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Chapter 1

Theory of Option Pricing

1.1 No-Arbitrage option pricing theory

In a frictionless market with a self financing strategy we cannot achieve a certain gain, an
arbitrage, as discussed in [DeSch08]. Since the probability of making a negative or positive yield
is always positive (or both are zero) we can find a measure under which the expected returns
from our investment will be that of the risk free savings. We call this measure the risk-neutral
measure, and it is shown in [DeSch94] that if there is no arbitrage in the market then such a
measure will exist, and every uncertain gain can be priced by taking the payoff’s expectation
under the new measure and discounting it by the risk free interest rates.

Since [Ka49] we have that the value of such an expectation satisfies a backward Kolmogorov
equation driven by the infinitesimal generator of the underlying price process.

In this thesis we will focus on solving these equations numerically arising from exponential
Lévy models using Finite Element techniques.

1.2 The Black—Scholes framework
As described in [Sh04] the Black—Scholes framework models the stock price as a geometric
Brownian motion under the risk-neutral measure
dSt = rStdt + O'Stth.

Since the stock price follows a Markovian-process, due to the Feynman-Kac theorem the value
of a European contract can be described with a function f defined as

f(t.2) =e TR [g (S7)| S, = 2],
and using It6’s formula, the process of (f (-, 5.),),s, Will satisfy the SODE
0 0] 1 5 5 02 0
dtf (t, St) = af (t, Sf) 4+ TStaiStf (t, St) —+ 50’ St aisff (t, St) dt + %‘f (t, Sf) O'Stth.

Relying on the no-arbitrage argument we can state that under the risk-neutral measure the
discounted gains from investing in this contract should follow a martingale. In order to achieve
that the following condition for the drift should hold

) ) 1y 02 B
Ef (t,5) + TStaiStf(taSt) + 57 S; 875,52]0 (t,8:) =rf(t,S),



which is the pricing equation or backward Kolmogorov equation PDE, with the final condition

f(T,.’E) :g(l’)

Now let APS denote the infinitesimal generator of a geometric Brownian motion,

ABSf— f+ Sastf+f 252 S2f

So the pricing equation for a European type payoff can be rephrased, after changing to time to
maturity s =T — ¢ notation,

— 0 f + APSf—rf =0, (1.1)

with initial condition

f(0,8)=9(5).

1.3 Lévy processes

The class of Lévy processes is a natural generalization of the Wiener process, in which discon-
tinuous paths are incorporated. Certain Lévy models can replicate the observed path properties
of stock returns, and in the meantime they give a good fit to option prices in the market.

Definition 1 A positive, but not necessary bounded measure v : B(R) — Rsg is called a Lévy
measure if it satisfies

V(101 =0
2. [ (IAz?)v(de) < oo

For an arbitrary measurable set A € B(R) the Lévy measure v (A) is the expected value
of the jump measure associated with the Lévy process, which counts the jumps of sizes in A
happening up till time 1 as

v(A) = E[#{te]0,1]: AX; #0,AX; € A}]
= E [J([Ov 1] 7A)] )
where J ([0,t], B) is the jump measure associated with the Lévy process, meaning
J([tl,tg} ,A) =# {t S (t1,t2]  AX, 75 O,AXt S A}

We call fR (dz) the intensity of the Lévy measure, and if A := fR (dz) < 0o, then we speak
of a Lévy process w1th finite activity, which is a compound Poisson process if there is no drift or
diffusion term.

Definition 2 (Lévy process) On the filtered probability space (0, F,F,P), where the filtration
F = (F:);>, satisfies the usual conditions from [DeSch08, p. 72], the adapted cadlag stochastic
process (Et)tZO 1s called a Lévy-process iff

1. L has independent increments: L; — L is independent of Fs, for 0 < s < t.
2. L has stationary increments: Ly — Ly ~ Ly_g, for 0 < s < t.

3. L is stochastically continuous: Ve > 0, limy_.s P[|L; — Ls| > €] = 0.



4. L starts at zero: Ly = 0.

The distribution of a Lévy process (L;),~, at time ¢ > 0 can be represented with a telescopic
sumas Ly = Z?zl (L ti — Lt(i—l)) Vn € N. In this representation every increment is independent

from the other (due to the first property of Definition 2) and they have identical distributions
(due to the second property), so a Lévy process at a given time follows an infinitely divisible
distribution.

Following the results by [Lu70], the characteristic function of an infinitely divisible distribu-
tion at a given time can be expressed as

o1, (W) = B [¢"] = (B [¢5])".

Theorem 3 The Lévy—Khinchin representation of the characteristic function of an infinitely
divisible distribution, as in [Sa99, Theorem 8.1], states that for 1 (u) = In (E [e™L1]) we have

W () = iyu — %2“2 +/ (e =1 —iuallp<i) v (dz), (1.2)
R

where v is a Lévy measure, v € R, 0 € R>o and the triplet (v, 0,v) uniquely characterizes the
Lévy process.

The characteristic triplet (y,o,v) is also called Lévy triplet or generating triplet of the Léuvy
process (L),~,-

Truncating the integrand in (1.2) with a function f (z) = O (|z|) as |z| — 0 (in our case with
xl|4)<1) is required to make e’* — 1 integrable in the neighborhood of 0, because

e — 1 —iuzll < = O (|x\2> as |z| — 0.

No such truncation is necessary if the Lévy measure v satisfies
/ |z| v (dz) < oo. (1.3)
lz]<1

For simplicity from here on we will assume the Lévy processes we will be looking at satisfy (1.3).

From the Lévy-Tto decomposition [Sa99, Theorems 19.2 and 19.3], every Lévy process can
be decomposed uniquely to the sum of three independent processes, L = L) + L2 + L3) such
that L)) is a linear transformation of a Brownian-motion, L(® is a compound Poisson process
with jump sizes bigger than 1 P-a.s. and L®) is a pure jump martingale with finite quadratic
variation.

Remark 4 Examples of Lévy processes are arithmetic Brownian motion (Gaussian Lévy process)
with the Lévy triplet of (,u — %2,0,0) ; variance gamma process [MaSe90]; CGMY (tempered o-
stable process, [CGMY02]) with the triplet (y,,0,v) where v (dz) = k (z) dz and k (z) is

by O CGRD, e (M,
|£L'|1+Y |:L'|1+Y

Theorem 5 The price of a European option given as the discounted expectation

ftx)= 6_7'(T_t)EQ [g (SoeLT) ’ L, = 33}



with terminal payoff function g (St) in an exponential Lévy market model solves the partial
integro-differential equation (PIDE)

of+AXf—rf =0,
where AL is the infinitesimal generator of the underlying Lévy process.

Proof. Assume that under a risk neutral measure the stock price process (St),-, follows an

exponential Lévy process
Sy = Spemt e, (1.4)

where 7 is the risk-free interest rate and L; is a Lévy process that has finite exponential moments.
The process can be characterized with the characteristic triplet (v, o, ), where v, is chosen such

that
o

=G [ =),

to ensure that exp (L¢) is a martingale. Rephrasing (1.4), (St);> solves the SODE

A4S, = (r+ ) Se_dt + oSy dW, + / (" — 1) S, J (dt, da),
R

with initial condition (S;),_, = So.
Since S is a (function of a) Markovian process, one can use the (extended) Feynmann-Kac
theorem [Sg95, Theorem 4.1.] stating
F t5) = T 0B [g (S0¢7)| L =]

then by It6’s formula for scalar Lévy processes [CoTa04, prop. 8.15] we get

2
df (t,L¢) = O,f (t, L) dt + %&mf (t,L¢)dt + 0y f (t,Le_) dLy + Af (t, Ly) — ALOy f (t, L) ,

which is, by the martingale decomposition for dL; as in [CoTa04, Prop. 8.16], is equivalent to
o2
df (t,Ls) = (@f (t, L) + (r +79) Ox f (t, Ls—) + ?61%]( (t, Lt)) dt
+ (/ (f(t L +y)— f(t, L) — Ouf (t. L) y) V(dy)> di
R\ {0}

40, f (t, L) dW, + / (F (6. Loe + ) — (. L)) (T (dt, dy) — v (dy) di)
e R\ {0}

(+%)

where the last two terms, (x) and (xx), are martingales, because J (dt, dy) —v (dy) dt (the —v (dy)
comes from the —AL;0, f (t,L;—) term) is a compensated jump measure.

Finally by using the no-arbitrage arguments, we get that the drift should equal rf (¢, L;_).
This yields a partial integro-differential equation of

2

0 (8. L) + G 0rf (1 10) + [ oy U0 0) = (02) = 00f () ) 0 (@) = 17 (1:0).
(1.5)



Let AL denote the infinitesimal generator of a Lévy process be defined as

. EBlf (@4 Ly) — f ()]
A"f (2) = Tim - ,

where the convergence is in the sense of the supremum norm on C° and f is such that the
right-hand side exists. Then from [CoTa04, Proposition 3.16] the generator has the form

ALf (t,z) = (r+70) Ouf (tax)+%ammf (tax)+/ (ftz+y) = ft2)=0.f(tz)y)v(dy),
R\{0} 1.6)

(
so the pricing equation for a European type payoff can be rephrased as 0, f + A“f —rf=0. =

10



Chapter 2

hp Finite Element Method

The Finite Element Method (FEM) is a general projection method based on a variational for-
mulation of a boundary value problem. FEM is widely used to solve partial differential equations
arising from physics and finance by discretizing the variational formulation on a finite dimen-
sional function space of piecewise polynomial functions. In such spaces linear operators can be
represented in matrix form.

In one dimensional space FEM works on a given domain G = [a,b] with a,b € R, on which a
mesh Ty, that is defined as 7, = {z : k =0,..., N + 1}, N > 0, with a sequence of mesh points

a::r0<3:1<...<zN+1:b,

and the elements are the disjoint subintervals of G, K; = [x;,z;+1] Vi€ {0,...,N}.
The distance between elements is the mesh witdth

hy =241 —x for k=0,...,N+1.

Definition 6 A uniform mesh U" (0,1) is a series of intervals Ky = [T, Tr+1], called elements
defined by the grid points

Tk fork=0,..., N+ 1.

TNt

A uniform mesh can also be denoted with 7, with hy = h. A plot of an example of a uniform
mesh is displayed in Figure 2.1.

Figure 2.1: A uniform mesh with NV = 9 refinements

We denote the space of piecewise polynomial functions on G with a partitioning mesh 7, as

SP(G,7y)={f:G—R: f|g, isa polynomial}.

11



2.1 h- and p- FEM for analytic functions

Functions f that are analytic in the whole domain are locally given by convergent power

series and satisfy
k
d f (IL’) < Cv/’ﬁlel7

sup d;]jik

zeG

for some constant C' > 0 and for every k, which means all of their derivatives are square integrable
and so are in H*® (G) := NpenH* (G). Using finite element methods for these type of functions p-
refinement is enough to achieve exponential convergence rates, as we will see in this section. But
for functions that have singularities on known points in space or time, we will need hp-refinement,
which is discussed in the next section.

Increasing the uniform polynomial order on all elements in FEM, or p-FEM is understood
as in [Sw98, Remark 3.18.] the refinement from S* (G, 7,) increasing p in SP (G, 71,). Increasing
the uniform mesh width A on all elements is called the h-FEM and is understood as decreasing
h uniformly in S? (G, 7). hp-FEM will be explained in Section 2.2.

2.1.1 Basis functions on the reference element

To approximate functions by piecewise polynomial functions we chose Legendre polynomials
(Figure 2.2) that are defined on (—1,1) by applying the Gram-Schmidt process in L? (—1,1) on
the monomials {&” };OZO. The Legendre polynomials satisfy the Legendre differential equation

(1= L, ©)) +pp+1)L, (&) = 0
Lp(l) = 17

and more importantly the orthogonality property

1
2
[1 Ly (f) Ly (f) d§ = T_’_I(Sn:m n,m > 2, (21)

which leads to the stiffness matrix derived from the diffusion term being diagonal in higher
polynomial orders, as described in Section 2.1.6.

12



Legendre polynomials
T

Figure 2.2: Legendre polynomials

The reference element shape functions {Ni}fzo can be built from Legendre polynomials. They
read as follows, on the reference element K = (—1,1)

o) = 35 M=%
. 1
Ny (§) = o1 (Lp —Lp—2)(§) p=2

and are depicted in Figure 2.3.

element basis functions

0.8

Figure 2.3: Polynomial basis functions on the reference element K

The shape functions of the elements K; are defined via the mapping ¢, : K — K;

M=o 22)

13



where ¢, is a diffeomoprhishm, meaning it is a bijective mapping with ¢, € C* (K’,Ki) and
(,0;1 S Cl (KZ,K)

On each element the external shape functions No and Ny form hat functions on two neigh-
bouring elements: N¢ on K; and N{H on K,;i; as depicted in Figure 2.4. The higher order

polynomials, N} with k£ > 2 are internal shape functions, with 0 values on the boundaries of the
element they are defined on.

in,

x_{i+2}

Figure 2.4: Linear shape functions forming hat functions on two consecutive mehs elements

Space of piecewise polynomial functions on G, with a partitioning mesh 7, can then be
characterized as

SP (G, Th) = span ({N;}z with N;: as in (2.2).

6{0,...,N},j€{1,...,pi}>

2.1.2 Basis function numbering and assembly

On the elements K; with ¢ € {0,..., N} we introduce a numbering scheme for the basis
functions in a way that we first index the external shape functions {b;}, . from 1 to N + 2, so
the neighbouring N and N{** linear shape functions form hat functions, and their contributions
will add up during assembly. Then we number the internal shape functions from N + 3 to M,
where M is the number of all basis functions in a continuous Galerkin (cG) setting, and

N N
M=N+2+Y (pi-1)=2+> pi,
=0 =0

where p; is the polynomial degree on element K;, and we have altogether N + 2 linear hat
functions.

The resulting numbering of the basis functions will be then on b; (z) for ¢ € {1,..., M}, first
the linear hat functions from 1 to N + 2

bp () = Ni(x)+ Nt (z) z€K UKy, 2<n<N+1, i=n-2
bi(z) = NJ(z) z€Ky
byiz(r) = N (x) =€ Ky,
and then the higher order polynomial shape function are numbered elementwise as
by(z) = Ni(z) z€K; n>N+1,
i = max meN:2+N+Z(pj—1)§n ,

J

=0
k = n- 2+N+zn:(pj1)).

j=0

14



Using a ¢G scheme we sum up the contributions from neighbouring linear shape functions,
thus forming hat functions which will only allow continuous functions within S? (G, 73)

Example 7 The numbering of shape functions in N + 1 = 4 elements where the polynomial
order on each element is 3 reads as follows

shape function: Ny Ny Ns Nj
element Ky 2 1 6 7

element K, 3 2 8 9
element Ko 4 3 10 11
element K3 5 4 12 13

2.1.3 Static condensation

Since the first IV + 1 basis functions represent the linear external shape functions, and the
rest are internal, higher order polynomial shape functions, solving a system of linear equations
Au = f can be done separately, where A € RM*M representing a linear operator in S? (G, 7},)
and u,f € RM are representing two piecewise polynomial functions, u, f € S? (G, 7).

First let us partition the matrix A as

Agp Ay
A_ =
<Ao1 A

where
Ay = {ALJ'},?;,_]'E{I,...,N—&-Q},
Ay, = {Am»},ie{1,...,N+2},j€{N—|—3,...,M},
Ay = {Ai’j},ie{N+3,...,M}7j6{1,...7N+2},
Ay = {A;}.d,5e{l,...,N+2},

and the vectors u and f as

~(2) = (1)

Then we first have to solve for only the degrees of freedom of external shape functions, i.e.

(Aoo — A (A1)~ A01) uy = f,— Ao (An) "' £,
then solve for the internal shape functions
Auul = il - Amﬂo«

The advantage of this procedure is that the condition numbers for the submatrices A;; and
(Aoo — A (A11)71 Agl) are several orders of magnitude lower than that of A, and therefore

we can achieve higher accuracy partitioning the system this way.

2.1.4 Solving the pricing PIDE

Discretizing the weak formulation of (1.5) in the FE space SP (G, 7,) for functions f (¢,z) €
SP (G, Th), in the form

M
fltz)=) u()bi(z) z€d,

=1

15



with the basis functions from Section 2.1.2 will lead to a semi-discrete form

<Zatuj ()b (). 3 " vib <x>> +“2<, MOLACH I <x>> 23)

L2

M M M M
+al [ Y up ()b (2), ) vbi(@) | =7 <ZUJ () bj (), ) vibi ($)> ;
Jj=1 j i L2

=1

for all v € RM. This can be rephrased to

v’ (&u () + %QAQ (t)+ Su (t)) =o' (rMu(t)) YoeRM,

and so the semi-discrete version of (1.5) reads as follows.

Ou (t) + %QAQ t)+Su(t) = rMu(¢),

Mu(0) = g

The matrices M, A and S are defined in (2.5), (2.9) and (2.12) respectively.

The task of discretization can thus be broken down to three smaller problems. First is the L?
projection of an arbitrary function f : G — R to SP (G, 71) using the mass matrix, the second
task is a Laplace-operator equation using the stiffness matrix derived from the diffusion term
and the third is a Lévy operator equation, using the stiffness matrix derived from the jump term.

2.1.5 L? projection

Projecting an arbitrary function g € L? into the finite element space SP (G, 7,,) = span {b;}

corresponds to solving
us = argmin |ju—g|12(q)- (2.4)
us€SP(G,Th)

Using the weak formulation, we need to find uw € SP (G, 7)) such that fG uvdp = fG gudp
Vv € H' (G), or using the bilinear form notation (u,v);. = (g,v);., which can be discretized as
in (2.3) to

Mu=g (2.5)

Where Mi,j = <bj7bi>L2a and g, = <g’bi>L2'

Since the basis functions are defined on the reference element, every entry of the mass matrix
can be written as integrals on the reference element. Every block of the mass matrix ﬁf ; which
corresponds to an element-pair K; x K is a p x p matrix, p being the uniform polynomial order
on all elements, and ﬁf ; has entries

1
ngl:/_lm (&) Np (6)dé  k,1€{0,...,p}.

Once the local matrices are computed, the contribution of each shape function is assembled
to form the global mass matrix
ﬁpo 0 0
ho 0 h1 MP hN+1
M=— — e —
2 + 2 et 2 .
0 0 ﬁpNJrl

16



Theorem 8 Solving (2.4) with uniform meshes and uniform polynomial orders on elements will
lead to the error of the approximation us, the solution of (2.5), being

hlnin{p,k}+1
lg —usllz2 < Cllg g T vg e H* (G), (2.6)

where C' is independent of h and p but depends on k.

Proof. See [Sw98, Theorem 3.17]. m

Analytic functions are smooth in the sense that gt*) € L? for k € N, which leads to g € H* (G)
for k£ € N. This means for analytic functions we expect an arbitrarily high algebraic convergence
in p, the uniform polynomial degree on all elements from Ky to Ky, and this convergence can
be understood as exponential.

Theorem 9 With us and g from (2.4) the p-FEM will have error bounds
lg = sl 2 < C (1+Inp)*pPe7,
for some constants C', \ that only depend on g.
Proof. See [MeSw98, Corrolary 4.9]. m
Theorem 10 With us and g from (2.4) the error bound for the h-FEM will be
g — usl ;2 < Cuph ™71, for analytic g, (2.7)
where h is a uniform mesh width on G, and all all rates of convergence will be shown below.

Proof. See [S099, Theorem 4.]. m
Numerical results of rates of convergences shown in Figure 2.6 (right) and Figure 2.7 (right)
suggest that the error bound for the h- and p-FEM solution for L? projection should be rephrased.

Proposition 11 With us and g from (2.4) the error bound for the h- and p-FEM is given as
lg —us|l 2 < Crexp((Inh —Cy) (p+1)), for analytic g,
for some constants Cy,Cs > 0.

This means that we observe algebraic convergence in h refinement with the rate of convergence
of p+ 1, and exponential convergence in the polynomial degree with the rate of convergence of
(=Inh + C3) as shown on Figure 2.7 (right) and Figure 2.10 (right).

The condition number of a matrix measures the sensitivity of the solution of a linear system
to changes or errors in the data. It gives an indication of the accuracy of the results from matrix
inversion and the linear equation solution.[QSS07, Chapter 3.1.1] It plays a crucial role in the
accuracy of iterative solvers like the Generalized Minimal RESidual algorithm [SaSc86].

We can observe that the condition number of the mass matrix in (2.5) increases algebraically
with p but stays constant as h decreases (after a certain point), and static condensation reduces
it significantly, as displayed in Figure 2.5.
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mass matrix condition numbers for uniform polynomial degree of p=10
10 T

—©&— full matrix
—=&— linear basis functions
—=&— higher order polynomials

condition number
3

0

10 -
10 10 10
mesh width (h)

condition number

mass matrix condition numbers for mesh width of h=1.6e-002

—o— full matrix
——&— linear basis functions
—=24— higher order polynomials

uniform polynomial degree

Figure 2.5: Condition number of the mass matrix as mesh size decreases (left) and as the
polynomial degree increases (right).

Displaying the results of (2.5) for u(z) = sin(rz) on G = (0,1) in Figure 2.6 for various
uniform polynomial orders we observe an algebraic convergence in the mesh size displayed as
linear lines in a log-log plot, and the rate of convergence being p+ 1, as described in Proposition

L2 error of h—-FEM projection
10° :
-5
10° b _— — 1
0 e
o
8 _—
5 -
o
107°¢ ]
—&—p=1roc= 2
—&—p=2,roc=28
—&—p=3,roc= 4
—<—p=4,roc=49
—o—p=5roc=59
s Y p=6,roc=68
10 -2 ‘-1 0
10 10 10

mesh width (h)

Figure 2.6: Algebraic L? converge with mesh refinement for L2-projection (left) and the rate of

rate of convergence

w

o

IS

rate of convergence of h-FEM projection

2 3 4 5 6
polynomial degree

convergence with different uniform polynomial degrees (p)

Then using a uniform mesh on [0, 1], we observe exponential convergence by increasing uni-
form polynomial order on each element, displayed as linear lines in a semi-log plot in Figure 2.7.
The observed exponential rate of convergence for every mesh size is of (—Inh + C5) as suggested

in Proposition 11.
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L2 error of p—~FEM projection

rate of convergence of p—~FEM projection
T

10° 6
5L ]
—&—roc
! — — — =In(h),
10° | g 4 1
3
5
= ~ - )
s AN — H
= ~ ~—~— £3
3 ~__ O~ 8
—_ ‘s
e o
-10 < 5 = ~
10 " —e— In(h) = -0.69315, roc = 2.289 S. 1 2r ~
o In(h) = -1.3863, roc = 2977 | S N
— S
—6— In(h) = -2.0794, roc = 3.646 ~_ ‘ AN
& In(h) = -2.7726, roc = 4.329 e 1 S
—6— In(h) = -3.4657, roc = 5.018 ~— >
~
In(h) = -4.1589, roc = 5.709 ~
107 T T . i 0 L
1 2 3 4 5 6 102 107 10°
uniform polynomial degree mesh width (h)

Figure 2.7: Exponential L? converge with the increase of the uniform polynomial degrees (p)
for L2-projection (left) and the rate of convergence with different mesh sizes.

2.1.6 Poisson’s equation
Solving for u
" = f on G (2.8)
u(z) = 0 on 0G,

with f € L? (G) leads to the variational formulation that reads:
FindueV ={ue H (G):u(z) =0, z € dG} such that

(W' 0) o = (fiv). YWEV,

which can be discretized using the FEM space S? (G, 74) to

Au=f, (2.9)
where A; ; = <b' b’<>L2, and f; = (f,bi) 2.

5> i
Let AP be a local matrix for the Laplace operator on the element K; with entries

1
Aifz:/lvm (&) VNg (€)dE  k,1€{0,...,p}.

Then the stiffness matrix A can be assembled from the local matrices defined on the elements
by adding up the contributions of the shape functions as

;&Po 0 0
2 0 2 AP ) 0
A== + = ot
ho h1 hni1

0 0 AP

From the orthogonality property of the Legendre polynomials in (2.1) we will have <VN lj , VN, ,1> , =
L
Ogi=jy0qr=1y for 4,7 > 2. This means that the stiffness matrix for the higher order polynomials,
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A, after static condensation, will be a diagonal matrix with entries of 2/h;, which is constant
when using uniform meshes, so its condition number will be

cond (Aq1) = 1.

Therefore the condition number of the system solving for the linear shape functions equals the
condition number of the full system

cond (AOO — A10 (All)_l AOI) = cond (A) .

It can be observed that the condition number of (2.9) increases algebraically as h decreases,
as displayed in Figure 2.8 (left) and it is constant in p, as displayed in Figure 2.8 (right).

B stiffness matrix condition numbers for uniform polynomial degree of p=10 stiffness matrix condition numbers for mesh width of h=1.6e-002
T T T T T T T T T
103 21995 |
10°L —6— full matrix
= T
2 @
£ o
5 5
z , 2
c 107 c
S 2 100715 |
= 2
3 8
1
10 | 10%21995
—o— full matrix 3.21995
10° . 10 C . . . . . . . . b
107 107 10° 1 2 3 4 ) 5 6 7 8 9 10
mesh width (h) uniform polynomial degree

Figure 2.8: Condition number of the stiffness matrix derived from the Lalpace operator
increasing in mesh size (h) and staying constant in the uniform polynomial degree

(p)

Following Proposition 11, results of solving the system with uniform meshes and uniform
polynomial orders on every element will lead to the approximation

us = argmin flu — gl|;-
us€SP(G,1h)

with ¢ being the strong solution of (2.8), to have error bounds
[us =gl < Crexp((In(h) = C2) (p+1)), for analytic g.

Displaying the results for g () = sin (7z) on [0, 1], and observing an algebraic convergence
in the mesh size displayed as linear lines in a log-log plot in Figure 2.9.
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L2 error of h—FEM solution of Au=f
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rate of convergence of h—FEM solution
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polynomial degree

Figure 2.9: Algebraic rate of convergence in L?-norm with mesh refinement for Laplace
equation (left) and the rate of convergence with different uniform polynomial

degrees (p).

Then using a uniform mesh on [0, 1], and having exponential convergence by increasing uni-
formly the polynomial order on the elements, displayed as linear lines in a semi-log plot in Figure
2.10.

error

L2 error of p—~FEM projection
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Figure 2.10: Exponential rate of convergence in L?-norm with the increase of the uniform
polynomial degrees (p) for Laplace equation (left) and the rate of convergence
with different mesh sizes.
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2.1.7 Lévy operator equation

Solving the equation

In order to be able to solve (1.5) we consider
Aby = f, (2.10)

where

ALu:/ (u (@ +y) —u@) —u (=) y)v(dy),
R\{0}

meaning that A’ is the generator of a pure jump process characterized by the Lévy triplet
(0,0,v).
In a symmetric CGMY setting this equals

—Blyl
Al = / (u (o +y) —u(@) — o (2)y) —rdy.
]R\{O} |y|

We discretize problem in (2.10) using the basis functions from Section 2.1.2 to

=5 (2.11)
where
Sij = (A"bjbi),,
N //]R\{()} (@ +y) = b; (@) = bj (2) y) v (dy) bi (z) dw (2.12)
- [ BWEEE ) dyin
and

ii = <f7b7i>L2

Computing elements of S numerically

Using polynomial basis functions the integrals in (2.12) will not be available in closed form.
Therefore we need to compute the elements of S numerically.

In order to do this we transform each shape function to the reference element, N,i being
the k-th shape function on the element K;. We will take care of the task of combining the
neighbouring linear shape functions to hat functions in the assembly of the global matrix by
adding up their contributions.

We can now define a local stiffness matrix on the element pair K; x K; as S; j, with entries

[0}

oG = / / VN (E,) VR (6) K (01 () — 0 (&,)) dé,de,.

ol
m

{O,,pl},ZE{O,,p]},
fori,j € {l,...,N+1}
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where p; and p; are the highest order of polynomial shape functions on the elements K; and K;
respectively.

For numerical integration on the reference element we will distinguish four cases: diagonal
blocks S” on K; x K;; super-diagonal blocks SMH on K; x K;11; sub-diagonal blocks Si,i—l on
K; x K;_1 and far from diagonal blocks of S” on K; x K; for |i — j| > 2. We discuss the the
computation of the stiffness matrix more in detail in Appendiz B.

Since the Lévy operator is not a local operator, the assembly of the stiffness matrix is more
involved than for local operators, as sown in (2.13)

§,070 e 0 0 --- QOJ e 0 0 - Soni
S = + -+ + + :
0 0 0
0 0 0
+ | Sio of+--+10 Si; of+--+1]0 Si N1 (2.13)
0 0 0
0 0 0
+ +ot ot :
Svi10 0 0 0 «+ Syy1; - 0 0 - SN+t

Numerical integration on the reference element of diagonal blocks
As an example we will now show the calculation of a stiffness matrix for a CGMY process on
G = (—1,1), with a single element Ky = G.
Since the Lévy density k for the CGMY model is strongly singular at 0, i.e. k
as © — 0 and so k(72 (2 — y) might be discontinuous on the diagonal of (—1

)~ (YD)

the second

'y
)
Ie

antiderivative has the form as in [Po08, Appendix B], and behaves near 0 as kj( D (z) ~ 2=V,
CGMY Lévy density with C=1, G=5, M=7, Y=1 second antiderivate of CGMY Lévy density with C=1, G=5, M=7, Y=1
100 T T T T T
1.6
90
a0l 141
7ot ] 12}
60 1 s
- z
X 501 =
b L o8
40
0.6
30
04r
20
1ok 02f
0 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X X

Figure 2.11: CGMY Lévy-density (left) and its second antiderivate (right)

To integrate k(-2 (z — y) on (—1,1)* we apply Duffy’s trick [Du82], and divide (—1,1)? into
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two triangles where k(—2) (x — y) has singularity only on one side, so we’ll have two integrals as

11
//k (x—y dydm—//k (x—y dydx—i—//k( D (x — y) dyde,
15

-1z

and for the ease of numerical integration we transform each triangle to a rectangle, with singu-

larity at one side. For the lower triangle we have with the new variable z = 1 — ZE
10
//k( D (x dydm——//k(_z) (z—[z—2x+1)])(z+1)dzdz
S11
11
/k(%) (€ — [z —2(z + 1)]) (¢ + 1) doda.
210
For the upper triangle we have, with the new variable z = Y=
11 11
//k(_Q) (x —y)dydx = //k(_Q) (x—[z+z(1-2)]) (1 —z)dzd.

Sl 10
Now both integrals have singularity at z = 0, so we need a mesh that is refined towards that
singularity.

We discuss the numerical integration more in detail with results of convergence in Appendiz

A.

Complexity of the linear system

The condition numbers of the stiffness matrix increase with both N and p, but the condition
number of the linear sub-system (SOO — S0 (SH)*1 S(n> decreases with the polynomial order

p, as shown in Figure 2.12-2.1} for the CGMY model with C = 1,G = M = 5 and various
tail-exponents.
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Iiévy stiffness matrix condition numbers for uniform polynomial degree of p=7 3 Lévy stiffness matrix condition numbers for mesh width of h=1.6e-002
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Figure 2.12: Condition numbers for (2.11) with ¥ = 0 for the wole system and the two
sub-systems after static condensation as mesh size decreases (left column) and as
the uniform polynomial degree increases (right column)

Igévy stiffness matrix condition numbers for uniform polynomial degree of p=7 5 Lévy stiffness matrix condition numbers for mesh width of h=1.6e-002
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Figure 2.13: Condition numbers for (2.11) with ¥ = 0.5 for the wole system and the two
sub-systems after static condensation as mesh size decreases (left) and as the
uniform polynomial degree increases (right)
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Iiévy stiffness matrix condition numbers for uniform polynomial degree of p=7 5 Lévy stiffness matrix condition numbers for mesh width of h=1.6e-002
0 10 T T T T T

—o— full matrix
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—4— higher order polynomials
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Figure 2.14: Condition numbers for (2.11) with ¥ = 1.5 for the wole system and the two
sub-systems after static condensation as mesh size decreases (left) and as the
uniform polynomial degree increases (right)

Remark 12 The CGMY model with parameter Y > 1 is of infinite variation, with singularity
of the Lévy density of k (z) ~ x¥ 1 as x — 0.

Results

Theorem 13 The solution of the linear system (2.11), uyp, p (), with uniform mesh width and
uniform polynomial orders across the elements results in

Upp (x) = argmin |ju —g||;2  for analytic g,
weSP(G,Ty)

where g is the solution of (2.10) the error can be bounded as

lunp = gll g2 < Cunh?*.

Proof. See [Sw98, Thm. 3.17]. m

Displaying the results for the CGMY Lévy operator with parameters C = 1, G = M = 5,
Y = 0.5, and for the function g (z) = z* (1 — z)*, we observe an algebraic convergence in mesh
size, shown as a linear line in a log-log plot in Figure 2.15 (left), with rate of convergence p + 1
as shown in Figure 2.15 (right).

26



L2 convergence of hp—FEM solution of Au=f
10 T
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error
rate of convergence
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©
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.
10 107" 10

Figure 2.15: L? convergence of (2.10) using mesh refinements (left) and the rate of convergence
for different uniform polynomial degrees (right).

Remark 14 The convergence starts to deteriorate around 10™° and this is partly due to the
fact that the function f = A%g, for a polynomial g, has coefficients expressed with confluent
hypergeometric functions that are evaluated numerically. The other reason for the deterioration
is that the entries of the stiffness matriz are calculated numerically, and for further details on
variational crimes turn to [Sw98, Chapter 2.4).

We observe an exponential convergence in the polynomial degree shown as a linear line in a
semi-log plot in Figure 2.16 (left) with rate of convergence of —In (h) as shown in Figure 2.16
(right).

L2 convergence of hp—FEM solution of Au=f
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error
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Figure 2.16: L? convergence of (2.10) increasing polynomial order (left) and the rate of
convergence for different mesh sizes (right).
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2.2 hp FEM for functions with singularity

Even for the simple plain vanilla options the payoff functions have a singularity at the strike,
meaning they are piecewise linear, but not differentiable at the strike. So they are only in
H27¢ (R), and not in H?2 (R) which would yield optimal, second order convergence for the 6-
scheme with # = 0.5. Our aim is pricing of digital barriers with discontinuity at the barrier, so
the payoff is not even in continuous, resulting in the function being only in H 3¢ (R).

We have previously shown that using uniform meshes for the p-FEM solver will give us
exponential convergence, as described in Proposition 11, but only for analytic functions. In
order to achieve exponential rate of convergence with functions having singularity we will use hp
mesh refinement as in [SzBa91, Ch. 4.1.].

Example 15 A well known example of the superiority of hp FEM is from [Sw98, Chapter 3.4]
describing the L? projection of a boundary layer function in the form of

u(x) = exp (—3) on G =(0,1)

where d € (0,1] is a parameter that can approach 0. The performance of three methods are
presented in Figure 2.17: the h-FEM with hat functions as basis functions (since u is continuous)
and a uniform mesh grid with mesh width h; the p-FEM with the single element Ko = G with
increasing uniform polynomial degree and an hp-FEM on two elements Ky = (0,dp) and K; =
(dp, 1), where p is the uniform polynomial degree on both elements.

h-,p- and hp-FEM projection of exp(-x/d), d=10"" h-,p- and hp-FEM projection of exp(-x/d), d=10"°

—e— h-FEM —o— h-FEM
—=— p-FEM [PV VN SN —*+—p-FEM
- —— 107 M@ —— ey
107k El

12 error

. . . . . . . .
0 5 10 15 20 25 0 5 10 15 20 25
degrees of freedom degrees of freedom

Figure 2.17: Convergence of the L? projection of the function u (x) = exp (—z/d) with d = 0.09
(left) and d = 107° (right).

2.2.1 Meshes

Definition 16 A geometric graded mesh GY (0,1) with N refinements and a grading factor o €
(0,1) on [0,1] is, just like a uniform mesh from Definition 6, a series of elements Ky = [Tk, Tp41]
with the grid points

Tog — 0,
z, = oV F fork=1,..,N+1.
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A plot of an example for a geometric graded mesh with o = 1/2, N = 4 is displayed in Figure
2.18.

I I I I
T T T T

|
0 1/16 1/ 1/4 1/2 1

Figure 2.18: A geometric graded mesh with grading factor o = 0.5.

From [SzBa91, Ch. 4.1.] we know the grading factor of
2
S

yields an optimal performance for hp-FEM when using a geometric graded mesh with grading
factor ¢* and polynomial degree on elements

pj=lujl peR.

Theorem 17 For the ease of notation suppose that the singularity of the function is at xqg =0,
as in Example 15, then we will have exponential convergence in the degrees of freedom as

g 0l £ (20T

where M is the number basis functions, C1,Cy > 0.

Proof. See [Sw98, Thm 3.36]. m

2.2.2 Stiffness matrix for the Lévy operator on a geometric mesh

Discretizing the equation A%u = f in the hp-FE space leads to a matrix equation

Su = f,

where S is the stiffness matrix with elements as

Sij = (A"bj,bi) .

where b; is the k-th order basis function on the element Kj;, as described in Section 2.1.2, f is a
load vector with elements

ii: <f7bi>L2‘

As shown above, in the case of a Lévy operator the elements of the stiffness matrix can be
written as

Smn = / /b% () b, (@) K2 (2 — y) dyda,

where b, is the k-th order shape function on the element K;, and by, is the [-th order shape
function on Kj; as described in Section 2.1.2. By substituting with the diffeomorphism ¢; : K —
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Kj, ; (&) = ”Cﬁ';j’l + B, and @, (€,) analogously, we compute the integral on the
reference element

11
Smn :_/1_/1?); () (#1 (€,)) b1, (¢ (€2)) K72 (95 (&) = 2 (&) %dﬁy%dfw

and by using that VN, (z) = V (N (¢ (x))) = VN] (¢ (x)) ¢’ (x) Vi, we have

1

1
Saik)G1) = //VNI (&,) VNL (&) K72 (¢; (&) — i (&) dé,de,.
11—

1

Proposition 18 To compute the local blocks Si’j of the stiffness matrixz on the reference element
Kx K fori,j=1,...,N 4+ 1 define quadratures points and weights as

£, = goc g =goc, w=ww Vw,@w,  ifi=] (2.14)
£, = cod, w=wow’ ifli-jl=1, (2.15)
Ly = 999, w=wow'  ifli-jlz2 (2.16)

where g is a vector of Gauss—Legendre quadrature points of length n with associated weights wy

as in [Wi09, Ch. 5.1] and c is a vector of composite Gauss quadrature points of length n with
associated weights w. as in [Wi09, Ch. 5.2]. Then the error

Stwn = (V8 (€,) VR () #7004 (&)~ (6,))]

will convergence to 0 exponentially in n.

Proof. To compute the integrals derived from the Lévy operator on blocks further from the
diagonal, we can use simple Gauss-Legendre quadratures since k(—2) decays exponentially from
0 to make k(—2) (z — y) relatively constant on element pairs that are not neighbours. For this
we need the relative distance of the elements to decay fast enough

The length of the element in one dimension is given as

|K;| = |2 — @iqq| = oVHITE = gNFLIZ(HD) - G N+2 (1 - 1) )
g

For numerical integration on K; x Kj, the two elements K; and K; (w.l.o.g. suppose i < j)
can be illustrated as

X_i X_i+1 X_] X_j+1

30



Then the relative distance is

As a result from [Wi09, Theorem 6.3.1.], when the relative distance of elements decays fast
enough (by choosing o < Cf/4), using simple Gauss-Legendre quadrature rules yields exponen-
tial convergence in quadrature points for the integration of the local stiffness matrices.

For the computation of local stiffness matrices next to or on the diagonal of S we need

5o o dist (KiaKj)
" max {|K] K}
Tj— Tit1

Tj+1 — Tj
oNFT1=i (1 - o)

oN+1=0G+D) (1 — o)
1

g

assume ¢ < j

and since |i — j| > 2

composite-Gaussian quadrature rule for optimal convergence. m
The assembly is carried out as in (2.13) in Section 2.1.7.

Condition numbers for the full system S, and subsystems after static condensation is depicted
in Figure 2.19 for different degrees of singularity, using geometric meshes with grading factor

o = ¢* and polynomial increase slope u = 1.

condition number of stiffness matrix

condition number of stiffness matrix

Figure 2.19: Condition numbers of the Lévy stiffness matrix with varios degrees of singularity.

In the VG case with Y = 0, using underrefinement, meaning using a larger grading factor,

CGMY model with C=0.1 G=10 M=10 Y=0

CGMY model with C=0.1 G=10 M=12 Y=0.5
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stops the explosion of the condition number, so with o = 0.5 we have
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CGMY model with C=0.1 G=10 M=12 Y=0
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Results of using hp-FEM with for Lévy operators on functions with singularities is discussed
in the next chapter.
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Chapter 3

Numerical Examples of hp-FEM
from Option Pricing

3.1 Option pricing in Black—Scholes setting

From the pricing equation in (1.1) we will have in log-price = In S

2 2
O (t, ) + %&mu (t,x) + (02 - T) Ou (t,z) +ru(t,z) = 0, on (0,7)x G

u (0, ) g(z). on G,

with g (z) = (e* — K, for European call contracts.

3.1.1 Variational formulation

The variational formulation reads:
Find v € L? ((0,T),H" (R)) N H' ((0,T),L? (R)) such that
o*

2

2
(Opu,v) o + — (W, 0) 2 + <02 - r) (W )2 +7r(u,v). = 0, on (0,7) x R,
(W, v)2 = (9,0)72, on R,

for all test functions v € H! (R).

3.1.2 Localization

We localize the unbounded log-price domain to Gg = (—R, R), and solve for u € L? ((0,T) , Hj (Gg))N
H' ((0,T),L*(GRr)) such that

2 2
(Opu,v) > + % (', v") 2+ <02 - 7’> (W v) 2 +7r(u,v). = 0, on (0,7) x Gg,

<u7 U>L2 = <g7 U>L2 , on GR7

for all test functions v € H} (Ggr), where Hj (Ggr) = {v € H' (Gg) : v(z) =0 for x € dGr}.
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3.1.3 Discretization in space

We use basis functions of S§ (Gr, 71,) as in Section 2.1.2, then following the steps as in Section
2.1.5 and Section 2.1.6 we get to the semi-discrete formulation

Mu+ Au = 0, (3.1)
Mu (0) =

I'e

3.1.4 @H-scheme

We can discretize the system of ODEs in (3.1) in time using the #-scheme. In the time
domain we take a sequence of timesteps {km}i\f:l, with >~ k; = T, and define a time-grid as
to =0, ty, = > 1oy ki, so that tay = T. By setting u™ = u (t,,) we get to a fully discrete scheme,

which in matrix form reads

1
km+1

M (ngrl _ gm) +A (engrl 4 (1 o 9) gm) — 0’

Mu’ = g,

which can be rephrased to a recursion as

(M + km+16’A) Qm+1 = (M — km+10A) Qm,
Mu'

9

RS}

where g, = (9,b;) 2, with g : G — R being the initial condition of the PDE, and Mu" = g stands
for the projection of the initial condition to S} (Gr, 7).

Using a uniform mesh for both space and time discretization is far from optimal, we only get
second order convergence as shown in Figure 3.1.

Convergence of the value of a European call option in the Black-Scholes model
10 T T

.
IV
IRV,

p=1
p=2
p=3
p=4

10" 10° 10° 10*

degrees of freedom

Figure 3.1: Second order convergece in degrees of of freedom using uniform meshes and
different uniform polynomial orders.
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3.1.5 Refined method

As shown in Figure 8.1 using higher order polynomial basis functions did not increase the
rate of convergence due to the singularity of the payoff function at values & which are near at-
the-money. To achieve exponential convergence we move to a different problem defined with the
variational formulation

2
(O, v) 2 + % (@ ). = 0, on (0,T) x R, (3.2)

(W,v)2 = (9,0);2, on R,

e " (t7x+ <022 —r) (T—t)) =u(t,x).

The formulation in (3.2) has no drift and no penalty terms and so the singularity of u (¢, z)
will stay at z =0 for ¢ > 0.

Therefore we used two geometric graded meshes in log-price, both refining towards 0, and
used a hp-version of the discontinuous Galerkin (hp-dG) time discretization scheme described in
[SoSw99] with a geometric graded time-mesh refining towards maturity, i.e. ¢ = 0. As Figure
3.2 shows we have exponential convergence with respect to the degrees of freedom in space. We
used the parameters for the model ops = 0.3 and r = 0.05; and for the factor for grading the
meshes in space ¢ = 0.5 and in time § = 0.3, with polynomial increase slope of © = 0.5.

for which we have

Convergence of hp time and hp space discretization
T T T T T

L2 error

. . . . .
0 10 20 30 40 50 60
degrees of freedom

Figure 3.2: Exponential convergence using hp-FEM in both space and time for a European call
option in the Black—Scholes model

3.2 Option pricing in Lévy setting

From u that solves the pricing equation in (1.5) for the CGMY model, we remove the drift
and the discounting to get
o2
et <t7{y + (2 - r) (T — t)) =u(t,x)
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which satisfies

Ovu (t, ) + / Utz +y)—u(t,z) - du(@)yk(y)dy = 0, (3-3)
R\{0}
u(0,z) = g(z), zeR.

3.2.1 Variational Formulation

The variational formulation of (3.3) reads:
Find v € L2 ((0,T),H* (R)) N H* ((0,T), L? (R)) such that

(041, v) ;2 + a (W,0) = 0, on (0,7) xR
<,il7 U>L2 = <97 U>L2 , On Rv (34)
B 1 ifo>0
P = Y a2 ifo=0 "

for all v € H? (R), where a” (u,v) = [, fR\{I} u' (t,z) v (y) k2 (x — y) dydr and H* (R) is a
Sobolev space of fractional order s defined through the Fourier space with the norm for 0 < s <1

ol ey = / (1+ €D [a (6 de.

where 4 is the Fourier transform of w.
In Levy setting a governs the singularity of the Levy density as z — 0 in the sense that

k(z) <C

< 7|z|a+1 for |z] < 1. (3.5)

3.2.2 Localization

As in the Black—Scholes case we localize in the unbounded log-price domain to Ggr = (—R, R)
with the space Hf (Gr) = {v € HP (R) : ulp\g = O}. Then the localized problem reads:

Find v € L?((0,T), Hy (Gr)) N H' ((0,T), L* (GRr)) such that

(04, v) 12 () + ak (U,v) = 0, VYve H’(Gg), ae. in (0,7)
<ﬂ (O) 7U>L2(GR) = <g7 U>L2(GR) ) Yv € Hr (GR) ) (36)
u(t,z) = 0 on (0,7T)x G%,

where af, (u,v) = [, fGR\{w} o (t,z) v (y) k2 (z — y) dyda.

3.2.3 Discretization in space and in time using the 6-scheme

Discretization of (3.6) in space is analogous to Section 3.1.3 and in time using the #-scheme
is analogous to Section 3.1.4.

The results in Figure 3.3 show that the convergence of the #-scheme is of second order,
regardless of the uniform polynomial degree on the elements.
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Convergence of the price of a European call option
T T

L2 error

—>=—p=1,r10c = 2.2
5| —— p=2, roc = 3.05
—>—p=3,10c = 2.8

p=4, roc =2.19
—=—p=5, roc =2.18

n .
10° 10* 10° 10°
degrees of freedom

Figure 3.3: L? convergence of a European call price using uniform mesh grid and uniform
polynomial degrees on the elements

3.2.4 Refined method

Just as in Section 3.1.5 to achieve exponential convergence we discretized the log-price space
with two geometrically graded meshes refining towards 0 with grading factor o = 0.5 and increas-
ing polynomial degree on elements away from 0 with linear slope p. Time domain was discretized
by the hp — dG method on a graded time mesh with grading factor 8 = 0.5.

The results for Variance Gamma with characteristic parameters o = 0.3, v = 0.01 and § = 0.1
is shown in Figure 3.4.

L2 convergence of European call price in Variance Gamma

(s=.3n=.01¢=.1)
10 T T

10°F

107 ¢

error

107 F

107 ¢

10

. . . . . .
0 10 20 30 40 50 60 70
degrees of freedom

Figure 3.4: Exponential convergence in L? for European call price in Variance Gamma model.

Also in the CGMY model we observe exponential convergence in Figure 3.5 with Y = 0.5
and in Figure 3.6 with Y = 1.5.
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L2 convergence of European call pricein CGMY
(C=0.7 G=5M=7 Y=0.5)
10° T T T

107} E

10° ¢ 1

error

107 F k|

10 - Il Il Il Il Il
5 10 15 20 25 30 35 40 45 50

degrees of freedom

Figure 3.5: Exponential convergence in L? for European call price in CGMY model with
Y =0.5.

L2 conwvergence of European call pricein CGMY
7 (C=02G=15M=20Y=15)
10 T T

107 ¢ E

error

10% ¢ 5

-6 L L L L L L
0 10 20 30 40 50 60 70
degrees of freedom

10

Figure 3.6: Exponential convergence in L? for European call price in CGMY model with
Y =15
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Chapter 4

Lookback Options

4.1 Distribution of the supremum of a Lévy-process

The distribution of the supremum of a Lévy process L; = Sup,eo, Ls is defined as

F;j (x):=P | sup Ly <x|.

t€[0,T)

The payoff from a digital barrier option with barrier B at maturity is

. — 1 if SUP¢e(o,T1] Sy < B
7o if Sup;eo,r) St = B.

Let us denote the price of the digital barrier option by u? (t, ) = e "(T=9R [ﬂ{supwe[t 1 Li<B) ’ L= x} .

Proposition 19 The cumulative distribution function of the supremum of a Lévy process satis-
fies the pricing PIDE

ou—Atu—ru = 0 on (0,T) xR,

u = 1 on R
solved on the log-price domain R and time domain (0,T). With u®(T,z) = e F; (—w).

Proof. By using the property of independent increments and the Markov property of the-Lévy
process one has

ul? (t, x) P[[A/T<H‘Lt:x}

- P [£T<0‘Lt=x—H} — 0 (t,x — H),
and then the following holds
F; (z)=P [ﬁT < x} =u” (T,0) = u’ (T, —x).

From that the claimed relation between F' and u follows. m
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Therefore the price of a digital barrier option is the discounted value of the cumulative
distribution function of the supremum sup, o ) Lt of the Lévy process (L), . This way the
distribution function of the supremum can be interpreted as a solution of a modified partial
integro-differential equation.

So Fj (x) can be computed as a solution of

W(T —t,z) =T D (T —t,2) = [

Lo Ltéo}‘ L — x} _p [LT < o‘ L, = x} :

where u solves a parabolic equation with initial condition given as

ot (t,z) + Aa(t,z) = 0  on (0,T) X R, (4.1)
ﬂ‘(07x) = 1,0

4.1.1 Variational Formulation

The variational formulation of (4.1), where A is from (1.6), is analogous to Section 3.4 and
reads:
Find v € L?((0,T),H* (R)) N H* ((0,T),L? (R)), such that

(Opu,v) ;2 +ak (u,v) = 0 Yoe HP(R), ae. in (0,7),
<u (0) 7U>L2 = <]1:E<0uv>L27
{1 ife>0
P= a2 ifo=0"

where « is from (3.5).

4.1.2 Localization

We can localize the problem to a bounded domain of Gg = (—R,0), and thus impose a zero
Dirichlet boundary condition on G%. Then the localized problem is as follows:
Find v € L? (J,Hf (Gg)) N H' (J,L* (R)), such that

(Ou,v) ;2 + a® (u,v) 0 in (0,T) x Ggr
uw(0) = 1 inGg (4.2)
uw = 0 in (0,7) x G%

4.1.3 Discretization

We discretize (4.2) using the Galerkin method on the space SP (G, ;) with basis functions
as in Section 2.1.2.
This way the weak formulation in (4.2) can be represented by a system of ODEs in a semi-
discrete form using matrix operators.
Find u € L* (J, 57 (G, 74)), which can be characterized by ue R as u (z) = Zf\il u;b; (x),
and u satisfies
Mu (t) + Au (t) =0, (4.3)

where M is the mass-matrix defined in Section 2.1.5, and A is the stiffness matrix, defined for
the Black—Scholes setting in Section 2.1.6 or for the CGMY setting defined in Section 2.1.7.
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We can discretize the system of ODEs from (4.3) in time using the 6-scheme as in Section
8.1.4, which can be rephrased to a recursion

(M + ki1 0A) ™ = (M — kb 10A) ul,

uy = L

Black—Scholes setting

The analytical solution of (4.1) in the Black—Scholes model follows from [Sh04], for a an arith-
metic Brownian motion X; = at + oW,. We define the supremum process as X; = SUP,eo,g Xt
then we shall have o m

P[Xr <m]=P |:;T+WT§ ;} :

so by substituting a = (r — ¢?/2) /o and m = x/c into the formula of [Sh04, Corollary 7.2.2]
we will get

A r_ o —x—(rfa—;)T zf(rf";)T
P[XTSx}:—exp 2 2| ® +o| ——M——

o? cr\/T a\/T
As show in Figure 4.1, without graded meshes the convergence in the L? (LQ) norm is far
from optimal, and in L? the convergence is just of second order.

Convergence of error for distribution of supremum with FEM
using no grading

JE
—— L2Y error
—4— 2 enor

5— ¥ enor

10" 10% 10° 10*

degrees of freedom

Figure 4.1: Convergence for the supremum of the Black—Scholes model using linear-FEM and
-scheme. L? and L* errors measure the difference of u (T, z) and P {)A(T < m}

Lévy setting

The solution of (4.1) in a CGMY model with Y = 1.3 converges also only with second order
as shown in Figure 4.2.
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Convergence of error for distribution ofsupo<l<T X[ with FEM

.
10 10
degrees of freedom

Figure 4.2: Convergence for the supremum of the CGMY model using linear-FEM and
0-scheme.

4.1.4 Refined method

As shown previously in Section 8.1.5 and Section 3.2.4, using geometric graded meshes and
higher order polynomials yields exponential convergence even if the initial condition has singu-
larity. To compute the distribution of the supremum we applied a geometric graded mesh for
Gr = (—R,0) with a grading factor of o = 0.5, and a geometric mesh in time with grading factor
8= (ﬁ — 1)2. The results for the Black—Scholes model are in Figure 4.3, and for the CGMY
model in Figure 4.4.
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Convergence of hp time and hp space discretization
10 T T T T T T

L2 error

10 o Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45

degrees of freedom

Figure 4.3: Exponential convergence in L? for the solution of the supremum of the geometric
Brownian motion with hp-FEM in space and time.

Conwergence of hp time and hp space discretization
10 T T T T T

107 E

L2 error
5
T
L

107 | k|

10 a I I I I I I
0 5 10 15 20 25 30 35

degrees of freedom

Figure 4.4: Exponential convergence in L? for the solution of the supremum of the CGMY
process with hp-FEM in space and time.
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4.2 Price of a Lookback Option

Theorem 20 The payoff of a fixed strike lookback call option is a function g of the supremum
at maturity of the underlying price process, so the fair price of the option is

v (So) = /0°° (1 - F; . (x)) dg (xz)+g(0),
where g (x) = g (Spe®).
Proof. For the price of the lookback-option, v, we have
o (),
o (5ol

/OOO g (Soe”) Fy_(dz).

v (So)

From [Sa99, Lemma 17.6] we have that for an arbitrary function £ of bounded variation, and
a non-negative random variable X with cumulative distribution function Fx

BIE(V) = [ €@dPx @)= [ (1 Fx (@) d (@) + £ 0).
and the relation follows. m
Theorem 21 In the CGMY process (1 - I (az)) exp (x) is integrable if G, M > 1 holds.

Proof. The expression fR (1 - (x)) exp (x) dx is the expectation E [exp (IA/TH, for which
we can use [Sa99, Theorem 25.18] stating if

E € (|Ls])] < o0 for some ¢t > 0,

then R
E {f (Lt>] < 00 for every t > 0.

In the CGMY model, where v (dx) = k (x) dz, and the Lévy density has the form of

exp (=G z)

be) = S R

]13?<O 14+Y j]"L>07
+
|x|

we can write
Ele (L) = / Ik () do

0 _ 0o _
~ [ el [T e CM ),
—o00 0

|m|1+Y |m|1+Y
0 e8]
exp (= (G —1)|z]) exp (= (M — 1) [=])
/ v dx + Y dx,
—o0 |z] 0 ||

which will be finite if G —1>0and M — 1 > 0, meaning G, M > 1. m
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4.2.1 Numerical Results

Numerical results in the Black—Scholes case with cgs = 0.3 are compared with the closed
form solution from [CoVi91], the results are seen in Figure 4.5 with hp-FEM in both time and
space. Also the results for the CGMY model with Y = 1.7 shown in Figure 4.6 show exponential
convergence in the degrees of freedom.

10

Convergence of error for lookback price with hp-FEM
T T T T

10 ¢

10 F

L2 ermor

107 ¢

107 F

10°

. . . . .
0 5 10 15 20 25 30
degrees of freedom

Figure 4.5: Exponential convergence in lookback-option price for the Black—Scholes model
using hp-FEM in both space and time discretization.

Convergence of error for lookback price with FEM
107 T T T T T T

107 F

L2 eror
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.
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10

Figure 4.6: Exponential convergence in lookback-option price for the CGMY model using
hp-FEM in both space and time discretization.
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Appendix A

Numerical integration on the
reference element

We want to integrate numerically f_ll f_ll k(=2) (z — y) dydz in order to compute the diagonal
elements in the stiffness matrix.

Since k, and k(—%) have singularity at 0, k(-2 (z — y) will have a singularity on the diagonal
of [-1,1]°.

0.35
03
025 . .-

02+.--

So we apply Duffy’s trick [Du82], and divide [—1,1]* into two triangles where k(=2 (z — y)
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has singularity only on one side, as

084 A A A A A A A jur
065 N N A N N N o i

04
A N A N A N u] o u

0.2
N AN AN AN AN a a a o

ol

N AN A AN O O O O m

-0.2
N AN AN o [m] a a a o

-0.4
N AN o o [m] a a a i}

-0.6
0.8 i o a a [m] a a a i}
1 = & = B = = = £
1 05 0 05 1

So we’ll have two integrals as

1 x

11 11
//k dydxz//k x—y)dydx—l—//k(*?) (z — y) dydz,
15

—-1- -1z

and for the ease of numerical integration we transform each triangle to a rectangle, with singu-

larity at one side. For the lower triangle we have with the new variable Zii

//@ 2 (2 —y) dydx = //M2>x—x—z@+npm+ndmx

-11

://mﬁmx_p_z@+unu+ndmx

—-10

For the upper triangle we have, with the new variable z = ==

_/“:/ 2) y) dydx __/10/19(2) (@ —[z+2(1—2)) (1 —2)dede.

Now both integrals have singularity at z = 0, so we want to have a mesh that is refined
towards that singularity.
We chose the composite Gaussian quadrature rule for the z coordinate, as in [Wi09, Ch. 5],
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and a Gauss—Legendre quadrature rule for x, then for [—1, 1] x [0, 1] we’ll have a mesh as

1 T T

oo o o o o o o o0 o
09 J
oo o o o o o o 0 o0
08 -
07+ -
oo o o o o o o 0 o0
06 -
05
oo o o o o o o o
04t -
oo o o o o o o 0 0
03pb o o o o o o o o
oo o o o o o o 0 o0
02F )
oo o o o o o o 0 o0
01
o ‘ ‘ ‘
1

-1 -05 0 0.5

Numerically we create the mesh with two matrices defined as

X :g® 11><ncgv
Z = 1ng><1 ®CgT7

where g is a vector of 1-d Gauss—Legendre points on [—1, 1], cg is a vector of composite Gauss
points on [0, 1], n, is the length of ¢g and n, is the length of g. The weights of these coordinates
are also stored as well, and the algorithm is as follows:

Algorithm 22
[x_cg, wcg] = compgauss(0,1,n, sigma, mu,1);
[x-g g = gauleg(m);
X = kron(x-g,ones(1,length(x_cg)));
Z = kron(x_cg,ones(length(x_g),1));
KL= k2(X — (X — Z. % (X+1))). * (X + 1);
intlL = w_g*KL * w_cg;
KU= k2(X — (Z. % (1 —X) +X)). * (1 — X);
intU = w_g*KUx w_cg;
int = intlL + intU;

To test the convergence of the code we chose n=(3:10) and mu=2. The results of the code
can be compared with a simple Gauss—Legendre algorithm where cg is replaced with Gauss—
Legendre quadrature points of the same length.

To compute the theoretical value to which the code should converge we do the following for
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the lower triangle with a change of variable z =z — y

1 10
//k(_Q) (x —y)dydz = —/ / k2 (2) dzdx
14

—1lz+1
1 z+1

://k“?) (2) dzda

10

- /1 (k<—3) (0+) — k) (2 + 1)) dz
*i |
/k( 3 (04) do — /k(‘3) (z+1)dx

2
= 2k(=3)( /k(3

0
— 2k (04) — (K ( Y (2)
= 2k(=%) (o+) ) (o+)+k< D(2),

and for the upper triangle it’s analogously 2k(=3) (0—) — k(=% (0—) + k(=% (=2).
Where, in the CGMY model

. Tr2-
k(fd) (OZI:) — C ( 5 05) 1—2
NGRS
K9 (04) = C ( : @) y-s
with 8, = M and _ = G, and the convergence, compared with a simple Gauss-Legendre rule

on both axis with the same number of points looks like

o} oF k™ (xy) dyax

A —6&— comp gauss
N A —4— gauleg
107 A E
-
o~
—
3 A
10° L
2 10"k
(]
[
>
B s
®© 10" ¢
10°
107t
10° :
4 6 8 10 12 14 16

1/2
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Appendix B

Stiffness matrix with the Lévy
kernel

Discretizing the equation Au = f in the hp-FE space leads to a matrix equation
Su="1,
where S is the stiffness matrix with elements as

Sm,n = <-ALbna bm>L2 s

where b,,, is the k-th order basis function on the element K;. f is the load vector with elements

fm = <f7 bm>L2 :

As shown above, in the case of a Lévy operator the elements of the stiffness matrix can be

written as
T4

Skl = / / VN (y) VN (2) k2 (2 — y) dyde,

Ti—1T5j—1

where N} is the p-th order shape function on the element K;, and k(=2 is the second antiderivate
of the Lévy measure v (dx) = k(z)dx. By substituting with the diffeomorphism ¢, (£,) =

TitTi—1 Ti—Ti—1
o+ 5, and €, analogously, we move to the reference element

11
; ; hj . h;
S(ik) Gl = / VN{ (%‘ (fy)) VN, (<Pj (575)) K (%‘ (€2) — ¢ (51,)) ?Jdé-y?dgw7
S1h
and by using that VN (z) = V(N (f (z))) = VN (f (z)) f' (z), we’ll have
11

S (k) (5.0) ://VNZ (&) VNK (&) (0 (€)= @i (€,)) dE,dE,.

S15
From here we will distinguish four cases for the local stiffness matrices defined element-vise

1. diagonal blocks of S, ;
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2. sup-diagonal blocks of S; ;1
3. sub-diagonal blocks of S; ;_;

4. off diagonal blocks of S; ;, where [i — j| > 2.

B.1 Diagonal blocks

In this case we have integrals of the type //VN; (fy) VN (€,) K (¢; (&2) — @i (§y)) dg§,d€ ..,

and since the kernel x has singularity at 0, the integral will have singularity at the vertex,

05

o o
w IS

ECD (i) — wil6y))

0.1

so we apply Duffy’s trick [Du82], and have

1€,
Suiey = / / VN (6,) VNG (6) 5 (g (6,) — o1 (€,)) dé, de,
1

then do a change of variables for the lover triangle as §, = —u (1+¢&,)+ &, and for the upper
triangle as £, = v (1 —¢&,) +§,, to have

1 1
Suain = / / VN (cu (14 €6) +£) VNG (€,) 5 (05 (6) — @i (—u(1+€,) +€,)) (1+€,)de,de,

—-10
11

4 / / VN (0 (1 &)+ &) VN (E,) 5 (9 (6) — 0 (0(1— &) +£,)) (1—&,)d, de,

—-10
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where now both integrals are on a rectangle with singularity on the lower edge, so a composite
Gaussian quadrature rule is used to discretize both u and v, and a simple Gauss—Legendre is

used to discretize along €.
The algorithm looks like

Algorithm 23
[x_cg,w_cg| = comp_gauss(n);
[x-g, w-g| = gau-leg(m);
X = kron(x_g,ones(1,n));
Z = kron(ones(m, 1),x_cg);
Yu=X+Z *(1-X);
Y1=X-2Zx%(1+X);
grad N_x = legendre_grad(X);
grad N_yu = legendre_grad(Y_u);
grad N_yl = legendre_grad(Y_1);

Ku=k2(mx+hx/2%X — [my+hy/2xYu]). =
Ku=%k2(mx+hx/2%X] — [my+hy/2*Y1]).x*

% elements
fori=1:py+1
fori=1:px+1

S(i,j) = w.g'*(grad N_yu(i). * grad N_x(j). * Ku 4 grad N_y1(i). * grad N_x(j). * K1) * w_cg;

end
end

B.2 Sup-diagonal blocks

For the blocks of S; ; 11, the kernel £(=2) in the integral //VNZ (fy) VN (€,) K (piv1 (&) —

will have a singularity in one corner of Kx K

05, .
04
03 .

02 .

ECD (041 (&) — wi(&))

01 ..

and so we discretize both £, and §, with a composite Gauss quadrature, refining towards £, " 1

and §, \, —1.
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Algorithm 24
[x_cg,w_cg] = comp_gauss(n);
X =kron(1 — 2 x x_cg,ones(1,n));
Y = kron(ones(n, 1),2 x x_cg — 1);
grad N.x = legendre_grad(X);
grad N_y = legendre_grad(Y);
K=%k2((mx+hx/2%X)— (my+hy/2xY));
% elements
fori=1:py+1
fori=1:px+1
S(i,3) = —4 * w_cg *(grad N_y(i). * grad N_x(j). * K) * w_cg;
end
end

B.3 Sub-diagonal blocks

For the blocks of S; ;_1, the kernel k(~2) in the integral / / VN (€,) VNG (&) 5 (01 (&) — @5 (€,)) dE,dE,

will have a singularity in one corner of K x K

0.5

X
y

and so we discretize both £, and §, with a composite Gauss quadrature, refining towards £, 1
and £, N\, —1.

Algorithm 25
[x_cg,w_cg] = comp_gauss(n);
X =kron(2 x x_cg — 1, ones(1,n));
Y = kron(ones(n,1),1 — 2 * x_cg);
grad N_x = legendre_grad(X);
grad N_y = legendre_grad(Y);
K=k2((mx+hzx/2%X)— (my+hy/2*Y));
% elements
fori=1:py+1
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fori=1:px+1

S(i,j) = —4 *xw_cg *(grad N_y(i). * grad N_x(j). * ) * w_cg;
end
end

B.4 Off diagonal blocks

To compute the integrals derived from the Lévy operator on blocks further from the diagonal,
we can use simple quadratures since k(~2) decays fast enough away from 0 to make k(—2) (x—y)
relatively constant on element pairs that are not neighbours. For this property we need the
relative distance of the elements to decay fast enough, and it is shown in Proposition 18, but
with

dist (Ki, Kj)
max {| K|, [ K]}

rel
07,

w.l.o.g. suppose i < j

_ T Gince |i — j| > 2 for off-diagonal blocks

h
> —=1
~ h

B.5 Assembly of the global stiffness matrix

We index the basis functions in a way that we first number the external shape functions from
1 to N + 1, so the neighbouring Ny and Nj linear basis functions form hat functions, and so
their contributions will add up during assembly. Then we number the internal shape functions
from N + 2 to M, where M is the number of all shape functions in all elements, and

N
=1

where p; is the polynomial degree on element K;, and we have altogether N + 1 linear hat
functions (two of which are "half-hats”).
Then the assembly algorithm looks like

Algorithm 26 (Assembly of integral-operator stiffness matrix)
for i = 1:nElements
for j = 1:nElements
idx-i = mesh.basisnumbering(i,:);
idx_j = mesh.basisnumbering(j,:);
Aloc = local_stiffness(mesh.coord(i), mesh.coord(j), mesh.poly(i), mesh.poly(j));
A(idx_i,idx_j) = A(idx_i,idx_j)+ Aloc;
end
end
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