.
- [8.19] D. Ciscato, L. Malesani, L. Rossetto, P. Tenti, G. L. Basile, M. Pasti, and F. Voelker, "PWM Rectifier with Low DC Voltage Ripple for Magnet Supply", IEEE Trans. Ind. Appl., vol. 28, pp. 414–420, Mar./Apr. 1992.
- [8.20] G. Joos and J. Espinoza, "PWM Control Techniques in Current Source Rectifiers", in Proc. IEEE Industrial Electronics Conference IECON 1993, pp. 1210–1214, 1993.
- [8.21] R. Zargari and G. Joos, "A Current-Controlled Current Source Type Unity Power Factor PWM Rectifier", in Proc. 4th Annual Meeting of the IEEE Industry Application Society IAS 1993, pp. 793–799, 1993.
- [8.22] T.C. Green, M.H. Taha, N.A. Rahim, and B.W. Williams, "Three-Phase Step-Down Reversible AC-DC Power Converter", IEEE Trans. Power Electron., vol. 12, pp. 319–324, Mar. 1997.

Coffee Break !

Part 2 _____

_

Three-Phase AC-AC PWM Converter Systems

Outline

Basics of AC/DC/AC Converter Systems

Voltage DC-Link (V-BBC)
 Current DC-Link (I-BBC)

Derivation/Analysis of AC/AC MC Topologies

Indirect Matrix Converter (IMC)

Conv. Matrix Converter (CMC)

Comparative Evaluation

► V-BBC vs. CMC/IMC

Classification of Three-Phase AC-AC Converters

- Hybrid Converters
 Indirect / Direct Matrix Converters

169/268

DC-Link AC-AC Converter Topologies

APEC 2011 -

Symmetric Three-Phase Mains

Phase Voltages
$$u_a = \hat{U}_1 \cos(\omega_1 t)$$
Phase Currents $i_a = \hat{I}_1 \cos(\omega_1 t - \Phi_1)$ $u_b = \hat{U}_1 \cos\left(\omega_1\left(t - \frac{T}{3}\right)\right)$ $i_b = \hat{I}_1 \cos\left(\omega_1\left(t - \frac{T}{3}\right) - \Phi_1\right)$ $u_c = \hat{U}_1 \cos\left(\omega_1\left(t + \frac{T}{3}\right)\right)$ $i_c = \hat{I}_1 \cos\left(\omega_1\left(t + \frac{T}{3}\right) - \Phi_1\right)$

Instantaneous Power

$$p(t) = u_a i_a + u_b i_b + u_c i_c = \frac{P}{3} \left(1 + \cos 2\omega_1 t\right) + \frac{Q}{3} \sin 2\omega_1 t$$

$$+ \frac{P}{3} \left(1 + \cos 2\omega_1 \left(t - \frac{T}{3}\right)\right) + \frac{Q}{3} \sin 2\omega_1 \left(t - \frac{T}{3}\right)$$

$$+ \frac{P}{3} \left(1 + \cos 2\omega_1 \left(t + \frac{T}{3}\right)\right) + \frac{Q}{3} \sin 2\omega_1 \left(t + \frac{T}{3}\right)$$

$$P = \frac{3}{2}\hat{U}_{1} \cdot \hat{I}_{1}\cos\Phi_{1} \qquad \qquad p(t) = \frac{P}{3}\left(1 + \cos 2\omega_{1}t\right) + \frac{P}{3}\left(1 + \cos 2\omega_{1}\left(t - \frac{T}{3}\right)\right) \\ Q = \frac{3}{2}\hat{U}_{1} \cdot \hat{I}_{1}\sin\Phi_{1} \qquad \qquad + \frac{P}{3}\left(1 + \cos 2\omega_{1}\left(t + \frac{T}{3}\right)\right) = \frac{3\frac{P}{3}}{3} = P$$

All-SiC JFET I-BBC Prototype

172/268

Basic Matrix Converter Topologies

V-BBC

Voltage Space Vectors — Modulation — DC-Link Current

VSI Space Vector Modulation (1)

iA u2

OC.

 \mathbf{B}

12

$$\vec{u}_{2,j} = \frac{2}{3} \left(u_{A,j} + \underline{a} u_{B,j} + \underline{a}^2 u_{C,j} \right)$$
$$u_{0,j} = \frac{1}{3} \left(u_{A,j} + u_{B,j} + u_{C,j} \right)$$

Output Voltage Reference Value

 $\vec{u}_{2}^{*} = \hat{U}_{2}^{*} \mathrm{e}^{j\varphi_{\vec{u}_{2}^{*}}} = \hat{U}_{2}^{*} \mathrm{e}^{j\omega_{2}^{*}t}$

SB

n O-

u = U

po

VSI Space Vector Modulation (2)

Switching State Sequence

Formation of the Output Voltage

APEC 2011

VSI Space Vector Modulation (3)

Freewheeling On-time

$$d_{(nnn)} + d_{(ppp)} = 1 - (d_{(ppn)} + d_{(pnn)})$$

Discontinuous Modulation

VSI Space Vector Modulation (4)

DC-Link Current Shape

$$i_{(nnn)} = 0$$

$$i_{(nnp)} = i_{C}$$

$$i_{(npn)} = i_{B}$$

$$i_{(npp)} = i_{B} + i_{C} = -i_{A}$$

$$i_{(pnn)} = i_{A}$$

$$i_{(pnp)} = i_{A} + i_{C} = -i_{B}$$

$$i_{(ppn)} = i_{A} + i_{B} = -i_{C}$$

$$i_{(ppp)} = 0$$

Local Average Value

$$\bar{i} = \frac{1}{T_P} \int_0^{T_P} i_j \, \mathrm{d}t_\mu$$
$$\bar{i} = -i_C d_{(ppn)} + i_A d_{(pnn)}$$

VSI Space Vector Modulation (5)

Local DC-Link Current Shape

179/268

VSI DC-Link Current Waveform

VSI Functional Equivalent Circuit

I-BBC

Current Space Vectors Modulation – DC Link Voltage

CSR Commutation & Equivalent Circuit

Forced Commutation

i = I D_{ap} D_{bp} u_{ab} u_{ab} S_{ap} S_{bp} u_{ab}

- p

Natural Commutation

Equivalent Circuit

- 3² = 9 Switching States
- Overlapping Switching

CSR Space Vector Modulation (1)

$$\vec{i}_k = \frac{2}{3} \left(i_{a,k} + \underline{a} \, i_{b,k} + \underline{a}^2 \, i_{c,k} \right) \qquad \underline{a} = e^{j2\pi/3}$$

Input Current Reference Value

$$\vec{i_1^*} = \hat{I}_1^* e^{j\varphi_{\vec{i_1}^*}} = \hat{I}_1^* e^{j(\omega_1 t - \Phi_1^*)}$$

a)

CSR Space Vector Modulation (2)

Power Electronic Systems Laboratory

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Formation of the Input Current

$$|\vec{i}_{1,k}| = i_{1,k} = 2/\sqrt{3} \cdot I \qquad \qquad \vec{i}_1 = \frac{1}{T_P} \int_0^{T_P} \vec{i}_{1,k} \, \mathrm{d}t_\mu = \underline{d_{(ac)}} \cdot \vec{i}_{1,(ac)} + d_{(ab)} \cdot \vec{i}_{1,(ab)} = \vec{i}_1^*$$

Relative On-times

$$d_{(ac)} = M_1 \sin\left(\frac{\pi}{6} + \varphi_{\vec{i}_1}\right)$$
$$d_{(ab)} = M_1 \sin\left(\frac{\pi}{6} - \varphi_{\vec{i}_1}\right)$$

$$d_{(aa)} = 1 - (d_{(ac)} + d_{(ab)})$$

Space Vector Orientation

$$\frac{d_{(ac)}}{d_{(ab)}} = \frac{\sin\left(\frac{\pi}{6} + \varphi_{\vec{i}_1}\right)}{\sin\left(\frac{\pi}{6} - \varphi_{\vec{i}_1}\right)}$$

CSR Space Vector Modulation (3)

DC-Link Voltage Formation

APEC 20

$$u_{(ab)} = u_{a} - u_{b} = u_{ab}$$

$$u_{(ba)} = u_{b} - u_{a} = u_{ba} = -u_{ab}$$

$$u_{(bc)} = u_{b} - u_{c} = u_{bc}$$

$$u_{(cb)} = u_{c} - u_{b} = u_{cb} = -u_{bc}$$

$$u_{(ca)} = u_{c} - u_{a} = u_{ca}$$

$$u_{(ac)} = u_{a} - u_{c} = u_{ac} = -u_{ca}$$

$$u_{(aa)} = u_{(bb)} = u_{(cc)} = 0$$

 $u_k = \sqrt{3} \cdot u_{1,k} \qquad \bar{u} = u_{ab} d_{(ab)} + u_{ac} d_{(ac)}$

CSR Space Vector Modulation (4)

Local DC-Link Voltage Shape

Power Electronic Systems Laboratory

CSR DC-Link Voltage Waveform

Influence of Input Current Phase Displacement a) Φ_1 on DC-Link Voltage Waveform u

0

u

uac

11,(ab)

uac

(uab

ubc

 $\frac{\pi}{3}$

 $\frac{\pi}{3}$

 $M_1 = \frac{\hat{I}_1^*}{I}$

 $\frac{2\pi}{3}$

 $\frac{2\pi}{3}$

u_{ab}

$\bar{u} = \frac{3}{2}M_1\hat{U}_1\cos\Phi_1^*$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

c

cb

APEC, 2011 —

CSR Functional Equivalent Circuit

Derivation of MC Topologies

<u>F</u>undamental <u>F</u>requency <u>F</u>ront <u>E</u>nd
 F³E

Classification of Three-Phase AC-AC Converters

Converter without DC-Link Capacitor

Power Electronic Systems Laboratory 191/268

APEC 2011

Indirect Matrix Converter – IMC

Space Vectors Modulation Simulation — Experimental Results ——

Classification of Three-Phase AC-AC Converters

Indirect Matrix Converter

APEC. 2011 —

IMC Properties

IMC Voltage and Current Space Vectors

IMC Space Vector Modulation (1)

APEC 2011

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

APEC 2011

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

APEC. 2011 —

APEC 2011

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

APEC 2011

IMC Zero DC-Link Current Commutation (6)

IMC Zero DC-Link Current Commutation (7)

Summary

- Simple and Robust Modulation Scheme Independent of Commutation Voltage Polarity or Current Flow Direction
- Negligible Rectifier Stage Switching Losses Due to Zero Current Commutation

IMC Space Vector Modulation Calculation

PWM Pattern is Specific for each Combination of Input Current and Output Voltage Sectors

Freewheeling Limited to Output Stage	$d_{(ab)} + d_{(ac)} = 1$
Input Current Formation	$\overline{i}_a = (d_{(ab)} + d_{(ac)}) \ \overline{i} = \overline{i}$
	$\overline{i}_b = -d_{(ab)}\overline{i}$
	$\overline{i}_c = -d_{(ac)}\overline{i}$
Desired Input Current	$\bar{i}_a = \hat{I}_1 \cos \varphi_{\vec{i}_1}^*$
	$\bar{i}_b = \hat{I}_1 \cos\left(\varphi_{\vec{i}_1}^* - \frac{2\pi}{3}\right)$
	$\bar{i}_c = \hat{I}_1 \cos\left(\varphi_{\vec{i}_1}^* + \frac{2\pi}{3}\right)$
Resulting Rectifier Stage Relative On-Times	$d_{(ab)} = \frac{\sin\left(\frac{\pi}{6} - \varphi_{\vec{i}_1}^*\right)}{\cos\varphi_{\vec{i}_1}^*} \qquad d_{(ac)} = \frac{\sin\left(\frac{\pi}{6} + \varphi_{\vec{i}_1}^*\right)}{\cos\varphi_{\vec{i}_1}^*}$
Absolute On-Times	$\tau_{(ab)} = d_{(ab)} \frac{T_P}{2} \qquad \qquad \tau_{(ac)} = d_{(ac)} \frac{T_P}{2}$

EIGENTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **Power Electronic Systems** Laboratory

Mains Voltage

$$u_{a} = \hat{U}_{1} \cos\left(\varphi_{\vec{u}_{1}}\right)$$
$$u_{b} = \hat{U}_{1} \cos\left(\varphi_{\vec{u}_{1}} - \frac{2\pi}{3}\right)$$
$$u_{c} = \hat{U}_{1} \cos\left(\varphi_{\vec{u}_{1}} + \frac{2\pi}{3}\right)$$

Available DC Link Voltage Values

$$u_{(ab)} = u_{ab} = u_a - u_b = \sqrt{3} \cdot \hat{U}_1 \cos\left(\varphi_{\vec{u}_1} + \frac{\pi}{6}\right)$$
$$u_{(ac)} = u_{ac} = u_a - u_c = \sqrt{3} \cdot \hat{U}_1 \cos\left(\varphi_{\vec{u}_1} - \frac{\pi}{6}\right)$$

Select Identical Duty Cycles of Inverter Switching States (100), (110) in $\tau_{\rm ac}$ and $\tau_{\rm ab}$ for Maximum Modulation Range Switch Conducting the Largest Current is Clamped (over π/3-wide Interval)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich **Power Electronic Systems** Laboratory

Voltage Space Vectors Related to Active Inverter Switching States

 $\vec{u}_{2,(pnn)} = \frac{2}{3}u$ $\vec{u}_{2,(ppn)} = \frac{2}{3}u e^{j\pi/3}$

Output Voltage Formation

$$\begin{aligned} \bar{\vec{u}}_{2} &= \frac{2/3}{T_{P}/2} \Big(\delta_{(ac)(pnn)} \tau_{(ac)} u_{ac} + \delta_{(ab)(pnn)} \tau_{(ab)} u_{ab} \\ &+ \delta_{(ac)(ppn)} \tau_{(ac)} u_{ac} e^{j\pi/3} + \delta_{(ab)(ppn)} \tau_{(ab)} u_{ab} e^{j\pi/3} \Big) \\ &= \delta_{(pnn)} \frac{2}{3} \left(\frac{\tau_{(ac)}}{T_{P}/2} u_{ac} + \frac{\tau_{(ab)}}{T_{P}/2} u_{ab} \right) + \delta_{(ppn)} \frac{2}{3} \left(\frac{\tau_{(ac)}}{T_{P}/2} u_{ac} + \frac{\tau_{(ab)}}{T_{P}/2} u_{ab} \right) e^{j\pi/3} \\ &= \delta_{(pnn)} \frac{2}{3} \left(d_{(ac)} u_{ac} + d_{(ab)} u_{ab} \right) + \delta_{(ppn)} \frac{2}{3} \left(d_{(ac)} u_{ac} + d_{(ab)} u_{ab} \right) e^{j\pi/3} \end{aligned}$$

Local DC-link Voltage Average Value

 $\overline{u} = d_{(ac)}u_{ac} + d_{(ab)}u_{ab}$

$$\bar{\vec{u}}_2 = \delta_{(pnn)} \frac{2}{3} \overline{u} + \delta_{(ppn)} \frac{2}{3} \overline{u} e^{j\pi/3} \qquad \bar{\vec{u}}_2 = \vec{u}_2^*$$

Calculation of the Inverter Active Switching State On-Times can be directly based on \bar{u} !

Minimum of DC-Link Voltage Local Average Value

Resulting IMC Output Voltage Limit

$$\overline{u} = \frac{3}{2} \cdot \hat{U}_1 \frac{\cos\left(\varphi_{\vec{u}_1} - \varphi_{\vec{i}_1}^*\right)}{\cos\left(\varphi_{\vec{i}_1}^*\right)} = \frac{3}{2} \cdot \hat{U}_1 \frac{\cos\left(\Phi_1^*\right)}{\cos\left(\varphi_{\vec{i}_1}^*\right)}$$
$$\overline{u}_{\min} = \frac{3}{2} \hat{U}_1 \cos \Phi_1^*$$
$$\hat{U}_{2,\max}^* \le \frac{\sqrt{3}}{2} \cdot \hat{U}_1 \cos \Phi_1^*$$

Simulation of DC-Link Voltage and Current Time Behavior

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Resulting Inverter Stage Relative On-Times

$$\delta_{(ppn)} = \frac{\sqrt{3}}{2} \cdot \frac{\hat{U}_2^*}{\overline{u}/2} \sin\left(\varphi_{\vec{u}_2^*}\right)$$
$$\delta_{(pnn)} = \frac{\sqrt{3}}{2} \cdot \frac{\hat{U}_2^*}{\overline{u}/2} \cos\left(\varphi_{\vec{u}_2^*} + \frac{\pi}{6}\right)$$

Resulting Inverter Stage Absolute On-Times

$$\tau_{(ac)(pnn)} = \frac{1}{2} T_P d_{(ac)} \delta_{(pnn)} = \frac{1}{2} T_P \frac{2}{\sqrt{3}} \frac{\hat{U}_2^*}{\hat{U}_1} \frac{1}{\cos \Phi_1^*} \sin\left(\frac{\pi}{6} + \varphi_{\vec{i}_1}^*\right) \cos\left(\varphi_{\vec{u}_2^*} + \frac{\pi}{6}\right)$$
$$\tau_{(ac)(ppn)} = \frac{1}{2} T_P d_{(ac)} \delta_{(ppn)} = \frac{1}{2} T_P \frac{2}{\sqrt{3}} \frac{\hat{U}_2^*}{\hat{U}_1} \frac{1}{\cos \Phi_1^*} \sin\left(\frac{\pi}{6} + \varphi_{\vec{i}_1}^*\right) \sin\left(\varphi_{\vec{u}_2^*}\right)$$

DC-link Voltage Local Average Value

$$\overline{i}_{(ac)} = \frac{1}{\tau_{(ac)}} \left(i_A \delta_{(pnn)} \tau_{(ac)} - i_C \delta_{(ppn)} \tau_{(ac)} \right) = i_A \delta_{(pnn)} - i_C \delta_{(ppn)}$$
$$\overline{i}_{(ab)} = \frac{1}{\tau_{(ab)}} \left(i_A \delta_{(pnn)} \tau_{(ab)} - i_C \delta_{(ppn)} \tau_{(ab)} \right) = i_A \delta_{(pnn)} - i_C \delta_{(ppn)}$$

Equal DC-link Current Local Average Values for Inverter Active Switching States

Local Average Value of Input Current in *a*

Resulting Input Phase Current Amplitude

Power Balance of Input and Output Side

$$\overline{i} = \overline{i}_{(ac)} = \overline{i}_{(ab)} = \hat{I}_2 \frac{U_2^*}{\hat{U}_1} \frac{\cos \Phi_2}{\cos \Phi_1^*} \cos \varphi_1^*$$

$$\bar{i}_a = \bar{i} = \hat{I}_1 \cos \varphi^*_{\vec{i}_1}$$

 $\hat{I}_1 = \hat{I}_2 \frac{\hat{U}_2^*}{\hat{U}_1} \frac{\cos \Phi_2}{\cos \Phi_1^*}$

$$\overline{p} = P = \overline{u}\,\overline{i} = \frac{3}{2}\hat{U}_1\hat{I}_1\cos\Phi_1^* = \frac{3}{2}\hat{U}_2^*\hat{I}_2\cos\Phi_2$$

IMC Simulation Results

RB-IGBT IMC Experimental Results (1)

Efficiency 95%

RB-IGBT IMC Experimental Results (2)

 $U_{12} = 400V$ $P_{out} = 1.5 \text{ kW}$ $f_{out} = 120 \text{ Hz}$ $f_{S} = 12.5 \text{ kHz} / 25 \text{ kHz}$

Input Current

Output Current

DC Link Voltage

100 V/div 5A/div

APEC. 2011 —

Alternative Modulation Schemes

LV and Three-Level Medium Voltage Modulation

High Output Voltage Modulation (HVM)

$$\hat{U}_2 = 0 \dots \frac{\sqrt{3}}{2} \cdot \hat{U}_1$$

Low Output Voltage Modulation (LVM)

$$\hat{U}_2 = 0 \dots \frac{1}{2} \cdot \hat{U}_1$$

Three-Level Modulation

$$\hat{U}_2 = \frac{1}{2} \dots \frac{\sqrt{3}}{2} \cdot \hat{U}_1$$

Weighted Combination of HVM and LVM

APEC 2011

Conventional Matrix Converter - CMC

Modulation Multi-Step Commutation

Classification of Three-Phase AC-AC Converters

Conventional Matrix Converter

Conventional Matrix Converter – CMC

Quasi Three-Level Characteristic

CMC Classification of Switching States

Group I Freewheeling States	(aaa)	(bbb)	(ccc)	
Group II Generating Stationary Output Voltage and Input Current Space Vectors	(cca) (aac) (acc) (caa) (cac) (aca)	(ccb) (bbc) (bcc) (cbb) (cbc) (bcb)	(aab) (bba) (baa) (abb) (aba) (bab)	$\begin{cases} u_{AB} = 0 \\ u_{BC} = 0 \\ u_{CA} = 0 \end{cases}$
<i>Group III</i> Generating Rotating Space Vectors	(abc) (acb)	(cab) (cba)	(bca) (bac)	Positive Sequence Negative Sequence

CMC Stationary Space Vectors

Input Current Space Vectors

Output Voltage Space Vectors

Im, BC

uac

 $\begin{array}{c} u_{bc} \\ \overline{u}_{2,(cbc)} \\ \end{array}$

u_{2,(bab)} u_{ab}

 $\vec{u}_{2,(ccb)}$

u_{2,(bba)}

u_{2,(cca)}

 $\overrightarrow{u}_{2,(aac)}$

 $\vec{u}_{2,(bcc)}$ $\vec{u}_{2,(abb)}$ $\vec{u}_{2,(acc)}$

 $\vec{u}_{2,(aca)}$

AC

AB

 $\overline{u}_{2,(aab)}$

u_{2,(bcb)}

 $\overline{u}_{2,(aaa)}$

u_{2,(bbb)}

 $\overline{u}_{2,(ccc)}$

 $\overline{\overline{u}}_{2,(aba)}$

В

BA

CA

b)

 $\overrightarrow{u}_{2,(cac)}$

 $\overline{u}_{2,(caa)}$ $\overline{u}_{2,(baa)}$ $\overline{u}_{2,(cbb)}$

APEC, 2011 —

Re, A

CMC/IMC Relation (1)

Correspondence of Switching States

Indirect Space Vector Modulation

P. Ziogas [12] L. Huber / D. Borojevic

223/268 —

APEC. 2011 —

Power Electronic Systems Laboratory

> CMC Multi-Step Commutation

J. Oyama / T. Lipo N. Burany P. Wheeler W. Hofmann

Example: *u*-Dependent Commutation

Four-Step Commutation
 Two-Step Commutation

4-Step Commutation of CMC (1)

Example: *i***-Dependent Commutation**

Constraints

- No Short Circuit of Mains Phases
- No Interruption of Load Current

Assumption: i > 0, $u_{ab} < 0$, $aA \rightarrow bA$

4-Step Commutation of CMC (2)

1st Step: Off

Constraints

- No Short Circuit of Mains Phases
- No Interruption of Load Current

Assumption: i > 0, $u_{ab} < 0$, $aA \rightarrow bA$

4-Step Commutation of CMC (3)

1st Step: Off 2nd Step: On

Constraints

- No Short Circuit of Mains Phases
- No Interruption of Load Current

Assumption: i > 0, $u_{ab} < 0$, $aA \rightarrow bA$

4-Step Commutation of CMC (4)

1st Step: Off 2nd Step: On 3rd Step: Off

Constraints

- No Short Circuit of Mains Phases
- No Interruption of Load Current

Assumption: i > 0, $u_{ab} < 0$, $aA \rightarrow bA$

4-Step Commutation of CMC (5)

1stStep:Off2ndStep:On3rdStep:Off4thStep:On

Sequence Depends on Direction of Output Current !

Constraints

- No Short Circuit of Mains Phases
- No Interruption of Load Current

Assumption: i > 0, $u_{ab} < 0$, $aA \rightarrow bA$

All-SiC JFET Conventional direct Matrix Converter

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

APEC 2011

Power Electronic Systems Laboratory

Control Properties of AC-AC Converters (1)

Control Properties of AC-AC Converters (2)

DC-DC Equivalent Circuits

Control Properties of AC-AC Converters (3)

- Voltage DC-Link B2B Converter (V-BBC)
- Matrix Converter (CMC / IMC)

- Input Current (in Phase with Input Voltage)
 2 Casca
- DC-Link Voltage
- Output Current (Torque and Speed of the Motor)
- 2 Cascaded Control Loops
- 2 Cascaded Control loops

 Output Current (Torque and Speed of the Motor)

2 Cascaded Control Loops

 Optional: Input Current (Formation of Input Current still Depends on the Impressed Output Current)

Comparative Evaluation

DC Link Converters Matrix Converters

Power Electronic Systems Laboratory

Application Areas of Three-Phase PWM Converters

Bidirectional Power Flow

Renewable Energy

Unidirectional Power Flow

60% of Worldwide Ind. Energy Used by Electric Motor Drives! [a]

[a] "Study on Worldwide Energy Consumption", ECPE Workshop, 2008

Motivation

Cost Allocation of VFD Converters

- ► Status Quo ⇒ Motivation
- Holistic Converter System Comparisons are (still) Rarely Found
- Comprehensive Comparisons Involves a Multi-Domain Converter Design
- Voltage-Source-Type Converter Topologies are Widely Used

- Focus of the Investigation
- Bidirectional Three-Phase AC/DC/AC and AC/AC Converters
- Low Voltage Drives
- Power Level from 1 kVA to few 10 kVA

[b]: Based on "ECPE Roadmap on Power Electronics, 2008"

Comparative Evaluation – Virtual Converter Evaluation Platform

- **Define Application / Mission Profile**
 - *M-n* Operating Rage (Continuous / Overload Requirement)
 - Torque at Standstill
 - Motor Type
 - etc.

- Compare Required Total Silicon Area (e.g. for $T_J < 150^{\circ}$ C, $T_C = 95^{\circ}$ C)
 - Guarantee Optimal Partitioning of Si Area between IGBTs and Diodes

Considered Converter Topologies – V-BBC, I-BBC, IMC, and CMC

With Intermediate Energy Storage

Voltage Source Back-to-Back Converter (V-BBC) "State-of-the-Art" Converter System

Current Source Back-to-Back Converter (I-BBC)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Without Intermediate Energy Storage

Indirect Matrix Converter (IMC)

Conventional (Direct) Matrix Converter (CMC)

Passive Component and EMI Filter Design / Optimization

Comparative Evaluation (1) – Specifications and Operating Points

Main Converter Specifications

Torque Speed Plane

- 3 x 400 V / 50 Hz, 15 kVA f_{sw} = [8 ... 72] kHz U_{DC} = 700 V (VSBBC)
- **PMSM, Matched to Converter** (L_s in mH range, $\Phi_2 \approx 0^\circ$)
- EMI Standard, CISPR 11 QP Class B (66 dB at 150 kHz)
- ► Ambient Temperature $T_A = 50^{\circ}C$ Sink Temperature $T_S = 95^{\circ}C$ Max. Junction Temperature $T_{J,max} = 150^{\circ}C$ (for $T_A = 20^{\circ}C \implies T_S = 65^{\circ}C$, $T_{J,max} = 20^{\circ}C$)

Comparative Evaluation (2) – Semiconde Acea Based Germanison IMC, o

APEC 2011

Semiconductor and Cooling System Modeling

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Comp. Evaluation (3) - Semiconductor Chip Areas (OP1 & OP5)

1200 V Si IGBT4 and EmCon4 Diodes

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

APEC 2011

Comparative Evaluation (4) - Torque Envelope for Equal A_{chip} ▶ For OP1 (P_{2N} = 15 kVA) and OP3 (Stand-Still)

8 kHz: $A_{Chip} \approx 6 \text{ cm}^2$, Referenced to IMC

32 kHz: Available Chip Area $A_{Chip} \approx 6 \text{ cm}^2$

Note: Design at Thermal Limit – A More Conservative Design would be Applied for a Product!

Verification by Electro-Thermal Simulation Shown for IMC

Junction Temperatures OP1

Suggested Algorithm to Optimally Select the Semiconductor Chip Area Matches well at OP1 and OP3

Evaluated for OP1 @ 8 kHz

Torque at OP1 and OP3

- Suggested Algorithm allows for Accurate Torque Estimation at OP1 and OP3
- Torque Limit Line Requires a Thermal Impedance Model of the Module (R-C Network)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Comparative Evaluation (5) – Attenuation, Volume of Passives

Volume of Passive Components

• V-BBC Regu. 15 dB More Atten.

MC (IMC/CMC)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

APEC 2011

Comparative Evaluation (6) – Total Efficiency and Volume

Efficiency vs. Switching Frequency

Volume vs. Switching Frequency

V-BBC: Local Optimum at 35 kHz for SiC JFETs MC: Significant Volume Reduction

Multi-Domain Simulation Software

Device & Material Database Control Toolbox Optimization Toolbox

Overview of Gecko-Software Demonstration

► Gecko-CIRCUITs: Basic Functionality

- ► Indirect Matrix Converter (IMC)
 - IMC Simulation with Controlled AC Machine
 - Specify Semiconductor Characteristics
 - Simulate Semiconductor Junction Temperature
 - etc.

Gecko EMC: Basic Functionality

251/268

Further Information Regarding Gecko-Research

K Home

Power Electronics Simulation - Gecko Research

- Specialized Software to meet demands of Power Electronics Engineers
- Easy-to-use
- Three tools working together: GeckoCICUITS, GeckoEMC, GeckoHEAT
- Multi-Domain approach and Optimization
- · Coupled Circuit-, Thermal-, and Electromagnetic Simulation

Free Trial Version of GeckoCIRCUITS

- Online Simulator in Applet-Mode
- No installation required!

Power Electronic Converter Optimization

Let's assume you want to build a single-phase PFC rectifier with 230V input voltage, 400V output voltage and 3.2kW output power. You can optimize this rectifier for highest efficiency or for highest power density or for minimum cost or ...

www.gecko-research.com

Free Online Version GeckoCIRCUITS

Prices & Licensing GeckoCIRCUITS

APEC 2011

APEC 2011 -

Power Electronic Systems Laboratory

Gecko-Research Application Notes (1)

	Gecko-Research About us	Contact Internal iPES 2.0	2
	GeckoCIRCUITS GeckoHEAT GeckoEMC Free Reports	Newsletter	
Gecko-Research - Free Repo	orts		
V	Free Reports: Power Electronics Simulation and Application		
Reports	To learn a few tricks how to speed up work with GeckoCIRCUITS, just go through our free reports! The reports are also packed with up-to-date knowledge of power electronics. More content will be added!	Subscription to our Free Newsletter:	
	Important Information: You can simulate most of the examples shown in the reports online! Just go to the Online-Version of GeckoCIRCUITS (Java-Applet). Or contact us for a free trial	Subscribe	
	version of GeckoCIRCUITS plus the related examples!	Delivered by FeedBurner	
	AC/AC-Conversion for Highly Compact Drives - What Options Do I Have?	ſ	
	For operating a Permanent Magnet Synchronous Machine (PMSM), which allows a highly compact design, you have to supply three-phase voltage with controllable output frequency and controllable voltage amplitude. There are many different alternatives for the AC/AC converter. Here you will learn all options.		Overview of AC-AC Converters
	Part I - An Overview of AC/AC-Converter Topologies		
	How to Design a 10kW Three-Phase AC/DC Interface Step by Step)	
	You need a rectifier with sinusoidal input currents (power factor correction) and controlled DC-voltage at the output side? In this report you will learn how to compare the well-known Bidirectional 3-Phase AC/DC PWM Converter with Impressed Output Voltage (VSR) with a Vienna Rectifier employing a simple but effective strategy.		
	Part I - How Can I Compare Topologies?		
	Part II - Semiconductor Loss Calculation Demystified Part III - Do You Know the Junction Temperatures of Your Design?		
	(coming soon)		

Power Electronic Systems Laboratory

Gecko-Research Application Notes (2)

Useful Hints for e.g. How to Implement Sector Detection for SV Modulation

- JAVA Code Block
- Integration of Complex Control Code; Enhances Overview and Transparency
- Code can Virtually be Copied to DSP C-Code Generator (Minor Syntax Adaptations)

File	Edit		Simulat				m	View		Tools		H	elp	GECKO				Ready										
																										Source/Sink	Special	1 0.55
																										Measure	Digital	Math
																										Thermal	Co	ntrol
																										Circuit	Motor 8	EMI
												۸	1	4												JAVA-Eunctio	102/00/2013	18322
												JA	VA	Ľ												unter ancau		
											-			P												IF-THEN		
												۲		•												Define STATE-Variable		
																								1	13			
																								1		Set STATE-Va	riable	
																								1				
																								1		ume		
																								1		Sparse-Matrix	Control	
																								1				
																								1				
																								1				
																								1		JAVA		
																								1				
																								1				
																									- 8			
1									-	÷.		-		·		_	_	-		-			-	÷	-13			

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Power Electronics Converter Optimization

Goal: Optimization Toolbox

Guided Step-by-Step Converter Design Procedure to Enable Optimal Utilization of Technological Base and Optimal Matching between Design Specifications and Final Performance

— Conclusions —

Hype Cycle of Technologies

-Gartner Group

Conclusions (1)

► MC is NOT an All-SiC Solution

- Industry Engineers Missing Experience
- 86% Voltage Limit / Application of Specific Motors / Silicon Area
- Limited Fault Tolerance
- Braking in Case of Mains Failure
- Costs and Complexity Challenge
- Voltage DC Link Converter could be Implemented with Foil Capacitors
- MC does NOT offer a Specific Advantage without Drawback

APEC 2011

Conclusions (2)

- **Research MUST Address Comprehensive System Evaluations**
 - MC Promising for High Switching Frequency
 - Consider Specific Application Areas
 - Consider Life Cycle Costs
 - etc.
- V-BBC is a Tough Competitor
- ► F³E Might Offer a Good Compromise
- Most Advantageous Converter Concept Depends on Application and on whether a CUSTOM Drive Design is Possible
- Integration of Multiple Functions (as for MC) Nearly ALWAYS Requires a Trade-off

261/268

Thank You !

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

AC-AC Converter Systems (1)

- [1] I. Takahashi and Y. Itoh, "Electrolytic Capacitor-Less PWM Inverter," in Proc. IPEC, Tokyo, Japan, April 2-6, 1990, pp. 131-138.
- [2] K. Kuusela, M. Salo, and H. Tuusa, "A Current Source PWM Converter Fed Permanent Magnet Synchronous Motor Drive with Adjustable DC-Link Current," in Proc. NORPIE, Aalborg, Denmark, June 15-16, 2000, pp. 54-58.
- [3] M.H. Bierhoff and F.W. Fuchs, "Pulse Width Modulation for Current Source Converters A Detailed Concept," in Proc. IEEE Industrial Electronics Conference IECON'06, Paris, France, Nov. 7-10, 2006.
- [4] **R.W. Erickson and O.A. Al-Naseem**, *"A New Family of Matrix Converters,"* in Proc. IEEE Industrial Electronics Conference IECON'01, Denver, CO, Nov. 29-Dec. 2, 2001, vol. 2, pp. 1515-1520.
- [5] **C. Klumpner and C.I. Pitic**, *"Hybrid Matrix Converter Topologies: An Exploration of Benefits,"* in Proc. IEEE Power Electronics Specialists Conference PESC'08, Rhodos, Greece, June 15-19, 2008, pp. 2-8.
- [6] C. Klumpner, "Hybrid Direct Power Converters with Increased/Higher than Unity Voltage Transfer Ratio and Improved Robustness against Voltage Supply Disturbances," in Proc. IEEE Power Electronic Specialists Conference PESC'05, Recife, Brazil, June 12-16, 2005, pp. 2383-2389.
- [7] L. Gyugyi and B.R. Pelly, "Static Power Frequency Changers Theory, Performance, & Application," New York: J. Wiley, 1976.
- [8] W.I. Popow, "Der zwangskommutierte Direktumrichter mit sinusförmiger Ausgangsspannung," Elektrie 28, no. 4, pp. 194-196, 1974.
- [9] K.K. Mohapatra and N. Mohan, "Open-End Winding Induction Motor Driven with Matrix Converter for Common-Mode Elimination," in Proc. PEDES, New Delhi, India, Dec. 12-15, 2006.
- [10] M. Braun and K. Hasse, "A Direct Frequency Changer with Control of Input Reactive Power," in Proc. 3rd IFAC Symp., Lausanne, Switzerland, 1983, pp. 187-194.
- [11] D.H. Shin, G.H. Cho, and S.B. Park, "Improved PWM Method of Forced Commutated Cycloconverters," in Proc. IEE, vol. 136, pt. B, no. 3, pp. 121-126, 1989.
- [12] P.D. Żiogas, Y. Kang, and V.R. Stefanovic, "Rectifier-Inverter Frequency Changers with Suppressed DC Link Components," IEEE Transaction on Industry Applications, vol. IA-22, no. 6, pp. 1027-1036, 1986.
- [13] S. Kim, S.K. Sul, and T.A. Lipo, "AC/AC Power Conversion Based on Matrix Converter Topology with Unidirectional Switches," IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 139-145, 2000.
- [14] K. Göpfrich, C. Rebbereh, and L. Sack, "Fundamental Frequency Front End Converter (F3E)," in Proc. PCIM, Nuremberg, Germany, May 20-22, 2003, pp. 59-64.

AC-AC Converter Systems (2)

- [15] **B. Piepenbreier and L. Sack**, *"Regenerative Drive Converter with Line Frequency Switched Rectifier and Without DC Link Components*," in Proc. IEEE Power Electronic Specialists Conference PESC'04, Aachen, Germany, June 20-25, 2004, pp. 3917-3923.
- [16] J. Holtz and U. Boelkens, "Direct Frequency Converter with Sinusoidal Line Currents for Speed-Variable AC Motors," IEEE Transactions on Industrial Electronics, vol. 36, no. 4, pp. 475-479, 1989.
- [17] K. Shinohara, Y. Minari, and T. Irisa, "Analysis and Fundamental Characteristics of Induction Motor Driven by Voltage Source Inverter without DC Link Components (in Japanese)," IEEJ Transactions, vol. 109-D, no. 9, pp. 637-644, 1989.
- [18] L. Wei and T.A. Lipo, "A Novel Matrix Converter Topology with Simple Commutation," in Proc. IEEE Annual Meeting of the Industry Application Society IAS'01, Chicago, IL, Sept. 30-Oct. 4, 2001, vol. 3, pp. 1749-1754.
- [19] J.W. Kolar, M. Baumann, F. Stögerer, F. Schafmeister, and H. Ertl, "Novel Three-Phase AC-DC-AC Sparse Matrix Converter, Part I - Derivation, Basic Principle of Operation, Space Vector Modulation, Dimensioning, Part II - Experimental Analysis of the Very Sparse Matrix Converter," in Proc. IEEE Applied Power Electronic Conference APEC'01, Dallas, TX, March 10-14, 2002, vol. 2, pp. 777-791.
- [20] L. Wei, T.A. Lipo, and H. Chan, "Matrix Converter Topologies with Reduced Number of Switches," in Proc. VPEC, Blacksburg, VA, April 14-18, 2002, pp. 125-130.
- [21] F. Schafmeister, "Sparse und Indirekte Matrix Konverter," PhD Thesis no. 17428, ETH Zurich, 2007.
- [22] J.W. Kolar, F. Schafmeister, S.D. Round, and H. Ertl, "Novel Three-Phase AC-AC Sparse Matrix Converters," Transactions on Power Electronics, vol. 22, no. 5, pp. 1649-1661, 2007.
- [23] M.Y. Lee, P. Wheeler, and C. Klumpner, "A New Modulation Method for the Three-Level-Output-Stage Matrix Converter," in Proc. IEEE/IEEJ PCC, Nagoya, Japan, Apr. 2-5, 2007.
- [24] C. Klumpner, M. Lee, and P. Wheeler, "A New Three-Level Sparse Indirect Matrix Converter," in Proc. IEEE Industrial Electronics Conference IECON'06, 2006, pp. 1902-1907.
- [25] M. Baumann and J.W. Kolar, "Comparative Evaluation of Modulation Methods for a Three Phase / Switch Buck Power Factor Corrector Concerning the Input Capacitor Voltage Ripple," in Proc. IEEE Power Electronic Specialist Conference PESC'01, Vancouver, Canada, Jun. 17-21, 2001, vol. 3, pp. 1327-1333.
- [26] J.W. Kolar, H. Ertl, and F.C. Zach, "Power Quality Improvement of Three-Phase AC-DC Power Conversion by Discontinuous-Mode 'Dither'-Rectifier Systems," in Proc. International (2nd European) Power Quality Conference (PQ), Munich, Germany, Oct. 14-15, 1992, pp. 62-78.
- [27] J. Oyama, T. Higuchi, E. Yamada, T. Koga, and T.A. Lipo, "New Control Strategy for Matrix Converter," in Proc. IEEE Power Electronic Specialists Conference PESC'89, Milwaukee, WI, June 26-29, 1989, vol. 1, pp. 360-367.

AC-AC Converter Systems (3)

- [28] N. Burany, "Safe Control of Four-Quadrant Switches," in Proc. IEEE Annual Meeting of Industry Application Society IAS'89, San Diego, CA, Oct. 1-5, 1989, pp. 1190-1194.
- [29] M. Ziegler and W. Hofmann, "A New Two Steps Commutation Policy for Low Cost Matrix Converter," in Proc. PCIM, Nuremberg, Germany, Jun. 6-8, 2000, pp. 445-450.
- [30] W. Hofmann and M. Ziegler, "Schaltverhalten und Beanspruchung bidirektionaler Schalter in Matrixumrichtern," ETG/VDE Fachbericht 88 der Fachtagung Bauelemente der Leistungselektronik, Bad Nauheim, Germany, Apr. 23-24, 2002, pp. 173-182.
- [31] M. Venturini, "A New Sine Wave In, Sine Wave Out Conversion Technique Eliminates Reactive Elements," in Proc. Powercon 7, San Diego, CA, 1980, pp. E3-1-E3-15.
- [32] J.W. Kolar and F.C. Zach, "A Novel Three-Phase Utility Interface Minimizing Line Current Harmonics of High-Power Telecommunications Rectifier Modules," Transactions on Industrial Electronics, vol. 44, no. 4, 1997, pp. 456-467.
- [33] J.W. Kolar, U. Drofenik, and F.C. Zach, "VIENNA Rectifier II A Novel Single-Stage High-Frequency Isolated Three-Phase PWM Rectifier System," Transactions on Industrial Electronics, vol. 46, no. 4, pp. 674-691, 1999.
- [34] K. Mino, Y. Okuma, and K. Kuroki, "Direct-Linked-Type Frequency Changer Based on DC-Clamped Bilateral Switching Circuit Topology," Transactions on Industrial Electronics, vol. 34, no. 6, pp. 1309-1317, 1998.
- [35] D. Casadei, G. Serra, A. Tani, and P. Nielsen, "Performance of SVM Controlled Matrix Converter with Input and Output Unbalanced Condition," in Proc. European Conference on Power Electronics and Applications EPE'95, Sevilla, Spain, Sept. 19-21, 1995, vol. 2, pp. 628-633.
- [36] F. Schafmeister, M. Baumann, and J.W. Kolar, "Analytically Closed Calculation of the Conduction and Switching Losses of Three-Phase AC-AC Sparse Matrix Converters," in Proc. International Power Electronics and Motion Control Conference, Dubrovnik, Croatia, Sept. 9-11, 2002, CD-ROM, ISBN: 953-184-047-4.
- [37] F. Schafmeister, S. Herold, and J.W. Kolar, "Evaluation of 1200V-Si-IGBTs and 1300V-SiC-JFETs for Application in Three-Phase Very Sparse Matrix AC-AC Converter Systems," in Proc. IEEE Applied Power Electronics Conference and Exposition, Miami Beach, USA, Feb. 9-13, vol. 1, pp. 241-255, 2003.
- [38] J.W. Kolar and F. Schafmeister, "Novel Modulation Schemes Minimizing the Switching Losses of Sparse Matrix Converters," in Proc. IEEE Industrial Electronics Society Conference IECON'03, Roanoke, USA, Nov. 2-6, 2003, pp. 2085-2090.
- [39] M.L. Heldwein, T. Nussbaumer, and J.W. Kolar, "Differential Mode EMC Input Filter Design for Three-Phase AC-DC-AC Sparse Matrix PWM Converters," in Proc. IEEE Power Electronics Specialists Conference, Aachen, Germany, June 20-25, 2004, CD-ROM, ISBN: 07803-8400-8.

AC-AC Converter Systems (5)

- [40] M.L. Heldwein, T. Nussbaumer, F. Beck, and J.W. Kolar, "Novel Three-Phase CM/DM Conducted Emissions Separator," in Proc. IEEE Applied Power Electronics Conference and Exposition, Austin (Texas), USA, March 6-10, 2005, vol. 2, pp. 797-802.
- [41] T. Friedli, M.L. Heldwein, F. Giezendanner, and J.W. Kolar, "A High Efficiency Indirect Matrix Converter Utilizing *RB-IGBTs*," in Proc. IEEE Power Electronics Specialists Conference PESC'06, Jeju, Korea, Jun. 18-22, 2006, CD-ROM, ISBN: 1-4244-9717-7.
- [42] S. Round, F. Schafmeister, M.L. Heldwein, E. Pereira, L. Serpa, and J.W. Kolar, "Comparison of Performance and Realization Effort of a Very Sparse Matrix Converter to a Voltage DC Link PWM Inverter with Active Front End," IEEJ Transactions of the Institute of Electrical Engineers of Japan, vol. 126-D, no. 5, May 2006, pp. 578-588.
- [43] T. Friedli, S.D. Round, D. Hassler, J.W. Kolar, "Design and Performance of a 200 kHz All-Sic JFET Current DC-Link Backto-Back Converter", IEEE Transactions on Industry Applications, vol. 45, no. 5, Sept./Oct. 2009, pp.1868-1878.
- [44] F.Z. Peng, A. Joseph, J. Wang, M. Shen, L. Chen, Z. Pan, E. Ortiz-Rivera, Y. Huang, "Z-Source Inverter for Motor Drives", IEEE Transactions on Power Electronics, vol. 20, no. 4, Jul. 2005, pp. 857-863.
- [45] L. Sack, B. Piepenbreier, M. von Zimmermann, "Dimensioning of the Z-Source Inverter for General Purpose Drives with Three-Phase Standard Motors", in Proc. Power Electronic Specialist Conference, Rhodes, Greece, Jun. 5-19, 2008, pp. 1808-1813.
- [46] R. Strzelecki, M. Adamowicz, N. Strzelecka, W. Bury, "New Type T-Source Inverter", in Proc. Power Quality Alternative Energy and Distributed Systems, Badajoz, Spain, May 20-22, 2009, pp. 191-195.
- [47] D. Cottet, U. Drofenik, J.-M. Meyer, "A Systematic Design Approach to Thermal-Electrical Power Electronics Integration", Electronics System Integration Conference ESTC'08, Greenwich, UK, Sept. 1-4, 2007, pp. 219-224.
- [48] W. Qian, F.Z. Peng, H. Cha, *"Trans-Z-Source Inverters"*, Proc. IEEE/IEEJ International Power Electronics Conference (ECCE Asia) IPEC'10, Sapporo, Japan, Jun. 21-24, 2010, pp. 1874-1881.
- [49] T. Friedli and J.W. Kolar, "A Semiconductor Area Based Assessment of AC Motor Drive Converter Topologies", Proc. IEEE Applied Power Electronic Conference and Exhibition APEC'09, Washington DC, USA, Feb. 15-19, pp. 336-342.
- [50] J.W. Kolar, J. Biela, and J. Miniböck, "Exploring the Pareto Front of Multi-Objective Single-Phase PFC Rectifier Design Optimization 99.2% Efficiency vs. 7 kW/dm³ Power Density", in Proc. IEEE International Power Electronics and Motion IPEMC'09, Wuhan, China, May 17-20, 2009, CD-ROM.

AC-AC Converter Systems (6)

- [51] S. Bernet, S. Ponnaluri, and R. Teichmann, "Design and Loss Comparison of Matrix Converters and Voltage-Source Converters for Modern AC Drives", IEEE Transactions on Industrial Electronics, vol. 49, no. 2, April 2002, pp. 304-314.
- [52] R. Lai, Y. Pei, F. Wang, R. Burgos, D. Boroyevich, T.A. Lipo, V. Immanuel, K. Karimi, "A Systematic Evaluation of AC-Fed Converter Topologies for Light Weight Motor Drive Applications Using SiC Semiconductor Devices", in Proc. Electric Machines and Drives Conference IEMDC'07, Antalya, Turkey, May 3-5, 2007, pp. 1300-1305.
- [53] T. Friedli and J.W. Kolar, "Comprehensive Comparison of Three-Phase AC-AC Matrix Converter and Voltage DC-Link Back-to-Back Converter Systems", Invited Paper, Proc. IEEE/IEEJ International Power Electronics Conference (ECCE Asia) IPEC'10, Sapporo, Japan, Jun. 21-24, 2010, pp. 2789-2798.
- [54] M. Schweizer, I. Lizama, T. Friedli, and J.W. Kolar, "Comparison of the Chip Area Usage of 2-level and 3-level Voltage Source Converter Topologies", Proc. IEEE Industrial Electronics Conference IECON'10, Glendale, USA, Nov. 7-11, 2010.

Power Electronic Systems Laboratory

About the Instructors

Johann W. Kolar (F[']10) received his Ph.D. degree (summa cum laude / promotio sub auspiciis praesidentis rei publicae) from the University of Technology Vienna, Austria. Since 1984 he has been working as an independent international consultant in close collaboration with the University of Technology Vienna, in the fields of power electronics, industrial electronics and high performance drives. He has proposed numerous novel PWM converter topologies, and modulation and control concepts, e.g., the VIENNA Rectifier and the Three-Phase AC-AC Sparse Matrix Converter. Dr. Kolar has published over 350 scientific papers in international journals and conference proceedings and has filed 75 patents. He was appointed Professor and Head of the Power Electronic Systems Laboratory at the Swiss Federal Institute of Technology (ETH) Zurich on Feb. 1, 2001.

The focus of his current research is on AC-AC and AC-DC converter topologies with low effects on the mains, e.g. for power supply of data centers, More-Electric-Aircraft and distributed renewable energy systems. Further main areas of research are the realization of ultra-compact and ultra-efficient converter modules employing latest power semiconductor technology (SiC), novel concepts for cooling and EMI filtering, multi-domain/multi-scale modeling / simulation and multi-objective optimization, physical model based lifetime prediction, pulsed power, bearingless motors, and Power MEMS.

He received the Best Transactions Paper Award of the IEEE Industrial Electronics Society in 2005, the Best Paper Award of the ICPE in 2007, the 1st Prize Paper Award of the IEEE IAS IPCC in 2008, and the IEEE IECON Best Paper Award of the IES PETC in 2009. He also received an Erskine Fellowship from the University of Canterbury, New Zealand, in 2003. He initiated and/or is the founder / co-founder of 4 Spin-off Companies targeting ultra high speed drives, multi-domain/level simulation, ultra-compact/efficient converter systems and pulsed power/electronic energy processing. In 2006, the European Power Supplies Manufacturers Association (EPSMA) awarded the Power Electronics Systems Laboratory of ETH Zurich as the leading academic research institution in Power Electronics in Europe.

Dr. Kolar is a Fellow of the IEEE and a Member of the IEEJ and of International Steering Committees and Technical Program Committees of numerous international conferences in the field (e.g. Director of the Power Quality Branch of the International Conference on Power Conversion and Intelligent Motion). He is the founding Chairman of the IEEE PELS Austria and Switzerland Chapter and Chairman of the Education Chapter of the EPE Association. From 1997 through 2000 he has been serving as an Associate Editor of the IEEE Transactions on Industrial Electronics and since 2001 as an Associate Editor of the IEEE Transactions on Power Electronics. Since 2002 he also is an Associate Editor of the IEEJ Transactions on Electronics and a member of the Editorial Advisory Board of the IEEJ Transactions on Electrical and Electronic Engineering.

Michael Hartmann (M'09) was born in Feldkirch, Austria, on May 26, 1978. After he finished the HTL-Rankweil (Telecommunications), he started to work at Omicron Electronics in Klaus (Austria) as a hardware development engineer. There, his work was focused on measurements techniques for power system testing.

In October 2001, he began to study electrical engineering at the University of Technology Vienna, Austria. His diploma thesis deals with the design and implementation of a multi-cell switch mode power amplifier with zero-voltage switching DC-links employing a digital modulator. He received his M.Sc. degree with honors in November 2006, and he has been a Ph.D. student at the Power Electronic Systems Laboratory, ETH Zürich, since March 2007.

Thomas Friedli (M'09) received his M.Sc. degree in electrical engineering and information technology (with distinction) and his Ph.D. from the Swiss Federal Institute of Technology (ETH) Zurich, in 2005 and 2010, respectively.

From 2003 to 2004 he worked as a trainee for Power-One in the R&D centre for telecom power supplies. His Ph.D. research from 2006 to 2009 involved the further development of current source and matrix converter topologies in collaboration with industry using silicon carbide JFETs and diodes and a comparative evaluation of three-phase ac-ac converter systems.

He received the 1st Prize Paper Award of the IEEE IAS IPCC in 2008 and the IEEE IAS Transactions Prize Paper Award in 2009.

