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Abstract

We show the existence of a class of deep neural networks with ReLU activa-
tion functions (DNNR) which approximates tensor products of polynomials. By
considering existing analysis of quasi-optimal polynomial approximations, our
proposed DNNR is shown to approximate a large class of high-dimensional func-
tions. When an estimate of the bounds of the polynomial coefficients is known,
this network achieves a rate of approximation comparable to that of quasi-
optimal methods which are sub-exponential in the number of polynomials, M .
Furthermore, the complexity of the network which achieves this sub-exponential
rate is shown to be algebraic in M . Our proof is constructive and species a set
of parameters so that the DNNR is a piecewise linear approximation of a poly-
nomial. Numerically, these parameters can be used to set the initial state of a
DNNR which can then be trained to approximate a high-dimensional function.
We consider a numerical experiment which compares global polynomial sparse
grid approximations of some non-smooth high-dimensional functions to our im-
proved DNNR approximations by using the samples of the target function at a
set of sparse grid points as training data. After training the error of each ap-
proximation is empirically estimated. Our results indicate that neural networks
trained in this manner produce better approximations than certain sparse grid
approximations.
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