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Abstract

This paper discusses the pricing of convertible bonds using Finite Element Methods. An
overview of the features of this financial product is given. We start by presenting a one factor
(stock price) model that allows to consider default. Then, we show that the value of a con-
vertible bond satisfies a Linear Complementarity Problem (LCP), which leads to a parabolic
variational inequality (PVI). The Finite Element Methods are applied to solve this PVI. To
discretize the variational inequality, we apply a theta scheme in time and a Galerkin method in
log-price space. Results are explained and compared to those of a commercial pricing software.
Finally, the theoretical framework of the one factor pricing model is extended to include a
stochastic interest rate.
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Part I

Introduction

Convertible bonds (CB) are issued by companies in order to raise capital. Basically, when
a company needs money, it can issue debt or equity instruments or a combination of both. A
bond (debt) is an instrument paying the holder coupons at particular dates and the principal
at maturity. In order to define a convertible bond we first have to explain the concept of an
option. When someone buys an option on a company’s stock, he purchases the right to buy,
for a call, (resp. sell, for a put) a share for a price that is fixed at the beginning of the contract.
An option can be European (if you can exercise your right only at maturity) or American (if
you can exercise anytime before maturity). A convertible bond is a bond that has additional
characteristics: the holder can exchange the bond for a certain number of common stocks during
a certain period or at certain dates. It is almost as if there were an option, embedded in the
bond, to buy the stock. If converted at time t, the holder of the convertible will not receive the
principal or any coupons that would have been delivered at a date later than t. In some sense
a convertible enables the holder to benefit from the high performance of the stock (conversion)
and to be protected from a drop in the stock value by the bond (the convertible has a higher
value than the simple bond with no option to convert). However, it is very important not to
forget the credit risk exposure of the convertible. Indeed, some of the companies issuing this
type of instrument may have a very low credit quality and therefore issue no vanilla bonds.

The market for convertibles has been growing for the last decade. In 2000, around $60
billion of new convertibles were issued; in 2001 it almost doubled and the number of issuance
exploded in 2003 as mentioned in [AFV03].

The aim of this thesis is to price a convertible bond. The CB is a hybrid product since it
depends on many different factors: stock price, interest rates, credit risk, all of which makes
the pricing of this type of product difficult.

There are two different approaches to pricing convertible bonds. The first that was suggested
is a ”structural approach”: the basic underlying factor is the value of the firm (issuing the
stock). It is possible to find an interesting overview of this type of model in [N96] Nyborg
(1996). One issue that is encountered in this type of model is that the value of the firm is not
a traded asset and the parameters are difficult to estimate.
The other type of modelling is the ”reduced-form” approach. The main underlying risk-factor
is the share price of the firm issuing the stock. Recently, many authors have developed this
modelling approach: Tsiveriotis and Fernandes (1998), Davis and Lischka (1999), [TKN01]
Takahashi et al. (2001), [AFV02] Ayache et al. (2002), or also [AB02] Andersen et al. (2002).
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In this thesis, we will consider bonds that the holder can convert any time from now to
maturity (American style conversion). Moreover, convertible bonds often have many other
features and we would like to focus on some of the most common ones: the call and put
features. The call feature enables the issuer of the bond to call (buy) it back at a pre-specified
price that can depend on time. It is somehow a way to limit the profits of the holder. And
the put feature gives the right to the holder to sell the CB back to the issuer for a predefined
price (also possibly depending on time) which floors the price of the CB. To summarize, we
will consider a CB that can be converted any time with a call and put provision, both of them
exercisable anytime from the beginning to maturity.

The topic of this thesis is to price a defaultable convertible bond based on [AFV03] and
[AB02], where the stock price and short rate can be stochastic. The first step is to consider
one stochastic factor: the stock price. Then, we would like to to extend the framework and
include a stochastic interest rate. We have decided to use the Finite Element Methods to price
such a product since it provides a complete and rigorous framework to solve partial differential
equations (PDEs) and parabolic variational inequalities. Moreover, we believe that the Finite
Element Methods (FEM) provide a mathematical framework that is more general than that of
the Finite Difference Methods (FDM) since we work on spaces that are less restrictive. Often,
FEM allow to achieve more numerical stability.

We will illustrate analogies between the pricing of American options and CBs with an
American style conversion to better explain the pricing method for CBs.
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Part II

Model Description

In this part we will explain the models that we implement for the pricing of an American option
and a CB. We will start, in section one, by working in a one dimensional framework where the
stock price is stochastic. Then, in section two, we will consider a stochastic interest rate.

Most of the modelling that we will use here -for the one-dimension framework- is based on
the papers of Ayache, Forsyth and Vetzal (see [AFV02], [AFV03]) for the convertible bond.
For the American option pricing we refer to [Schw07] and [JLL90].

1 One stochastic factor: stock price

We will describe the model for pricing an American option and a defaultable convertible in the
Black Scholes framework. We will start with the pricing system for the American option.

1.1 American option

In the Black and Scholes framework we consider a riskless bond and a share price denoted by
St paying no dividends. We assume that St has the following dynamics under the historical
measure P:

dSt = µStdt + σStdWt , S(0) = S0

where µ represents the drift of the stock price, σ its volatility and (Wt)t≥0 a Brownian motion
under P.

Under the martingale measure Q, the dynamics of the price process becomes

dSt = rStdt+ σStdW̃t

where r is the risk-free rate and (W̃t)t≥0 a Brownian motion under Q.

Let us consider the value V am(S, t) of an American option with maturity T . If g(S) denotes
a payoff function, optimal exercising is equivalent to an optimal stopping problem and V am is
given by:

V am
t (St, t) = sup

t≤τ≤T
E[exp−r(τ−t) g(Sτ )|Ft]

7



where the supremum is taken over all stopping times τ defined on the probability space of
St.

Denoting the strike price E, the payoff of the call option is g(S) = max(S − E, 0), and the
payoff of a put option is g(S) = max(E − S, 0).

For g sufficiently regular (see [LL97], chapter 5, section 3 or [Schw07]) and σ 6= 0, it can be
shown that V am(S, t) satisfies the parabolic variational inequality in R+ × (0, T ):







∂V am

∂t
+
σ2

2
S2∂

2V am

∂S2
+ rS

∂V am

∂S
︸ ︷︷ ︸

ABSV am

−rV am ≤ 0

V am(S, t) ≥ g(S)

(V am − g) · (
∂V am

∂t
+ABSV am − rV am) = 0

(II.1)

subject to the terminal condition

V am(S, T ) = g(S).

1.2 The AFV Model for convertible bonds

1.2.1 Idea

The AFV model presented in [AFV02] and [AFV03] is a single factor framework for the valua-
tion of convertible bonds which can be extended to a multi-dimensional framework. The stock
price is stochastic and follows the Black-Scholes dynamics until default. Indeed, the authors
of [AFV02], [AFV03] include a homogeneous Poisson process for which the time of first jump
corresponds to the time of default of the company.

In their paper, Ayache, Forsyth and Vetzal consider precisely what happens when default
occurs: at time of default τD the stock price process jumps, but not necessarily to 0: Sτ+

D
=

Sτ−
D

(1 − η), where 0 ≤ η ≤ 1. Then ηSτ−
D

represents the loss in stock price at default.

Moreover, at τD, the holder of the CB has the option to convert into shares (with value
S
τ+
D

) or else to recover a certain amount of the CB value: Rrec ·X, where Rrec is the recovery

rate (0 ≤ Rrec ≤ 1) and X could be for instance the face value of the bond.

8



They consider a CB that can possibly pay coupons and can be exchanged any time for a
certain fixed number of shares. The CB has a put and call provision (also American style).
The stock may pay a continuous dividend yield.

1.2.2 Model

As in [AFV03], we will consider a stock paying dividends that has a diffusion and a jump term.
The dynamics under a risk neutral measure Q is

dS+
t = S−

t (r − q + pη)dt + S−
t σdWt − S−

t ηdNt , S(0) = S0 (II.2)

where r represents the short rate, σ the volatility of the stock and q the continuous dividend
yield.

The process (Wt)t≥0 is a Brownian motion under Q and (Nt)0≤t≤T is a Poisson process with
intensity p that models the instant of default. In fact we force (Nt)0≤t≤T to remain constant
after the first jump. Therefore, the jump models the time of default and no other possible
jumps in the stock price. The parameter p is defined as follows:

Q(τD ∈ (t, t+ ∆t)|τD > t) = EQ[

∫ t+∆t

t

p(s) ds| Ft] ≈ p(t)∆t.

We consider r, q, p and σ constant in this section.

Let us note that before default occurs, the dynamics (II.2) is equivalent to

dSt = (r − q + pη)Stdt+ σStdWt

It is important to know that in this framework, the market is incomplete due to the jump
process, and therefore the uniqueness of a martingale measure Q is not ensured. We assume
that we have chosen a measure (denoted Q since the beginning) and that it is fixed.

As said before, the CB can be called (bought back) any time until maturity, at a price
Bc(t). There is also a put provision which enables the holder to sell the CB any time until
maturity for a price Bp(t) (with Bc > Bp). And finally, it is possible to convert the CB to a
constant number κ of shares any time.

The accrual interest at time t represents the interest associated with the pending coupon.
If we denote by (tcj )1≤j≤Nc the coupon dates, we can calculate the accrued interest at anytime
AccI(t):

AccI(t) = K
t− tci

tci+1 − tci
, tci ≤ t ≤ tci+1 , i+ 1 ≤ Nc ,
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where K denotes the value of coupons paid to the CB holder.

As we will see later on, we will need the accrual interest for the calculation of Bc and Bp.

Furthermore, we can represent the coupon payment stream as a function c(t) =
∑Nc

p=1Kδtcp (t)
where δ represents a Dirac function. For simplicity, if there are coupons, then they are paid
until maturity, in the sense that the last coupon is paid at maturity.

If we denote by V (S, t) the value of the CB, the authors state in their paper [AFV03] that V
follows the Linear Complementarity Problem (LCP):

• when Bc > κS





MV − φX (S ) − c(t) = 0

V − max(Bp, κS) ≥ 0
V −Bc ≤ 0



∨





MV − φX (S ) − c(t) ≥ 0

V − max(Bp, κS) = 0
V −Bc ≤ 0



∨





MV − φX (S ) − c(t) ≤ 0

V − max(Bp, κS) ≥ 0
V −Bc = 0





(II.3)

• when Bc ≤ κS

V = κS

for S in [0,∞) and t in [0, T ].

In (II.3), M denotes the operator

M := −
∂

∂t
− [

σ2

2
S2 ∂2

∂S2
+ (r + pη − q)S

∂

∂S
− (r + p)], (II.4)

and
φX(S) := pmax(κS(1 − η), RrecX).

The notation (x = 0) ∨ (y = 0) ∨ (z = 0) means that at least one of (x = 0), (y = 0), (z = 0)
holds at each point of the solution domain.

The constraints on the value of the CB reflect the fact that

max(Bp(t), κS) ≤ V ≤ max(Bc(t), κS)

Denoting by F the face value of the bond, the terminal condition on V is V (S, T ) = max(κS, F+
K,Bp(T )). At maturity, in case the CB has not defaulted, the holder will have a choice between
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converting his CB into κ shares, selling the bond for Bp(T ) or receiving the (F +K) (nominal
+ coupon).

In [AFV03], the equation MV − pmax(κS(1 − η), RrecX) − c(t) = 0 is derived using a
no-arbitrage opportunity argument after building a risk free portfolio as it is done in the case
of a European option.

As said in [AFV02], the intuition behind (II.3) is that the value of the convertible is given by
the solution to MV − pmax(κS(1 − η), RrecX) − c(t) = 0, subject to the constraints above.
When this equation is equal to 0, we are in the continuation region (no constraint is binding),
otherwise either the put constraint - middle term - or the call constraint - right term - is binding
in (II.3).

Furthermore, let us explain the inequality constraints on V in the following way: on the one
hand V ≥ max(Bp(t), κS) has to hold, because at any time the holder has the right to convert
(conversion value is κS) or put the bond (for Bp(t)).

On the other hand, if the conversion price κS is higher than the call price Bc(t), then the
company would call the bond immediately and the holder would decide to convert it (instead
of getting Bc(t)) to receive κS ≥ Bc. And in the case the conversion price κS is less than the
call price Bc(t), then since the company has the right to call it at the price Bc(t), the value of
the CB is necessarily less than Bc(t). Therefore V ≤ Bc(t) = max(Bc(t), κS).

1.2.3 Recovery under the AFV model

In order to be able to solve the system written in the previous section, it is necessary to make
an assumption concerning the parameter X. X defines what the holder recovers in case of
default.

The assumption made in [AFV03] is that upon default, the holder of the CB can recover
RrecB where B is defined as the ”pre-default bond component of the convertible”. We can
then divide the value of the CB into the sum of two components: V = B + C where C is the
equity component, and simply V −B.

We have now created two artificial instruments that together form the CB. The authors
propose the following decomposition for the system of equations and inequalities applying to
V :

• when Bc > κS

11







MB − pRrecB − c(t) = 0
B −Bc ≤ 0

B + C −Bp ≥ 0



 ∨

(
MB − pRrecB − c(t) ≤ 0

B = Bc

)

∨

(
MB − pRrecB − c(t) ≥ 0

B + C = Bp

)

and:





MC − φB (S ) + pRrecB = 0

B + C − max(Bc, κS) ≤ 0
B + C − κS ≥ 0



∨

(
MC − φB (S ) + pRrecB ≤ 0

B + C = max(Bc, κS)

)

∨

(
MC − φB (S ) + pRrecB ≥ 0

B + C = κS

)

• when Bc ≤ κS

V = B + C = κS

for S in [0;∞) and t in [0;T ]. The operator M has been defined (II.4).

The authors of [AFV03] decompose the constraints on the real product V into new constraints
on B and C:

B ≤ Bc(t)

B ≥ Bp(t) − C

C ≤ max(Bc(t), κS) −B

C ≥ κS −B

The authors suggest the terminal conditions (no put provision at maturity)

B(S, T ) = F +K

C(S, T ) = max(κS − (F +K), 0)

1.3 A model with constant recovery

As highlighted in the AFV paper, we can make any assumption concerning the recovery upon
default. For instance, in the AFV model, the authors assume the holder recovers a portion of
the bond component of the convertible. We choose to consider another model where the holder
recovers a fraction of the face value of the bond at default RrecF . This is also a standard
assumption (see [AFV02]) and this is the model we have decided to implement.

We make the same assumptions as are presented in the previous section. To be clear we
recall some assumptions:

12



• The call feature is American. The price at which the company can call the CB Bc(t) may
depend on time. We will consider the case where the call price is a constant plus accrued
interest Bc(t) = Bcc + AccI(t) where Bcc is the (constant) clean price. This means that
when the holder sells the CB, he gets the accrued interest which is common in the bond
markets.

• The put feature is American. The put price will depend on time. We will choose Bp(t) =
Bpp +AccI(t) where Bpp is the (constant) clean price of Bp.

• The conversion is American style. The holder does not receive accrual interest when he
decides to convert into shares. This assumption is made in [AFV02].

• The bond can pay coupons. If coupons are paid, to ease implementation, we make the
assumption a coupon is paid at maturity.

• The parameters and assumptions about the stock price dynamics are the same as in part
II, section 1.2.2.

Let us denote by B the straight bond with same face value, tenor structure, coupons, as the
CB we want to price. We assume that B has a call feature identical to that of the CB. This
bond can default and there is no recovery in case of default.

Since the CB has a conversion and put feature embedded, it has necessarily more value than
the straight bond B by absence of arbitrage opportunity. Therefore, we can write an additional
constraint:

V (S, t) ≥ B(t) , ∀t ∈ [0, T ],∀S ∈ [0,∞)

where V is the value of the CB. We assume B(t) < Bc(t) to ensure the CB is not called
immediately.

Therefore we can include an additional term in the lower constraint of V . We use the result of
[AFV03] to find

(
MV − φF (S ) − c(t) = 0

V ≥ g2
V ≤ g1

)

∨

(
MV − φF (S ) − c(t) ≥ 0

V = g2
V ≤ g1

)

∨

(
MV − φF (S ) − c(t) ≤ 0

V ≥ g2
V = g1

)

(II.5)

V (S, T ) = g2(S, T ) (II.6)

for S in [0,∞) and t in [0, T ].
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The constraints g1 and g2 for the LCP are given by:

g1 = max(Bc, κS) (II.7)

g2 = max(Bp, B(t), κS) (II.8)

At maturity, in case there was no default, the bond holder will receive max(B(T ), κS,Bp(T ))
since the holder can either choose to receive the terminal value of the callable bond B, put the
CB or else convert.

A sketch of the proof that there exists a unique solution to the LCP above is given in
Appendix A. It is based on the equivalence between stochastic optimal control and a LCP.
This equivalence is based on [BL78].

2 Two stochastic factors: stock price, interest rate

In this section, we include a stochastic interest rate which may be correlated with the stock
price. The most common short rate models are the Vasicek, Cox Ingersoll Ross, Ho Lee, Hull
White models, etc. (see [BM01]).

2.1 Model specification

We are in the same framework as in the one-factor model except the interest rate is allowed to
be stochastic. The dynamics of the factors under a risk neutral measure Q is then

dS+
t = S−

t (r − q + pη)dt + S−
t σdWt − S−

t ηdNt, S(0) = S0

drt = µ̃(r, t)dt + σ̃(r, t)dW̃t, r(0) = r0






(II.9)

where we denote by ρ(r,S) the correlation between the Wiener processes Wt and W̃t where
0 ≤ ρ(r,S) ≤ 1. We will assume that ρ(r,S) is constant.

A set of partial differential inequalities can then be derived for the price of a convertible
with a stochastic short rate (see for instance for the PDE [AB02] section 6).

A LCP can be derived extending the framework presented in part II. The value V of a CB
under the model (II.9) is a solution of the LCP (II.5)-(II.8) where the operator M in (II.5) is
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replaced by the operator M2:

M2 =







−
∂

∂t
− [

σ2

2
S2 ∂2

∂S2
+
σ̃2

2

∂2

∂r2
+ ρ(r,S)σσ̃S

∂2

∂S∂r
+ (r + pη − q)S

∂

∂S

+µ̃(r, t)
∂

∂r
− (r + p)]

(II.10)

Let us note that the bond price B in constraint (II.8) has to be computed also using the model
(II.9) to maintain consistency.

We can see that the LCP is similar to the case where only the stock price is stochastic.
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Part III

Finite Element Approach

1 Objective

In many papers, the method used to solve a PDE is the Finite Difference Methods (FDM). We
have decided to use the Finite Element Methods (FEM) to solve this pricing problem.

There are several reasons that explain the use of FEM.

First, it is possible to consider grids that are not necessarily rectangular whereas FDM, in the
basic form, are restricted to rectangular shapes. Second, since we work with Sobolev spaces
to find solutions, we use the concept of weak derivatives and the notion of differentiability is
more general than with the FDM. The FEM is therefore more general than the FDM and it
often ensures more numerical stability and accuracy.

2 One stochastic factor: stock price

In this section, we will show how to price an American option with FEM in the framework
presented in part II, section 1.1. This will enable us to tackle the pricing of CBs in an easier
way.

2.1 Modifying the PDEs

In this section, we will introduce changes of variables that are usual in order to formulate and
solve our problem more accurately. We consider time to maturity τ = T − t, and change to
log-price x = log(S)(S 6= 0) to remove the degeneracy of the operators in (II.1) and (II.4).

2.1.1 American option

The changes of variable described above hold almost everywhere (not when S = 0). Let us
introduce

u(x, τ) = V am(ex, T − τ) (III.1)

So, for x ∈ R or equivalently for S ∈ (0,∞), we have:

∂V am

∂S
=

1

S

∂u

∂x
,
∂2V am

∂S2
=

1

S2
(
∂2u

∂x2
−
∂u

∂x
).
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Hence, under the change of variables (III.1), the system (II.1) becomes:







∂u

∂τ
−ABS−logu+ ru ≥ 0 in (0, T ) × R

u(x, τ) ≥ ψ(x)

(u− ψ) · (
∂u

∂τ
−ABS−logu+ ru) = 0 in (0, T ) × R

u(x, 0) = ψ(x)

(III.2)

where the operator ABS−log is given by

ABS−log =
σ2

2

∂2

∂x2
− (

σ2

2
− r)

∂

∂x
,

and ψ(x) = g(ex).

2.1.2 Convertible Bond with constant recovery

Let us denote by u the value of the CB once we have changed variables: u(x, τ) = V (S, t). Let
us moreover write f(x) := φF (ex). We define the constraints ψ1 and ψ2 as follows:

ψ1(x, τ) = max(Bc(τ), κe
x) (III.3)

ψ2(x, τ) = max(Bp(τ), κe
x). (III.4)

Let us write the change of variables for the coupon payment stream as well as the accrual
interest. We define τcp = T − tcp , with 1 ≤ cp ≤ Nc. After ordering in increasing order the
(τcp)1≤cp≤Nc , we have:

AccI(0) = 0 ; AccI(τ) = K ·
τci+1 − τ

τci+1 − τci
for τci < τ ≤ τci+1

The system (II.5)-(II.8) satisfied by u becomes





∂u
∂τ

−Au− f = 0
u ≥ ψ2

u ≤ ψ1



 ∨





∂u
∂τ

−Au− f ≥ 0
u = ψ2

u ≤ ψ1



 ∨





∂u
∂τ

−Au− f ≤ 0
u ≥ ψ2

u = ψ1



 (III.5)
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where the operator A is defined as

A =
1

2
σ2 ∂

2

∂x2
+ (r + pη − q −

1

2
σ2)

∂

∂x
− (r + p) (III.6)

We have decided not to include the coupon stream c(τ) in the function f . However, at all
coupon dates (τcp)1≤cp≤Nc (by a no arbitrage argument) we have to force the solution u of the
pricing problem to jump:

u(τcp , x) = u(τ−cp , x) +K (∀cp ∈ [|1 : Nc|] , x ∈ R)

2.2 Variational formulation on a truncated domain

2.2.1 American option

For computational reasons, we have to truncate the domain where we calculate the price.
Indeed we choose x to belong to the set ΩR := (−R,R). We then impose homogeneous
Dirichlet boundary conditions: u(±R, τ) = 0, ∀τ ∈ (0, T ).

Furthermore, we define the Sobolev space V := H1
0 (ΩR) = {v, v′ ∈ L2(ΩR)}, where v′ has to

be understood in a weak sense.

The truncated problem to (III.2) reads:

Find uR ∈ L2(0, T ;V ) such that

∂uR

∂τ
−ABS−loguR + ruR ≥ 0 in (0;T) × ΩR (III.7)

uR(x, τ) ≥ ψ(x) (III.8)

(uR − ψ) · (
∂uR

∂τ
−ABS−loguR + ruR) = 0 in (0;T) × ΩR (III.9)

uR(x, 0) = ψ(x) (III.10)

We give the variational formulation of (III.7)-(III.10). To this end, v ∈ V be a variation
function. We define the convex and closed cone (see (III.8))

Kψ := {v ∈ V | v ≥ ψ , for a.e. x ∈ ΩR}.
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Let uR be the solution of (III.7)-(III.10) and let v ∈ Kψ. From (III.7) and (III.8), it follows

(
∂uR

∂τ
+ABS−loguR)(v − ψ) ≥ 0.

Integrating this inequality over ΩR and using (III.9) (we set ∂τ := ∂
∂τ

):

∫ R

−R
[(∂τu

R +ABS−loguR)(v − ψ)]dx ≥ 0

∫ R

−R
[(∂τu

R +ABS−loguR)(uR − ψ)]dx = 0.

Subtracting the equality from the inequality above gives

∫ R

−R
[(∂τu

R +ABS−loguR)(v − uR)]dx ≥ 0

Furthermore, we have (we set ∂x := ∂
∂x

and ∂xx := ∂
∂xx

):

∫ R

−R
ABS−loguR(v−uR)dx =

∫ R

−R
[−
σ2

2
∂xxu

R(v−uR)+ (
σ2

2
− r)∂xu

R(v−uR)+ ruR(v−uR)]dx

Integration by parts gives

∫ R

−R
∂xxu

R(v − uR)dx = [∂xu
R(v − uR)]R−R

︸ ︷︷ ︸

=0 since v∈V

−

∫ R

−R
∂xu

R(v′ − ∂xu
R)dx,

and therefore we get

∫ R

−R
ABS−loguR(v−uR)dx =

∫ R

−R
[
σ2

2
∂xu

R(v′ − ∂xu
R) + (

σ2

2
− r)∂xu

R(v − uR) + ruR(v − uR) ]dx

︸ ︷︷ ︸

aBS−log(uR,v−uR)

.

Denoting by (·, ·) the inner product of V the inequality becomes

(∂τu
R, v − uR) + aBS−log(uR, v − uR) ≥ 0.

The variational problem is the following. Find uR ∈ L2(0, T ;V ) ∩ H1(0, T ;V ′), with V =
H1

0 (−R,R) and V ′ denotes the dual space of V , such that u(τ, .) ∈ Kψ a.e. in (0, T ) and such
that ∀v ∈ Kψ:
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(∂τu
R, v − uR) + aBS−log(uR, v − uR) ≥ 0 (III.11)

uR(·, 0) = ψ. (III.12)

It is not obvious that there exists a unique solution to the problem (III.11) - (III.12). To prove
existence and uniqueness, we refer to [Schw07].

The main steps are to show that the bilinear form a is coercive and continuous on V × V .
Furthermore, since f ∈ L2(ΩR) and we are working with a closed and convex set Kψ, it can
be shown that there exists a unique solution u ∈ L2(0, T ;V ) ∩ C0([0, T ];L2(ΩR)) to (III.11) -
(III.12). Since it is unique, it has to be the solution to the original problem (III.7)-(III.10).

2.2.2 Convertible bond

We are going to truncate the problem for x ∈ R to x ∈ (−R,R) := ΩR for computational
reasons. We will impose homogeneous Dirichlet boundary conditions for x = ±R. We will
follow the same procedure as in part III, section 2.2.1.

Let v ∈ L2(0, T ;V ), where V = H1
0 (ΩR). We define KR

ψ2,ψ1
by:

KR
ψ2,ψ1

= {v ∈ L2(0, T ;V ) | ψ1(x, τ) ≥ v(x, τ) ≥ ψ2(x, τ) , for a.e. x ∈ ΩR , for a.e. τ ∈ [0, T ]}.

We choose uR (approximation of u on KR
ψ2,ψ1

) and v to belong to the same space KR
ψ2,ψ1

.

Let us derive the variational formulation for the LCP (III.5) on the truncated domain ΩR ×
(0, T ). From (III.5), we have

(∂τu
R −AuR − f)(v − uR) ≥ 0 ∀ v ∈ L2(0, T ;V )

Integrating on ΩR yields

(∂τu
R, v − uR) − (AuR, v − uR) − (f, v − uR) ≥ 0 ∀ v ∈ L2(0, T ;V )

where (g, h) = (g(·, τ), h(·, τ)) =
∫ R

−R g(x, τ)h(x, τ)dx.
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Furthermore, using integration by parts, we get

(AuR, v − uR) =

∫ R

−R

1

2
σ2∂xxu

R (v − uR) + (r + pη − q −
1

2
σ2)∂xu

R (v − uR)

− (r + p)uR (v − uR)dx

= [
σ2

2
∂xu

R (v − uR)]R−R
︸ ︷︷ ︸

=0 since uR,v∈Kψ2,ψ1

−

∫ R

−R

σ2

2
∂xu

R (∂xv − ∂xu
R)dx

+

∫ R

−R
(r + pη − q −

1

2
σ2)∂xu

R (v − uR) − (r + p)uR (v − uR)dx.

We can define the bilinear form a such that ∀g, h ∈ KR
ψ2,ψ1

a(g, h) = −(Ag, h) =

∫ R

−R

σ2

2
∂xg ∂xh+ (

σ2

2
+ q − r − pη)∂xg h+ (r + p)g hdx (III.13)

The weak formulation of our problem is now :

Find uR ∈ KR
ψ2,ψ1

such that ∂τu
R ∈ L2(0, T ;L2(ΩR)), and such that we have

(∂τu
R, v − uR) + a(uR, v − uR) ≥ (f(·, τ), v − uR) ∀ v ∈ KR

ψ2,ψ1

uR(·, 0) = ψ2(·, 0).

To show that this weak formulation has a unique solution, we refer to [Schw07] and [BL78]
(chapter 3, section 2.18). The above problem is basically dealt with in the same way as the
problem (part III, section 2.2.1) on American options.

3 Two stochastic factors: stock price & interest rate

In this section, we will do the usual changes of variables for the two-dimension case presented
in part II, sections 2.1 , i.e. change to log-price: x = log(S) and time to maturity τ = T − t.

We will work with the LCP





M2V − φF (S) = 0
V ≥ g2
V ≤ g1



 ∨





M2V − φF (S) ≥ 0
V = g2
V ≤ g1



 ∨





M2V − φF (S) ≤ 0
V ≥ g2
V = g1



 (III.14)
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where M2 has been defined in (II.10).

We have taken out the function c(t). As for the one dimensional case, we will force the solution
to jump accordingly at coupon dates.

3.1 Change of variables

We will work with the system (III.14). Let us denote by u, the value of the CB once we have
changed variables: u(x, τ) = V (S, t). Let us moreover define f(x) = φF (ex). ψ1 and ψ2 are the
constraints defined by ψ1(x, τ) := max(Bc(τ), κe

x) and ψ2(x, r, τ) := max(Bp(τ), B(τ), κex).

In the case the bond B is not callable, the expression B(τ) = EQ[ e−
R T
T−τ r(s)ds ] holds, where

Q is a spot martingale measure (see [Scho07]).

Once we have changed variables, we get (∂τu = ∂u
∂τ

):





∂τu−A2(u) − f(x, τ) = 0
u ≥ ψ2

u ≤ ψ1



∨





∂τu−A2(u) − f(x, τ) ≥ 0
u = ψ2

u ≤ ψ1



∨





∂τu−A2(u) − f(x, τ) ≤ 0
u ≥ ψ2

u = ψ1





(III.15)

where we define A2 as the operator:

A2 :=
σ2

2

∂2

∂x2
+
σ̃2

2

∂2

∂r2
+ ρ(r,S)σσ̃

∂2

∂x∂r
+ (r + pη − q −

1

2
σ2)

∂

∂x
+ µ̃

∂

∂r
− (r + p)

= A +
σ̃2

2

∂2

∂r2
+ ρ(r,S)σσ̃

∂2

∂x∂r
+ µ̃

∂

∂r

3.2 Variational formulation on a truncated domain

We follow the same procedure as in section 2.2.2. except we are dealing with a truncated
domain in R2.

We are going to truncate the problem for x ∈ R to x ∈ (−R1, R1) := Ωx and r ∈ [R2, R3] := Ωr

where R2 can be for example -10% or 0% and R3 may be 25% or 50%. We will impose
homogeneous Dirichlet boundary conditions on ∂Ωx and on ∂Ωr.

Let ΩR := Ωx × Ωr (R := (R1, R2, R3)) and V = H1
0 (ΩR).

Let v ∈ L2(0, T ;V ) and define KR
ψ2,ψ1 as:

KR
ψ2,ψ1

:= {v ∈ L2(0, T ;V ) | ψ1(x, τ) ≥ v(x, r, τ) ≥ ψ2(x, r, τ) , for a.e. x ∈ Ωx, r ∈ Ωr, τ ∈ [0, T ]}.
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Proceeding analogously to section 2.2.2, the parabolic variational inequality to (III.15) reads:

Find uR ∈ L2(0, T ;V ) such that ∂τu
R ∈ L2(0, T ;L2(ΩR)) and uR ∈ KR

ψ2,ψ1
such that

(∂τu
R, v − uR) + a2(u

R, v − uR) ≥ (f, v − uR) ∀ v ∈ KR
ψ2,ψ1

(III.16)

uR(·, ·, 0) = ψ2(·, 0). (III.17)

where the bilinear form a2(·, ·) : KR
ψ2,ψ1

×KR
ψ2,ψ1

→ R is given by (where ′ := ∂r)

a2(g, h) = −(A2g, h) = σ2

2 (∂xg, ∂xh) + 1
2 (σ̃∂rg, σ̃∂rh) + (σ̃σ̃′∂rg, h)

+ρ(r,S)σ(σ̃∂rg, ∂xh) − (r∂xg, h) + (σ
2

2 + q − pη)(∂xg, h) − (µ̃∂rg, h)

+(rg, h) + p(g, h),







(III.18)

and (·, ·) denotes the inner product in L2(ΩR).

4 Implementation for pricing convertibles

In this section, we will implement the pricing of convertibles. We will describe the FEM and
framework that is used to approximate the price of a CB.

4.1 One stochastic factor: stock price

4.1.1 Discretization in log-price

We will first proceed by discretizing in space (log-price). For N ≥ 1, we define the sequence
−R = x0 < x1 < ... < xN < xN+1 = R and we use the Finite Element Space

VN = span{bi(x) : i = 1, ...,N} ⊂ V = H1
0 (ΩR)

where the functions bi are defined by

bi(x) =







1
hi

(x− xi−1) x ∈ Ki := (xi−1, xi),
1

hi+1
(xi+1 − x) x ∈ Ki+1,

0 else
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We will drop the superscript from uR and simply write u to ease notation. We can approx-
imate the functions u and v by uN and vN which are functions in the space VN .

We can write

uN (x, τ) =

N∑

i=1

uNi (τ)bi(x)

vN (x, τ) =

N∑

i=1

vNi (τ)bi(x)

where uN (τ) := {uNi (τ)}Ni=1 is in Kψ2,ψ1
(τ) (defined just below).

For discretization, we approximate KR
ψ2,ψ1

(τ) by

Kψ2,ψ1
(τ) = {UN =

N∑

i=1

UNi (τ)bi(x) , ψ1(xi, τ) ≥ UNi (τ) ≥ ψ2(xi, τ) , i = 1, ...,N}

Note that Kψ2,ψ1
* KR

ψ2,ψ1
since the piecewise linear continuous function consisting of the

points ψ1(xi, τ) is above ψ1 because ψ1 is convex.

Now, we can discretize our variational inequality in space. We are looking for uN (τ) ∈
Kψ2,ψ1

(τ) for a.e. τ , such that for all vN (τ) ∈ Kψ2,ψ1
(τ)

(
∂(uN )⊤

∂τ
b(x), (vN − uN )⊤ b(x)) + a((uN )⊤ b(x), (vN − uN )⊤ b(x)) ≥ (f(., τ), (vN − uN )⊤ b(x))

where (uN )⊤ denotes the transpose of vector uN and b(x) is the column vector {bi(x)}
N
i=1.

Let us write some terms in a different way:

• term (
∂(uN )⊤

∂τ b(x), (vN − uN )⊤ b(x)):

(
∂(uN )⊤

∂τ
b(x), (vN − uN )⊤ b(x)) =

∂(uN )⊤

∂τ
(b, b⊤ (vN − uN ))

= (u̇N )⊤ (b, b⊤) (vN − uN )

= (vN − uN )⊤ (b, b⊤)⊤
︸ ︷︷ ︸

=(b,b⊤)

u̇N
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We find that (
∂(uN )⊤

∂τ b(x), (vN − uN )⊤ b) = (vN − uN )⊤ (b, b⊤) u̇N

• term a((uN )⊤ b(x), (vN − uN )⊤ b(x)). Given that a is bilinear, we have:

a((uN )⊤ b, (vN − uN )⊤ b) = (uN )⊤ a(b , b⊤ (vN − uN ))

= (uN )⊤ · a(b , b⊤) (vN − uN )

= (vN − uN )⊤ a(b , b⊤)⊤
︸ ︷︷ ︸

not symmetric

uN

So, we can write a((uN )⊤ b, (vN − uN )⊤ b) = (vN − uN )⊤ a(b , b⊤)⊤ uN

• term (f(., τ), (vN − uN )⊤ b(x)):

(f(., τ), (vN − uN )⊤ b) = (f, b⊤ (vN − uN ))

= (f, b⊤) (vN − uN )

= (vN − uN )⊤ (b, f)

Let us denote by M the Mass matrix , A the Stiffness matrix corresponding to the bilinear
form a, and f the load vector :

Mi,j = (bi, bj), ∀i = 1, ...,N, j = 1, ...,N

Ai,j = a(bj , bi), ∀i = 1, ...,N, j = 1, ...,N

f
i

= (bi, f), ∀i = 1, ...,N

Our problem can now be formulated as:

Find uN ∈ Kψ2,ψ1
, such that for all vN ∈ Kψ2,ψ1

(vN − uN )⊤ [Mu̇N + AuN − f ] ≥ 0 for a.e. τ ∈ (0, T ) (III.19)

25



4.1.2 Discretization in time

Now, we will discretize in time using a θ-scheme (0 ≤ θ ≤ 1) for time stepping. Let in (0, T )
be a sequence {τm}

M−1
m=0 (M > 1) of (not necessarily equally sized) time steps be given, and set

τm =
∑m

i=0 ki so that τM = T (km > 0 for all m). The discretization of the above inequality in
the time and price variable reads:

Find {um+1
N }M−1

m=0 ∈ Kψ2,ψ1
such that (we drop the subscript N)

(vm+1 − um+1)⊤ [k−1
m M(um+1 − um) + A(θum+1 + (1 − θ)um) − (θfm+1 + (1 − θ)f m)] ≥ 0

(ψ1)
m+1
i ≥ um+1

i ≥ (ψ2)
m+1
i

u0
i = (ψ2)

0
i

where

Kψ2,ψ1
= {w ∈ RN × RM , ψ2

m ≤ wm ≤ ψ1
m, for m < M}

fm+θ(x) = θf(x, tm+1) + (1 − θ)f(x, tm)

um+θ
N (x) = θum+1

N (x) + (1 − θ)umN (x)

(ψ
p
)mi = ψp(xi, t

m) ( 1 ≤ p ≤ 2)

We define

bm := km(θfm+1 + (1 − θ)fm) + (M− km(1 − θ)A)um

And we get

(vm+1 − um+1)⊤ · [M + kmAθ]um+1 ≥ (vm+1 − um+1)⊤ bm

(ψ1)
m+1
i ≥ um+1

i ≥ (ψ2)
m+1
i

u0
i = (ψ2)

0
i

These LCP are equivalent to

(ψ1)
m+1 ≥ um+1 ≥ (ψ2)

m+1 (III.20)

(um+1 − (ψ2)
m+1)⊤[(M + kmAθ)um+1 − bm]((ψ1)

m+1 − um+1) = 0 (III.21)

u0
i = (ψ2)

0
i (III.22)

where (ψk)
m+1 is the column vector {(ψk)

m+1
i }Mi=1 for k = 1, 2.
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4.1.3 Calculation of matrices

Let us have a closer look at the matrices M and A. To simplify calculations (see Appendix B
for calculations), we will consider a constant price-space step (hi is constant equal to h = 2R

N+1).

First of all, one can observe that the function bk is non zero only on (xk−1, xk+1) (in
particular, we have for instance (bi, bj) = 0, ∀|i− j| > 1). Therefore, we have

Mi,j = Ai,j = 0,∀ i = 1, ...,N, j /∈ {i− 1, i, i + 1}

In order to calculate the matrix A, we will define the matrices S and C

Si,j =

∫ R

−R
b′j(x)b

′
i(x)dx ; Ci,j =

∫ R

−R
b′j(x)bi(x)dx. (III.23)

Then A can be written as

Ai,j =
σ2

2
Si,j + (

σ2

2
+ q − r − pη)Ci,j + (r + p)Mi,j

we find (see Appendix B)

Mi,i =
2h

3
, Mi,i+1 = Mi,i−1 =

h

6

Ai,i =
σ2

h
+ (r + p)

2h

3

Ai,i−1 =
−σ2

2h
−

1

2
(
σ2

2
+ q − r − pη) + (r + p)

h

6

Ai,i+1 =
−σ2

2h
+

1

2
(
σ2

2
+ q − r − pη) + (r + p)

h

6

To calculate the load vector fm, we recall that we have fm
i

= (bi, f
m) and f(x, τ) = p max(κ exp(x)(1−

η), Rrec · F ).

(f, bi) =

∫ xi+1

xi−1

f(x, τ)bi(x)dx =
1

h

∫ xi

xi−1

(pmax(κex(1 − η), Rrec · F ))(x − xi−1)dx

+
1

h

∫ xi+1

xi

(pmax(κex(1 − η), Rrec · F ))(xi+1 − x)dx]
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The value of this integral depends on the value of max(κex(1 − η), Rrec · F ). Check Appendix
B for the calculation. We find:







If log( RrecF
κ(1−η) ) ≤ x0

then

(f, bi) = pκ(1−η)
h

exi(e−h − 2 + eh)







If xN+1 ≤ log( RrecF
κ(1−η) )

then
(f, bi) = hpRrecF







If xi−1 < log( RrecF
κ(1−η) ) < xi

then

(f, bi) = 1
2hpRrecF (log( RrecF

κ(1−η) ) − xi−1)
2+

1
h
pκ(1 − η)[ RrecF

κ(1−η) (− log( RrecF
κ(1−η)) + 1 + xi − h) + exi(−2 + eh)]







If xi < log( RrecF
κ(1−η) ) < xi+1

then

(f, bi) = hpRrecF − 1
2hpRrecF [xi+1 − log( RrecF

κ(1−η) )]
2

+ 1
h
pκ(1 − η)[ RrecF

κ(1−η) (log( RrecF
κ(1−η) ) − xi+1) + exi+1 − RrecF

κ(1−η) ]

We can see from the above calculation that if we choose a value of R < log( RrecF
κ(1−η) ), then

we do not consider scenarios where conversion is optimal at default. Indeed
RrecF > κ(1− η)ex, ∀x ∈ (−R,R). We will therefore consider that R > log( RrecF

κ(1−η) ) to allow a
broad range of scenarios.

4.2 Two stochastic factors: stock price & interest rate

We discretize in ΩR = (−R1, R1) × (R2, R3) by a tensor product grid (with constant mesh):
let hx = 2R1

Nx+1 and xi = −R1 + ihx , i = 0, ...,Nx + 1 and let hy = R3−R2
Ny+1 and yj = R2 + jhy ,

j = 0, ..., Ny + 1.
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Let us denote by bi(x) = max(1− |x−xi|
hx

, 0), b̄j(y) = max(1−
|y−yj |
hy

, 0). Then the Finite Elements

space VNx,Ny ⊂ V is given by VNx,Ny = span{bi(x)b̄j(y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}.

Note that VNx,Ny = VNx ⊗ VNy is a tensor product of univariate FE spaces.

For localization and discretization, we will proceed as in section 4.1.2. .

We can write

u(x, y, τ) =
Nx∑

i=1

Ny∑

j=1

uij(τ)bi(x)b̄j(y)

v(x, y, τ) =

Nx∑

i=1

Ny∑

j=1

vij(τ)bi(x)b̄j(y)

The column vector u(τ) := {uij(τ)}
Nx,Ny
i,j=1 = (u11(τ), u12(τ), ..., u1Ny (τ), u21(τ), ..., uNxNy(τ))

T

is in Kψ2,ψ1
(defined just below).

For discretization, we approximate KR
ψ2,ψ1

by

Kψ2,ψ1
= {U =

Nx∑

i=1

Ny∑

j=1

Uij(τ)bi(x)b̄j(y) , ψ1(xi, τ) ≥ Uij(τ) ≥ ψ2(xi, yj , τ) ,

i = 1, ..., Nx, j = 1, ...,Ny , a.e. in τ}

Let us notice that Kψ2,ψ1
( KR,rmax

ψ2,ψ1
since the piecewise linear continuous function consisting

of the points ψ1(xi, τ) is above ψ1 (because ψ1 is convex).

Since, we have already discretized the one dimensional problem in section 4.1, we will just give
the major steps and explain where there are differences.

Let us discretize our variational inequality in space. We are looking for u ∈ Kψ2,ψ1
, such

that for all v ∈ Kψ2,ψ1

(
∂(u)⊤

∂τ
b, (v − u)⊤ b)L2(ΩR) + a((u)⊤ b, (v − u)⊤ b) ≥ (f(., τ), (v − u)⊤ b)L2(ΩR)

where (u)⊤ (respectively (u)⊤ ) denotes the transpose of vector u (respectively v) and b is the
column vector (b1b̄1, b1b̄2, ...b1b̄Ny , b2b̄1, ..., b2b̄Ny , ..., bNx b̄Ny)

⊤.

29



Discretizing in time leads to the following system

(ψ1)
m+1 ≥ um+1 ≥ (ψ2)

m+1

(um+1 − (ψ2)
m+1)⊤[(M + kmAθ)um+1 − bm]((ψ1)

m+1 − um+1) = 0

u0
i = (ψ2)

0
i

where km is defined in section 4.1.2.. The matrices A and M are defined in the same way as
in the section 4.1.2., i.e. we have

M = [(b, b⊤)L2(ΩR)]
⊤ = (b, b⊤)

︸ ︷︷ ︸

∈ RNxNy×NxNy

(M is symmetric)

A = a(b, b⊤)⊤
︸ ︷︷ ︸

∈ RNxNy×NxNy

The matrices M and A can be built from tensor products of univariate matrices, e.g. the mass
matrix M = (M(i,j),(i′,j′)) is of the tensor product form

M(i,j),(i′,j′) = (bib̄j , bi′ b̄j′)L2(ΩR)

=

∫

ΩR

bi(x)bi′(x)b̄j(y)b̄j′(y)dydx

= (bi, bi′)L2(−R1,R1)(bj , bj′)L2(R2;R3) = (Mx)ii′(My)jj′

= (Mx ⊗My)(i,j),(i′,j′)

where the matrices Mx and My are the univariate mass matrices calculated for the one-
dimensional problem in section 4.1.2.

This means that we just need to have calculated Mx and My in order to find M.

We will find a similar result for the matrix A. Let us define the matrices we will use to
decompose the matrix A:

{Mx}i,i′ = (bi, bi′)L2(−R,R) (III.24)

{My}j,j′ = (b̄j , b̄j′)L2(R2,R3) (III.25)

{My,1}j,j′ = (yb̄j , b̄j′)L2(R2,R3) (III.26)

{Cx}i,i′ = (b′i′ , bi)L2(−R,R) (III.27)

{Cy}j,j′ = (b̄′j′ , b̄j)L2(R2,R3) (III.28)

{Cy,1}j,j′ = (yb̄′j′, b̄j)L2(R2,R3) (III.29)

{Sx}i,i′ = (b′i, b
′
i′)L2(−R,R) (III.30)

{Sy}j,j′ = (b̄′j, b̄′j′)L2(R2,R3) (III.31)
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Assume that the interest rate r follows a Vasicek process, i.e. µ̃ = a(b−r) , σ̃ = σr, a, b, σr ∈ R
in (II.9).

Then the bilinear form a, we obtain the tensor product matrix representation

M = Mx ⊗ My

A =
σ2

2
Sx ⊗My − Cx ⊗ My,1 + (

σ2

2
+ q − pη)Cx ⊗ My + ρ(r,S)σσr C⊤

x
︸︷︷︸

−Cx

⊗Cy +
σ2
r

2
Mx ⊗ Sy

− abMx ⊗ Cy + aMx ⊗ Cy,1 + pMx ⊗ My + Mx ⊗ My,1

In order to reduce the number of tensor products to calculate, A can be written as

A = Sx ⊗ A1,y + Cx ⊗ A2,y + Mx ⊗ A3,y

with

A1,y =
σ2

2
My

A2,y = −My,1 + (
σ2

2
+ q − pη)My − ρ(r,S)σσrCy

A3,y =
σ2
r

2
Sy − abCy + aCy,1 + pMy + My,1.

The components of the matrices above are calculated in the Appendix A and Appendix C.

In order to compute the load vector F, we will denote by Fx the load vector calculated in the
section 4.1.3 and by Fy the vector

Fy = hy (1, ..., 1)⊤

and we have F = Fx ⊗ Fy.
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Part IV

Results

In this part, we will present the results of the implementation using the FEM discussed in part
III for the pricing of a CB. We would like to give some intuition of how the price of a CB can
be impacted by the different parameters entering in the valuation.

To give us an idea of the accuracy of our method, we have decided to compare our results to
a commercial pricing software. It is important to know that it was not possible to improve
the accuracy (refine the grid) of the pricing for the commercial tool used. In some rare and
extreme cases, this can explain the differences we find.

Furthermore, we would like to get a good idea of the convergence rate of our pricer by testing
the speed of convergence numerically (see section 1.2).

Finally, we compute the exercise boundaries for the holder and issuer of a CB, which give us
numerically and precisely the continuation region and exercise region (see section 1.3). We also
study the impact on the exercise boundaries of a change in a parameter (e.g. the volatility or
the interest rate).

1 One stochastic factor

1.1 Accuracy and behavior of the CB price

In this section, we intend to check the accuracy of our pricing algorithm. We will run many
tests in order to get a good idea of where our pricing is accurate and where it could be improved.

Let us first show the impact of two parameters in our model: the drop in stock price at
default η and the recovery rate when default occurs Rrec.

Here is a list of the parameters that we use when testing. We will then test our CB values
by changing just one at a time and keeping the other ones fixed to these values.
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Parameters:

Parameter Value Explanation

T 10 Maturity of CB (years)

F 100 Face Value of Bond

K 0 Absolute coupon value (constant)

(tcj)1≤j≤Nc ∅ Coupons dates in years.

σ 0.2 Volatility (here 20%)

η 1 Proportional loss in stock value at default

Rrec 0 Recovery rate of face value at default

κ 1 conversion ratio (here: one CB for one share)

Bc 140 Clean price at which issuer calls the CB

Bp 20 Clean price at which holder puts the CB

r 0.05 Short interest rate (here 5%)

p 0.03 probability of default/year (here 3%)

q 0.06 Continuous dividend yield (here 6%)

Table 1: Parameters used in testing zero-coupons CBs

For computation of prices, we usually chose the following grid parameters:

Parameter Value Explanation

N + 1 1024 N + 2 is the number of grid points for discretization in log-price

R 6 x ∈ [−R,R] ⇒ S ∈ [e−R, eR]

M 128 M + 1 is the number of Grid points for time-discretization

θ 0.5 Crank-Nicolson scheme

jmax 500 Max number of iterations for the PSOR

tol 10−10 tolerance in the PSOR (Euclidean norm)

Table 2: Parameters for computation of CBs

33



Figure 1 shows the influence of the parameter η (fractional loss in stock price at default) in
the valuation of a CB. We can clearly see that the more the stock price loses value at default
the more the price-curve decreases. We have chosen to plot 3 cases: the stock price loses no
value (η = 0), the stock price loses half of its value (η = 0.5) and if the stock price drops to 0
(η = 1).
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Figure 1: Price of a CB when the jump η in stock price at default varies

It seems intuitive that the more the stock price can fall at default, the less valuable the CB is.
This is what we observe on Figure 1.

Moreover, it is normal that the price of a CB grows linearly (for κS ≥ Bc) as a function
of the stock price with exactly the slope κ (conversion ratio). This can be mathematically
explained by the constraints on the CB value: max(Bp(t), B(t), κS) ≤ V ≤ max(Bc(t), κS)
from (II.5). Indeed, when κS > Bc(t) then, these inequalities become κS ≤ V ≤ κS (since
Bp(t) < Bc(t) and Bp(t) ≤ Bc(t)). Intuitively, the reason why V (S, t) = κS for κS ≥ Bc is
that if the issuer did not call the CB when V (S, t) = Bc(t), then it is optimal for the issuer to
call it immediately to avoid loosing money (if the stock price were to go up), and obviously the
holder would choose to receive κS and not Bc(t) ≤ κS. Therefore V (S, t) = κS for κS ≥ Bc.
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We have also plotted the value of a CB after changing the percentage Rrec of the face value
of the bond you recover at default. One would expect that a CB for which we can recover more
money at default is more valuable. This is what we observe: V (S, t,Rrec = 0) < V (S, t,Rrec =
50%) < V (S, t,Rrec = 100%).
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Figure 2: Price of a CB when the recovery at default varies

For other parameters such as interest rate, default probability, dividend rate and volatility, we
have plotted the percent error with respect to our benchmark. We define

absolute error(xi, t
m) = |uFEM(xi, t

m) − ubenchmark(xi, t
m)|

relative error(xi, t
m) =

|uFEM(xi, t
m) − ubenchmark(xi, t

m)|

ubenchmark(xi, tm)

percent error(xi, t
m) = 100 ×

|uFEM(xi, t
m) − ubenchmark(xi, t

m)|

ubenchmark(xi, tm)
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In fact, it is not necessary to test both the interest rate and the default probability because
they have the same effect on the pricing. For instance, the price of a CB stays the same (in
one dimension) when the sum (r + p) remains constant.

We emphasize that this commercial software may not always provide a very good solution
because we could not improve its accuracy (the number of grid points). It will nevertheless
give us a good idea of whether or not our CB price is accurate.

We now present some tests we have done. We will not show all of them but focus on the most
important ones. Here are some critical parameters we have tested:

• Interest Rate impact

For this test, we have taken interest rates that go from 0% to 50%. Of course these
values are not all realistic, the idea is to test our pricer even in extreme cases. All other
characteristics of the CB, or parameters for computation, are those presented in Table 1
and Table 2. Here are some results we get when the interest rate is fixed to 5%

Stock Price FEM Price Benchmark Price Absolute Error Percent Error

S = 2.009623 44.903242 44.903361 1.19e-4 2.65e-4

S = 4.014968 44.903243 44.903361 1.19e-4 2.65e-4

S = 8.810578 44.903837 44.903983 1.47e-4 3.27e-4

Table 3: r = 5%. the CB behaves like a regular bond

In Table 3, the CB has exactly the value of a regular bond. The reason is that the stock
price is so low that the option to convert (embedded in the CB) has no value. For this
stock price range, both errors are very small and probably coming from a day count
convention in the software used.
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Stock Price FEM Price Benchmark Price Absolute Error Percent Error

S = 15.471551 44.925077 44.925593 5.16e-4 1.15e-3

S = 19.334225 44.980021 44.981049 1.03e-3 2.29e-3

S = 36.002116 46.580617 46.583925 3.31e-3 7.10e-3

S = 50.589987 52.321479 52.313252 8.23e-3 1.57e-2

Table 4: r = 5%. the CB behaves like a hybrid instrument

In Table 4, the value of the CB is more than the bond (Table 3). The stock price has a
value large enough (depending on the volatility of the stock) to give value to the option
to convert. When the CB behaves like a hybrid instrument, the error is larger than in the
other case (see Table 3 and Table 5). This is due to the fact that the algorithm converges
with more difficulty.

Stock Price FEM Price Benchmark Price Absolute Error Percent Error

S = 58.923874 58.924709 58.923873 8.35e-3 1.42e-2

S = 90.945819 90.945819 90.945818 3.62e-7 3.98e-7

S = 137.115154 137.115154 137.115154 1.99e-7 1.45e-7

Table 5: r = 5%. the CB has the conversion value

As we can see in Table 5, when the stock price is higher than a certain value, the CB
has exactly the conversion value. In this case, the share price is so high that the bond
(which is supposed to provide downside protection to the holder) has no value. The errors
are naturally small (here, there are just rounding errors), since the CB has exactly the
conversion value.
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We should notice that the tolerance parameter in Table 2 for the PSOR is used with the
Euclidean norm whereas the errors are computed using the absolute norm. However, for
sufficiently small tolerance in the PSOR and smooth solution, it should not matter.

The following graph gives the price of a CB when interest rates r = 0%, 5%, ..., 20%, 25%:
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Figure 3: CB Price as a function of Stock Price when the interest rate changes

The price of the CB decreases when interest rates increase, which can be explained
mathematically by the fact that we discount the payoff of a convertible with a smaller
factor. Moreover, when the interest rate changes, the exercise boundaries are modified.
We will see that in more detail in the following sections.
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For interest rates higher than 15% the CB prices are very close. However they are not
exactly equal and we can see that by zooming close to S = Bp = 20:
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Figure 4: CB Price as a function of Stock Price when the interest rate changes (zoom)
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When we focus on the percent error, we observe that for low interest rates (below 15%),
the FEM price is really close to our benchmark, i.e. the percent error is less than 10 basis
points (< 0.1%). When the interest rate is high (more than 15%), the error is generally
bigger when the stock price is close to the lower constraint ψ2 defined in (III.4) (for a
conversion ratio of κ = 1). Here are plotted the percentage errors as a function of the
stock price when the interest rate r = 0%, 10%, 20%
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Figure 5: Percent Error as a function of Stock Price when r = 0%, 10%, 20%

For some tests, e.g. when r = 20%, we do not force the Psor algorithm to stop after a
number jmax = 500 of iterations (see Table 2). To check that jmax = 500 is not really a
limitation, we just remove the constraint in the PSOR algorithm to stop if the maximum
number of iterations is reached. The solutions we find for jmax = 500 and jmax = ∞
are the same up to 10−8.

Here (actually when r ≥ 20%), the difference with our benchmark can go up to 0.80% in
percent error. It is not due to the slow convergence of the Psor but really to the intrinsic
model used. The possible explanation is that the accuracy of our benchmark is not good
enough (the accuracy could not be changed for the benchmark price).
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• Volatility impact

For this new set of tests, we consider all the parameters to stay constant, as in Table
1 and Table 2 except the volatility that will vary between 0% and 80%. These values
correspond to a frozen or extremely volatile stock price which can give us a broad range
of cases.

Like we have said we have implemented the model presented in part II, section 1.3, but
we have used two different lower constraints ψ2:

ψ2(S, t) = max(Bp(t), κS) (IV.1)

and ψ2(S, t) = max(Bp(t), B(t), κS) (IV.2)

This can have a considerable impact on the accuracy of the solution at the boundaries,
and we will see that when we have a look at the values for the CB price.
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Here are the prices we obtain when the volatility of the stock increases using the constraint
(IV.1):
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Figure 6: Price of a CB as a function of Stock Price when σ = 10%, 20%, 40%, 60%, 80%

When volatility increases, the value of the CB increases. The same behavior can be
observed with European and American options on the stock. The intuitive explanation
is that high volatility enables the stock price to fluctuate much more that low volatility.
High volatility therefore gives a higher probability that the stock prices reaches a high
price, which is what the holder of a CB could hope for.

We can see on Figure 6 that when the stock price is close to 0 and the volatility is
very high (typically greater than 60%), the price of the CB can be less than the lower
constraint ψ2. This is not coherent. The reason we observe this phenomenon is that
we have for computational reasons forced the solution to have homogeneous Dirichlet
boundary conditions (value 0 for S 7→ 0 and S 7→ ∞). In order to have some smoothness
in our price the FEM and the Psor produce values that are smaller that ψ2.
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To have a better picture, let us compare these results to those given by our benchmark.
We have plotted the relative error for a volatility equal to 0%, 20%, 40% and 60% (Figure
7).
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Figure 7: Percent Error as a function of Stock Price when σ = 0%, 20%, 40%, 60%

The accuracy is quite good generally since it is less than 10 basis points. We can see
thanks to this graph the usefulness of using Excess to Payoff technique or non-Dirichlet
boundary conditions (see [Schw07]). Indeed, at the extreme left of our domain (when
S → e−R ≈ 0 ⇔ x→ −R), the homogeneous Dirichlet conditions are not a good choice.
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We have changed the scale of this graph and plotted the Percent Error as a function of
the log-price to focus on the error when the stock price is low (Figure 8).
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Figure 8: Percent Error as a function of log-Price when σ = 0%, 20%, 40%, 60%

There are several ways to improve this issue.

One would be to give a non-zero value to the CB when S → 0. Basically, one could
assume the value of the CB when the stock price is zero is just the value of a bond with
the same characteristics as the CB (without conversion). This can be explained by the
fact that the option to convert has no value. The value of such a bond with no option to
convert is ψ2 (when κS → 0).

Another way is to work with the Excess to payoff (see [Schw07]) and compute the Excess
to payoff value instead of that of the CB. Here the Excess to payoff corresponds to
the function u − ψ2. However, one would have to derive the corresponding LCP for the
Excess to payoff and not (III.5). Then, we would impose homogeneous Dirichlet boundary
conditions that are justified by the above paragraph.
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The way we have decided to improve the accuracy when the stock price S is ”small” is
to include the additional constraint that the value of the CB has to be greater than that
of the bond. This is the reason why we chose to introduce the value of the bond B (see
(IV.2)) whereas it is not done like this for the constraints in the AFV model (see [AFV03]
or (IV.1)).

As a result, we can actually decrease tremendously the difference between our price and
the benchmark when volatility is very high. The percent error becomes less than 10−2

for all volatilities. We did not display the result since there is nothing to see, because the
percent error is so low.

We have also tested the impact of other parameters such as dividend yield q, higher/lower call
put prices Bc and Bp, no call (Bc = ∞) or/and not put (Bp = −1). We also looked if there
were any noticeable errors when we change maturity, values of coupons, conversion ratio, etc.

The percent error compared to our benchmark remains generally smaller than 0.1 to 0.2 (equiv-
alent to a relative error of 0.1% to 0.2%). The interest rate (or credit spread) and volatility
parameters are therefore those that increase the difference between our valuation and our
benchmark.

1.2 Convergence rate

We would like to find the speed of convergence of our algorithm. This speed depends on the
number of time and space steps.

First of all, since we do not have a closed form solution to check our numerical prices, we can
have an idea of the rate of convergence in the following way. Let us denote by uk+1 the estimate
we get from the PSOR after one iteration with initial value uk. The PSOR stops when either
there has been more than jmax iterations or the amount ||uk+1−uk|| < tol, where || || denotes
the Euclidean norm.

Let us denote u the exact solution to the LCP (III.5) on the truncated domain. ũh,k denotes
the solution to the matrix LCP resulting from the discretization of (III.5) into (III.20)-(III.22).
The PSOR gives us an approximation uh,k to ũh,k up to a certain tolerance tol.

Let us denote urefk the solution to (III.20)-(III.22) with a very ”low” tolerance (we take tolref =

1e−12), a number of steps in log-price Nref + 1 = 215 and a time step k = 27 fixed. urefk will
give us an approximation to ũh,k.

For h ≥ href := 2R
Nref+1 , we can find another approximation to ũh,k that we denote by vh,k with

a tolerance equal to tol = tolref and the same time step k as for urefh,k .
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To find the rate of convergence in the price space, we are looking for a parameter α, such that:

||urefk (T ) − vh,k(T )|| ≤ C1h
α ,∀h ≥ href .

where vh,k(T ) is the CB price we get from the PSOR at time to maturity τ = T or t = 0.

Then, we would have

||u(T ) − vh,k(T )|| ≤ ||u(T ) − ũh,k(T )|| + ||ũh,k(T ) − vh,k(T )||

≤ ||u(T ) − ũh,k(T )|| + ||ũh,k(T ) − urefk (T )|| + ||urefk (T ) − vh,k(T )||

So, in order to have ||u(T ) − vh,k(T )|| ≤ C1h
α, we need ||urefk (T ) − vh,k(T )|| ≤ C1h

α, which is
what we will measure numerically.

A log-log plot of ||urefk (T ) − vh,k(T )||L∞ as a function of h gives us an approximation of α
(Figure 9).
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Figure 9: log(||urefk (T ) − vh,k(T )||L∞) as a function of log(h)(blue curve)
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The parameter α can be found by evaluating the slope of the function plotted on Figure 9.
When, h is not ”very small” (N +1 < 212), then we can see and calculate that the convergence
rate α is close to 2.

When h becomes ”very small” (N + 1 ≥ 212), then the rate of convergence α is roughly 1.5.

We can not fully rely on Figure 9 to find the convergence rate because if we have ||urefk (T ) −
vh,k(T )|| ≤ C1h

α, then we would need tol ≤ C1h
α to observe the real rate of convergence. For

computational power restrictions, we did not consider Nref +1 > 215 or a tolerance tol < 10−12.
Therefore, the convergence rate α is between 1.5 and 2.

The rate of convergence α in price space does not depend on the tolerance required in the
PSOR algorithm. α only depends on characteristics of the Finite Element space the solution
belongs to, which is independent of the PSOR. Furthermore, it has been shown that α does
not depend on k.

We can do the same analysis for the rate of convergence in time. We fix N + 1 = 28, and
we consider tol = 10−12 and Mref = 216. Then we take M ≤ Mref or equivalently k = T

M
≥

kref := T
Mref

, we can compute a reference urefh (T ), and approximations vh,k(T ) to this reference

by changing k ≥ kref .

We are searching for a parameter β > 0 such that

||urefh (T ) − vh,k(T )|| ≤ C2k
β
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We have plotted log(||urefh (T ) − vh,k(T )||L∞) as a function of log(k) (Figure 10):
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Figure 10: log(||urefh (T ) − vh,k(T )||L∞) as a function of log(k) (blue curve)

We clearly do not observe a straight line (blue curve). However, if we do a regression
analysis we find a β approximately equal to 2.5. The real value of β is probably around 2,
which is the maximum we can obtain.

Let us add that the parameter β does not depend on the tolerance used in the PSOR
algorithm or N .

1.3 Exercise boundaries

In this section, we will consider the case where there are no coupons paid, so that the price of
the CB and the constraints applied to the value of the CB are continuous.
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The price of a CB is subject to two constraints (see the LCP (II.5) and constraints (III.3)-
(III.4)).

Let us consider the options the holder of the convertible has: he has the option to convert his
bond into shares or sell the CB. The option to convert at time t is the reason why V (S, t) ≥ κS
(see part II, section 1.2.2). We can actually find for each moment t, the set of values of the
stock price for which we have V (S, t) = κS. The first moment this equality holds, the holder
decides to exercise his right to convert. Let us consider the following set:

Econv := {(inf{S, V (S, t) = κS}, t), ,∀t ∈ [0, T ]} (IV.3)

This corresponds to the conversion exercise boundary. It is the values (S, t) for which it is
optimal to the CB holder to convert.

The set inf{S, V (S, t) = κS} is not empty and has a unique element ∀t ∈ [0, T ] (see [BL78]).
Therefore Econv is well defined.

The holder can also sell the CB, either at the price Bp(t) at time t or at least at the
price of the straight bond B(t) defined in part II, section 1.3. This is the reason we have
V (S, t) ≥ max(B(t), Bp(t)). For every moment t, we can define the set

Esell := {(sup{S, V (S, t) = max(B(t), Bp(t))}, t), ,∀t ∈ [0, T ]} (IV.4)

This set is once again well defined (see [BL78]) and corresponds to the selling exercise boundary.
At maturity, if we have V (S, T ) = B(T ), the CB is not sold, the holder simply receives the
redemption payment.

These are the exercise boundaries of the holder, i.e. the values of (S, t) for which the holder
needs to take action. The issuer has the right to call the CB. This is the reason why we have
V (S, t) ≤ Bc(t) when κS < Bc(t). If κS ≥ Bc(t), the issuer should clearly exercise his call
option to avoid loosing money (if the stock price increases). Therefore we can define the set

Ecall := {(inf{S, V (S, t) = max(Bc(t), κS)}, t), ∀t ∈ [0, T ]} (IV.5)

This set is well defined and corresponds to the values of (S, t) for which the issuer should call
the CB.
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1.3.1 Computation of the exercise boundaries

We can compute the exercise boundaries presented above. Of course the more precise the
price and time steps are, the more the exercise boundary will be computed accurately. It
is also possible to make an adaptive Finite Element grid that is more accurate around these
boundaries to have a better approximation.

Here are the exercise boundaries, we find with a constant time step with N + 1 = 210,
M = 27 and tol = 10−12. The other parameters used are those of Table (1) and Table (2).
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Figure 11: exercise boundaries with the parameters presented in Table (1) and Table (2), except
tol = 10−12
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First of all, it is clear that the moment the issuer should call the bond is the moment the
value of the CB is equal to the call price. This seems intuitive since, if the issuer called when
V < Bc then the issuer would loose the amount Bc − V and give it for free to the holder. And
if the issuer calls the CB when V > Bc, since the CB price does not have upward jumps, the
issuer could have called it when V = Bc. Therefore, calling the CB at the moment its price
has the call value is optimal.

The selling exercise boundary is the same as the exercise boundary of a put option. The holder
of a CB has actually got a put option with strike max(Bp, B) on the value of the CB.

The conversion exercise boundary has the shape of a call option exercise boundary. The reason
is that one can view a CB as a callable and puttable bond (max(Bp, B)) plus an option to
convert into κ shares with a strike equal to this special bond max(Bp, B). Since the strike
increases with time, the value of the CB is less (if S remains constant) with time, and therefore,
for the CB value to reach κS, one needs a higher S. This is why the exercise boundary increases
in the beginning. Of course, the exercise boundary cannot increase indefinitely, because at
maturity the CB has a known value.

1.3.2 Impact of a change in parameters in the exercise boundaries

It is interesting to know how the exercise boundaries can move in relation to key parameters
that enter in the pricing of a CB. We have decided to focus on the impact of a change in interest
rate (equivalently credit spread) and volatility.

In Table 12, we can see that the volatility parameter has a big impact on the location of
the exercise boundaries. Indeed, the higher the volatility, the higher the conversion boundary
(resp. the lower the selling boundary). When the stock price volatility is high, it gives an
incentive to the holder of the CB to keep the CB as long as he can, because the possibility
of the stock price being favorable is high. Therefore, the moment the holder would decide to
convert/sell is postponed.

The exercise boundary of the issuer of the CB does not change at all. In fact, it is always
optimal for him to call the CB as soon as the stock price reaches the call value B(t).
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Figure 12: Impact of a change in volatility on the exercise boundaries

We can see some instability in the conversion exercise boundary on Figure 12 around κS =
F . This can be dealt with by increasing the number of grid points and iterations in the PSOR.
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Figure 13 indicates how the exercise boundaries should change when the interest rate (or
credit spread) increases.

If the interest rate increases and the stock price remains constant, the value of the CB will
decrease (since we discount at a higher rate). Therefore, we will have V < κS. The exercise
boundary is then lower when interest rates increase.

The same reasoning applies to the selling exercise boundary. If r increases, then max(Bp, B)
decreases, and so for V to attain max(Bp, B), the stock price is smaller. This means that the
selling boundary is lower, which is what we observe.
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Figure 13: Impact of a change in interest rate on the exercise boundaries
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Part V

Conclusion

In this paper, we have presented a model, based on [AFV03] and [AB02], that is used to price a
CB. We started with a one factor model where the stock price is stochastic. For this model, we
have derived the Linear Complementarity Problem and parabolic variational inequality that
the price of a CB has to satisfy. We also have presented a model where both the stock price
and the interest rate are stochastic for a general short rate process.

Furthermore, since there is no closed-form solution, the PVI has been localized and dis-
cretized to find a numerical solution. We have discretized in time by a theta scheme and in
log-price using Finite Elements. Even though, FEM are used commonly in Physics, they are
not yet popular in Finance. This thesis is innovative in the sense we provide a detailed analysis
on how to apply FEM to price a CB with complex features for a two factor model.

We have compared the FEM prices to those provided by a software. The results are generally
very good, since the absolute and relative difference do not generally exceed 2e10−3. We also
provide a numerical estimate of the rate of convergence of our algorithm: 1.5 in space and 2 in
time, which is very good.

To have a better understanding of the product, we have also computed the exercise bound-
aries which correspond to the stock value for which the holder or issuer needs to take action
(convert, sell, call).

Finally, to continue this work, one could extend the model to a three factor model where
for instance the credit spread is stochastic or perhaps introduce a FX factor (see [Y01]).
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ETH Zürich.

[TKN01] Takahashi A., Kobayashi T., Nakagawa N. (2001). Pricing Convertible Bonds with

Default Risk: A Duffie-Singleton Approach. EconPapers.

[WHD95] Wilmott P., Howison S., Dewynne J. (1995). The Mathematics of Financial Deriva-

tives, a Student Introduction. Cambridge University Press.

55



[Y01] Yigitbasioglu A. B. (2001). ISMA Centre. Pricing Convertible Bonds with Interest Rate,
Equity, Credit and FX Risk.

56



Appendix

A Derivation of the LPC satisfied by the CB price

In this section, we provide an idea of how to derive the LCP (III.5). The LCP (III.5) are
obtained after changing variables in LCP (II.5). Even though we implement in our work a
model for convertibles with constant recovery, we can actually derive the LCP for a more
general recovery RrecX, where X is a random variable (LCP (II.3)).

The change of variables x = log(S) for S ∈ (0,∞) leads to the following dynamics (using Itô’s
formula)

dxt = (r − q −
σ2

2
+ pη)dt + σdWt

To have a clearer idea of how (III.5) can be derived, we have to come back to the expression
of the payoff of a convertible. In fact the problem of pricing a CB is exactly the problem
that arises in stochastic games and optimal exercising. On the one side the holder wants to
maximize his payoff and on the other the issuer wants to minimize it.

To ease calculations and notation, we consider the case where there are no coupons paid. Then
the dirty price (= clean price + accrual interest) is equal to the clean price for all quantities
(Bc, Bp, B and the CB value u). Furthermore, Bc and Bp are constant and B ∈ C∞(0, T ).

We recall that function ψ1 and ψ2 have been defined by ψ1 = max(Bc, κe
x) and ψ2 =

max(Bp, B(t), κex).

The function B is the value of a callable bond (with constant interest rates) with face value F ,
so using the notations of part II, section 1.2.2, we get

B(t) = max(F,Bc)
︸ ︷︷ ︸

constant

e−(r+p)(T−t)

Let us denote by τ2 (respectively τ1) the first moment the holder decides to convert his CB
into shares, put to the CB or the moment the CB has the same value as B (respectively the
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moment the issuer decides to call the bond). Basically, τ1 (resp. τ2) correspond to the moment
the value of the CB u is equal to ψ2 (resp. ψ1). The stopping times τ1 (resp. τ2) belong to the
set of stopping times with values in ([t, T ] ∪ {∞}) (resp. [t, T ]).

We will write equivalently S or ex. To ease notation, we choose to use S.

We can write the payoff -if no default occurs- of a convertible depending on the stopping times
τ1 and τ2 as a function h

hτ1,τ2(S, t = τ1 ∧ τ2 ∧ T ) =







ψ1(Sτ1 , τ1) · 1(τ1<τ2)∩(τ1∧τ2≤T )

+ ψ2(Sτ2 , τ2) · 1(τ2≤τ1)∩(τ1∧τ2≤T )

Nevertheless, if no option is exercised either by the holder or the issuer before maturity and
the CB has not defaulted (τD > T ), we can write the payoff at maturity :

h(S, T ) = max(B(T ), Bp, κS) = ψ2(S, T )

This explains why τ2 ∈ [0, T ] a.s.

Let us define the Reward Function . In the general case where the recovery is X (LCPs (II.3)),
we have

JS,t(τ1, τ2) = EQ[ (e−r(τ1−t)ψ1(Sτ1 , τ1) · 1(τ1<τ2)∩(τ1∧τ2≤T )

+ e−r(τ2−t)ψ2(Sτ2 , τ2) · 1(τ2≤τ1)∩(τ1∧τ2≤T )) · 1τD>τ1∧τ2∧T

+ e−r(τD−t) max(κSτD(1 − η), RrecX(τD)) · 1τD≤τ1∧τ2∧T | Ft]

where Ft denotes the filtration generated by the process (xs)0≤s≤t and by the Poisson process
(Ns)0≤s≤t defined in section 1.2.2.

The first part (multiplied by 1τD>τ1∧τ2∧T ) can be viewed as pricing a contingent claim that
yields the random payoff of a CB if default does not occur. It can be shown (see [Scho07]) that

JS,t(τ1, τ2) = 1τD>t
︸ ︷︷ ︸

deterministic

·EQ[ e−(r+p)(τ1−t)ψ1(Sτ1 , τ1) · 1(τ1≤τ2)∩(τ1∧τ2≤T )

+ e−(r+p)(τ2−t)ψ2(Sτ2 , τ2) · 1(τ2≤τ1)∩(τ1∧τ2≤T )| Ft]

+ EQ[ e−r(τD−t) max(κSτD(1 − η), RrecX(τD)) · 1τD≤τ1∧τ2∧T | Ft]

since the stopping time τ1 ∧ τ2 ∧ T is independent of τD.
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To deal with the term EQ[e−r(τD−t) max(κSτD(1 − η), RrecX(τD)) · 1τD≤τ1∧τ2∧T ], we refer to
[Scho07] to calculate

EQ[e−r(τD−t) max(κSτD (1 − η), RrecX(τD)) · 1τD≤τ1∧τ2∧T ]

= EQ[

∫ τ1∧τ2∧T

t

e−r(s−t) max(κSs(1 − η), RrecX(s)) · 1{N(s−)=0}dN(s)| Ft]

using the compensator of N(t)

= EQ[

∫ τ1∧τ2∧T

t

e−r(s−t) max(κSs(1 − η), RrecX(s)) · 1{N(s−)=0}p(s)ds| Ft]

assuming sufficient regularity to interchange expectation and integration

=

∫ τ1∧τ2∧T

t

EQ[e−r(s−t)pmax(κSs(1 − η), RrecX(s)) · 1{N(s−)=0}| Ft]ds

=

∫ τ1∧τ2∧T

t

EQ[e−r(s−t)pmax(κSs(1 − η), RrecX(s)) · 1{τD>s}| Ft ]
︸ ︷︷ ︸

=1{τD>t}EQ[e−(r+p)(s−t)pmax(κSs(1−η),RrecX(s)) | Ft]

ds

= 1{τD>t}

∫ τ1∧τ2∧T

t

EQ[e−(r+p)(s−t)pmax(κSs(1 − η), RrecX(s)) | Ft]ds

= 1{τD>t}EQ[

∫ τ1∧τ2∧T

t

e−(r+p)(s−t)pmax(κSs(1 − η), RrecX(s))ds | Ft].

Therefore, we can write our Reward Function as

JS,t(τ1, τ2) = 1τD>t · EQ[ e−(r+p)(τ1−t)ψ1(Sτ1 , τ1) · 1(τ1≤τ2)∩(τ1∧τ2≤T )

+ e−(r+p)(τ2−t)ψ2(Sτ2 , τ2) · 1(τ2≤τ1)∩(τ1∧τ2≤T )

+

∫ τ1∧τ2∧T

t

e−(r+p)(s−t)pmax(κSs(1 − η), RrecX(s))ds| Ft].

Given that default has not occurred at time t, we have

JS,t(τ1, τ2) = EQ[ e−(r+p)(τ1−t)ψ1(Sτ1 , τ1) · 1(τ1≤τ2)∩(τ1∧τ2≤T )

+ e−(r+p)(τ2−t)ψ2(Sτ2 , τ2) · 1(τ2≤τ1)∩(τ1∧τ2≤T )

+

∫ τ1∧τ2∧T

t

e−(r+p)(s−t)pmax(κSs(1 − η), RrecX(s))ds| Ft].

The issuer will try to minimize JS,t(τ1, τ2) by choosing τ1 optimally and the holder will choose
τ2 to maximize JS,t(τ1, τ2).
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The price of a convertible at time t can be written as

V R(S, t) = inf
t≤τ1≤∞

sup
t≤τ2≤T

JS,t(τ1, τ2) = sup
t≤τ2≤T

inf
t≤τ1≤∞

JS,t(τ1, τ2) (V.1)

uR(x, t) = inf
t≤τ1≤∞

sup
t≤τ2≤T

Jx,t(τ1, τ2) = sup
t≤τ2≤T

inf
t≤τ1≤∞

Jx,t(τ1, τ2) (V.2)

where Jx,t = JS=ex,t and uR (resp. V R) denotes the solution to the LCP (III.5) on a truncated
domain as explained below (resp. V R = uR(T − t, ex)) (see part III, section 2.2.2).

It can be shown under certain conditions that the system of inequalities (III.5) are a PDI
formulation of this stochastic control problem (V.2) (see [BL78], chapter 3, part 5.2.1.).

In order to operate in the framework of [BL78], we need to check several assumptions.

First of all, since we are not interested in the value of the convertible bond on for x ∈ R,
let us truncate the problem and work on the open and bounded domain ΩR = (−R,R) where
R > 0. We define Q = ΩR × (0, T ). We give homogeneous Dirichlet boundary conditions at
x = ±R to the CB price u as well as the constraints ψ1 and ψ2.

Furthermore, in order to use the result in [BL78], we need to consider σ > 0. We can show
that f ∈ L2(Q) and ψi ∈W 1,1,2(Q), ∀i ∈ {1, 2}.

Let us assume that the interest rate and credit spread are 0. This enables ψ2 not to depend on
time.

Note that in [BL78] we need ψi ∈W 2,1,2(Q), however using that r, p = 0, we can follow [JLL90]
(section 3) and find a sequence of functions {(ψi)n ∈W 1,1,2(Q), ∀n} that converges uniformly
in x to ψi and therefore reduce the assumption W 2,1,2(Q) to W 1,1,2(Q).

Following these assumptions, the solution to the LCP (III.5) on the domain Q exists and
is unique on Q. For the general case, we have not derived the LCP and assume there exists a
unique solution.
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B Calculation of matrices in one dimension

We calculate here the matrices that enter in the implementation of the one dimensional pricing
problem for a convertible with constant recovery.

To ease calculations, we will consider a constant price-space step (hi is constant equal to h).
According to the section 4.1.3, we just need to calculate the terms Mi,j and Ai,j for |i− j| ≤ 1.

Let us calculate the terms Mi,i, Mi,i+1 (Mi,i+1 = Mi,i−1, since M is symmetric and hi = h):

Mi,i = (bi, bi) =

∫ R

−R
bi(x)

2dx = 2

∫ xi

xi−1

bi(x)
2dx =

2

h2

∫ xi

xi−1

(x− xi−1)
2dx

=
2

3h2
[(x− xi−1)

3]xixi−1
=

2h

3

Mi,i+1 = (bi, bi+1) =

∫ R

−R
bi(x)bi+1(x)dx =

∫ xi+1

xi

bi(x)bi+1dx =
1

h2

∫ xi+1

xi

(xi+1 − x)(x− xi)dx

=
1

h2

∫ xi+1

xi

(xi+1 − xi + xi − x)(x− xi)dx =
1

h2
(h

∫ xi+1

xi

(x− xi)dx−

∫ xi+1

xi

(x− xi)
2dx)

=
1

h2
(
h3

2
−
h3

3
) =

h

6

To calculate Ai,i, Ai,i+1 and Ai+1,i, we use

Ai,j =
σ2

2
Si,j + (

σ2

2
+ q − r − pη)Ci,j + (r + p)Mi,j

where S and C are defined in (III.23) and M is the Mass matrix from above. Thus it is sufficient
to calculate
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Si,i =

∫ R

−R
b′i(x)

2dx =
1

h2

∫ xi

xi−1

dx =
2

h

Si,i+1 =

∫ R

−R
b′i+1(x)b

′
i(x)dx =

∫ xi+1

xi

−dx = −
1

h

Si,i−1 =

∫ R

−R
b′i−1(x)b

′
i(x)dx =

1

h2

∫ xi

xi−1

−dx = −
1

h

Ci,i =

∫ R

−R
b′i(x)bidx

=
1

h2
[

∫ xi

xi−1

(x− xi−1)dx−

∫ xi+1

xi

(xi+1 − x)dx]

=
1

h2
(
h2

2
−
h2

2
) = 0

Ci,i+1 =

∫ R

−R
b′i+1(x)bidx =

1

h2

∫ xi+1

xi

(xi+1 − x)dx =
1

2

Ci,i−1 =

∫ R

−R
b′i−1(x) · bidx = −

1

h2

∫ xi

xi−1

(x− xi−1)dx = −
1

2

So we find

Ai,i =
σ2

h
+ (r + p)

2h

3

Ai,i−1 =
−σ2

2h
−

1

2
(
σ2

2
+ q − r − pη) + (r + p)

h

6

Ai,i+1 =
−σ2

2h
+

1

2
(
σ2

2
+ q − r − pη) + (r + p)

h

6
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C Calculation of Load vector in one dimension

We recall that we have fm
i

= (bi , f
m) and f(x, τ) = p · max(κ exp(x)(1 − η), Rrec F ).

(f, bi) =

∫ xi+1

xi−1

f(x, τ)bi(x)dx =
1

h

∫ xi

xi−1

(pmax(κex(1 − η), Rrec F ))(x− xi−1)dx

+
1

h

∫ xi+1

xi

(pmax(κex(1 − η), Rrec F ))(xi+1 − x)dx].

The value of this integral depends on the value of ω(x) := max(κex(1 − η), Rrec · F ). To
implement this integral in an efficient way, we have to check if this function even changes value
on the chosen x interval (−R,R).

We assume Rrec 6= 0, η 6= 1 and κ 6= 0 in the following and distinguish three cases

(i) log( RrecF
κ(1−η)) ≤ x0 = −R ⇒ ω(x) = κex(1 − η), ∀x ∈ (−R;R).

(ii) R = xN+1 ≤ log( RrecF
κ(1−η) ) ⇒ ω(x) = Rrec F, ∀x ∈ (−R;R).

(iii) ∃j ∈ {1, ..., N + 1}s.t. xj−1 < log( RrecF
κ(1−η) ) < xj

⇒ ω(x) = κex(1 − η)1
x>log( RrecF

κ(1−η)
) +RrecF1

x≤log( RrecF
κ(1−η)

)

Let us calculate the load vector in these cases. Using integration by parts and assuming the
price step is constant hi = h, we find:

(i)

(f, bi) =
pκ(1 − η)

h

∫ xi

xi−1

ex(x− xi−1)dx+
pκ(1 − η)

h

∫ xi+1

xi

ex(xi+1 − xi)dx

=
pκ(1 − η)

h
exi(e−h − 2 + eh),

(ii)

(f, bi) =
1

h
[

∫ xi

xi−1

(pRrec · F )(x− xi−1)dx+

∫ xi+1

xi

(pRrecF )(xi+1 − x)dx]

= hpRrecF
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(iii) for some j ∈ {1, ..., N + 1}:
If xi−1 < log( RrecF

κ(1−η) ) < xi (for calculating (f, bi)):

1

h

∫ xi

xi−1

(pmax(κex(1 − η), Rrec F ))(x− xi−1)dx

=
1

h
[

∫ log( RrecF
κ(1−η)

)

xi−1

(pRrecF )(x− xi−1)dx

+

∫ xi

log( RrecF
κ(1−η)

)
(pκex(1 − η))(x − xi−1)dx]

=
1

2h
(pRrecF )(log(

RrecF

κ(1 − η)
) − xi−1)

2

+
1

h
[pκ(1 − η)

∫ xi

log( RrecF
κ(1−η)

)
ex(x− xi−1)dx]

=
1

2h
(pRrecF )(log(

RrecF

κ(1 − η)
) − xi−1)

2

+
1

h
pκ(1 − η)([xex]xi

log( RrecF
κ(1−η)

)
− [ex]xi

log( RrecF
κ(1−η)

)
− xi−1[e

x]xi
log( RrecF

κ(1−η)
)
)

=
1

2h
pRrecF (log(

RrecF

κ(1 − η)
) − xi−1)

2

+
1

h
pκ(1 − η)[xie

xi −
RrecF

κ(1 − η)
log(

RrecF

κ(1 − η)
) − exi +

RrecF

κ(1 − η)
− xi−1e

xi + xi−1
RrecF

κ(1 − η)
]

Using the calculations we have done before, we have

1

h

∫ xi+1

xi

(pmax(κex(1 − η), Rrec F ))(xi+1 − x)dx =
pκ(1 − η)

h
exi [−h+ eh − 1]

Therefore, we find:

⇒

∣
∣
∣
∣
∣
∣
∣
∣
∣

If xi−1 < log( RrecF
κ(1−η) ) < xi

then

(f, bi) = 1
2hpRrecF (log( RrecF

κ(1−η) ) − xi−1)
2+

1
h
pκ(1 − η)[ RrecF

κ(1−η) (− log( RrecF
κ(1−η) ) + 1 + xi − h) + exi(−2 + eh)]
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If xi < log( RrecF
κ(1−η) ) < xi+1 (for calculating (f, bi)):

1

h

∫ xi

xi−1

(pmax(κex(1 − η), Rrec · F ))(x − xi−1)dx =
h

2
(pRrecF )

And

1

h

∫ xi+1

xi

(pmax(κex(1 − η), Rrec · F ))(xi+1 − x)dx

=
1

h
[

∫ log( RrecF
κ(1−η)

)

xi

(pRrecF )(xi+1 − x)dx+

∫ xi+1

log( RrecF
κ(1−η)

)
(pκex(1 − η))(xi+1 − x)dx]

=
1

2h
pRrecF (h2 − [xi+1 − log(

RrecF

κ(1 − η)
)]2)

+
1

h
pκ(1 − η)([ex(xi+1 − x)]

xi+1

log( RrecF
κ(1−η)

)
+ [ex]

xi+1

log( RrecF
κ(1−η)

)
)

=
1

2h
pRrecF (h2 − [xi+1 − log(

RrecF

κ(1 − η)
)]2)

+
1

h
pκ(1 − η)[

RrecF

κ(1 − η)
(log(

RrecF

κ(1 − η)
) − xi+1) + exi+1 −

RrecF

κ(1 − η)
]

Therefore, we find:

(f, bi) = hpRrecF −
1

2h
pRrecF [xi+1 − log(

RrecF

κ(1 − η)
)]2

+
1

h
pκ(1 − η)[

RrecF

κ(1 − η)
(log(

RrecF

κ(1 − η)
) − xi+1) + exi+1 −

RrecF

κ(1 − η)
]

⇒

∣
∣
∣
∣
∣
∣
∣
∣
∣

If xi < log( RrecF
κ(1−η) ) < xi+1

then

(f, bi) = hpRrecF − 1
2hpRrecF [xi+1 − log( RrecF

κ(1−η))]
2

+ 1
h
pκ(1 − η)[ RrecF

κ(1−η) (log( RrecF
κ(1−η) ) − xi+1) + exi+1 − RrecF

κ(1−η) ]
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D Calculation of matrices in two dimension

We calculate here the matrices that enter in the implementation of the two dimensional pricing
problem for a convertible with constant recovery.

To ease calculations, we consider a constant log-price step hx and a constant interest rate step
hy.

We need to calculate the terms of the following matrices: Mx,My,My,1,Cx,Cy,Cy,1,Sx,Sy
(equations (III.24) - (III.31)).

The calculation of the matrices Mx,My,Cx,Cy,Sx,Sy is done in Appendix B (just set h = hx
for the matrices Mx,Cx and Sx, as well as h = hy for the matrices My,Cy and Sy). For the
calculation of My,1 and Cy,1, we have

• Matrix My,1:

By definition, we have (My,1)i,j =
∫ R3

R2
yb̄i(y)b̄j(y)dy

(My,1)i,i =

∫ yi

yi−1

y(
y − yi−1

hy
)2dy +

∫ yi+1

yi

y(
yi+1 − y

hy
)2dy

=
1

h2
y

∫ yi

yi−1

(y − yi−1)
3dy +

1

h2
y

yi−1

∫ yi

yi−1

(y − yi−1)
2dy −

1

h2
y

∫ yi+1

yi

(yi+1 − y)3dy

+
1

h2
y

yi+1

∫ yi+1

yi

(yi+1 − y)2dy =
h2
y

4
+
hy
3
yi−1 −

h2
y

4
+
hy
3
yi+1 =

2

3
hyyi

(My,1)i+1,i =

∫ yi+1

yi

y(
yi+1 − y

hy
)(
y − yi
hy

)dy =
1

h2
y

∫ yi+1

yi

(y − yi + yi)(yi+1 − yi + yi − y)(y − yi)dy

=
1

h2
y

∫ yi+1

yi

hy(y − yi)
2 − (y − yi)

3 + yihy(y − yi) − yi(y − yi)
2dy

=
1

h2
y

(
h4
y

3
−
h4
y

4
+ yi

h3
y

2
− yi

h3
y

3
) =

h2
y

12
+ yi

hy
6
.

We get from the above calculation:

(My,1)i−1,i =
∫ yi
yi−1

y(y−yi−1

hy
)(yi−y

hy
)dy =

h2
y

12 + yi−1
hy
6 .
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• Matrix Cy,1:

By definition, we have (Cy,1)i,j =
∫ R3

R2
yb̄′j(y)b̄i(y)dy

(Cy,1)i,i =

∫ yi

yi−1

y(
y − yi−1

hy
)

1

hy
dy −

∫ yi+1

yi

y(
yi+1 − y

hy
)

1

hy
dy

=
1

h2
y

∫ yi

yi−1

(y − yi−1)
2dy +

1

h2
y

yi−1

∫ yi

yi−1

(y − yi−1)dy +
1

h2
y

∫ yi+1

yi

(yi+1 − y)2dy

−
1

h2
y

yi+1

∫ yi+1

yi

(yi+1 − y)dy =
hy
3

+
1

2
yi−1 +

hy
3

−
1

2
yi+1 = −

1

3
hy.

(Cy,1)i+1,i =

∫ yi+1

yi

y(
yi+1 − y

hy
)

1

hy
dy =

−1

h2
y

∫ yi+1

yi

(y − yi+1 + yi+1)(y − yi+1)dy

=
−1

h2
y

∫ yi+1

yi

(y − yi+1)
2 + yi+1(y − yi+1)dy =

−1

h2
y

(
h3
y

3
− yi+1

h2

2
) = −

hy
3

+
1

2
yi+1.

(Cy,1)i−1,i =

∫ yi

yi−1

y
1

hy
(
yi − y

hy
)dy = −

1

h2
y

∫ yi

yi−1

(y − yi + yi)(y − yi)dy

= −
1

h2
y

(

∫ yi

yi−1

(y − yi)
2 + yi(y − yi)dy) = −

hy
3

+
1

2
yi.
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