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Abstract

We introduce an additive three factor model for the Day Ahead baseload
price of electricity. The model uses two Lévy-driven Ornstein-Uhlenbeck
processes to capture the day-to-day variation in spot prices and a dif-
fusion to model the stochastic mean level. The model is calibrated to
historical EEX price data. A detailed risk-neutral calibration is carried
out and properties of the market prices of risk described. Monthly futures
contracts are priced in closed form and options on the spot price and on
futures contracts are valued using the Streamline Diffusion Finite Element
Method.
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1 Introduction

Besides its obvious unique social importance, electricity is different to other
commodities such as gold and oil in two fundamental respects. Firstly, it is
very difficult to store in any great quantity, so much so that it is often referred
to as non-storable. In some countries, relatively small amounts can be implic-
itly stored in hydro-reservoirs but, by and large, it is not possible to buy, hold
and sell a quantity of electricity to exploit a perceived arbitrage opportunity.
Therefore, electricity is not considered tradable in the way that other commodi-
ties are and care must be taken when applying results from arbitrage theory to
electricity markets. Furthermore, non-storability can cause temporary over- and
under-supply to increase or decrease prices dramatically for a short period of
time, a phenomenon which must be taken into account when modelling prices.

Secondly, electricity must be delivered over a period of time and not at a
single instant and is thus called a flow commodity. For this reason, futures
contracts must always specify the time period over which the electricity will be
delivered and consumed. This period typically ranges from one hour to a whole
year. Consequently, electricity futures are more akin to swap contracts in that
they are settled against a reference price over a period of time. Additionally,
due to the varying delivery periods of futures contracts, it is a non-trivial task to
find the ‘forward curve’ of market implied future electricity prices - something
that is taken for granted in other commodity and fixed-income markets.

In Europe, several markets exist that manage electricity supply on a national
or regional level. The focus of this analysis is the german market where products
are mainly traded at the European Energy Exchange (EEX), but the results can
readily be applied to other liquid markets. In general, two types of products
are traded on European exchanges: those with physical delivery in the near-
immediate future (< 1 day), which we call the spot market, and those which
do not require market participants to be capable of supply or consumption and
with delivery over a longer period of time further in the future, which we call
the futures market.

The principal spot market is known as the Day Ahead (DA) market. Each
morning, market participants submit their bids for buying or selling electricity
in each hour of the following day. The market closes at noon and the prices
for each hour are set based on the bids of suppliers and consumers. Thus, the
atomic delivery period is a single hour in a day and the baseload price is the
average of all hours in each day.

The futures market consists mainly of monthly, quarterly and yearly con-
tracts, although daily, weekly, weekend and other products are also traded. This
thesis will be mainly concerned with monthly contracts which are delivered over
each calendar month and at any given time contracts for the next six months
are traded with varying degrees of liquidity. The trading period closes when the
delivery period begins and the monthly price is settled on a daily basis against
the DA hourly price.

All the above futures contracts are also traded on an Over-The-Counter
(OTC) basis along with options and other derivatives. However, monthly OTC



contracts are settled after the end of the delivery period rather than on a daily
basis during delivery. Furthermore, OTC prices only exist when an actual trade
has been agreed between two parties, whereas exchange prices are published
regardless of whether any trades have taken place or not.

It will be useful to also consider contracts that deliver a unit of power at a
single specific time, even though these are not explicitly traded. We will refer
to these as forward contracts.

It is spot price modelling that provides the focus of this analysis. We wish to
price monthly futures contracts and vanilla options by specifying the dynamics
of the DA price. As all hourly prices are set at auction simultaneously and
therefore the baseload price impounds all information that is captured in each
of the 24 hourly prices, from a pricing point of view it is sufficient to focus on
the daily baseload, rather than on the hourly price (see [32]).

In addition, the calibration of a spot price model to the forward market will
involve the discovery of the market price of risk as a function of time and time-to-
delivery. The form of the market price of risk is a worthy goal in itself as it tells
us much about the evolution of the risk preferences of market participants over
time and over the tradable life of a contract. Finally, it is hoped that an effective
spot price model will provide a starting point for pricing more complicated
contracts such as tolling agreements or spark-spread contracts, which in turn
can be used to model the operation of gas-fired power plants.

Note that the markets for natural gas have many similarities with the above
mentioned features of electricity markets: gas is a flow commodity with limited
storage capacity and a balanced physical spot market exists alongside a financial
futures market. The model described in this thesis was developed specifically
with gas markets in mind and the results given here for electricity could also be
applied to gas.

2 Spot price modelling

2.1 Spot versus forward price modelling

One of the main motivations for the stochastic modelling of electricity markets
is the pricing and hedging of futures contracts. The modelling of these products
is analagous to the modelling of bond prices and swap and forward rates in the
fixed-income world, which generally falls into two categories (see, for example,
[10]). On the one hand, spot models focus on the direct modelling of the non-
tradable, exogenously-given instantaneous short rate of interest. Within this
paradigm, traded instruments such as bonds and forward contracts are priced
as derivatives of the short rate. On the other hand, with the HIM framework
and LIBOR and Swap Market models, the whole term structure of forward rates
is modelled simultaneously.

The same dichotomy exists in the modelling of electricity markets. One
class of models focuses on specifying and calibrating the dynamics of forward
and futures prices of electricity and explicitly uses concepts from interest rate
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Figure 1: EEX Day Ahead baseload prices 2000 - 2009.

theory (see, for example, [, Chapters 6 and 8] or [28]). On the other hand,
spot price models specifying the dynamics of the exogenously-given DA price
of electricity, which is considered non-tradable, are used to derive the prices of
futures and more exotic contracts.

Although the direct modelling of forward and futures prices can better ac-
count for the complicated dynamics of the forward curve, they have one main
disadvantage: forward price models, in general, use as an initial condition the
observed forward price curve. Therefore, if the market contains any mis-pricing,
it will not be detected by these models, which will automatically calibrate the
mis-priced data. From this point of view spot models are very useful for giving
an alternative perspective of the forward market.

2.2 Stylized facts about spot prices

Before discussing price modelling in depth, we summarise some well-known styl-
ized facts concerning the dynamics of the spot price.

e Prices exhibit large ‘spikes’, where the price can increase by several mag-
nitudes over a single day and return to ‘normal’ levels just as quickly.
Downward spikes also occur, but less frequently and are of smaller magni-
tude although they can lead to negative prices. Both positive and negative
spikes are clearly visible in Figure [T}

e Not only do large price spikes revert to a mean price, but also day-to-day
changes revert to a long-term mean level.

e Prices exhibit a regular seasonal and daily variation that is caused by regu-
lar variations in demand. For example, demand is usually higher on work-



ing days than at the weekend or on public holidays. Similarily, heating
and cooling requirements cause high demand in winter and midsummer,
respectively.

It will be seen in the next section how these three observations have greatly
influenced the modelling of spot prices to date. However, in this thesis we wish
to focus on the following further two aspects of price modelling.

Non-Gaussian Increments: Given the above list of observations, it is tempt-
ing to think that once seasonal factors and price spikes have been filtered
out, the time series could be well-modelled by a Brownian-driven mean-
reverting process. However, as we will see in the following sections, the
distribution of the increments of deseasonalised prices without spikes is
far from normal.

Stochastic Mean: It is possible to observe in Figure [I| that the long-term
mean price, to which day-to-day price variations revert, can vary quite
considerably itself. This is even more evident in the top left-hand graph
of Figure @ where the 31-day moving average (MA) of deseasonalised
prices is highlighted in red. Here we see that throughout 2008, the MA
was consisently above the seasonal level, whereas for most of 2009 the MA
persisted below the seasonal level. This stochastic mean price is of critical
importance in risk neutral modelling; if it is ignored, the market prices of
risk will have to account for much more of the price dynamics and will
become highly irregular.

Moreover, we can see in Figure [1| that in the period 2000-2005, the day-to-day
price variations reverted to a more or less constant level. In contrast, in the
period 2006-2009, we can see an increased volatility of the stochastic mean.
This could be due to the gradual evolution of a still immature market and
means the price time series is unlikely to be stationary. Therefore, all 10 years
of prices should not be employed for model calibration and instead, relatively
short periods of time (e.g. 3 or 4 years) should be used. However, this has the
disadvantage that statistically calibrated parameters may then be unreliable
and, therefore, frequent recalibration is required.

2.3 Review of spot models

In order to fully explain our choice of model, we briefly survey some of the types
of spot price models that are common in the literature. Most models focus on
taking care of the three well-known properties of price time series listed above
and try to separate seasonal factors and mean-reverting spikes from day-to-day
price variations. Thus, typical models are of the following form (see [7, Section
3.2.2]).

S,=At)+Y Xl i=1,...,n
; (2.1)



A : Ry — R is a deterministic function capturing seasonal and daily vari-
ations and X* = {X} : ¢t > 0},i = 1,...,n are known as Ornstein-Uhlenbeck
(OU) processes and are described in detail in Section 4} L? = {Li:t > 0},i =
1,...,n are Lévy processes, whose definition and properties are given in Section
S = {S; : t > 0} can be taken as either the spot price, in which case the
model is additive or the log spot price, where the model is geometric. Obviously,
geometric models do not allow negative prices, which is a disadvantage that has
become more pronounced recentlyﬂ Examples of models that fit into the above
framework include [4 O] T3} B2]. Such models typically capture spikes in one
factor with a mean-reverting compound Poisson (CP) process and day-to-day
stochastic variations in a second factor. Historically, most models have used
a Brownian motion driven OU process to model the day-to-day variations, al-
though recently, [9] used a jump-diffusion OU process, while [4] used gamma
OU processes for both spikes and day-to-day variations, which again has the
disadvantage of precluding negative prices.

When two factors are used, typical rates of mean reversion are about 1 for
the spike factor and about .1 for the other factor (see [9], B2]), resulting in a
spike half-life of about 1 day and a half-life for other price movements of about
10 days. Therefore, these models have the distinct drawback that the prices
of futures contracts derived from the spot model have almost zero volatility if
the time to delivery is more than a few weeks. Consequently, the market price
of risk, which is a result of the risk neutral calibration of the spot model to
the forward market, becomes stochastic, making it almost impossible to price
futures contracts with the spot model. Furthermore, when all factors are mean-
reverting, the deseasonalised mean-level is constant, which can cause problems
during calibration as prices are assumed to revert to an unrealistic level.

A similar class of models can be obtained by allowing one factor to be non-
mean-reverting. For example, [2] 29] B5] suggest using a (drifted) Brownian
motion to capture the long-term stochastic mean level of spot prices. However,
all three models also assume that the mean-reverting day-to-day price variations
can be well-modelled by a Brownian motion driven OU process - an assumption
which we will show to be unrealistic.

An alternative way of circumventing the issue of the stochastic mean is
obtained by letting spot prices revert to the forward price. The forward price
curve, F(¢,T),0 < t < T, where T is the start of the delivery period, can be
modelled separately and the spot prices derived by setting F(¢,t) = S (see,
for example, [I4]). However, forward price dynamics are qualitatively different
to spot price dynamics and do not contain spikes or strong mean reversion.
Therefore, the resulting spot prices will not have realistic dynamics.

Finally, we mention in passing regime-switching models such as [I7, 23].
These models typically use a single OU factor, but the specification of the
factor changes to the so-called ‘spike regime’ during periods of high volatility
when spikes can occur. While these models can provide a finer structure for the
spike dynamics, they come with the additional cost of having to calibrate the

1Strongly negative spot prices were twice recorded on EEX in the last quarter of 2009.
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hidden Markov chain that manages the regime switching. In any case, we will
see that the intricacies of price spikes are not very important when it comes to
pricing instruments such as monthly futures, as only the overall expected value
of the spikes is included in the futures price.

2.4 Three-factor model

We aim to specify a model that incorporates the best aspects of the models
descibed above and also specifically addresses the issues of Non-Gaussian In-
crements and the Stochastic Mean. Therefore, we use a two-factor model of
the form , where one factor is driven by a CP process and specifies price
spikes, while the other factor is driven by a variance gamma (VG) process (see
Section and captures day-to-day price variations. We will see in Section
that the non-Gaussian increments of prices are well-modelled by a VG process.
Furthermore, we add to the two factor model a non-mean-reverting factor which
is intended to capture the long-term stochastic mean level of the prices. Thus,
we have the following specification for our spot price model.

Definition 2.1 (Three factor model). The spot price of electricity can be mod-
elled by the stochastic process, S = {Sy : t > 0}, which is defined as

Sy = A(t) + X} + X7 + X}
dX} = o1dW;
dX? = ay(m — X2)dt + dL,
dX} = —azX}dt + dP,

(2.2)

where A : Ry — R, W = {W, :t > 0} is a Brownian Motion, L = {L; : t > 0}
and P ={P; : t > 0} are VG and CP processes respectively, o1, as and az are
positive constants and m € R.

Note that Lévy processes other than VG, such as the normal inverse Gaussian
(NIG) process, could also be used to the same effect. We choose VG as the form
of its Lévy measure is relatively straightforward (unlike the NIG process) and
therefore amenable to finite element pricingﬂ

We remark that there is probably very little difference in the economic factors
driving the processes X2 and X3. Both are a result of the day-to-day variations
in supply and demand and it could be argued that the realisations of X3 are
simply extreme values of X2. If we assume ap = a3, one stochastic factor
could be used in place of X2 and X3, but then it becomes almost impossible to
calibrate a single Lévy driven OU process to all day-to-day variations (including
spikes).

On the other hand, we assert that the economic factors driving X! are not
caused by day-to-day changes in supply and demand, but rather longer term

2FEM for Lévy processes requires the calculation of anti-derivatives of the Lévy density.
This task is significantly more complicated for the NIG process as its density contains a
modified Bessel function of the second kind and order one.
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influences such as the price of commodities used as hedging instruments and fuels
as well as changes in GDP or the total number of functioning power stations.

Before calibrating this model and using it for pricing, we first recall some
basic properties of Lévy processes and then compile some mathematical results
that will be needed later.

3 Lévy processes

3.1 Definitions, properties and stochastic calculus

Unless otherwise stated, all stochastic processes and random variables are R-
valued and defined on a filtered probability space (2, Foo, (Ft)t>0, P), where the
filtration (F3)>0 satisfies the usual conditions and expectations are taken under
the measure P.

Definition 3.1. An adapted, cidlag stochastic process X = {X; : t > 0}, with
Xo =0, is called a Lévy process if it satisfies the following conditions:

e X has independent increments: for all 0 < s < t < o0, Xy — X 1s
independent of F.

e X has stationary increments: for all0 < s <t < oo, X; — Xs ~ Xy_s.

o X is stochastically continuous: given € > 0, for all s,t > 0,

lim P(|X; — X,| > €) = 0.

The stochastic continuity property implies that a Lévy process can contain
jumps and we associate with X = {X (¢t,w) : t € [0,T],w € Q}, where T is some
finite time horizon, a random measure Jx on [0, 7] x R? such that Vw €

AX (t,w)#0

Ix(w,-,-) = Z L ax(ew) ()
t€[0,T]
where AX (t,w) = X(t,w) — X(t—,w). Thus, for any B € B(R?), Jx([s,t], B)
counts the number of jumps with magnitude in B occurring between times s
and t. Furthermore, we define a measure, v, on R?, called the Lévy measure,
which gives the expected number of jumps per unit time with magnitude in B
as

v(B) = E[#{t € [0,1] : AX; #0,AX, € B}].

If a Lévy measure is absolutely continuous with respect to the Lebesgue measure,
it admits a density and we write v(dz) = k(z)dz, where k(z) is the Lévy density.

12



By examining the defining properties of Lévy processes, we can easily see
that a Brownian motion, which is continuous and has independent and station-
ary increments, is a Lévy process with a Lévy measure that is 0 everywhere.
Moreover, compound Poisson (CP) processes, whose paths are not continuous,
are also Lévy processes and have a Lévy measure of the form v(dz) = Afz(z)dz
where A > 0 is the jump intensity and f is the probability density of the jump
sizes Z, a P-integrable random variable. In this case, the Lévy measure is in-
tegrable everywhere, but the definition of Lévy processes allows much weaker
integrability conditions and, consequently, a much broader class of processes.

Theorem 3.2. Every Lévy measure satisfies

/ 1A 2*0(dz) < oo
Rd
Proof. See [34], Section 8§]. O

The condition f‘ =1V v(dz) < oo of the above theorem means that if we
only consider the jumps of magnitude greater than 1 then the process is a CP
process and thus has finite intensity. For jumps less than or equal to 1, if
f|2|<1 |z|v(dz) < oo is satisfied, the process can be thought of as a CP process
where the intensity of occurrence of small jumps is infinite, although in this
case, the sum of the jump sizes is finite. Hence, the process is said to be of
infinite activity and finite variation. If only f\z\gl 2?v(dz) < oo holds, the sum
of jumps less than 1 does not converge and the process must be compensated
with the expected value of the small jumps. In this case the process is said to
be of infinite activity and infinite variation. This leads us to the general form
of all Lévy processes.

Theorem 3.3 (Lévy-Ito decomposition). Every Lévy process X can be written

as
X, =t + WA / / zJx (ds,dz) —|—hm/ / zJx(ds,dz)  (3.1)
|z[>1 €0 <lz<1

where v € RY, WA = {W : t > 0} is a d-dimensional Brownian motion with
covariance matriz A and Jx(ds,dz) = Jx(ds,dz) — v(dz)ds is the compensated
Jump measure.

Proof. See [34], Section 20]. O
Remark 3.4. Due to the compensation of small jumps, (3.1)(a) is a square
integrable martingale.

Remark 3.5. If [, |2|v(dz) < oo, fotf\z\>1 |z|v(dz)ds can be added to and
subtracted from (3.1) to obtain

X, = 'y—l—/ |2|v(dz) t+WA+hm/ / zJx(ds,dz).  (3.2)
|z|>1 <lz|<1

13



As the terms in (3.2))(a) are martingales, this form of the Lévy-Ité decomposition
can be useful when computing expectations.

Given the form of the Lévy-It6 decomposition, every Lévy process can be
defined by its characteristic triplet (A, v,~). These parameters can also be used
to define the characteristic function, ¢, of a Lévy process, which can be shown
to have the following general form.

Theorem 3.6 (Lévy-Khinchin representation). The characteristic function,
wx, of a Lévy process, X, can be written as

Px(€) = Blei6X] = 1), ¢ e RY,

where 1 is called the characteristic exponent and has the representation

9O = =itr.&) + 56 A0 + [ (1= ritg D). (33

Rd
(a)
Proof. See [34, Theorem 8.1] O
Remark 3.7. By rewriting (3.3)(a) as (1 — ei<5’z>)(]1|z|§ + 1)21>1) and set-

ting v,A = 0, we recover the characteristic exponents of a CP process with
Jjumps greater than one and a compensated CP process with jumps less than 1,
corresponding to the Lévy-Ité decomposition.

Remark 3.8 (Truncation function). The separation of jumps into those greater
than and less than or equal to 1 in and is achieved with the truncation
Junction 1,j<i. However, this choice is arbitrary and other functions with the
same asymptotics could be employed. If the process is of finite variation, 0 can
be used as the truncation function and if f\z\>1 |z|v(dz) < oo, 1 can be used.
Note that when the truncation function is changed, the value of the ‘drift’, ~,
also changes.

If the stationary increments property of Lévy processes is dropped, the char-
acteristic triplet becomes time-dependent. In this case, the Lévy measure must

satisfy for 0 < s <t
t
/ / 1A 2%v(dz, du) < oco.
s JR4

Such processes are called time-inhomogeneous or additive Lévy processes and
are dealt with in detail in [34] Sections 9 and 11|. In this thesis, we only consider
time-homogeneous processes, although time-inhomogeneous processes can arise
through an Esscher transform of a time-homogeneous process (see Section .

The jumps of a Lévy process also need to be taken into account in the It6
Formula for functions of a Lévy process.

14



Theorem 3.9 (It6’s Formula for Lévy processes). Let X = (X1,..., X T be
a Lévy process with characteristic triplet (A,v,~). Then, for f € C*(R%),

f(Xy) = /Zaf _)dXE 4 /Z ~Aij0i (X )ds

e (3.4)
+ Z [f(Xs— + AXs) - f(Xs—) - Z AXzaif(Xs—)
0<s<t i=1
Proof. See [1, Theorem 4.4.10]. O

Heuristically, the two integral terms in the above equation are due to the
continuous, Brownian component of the Lévy process and f(Xs— + AX,) —
f(Xs—) counts the contribution to the change in f from the jumps at each
instant. As the jump component may be of infinite variation the sum of these
jump contributions may not converge and therefore Y, AX!9; f is subtracted
at each instant. Hence, if the Lévy process is of finite variation, the following
form of Ité’s Formula holds for functions that are also explicitly dependent on
time.

Corollary 3.10 (Ito’s Formula for Lévy processes of finite variation). Let X =
(XY, XDT be a Lévy process with characteristic triplet (0,v,7) such that
Jiz<1 12Iv(dz) < co. Then, for f € CH1([0,T] x R%),

f(t, X,) =f(0,0) + /ast ds+/28f _)dX!

(3.5)
+ ) F(Xe + AX) — f(X).
0<s<t
Proof. See [1, Lemma 4.4.6]. O

3.2 Variance gamma process

The use of the variance gamma (VG) process was originally described in [31]
and further developed in [30] (see also [16], Section 4.4] for a concise summary).
It is a Lévy process and can be obtained by subordination of Brownian motion,
but we begin by considering the VG distribution.

A normal variance-mean mixture is a random variable, X, obtained by mix-
ing a standard Gaussian random variable, Z, with an independent, non-negative,
absolutely continuous random variable, V', as follows:

X =a+8G+oVGZ

where o, 3 € R and o > 0. Depending on the distribution of G, the density of
the resulting random variable can have heavier tails and more kurtosis than a
Gaussian density and can also be asymmetric, properties that can be useful in

15



modelling financial returns. If o, =0 and G ~ F(%, %), K > 0 the resulting
variance-mean mixture is a VG random variable (see [36] for its distribution and
properties).

Similarily, leptokurtic, asymmetric, (semi-)heavy tailed distributions for in-
crements of stochastic processes can be derived from the Gaussian Brownian
motion by means of subordination. Consider a drifted Brownian motion with
volatility o and drift 6:

b(t,0,0) = 0t + oW,

Using an increasing process or subordinator, G = {G; : t > 0}, we can change
the time of the drifted Brownian motion to obtain a new process b(G¢, 0, o). This
has an intuitive economic interpretation that when price volatility fluctuates,
trading or business time can be thought of as randomly speeding up or slowing
down. For this reason the subordinator is often referred to as a stochastic
clock or business time and the resulting subordinated Brownian motion could
be thought of as a standard Brownian motion with stochastic volatility.

When G is a gamma process with G ~ I'(1,1), b(G;) is known as a VG
process. As G is an increasing Lévy process, b inherits the independent and
identically distributed properties of the increments of the Brownian motion, W.
Furthermore, as G is stochastically continuous, b is also stochastically contin-
uous. Hence, is a Lévy process. Moreover, as gamma processes are pure jump
processes, so are VG processes.

A VG process can also be expressed as the difference between two indepen-
dent gamma processes. Specifically, any VG process, X = {X; : t > 0}, can be
written as

X, =G} - Gi,

where G, G? are independent gamma processes. In electricity markets, G' can
be interpreted as the demand for power and G2 the supply, which provides an
intuitive rationale for using a VG process to model day-to-day price variations
in .

The Lévy measure of a VG process can be derived from that of a gamma
process and is given by

_ L asBp
v(dz) = /<;|z|e dz, (3.6)

252
where A= % B = \/01# and B > |A| must be satisfied to ensure that the
exponential part of the measure is decreasing. The volatility of the process is
specified by o, while the kurtosis of the distribution of the increments is given
by v. 6 specifies the skew and for this reason, if § = 0, the process is known as
the symmetric VG (see [31]).

Given (3.6), we can clearly see that Jizj<1 #v(dz) < 00 and [y v(dz) = oo
and therefore the process is of finite variation and infinite activity. Therefore,
by Remark [3:8] we can use the 0 truncation function in the Lévy-Kintchine
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representation (3.3]) to write

B(E) = —in + / (1— e%)(dz). (3.7)

By conditioning on the gamma time change, the first four moments of the
VG process are calculated in [30] and the expectation of the process at time
t is shown to be 0t. Using this result and the well-known connection between
characteristic functions and moments, we write i¢)’(0)t = #t. Computing the
derivative of the characteristic exponent at 0 we find

Y'(0) = —iy + /R —ize'*u(dz)

=— <’y+/Rzu(dz)>

= —i(y+0)

£=0

where the last line was obtained by explicit calculation of the integral using the
Lévy density. Hence, with the 0 truncation function, v = 0 and the characteristic
triplet of the VG process can be written as (0, v,0).

Similarily, we can use the 0 truncation function in the Lévy-Ito decomposi-

tion (3.1) to write
¢
Xt:/ /ZJX(ds,dz)
0o JR

where v, A = 0. By adding and subtracting fg Jg 2v(dz)ds = 0t we can write

t
X, =01+ / / 2y (ds, dz) (3.8)
0 R
(a)

where (a) above is a martingale.
Note that by rewriting (3.6) as

1

Az—B|z|
—e dz, Y <2
Klz|1HY ’ ’

v(dz) =

1

)

zv(dz) is infinite and

we see that a VG process is a special case of a CGMY process with C' = k™~
G=B4+A M=B—-AandY =0. ForY € [1,2), f\2|<1
the process is of infinite variation (see [I2] for more details).

The increments of a VG process over (¢,t+1) are distributed as independent
VG random variables and we can therefore calibrate a VG process to a time
series of asset prices using maximum likelihood (see [36], Section 3] and [6] for a
detailed analogous example using the NIG process). Note that when calibrating
the VG distribution a non-zero location parameter, C' € R, can be produced.
This location contributes to the drift so that it becomes 6+ C' (see [36], equation

(18)]).
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4 Ornstein-Uhlenbeck process

4.1 Definition and properties

Ornstein-Uhlenbeck (OU) processes are used to model mean-reverting behaviour
in asset price dynamics, where prices fluctuate around a (possibly moving) long-
term mean or fundamental level. Such processes are widely used in interest rate
theory (e.g. the Vasicek model) and in commodity markets and are usually
Brownian motion driven. In electricity markets, however, the stylized facts of
spot prices naturally lead to the use of non-Gaussian OU processes, which may
be defined as follows:

Definition 4.1. A cadlag process X = {X; : 0 < s < t} is called a Lévy-driven
OU process if it is the unique solution of the stochastic differential equation

dX; =a(m— X3)dt + odLy, Xs =z €R (4.1)
where L is a Lévy process and m € R and a,0 > 0 are constant parameters.

a is known as the speed of mean reversion and m is called the mean and
for simplicity, we set ¢ = 1. The above definition only makes sense if a unique
solution to the SDE exists and this is given by the next proposition.

Proposition 4.2. Given Fs for 0 < s < t, the unique solution X, of (4.1)
exists and is given by

¢
X; = 27 pm(1 — em2(79) +/ e"2(t=WqL, (4.2)
o ;,_/

(a) e

Proof. See [7, Proposition 3.1] O
We now use the above solution to find the conditional expectation.

Proposition 4.3. If the Lévy measure of X satisfies fIZI>1

the conditional expectation of X; given Fs for 0 < s <t is

|z|v(dz) < oo, then

1
]E[Xt|~7:s] = Xsea(tis) + (1 - eia(tis)) m+ a (7 +/
\

z|>1

|z|1/(dz)> (4.3)

(@)

Proof. Given Fj, the terms in (4.2)) (a) are deterministic and hence Fs-measurable.
We rewrite (4.2))(b) using the form of the Lévy-1td6 decomposition in (3.2)) to get
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¢ ¢
/ e~ ot=wgr, — (»y +/ z|1/(dz)> / e—alt—u) g,
s |z|>1 s

(a)

¢ ¢
+/ ae_a(t_“)qu—&—lim/ / ze~ =W Jy (du, dz)
s €l Jg e<|z|<1

(b)

(4.4)

Both terms in (4.4)(b) are martingales and, given Fy, have expectation equal
to 0. The result follows by combining (4.4)(a) with (4.2))(a). O

Remark 4.4. Given the (3.2) and (3.8)), for a VG process (4.3))(a) is equal to
0, the drift of the process at t = 1. A similar result holds for all processes of

finite variation where |z|v(dz) < oo.
|z|>1
An OU process is the continuous-time analogue of a discrete-time autore-
gressive AR(1) process, Y, which for ¢ = 1,2,3,... can be defined recursively
as
Y; ::C—F/Jz}/t_l + €

where ¢ € R and € = {¢; : t = 0,1,2...} are the realisations of a discrete set of
random variables indexed by ¢t and Y} is some initial value. By approximating
the OU dynamics for t = 1,2, 3, ... with

Xt+1 ~ Xtefa + m(l — 6701) + ALt

we can conveniently calibrate an OU model as follows (see also [7), Section 5.1.1]).
Given a set of price data {S; : t = 0,1,2,...,N}, V¢t = 1,..., N plot S;
against S;_; and fit a straight line to the data with linear regression. The slope,
1, and the intercept c of the fitted line can be used to determine the parameters
of an OU process by solving for a and m in the pair of equations
a

p=e Y c=m(l—e ).

The residuals from the regression can then be used to calibrate the increments
of the Lévy process L.

5 Girsanov and Esscher Transforms

5.1 The Girsanov Transform

The Girsanov theorem provides a receipe for transforming a P-Brownian motion
to a Q-Brownian motion, where Q is second probability measure equivalent to
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P. It is used in finance to change the dynamics of a model from calibration
under the historical probability measure to the risk-neutral specification. We
being by recalling the statement of the theorem in one dimension.

Theorem 5.1 (Girsanov). Let W = {W; : 0 <t < T} be a P-Brownian motion
and A = {A+ : 0 <t < T} an adapted process that satisfies the Novikov condition

E [e%fOT )‘?dt} < 00.

For 0 <t <T, define the density process

Z(t) = exp (/Ot AedW — ;/Ot /\ids> (5.1)

Then, a new probability measure, Q ~ P, can be defined such that

dQ

— | =Z(t)
dP |z,
and .
W2 =w, - / A(s)ds (5.2)
0
18 a Q-Brownian motion
Proof. See [37, Theorem 5.2.3]. O

Remark 5.2. The Novikov condition ensures that Z is a positive martingale
and, as it has expectation equal to 1, it is a Radon-Nikodym derivative.

Remark 5.3. Usually, \ is chosen as a uniformly bounded, continuous function
A:[0,T] — R, in which case the Novikov condition trivially holds.

In financial applications, A is known as the market price of risk and induces
a risk premium in the price of derivatives.

5.2 The Esscher Transform

Whereas the Girsanov transform applies to Brownian motion, the Esscher trans-
form is a generalisation that applies to all Lévy processes. In this case, the
Radon-Nikodym derivative and the specification of the Q-dynamics of the Lévy
process have more general forms, but the basic mechanics of the transform re-
mains the same.

Theorem 5.4 (Esscher). Let L = {L; : 0 < t < T} be a Lévy process with
characteristic triplet (o2, v,7) and characteristic exponent 1 and let X : [0,T] —
R be a uniformly bounded, continuous function. For 0 < t < T, define the
martingale

Z(t) = exp ( /0 M), /0 t w(i)\(s))ds) . (5.3)
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Then, a new probability measure, Q ~ P, can be defined such that

dQ
|, Z(t) (5.4)

and L is a time-inhomogeneous Lévy process with characteristic triplet (o2, v, )

where
M dz, dt) = D% (dz)dt

and .
A =t +/ /(e’\(s)z — 1)z, < dvds
0o Jr

Proof. See [7, Proposition 4.4]. O

Remark 5.5. When L is a Brownian motion, (5.3) simplifies to (5.1) and the
characteristic triplet reduces to (1,0, fot A(s)ds), corresponding to the transform

62).

Remark 5.6. It is because v depends implicitly on t, thus causing the incre-
ments of L to be time-inhomogeneous, that L becomes a time-inhomogeneous
Lévy process after the Esscher transform.

In a model with n independent factors, the measure change should be carried
out with a vector of uniformly bounded, continuous functions

A(t) = (/\1(t), ey >\7z(t)),t S [O,T]

and the Radon-Nikodym derivative should be composed of a product of expo-
nential factors of the form (5.3

2(1) = ﬁexp (/ ML -1 / tw(xxs»ds) |

5.3 Esscher transform for Variance Gamma

Applying the Esscher transform to a VG process with characteristic triplet
(0,v,0), we get the time-inhomogeneous process (0,2*,0), where

vMdz, dt) = Le(AJ”‘(t))z*B“Cld,zdt
e

and —(B + A) < A < B — A must hold to ensure that the v*(dz,dt) — 0 as
z — Foo.

Proposition 5.7. The expectation of a VG process X = {X; : t > 0} under a
measure Q defined by (5.4) is

2(A+ A(s))

(X)) :/O B e (5.5)
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Figure 2: Expectation of VG process at t = 1, with A = —.015, B = .22 and v = .57.

Proof. Letting G(s) := B+ (A+ A(s)) and M(s) := B— (A+ A(s)), we find the
expectation via the characteristic function:

i (0,t) = i / —ize®* 1 (dz, ds)
R

£=0

t

0

t 1 0 o0
/ - (—/ eG(S)Zdz+/ e_M(S)Zdz> ds
ok —o0 0

B / ; (‘ oot M1<s>) o

and the result follows upon addition of the terms inside the brackets. O

Remark 5.8. If A =0, (5.5) reduces to EN(X;

)|,\:0 = 0t, as before.

As with the Girsanov transform of a Brownian motion, the Esscher transform
of a VG process results in a change in the ‘drift’ of the process. However,
assuming A to be independent of ¢, we can see that the expectation of the drifted
Brownian motion is linear in A, whereas the expectation of the transformed VG
process is non-linear. This is illustrated in Figure [2] where the expectation of
the VG process is plotted for all possible values of \. We can see that the
expectation goes to oo as A — —(B + A), (B — A), which implies that all
possible expected values can be achieved by means of an Esscher transform.
However, there is no economic reason why small changes in the market price of
risk near —(B+A) or (B— A) should produce very large changes in the expected
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value of an asset modelled by a VG process. For this reason, it is desirable that
A only varies in the near-linear region of the above graph.

6 Calibration to historical spot prices

6.1 Preliminaries

We now describe how the three factor model can be calibrated to historical
daily baseload prices. We use spot prices from 2007-2009 as this period coincides
approximately with the delivery period of the monthly futures prices that will
be used for the risk neutral calibration in Section [

Before proceeding with the calibration, we calculate, using the results of
Section [} the conditional expectation of the three factor spot price model.

Proposition 6.1. The conditional expectation of S(T'), as defined in (2.2)), at
time t is given by
E[S(T)|F:] =A(T) + o1 Wy
0
2 7(12(T7t) o 7&2(T7t) .
+Xje +(1-e Jm+-) (6.1)

+ X?e_QS(T_t) + (1 _ e—as(T—t))'L;i
3

where up is the expected value of the CP process att = 1.

Proof. The result follows from the conditional expectation of OU processes given
in Proposition and Remark O

The above proposition highlights the fact that, without the non-mean-reverting
factor X!, the long-term dynamics of the conditional expectation of S is almost
deterministic due to the exponential decay of the coefficients of X2 and X?3.

6.2 Seasonality

The first task that must be carried out in calibrating spot prices is filtering out
the seasonality of the time series. We do this by fitting the following function
to the price data using linear regression.

2mnt 2mnt
A = n i oAE OF n OAE OF
() =g tartt D (b s <365.25> +en cos (365.25))

(a) neN

©)
7 (6.2)

+ ) Li(d(t)di + Ln(t)en + Lp(t)e, + Lo(t)ee
i=1

(e

where ag, a1, b,,c, € R,n € N, are constants to be determined by the regression
and
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e N = {1,2,4,12}, corresponding to annual, semi-annual, quarterly and
monthly harmonics.

e d(t) assigns a number to each day (e.g. Monday = 1, Tuesday = 2 etc.)
and d;,i=1,...,7 is a constant for each day of the week.

e h, p and c are sets containing public holidays, partial public holidays and
days during the Christmas period, respectively, and e,, e, and e. are
corresponding constants.

(6.2) (a) captures the overall drift of the spot price (due to inflation, for exam-
ple), the truncated Fourier series (6.2))(b) specifies the seasonal and monthly
variations and (c) encapsulate variations on particular days. The results of
the fit are displayed in Figure A clear overall drift (blue line) and regular
monthly and seasonal variations (black curve) are visible. Variations due to
holidays, Christmas and the days of the week are also prominent (green oscilla-
tions).

As only three years of data was used for the above regression, the resulting
parameters may be unreliable and should not be applied to another time period.
However, the goal of fitting A to the data is not to find the seasonality function
that will hold for all time periods, but rather to remove the seasonal trend from
the chosen period of our price time series.

In order to ensure that spikes do not influence the seasonal function, the
regression was carried out only after initially removing spikes from the seasonal
price series (see next section). However, removing spikes from seasonal prices
can be imprecise due to the seasonal variations and not all spikes can be removed.
Therefore, after the price time series has been deseasonalised, the spikes removed
from the seasonal prices must be added back to the deseasonalised prices, so that
all spikes can filtered out together.

6.3 Spikes

The removal of spikes from deseasonalised prices is a non-trivial task that has
attracted a lot of attention in the literature. Kalman filtering is often suggested
but as it assumes that prices are normally distributed, it will not identify spikes
as expected (see [T, Section 5.3.1]). Particle Filters [20] and Markov Chain
Monte Carlo methods [24] are also suggested, although such implementations are
beyond the scope of this thesis. [32] suggests a non-parametric approach where
for a fixed speed of mean reversion a, N spikes of the form Si]ltzne_a(t_”),
t=1,..., N where s; € R are the spike magnitudes and 7; € R are the starting
times of the spikes, are fitted one-by-one to the price series using Maximum
Likelihood. We implemented this algorithm and the results are displayed in
Figure [

As the speed of mean reversion can only be chosen in advance, it is necessarily
an average value - individual spikes will have faster or slower decay. When a
spike decays more quickly than a, subtraction of the fitted spike from the price
series will induce an artifical spike in the opposite direction. Therefore, the
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Figure 3: Seasonality function A for 2008 and 2009.

removal of some spikes will actually increase the standard deviation of the price
signal, as is evidenced in the lower right-hand graph in Figure [d If a spike
decays more slowly than a, the remainder could be counted as second spike,
thus overestimating the total number of spikes.

Instead, we use a simpler algorithm akin to the Peaks-Over-Threshold method
of Extreme Value Theory (EVT), as outlined in [I5]. A threshold is chosen as
a certain number of standard deviations and all prices that have an absolute
value greater than the threshold are removed from the price time series and
replaced with the mean of the two nearest prices. The standard deviation is
recalculated and the process is repeated until no more spikes are identified for
the given threshold. The resulting spike time series is shown in the lower right-
hand graph of Figure [6] The threshold is generally between 2 and 3 standard
deviations and we choose the value that gives the best fit not only to the spike
distributions, but also to the remaining X' and X? factors. This corresponds
to 2.6 standard deviations.

This algorithm gives the extreme price data but does not tell us how many
spikes are present i.e. two extreme prices may correspond to the same spike.
To determine the number of spikes, the daily increment in the spike time series
must be examined. If the increment is greater than the threshold, then a new
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Figure 4: Filtering of price spikes using maximum likelihood (2005-2009).

spike is counted on that day. We assume a time-homogeneous jump intensity
and this can be calculated by dividing the number of spikes by the total number
of days with separate intensities for positive and negative spikes. A seasonally
varying intensity could be calibrated (see [23]), but given the small sample of
spike data and the relatively small impact a time varying intensity would have
on our pricing, we only consider a constant intensity.

Positive and negative spikes should also be separated when fitting their sizes
to distributions and given the small number of spikes, only distributions with
two parameters should be considered. Furthermore, as our filtering technique is
based on EVT, generalized Pareto distributions should be used (see [33]). Good
candidates in this class include the Pareto and exponential distributions. As the
VG distribution has exponential tails, in this work we choose the exponential
distribution for the CP process. The fit of positive and negative spikes is shown
in Figure [5| and the resulting parameters are given in Table [I| where A7! is
the mean of the exponential distribution and sq is the minimum of the absolute
value of the jump sizes. The speed of mean reversion can be deduced using
the procedure outlined in Section [} Due to the small amount of spike data
collected, we omit the statistical hypothesis testing of the fitted distributions.

Note that prior to filtering the spikes from the deseasonalised prices, it is

Table 1: Compound Poisson parameters for X3,
‘ Intensity S0 A
Positive spikes .031 6.52 .0653
Negative spikes .018 -8.30 .0377
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Figure 5: Fit of positive (left) and negative spikes to the exponential distribution.

necessary to ‘flatten’ the time series to remove changes in the long-term stochas-
tic mean level. This is done by extracting a 31-day moving average from the
deseasonalised prices before running the algorithm to filter the spikes. The mov-
ing average should then be added back to the price signal after the spikes have
been removed.

6.4 Stochastic mean process

After the spikes have been removed, the time series must be separated into the
factors X' and X2. X! is extracted by filtering out a 31-day moving average
(MA) which can be modelled as a Brownian motion, where the volatility is given
by the standard deviation of the increments. The left hand panel of Figure
[7 shows that the MA increments are well-modelled by a normal distribution
and Table [2| gives the corresponding Kolmogorov-Smirnoff (KS) and Anderson-
Darling (AD) test results - even the AD test, which places emphasis on the tails
of the distribution, shows that the Normal hypothesis should not be rejected at
the 2% level.

Table 2: Test statistics for X' fit.
‘ Test statistic p-value
Kolmogorov-Smirnoff (Normal) .031 .226
Anderson-Darling (Normal) 911 .020

A period of 31 days is chosen for the MA as this corresponds to the median
delivery period of the monthly contracts which we eventually wish to price. Note
that this MA is distinct from the MA used to flatten the deseasonalised prices
in the previous section.
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6.5 Day-to-day variations

The remaining time series can finally be calibrated to a VG driven OU process
by the procedure outlined in Section [d] The empirical density is plotted on the
right of Figure [7] where leptokurtosis and the inability of the normal density
to fit the data are clearly visible. In contrast, the VG distribution appears to
provide a good fit and this is confirmed by the test results given in Table

Table 3: Test statistics for X2 fit.
‘ Test statistic  p-value

Kolmogorov-Smirnoff (Variance Gamma) .016 .938
Kolmogorov-Smirnoff (Normal) .049 011
Anderson-Darling (Normal) 4.71 < 10710

The calibrated values for the for all factors are summarised in Table @l We
note that the rate of mean reversion, as, is larger than usually calibrated in
2 factors models (.74 versus .1 for a typical two factor model). This is to be
expected as our model contains a non-mean-reverting process and as is measured
for reversion to a more realistic level.

Table 4: Calibrated parameters of spot price model.

Parameter‘ o1 m as C o 0 K as
Value ‘.388 -.056 .784 0.207 7.74 -0.192 0.727 1.06
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Figure 7: Empirical densities of X' (left) and X? increments with fitted VG (red)
and normal (blue) densities.

7 Risk neutral calibration

7.1 Preliminaries

Henceforth, we assume that the filtration (F;);>¢ is generated by the DA spot
price i.e. Fy =o(S;),t > 0.

In the preceding chapter, a spot price model was calibrated to historical
market prices. From a probabilistic point of view, this means that the model was
calibrated under the ‘physical’ or ‘historical’ probability measure, P. However,
as the future spot price is uncertain, the fair value of a derivative written on the
spot price will not be the conditional expectation of the discounted spot price
under this measure i.e. the following holds:

v(t, S¢) # E[g(ST)|Fi]

where g : R — R, a P-integrable function of the spot price, is the derivative
payoff and v is its current value.

Rather, rational market participants will charge a premium for entering into
such a risky contract. Therefore, the fair value of a derivative will only equal the
expected future spot price under an alternative ‘risk-neutral’ measure, Q, that is
equivalent to P. The Fundamental Theorem of Asset Pricing guarantees, in the
absense of arbitrage, the existence of a unique ‘equivalent martingale measure’ in
complete markets where derivative contracts can be perfectly hedged. In order
to use the spot price model for derivatives pricing, we need to adjust the
dynamics so that it is calibrated under a risk-neutral measure. As the market
is incomplete a continuum of equivalent martingale measure will exist and one
such measure must be chosen for pricing.
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Few studies in the literature go into any great detail in the risk neutral
calibration of electricity spot price models. [7] shows how a spot model can be
adjusted so that the expected values coincide with futures prices, but only a
handful of futures contracts are used with a relatively simple model based on a
one factor mean-reverting jump diffusion. [J] goes into far greater detail with its
two factor model and obtains risk premia properties similar to those described
here in Section [7.3.2] We propose a new approach to specifying the market
prices of risk, which is made possible by the addition of the non-mean-reverting

factor X1 in (2.2)).

7.2 Spot-forward relationship

The essence of the following argument is taken from [7, Chapter 4]. We consider
a market consisting of DA electricity with price dynamics specified by (2.2]) and
a risk-free bank account, B, with dynamics

dB(t) = rB(t)dt,

where 7 is a constant interest rate. As argued in Section [I] electricity is not
considered a tradable asset and therefore, the only tradable asset in our market
is the risk-free bank account. According to arbitrage theory, a risk neutral mea-
sure, Q, is a probability measure equivalent to the measure PP, under which all
tradable assets in the market are martingales after discounting (see, for example,
[8, Theorem 7.8]). As B is trivially a martingale under any probability measure,
we find that all meaures equivalent to IP are risk neutral. For simplicity, we only
consider measures equivalent to [P given by the Radon-Nikodym derivative [5.4]
of an Esscher transform. Nevertheless, there is still a continuum of risk-neutral
measures from which we are free to choose, as is usual in incomplete markets.

The set of risk neutral measures can be reduced by adding to the market
futures contracts. These contracts are tradable and so their discounted payoffs
must be martingales under the risk neutral measure. If a futures contract, F,
entered into at time ¢, is continuously settled and compounded over the delivery
period [11, 72|, the holder will receive the amount

T2
/ D (S(u) — F(t, 71, 72) )
T1
As the futures contract is costless to enter we have the following identity:
T2
E| / e " (S(u) — F(t, 11, 7))du)|F] =0
T1

Therefore, the following relationship between spot and futures prices holds:
T2

F(t,Tl,’TQ) :EQ[/ ’lU(’LL,Tl,TQ)S(U)dqut]. (71)

T1
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w is a weighting function that depends on when the futures contract is settled:

w(u)
ft w(v)dv

S

w(u, s,t) =

)

where the choice of W depends on the settlement i.e. w(u) = 1 if settlement
occurs at the end of the contract, while w(u) = e~ if settlement is continuous.

Finding a measure, Q, that satisfies for a range of market futures
prices, F, and a given spot model price, S, can be quite complicated. It is more
convenient to rewrite F'(¢,71,72) in terms of a continuum of forward contracts,
f(t,u),u € [11,T2], each of which promises delivery at a single specific time, u,
over [71,72]. Using the fact that f(t,u) = F(t,u,u), reduces to

f(t,u) = EQ[S(u)|F]. (7.2)

By applying Fubini’s theorem to (|7.1)) and then substituting (7.2)), we have

T2

F(t, Tl,TQ) = / "(U(U,’Tl, Tg)f(t,u)du. (73)

1

Therefore, given market futures prices, F(t,m1,72), if we can solve to
find f(t,u),u € [11,72], we can then use the spot price model to find the risk
neutral measure Q via .

Most institutions have algorithms that break a list of futures prices into a
‘forward curve’, thus solving . More information on this topic can be found
in [7, Chapter 7]. We implement our own simple algorithm in Section and
then proceed to solve in Sections and

Note that any tradable derivatives, and not just futures contracts could in
theory be used to find Q. However, in the case of electricity, futures contracts
are the only derivatives consistently traded in a liquid manner for which data are
readily available. As we are ultimately interested in pricing monthly contracts,
we use monthly futures prices to calibrate our model and it is important to note
that it is possible that different results could be obtained if quarterly or calendar
contracts were used, even if all the contracts covered roughly the same period of
delivery. The reason is not only due to the varying length of delivery, but also
the differing attitudes to risk that may exist between the relatively small pool
of market participants. For this reason, it is not feasible to calibrate the model
with monthly futures and then price quarterly or calendar contracts with the
results.

Finally we remark that is only an approximation as it ignores deter-
ministic information about the future that is available to market participants.
For example, if a nuclear power plant is scheduled for maintenance during Au-
gust, this will affect the futures price for August but will not affect the spot
price prior to August. Therefore, before August, the filtration (F;);>o will not
contain the information about the plant maintenance. Other information about
the future is also not impounded in the spot price such as weather forecasts or
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extraordinary future events which will cause an increase in demand. As investi-
gated in [5], a more accurate representation of the spot-forward relationship is
of the form

F(tu) = E¥[S(u)|F v 6]

where the filtration (G;):>0 is generated by the flow of deterministic information
about the future not contained in the spot price. Fortunately, the maintenance
of power plants is usually scheduled at the same time each year and so can be
approximated in a seasonal variation of the risk premium (see Section [7.3.2).
Moreover, weather forecasts are only accurate over a short period of time and
other information, such as the scheduled opening of new power plants, will
usually only have an effect on long-term calendar contracts. Therefore, for
monthly contracts only five or six months in future, we assume that will
hold on average.

7.3 Calibration to monthly futures prices

Using market prices for monthly futures contracts with delivery periods ranging
from June 2007 to June 2010, we now aim to calibrate the three factor model
under the risk neutral measure Q. This will be carried out by applying
an Esscher transform to the P-calibrated dynamics of S so that (|7.2) holds.
Therefore, as argued above, we first need to solve (|7.3). We use OTC monthly
contracts which have a settlement date after the end of the month, so that
the weighting function w has a constant value 1. As our spot price model is
calibrated to daily baseload prices, we take f(¢,u) to be the forward price for
delivery on day u so that can be discretised as

T2—T1

> ftuw). (7.4)

u=1

1
T2 —T1

F(t,m,m2) =

7.3.1 Daily forward curve

Consider a set of months M and their corresponding monthly futures prices at
time ¢, Fp, := F(t, Tin, Tm+1), Vm € M. Using F,, and historical spot price data
we wish to predict future daily baseload prices f(d,,) for each day d,, € D,,,
the set of all days in month m. We do this by finding factors a : D,,, — R such
that f(dp) = a(dm)Fm. These factors should reflect the variation in the spot
price of electricity over each day during the month, but ignore overall seasonal
variation as this is already impounded in the futures price, F;,. One such set
of daily factors can be obtained as follows:

1. Construct the seasonality function A(t),Vt € [rm, Tm+1],m € M, using
the coefficients calibrated in (6.2)).

2. Construct a second seasonality function L(t),Vt € [Ty, Tm+1], m € M that
just uses the terms in (6.2))(a) and (b). Thus L captures seasonal price
variation but ignores daily variations.
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Figure 8: Daily prices factors for monthly contracts in 2007-2009.

3. Calculate
A(dn)

a(dy,) = ,

() = 1d,)

(This is equivalent to dividing the values plotted in green in Figure [3| by
those plotted in black).

Vd, € Dpn,m e M.

4. For each fixed m, normalise a by setting

This ensures that

Z f(dm):me#Dm-

dm €Dm

The results of applying this algorithm to all months in the period 2007-2009
are illustrated in Figure [§] Using these values of a, we can find daily baseload
prices given a set of monthly futures prices, thus finding a solution to (7.3)).

7.3.2 Risk premia

Before applying an Esscher transform to the P-dynamics of the spot price model,
we wish to investigate the properties of the risk premia inherent in monthly
futures prices. We calculate expected spot prices for each day in each month in
the set M using Proposition [6.1] and compare the results to forward prices.
Figure [0] shows the average risk premium for each day of the week and
each month of the year. A clear pattern in seasonal and daily variations can
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Figure 9: Average risk premia for each day of the week (left) and month of the year
in monthly futures contracts from June 2007 - June 2010.

be observed with low risk premia in spring, late summer and at the weekend,
corresponding to low demand and plentiful supply. Interestingly, December and
January premia are lower than November and February. This is possibly due
to increased liquidity and potential arbitrage opportunities involving quarterly
and calendar contracts whose delivery periods end or begin at the turn of the
year. Moreover, negative risk premia can be observed in April and August where
producers are willing to accept low prices for futures contracts in order to hedge
against over-supply.

Figure shows the average risk premium per number of days to delivery.
The graph is irregular for very short or long times to delivery and this can be
explained by the total number of contracts traded for each number of days to
delivery, which gives an indication of the overall liquidity of the prices. Between
5 and 150 days to delivery there is a pattern to the risk premia even though
the graph oscillates unpredictably. Premia seem to increase until about 90 or
100 days to maturity when they decrease slightly, possibly due to arbitrage
opportunities with quarterly contracts. Between 100 and 150 days to maturity
risk premia increase again as time to delivery becomes further away in time.

7.3.3 Market prices of risk

An Esscher transform may be applied to any of the three factors in so that
the expected value coincides with any given forward price. However, this must
be done in such a way that the resulting prices of risk form a definite pattern
over time and over the time to delivery of each contract. We therefore make the
following assumptions about the risk preferences of market participants.
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of days to delivery.

Assumption 7.1. There is no risk premium associated with price spikes.

This can be justified on the grounds that the monthly futures contracts are
based on the average price of electricity over a whole month. Therefore a limited
number of potential spikes that last for a day or two will have little impact on
the futures price. Thus, we will not perform any adjustment of the dynamics of
X3,

Assumption 7.2. The risk in day-to-day spot price variations depends solely
on the forward delivery time.

During periods of high demand in winter or midsummer it is possible that
there will be large fluctuations in the day-to-day spot price of electricity and so
futures contracts for these periods will be riskier. On the other hand, if a month
contains a lot of public holidays or has low seasonal demand, the monthly futures
price will be less risky. These are the patterns that were observed in Figure [0
This kind of risk is fixed for a particular delivery period and is independent of
the time to delivery of the contract. Therefore, to the factor X2, we associate
a market price of risk, A € R, which only depends on the delivery date, T, of

a forward contract.

Assumption 7.3. The risk in the overall spot price level depends solely on the
time to delivery of the forward contract.

If there is a long time to the delivery of a forward contract (e.g. 6 months or
more), there is a relatively large risk that spot prices will change their long-term
deseasonalised level by a large amount. On the other hand, if there is only a
days few to go before a futures contract starts delivering power, the risk that
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Figure 11: The market price of risk A per number of days to delivery.

the long-term spot price level will change is relatively small. This is the pattern
that was just about discernible in Figure Therefore, to the factor X!, we
associate a market price of risk, S\(Tft) € R, that is independent of the delivery
date of a forward contract.

Using these assumptions, together with the results in Section b} we define
the risk neutral measure, Q, via its Radon-Nikodym derivative with respect to
P, at the time of delivery of a forward contract, T', conditional on F;, as follows:

T 1 /7.
=ex MNT — s)dW, — = AT — s)ds
P </t (s 2/t =) ) (7.5)

x exp (M(L(T) = L()) = v(idr)(T ~ 1))

dQ

dP

With this density process we apply an Esscher transform to the spot price
dynamics and hence calculate the conditional Q-expectation of the spot price.

Proposition 7.4. The expectation of the spot price, S, defined in (2.2]), under
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the measure Q as defined in (7.5)), is

EQ [S(T)lft] = A(T) + 01 <WtQ —+ /T X(S)ds) +Xt26—a2(T—t)

(a)

1
+ (1 —e 2Ty | ;4 —
az

2(A+ Ar) (7.6)
k(B2 = (A+Ar)?)

(©]
4 XBemos(T=0) | (1 = e—as(T—t))/;TP
3

where W is a Q-Brownian motion and A, B and k are the parameters of the
VG process as defined in Section[3.9

Proof. (7.6]) only differs from ([6.1)) in terms (a) and (b) and (a) is given by (5.2)),
while (b) is given by (5.5). O

Remark 7.5. As discussed in Section applying the Esscher transform to
S adjusts the Lévy measure of the process L so that it becomes:

N 1 R
VQ)\T (dZ) == me(AJFAT)ZiBII‘dZ

Note that because \r is fixed for every forward contract and independent of time,
t, L remains a time homogeneous process after the Esscher transform.

We can now apply (7.6 and ([7.2)) to a collection of forward prices to find A
and )\ as follows:

1. Set A = 0 and for each forward price, f(¢,T), find Ar so that (7.2) holds.

2. Set Ar as the weighted average of all contracts with delivery, T', on the
same day of the week and the same month.

3. With Ay fixed in (7.6), for each forward price, f(¢,T), find 5\(T — 1) so
that (7.2)) holds.

4. Set S\(T — t) as the weighted average of all forward prices with the same
time to delivery, T — t.

Note that the averages above are weighted by the number of contracts that were
traded at each forward price, so that we give higher weight to the most liquid
forward prices.

As )\ remains inside the near-linear region of Figure |2 there is a near-linear
one-to-one relationship between Ay and the risk premia in Figure [9) However
the results for \ are significantly more regular than the risk premia in Figure

37



and are displayed in Figure together with a polynomial fitted to the values
for \(T — t). The regularity of this curve means that it can be used to price
futures contracts and options on the spot and futures price, which is done in
the next section.

8 Pricing

8.1 Monthly Futures

Using the Q-calibration of the spot model, we price monthly futures contracts.
The results for six days in April and May 2009 are shown in Figure [I2] along
with a histogram of the percentage errors in the predicted prices in Figure [I3]
We can see that the median error is between 2 and 4% while most errors are
less than 10%. Ten out of thirty-five of the prices have errors greater than 10%
and from Figure it would appear that these mostly occur in contracts with
relatively long times to delivery i.e. 5 or 6 months.

In particular, the predicted prices for months 5 and 6 (M5 and M6) in April
are consistently too large, which would suggest that the market price of risk for
long times to delivery has been overestimated. However, the errors for M5 and
M6 during May are less stark, which adds credibility to the specified price of
risk. Furthermore, while the error for M6 during April is large, the error for the
same contract during May, M5, decreases over time until it is negligable on the
last date shown, 19th May. This begs the question: was M6 mis-priced during
April?
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Figure 12: Predicted monthly futures prices (blue) compared with market prices (green)
12th, 19th May 2009.
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Figure 13: Percentage errors of predicted prices of contracts displayed in Figure

Another example is given in Figure where prices on almost the same
days in 2008 and 2009 are compared. The errors for M2 and M3 in 2008 are
small (4.6% and 5.4% respectively) but in 2009 the errors are high (33% and
24% respectively). The reason for this is unclear, but given the small errors in
2008, the cause is probably not mis-specification of the market prices of risk
or the seasonality function. Rather, deterministic information, not included
in the filtration (F;,¢t > 0) could have been available to market participants,
causing the depressed market prices for M2 and M3 in 2009 e.g. it could be
that more power plants than usual were scheduled to be online in September
and October 2009. In this light, an improvement in the model could include
such deterministic information in another filtration, which could then be used
to adjust the expected spot price appropriately (see [5] for examples).

8.2 Options on spot price

We next price vanilla options on the electricity baseload spot price. Such con-
tracts are traded in small quantities on the OTC market and have maturity at
9a.m. daily, before the start of the auction which sets the DA price (i.e. fifteen
hours before the start of the delivery period).

The results contained in this section are also useful for valuing the optionality
inherent in tolling and power purchase agreements. Holders of such contracts
must nominate (within contraints) on a daily basis how much power a plant
should produce and sell to the market. Thus, the contract holder has implicit
European options on the spot price of electricity (see [22] for more details).

We use the Finite Element Method (FEM) to price the options numerically
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and a brief overview of the method is given in Appendix [A]

8.2.1 Call option value

We define the value of a generic European type derivative contract on the spot
price with payoff function h : R — R as follows:

v(t, Se) = E%e " TIR(S(T))| 7

Assuming that the payoff h is that of a European call option, and using the fact
that the spot price depends explicitly on the factors X', X2 and X3 we can
rewrite the above as

U(t7 Xt17 Xt2a X?) = ]EQ[eir(Tit) (X71“ + X12" + X% - (K - A(T))>+ ‘Ft}
where K is the strike price. In order to simplify matters later on, we rewrite

2
X7 as

T
X2 = X2em (T8 4 (m + %)(1 —em2(T=0)y 4 / e 2(T=s)q[,
2 t

where dL(s) = fR\{O} 2J5(dt, dz) is the fully compensated VG process and iy is
its Q-expectation. For s > t we define

X? = X52 _ (m + %)(1 _ e—az(s—t))

so we can write X7 as

T
X = Xper 0 [T, (8.1

t
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Similarily, we define X3 := X3 — 21— e~2(T=1) and write
T
X% = the_‘“(T_t) + / e~ (T=5)qp,. (8.2)
t

Finally, as we are pricing under the measure Q, the factor X! also contains a
drift term, which can be removed by defining

X=X -0 /Ot A(s)ds. (8.3)
Using the above definitions we can rewrite the call option value as
ol X1 X2, XP) = B0 (Xh 4+ X3+ X3 - it T))+ Fl (8.4
where k : Ry x Ry — R is defined as
k(t,T) =K — A(T)

t
- 01/ A(s)ds — (m + E2)(1 — ema2(T=0)) _ B3 (1 —aa(T—t)y,
0 as as

In the sequel, for convenience we will simply write X* for X kk=1,23.

8.2.2 PIDE derivation

Let X; = (X}, X2, X?)" be a vector of the processes defined in (2.2). By
applying It6’s Lemma for Lévy processes of finite variation to the real-
valued function, f € CY2(J x R3), where J = [0,7T], we get the following
dynamics:

3 2
df (t, X,) =0 fdt + Y 0y, fdX] + %amml fat
=1

+ f(Xo + AXy) — F(Xyo).

Using the Lévy-Ito6 representation of the processes L and P, we have in differ-
ential form

2
df (t, X) = <at f+ %aml f) dt + 01, fAW,

+ (—agxgdt —|—/ zjg(dt, dz)) Ouo f
R\{0}

+ <a3m3dt +/ zjg(dt, dz)) Oy f
R\{0}

FRCG [ i) - f(X)
R3\{0}
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where J = (0,.Jo,J3) " is the 3-d jump measure of the independent Lévy pro-
cesses W, L and P. We define the corresponding Lévy measure as v :=
(0,2,v3) 7. By adding and subtracting v(dz) and making further simplifica-
tions we have

2
df (t, X) = <8tf + %8mlxlf — 3220y, f — wsang) dt

(a)
+ / FX + 2) — (X yw(dz) dt
R3\{0}

(a)
[ ) = St de)
R3\{0}

(b)

+ 0105, fAW; + O, f 2Jo(dt,dz) + Oy, f zJs(dt,dz) .
R\{0} R\{0}

()

The integral form of all terms in (b) are martingales (see [25], Proposition 9.3.1]).
Therefore, in order for f(¢, X) to be a martingale, (a) must be identically zero.
This leads naturally to the following proposition.

Proposition 8.1. Let v € C12(J x R3) N C%(J x R®) with bounded derivatives
i x be a solution of

v+ Av—rv =0 in J x R3
o(T,z) = g(x) inR?

where g : R +— R is the payoff of a European call option and

(Av)(z) = %amv 4 b(z)- Vo + /Rg\{o} v(a + 2) — v(@)v(dz)

with b(z) = (0, —agxs, —asxs) . Then v can also be represented as

o(t,z) = EQ[e_r(T_t)h(XTﬂft].

We can change to time-to-maturity and remove the interest rate r by setting
u(t,z) = e"'v(T —t,x). We then have the initial condition u(0,z) = g(z) in R3
and u(t, z) satisfies

Ou— Au=0in [0,T] x R3.
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Furthermore, using [25, Lemma 13.2.7], in the special case of the independent
Lévy copula, we can re-write the integral term of Au as

/ w(e + z7) — u(@)v (dz;).
j=2,3 R\{0}

Using the densities k;(z;) of the jump measures v; and by integrating by parts
twice with respect to z;, the resulting integrand is integrable around 0 and we
get the final form of A:

2
() = Fuaut Y ajoideyut [ Ouynulot 5K ()dz) (55)
=23 R

where kj(-_i)(z) is the i-th antiderivative of k;:
‘ / ECHD (1) da if <0

kj(-il) (Z) = ) )
—/ ECHD (2)de if 2 > 0.

Note that we will ignore the negative jump part of the Lévy measure v3 in
pricing the option. Negative spikes occur more rarely than positive spikes and,
as only a small amount of negative spike data was collected (see Figure , the
fitted jump size distribution may be unreliable.

8.2.3 Variational Formulation

To obtain the weak formulation of the PIDE, we multiply the equation by a
test function and integrate. By then performing partial integration wherever
we have a second derivative, we obtain the following variational formulation:

Find u € L*(J; HY(R3)) N H'(J; L?(R3)) such that
(Opu,v) + a(u,v) = 0,Yv € H'(R3) a.e. in J, u(0) = g(z)
and the bilinear form a(-,-) : H*(R®) x H'(R?) + R is defined as

2
a(u,v) = % (O, y Oy v)

(a)
+ Z {(ajxjazju,v)—k/s/Byju(y)amjv(x)kﬁ_m(yj—xj)dyjdx
r3 JR

7j=2,3

(b)
(8.6)

where we have used the change of variable y = = + z; such that for fixed j,

o mer+2z ifk=3j B
yer = { re, otherwise k=1,2,3.
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Remark 8.2. In order to show that the above variational formuation is well-
posed, the bilinear form, a(-,-), must be shown to be continuous and to satisfy
a Gérding inequality. This is done for (a) in [25, Proposition 4.2.1]).
However, the space on which (8.6)(b) is defined is L*(R?) x L*(R?) and well-
posedness cannot be shown in the same way’} Nevertheless, as descibed in [25,
Section 9.2.8], convergence with optimal rate can still be shown numerically.

The unbounded domain R? places unrealistic integrability constraints on the
payoff function g and, numerically, it is not a feasible domain of computation.
We therefore truncate the domain to G = (R}, R}) x (Rb, RY) x (R}, RY) and
denote the solution to the localised problem as ug. As the domain G will
need to be much larger than realistic values of X!, X? and X3, R% RY and
RY will have values between 100 and 400. Therefore, at the upper boundaries
of the domain the terms a;x;0,,u,j = 2,3 will dominate and with the large
values for z;, it is reasonable to assume that d,,u will be small. For this
reason, we choose Neumann boundary conditions for our PIDE: Vug € H}(G),
Oz, uq =0, 1=1,2,3 on G, where 0G denotes the boundary of G.

The variational formulation then becomes

Find ug € L*(J; HY(G)) N H'(J; L*(G)) such that

(Oyug,va) + alug,vg) = 0,Yug € HY(G) a.e. in J, ug(0) = g(z)|q.

8.2.4 Discretisation

We discretise the domain J x G with grid points (ty,, %),z = (Ti;, Tiy, Tiy)
defined by

wi, =R\ +ih;, i=0,1,...,N;+1,j=1,2,3 h; = (R} — R})/(N; +1)
tm =mk, m=0,1,...,. M, k=T/M

and solve the variational formulation of the PIDE in the linear finite element
space, Viy = S5 N H}(G), with S5 spanned by the product of hat-functions:

3
S5 = Span{H b, (x;) : 1 < iy < Ny}

Jj=1

In order to specify the form of the stiffness matrix A € RV*N N = N; Ny N3,
we compute the value of an arbitrary element:

o2
Aij = a(bjl bjzbjsvbil bizbis) = 71/[?;1 bj2bj3b;1 bizbin‘x
+ / agxzbjl b;‘2bj3bi1bi2bi3dx + /bjlbgzbijilb%biskéiQ) (y2 - .’L'z)dl'dyg

+/%m%%%%%%m+/%%%%%%@”%—mmmg

3If k£72> was the density of a CGMY process with Y > 1, instead of a VG process, it
would be possible show well-posedness for that factor in the usual way.
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2
= Z-S;;M; M, + MBI MY, + M} LY, MY,
+M}; M, B¢ + M}, M, L,

where for | = 1,2,3, the elements of the matrices S!, M!, B®% and L' are
defined as follows:

S, = [ v, b, dxy, MY, = [ by by, day,
B = [ ayaybl, by, day, = [V, 0,k (g — 2)dydy,.

Hence the form of the stiffness matrix can be written down as

ot
A :751 QM R m? 57)
+ Ml ®[(Ba2x2 + L2) ® M3 + M2 ®(Ba3x3 + L3)].

Note that in the derivation of the (8.7), the stiffness matrix tensorises so that it
can be written as a sum of tensor products of matrices that each only act in one
dimension. This is a direct consequence of using independent stochastic factors
and a product basis for the space S3-.

By replacing the time derivative with a finite difference approximation and
using the f-scheme in time, the variational formulation is converted to the fol-
lowing matrix problem:

Find ™ *! such that m =0,..., M — 1
(M 4 0kA)u™ ™ = (M — (1 - O)kA)u™, u = uy, (8.8)

where M = M! @ M? @ M?3. In our prototypical implementation we build the
whole stiffness matrix at once and store it in memory. However, the tensorised
form of the matrices M and A implies that the discretised problem could be
solved recursively in each dimension, thus improving computational efficiency.

We solve the matrix problem on the domain G = [—100, 100] x [—100, 100] x
[—50,400] with parameters defined in Table |4l Figure [15| displays the solution
with respect x2 and x3. We can clearly see that as both variables grow, the solu-
tion becomes increasingly oscillatory. This effect is due to numerical instability
known as convection dominance and this problem and its solution by streamline
diffusion stabilization is discussed in the following subsections.

8.2.5 The problem of convection-dominance

Consider the following multidimensional parabolic PDE for an unknown scalar-
valued function « on an open domain G C R¢%:

—alAu(z) + b(z) - Vu(z) = s(z) inG
u(z) =ug on dG
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where a € R, s is a scalar-valued function and b is a vector-valued function
of x € (G. This type of equation is known as a convection-diffusion PDE and
associated with its Finite Element discretisation we can define a Péclet number
along each coordinate axis as

_ Ibllscushi

Pe,
€ 2a

where h,, is the mesh width of the partition along the e, axis. When Pe, is
greater than 1, the diffusion term becomes insignificant and the PDE becomes
convection dominated. In these circumstances, it is well known that the Finite
Element solution is numerically unstable in that oscillations are introduced that
are not present in the true solution. The remainder of this section offers some
explanation as to why this occurs.

In general, diffusion terms in a PDE have a smoothing effect on the solution.
This can be seen by considering the heat equation:

uy —Au=0 inR? x (0,00). (8.9)

If we choose the initial condition u(x,0) = d(z), where § is the dirac function,
the resulting solution is called the fundamental solution. It is well known that
the fundamental solution of is a Gaussian density:

1
u(z,t) = /4,

Vart
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Thus the discontinuous initial condition, §, is instantaneously smoothed out to
a C>(R?) function for ¢ > 0 (see [21] for more details).

When the mesh Péclet number is large, the smoothing properties of the
diffusion in the analytic solution cannot be taken into account by FEM and the
Finite Element solution in turn over- and underestimates the true solution at
each node. The following two examples illustrate these ideas further. The first
is taken from [27] and shows how FEM breaks down when the coefficent of the
diffusion term is much smaller than the mesh size.

Example 8.3. Consider the boundary value problem
—€0zu+ 0,u=0,0<z<1; u0)=1,u(l)=0

where 0 < € K 1. The solution can be determined analytically as

l1—=x

1—e 7=
u(x) e
Thus, u(x) is close to 1 except in a neighbourhood of x = 1 of width O(e) where
it decays from 1 to 0.
However, if FEM is applied to this problem we get the following system
of equations for the finite element solution, U;, at the gridpoints, x; = ih,
1=0,...,N, where xy = 1.

€

1 .
_ﬁ [Ui+1 —2U; + Ui—l] + f[Uqu - Ui—l] =0,i=1,...,.N—1 (810)

2h
| e —
Up=1,Un = 0.

For small € (large mesh Péclet number), (8.10)(b) dominates and, beginning at
Uy, U; is 1 for even i. For odd i, we have (8.10)(a) = 0 resulting in U; = 0 and
so the Finite Element solution oscillates around the true solution.

A similar example is discussed in [I9] Section 2.2.2] and the authors elaborate
by determining, using the analytic solution, a discretised form which does not
produce an oscillating solution. This particular discretisation differs from
in the coefficient of the term (a). That is, € becomes € + d, which is equivalent
to adding an artificial diffusion.

The next example is more closely related to option pricing and illustrates nu-
merical instability when the drift of an asset’s price process is disproportionally
large.

Example 8.4. Consider the parabolic PDE on an open domain G € R

Opu(t, ) + br0zzu(t, ) — adyzu(t,z) =0 in [0,T] X G
Ozu(t,z) =0 on 0G

with initial condition u(0,x) = (x— K)* and a,b € R. Such a PDE represents a
European call option on an asset with Brownian motion driven mean-reverting
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Figure 16: Convection Dominance in European call option values with strike K and
coefficient of diffusion a.

price dynamics. Figure [16 shows the result of solving this system using FEM
with a basis of hat functions, using G = [1,20], T =2, K =10, b= .1 and a
constant mesh width h = .2969. The left-hand graph was generated with a = .2,
corresponding to a Péclet number less than 1 and is quite smooth, as expected.
However, the right-hand graph was produced using a = .001, corresponding to a
large Péclet number, and illustrates numerical instability typical of convection-
domination.

8.2.6 Streamline diffusion FEM

As hinted at in the previous section, the problem of convection dominance can be
solved by introducing additional diffusion terms. In the multidimensional case,
these artificial diffusions must act in the direction of convection, thus giving the
method the name ‘Streamline Diffusion FEM’ (SDFEM). The formulation of
the method used here is taken from [I1], where a steady state problem similar
to the following is considered.
L=—-Au+b-Vu=0 inG
(8.11)
u(z) =0 on dG
The standard weak formulation of the above is

find u € H}(G) such that B.(u,v) = 0,Vv € H}(G)

where

B.(u,v) = /G(eVu -V + (b Vu)v)dz.

To correct for convection-dominance an extra term is added so that the
discretised weak formulation becomes
Find u € H{(G) such that Be(un,vn) + Y 7w(Lun, b« Vun), = 0,¥v, € Vi’

KET
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where 7 is a partition of G with disjoint open elements x € 7. In one dimension,
this is equivalent to using test functions vy + ), 7 (b(2)0zvh )k, which produce
artificial diffusion type terms of the form 7, (b(x)d,un(x),b(x)0pvn(2))s. In
higher dimensions the extra terms are of the form 7. (b - Vup(x),b - Vo, (x)),,
where the scalar product b - Vv, ensures that the artificial diffusion acts in the
direction of convection.

The parameter 7, depends on the mesh width and is typically chosen as
T = Tohk. In the usual Galerkin discretisation used in this thesis, h, will be
constant along each co-ordinate axis, thus reducing the number of parameters
to the number of dimensions of the vector space. However, as described in [11],
exact values for 79 cannot be deduced analytically. In general, each 7y should
be large enough to eradicate any numerical instability in the solution, but not
so large that they affect the Finite Element solution.

[27, Theorem 9.2] shows that the optimal convergence rate of FEM is retained
with SDFEM.

8.2.7 SDFEM for convection-diffusion-Lévy PIDEs

If we restate (8.11)) as
(a)

=—cAu+b-Vu+ / [u(z + z) — u(x) — zdyu(x)lv(dz) =0 in G
R\{0}
u(z) =0 on G
(8.12)

we have a convection-diffusion-Lévy PIDE. In this case, the mesh Péclet number
alone cannot give us an indication as to whether or not a FEM solution will be
convection-dominated. To judge the influence of the Lévy term on the PDE
we need to look at the order of the Lévy process. Note that (a) can, in
general, be written as

/ L (u(w + 2) — u(z) — 30u(z)) f(2)dz (8.13)
R\ {0} |2|

where f(2) = k(2)|z|'T® and k is the Lévy density of v. « € [0,2) is known as the
order of the Lévy process with measure v. Given the form of the Lévy measure
for the Variance Gamma process, it is easy to see that « = 0. Compound Poisson
processes also have order 0. The CGMY process with parameter Y € (0, 2), has
order Y (see [12]) and other Lévy processes of infinite variation also have order
greater than 0 (e.g. NIG process).

The form of can be interpreted as a fractional derivate of order a.
Similarily, the order of a differential operator 0", n € N is nﬂ Thus, the order
of a diffusion operator is 2 and the order of a convection operator is 1.

4This can be seen by looking at the symbol of the operator ™, which is (i€)™, where € is
the Fourier variable of integration. Similarily, the symbol of a fractional differential operator
of order « is [£[*.

50



Eurapean Call Option

100

Figure 17: SDFEM solution for European call option value over the whole domain of

computation relative to s and xs.

The closer the order of a Lévy process is to that of a diffusion, the more the
Lévy process behaves like the diffusion and smoothes out the solution of the

can be carried over and the convection domination can be compensated by the

will be convection dominated. In this case, the result of the previous section
addition of an artifical diffusion.

PIDE. Thus, if the order of the Lévy process is less than that of the convection
term and the mesh Péclet number is greater than 1, the FEM solution of (8.12])

blem

icing pro

f pr

on o

.

8.2.8 SDFEM formulat

the convection terms

)

tricity spot price. Given the size of the space domain G, realistic values for the

We now return to the original problem of a European call option on the elec-
mesh widths are at least 1 in each dimension. Moreover

in the definition of the bilinear form contain the coefficients ayxy,

and so can have values of up to 400. Furthermore, the Lévy processes

k=23,
VG and

(

CP) acting along the coordinate axes es and ez have order 0. For these reasons,

it is clear that convection-dominance is the cause of the numerical instability in

we employ SDFEM.

9

To correct this
As the convection terms only appear in the factors X2 and X3, we can ignore

the X! factor in applying the streamline diffusion method, thus setting o4

Figures

=0

in the PIDE. We can then rewrite the operator A and its associated bilinear
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form as follows:
(AN =-b-Ff+ [ flat2) - f@wld
R2\{0}

where b = [agx2, azz3)T and a(-,-) : H'(R?) x H*(R?) — R is defined by
a(y,¢) = (b- V1, 6) +a” (1, 0) (8.14)

where

a’ = L (x + 2)0,0(x)v(dz)dx
w.)= [ [ ovtat 200w

In [26], the streamline diffusion method is applied with a bilinear form that also
contains a Lévy component such as a”. We add artificial diffusion terms to
(8.14)) acting in the discretised space to get a modified bilinear form defined by:

ar(up,vp) = alup,vy) + Z 7o[(b - Vup, b - Vo). + a7 (up, b - Vor).] (8.15)
reT

Using |26, Remark 5.3|, we can omit the term a7 (uy,, b.Vuy,), in (8.15) without

affecting the stability of the method. Furthermore, using the fact that the

mesh width is constant along each coordinate axis we can reduce the number of
parameters 7., so that (8.15) becomes:

ar(un,vp) = a(un, vn) +72[(a22205,Un, @2220,,01) + (A38305,Un, A22205,Up)]
+73[(ax20s,un, a3230;,vr) + (a32305,up, a32305,01)]

a(up,vy) can be discretised as before and the additional 4 new terms adjust the
form of the stiffness matrix so that it becomes

Aij = a(bj b; bi2bi3)

27737

+7'2[/ a%x%bgzbijQQbiadm + /a3x3bj b/» &Qafgbgzbi?’dx]

2773

13 2773 13

—|—7’3[/ agxzbgzbj3a3$3bi2b/< dr + /a%x%bj b, Cbgaigbizb/» dl’]
_ azx 3 2 3 2 azx 2713
= By M, + Li; MG, + M B + ML

2 2 2,2
aTon 13 ar2RasTs 2 Qd3T3 a3r2 R asTs
+7'2[Sij Mij - Bij Bij |+ 73 [Mijsij - Bij Bij ]

where we have used the fact that [ b, b;, dx = — [V} b;, dx, k = 2,3. Hence we

Jk Vi
can write down the stiffness matrix in dimensions 2 and 3 as follows:
A = (18975  B%%2 4 L2) @ M3 — (73 + m3)B%72 @ B

M2 @(ry§e 4 B 4 1Y),

Here we can easily see that by setting 7 = 73 = 0, we recover the standard
form of the stiffness matrix in 2 dimensions.
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Figure 18: SDFEM solution for European call option value near current values of 1
(left) and 2, with K =55 and T — t = 2.

8.2.9 Numerical results

Using this stiffness matrix we solve the matrix problem as before, but
additionally, appropriate values for 75 and 73 must be chosen. We use the typical
form 7, = dxhy for each k = 1,2 and chose the §;’s so that the 7;’s are roughly
the same. Values of do = .01 and J§3 = .002 yield values for each 74 of about
.015, which is enough to eliminate any numerical instability without distorting
the solution surface. Figure [I7] shows the results over the whole domain of
computation and we can clearly see an improvement over the surface in Figure
Lol

We price a European call option on 07.10.09 with delivery on 09.10.09. The
baseload price on the day of pricing was €55.54 and the seasonality function on
the day of delivery had a value of €63.22. We assume a risk-free interest rate of
1% and a contractual strike price of €55, which implies k(¢t,T) = —7.94. Figure
[[9] shows the results with respect to two dimensions at a time. On 07.10.09, we
deduce the values of the factors X}, X? and X}’ given the deseasonalised spot
prices, S = {S, :s =t —30,t —29,...,t}, as follows:

1. Set X} to the mean value of S,,Vs =t —30,...,t.

2. Define S; = S; — X! and Lgp := SD x L, where SD is the standard
deviation of the whole deseasonalised price time series over the calibra-
tion period and L is the number of standard deviations used as the spike
‘threshold’ described in Section

3. Set X? = (gt — LSD) AO.
4. Set X2 =8, — X3.

Hence, we determine the values of the factors to be X} = —9.54, X? = 5.68 and
X3 = 0. The option value results for X! and X? around these values are shown
in Figure [18| and by combining the option prices for the given values of X' and
X2, we calculate the current option price to be €4.21.
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2@

Figure 19: SDFEM solution for European call option value in an appropriate area of
interest, with z1 (top), 2 (middle) and x3 (bottom) set to 0 and k(¢,7) = —7.94 and
T—t=2.
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Figure 20: SDFEM solution for European call option value with T'— ¢t = 4.

Note that the option value with respect to X' has a shape similar to that
observed for options in Black-Scholes markets, whereas due to strong mean
reversion, the option value with respect to o has a more linear form. With
increasing time to delivery the option value function will get flatter and more
constant for both zo and x3, which is illustrated in Figure Therefore, as
time-to-delivery increases, option values will vary mainly with the value of the
X1 factor.

8.2.10 Convergence

We show convergence of the discretised solution to the exact localised solution
by picking a smooth hypothetical solution, u(x), and computing

f(@) == (Au)().

Knowing f(z), we then find the finite element solution, ug(x), of the PIDE
Au = f, on a bounded domain, G, with an appropriate boundary condition.
The error is calculated as

lug () = u(@)|| L= @),

where G’ is an appropriate domain of interest, and is plotted against decreasing
mesh widths. We do this for the factors X' and X2 in turn as it is computa-
tionally less expensive than computing the error for both factors simultaneously.
We choose the exact solutions as

uy(xy) = COS(%), x1 € (—10,10),

’U,Q(Jﬁg) = (332 — 1)(.1’2), To € (0, 1),

thus implementing Neumann boundary conditions for u; and Dirichlet boundary
conditions for us. The results are displayed in Figure for the VG parameter
values C = 1 and M = G = 5 and the diffusion parameter value o1 = .5. The
graphs confirm that the error decreases with the optimal rate 2.
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Figure 21: Convergence of FEM solutions for the factors X1 (left) and X2.

8.3 Options on futures

We lastly price European call options with maturity, T, on futures contracts
with delivery period |71, 7,,]. These options have value

v(t, Sy) = ECle " T (F(T, 11, 7,) — K) | F]

where 0 < T < 711 < 79. Let n := 7, — 71 and denote the days in the delivery
period of the futures contracts as 7,4 = 1,...,n. Using (7.2) and (7.4), the
futures price can be written as

F(T,71,7) = ZE@ ()| Fr) .

The Q-expected value of the spot price is given in (7.6) and can be substituted
into the above equation to give

1 ¢ ' —ag(ri—T)\ P
F(T,11,7) =— ; A(s)ds + (1 — e~ as(mi=T)) 22
(T, 71, Tn) n;( i) /T (s)ds + ( e )a3
p1
1 < 2(A + A,
+ — (1- e*“Z(Ti*T)) (4+ l)A +01WQ
"= azk(B? — (A+ Ar,)?
p1
1 — 1
- —ag(Ti— - —as Ti— X3
+ <’fl =1 ‘ > (n z:: ) ’
P2
(8.16)

The terms p; := p1 + p1, p2 and p3 above only depend on 77 and 7,, and so are
contant for any given futures contract. Using the notation of Section [8.2.1] we
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Figure 22: Option on a weekly futures contract with respect to x1 (left) and z2, with
k(t,T) = —547, T —t=1and 7y — T = 5.

can rewrite the value of the European call option on a futures contract as:
SR N . N +
oft, X}, X2, X}) = B [e—“T—ﬂ (Xh+ p2 X3+ po X3 — k(t,T)) m]

where

E(t,T) = K — p1 — (m + E2)(1 — emo2(T=1)) — E3(q _ g-aa(T—t)y,
as as

As the above options price depends only on # and the factors X}, X2 and X3,
the PIDE formulation for options on futures is the same as the PIDE for options
on spot in Proposition [8.1] except that the terminal condition for options on
futures is

(T, z) = (z1 + pawa + p3z3z — k(t,T))".

Therefore, we can price options on futures by reusing the discretised problem
derived in Section

For monthly futures, T'= 71 — 4 and for a 31 day delivery period, po and ps
are .0027 and .00075, respectively. Thus, the value of an option on a monthly
futures contract is practically independent of X2 and X3. For weekly futures
contracts, with T' = 7 — 4, py and p3 are .011 and .0032 respectively, so that
there will be some dependence between the value of an option on a weekly
futures contract and X2.

We consider an option on a futures contract for the week commencing
02.11.09 with contractual strike price €56 and maturity on 28.10.09. We value
the option on 27.10.09, when the spot price was €57.01 and k(¢t,T) = —5.47.
The results with respect to x1 and xo are displayed in Figure [22] As expected,
the option value is almost contant with respect to x5 and varies only 20 cent
over the domain of interest.
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9 Conclusions and further work

9.1 Summary

The purpose of the spot model described in this thesis was twofold. Firstly, we
described how deseasonalised prices revert to a mean level that is not constant
but has a stochastic nature and this stochastic mean level was modelled as a dif-
fusion in a separate factor. Secondly, we showed how a Brownian motion-driven
OU process does not accurately fit day-to-day price variations and instead, we
used a variance gamma driven process, which was better able to explain the
leptokurtosis and heavy tails of the data. By combining these ideas in a three
factor model, we showed how a regular market price of risk can be obtained in
calibrating the model to the monthly futures market.

The risk-neutrally calibrated model could then be used to price monthly
futures and European options on the spot and futures price. In pricing monthly
futures, we illustrated how the model could be used to identify mis-pricing in the
market. In pricing options on the spot price, we used the Streamline Diffusion
FEM to show how option values depend on the various price factors close to
maturity. We lastly showed how options on futures contracts can be priced by
simply changing the initial condition of the spot option problem.

9.2 Error analysis

The pricing of derivatives described in Section [8] contains a number of sources
of error and these fall into two separate categories.

Modelling error is the error caused by the approximations made in the phys-
ical and risk neutral calibrations as well as the error inherent in our modelling
assumptions and choice of model. We have seen in Figure [L3] that the difference
between predicted and market prices are typically under 10%, but can be over
30% in some cases. Although it is not clear how much of this disparity is due to
modelling error and how much is due to mispricing by the market, we suggest
in the following subsection some ways to reduce this difference.

Numerical error is caused by approximating the exact solution to a pricing
problem by a solution obtained with a numerical scheme such as FEM. In order
for the numerical solution to converge to the exact solution, the scheme must be
stable and consistent (see [25, Sections 3.5 and 3.6]). We saw in Section [8.2] how
the streamline diffusion method was used to ensure that the scheme was stable.
When a finite element scheme is convergent, its numerical solution contains
errors due to the localisation of the problem to a bounded domain as well as
the discretisation of the localised solution with finite elements. We showed in
Figure [21) how the discretised solution converges to the localised solution with
the optimal rate.

Figure also shows that the discretisation error for 2% mesh points is of
the order of 102 and, therefore, is considerably smaller than the modelling
errors shown in Figure For this reason, it might be tempting to think that
numerical error is relatively unimportant. That is, that the care required to
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ensure that there is no instability in the numerical scheme, or the computational
expense required to apply FEM with a relatively fine mesh of 28 points, is
unnecessary. However, if we solve a pricing problem numerically, in order to
isolate the modelling error, the numerical error must be reduced so that it is
almost negligible. It is only then that we can make accurate statements about
the overall effectiveness of the model.

9.3 Further work

In addition to what is described in this thesis, the three factor model (2.2)) could
be further applied and improved in the following ways:

e A relatively simply algorithm was used in Section [7.3.1]to obtain the daily
forward curve. It is possible that more regular results for the market prices
of risk would be obtained if a more advanced and realistic algorithm were
used.

e Figure shows how the model can fail to predict the prices of some
monthly contracts and, as suggested in Section [8:I] this could be due
to deterministic information available to market participants that is not
impounded in the spot price. Further research could investigate how such
information could be encapsulated and used in the spot model to reduce
the errors in predicted monthly futures prices shown in Figure

e A disadvantage of additive models that contain a diffusion is that they
allow prices to become persistently negative, even without considering
negative spikes. In this regard, could potentially be improved by
remodelling A(t) + X} as L(t)e™t, where L is a multiplicative seasonality
function and X is a Lévy process.

e The model was developed with natural gas markets in mind and initial in-
vestigations suggest that the same techniques can be used to calibrate the
model to European spot and monthly futures gas markets. Furthermore,
preliminary analysis shows that almost all of the dependence between gas
and electricity is encapsulated in the X; factors, with a rank correlation
of .5, whereas the other factors are almost independent with rank corre-
lations of less than .1. This is consistent with results in [I8] and suggests
a convenient way to price the ‘spark-spread’ between electricity and gas.

A Finite Element Method

The Finite Element Method (FEM) is widely used in many branches of science
and engineering to numerically solve partial differential equations (PDEs). In
this thesis, we use FEM to solve the parabolic PDEs of derivative pricing prob-
lems, which, in general, have one temporal derivative and up to two spatial
derivatives. In addition, the PDEs contain integrals, in which case they are
referred to as partial integro-differential equations (PIDEs).
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One of the main advantages of FEM is that it allows a higher rate of con-
vergence than is achievable with Monte Carlo pricing, as well as permitting
straightforward calculation of the ‘Greeks’. Furthermore, unlike the Finite Dif-
ference Method, FEM permits optimal convergence under low smoothness as-
sumptions on the payoff function and this is particularly relevant in financial
applications where the payoff may not be differentiable (as with vanilla options)
or even continuous (as with binary options).

We refer to [25] for an indepth treatment of FEM in the financial context
and only give the briefest of outlines here.

A.1 PDE form of pricing problems

The link between the value of a contingent claim on an asset whose price is
given by a stochastic process and the solution of a parabolic PDE is given by
the Feynman-Kac formula which we now recall in the case of Brownian driven
dynamics.

Theorem A.1. Let X = {X; : t € J},J = (0,T) be the solution of the
stochastic differential equation

dX, = b(t, X,)dt + o(t, X,)dW,

where b,o : J X R+— R are Lipschitz continuous and grow at most linearily in
x. Given a function g € L*(R), the following are equivalent representations of
Ve Ch2(J x R)NCY(J x R) with bounded derivatives in x € R:

(i) V is a solution of

(a)
—_—
OV +AV —rV =0 in J xR, (A1)
V(T,z) =g(x) mR

where
(AV)(t,2) = %UZ(t, D)0V (1, 7) + blt, )0V (£, 2).

(ii)
V(t,2) = EQ [e 0 XX )| X, = 2

where r : R — R is bounded and continuous and Q is a risk neutral measure.
Proof. See |25 Theorem 4.1.4]. O

The second representation is a Q- or risk neutral expectation and thus defines
the fair value of a derivative with payoff g. The idea of the proof is to applying
Ito’s Lemma to M, = e~ )i’ r(Xo)ds (¢, Xy), where f € C12(R x R) has bounded
derivatives in . The result is a semi-martingale whose drift is given by (a).
M; can be thought of as the value of a derivative, but in order for it to be the
fair value, it must be a martingale and therefore, its drift must be identically 0.
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Thus, we can see that the form of A, termed the infinitesimal generator of
X, depends completely on the dynamics of X through an application of Ito’s
Lemma. Given It6’s Lemma for Lévy processes (3.4)), it is not difficult to see
how Lévy dynamics for X result in A containing an integral term. Furthermore,
using It6’s Lemma for multidimensional processes, the above theorem can easily
be generalised to the case where X is a multidimensional stochastic process.

A.2 Variational Formulation

The next step is to remove the second order derivative of the pricing PDE via
integration-by-parts, yielding the weak or variational form of the PDE. In this
light we need the following definitions.

Definition A.2. Let G = (a,b) € R be an open, possibly unbounded domain
and u € C*(G). Then the linear functional D™u,n € N, is a weak derivative of
u if
/ D" updx = (71)/ uD"pdx, Yo € CY(G).
G G
Definition A.3. For m € N, define the Hilbert space
H™(G) ={u € L*(G): D"u € L*(G),n < m}

with the inner product

m

(U, U)Hm(G) = Z(D"u, Dnv)Lz(G)

n=0

Thus, we consider the derivatives in to be weak derivatives and con-
sequently work in the space H™(G), m € N, which is an example of a Sobelov
space. Furthermore, H*(G) is the closure of C*°(G) in the H! norm, which will
be an important property later when we need to densely embed a discretised
space in the solution space. If A is generated by Lévy-driven dynamics, we need
Sobelov spaces of fractional order, where m > 0. However, in this thesis we only
consider Lévy processes in combination with a diffusion, so we only deal with
the case m = 1.

As alluded to above, we multiply the by a generic ‘test’ function and
integrate the second order term by parts to get, Vv € H*(G),

/G J—zé)mu(t,x)v(:v)dx = [Jz(ta ) Bult. :C)v(x)} z=b -

2 2 v—a

(a)

o?(t, )
/Gazu(t,x) < 5 Ozv(T) + a(t,:c)aza(t,x)v(x)> dx.
(A.2)

To simplify the weak form of the PDE, we wish to assign a value (usually
0) to (A.2)(a) by choosing a suitable condition on u or v at the boundary of

61



G. A Dirichlet boundary condition assumes u,v = 0 at G, which means the
Sobelov space that we work in becomes H}(G). Alternatively, we can assume
Ozu(z,t) = 0 at OG and this is termed the Neumann boundary condition.

Before converting to its weak formulation, we change to time-to-
maturity (¢ — T — t) to obtain a forward parabolic problem. We then state
the variational form as follows:

Find u € L*(J; H(G)) N HY(J; L*(G)) such that
(Opu,v) + a(u,v) = 0,Yv € Hi(G) ae. in J, u(0,z) = g(z)
and the bilinear form a(-,-) : H}(G) x H}(G) — R is defined as

0_2
o) i= (54 ) + fo0’ = b0 + (rpr0)

In order to guarantee the existence of a weak solution of the above problem,
the bilinear form a(:,-) must be shown to be continuous and must satisfy a
Gérding inequality. We refer to [25, Theorem 3.2.2] for more details.

A.3 Localisation

If the PDE is defined on an unbounded domain G (e.g. often the PDE is defined
on the whole of R?), this may place unrealistic integrability constraints on the
payoff function g. In this case, the domain is localised to (—R, R), R > 0 and we
solve a modified problem whose solution is ug. In this case, we must additionally
show that ur — u as R increases and then R can be chosen suitably large enough
so that the difference between u and up is negligible.

A.4 Discretisation

We look to approximate the solution to the variational formulation with piece-
wise polynomial functions. This allows us to discretise the variational formula-
tion in space by approximating u(t, ) with uy (¢, z) € Vi, where Vi is a subset
of H*(G) and is of finite dimension, N. When G = (a,b), the domain can be
partitioned with an arbitrary mesh

T={a=zp<z1<...<xN41 =D}

but for the purposes of this thesis we can assume that the mesh points are
equidistant. For 1 <1i < N we define the hat functions as

(x—xi,l)/h ifxe (:Ei,l,xi]
b7(£17) = (xiJrl — iL')/h ifx e (-TiniJrl]
0 otherwise

where h = (b — a)/(N + 1) is the mesh width. We can then choose Vy =
Sz N H}(G) where St is spanned by the hat functions

St =span{b;(z) :i=0,...,N + 1}
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Consequently, uy (¢, ) will be piecewise linear in z. In the case where G’ C R,
G will be partitioned along each co-ordinate axis and S will be given by a
product of hat functions.

The semi-discretised form of the variational formulation now reads

Find u € C'(J;Vy) such that for t € J
My (t) + Auy (t) =0, up(0) =u,

where Mij = (bj, bz) and Aij = a(bj7 bl)

We discretise in time with the finite difference ‘0-scheme’ where for m =
1,..., M, we have the equidistant time steps to = 0, t,, = mk, k = T/M and
for 6 € [0, 1],

aytot) = (utt - uf) /R
W) = 0uR ! — (1 - O)uR.
Finally, we state the fully discretised matrix problem as

Find u™ € Vi such that for m =0,..., M

(M + kA u ™ = (M — k(1 - 0)A)uR,  ul =y,

A.5 Stability and Convergence

In [25] Section 3.5], it is shown that for 6 € [%, 1], the 6-scheme is unconditionally
stable, whereas for 6 € [0, %), k must be sufficiently small.

Furthermore, it is shown in Section 3.6.2 of the same reference that for § = %,
optimal second order convergence in both time and space can be achieved in

the L2-norm i.e.
[ — w2 () = OB + k?).
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