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1 Introduction

Diffusion is a physical process that describes the spread of particles from regions of higher
concentrations to areas of lower concentrations. The mathematical formulation of this
process dates back to 1855, when Adolf Fick introduced the particle diffusion equation in
Fick’s Second Law. In the domain D C R%, we consider the problem

9t _ div(a(z)Vu(t,z)) = f(t,x) z€D, 0<t<T,
u(t,z) =0 zedD, 0<t<T,
w(0, ) = uo(z) zeD.

Various numerical methods for approximating solutions of parabolic partial differential
equations are available, cf. [13]. Those schemes have been designed for solving PDEs,
where the diffusion coefficient a, source term f and initial condition ug are known exactly.
However, for many problems of practical interest, no exact models determining the diffusion
coefficient are available. Thus, measurements are needed to specify the parameter, which
involves uncertainty. This results in a stochastic model for the diffusion coefficient rather
than exact deterministic input data.

A cousistent mathemtatical formulation of the diffusion equation with a random diffusion
coefficient has been given in [4]. We focus here on elaborating an efficient numerical algo-
rithm, that deals with uncertainity in the input data.

A widely used technique to treat randomness are Monte Carlo methods. Here, “sampling”
entails the numerical solution of many deterministic parabolic PDEs. We use efficient nu-
merical schemes available in the literature to compute each sample. It is well-known that
MC type methods reduce the statistical error at rate 1/2 as the number of samples is in-
creased. This results in a high computational cost of this compound algorithm.

In order to improve efficiency, Multi-Level Monte Carlo methods have recently been pro-
posed for the numerical solution of stochastic elliptic PDEs [1] and for hyperbolic conserva-
tion laws with random input data [7]. We adopt the underlying concepts for the solution of
stochastic parabolic PDEs. The MLMC type methods make use of the fact, that comput-
ing a rough approximate solution sample is cheap on a coarse grid with a large timestep,
whereas obtaining a good approximation on a fine grid with small timestep is expensive.
By choosing the optimally distributed sample size on each grid, we prove that the contri-
bution to the computational cost due to sampling is only logarithmic in the spatial degrees
of freedom and thus negligible.

The same concepts may then be applied to the wave equation in random medium

24 div(aVu) = f zeD, 0<t<T,
u(t,z) =0 zedD, 0<t<T,
u(0, z) = up(x), %%(0,37) =uy(z) z€D.

Again, the source of randomness lies in the coefficient a, whereas deterministic source term
and initial condition are assumed. Only minor modifications of the algorithm are required.



The choice of the time stepping scheme needs to be adjusted to the second order evolution
problem; we discuss Newmark’s scheme here.

Numerical experiments of the stochastic wave equation in one space dimension confirm the
theory.

2 Stochastic Diffusion Equation

Let D C R, d = 1,2,3, be an open bounded Lipschitz polyhedron and let (Q,A,P) be a
probability space. For 0 < T' < co the bounded time interval is denoted by I := (0,7T).
The space-time cylinder is denoted by Q7 := I x D and we set £ = I x 0D. Consider the
stochastic diffusion equation

(1) B — div(a(z,w)Vu) = f(t,z) in Qr, wE
(2) u(t,z,w) =0 on X,
(3) u(0,z,w) = ug(z) in D.

We assume deterministic source term and initial condition, and that the stochastic diffusion
coefficient a(z,w) : & — L°°(D) is measurable and independent of time t.

Assumption 2.1. There exist constants 0 < a_. < ay < oo such that

(4) 0<a- <a(z,w)<ay <oo forallze Dweq.

2.1 Weak Form and Well-Posedness

We follow [4] to obtain the variational formulation of the stochastic diffusion equation (1)
- (3). To this end, we set V := H}(D) and H := L?(D). Identifying H with its dual, we
obtain the Gelfand triple V.C H ~ H C V'. Let

(5) X =L*LV)NHYI; V") and Y:=L*I;V)xH,
equipped with the norms
©) lullx = (“u”%2(I;V) + ”%”%Z(I;v'))uz and [[(vy, v2)|ly := (“'UIH%Z(I;V) + [lvzl|F) 2.

It is well-known that X — C([0,T]; H) (see e.g. [6, Theorem 3.1]). Thus, for w(t,z) € X
the function w(0, ) € L?(D) is well-defined and therefore the initial condition (3) is satisfied
in the sense of L2(D).

For a given realization w € €2, the weak solution u(-, -,w) € X of the initial-boundary value
problem (1) - (3) is characterized by

(7 b(w;u,v) =1l{v) for all v = (vy,v9) € Y,



where

(8) b(w;u,v) = /I(%%,Ul)Hdt+/I/[)a(:v,w)Vquldxdt+(u(O,a:),vg)H,
and
) I(v) = / (. v1) et + (o), v2) -

I

Assumption 2.1 ensures well-posedness of the weak form (7) for all w € Q.

Proposition 2.2. Under Assumption 2.1, for everyw € Q and given f € L2(I; V'), ugp € H
the space-time variational formulation (7) of the stochastic diffusion equation (1) - (3)
admits a unique solution u(-,-,w) € X. It holds

(10) lullx < CUFE 2 rzavy + lwollz2py),
where C 1s bounded uniformly for all w € Q.

Proof. The bilinear form b(w;-,-) : & x ¥ — R induces a linear operator B, : X — )’
through y(Bw,v)y = b(w;w,v). We can formally write u(-,,w) = B, '(f,uo). Bounded
invertibility of B,, € L(X,Y’) is characterized in terms of three conditions on the associated
bilinear form (see {2, Theorem 3.6]). A verification of those conditions for the bilinear form
defined in (8) can be found in Appendix A of [11]. Inspecting the proof given there, one
obtains that under Assumption 2.1 the norm of B! is uniformly bounded for allw € Q. O

We introduce the Bochner spaces X := L?(Q, A,P;X) and ) := L?(Q, A,P;Y). We
then define the bilinear form B(-,-) : X x ) — R and the “load functional” F'(:) : Y =+ R
by

(11) B(u,v) := Eb{w;u,v)] and F(v):=E[l(v)] forue X, ve).
The variational formulation of problem (1) - (3) is then: Find u € X such that
(12) B(u,v) = F(v) forallve).

Theorem 2.3. Under Assumption 2.1 for given f € L*>(I; V') and ug € H, the variational
formulation (12) of the stochastic diffusion equation (1) - (3) admits a unique solution
u € X. It holds the apriori estimate

(13) lullx < CUIF(E @) 2y + lluollzz(p))-



Proof. According to Proposition 2.2 there exists a solution u € L®(Q; X) C L2(4; X) satis-
fying (13). To show uniqueness, let v(t, z,w) = (vi(t, 2)p(w), va(z)p(w)) € Y ~ L2 ()R Y,
where ¢ € L%(2, A,P). Then there holds

B(u,v) = E[b(w; u, (v1,v2))p(w)] = E[l(v1, v2)p(w)] = F(v).
As ¢ € L?(Q, A, P) is arbitrary, it holds for P-a.e. w €
b(w;u, (v1,v2)) = l(v1,v2)  for all v = (v1,v) € V.

Thus, the solution u(t,x,w) € X is unique by Proposition 2.2. O

2.2 Regularity of the Solution

For the numerical approximation we need additional regularity of the solution. To establish
a regularity theory for the random solution under certain smoothness conditions on the
input data is not within the scope of this master thesis. We therefore make the following

Assumption 2.4. We assume that the stochastic diffusion equation (1) - (3) admits a
unique solution

(14) u € L¥(@; C"([0,T]; H*1(D)) n C™+((0, T); L*(D)))
forp>1landr=1,2

Note that we implicitly assume compatible initial condition ug(z) = u(0, z) € HPY(D).
We refer to [15] for regularity theory of deterministic parabolic PDEs. Regularity of the
random solution u € L2(Q2; X) has been discussed in [4], however the smoothness in space
and time derived therein is not sufficient for our purposes.

3 Numerical Approximation

For a given realization a(x) € L°°(D) of the random diffusion coefficient we face the
parabolic PDE

(15) % _ div(a(z)Vu) = f(t,z) in Qr,
(16) u(t,z) =0 on Z7,
(17) u(0,2) = up(x) in D.

There are several numerical methods to solve this problem. We discuss a Finite Element
method of order p > 1 for spatial approximation and the implicit Euler and Crank-Nicolson
time stepping schemes here.




The stochastic solution u(t,z,w) of the diffusion equation (1) - (3) is characterized by its
moments. We estimate the mean field E[u] by a Monte Carlo method, i.e. by averaging

over a large number of solution samples 4%, i = 1,..., M corresponding to the solution for
M independent, identically distributed realizations a' € L>°(D) of the stochastic coefficient
a(z,w).

By combining these techniques, we pick up three contributions to the overall error induced
by the spatial approximation, time stepping and an additional statistical error resulting
from the Monte Carlo estimator. The equilibration of these errors by choosing the optimal
sample size and timestep for a given grid size is crucial.

The computational cost is considerably reduced by using different sample sizes on different
levels of spatial and temporal approximation without a significant loss of accuracy. The
Multi-Level Monte Carlo method uses a number of samples which is inversely proportional
to the finess of the grid and timestep. It has the same convergence rate as the single-level
Monte Carlo method on the finest level, however the efficiency is improved.

4 Space Discretization

Let 77, be a regular simplicial mesh of the polyhedral domain D C R? with meshwidth h =
maxgeT;, {diam(K)}. We denote the space of continuous, piece-wise polynomial functions
on the simplicial triangulation 7}, by

SPUD,T;) :={v € HY(D) : v|k € Pp for all K € Tp},

where Pp(K) = span{z®; |a| < p} are the polynomials of degree p on the simplex K.

In the following, we write V}, 1= Sg’l(D,’ﬁl) for the Finite Element space. Although the
space HY(D) generally does not ensure continuity in more than one spatial dimension, we
have S5 (D, Tr,) C C°(D) (ct. [2, Theorem 5.2]).

For a given realization a(x) € L%®(D) of the stochastic diffusion coefficient a(z,w), the
semidiscrete problem reads: For given f € L%(I; H) and for an approximation ugp € Vj of
the initial data ug € H, find up, € H'(I;V},) such that

(18) up(0) = ug and
(19) (Bn vp) + a(up, vp) = (F(t,@),v5)  for all vy € Vi

Here, the bilinear form a(-,-) : V x V — R is defined by a(v, w) := [, a(z)VoVwdz and
(-,-) : L*(D) x L*(D) — R denotes the inner product (u,v) = [, uvdz.

Let {q)j};.v:"l be a basis of V,, where N = dimV}, is the number of degrees of freedom of
the space discretization. Then uy € H'(I;V;) admits the unique representation u(t,z) =

Z?’:hl u;(t)®;(x) and the initial data can be written as ug, = j.v:’ll u§?<1>j. The semidiscrete
problem (18), (19) may then be reformulated as a system of ordinary differential equations
(20) Mu(t) + Au(t) = £(1), u(0) = uo.

6



Here, M;; = (®;, ®;) is the mass matrix, A;; = a(®;, ®;) is the stiffness matrix, ft) =
(f5) = (f(t), ®;) is the load vector, uy = (u 0) is the vector of coefficients of the initial data
and u = (u;) is the seeked vector of Solutlon coeflicients.

For the error analysis, we briefly review the theory of the corresponding stationary problem.
4.1 Analysis of the Stationary Problem

We consider the elliptic problem

(21) —div(aVu(z)) = f(z)in D,

(22) u = 0ondD.

As before, the diffusion coefficient @ € L™ is assumed to satisfy (4).
The weak formulation reads: Given f € H~1(D) find u € H}(D) such that

(23) a(u,v) = (f,v) for all v € H].

We define the Ritz projection Ry, : V' — Vj}, as the orthogonal projection with respect to
the bilinear form af(-, ), i.e.

(24) a(Rpu, vp) = a(u, vy) for all vy, € Vj,.
‘The Ritz projection is quasi optimal,

(25) llu — Rpull gy < a—_- Ulrelf Il — vall g

We have the following approximation property of the Finite Element spaces (see eg. [2]):

Proposition 4.1. Let D C R? be a polyhedron and let T, be a regular, simplicial mesh with
meshwzdth h. LetV,, = Sp’ (D, Ty) with N, = dimVj,. Givenu € X« = VNH™ (D), s* >
0, it holds for 0 < s < mm{s , b}

(26) inf ju—wvyllv < Ch*[lullx, ~ CN,**|ulx,.

vpEVY
Thus, for u € HP*1(D), we have
llu = Rpull gz py < CWP||ul| oy

Later, in the parabolic setting, we estimate the error in the L2-norm. We obtain a scheme
of order p+1 in the L2-norm for the elliptic problem by a duality argument (cf. [2, Theorem
I1.7.6]). To this end, we first recapitulate regularity of the solution of the elliptic problem.




Theorem 4.2. For f € L?(D) and & € WL°(D) as in (4), the variational formulation
(23) admits a unique solution u € W, where

W = {w € H}(D); Aw € L*(D)}

is equipped with the norm ||w|lw = ||Aw||r2(py + llwllz2(p). There holds the a-priori esti-
mate
(27) lullw < C@)FllL2(p)s

where C(a) depends on a_,ay and ||ally 1.00(py)-

Proof. Existence and uniqueness of the solution is a consequence of the Lax-Milgram
Lemma. The regularity of the solution is a consequence of the Who._regularity of the
diffusion coefficient and the regularity of the data f, there holds

—aAu = f+VaVu in L*(D).

Therefore we may estimate

18wl 2p) < €@ (IFl 2oy + IVl z2y) < C@ 12y
O

Remark 4.3. Generally, it holds W 2 H 2N H(D) for polyhedral domains D. The corners
spoil global H?(D) regularity of the solution, it merely holds u € HZ (D). However, for
convex domains we have W = H2 N H (D), cf. [3, Theorem 2.4.3, Theorem 2.6.3].

In view of Proposition 4.1, the Riesz projection defines an approximation of first order in
the Hl-norm in convex polyhedral domains D. The situation is more delicate for non-
convex domains, as singularities at the nonconvex corners spoil linear convergence rates on
quasiuniform meshes. However, one can restore O(h) convergence by using meshes which
are suitably refined towards the nonconvex corncers. The two-dimensional case with one

nonconvex corner has been exemplified in [13, Lemma 19.10].
We can now prove, that the Ritz projection admits an error of order p+1 in the L?-norm.

Proposition 4.4. Assume u € HPTY(D), & € WH°(D) as in (4) and a suitably refined
mesh Ty, as in Remark 4.3. Then the Ritz projection admits the error

(28) llu = Ruullzay < CRPHHlull o),

where C depends on a_,ay and ||a||y1,00(py-



Proof. In view of (25) and the approximation property (26) we have lu — Bpullgypy <
ChP|lul| gro+1(py. Let ¢ € L?(D) and let 9 € W be the solution of

(29) —div(aVy) = in D, % =0on dD.
For arbitrary vy € V}, there holds

(uh —u,0) = —(up —u,div(aVy)) = alup, — u,v) = alup —u, 9 — )
(30) < [V (un — )l 2|V (% — on)]l 2.

Taking the infimum over v, € V}, we obtain by Proposition 4.1, Theorem 4.2 and Remark
4.3

(31) (Bru—u,¢) < CRP||ull goerpyhl|9llw < CHPH ull govr oy ol 22 -
Choosing ¢ = uy, — u implies the assertion. O

We proceed with the error analysis of the parabolic problem.

4.2 FError Analysis of the Semidiscrete Problem

We return to the parabolic setting: Let up, be the solution of the semidiscrete problem (18),
(19) and let u be the solution of (15) - (17). We have the following error bound.

Theorem 4.5. Under Assumption 2.4, for & € WH°(D) satisfying (4) and for ugyp =
Rpug € Vi, the solution uy, of the semidiscrete problem admits the error bound

du(s)
at

t
(32)  [lun(®) — u(t)llr2(py < C(a)RPH <“u(t)“Hp+1(D) +/O MDY ds) .

Here, the constant C(a) depends on a_,ay and H&HWI,oo(D)-

Proof. We follow closely the proof of [13, Theorem 1.2], where a constant diffusion coefficient
a(z) = 1 and smooth boundaries dD € C™ have been assumed. The dependencies on the
diffusion coefficient are important for the analysis of the random PDE later on.

We split the error es(t) := u(t) — uy(t) as follows

(33) en(t) = (u(t) — Rau(t)) + (Ruu(t) — un(t)) = n(t) + £(t),

where 7(t) = u(t) — Rpu(t) and £(t) = Ryu(t) — un(t).
Both terms can be bounded seperately. The first term 7(t) is for every t the error of the
corresponding elliptic problem. We have by Proposition 4.4

(34) IOl z2(py = u(t) = Rt 2 py < CRPF w(®)| oy -




In order to bound &£(t), observe that for x € Vj,, t > 0 holds

% 0+ax) = (Rl — (%, %) +a(Bage x) — a5, X)
= —(f,x) + (B8, x) + a(Rr %, x)
~(fyx) + (Br 32, x) + a(3% x)
= (Rh ataX) (%79()‘
Thus,

(35) (at’£)+a(€ 5) (Bt’g)

and with coercivity of the billinear form a(-,-) follows

(36) S 1603200 = Wellacoy e 1lioco) < | 58] o VN2

We obtain with £(0) =0

(37) nwmmmsAW%

and therefore the desired estimate. O

L*(D)

Remark 4.6. We can choose the approximate initial condition ug,p = Rpug as we assumed
compatible initial conditions in (14).

Remark 4.7. The regularity of the diffusion coefficient & € W1 is merely needed for
the approximation order p + 1, cf. Proposition 4.4. If it was dropped, we would obtain a
slightly lower convergence rate O(h?) by Proposition 4.1. However, in view of Assumption
2.4, the assumed regularity of the diffusion coefficient does not seem to be an additional
constraint.

5 Time Discretization

We need to solve the initial value problem (20) numerically. We discuss two common time
stepping schemes for solving the system of ordinary differential equations.

5.1 Implicit Euler

For N; € N we define the time step

k:= 7

and t,, := mk, m = 0,..., N;. We obtain the fully discrete implicid Euler method by
replacing the time derivative in (19) by a backward difference quotient: For given f €

10



C°([0, T); H) and for an approximation ug,p, € Vj of the initial data up € H, find uj* € V),
such that for m =1,..., Ny and for all v, € V},

(38) uf) = ug and
m__,m-1
(39) (Hgi—, v) + a (', vn) = (f(tm), vn) -

As for the semidiscrete situation (20), using a basis of the FE space Vp we can rewrite the
fully discrete problem as

(40) (M +kA)u™ = Mu™ ' 1 kf(tm), 1=y,

It is well-known that the Euler method is of first order accuracy in time. We have the
following error estimate.

Theorem 5.1. Under Assumption 2.4, for & € WH(D) satisfying (4), f € C°([0, T); H)
and for ugp = Rpug € V3, there holds form > 1

(41) !]U}T‘"U(tm)”Lz(D) < C(&)hp+1 <”u(tm)”Hp+l(D)+f(fm B%Ef) Hp+1(D)d8>
tm || 52
+kf0 “m_g L2(D) $

The constant C(&) depends on a_,ay and IIdHW1,oo(D).

Proof. We follow closely the proof of [13, Theorem 1.5], considering a non-constant diffusion
coefficient a and a polyhedral domain D. It is important to know the exact dependencies
on the diffusion coefficient in order to obtain uniform bounds in the fully random case later
on.

We rewrite the error as

(42) up — ultm) = (U — Rpu(tm)) + (Ruultm) — ultm)) = £™ +n™.

As in the proof of Theorem 4.5 we realize that 7™ is a best approximation error and can
be bounded according to Proposition 4.4,

(43) 1™ 2oy < CHP*H lu(tm)l| o ) -

A straightforward calculation yields

(44) (gm_gmkl,vh) +a (€™ vp) =— (W™, vy) forallv, € Vj and m > 1,

where

W™ = Ry, u(tm)—g(tmal)_g_z;(tm) = (Rp—1I) u(tm)—;:(tm~1)+(u(tm)~—:(tm—1)_%(tm)) = Wl wl,

11




Choosing vy, = ™ in (44) yields
1™ L2(py < Hfm_luLZ(D) + k™| 2py »

and with £% = 0 we obtain

m m
6" <3 (T k2 =

L2(p)’

Observe that
J -1 t ou -1 t du
w] = (Rp — D)k / Sids =k (R — I)Gids,

tj—1 tj—1

which yields

m ) m t; tm
b Z “w{ LA(D) : Z /t o ”%%“H”“(D) ds = Ch”“/o 1
j=1 j:l j-1

Analogously, we rewrite

du(s)
ot

Hp+1(D)

. t] —
kwh = ut;) —u(tj—1) — k%(tj) = _/t (s = tj-1) %i;‘ds
-1

so that

2
(s — tj_l) %ds

tm 5
< ’v/ H"a'ﬁ”
0

m
Lz(D) S Z

L*(D)

m .
oM
j=1

L*(D)

5.2 Crank-Nicolson Scheme

Discretizing the derivative in a symmetric way around the midpoint ¢,,_1/2 = (m — %)k
results in a second order method in time. The Crank-Nicolson scheme reads: For an
‘approximation ugp € V3 of the initial data up € H, find u’ € Vj, such that form =
1,...,N; and for all vy € Vj,

(45) u?l = Uo,h and
m_,,m—1 _
(46) (uh—;:h_vvh) +a (%(UT —up’ 1),%) = (f(tm—1/2)’vh) .
We rewrite the fully discrete problem in matrix form as
(47) (M + 3k A)u™ = (M — gk AW™ " + kf(tm-1/2), ¥ =

Tt is well-known that the Crank-Nicolson method is second order accurate in time. We have
the following error estimate.

12



Theorem 5.2. Under Assumption 2.4, for & € WH*°(D) satisfying (4), f € C°([0,T]; H)
and for ugp, = Rpug € V3, there holds for m > 1

du(s)
ot

W)ds.

tm
= wltm)llzomy < CHP* (l»u(tmnlmﬂwﬁfo Hm(mds)

+Ck2 Otm( PBu

ot

(48)

9%
oy |5

The constant C depends on a_,a, and H&HWLOO(D).

Proof. The proof of [13, Theorem 1.6] may be adapted in the same spirit as in the proof of
Theorem 5.1, [

Remark 5.3. The implicit Euler and Crank-Nicolson timetepping schemes are both un-
conditionally stable. However, the Crank-Nicolson is the “limiting case” of unconditional
stability, which may cause artificial oscillations of the approximate solutions.

6 Monte Carlo Method

We are interested in the approximation of the statistical moments of the solution u €
LZ(Q; A). We will here focus on estimating the mean field. For M independent, identically
distributed realizations @' of the diffusion coefficient, we denote by ‘@ the corresponding
(exact) solution samples. The Monte Carlo estimator of Eu] € X is then given by

(49) Enlu] = % > .

We have the following standard result for the purely statistical error resulting from this
Monte Carlo estimator.

Lemma 6.1. For any M € N and for u € L2($; X), 0 < t < T holds
(50) IE(®)] — Enrlelll z2gracmyy < M2 [ 20.02(0y) -

Proof. As we have the continuous embedding X C C([0,T}; L?(D)), the solution u(t,-, -)
defines a random field on L?(D). Independence of the samples is preserved under the

13




continuous embedding and it follows

M
IBu(t)] — Bule@lBaqoy = E[IEk®) Zat>uL2<D>]

1 M B .
= <5 O E[IE®] = a0 )]
=1

~ %E[HE[U@)} —u(t)| 2]

_ %mnu(t)uim) — [E[@)]llF2(p))

IN

1
i Hu(t)HQLZ(Q;Lz(D)) :

6.1 Single-Level Monte Carlo Method

For the sake of actual computations, we need to replace the exact solution samples by some
approximation. We therefore choose the spatial approximation as discussed in Section 4
combined with one of the time stepping schemes discussed in Section 5. On a given mesh
Tn with meshwidth A and a fixed timestep k, for a given realization & € WhH™ of the
stochastic diffusion coefficient let * u . denote the approximation of the solution sample
‘() at time ¢, = mk according to (40) or (47), respectively. We estimate the mean field
of the solution at time t,, by

1 Am
(51) Eylufy) = 57 Z

There are three contributions to the overall error: The spatial approximation, time stepping
and the purely statistical error from the Monte Carlo estimator. We have the following error
bound.

Theorem 6.2. Assume (4), (14) and let a(w, ) € WH®(D) for every w € Q. Then the
Monte Carlo estimator (51) with solution samples given by (39) for r = 1 and (46) for
r = 2, respectively, admits the error bound

(52)

[Bltm)] — Barlug) < M2t 2y o)

+O(WPH + BN lull p2@ior (o, (D))ACT ([0, T E2(D)) -

L2(Q;L2(D))
The constant C depends on a—, at and ||a(z,w)| Lo @wio(D))-
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Proof. We split the error as follows

Bluttn)) = Bl ooy < NEuCtn)] = Barfulto)lagoyzacon,
+ || Barlu(tm) ~ u;lr?k}”LQ(Q;L?(D)) = I+l

The first term is a pure statistical error and is estimated with Lemma 6.1,
I< M_1/2“U(tm)HL2(Q;L2(D))-

The second term is a discretization error and bounded by the theory for deterministic
parabolic PDEs. Using Theorem 5.1 or Theorem 5.2 respectively, we obtain

M
IT< Mt Z ”‘ﬁ(tm) ~ ﬁh,k“LZ(Q;L?(D))

=1
< COP + K lull poouom o iz (Dyner+1((or1L2(D))-
.

We obtain optimal convergence rates, when the errors are equilibrated. On a given grid
Tr with meshwidth h, we choose a stepsize of the order k = O(h(p“)/ ") for time stepping,.
The optimal choice of sample size is then given by M = Q(h~2(P+1),
To compute the Monte Carlo estimator (51), we have to solve the initial value problem for
M samples. The computation of each approximate solution sample corresponds to solving
an elliptic problem for each timestep, cf. the fully discrete problem (40) or (47). We make
the following assumption on the elliptic solver:

Assumption 6.3. For each timestep ¢;, [ = 1,...,m, an approximate solution i@ of the
deterministic elliptic problem (40) or (47) is obtained in O(N)) work, 1 < v < 3, such
that the exact solution ™ of the fully discrete problem at final time %, is approximated
to order O(RP*! + k™) in L2-norm, i.e.

lur' — @5l 2oy < C(RPT + ).

Clearly, this results in an approximation of the exact solution at time tm,m of the same
order,

lu(tm) — @'l 20y < Nlw(tm) —will 2oy + up — apll2py < C(RPT 4+ E7).

There are several solution techniques which satisfy Assumption 6.3. The Cholesky de-
composition of the left-hand side in (40) or (47) is computed in O(V}) work. For constant
timesteps, the Cholesky decomposition is computed only once. However, forward and back-
ward substitution needs to be performed for each timestep, which is of quadratic complexity.
Drawbacks are the very high computational cost and the loss of sparsity in the Cholesky

15




factorization.

There is no need to solve the fully discrete equations exactly. As the solution of (40) or
(47) is an approximation of the exact solution, it is sufficient to find an approximation of
the same order. Iterative schemes to approximate u™ can thus be exploited. We refer to
[2] for a detailed analysis of the Multigrid and preconditioned conjugate gradients method.
As these techniques admit an error in every timestep, the amplification of these errors in
time needs to be analyzed carefully.

Under Assumption 6.3, the computational cost of the Monte Carlo estimator (51) is thus
given by O(M - N;- N} = O(N,'Z+(p+1)/(rd)+2(p+1)/d). The contribution due to Monte Carlo
sampling to the overall complexity can be reduced, as we will see in the following.

6.2 Multi-Level Monte Carlo Method

For the single-level Monte Carlo estimator (51) the same mesh 75 and a fixed timestep k
is used for all samples. We can considerably improve the efficiency of the algorithm by
using different sample sizes on different levels of spatial approximation and for different
timesteps.

Solving the fully discrete problem is cheap on a coarse grid. Equilibrating the error of the
spatial resolution and of the time stepping scheme, we use a large timestep on a coarse
grid. Therefore, small systems for a small number of timesteps need to be solved and we
can use a large sampling size M. However, accuracy of every approximate solution sample
is relatively poor. On the other hand, we get fast convergence on a fine grid. But we need
a small timestep in order to avoid a dominating error from temporal approximation. Thus,
we need to solve a large system for many timesteps and we use a reduced number of samples
in this case.

By {7:}§2, we denote a sequence of regular simplicial meshes obtained by uniform mesh
refinement. For [ > 0 the meshwidth of 7; is then

o : _ ol
hy = %g%{dlam(K)} 27hg.

Let V) = Sg’l(D,ﬁ) be the Finite Element space with N := dimV; = O(2%) degrees
of freedom. We introduce a level-dependent timestep k; = T/Nlt. In order to equilibrate
the spatial error and time stepping error, we choose k; = O(hgp +/ ") = o2 He+/y,
cf. Theorem 5.1, Theorem 5.2. The number of timesteps is then N} = O(h;(p 0/ " =
02 +)/ry = O(NF@E+D/ (D) 1t is a measure for the computational cost of the timestep-
ping scheme.

We then denote by u; 1= uz’, ¥, € Vi the approximation of u(tm) according to (40) or (47)
on mesh 7; with timestep k; at time t,, = myk, | > 1.
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As we assumed a nested family of meshes {7;}$2,, we obtain a hierarchic sequence of finite
dimensional subspaces
VoCWcC...CViCc...C HYD).

We may thus write the approximate solution at time ¢,, as

L
ur =Y (w —u-1),
=1

where ug := 0 and w — w;_; € V|. By linearity of the expectation, we obtain

L

Elur] = ZE[’W — 4]

=1

We estimate each addend E[u; — u;_;] by a level dependent number of samples M;. The
Multi-Level Monte Carlo estimator is then given by

L
(53) [u(tm)] : Z Eaylu —wa] =Y Epglw] — Eaglw—1).

We have the following error estimate.

Lemma 6.4. Under Assumption 2.4 and for a(w, ) € Wh**(D) satisfying (4), the MLMC
estimator (53) admits the error bound
(54)

[Efu(tm)] = B¥ultm | oy < C(WE™ + Sl i 07%)

xlull 2@ o, e+ 1 (DYRGr 1 (0,7 E2 (D)) -
Here, the constant C depends on p, a—, ay and lla(z, W)l Lo (w00 (DY) -

Proof. We rewrite the error as

1Blu(tn)] ~ B ]| 20,000 = [E0tm)] ~ Blus] + Bluz] — B {ultn)]| 20,1
L

< [Efu(tm)] - Elurlll 20,r2(py) + D B — w—1] = Eng [w — 1]l 2.2y
I=1
=I+1I

We estimate each term separately. The first term is bounded by Jensen’s inequality, Theo-
rem 5.1, Theorem 5.2 and Hélder’s inequality,

I < Eflu(tm) — ullp2py] < COE™ + kP ull 20 (0,73 50+1 (D)ynor+ (0.13:22(0))) »
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where C' depends on a—, a4 and [|a(®, w)]| Lo (w1 (D))-
For the second term, we estimate each addend as follows:

Efu — w—1] = Eng [ — 1]l 2o r2(py) < MY |y — -1l 20,22 (DY)
< M7V (ultn) — wll 2o 2 gpy) + Nutn) = wtll 220y )
< Cla)M] P (R k- RE kDl 2 s (o,1); v+ (Dyner+1 (0,71:,L2(D))
< (21 + 1)C(@) M PR+ kD) ull sz gsuor oo+ (Dyncr+ (0 L2(DY) -

Here we used Lemma, 6.1, Theorem 5.1 and Theorem 5.2. The constant depends on a_,
ay and ||a(z,w) || Leo(ywroo(py).- A summation over [ = 1,..., L and observing that k =
O(hl(p +1/ ") completes the proof. O

The preceding error estimate for the MLMC approximation holds for any distribution
{]V[l}l[;:I of samples over mesh levels. By optimizing the ratio between sample size and
meshlevel, we recover the same convergence rate as single-level MC on the finest level.
However, the computational cost is only a fraction of the latter.

Theorem 6.5. Under Assumptions 2.4 and 6.3, for a(w,-) € WhH®(D) satisfying (4), the
MLMC estimator (53) of the ezpectation of the solution of the stochastic parabolic PDE (1)

- (3) computed with My samples on mesh level by and timestep k; = O(hl(p +1/ "), where the
samples are distributed as

M, = [2+e2@=D+)  p_19 | T,
with some € > 0 arbitrarily small, admits the error bound
Blu(tm)] = EXultm)lll 2,2y < CHE Iellz2@uor oy onncr+ oz won)-

Here, the constant C depends on €, p, a_, ay and ||a(z,w)|| Lo ouwroopy). The computa-
tional cost is bounded by

(N%)Y Nt (log N¥)2+e if § <0,
Work(L) < C(8){ (Nf)YN}(log Nf)>+e if § =0,
(NZ)TH/ANE (log NE)ZFe if § > 0,

where 6 = (p+ 1)(2—1/r) — d.

Remark 6.6. We mention again that the regularity assumption a(w, ) € WH*°(D) could
be dropped and instead just assume (4). Then the constant C obviously does not depend
on [|a(z, w)l| e (o;w1.00(Dy)s but the convergence rate is reduced to order p, cf. Proposition
4.1 and Proposition 4.4. However, the regularity assumption on the diffusion coefficient
does not seem to be an additional constraint in view of Assumption 2.4.
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Proof. We need to find the correct distribution of samples M; for an overall convergence rate
O(hr) in Lemma 6.4. We obtain the asserted error bound, if we can show ZlL=1 hf*’lM'l_l/2 =
O(hg). Choosing M = 12+€92(L=0@+1) for | =1,..., L and some € > 0, we obtain

L L L

Z hf+1]\/[l—1/2 -~ Z 2—l(p+1)l——(1+e/2)2(l—~L)(p+1) _ 2—L(p+1) Z l—(1+e/2) - C(€)h1£+1.

I=1 =1 =1
To estimate the work, we observe that under Assumption 6.3 the computational cost for
M, samples on level [ is bounded by O(M;N}(NF)?). Note that NF = O(h~%) = O(2!9)
and N} = O(h~(P+0/m) = O(2Up+1/ry ~ (NF)@HD/0D)  \ye get the following bound for
the overall work of the MLMC estimator (53) on finest level L:

L L
Work(L) = Y My(N{(NF)" + N (NP,)") <2 MiNf(NP)!
=1 =1
L
< Z12+€22(L—l)(17+1)21(P+1)/T21d"/
=1

L
= QL) () § eg2(L) ) = D) p 1) rli-Lidy

=1
L
= (N§)'NE Z [2+eo(—L)(—2(p+1)+(p+1)/r+dy)
=1
L1
= (VEYNE S (I - 1y,
I'=0

We obtain the asserted bounds on the computational cost by straightforward estimates:
d <0

o

Work(L) < (NF)YNEL* e "2l < C(8)(NE)T N} (log NE)2+e.
V=0
6=0:
Work(L) < (NE)YNELL2e,
6> 0:

Work(L) < (NE)TNLL**¢25(2° — 1)7! < C(6)(NE)" N (log NE)>*<(Ng)*/.
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Remark 6.7. For low order approximations in space and time, the contribution to the
overall computational cost due to sampling is logarithmic in the spatial degrees of freedom
and thus negligible. The computational cost of the MLMC estimator (53) is comparable to
one solve of a deterministic parabolic PDE.

However, in order to preserve increased convergence rates induced by high order approxi-
mations in space and time, the number M of samples on each level need to be increased.
This results in an algebraic contribution of sampling to the overall complexity.

Therefore, the proposed MLMC approximation of the mean field of random solutions of
stochastic parabolic PDEs is efficient with low order approximations in space and time,
particularly suitable for solutions that admit low spatial and temporal regularity. This is
in correspondence with the MLMC estimator for stochastic elliptic PDEs [1].

7 Generalizations

7.1 Discontinuous Galerkin Time Stepping

So far, we discussed time stepping schemes of first and second order only. They are suitable
for solutions with low regularity in time. However, for smooth solutions in space and time,
in view of the high-order approximation in space, we need a small timestep to equilibrate
the error of spatial and temporal approximation. Thus, we need to solve the elliptic prob-
lem (40) or (47) many times, which is suboptimal.

Typically the solution of deterministic parabolic problems of the type (15) - (17) with a
time-independent diffusion coefficient admit smooth solutions in time for sufficiently regular
initial condition ug and analytic source term f(¢,z). Even for incompatible initial condi-
tions, the solution is smooth after a startup singularity. It is thus reasonable to assume
high temporal regularity of the random solution u € L2(Q; X).

Time discretization of deterministic parabolic problems by the hp Discontinuous Galerking
method has been discussed in [8],[9],[13],[14]. We follow [9] since the error analysis therein
is explicit in the dependence on the elliptic differential operator in terms of a_ and ay,
which ensures uniform bounds for all realizations of the random input data.

We semidiscretize the parabolic problem (15) - (17) in time by Discontinuous Galerkin time
stepping, the fully discrete problem is then attained by a Finite Element method in space.

7.1.1 Semidiscretization in Time

Let M = {I,,}7_, be a partition of I = (0,T) into 9 subintervals I, = (tm—1,tm). The
timestep is again denoted by ki, = tm — tm—1. We introduce a vector r := (7',,1)%,_:1 of
temporal approximation orders r,, > 0 on each time interval I,,. The exact solution is then
approximated by piecewise polynomials in time with coefficients in V' = H&(D). To this

end, we define the test space

VEM; V) ={u:I—=V;ulr, € P (In; V), 1 <m <M}
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We set Ny = ",?le(rm + 1) for the number of degrees of freedom of the temporal semidis-
cretization.

The approximate solution is allowed to be discontinuous across time nodes. We therefore
define the left and right limits at time ¢, by

ul = lsig)w(tm + 5), U, = lsiﬁ)lu(tm ~ 8).

The jump across time node t,, is then defined as [u]y, := u}, — ..
We can now formulate the Discontinuous Galerkin time stepping method: Find U €
VE(M; V) such that

(55) Bpg(U,V) = Fpg(V) forall V € VE(M; V),
where
m om
Boowv) = 3 [ {(3) +alw, 0t + 3 ([ms,vf0) + (05
m=1"+'m m=2

m
Foo(v) = 3 /I (F(8), 0)dt + (ug, v).
m=1"+*m

The DG time stepping method admits the following error bound.

Theorem 7.1. Assume that the ezact solution has the regularity u € L*(Q; H**1(I; V) for
some s > 0. For a given realization & € L™(D) of the stochastic diffusion coefficient satis-
fying (4) let U € V"(M; V) be the semidiscrete solution of (55) with constant polynomial
order Ty, = 1. Then there holds with k = max{k,,} the a priori error estimate

(56) flu — U”L2(I;V) < Cknlin(r’s)+17’_(s+l)HUHHS"'I(I;V)y
where the constant C' depending on a— and a4 is uniformly bounded for all w € .

Proof. 'This is a direct consequence of [9, Theorem 3.11]. The dependence of the constant
C on the elliptic spatial differential operator is given explicitly in [9, Proposition 3.3] and
is thus uniformly bounded under Assumption 2.1. O

We can therefore combine high-order approximations in space and time. In contrast to
low-order time stepping schemes discussed in Section 5 we obtain a reduced computational
cost of the temporal approximation, as fewer timesteps are needed to equilibrate spatial
and temporal errors. The adjustment of the Multi-Level Monte Carlo method as in Section
6 is then straightforward.

If the stochastic diffusion equation (1) - (3) admits a solution which is analytic in time, we
obtain exponential rates of convergence.
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Theorem 7.2. Assume that the stochastic diffusion equation (1) - (3) admits a solution
u € X which is analytic in the time interval [0,T] for every w € Q. Under Assumption 2.1,
for a given realization & € L%°(D) of the stochastic diffusion coefficient, let U € V" (M;V)
be the semidiscrete solution of (55) with polynomial order T, = 7 on a fized partition M
of the time interval. Then there holds

(67) llu = Ullz2yvy < Cexp(—br),

where C' depending on a_ and ay is uniformly bounded for allw € Q and b > 0 is indepen-
dent of w € §2.

Proof. Exponential convergence rates of the p-version of Discontinuous Galerkin time step-
ping have been proven in [9]. Again, uniform boundedness of the constant C follows from [9,
Proposition 3.3]. Exponential convergence follows then from [9, Lemma 3.6] with standard
approximation theory for analytic functions. Clearly, b > 0 is independent of w € 2, as it
stems from general approximation theory. 4

Remark 7.3. We note that this result holds true even for more realistic regularity assump-
tions on the solution u € X. Exponential convergence of the Discontinuous Galerkin time
stepping has been proven for solutions that admit time singularities. Singularities may be
induced through non-smooth initial data or discontinuities in the source term f. Using a
partition M which is suitably refined towards the singularity and a time approximation
order vector r which increases away from the singularity, one reobtaines exponential con-
vergence [9]. However, for the sake of simplicity and notational convenience, we stick to
the restrictive regularity assumption in Theorem 7.2 but keep in mind that this assumption
could be relaxed.

7.1.2 The Fully Discrete Scheme

On each time interval I, = (tm—1,tm), we need to solve successively a problem of the form:
Find Uy, € P"m(I;; V) such that for all V € P™(I,,; V') holds

(58) /I {(Urln» V) -+ a(Um7 V)}dt + (U+—1a Vr;z*‘—l) = /; (f(t)> V)dt + (Un:—la V;{——l)‘
U,,_; is given by preceding computations and we set Uy = uo.

Choosing a basis {¢; m };™, for the polynomial space P™™ (I,; V') we rewrite the semidiscrete
solution in every time step as Up, = Z;’;o Ujm@jm. Problem (58) can then be reformulated
as a system of 7, + 1 coupled elliptic reaction diffusion equations for the coefficients w; m!
Find {ujm}iZo C V such that for all {vi}im, € V holds

Tm -
17 \Ujms Vi 15 M\ Ujm, Vi) = im (Vi)
(59) > A (s, v3) + Bz, v0) = Y fim()
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We introduced the matrices

m

Agl = _/1_ (P;',mSDi,mdt + (P;;m(tm—l)@;t_m(tm—l), BZL = \/I <Pj,m(Pi,mdt7
and the right-hand side is defined by
fim(vi) = (/ f‘Pi,mdt,Ui) + (Upe1,03) 0 (bm1).-
IWI

We need to solve the coupled system (59) numerically. The optimal choice for the basis
functions {p;m};™, would be the one that diagonalizes the matrices Aj} and B} simulta-
neously. The system would then decouple in rp, + 1 independent equations. Unfortunately,
it does not seem to be possible to find such diagonalizations over R [9].

We choose normalized Legendre polynomials as basis functions. Due to orthogonality of
the Legendre polynomials with respect to the L? inner product, the matrix IEBZ-L = %E(Sij is
then diagonalized. We have two options to discretize problem (59) in space, cf. [9], [14] for
details.

Direct Spatial Discretization: We directly apply standard techniques analogous to the
spatial discretization presented in Section 4 to approximate the solution of (59) in space.
We choose a finite dimensional subspace V;, C V with dimension Nj, = dim(V},) and basis

{@l}l]i " . Each coefficient u;,, € V is then approximated by uf: B~ fi"l ué’mq)l € V.
We denote the mass matrix again by My, = (9, &) and Ay, = a(®;, &) is the stiffness
matrix. The fully discrete system for the coefficient vector Qf B = (ujl-,m, o ,u;\;’;L) € RN
is then form=1,..., 9
ARRM +EnA AT ul® fom
(60) E : =1
AT . AMM +Ep Al |WfE Lo

with load vector

Ii,m = (fi,m((bl)v e ,fi,m(@Nh))'

Note that the system (60) is of dimension (r,, + 1)N;. The source of randomness lies in
the stiffness matrix in the diagonal elements. Efficient solvers for sparse linear systems
of the type (60) need to be used. Nevertheless, in view of the computational cost, it is
advantageous to decouple the problem (59) into (7, + 1) scalar problems.

Decoupling: Numerical calculations have shown that the matrix A™ is diagonalizable

over C for 0 < r, < 100, cf. [9]. There exists a matrix Q,, € CrmtDX(rm+1) gych that
QlA™Q,, = diag(Ay, . .. s Arm+1). The coupled system (59) transforms into a decoupled
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system of 7y, + 1 reaction-diffusion equations, which can be solved independently: Find
wjm € V such that for all v € V holds

Tm

(61) Aj(Wym, v) + 5

a(Wjm,v) = gjm(v), i=0,...,7m.

The vector Wy, = (Wo,m, - - - » Wry,m) Is related to the solution @y, = (Yo, - - - » Ury,m) Of the
coupled system (59) by @, = Q. i and the right-hand side is given by m = @} fm(v)
We use Finite Elements to approximate the solution of the decoupled system (61). For some
triangulation 7y, of the domain D with meshwidth h we introduce the Finite Element space
Vi = Sg’l(D,ﬁ) C V of dimension N = dim(V},). The Finite Element approximation
wf Tﬁ € V, is then given by

k ,
/\j('lﬂfﬁ,’l)h) + Tma’(wfnﬁfia Uh) = gj,m(vh)’ V’Uh € Vha J=0,...,mm.
In a particular basis {q’l}lN:h1 C Vj, this translates into the following linear system

(62) (M + %A)wf,ﬁ =Gy

This linear system of dimension Ny need to be solved r,, + 1 times for every timestep
1 <m <M. For a given realization & € L*°(D) of the stochastic diffusion coefficient, we
obtain the Discontinuous Galerkin Finite Element approximation of (15) - (17) by applying
the backtransformation #£? = @, wEE, 1 < m < 9.

For the error analysis of the fully discrete method, we need the following conjecture.

Conjecture 7.4. The matriz A™ diagonalizable for any v, > 0 and the squared norm of
the transformation matriz Q,, grows at most linearly in v, t.e.

(63) Q. 2<Cre,  0<a<l.

As all matrix norms are equivalent, we do not specify the norm in (63). Numerical
experiments sustain this conjecture. The matrix [2-norm of the transformation Q,, has
been computed in [9] for 0 < ry;, < 50 and these numerical experiments suggest that indeed
a=1.

We obtain the following error estimate of the fully discrete DGFEM scheme:

Theorem 7.5. Assume that the stochastic diffusion equation (1) - (3) admits a solution
u € L2(Q;C®([0, T); HPTY(D))) which is analytic in the time. Under Assumption 2.1, for
a given realization & € L®(D) of the stochastic diffusion coefficient, let uPC € V' (M; V)
be the approzimate solution given by uPC| Im = Z;:O uf ﬁcpj,m, where @;m are normalized
Legendre polynomials and the coefficients ﬁan = Q,,WEE are computed by solving the

decoupled system (62) with constant polynomial order rp, = r on a fized partition M of the
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time interval.
If Congecture 7.4 is valid, we obtain the following error bound:

(64) llw — uDGHLz(I;V) < C’( exp(—br) + rzh”),

where the constant C' depending on T, a_, a4 is uniformly bounded for allw €  and b > 0
is independent of w € Q.

Proof. Let U € V"(M; V) be the semidiscrete solution given by (55). We have
flu— UDG”%f%(I;V) < 4(”“ - U“%Z(l;v) +U - UDG”%Z(I;V))-

The first term on the right hand side is bounded exponentionally in the polynomial degree
r by Theorem 7.2. We can therefore focus on the second term. We write the semidiscrete
solution in each timestep as Ul;,, = Z;:O U5 m@jm. The orthogonality properties of the
Legendre polynomials imply (cf. [9, Proposition 6.1])

m r
k
1T =P oy = D0 5 2 Itjm — uimlly-
m=1 j=0

By Conjecture 7.4 we have
m k r
65) M= uC Ny < C(exp(-br) + 30 TS rlwym — wEE ).
m=1 j=0

We follow [9] for the error analysis of the Finite Element approximation of the singularly
perturbed reaction-diffusion equation (61). For ¢ € C we define the bilinear form b.(:,-) :=
e2a(-,-) + (-,-) on the vector space V. Under Assumption 2.1, the bilinear form b, is
continuous and coercive on V equipped with the energy norm || - ||2 := [e]?|| - |2 + || - |-
We have (cf. [9, Lemma 6.4])

|be(w, w)] > V2min(1,a_)||w||> for all w € V.

Note that the coercivity constant is uniformly bounded away from zero for all w € Q.
As a direct consequence, we obtain quasioptimality of the Finite Element approximation
’wf B ¢ Vi given by (62) in the energy norm:

l0gm ~ wEENe < C 0k fwsm — il

where the constant C' is uniformly bounded for all w € Q. The construction of suitable finite
dimensional subspaces V}, (or the creation of suitable meshes, respectively) for solutions that
admit boundary layers due to the small parameter € or singularities near corners has been
exemplified in case of the two dimensional heat equation in [9]. As we assumed additional
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regularity of the solution, we conclude with standard approximation theory of the FE space
Vi :=SPY(D, Th):
inf ||wjm — vnlle < CRP.

VREV,
In (61) we have £? = ‘2&5{; By [9, Lemma 6.3] we have |¢]? > C%p and hence

2
_ T
lwjm — wiml < lel™2llwjm — wimlz < Cr—h™.
m

Combining this result with (65) we obtain
= 1P a1y < C((exp(—br) + Tréh?).
The assertion follows. O

7.1.3 Single-Level Monte Carlo Method

We adopt the concepts of Section 6 to estimate the mean field of the random solution u €
L?(2; X) of the stochastic diffusion equation (1) - (3). Since the Discontinuous Galerking
time stepping method provides solution samples which are piece-wise continuous in time
rather than just point values, we estimate the error in a different norm. We therefore need
slight adjustments of the theory for the Monte Carlo estimator.

For M independent, identically distributed realizations a* of the diffusion coefficient, we
denote by ‘@ the corresponding exact solution samples. The Monte Carlo estimator is then
given by

(66) Bulu] = 2 > ¥~ Efu].

We have the following analogon to Lemma 6.1.

Lemma 7.6. For any M € N and for u € L%(Q; X) holds
(67) |E[u] — EM[U]”L2(Q;L2(I;V)) <MY HU”L2(Q;L2(I;V)) .

Proof. Obviously the solution 4 € X defines a random field on L2(I;V). The proof of
Lemma 6.1 can thus be followed step by step. O

We replace the exact solution samples by the approximation obtained from the DGFEM
scheme. For a given realization 4° € L®(D) of the stochastic diffusion coefficient let iﬂh,T
denote the approximation of the solution sample i obtained by DGFEM on a given mesh
T;, of the physical domain D with meshwidth h, with a fixed partition M of the time
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interval and constant polynomial order ry, = r.
The single-level Monte Carlo estimator is then given by

M
1 i n
(68) E]\,j['ll,h,r] = M E . zuhﬂ. ] ]E['LL]
=

We have the following error bound, that comprises spatial approximation, time stepping
and the statistical error from the MC estimator.

Theorem 7.7. Assume that the stochastic diffusion equation (1) - (3) admits a solution
u € L?(Q; C>([0, T); HP*1(D))) which is analytic in time and that the stochastic diffusion
coefficient satisfies (4). If Congecture 7.4 is valid, then the Monte Carlo estimator (68) with
solution samples generated by the DGFEM scheme with constant polynomial order vy, = T
on a fized partition M of the time interval and a given mesh T;, with meshwidth h admits
the error bound

(69) V] ~ Enslunlll 2 ey < C(exp(=br) +r2hP + M=),
The constant C depends on T, a— and ay.

Proof. As in the proof of Theorem 6.2 we split the error as follows

VB[] — Enlunolll a2y < NERD = Bululll 202y
+ ”ENI[U‘ - uh»T]“L2(Q;L2(I;V)) = I+ II

The first term is estimated with Lemma 7.6, we have I < CM /2, The second term is
then bounded by Theorem 7.5

M
<M Z Hza = ahﬂ'”L?(Q;L?(I;V)) < C(exp(—br) + rzhp)-

i=1
Note that it is crucial, that the constant C in (64) is uniformly bounded for all w € Q. O

-As the errors of spatial and temporal approximation are not strictly separated for the
DGFEM scheme, the error equilibration is more challenging in this case. We start with a
given grid 7y, with meshwidth h for the spatial approximation of the decoupled system (61).
For a given partition M of the time interval we need to choose the appropriate polynomial
degree r on each timestep and the optimal sampling size M to equilibrate the overall error
(69).

Let W(z) denote the Lambert W function, also called Omega function, which is defined
as the solution of = W(z)exp(W(z)). One easily checks that r := 2W(2Vb2h~P) is
the solution of the equation r2exp(br) = h™P and that the error of spatial and temporal
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approximation is thus equilibrated. The derivation of the optimal sampling size is then
straightforward. However, in view of the asymptotical analysis of the computational cost
and for the sake of simplicity, we choose a slightly suboptimal temporal polynomial degree.
Using 7 = —(p/b)logh = O(|logh|) for the semidiscretization in time, we obtain a tem-
poral approximation error of order h?. The spatial error then decreases asymptotically
as O(|logh|?kP). The sampling size is then chosen as M = O(h™?’) which results in a
statistical error of order h?. As the overall error is then dominated by the spatial error of
order |log h|2hP, one could also choose M = O(h~?|log h|™*) which would slightly reduce
the computational cost due to sampling. In case of the single-level Monte Carlo method,
we are merely interested in rough work estimates, but we will consider this factor for the
MLMC estimator, where optimal work estimates are sought. For the sake of simplicity, we
therefore drop the logarithmic factor in the sampling size.

The choice r = O(|logh|) has merely been justified by intuition for the purpose of sim-
plicity. However, the asymptotic behaviour of the Lambert W function suggests, that this
choice is “almost” optimal. It holds W(z) = logz — loglog z + O(li%lg?—gﬁ) for z > 1. The
optimal polynomial degree is thus

ro= W(AVH2RP) = Zlog(3Vb2hP) — loglog(3 V2R P) + ...
~ —Llogh —log|logh| + ...

The difference is iterated logarithmic and therefore negligible.

For fixed meshwidth h, the SLMC error is equilibrated with temporal polynomial degree
r = O(]log h|) and sampling size M = O(h™2P).

We can now turn to the analysis of the computational cost of the single-level Monte Carlo
estimator (68). The computation of each approximate solution sample inherits solving the
linear system (62) 7 4+ 1 times for each timestep 1 < m < 90, i.e. we need to solve (62)
M - N; times, where Ny = gnjf:l(r +1) = O(r). We make the following assumption on the
solver of the linear system:

Assumption 7.8. In each time interval I,, 1 <m <9, for j =0,...,r an approximate
solution 1]}5 E of the linear problem (62) is obtained in O(N}) work, 1 <y < 3, such that
the exact solution uPC of the fully discrete problem is approximated to order O(exp(—br)-+
r2hP) in L2(I; V)-norm, i.e. ‘

[uP% - il p2(r,vy < Clexp(—br) + r*h?),

FE

~ . r ~ ~FE _ ~FE
where 4|1, = > o Ujm@im and Tp” = Q"

The work needed to solve the decoupled system (62) for each approximate solution
sample is thus given by O(M - Ny - N}Y). We have not yet considered the work needed for
decoupling and the backward transformation.

Note that for constant polynomial degree r,,, = r, the matrix A,, need to be diagonalized
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only once. The computational cost for diagonalization is thus negligible. However, the
backward transformation QQE = Qm@TﬂE in each timestep 1 < m < 9 is needed for
each sample. As every entry W;m,, 0 < j < r of the vector Q,,I:IE is in fact a vector
(’U?;-’m){ihl € R, this backward transformation needs O(r%Ny) operations.

The overall computational cost of the single-level Monte Carlo estimator (68) is thus given
by O(M - {N; - N} + r?N,}) = O(Nip/d"Lv(logNh)Q). In view of the results derived in
Section 6, the contribution to the overall computational cost due to sampling is unchanged
for the single-level MC DGFEM estimator. However, the computational cost due to time
stepping is logarithmic in the spatial degrees of freedom.

7.1.4 Multi-Level Monte Carlo Method

We improve the efficiency of the algorithm by using different sample sizes on different
levels of spatial and temporal approximation. We introduce a level-dependent temporal
polynomial degree 7, I > 0. Let {7,}32, be a sequence of regular simplicial meshes of the
domain D obtained by uniform mesh refinement. For [ > 0 the meshwidth of 7 is then
hy =27 hg. Let V, := Sg’l(D, 7i) be the Finite Element space with NP = dimV, = O(2%)

degrees of freedom. On each level I, the DGFEM method consists of solving 7;+1 decoupled

linear systems of the type (62) in each timestep. We choose r; = O(|log hy|) to equilibrate

spatial and temporal error.

We then denote by u; := up, ,, the approximate solution sample obtained by DGFEM. On

a fixed partition M of the time interval, for the temporal polynomial order r;, the solution -
is then given by w|7,, = ;l:() uf ﬁgoj,m, where @; , are normalized Legendre polynomials
and the coefficients @5 F = Qmw’,ﬂE are computed by solving the decoupled system (62) on
Finite Element space V.

The Multi-Level Monte Carlo estimator is then defined as

L
(70) Efu] .= Z Eng lug — wi—q] ~ Eful.
=1

We have the following error estimate.

Lemma 7.9. Assume that the stochastic diffusion equation (1) - (3) admits a solution
u € L*(Q; C°°([0, T]; HP*Y(D))) which is analytic in time and assume that the stochastic
diffusion coefficient satisfies (4). If Conjecture 7.4 is valid, then the multi-level Monte Carlo
estimator (70) admits the error bound

L
1) B = Bl a2y < Cllog hol?h + 3 [log by 2HY by /2.
l==1

The constant C depends on p, T, a_ and a,.
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Proof. Analogously to the proof of Lemma 6.4, we rewrite the error as

”E[u} - EL[U]”LZ(Q;L2(];V)) < ”]E[u] - E[UL]“LQ(Q;L2(I;V))
L

+ Z ”]E[ul - ul—l] - E]VI, [ul - ul_l]“LZ(Q;LQ(l;V))
=1
=TI+ 1I.

The first term is bounded by Jensen'’s inequality and Theorem 7.5,
I < Efflu—ugllz2@vy) < C(exp(=brr) + r2h) < C|log ho*hY.

For the second term, we estimate each addend as follows:
1Bl — wi—1] — Eag [ — ul—l]HLz(Q;L2(I;V)) < Mz_1/2 flw — Ul—l”L?(Q;LZ(I;V))

< Ml—l/z( lu — wll 22y + Il — waallzre vy )

< C’l\/[l_l/Q(exp(—brl) +7PhY + exp(—bri_1) + 1Y)

< CM;?(|log |2AE + |log hii)?h]_,)

< CM; 2| log y|2RP.
Here we used Lemma 7.6 and Theorem 7.5. Summation over | = 1,...,L completes the
proof. O

By finding the optimal ratio between sample size and meshlevel, we recover the same
convergence rate as single-level Monte Carlo on the finest level with a reduced computational
cost.

Theorem 7.10. Assume that the stochastic diffusion equation (1) - (3) admits a solution
u € L2(Q;C([0, T); HP*Y(D))) which is analytic in time and that the stochastic diffu-
sion coefficient satisfies (4). If Conjecture 7.4 is valid, then the multi-level Monte Carlo
estimator (70) with M; samples given by

(72) My = ?reoI-D/ryt, 1=1,2,...,L,
with € > 0 arbitrarily small, admits the error bound
(73) B[] = B*[w]]| 12121y < Cllog hrl?hE

The constant C depends on e, p, T, a_ and ay. Under Assumption 7.8, the computational
cost is bounded by

(N%)(log N&)+e if §* <0,
Work(L) < C(6*) { (NE)"(log N¥)5+e if 6% =0,
(N2YT+ /d(10g NEYSE if §* > 0,

where §* = 2p — dr.
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Remark 7.11. We mention again that the error estimate holds true under weaker regular-
ity assumptions on the solution u € X. Analyticity of the solution is not realistic for most,
applications. Startup-singularities may be induced through non-smooth initial data. Using
a partition M which is suitably refined towards the singularity and a time approximation
order vector r which increases away from the singularity, one reobtaines exponential con-
vergence of the Discontinuous Galerkin time stepping scheme [9]. Due to the nonconstant
approximation order in time, the system (59) needs to be decoupled in every timestep.
Therefore the computational cost of the diagonalization process needs to be considered.

Proof. With the samples A distributed as (72) we have

L L L
DM PR log hl? ~ 3 (e /DaWDin(g, y2g-ieg — 9g=Lp[2 37 =(14e/2)
=1 =1 =1
< Cle)hf|loghr)?.

We obtain the asserted error bound from Lemma 7.9.

We proceed with the analysis of the computational cost. Note that for each level [ =1, ... , L
the matrix A, needs to be diagonalized only once. The computational cost of decoupling
is therefore negligible. For each sample, we need to solve r; + 1 linear systems of the form
(62) in each timestep and then perform backward transformation. Under Assumption 7.8,
the work is therefore bounded on each level by O(M;r?(NF)?). We obtain the following
bound for the overall work of the MLMC estimator (70) on the finest level:

L L
Work(L) < > Mi(rf(NF)Y +rf (NE)Y) <2 My (NE)?
=1

I=1
L
S Z l2+£22p(L——l)(l/L)4l22dl’y
=1
L
— 2dL'7L2 Z 12+5(Z/L)62(I—L)(d7—~2p)
=1
L
S (NE)|log NE[2 Y i +eb-s"
=1
L—-1
— (NEY|log NE[2 S (L — 1)+eat®”
=0

The sum is then estimated as in the proof of Theorem 6.5 which leads to the asserted bound
of the computational cost. O

We observe that for low-order approximations in space, the MLMC DGFEM algorithm
(70) for stochastic parabolic PDEs is of log-linear complexity and therefore comparable to
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one deterministic solve of an elliptic PDE.

Time stepping and sampling contributes merely logarithmically, the overall computational
cost is dominated by solving the decoupled elliptic system (62).

However, for high order schemes, when 6* = 2p — dy > 0, more samples are needed, which
increases the complexity of the MLMC DGFEM method. It is nevertheless superior to
the single-level MC approach. However, “polynomial chaos” type discretizations of the
probability space may be advantageous in that case.

7.2 Heat Equation

We use the concepts derived in the previous sections to solve a class of stochastic parabolic
PDEs which is more general. We introduce a random density field p(z,w) : @ — L®(D)
which is independent of time. Consider the stochastic heat equation

(74) p(x,w)%% —div(a(z,w)Vu) = f(t,z) inQr, weEL,
(75) u(t,z,w) =0 on X,
(76) u(t =0,z,w) =uo(z) in D.

As for the stochastic diffusion coefficient we assume boundedness of the density.
Assumption 7.12. There exist constants 0 < p— < py < oo such that
(77) 0<p-<plz,w) <pp <oo forallzeDwel
The unique weak solution u € X is then given by
(78) B(u,v) = F(v) forallv €,
where
B(u,v) = ]E[/I(p(x,w)%,vl)gdt—i' /I /Da(a:,w)VuV'uld:vdt + (u(O,m.),vg)H],
and
) =Ef /I (Fro0adt + (uo(@), v2)u |

We assume again additional regularity (14) of the stochastic solution.

It is straightforward to check that all results derived in the previous sections are applicable.
For fixed w € © we use Finite Elements of order p > 1 for spatial discretization as in Section
4. We arrive at a system of ODEs

Miu(t) + Au(t) = f(), u(0) =uo.

Note that the mass matrix is now given by M;; = [,  p(+,w)®;®;dz. The semidiscrete
solution u(t) admits the same error bound (32) as in the settings of Section 2, here the
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constant C' depends on a_, a4, l[dHWl,w( py» P— and py. The proof of Theorem 4.5 needs
minor modifications; (35) is replaced by

(p(w7 )%%75) + a’(&f) = _(p(w7 )%2176)

and (77) is then used.

We obtain a fully discrete problem by using implicit Euler or Crank-Nicolson time stepping.
The same error bounds as in Theorem 5.1 and Theorem 5.2 hold, where the constant C
depends additionally on p_ and py. Again, minor modifications of the proofs are required,
analogous to the semidiscrete case.

As there are essentially no changes in the error analysis of the spatial and temporal dis-
cretization, we can adopt the Monte Carlo theory of Section 6 without any modifications.
The main results, in particular Theorem 6.5, are thus applicable for the generalized problem
(74) - (76). The only additional difficulty lies in the implementation of the mass matrix.

8 Stochastic Wave Equation

We discuss a different type of stochastic PDEs in this section. Techniques analogous to the
concepts presented in the previous sections are used for the numerical solution of second
order hyperbolic partial differential equations with random coefficients.

For 0 < T < co we define again the space-time cylinder Qp = I x D, where I = (0,7) is
the bounded time interval and D C R? is a bounded Lipschitz polyhedron. We consider
the stochastic wave equation

(79) % —div(a(z,w)Vu) = f(t,z) in Qp, w e Q,
(80) u(t,z,w)=0 on Y7,

(81) (0,2, w) = up(x) in D,

(82) u(0,z,w) = ui(z) in D.

We assume again P-a.s. boundedness of the random field a(z,w) : Q — L®(D).
Assumption 8.1. There exist constants 0 < a_ < a4 < oo such that
(83) 0<a_<a(z,w)<ay <oo forallze€ D,weQ.

We follow [5] for the variational formulation and well-posedness. We set V := H}(D),
H := L?(D) and introduce the Bochner spaces

(84) X =TAQ AP LY V)N HYIHYNHY(L V) and
(8) V=LA P LY(L; V) x V x H).

33




The variational formulation of the stochastic wave equation (79) - (82) is then: Find v € &A™
such that

(86) B*(u,v) = F*(v) for all v = (v, v1,v2) € V¥,
where

B(uv) = Ef /I (24, o) rdt + /I /D e, ) Vuoodedt + (u(0), v1)y + (ue(0), v2) 1),

F*(v)

]E{/[(f,vo)HdH (ug,v1)v + (Ul,'UQ)H]~

For fixed w € ), the mappings u(:,-,w) : [0,7] — V and %(‘,-,w) : [0,T] — H are
continuous (cf. [6, Theorem 8.2]) so that the initial conditions (81),(82) incorporated in
the variational formulation (86) are indeed meaningful.

Theorem 8.2. Under Assumption 8.1, for f € L*(I; H), ug € V and w1 € H the varia-
tional formulation (86) of the stochastic wave equation (79)-(82) admits a unique solution
u € X*. It holds the apriori estimate

(87) luller < CUIA N 2y + lluollv + lluallz),

where C depends only on T, a_ and a4.

Proof. The proof is given in [5, Proposition 1.6]. For fixed w € 2, existence of a weak
solution and uniform boundedness for all realizations is a consequence of [15, Theorem
29.1]. Measurability of the random solution is more demanding in the hyperbolic case [5,
Proposition 1.5]. Uniqueness is then shown analogously to Theorem 2.3. O

For the numerical analysis, we assume additional regularity of the random solution.

Assumption 8.3. We assume that the stochastic wave equation (79) - (82) admits a unique
solution

(88) u € L3(Q; C2([0, T]; HPY(D)) n C**([0, T}; L*(D))),

forp>1,7=12

8.1 Space Semidiscretization

The spatial semidiscretization of the stochastic wave equation is analogous to the spatial
approximation presented in Section 4 for the parabolic case. Let 7p, be a regular simplicial
mesh of the polyhedral domain D C R? with meshwidth A = maxge7; {diam(K)}. The
Finite Element space is then given by V, := Sg’l(D,’ﬁl) with N, = dimV}, degrees of
freedom.
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For a given realization a(x) € L*(D) of the stochastic diffusion coefficient a(zx,w), the
semidiscrete problem reads: Given f € L2(I ; H), for an approximation ug p € Vj, up € Va
of the initial data, find u, € H?(I;V},) such that for all v, € V4, holds:

(89) (Cu® ) + alun, vn) = (F(t, ), v4),
(90) up(0) = o,  BWh(0) = uyp

In an arbitrary basis {®; ;-V:"l of the finite dimensional subspace V},, the semidiscrete problem
is reformulated as a system of ODEs

(91) Mi(t) + Au(t) = f(t), w(0) =ug, 2(0) =u,.

As before, M;; = (®;, ;) is the mass matrix, A;; = a(®P;, ®;) is the stiffness matrix,
f(t) = (f;) = (f(t), ®;) is the load vector, uy and u, are the vectors of coefficients of the
initial data and u is the seeked vector of solution coefficients.

Theorem 8.4. Under Assumptions 8.1 and 8.3 , the solution up(t) of the semidiscrete
problem (89), (90) admits the error bound

lun(t) — u@®llv + llen(t) — o)l < C(”uo,h ~ Rpuolly + |lui,n — Rewrlle
%) HIU = Ruyu@lly + 17 = Re)a(t) o
+ Jy I = Ra)i(s)lmds).

Here, the constant C' depends on a_, ay and the Ritz projection Ry, : V — V, is defined by
(24).

Proof. Inspecting the proof of Theorem 1.8 in [10], it can be deduced that the constant C
depends only on a_, a4 and is thus uniformly bounded for all realizations of the stochastic
coefficient a(z,w). O

8.2 Newmark Time Stepping

We solve the system of ODEs (91) by Newmark’s time stepping scheme. For N; € N we
define the timestep £ = T'/N; and ¢, = mk, m = 0,..., N;. Newmark’s scheme provides
Nt ~ . Nt " . . . .
a sequence of tuples (gm, Zm)meo & (w(tm), @(tm)) i approximating the solution and its
derivative. For a pair of parameters (8,7) € R x R the fully discrete problem reads:

M0~ Yy, — kzm) + ABy,,, + (- Py,,)

%) = Bf (1) + (3 — B tm), 0<m < N~ 1
(94) %M(gm—}-l - ém) + A(’ng,*,l + (1 - V)Qm)

= '7i(tm+1) + (1 _7)i(tm)> 0<m< N -1
(95) Yg =Yy, 29 = Ug.
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We need some preliminaries to state the convergence results. For fixed w € Q, by the
Spectral Theorem, there exists a finite sequence of eigenvalues 0 < A p(w) < Agp(w) <

. < An,,p{w) and an H-orthonormal basis of eigenfunctions {wm,h(w)}fx":l C W, such
that for all v, € V, holds

(96) a(Wimh (W), V) = Ap,p (W) (Wi p (W), vp).

We need uniform boundedness of the eigenvalues for all realizations in order to obtain
convergence:

Proposition 8.5. Under Assumption 8.1, for a given Finite Element space Vi, C'V, there
exist constants 0 < A_ < Ay < 00 such that

(97) 0 <A < Apw) < < Anpn(w) <Ay < oo for allw € Q.
Proof. Observe that
a(Win, b (W), Win,n(w)) = /\m,h(w)nwm,h(w)”%b

and
a_|[wmpW)} < a(wmp (W), W (@)) < atfwma@)]}-

We first show, that the eigenvalues are bounded away from zero: By Poincaré’s inequality
we have

o[ wmp @} < a(wmp @), Winp @) = Mnp @ l0mp@)IE < O p (@) lwma@)F,

and thus
Ap(w) > Cla_>0 for all w € Q.

For the boundedness of the largest eigenvalue, we use the fact that all norms are equivalent
in finite dimensional vector spaces: There exists a constant C' > 0 such that C~ vy ||z <
lonlly < Cllupllm for all vy € V3. In particular, we obtain for wp, 4(w) € Vi

Ao (@)[0m (@) = alwin (@), win,n(@)) < allwmp @) < Callwm,n (@)l

and thus
ANy p(w) £ Cay < 00 for all w € Q.

We can now state the convergence results for the Newmark scheme.
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Theorem 8.6. Under Assumptions 8.1 and 8.8, for
8>0 and 19::7—%20,

the approzimate solution tuples (u}", z,’ln)ﬁt:o C Vi X Vi, corresponding to (ym,gm)ﬁtzo C
RNr x RN generated by Newmark’s time stepping scheme (93) - (95) satisfy the following
error bound for m = 0,1,..., Ny:

lur* = u(tm)lla < C(HUD,h — Buuollg + llus,n — Rourllg + [|(1 — Rp)u(t)l g

98 e
" I I = Bl + 94522 ) s ),

provided that the CFL condition

K if B> (1+9)%/4,
99 E2 AN, n(w) < _ ,
( ) Nh,h( )— { (118)26_)#3 if B < (1+19)2/4,
holds for all w € Q and some K > 0,0 < e < 1. In (98) we have j = 2 if 9 = 0 and if the
solution is sufficiently reqular; we have j =1 else. The constant C is independent of w € §
but depends on K, A_ and € in the sense that C — oo as K — 0o, C' — 00 as A_ | 0 and
C — o0 forel 0.

Proof. According to Proposition 8.5 it is possible to satisfy the CFL condition (99). In-
specting the proof of Theorem 1.13 in [10] it can be deduced that the CFL condition (99)
is sufficient for uniform boundedness of the constant C for all realizations of the stochas-
tic coeflicient a(x,w). Note that all eigenvalues are bounded away from zero according
to Proposition 8.5. This fact, and (99), is needed for stability of Newmark’s scheme [10,
Theorem 1.12]. d

As we implicitly assume compatible initial data in (88), we may choose
(100) Ug,p i= Rpug and Uy p = Rpuq

as approximate initial data. We use Proposition 4.4 to estimate the spatial error and
immediately obtain the following corollary.

Corollary 8.7. Assume a(z) € WH®(D) as in (83), f € C°([0,T]; H) and initial data
gien by (100). Under Assumption 8.3 and CFL condition (99), for 8> 0 and ¥ =~v—1 >
0, the approxzimate solution (u’,’:‘)ﬁtzo C Vi generated by the fully discrete scheme (93) -
(95) admits the error bound

(101) lup' — u(tm)lla < C(hp+1 + kj)”Ul|02([0,T];Hp+1(D))nCZH([o,T];LZ(D)),

where j = 2 if 9 = 0 and if the solution is sufficiently reqular and j =1 else.
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8.3 Single-Level Monte Carlo Method

We can now use the concepts presented in Section 6 to estimate the mean field of the
random solution u € X* of the stochastic wave equation (79) - (82). On a given mesh 7T
with meshwidth A, for a fixed timestep k and for M i.i.d. realizations &' € Whee(D) we
denote by iﬂ}zk the approximation of the exact solution sample “i(ty) at time &, = mk
according to (93) - (95). We estimate the mean field of the solution at time ¢, by

M
1 -
(102) Enluf] i= =2 > it = Elutn)].
i=1

We pick up an error induced by spatial approximation, time stepping and from the Monte
Carlo estimator. We have the following error bound.

Theorem 8.8. Assume a(w,-) € WH°(D) as in (83), f € C°([0,T); H) and initial data
given by (100). Under Assumption 8.8 and CFL condition (99), for >0 and 9 = 'y—% >
0, the Monte Carlo estimator (102) admits the error bound

(103)

[|Bfu(tn)] — Basfuy] < MV u(tn) | p2sz2oy)

LAQL2(D)) ,
+C (P 4 k) ull L2 uon (o110, Ho+ 2 (DYNC2H (10,TL(DY)) -

Here, j =2 if 9 = 0 and if the solution is sufficiently reqular and j =1 else.

Proof. The proof is completely analogous to the proof of Theorem 6.2. We split the error
into a purely statistical part and a discretization error:

NElutm)) = Burlutil | 2gzopy < NERGER)] = Eulum)ll 2z oy
+ || Earlultm) = il || 2o poepyy = 1 + 11

The first term is estimated with Lemma 6.1,
I < M7 Y2)futm)|l r20,r2(0)) -
The second term is bounded by Corollary 8.7
Mo
<M Z ”Zﬁ(tm) - ﬁmkHL’é’(Q;m(D))
i=1

< CUP*Y + ) lull 2 (scz o,y v (p)nc+3 (0, THLA(D))
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On a given grid 75 with meshwidth h, we chose the stepsize k = O(h®P+1)/i ) and the
sample size M = O(h_2(p+1)) to equilibrate the errors.
We proceed with the analysis of the computational cost of the Monte Carlo estimator (102).
Eliminating z,, in Newmark’s scheme (93)-(95), we obtain for 0 < m < N; — 2:

(104) Z'IQ_M(QWHQ - 2-y~m+1 + gm) + A('Bgm—{—Q + (% -28+ 7)ﬂm+1 + (% '*;B - V)Qm)
= B (tmy2) + (5 =28+ %) f(tmr1) + (5 + B — 7)1 (tm),

(105 M (y, — o — kuy) + A(By, + (5 — Bug) = Bf (1) + (3 — B)f (ko).
Thus, for each timestep, we must solve a linear system of the form

.2 —
(M + Bk A)gm+1 - gm

We make the following assumption on the solver for this linear system:

Assumption 8.9. For each timestep #;, I = 1,...,m, an approximate solution iZﬁL of the
deterministic problem (104) - (105) is obtained in O(N,') work, 1 < vy < 3, such that the
exact solution u}' € V}, corresponding to Y, € RN is approximated to order

lui = @520y < C(RPT! + K).

Under Assumption 8.9, the computational cost of the Monte Carlo estimator (102) is
then given by O(M - N;- N)) = O(Ni(p+1)/d+(p+l)/(jd)+7). This is in exact accordance with
the parabolic case. The contribution due to Monte Carlo sampling to the overall complexity
is reduced by a multi-level approach analogous to Section 6.2.

8.4 Multi-Level Monte Carlo Method

By {7i};2, we denote a sequence of regular simplicial meshes obtained by uniform mesh
refinement. For [ > 0 the meshwidth of 7; is then h; = 27 'hg. Let V= Sg’l(D,ﬁ) be
the Finite Element space with N := dimV; = O(2%) degrees of freedom. We introduce
a level-dependent timestep k; = T/N}. In order to equilibrate the spatial error and time
stepping error, we choose k; = O(hl(p /i ). The number of timesteps is then given by
Nlt — O(hl—(p+1)/j) _ O(le(p-}-l)/(jd)).

We then denote by u; := u;?l’,kl € V, the approximation of u(t,,) according to (93) - (95) on
mesh 7; with timestep k; at time #,, = myk;, I > 1.

The Multi-Level Monte Carlo estimator is then defined by

L
(106) B [u(tm)] =Y Bl — 1] = Efu(tn)].
=1

We have the following error estimate.
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Lemma 8.10. Assume a(w,:) € WH(D) as in (83), f € C°([0,T}; H) and initial data
given by (100). Under Assumption 8.3 and CFL condition (99), for > 0 and § =~y —% >
0, the Multi-Level Monte Carlo estimator (106) admits the error bound

(107)

Efu(tm)] — B2 [ltm)]|| 2gquz2imy < c(hzfrl + YL Mfl/?)
X Hu”L2(Q;02([0,T]-,Hzr+1(D))nCZH([O,T];Lz(D)))'

Proof. Analogously to the proof of Lemma 6.4, we rewrite the error as
[Elu(tm)] = B ultm)lll 2oy < ERER)] = Bluclllzq;r2 oy

L
+z Efu; — wi—1] = Ean[w — w-1lll p2(0,02(py)
=1
= T+1II
The first term is bounded by Jensen’s inequality, Corollary 8.7 and Holder’s inequality,

I < Efjlu(tm) — vl r2(p)] < C(REY + k) ) lull L2 ez ((o,7) o (DY)nC2+ (0,15.L2(D))-

For the second term, we estimate each addend as follows:

|E[u; — w—1] = Ean [t — vl 2o, r2(py) < M7 N = w2 gy
< M7 (ult) — uill 22y + llultm) — w1l 20,220y )
< M2 4 K] R+ Rl eca oy (opnozs o iz
< CEP + )M AR 4 k)l 2 o,y (D)) (TR (D)) -

Here we used Lemma 6.1 and Corollary 8.7. A summation over [ = 1,..., L and observing
that k; = O(hgp /i ) completes the proof. O

By optimizing the sample sizes on each level, we recover the same convergence rate as
single-level MC on the finest level with a reduced computational cost.

Theorem 8.11. Assume a(w,-) € Wh®(D) as in (83), f € C°([0,T}; H) and initial data
given by (100). Let the approzimate solution samples be generated by the fully discrete
system (93) - (95) with a pair of parameters 3 > 0 and ¥ =y — % > 0 and the timestep
satisfying the CFL condition (99) on each mesh level. Under Assumptions 8.3 and 8.9 the
MLMC estimator (106) of the expectation of the solution of the stochastic wave equation
(79)-(82) computed with My samples on mesh level by and with k; = O(hgp +1/d ) timesteps,
where the samples are distributed as

My = [2reg2=Dle+) - j—19 L
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with some € > 0 arbitrarily small, admits the error bound
Blu(tm)] = B [w(tm) s2(ay2(my) < CHE lulliauerqoysar+1opncs+ oy 2oy
The computational cost is bounded by

(NE)"Ni (log N§)2te if 6 <0,
Work(L) < C(8) § (NE)"Nj(log Nf)3te if 5 =0,
(NE) /AN (log NE)2HE 4f 5 > 0,

where § = (p+1)(2 — 1/5) — dy.

Proof. The proof corresponds one-to-one the proof of Theorem 6.5. As the MLMC estimator
(106) admits the same convergence rate in the hyperbolic case, we can adopt the optimal
distribution of samples from Theorem 6.5. Under Assumption 8.9 the estimator admits the
same computational cost as solving the stochastic diffusion equation and the work estimate
remains therefore valid for the hyperbolic case. O

Remark 8.12. All conclusions from the parabolic section hold true for the hyperbolic
case: For low order approximations the contribution to the overall computational cost due
to sampling is logarithmic in the spatial degrees of freedom and thus negligible. However,
in order to preserve increased convergence rates induced by high order approximations in
space and time, the number M, of samples on each level need to be increased. This results
in an algebraic contribution of sampling to the overall complexity.

The MLMC approximation of the mean field of random solutions is thus particularly efficient
with low order approximations in space and time.

9 Numerical Results

We discuss implementation issues and validate the theory based on a one dimensional
example of the stochastic wave equation. In the unit interval D = (0,1) we consider

24 2 (afe,0) ) =0 veD 0<t<l,
w(t, z,w) = 0 zedD, 0<t <1,

u(0, z,w) = sin(nz), %(O,w,w) =0 zeD.

The stochastic coefficient a(z,w) := 2+ Y (w) sin(wz) with a uniformly distributed random
variable Y (w) ~ U(—1, 1) satisfies (83).

For the approximation in space, we initially choose a uniform partition 75 of the domain D
with meshwidth hg := 273, Uniform mesh refinement provides a nested family of regular
meshes

Ti=A{Li}0 Dy = (ah_y,ab), ot = jhy, by =27"h = 2-0+3) 1 > 0.
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Computational cost of the MLMC estimator

Error of the MLMC estmator
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Figure 1: Rate of convergence of the MLMC estimator for the approximation of E[u(T")]
at final time T = 1 in the L?-norm in space and the total CPU-time needed to compute
B [u(T)].

We use piecewise linear polynomials V, := Sé’l(D,'ﬁ) with strongly imposed Dirichlet
boundary conditions. The standard hat basis (b;); is given by

|z —at| /by forazl , <z <al,

(b)i(z) = { (1) clse.

This leads to second order approximations in the L?-norm in space.

We use Newmark’s scheme for discretization in time. The linear system (93) - (95) is
solved using the LU matrix factorization provided by Matlab. The hat basis (b;); induces
a tridiagonal mass matrix M and stiffness matrix A. The computational cost is therefore
linear in the system size, we have v = 1 in Assumption 8.9. As Newmark’s scheme is second
order in time, we choose the timestep k = O(h;) = O(27}).

To compute the MLMC estimator (106) we scale the optimal sample distribution such that
four samples are used on the finest grid, we use M; = 4(I/L)*+*242=D Note that the
solution samples of coarse levels need to be interpolated onto the finest grid.

For the error analysis, we compute a reference solution by adding two additional refinement
steps. The rate of convergence of the MLMC approximation is shown in Figure la. The
results coincide with the predicted rate of convergence O(h%) derived in Theorem 8.11.
Figure 1b shows the CPU-time needed to compute the MLMC estimator. From theoretical
considerations we expect the computational cost to behave as O(N7 (log N1,)2). To see this,
note that Newmark time stepping is of second order and that the linear system is solved
in linear complexity in each time step. We therefore have § = (p+1)(2 - 1/j) —dy=2in
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Figure 2: Rate of convergence and complexity of the single-level MC estimator versus
multi-level MC.

Theorem 8.11. The predicted complexity is in accordance with numerical experiments as
shown in Figure 1b.

We compare these results to the single-level Monte Carlo estimator in Figure 2. Again, the
plain MC algorithm provides an approximation which is second order in the meshwidth.
The error analysis given in Section 8 suggests to use M = O(N[‘) samples to equilibrate
statistical and spatial errors. The overall complexity of the single-level Monte Carlo method
is thus O(Nlﬁ) which matches with numerical results given in Figure 2b. The multi-level
Monte Carlo approach is thus clearly favorable.

10 Summary and Conclusions

We consider a class of either parabolic or second order hyperbolic partial differential equa-
tions with random coefficients. Assuming adequate regularity of the random solution, we
analyse numerical schemes to approximate the mean field of the stochastic solution.

We propose Monte Carlo methods together with standard Finite Element methods in space
and various time stepping schemes. We show these compound Monte Carlo type methods
to converge, but the overall efficiency (i.e. error versus computational cost) is relatively
poor.

We therefore introduce multi-level Monte Carlo methods and prove them to admit the same
convergence rate as single-level MC algorithms, whereas the computational work is consid-
erably reduced. In fact, our error and complexity analysis reveals that for low order Finite
Element approximations in space, the contribution due to sampling to the overall compu-
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tational cost is only logarithmic in the spatial degrees of freedom. Hence, the proposed
MLMC algorithm provides an approximation of the mean field of the stochastic solution
with an efficiency which is comparable to one solve of a deterministic partial differential
equation of the same type.

However, in order to preserve increased convergence rates induced by high order approxi-
mations in space and time, the number of samples needs to be increased on each level. This
results in an algebraic contribution of sampling to the overall complexity.

Therefore, the proposed MLMC method is particularly suitable for the approximation of
solutions that admit low spatial and temporal regularity.

Numerical experiments for the stochastic wave equation in one space dimension confirm the
theory.
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