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Abstract

The novel tensor-structured numerical methods appeared as bridging of the
algebraic tensor decompositions and the nonlinear approximation theory on sep-
arable low-rank representation of multivariate functions and operators [1, 2].
Nowadays the rank-structured tensor approach facilitates new means for numer-
ical modeling of long-range potentials in many-particle systems. The method
of grid-based assembled tensor summation of the electrostatic potentials on
(L × L × L) 3D finite lattices [4] exhibits the computational complexity of the
order of O(L) which is much less than O(L3) in traditional Ewald-type sum-
mation. The canonical tensor rank of the collective potential of a finite 3D
rectangular lattice system (containing millions of particles) is proven to be as
low as a rank for a single reference tensor for a Newton kernel. For lattices with
multiple impurities the tensor rank is increased by a small factor [2].

Recent range-separated (RS) tensor format [3] applies to many-particle sys-
tems of general type. These can be the free space electrostatic potentials of
large bio-molecules or the multidimensional scattered data modeled by radial
basis functions. The main advantage of the RS tensor format is that the rank
of the canonical/Tucker tensor representing the sum of long range contributions
from all particles in the collective potential depends only logarithmically on the
number of particles N . Partitioning of long and short range parts of the poten-
tials is performed simply by sorting vectors of the generating Newton kernel.
The interaction energies and forces of the many-particle system are computed
by using only the long-range part of the collective potential, with representation
complexity O(n logN), where n is the univariate grid size. The basic tool for
calculation of the RS tensor representation is the reduced higher order SVD
(RHOSVD) introduced in [5]. The representation complexity of the short range
part is O(N) with a small prefactor independent on the number of particles.
The numerical examples are presented.
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