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Chapter 1

Theory of Option Pricing

1.1 No-Arbitrage option pricing theory

In a frictionless market with a self �nancing strategy we cannot achieve a certain gain, an
arbitrage, as discussed in [DeSch08]. Since the probability of making a negative or positive yield
is always positive (or both are zero) we can �nd a measure under which the expected returns
from our investment will be that of the risk free savings. We call this measure the risk-neutral
measure, and it is shown in [DeSch94] that if there is no arbitrage in the market then such a
measure will exist, and every uncertain gain can be priced by taking the payo�'s expectation
under the new measure and discounting it by the risk free interest rates.
Since [Ka49] we have that the value of such an expectation satis�es a backward Kolmogorov

equation driven by the in�nitesimal generator of the underlying price process.
In this thesis we will focus on solving these equations numerically arising from exponential

L�evy models using Finite Element techniques.

1.2 The Black{Scholes framework

As described in [Sh04] the Black{Scholes framework models the stock price as a geometric
Brownian motion under the risk-neutral measure

dSt = rStdt+ �StdWt:

Since the stock price follows a Markovian-process, due to the Feynman-Kac theorem the value
of a European contract can be described with a function f de�ned as

f (t; x) = e�r(T�t)E [g (ST )jSt = x] ;

and using Itô's formula, the process of (f (�; S�)t)t�0 will satisfy the SODE

dtf (t; St) =

�
@

@t
f (t; St) + rSt

@

@St
f (t; St) +

1

2
�2S2t

@2

@S2t
f (t; St)

�
dt+

@

@x
f (t; St)�StdWt:

Relying on the no-arbitrage argument we can state that under the risk-neutral measure the
discounted gains from investing in this contract should follow a martingale. In order to achieve
that the following condition for the drift should hold

@

@t
f (t; St) + rSt

@

@St
f (t; St) +

1

2
�2S2t

@2

@S2t
f (t; St) = rf (t; St) ;
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which is the pricing equation or backward Kolmogorov equation PDE, with the �nal condition

f (T; x) = g (x) :

Now let ABS denote the in�nitesimal generator of a geometric Brownian motion,

ABSf = @

@t
f + rS

@

@St
f +

1

2
�2S2

@2

@S2t
f:

So the pricing equation for a European type payo� can be rephrased, after changing to time to
maturity s = T � t notation,

� @sf +ABSf � rf = 0; (1.1)

with initial condition
f (0; S) = g (S) :

1.3 L�evy processes

The class of L�evy processes is a natural generalization of the Wiener process, in which discon-
tinuous paths are incorporated. Certain L�evy models can replicate the observed path properties
of stock returns, and in the meantime they give a good �t to option prices in the market.

De�nition 1 A positive, but not necessary bounded measure � : B (R) ! R>0 is called a L�evy
measure if it satis�es

1. � (f0g) = 0

2.
R
R
�
1 ^ x2

�
� (dx) <1

For an arbitrary measurable set A 2 B (R) the L�evy measure � (A) is the expected value
of the jump measure associated with the L�evy process, which counts the jumps of sizes in A
happening up till time 1 as

� (A) = E [# ft 2 [0; 1] : �Xt 6= 0;�Xt 2 Ag]
= E [J ([0; 1] ; A)] ;

where J ([0; t] ; B) is the jump measure associated with the L�evy process, meaning

J ([t1; t2] ; A) = # ft 2 (t1; t2] : �Xt 6= 0;�Xt 2 Ag :

We call
R
R � (dx) the intensity of the L�evy measure, and if � :=

R
R � (dx) <1, then we speak

of a L�evy process with �nite activity, which is a compound Poisson process if there is no drift or
di�usion term.

De�nition 2 (L�evy process) On the �ltered probability space (
;F ;F;P), where the �ltration
F =(Ft)t�0 satis�es the usual conditions from [DeSch08, p. 72], the adapted c�adl�ag stochastic
process (Lt)t�0 is called a L�evy-process i�

1. L has independent increments: Lt � Ls is independent of Fs, for 0 � s < t.

2. L has stationary increments: Lt � Ls � Lt�s, for 0 � s < t.

3. L is stochastically continuous: 8" > 0; limt!s P [jLt � Lsj > "] = 0.
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4. L starts at zero: L0 = 0.

The distribution of a L�evy process (Lt)t�0 at time t > 0 can be represented with a telescopic

sum as Lt =
Pn

i=1

�
L ti

n
� L t(i�1)

n

�
8n 2 N. In this representation every increment is independent

from the other (due to the �rst property of De�nition 2) and they have identical distributions
(due to the second property), so a L�evy process at a given time follows an in�nitely divisible
distribution.
Following the results by [Lu70], the characteristic function of an in�nitely divisible distribu-

tion at a given time can be expressed as

'Lt (u) = E
�
eiuLt

�
=
�
E
�
eiuL1

��t
:

Theorem 3 The L�evy{Khinchin representation of the characteristic function of an in�nitely
divisible distribution, as in [Sa99, Theorem 8.1], states that for  (u) = ln

�
E
�
eiuL1

��
we have

 (u) = iu� �2

2
u2 +

Z
R

�
eiux � 1� iux11jxj�1

�
� (dx) ; (1.2)

where � is a L�evy measure,  2 R, � 2 R�0 and the triplet (; �; �) uniquely characterizes the
L�evy process.
The characteristic triplet (; �; �) is also called L�evy triplet or generating triplet of the L�evy

process (L)t�0.

Truncating the integrand in (1.2) with a function f (x) = O (jxj) as jxj ! 0 (in our case with
x11jxj�1) is required to make e

iux � 1 integrable in the neighborhood of 0, because

eiux � 1� iux11jxj�1 = O
�
jxj2
�

as jxj ! 0:

No such truncation is necessary if the L�evy measure � satis�esZ
jxj�1

jxj � (dx) <1: (1.3)

For simplicity from here on we will assume the L�evy processes we will be looking at satisfy (1.3).
From the L�evy{Ito decomposition [Sa99, Theorems 19.2 and 19.3], every L�evy process can

be decomposed uniquely to the sum of three independent processes, L = L(1)+L(2)+L(3), such
that L(1) is a linear transformation of a Brownian-motion, L(2) is a compound Poisson process
with jump sizes bigger than 1 P-a.s. and L(3) is a pure jump martingale with �nite quadratic
variation.

Remark 4 Examples of L�evy processes are arithmetic Brownian motion (Gaussian L�evy process)

with the L�evy triplet of
�
�� �2

2 ; �; 0
�
; variance gamma process [MaSe90]; CGMY (tempered �-

stable process, [CGMY02]) with the triplet (0; 0; �) where � (dx) = k (x) dx and k (x) is

k (x) =
exp (�G jxj)
jxj1+Y

11x<0 +
exp (�M jxj)
jxj1+Y

11x>0:

Theorem 5 The price of a European option given as the discounted expectation

f (t; x) = e�r(T�t)EQ
�
g
�
S0e

LT
���Lt = x

�
8



with terminal payo� function g (ST ) in an exponential L�evy market model solves the partial
integro-di�erential equation (PIDE)

@tf +ALf � rf = 0;

where AL is the in�nitesimal generator of the underlying L�evy process.

Proof. Assume that under a risk neutral measure the stock price process (St)t�0 follows an
exponential L�evy process

St = S0e
rt+Lt ; (1.4)

where r is the risk-free interest rate and Lt is a L�evy process that has �nite exponential moments.
The process can be characterized with the characteristic triplet (0; �; �), where 0 is chosen such
that

0 = �
�2

2
�
Z
R
(ex � 1) � (dx) ;

to ensure that exp (Lt) is a martingale. Rephrasing (1.4), (St)t�0 solves the SODE

dSt = (r + 0)St�dt+ �St�dWt +

Z
R
(ex � 1)St�J (dt; dx) ;

with initial condition (St)t=0 = S0.
Since S is a (function of a) Markovian process, one can use the (extended) Feynmann{Kac

theorem [Sg95, Theorem 4.1.] stating

f (t; x) = e�r(T�t)EQ
�
g
�
S0e

LT
���Lt = x

�
;

then by Itô's formula for scalar L�evy processes [CoTa04, prop. 8.15] we get

df (t; Lt) = @tf (t; Lt�) dt+
�2

2
@xxf (t; Lt) dt+ @xf (t; Lt�) dLt +�f (t; Lt)��Lt@xf (t; Lt�) ;

which is, by the martingale decomposition for dLt as in [CoTa04, Prop. 8.16], is equivalent to

df (t; Lt) =

�
@tf (t; Lt�) + (r + 0) @xf (t; Lt�) +

�2

2
@xxf (t; Lt)

�
dt

+

 Z
Rnf0g

(f (t; Lt� + y)� f (t; Lt�)� @xf (t; Lt�) y) � (dy)
!
dt

+�@xf (t; Lt�) dWt| {z }
(�)

+

Z
Rnf0g

(f (t; Lt� + y)� f (t; Lt�)) (J (dt; dy)� � (dy) dt)| {z }
(��)

where the last two terms, (�) and (��), are martingales, because J (dt; dy)�� (dy) dt (the �� (dy)
comes from the ��Lt@xf (t; Lt�) term) is a compensated jump measure.
Finally by using the no-arbitrage arguments, we get that the drift should equal rf (t; Lt�).

This yields a partial integro-di�erential equation of

@tf (t; Lt�) +
�2

2
@xxf (t; Lt) +

Z
Rnf0g

(f (t; x+ y)� f (t; x)� @xf (t; x) y) � (dy) = rf (t; x) :

(1.5)
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Let AL denote the in�nitesimal generator of a L�evy process be de�ned as

ALf (x) = lim
t&0

E [f (x+ Lt)� f (x)]
t

;

where the convergence is in the sense of the supremum norm on C0 and f is such that the
right-hand side exists. Then from [CoTa04, Proposition 3.16] the generator has the form

ALf (t; x) = (r + 0) @xf (t; x)+
�2

2
@xxf (t; x)+

Z
Rnf0g

(f (t; x+ y)� f (t; x)� @xf (t; x) y) � (dy) ;

(1.6)
so the pricing equation for a European type payo� can be rephrased as @tf +ALf � rf = 0.
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Chapter 2

hp Finite Element Method

The Finite Element Method (FEM) is a general projection method based on a variational for-
mulation of a boundary value problem. FEM is widely used to solve partial di�erential equations
arising from physics and �nance by discretizing the variational formulation on a �nite dimen-
sional function space of piecewise polynomial functions. In such spaces linear operators can be
represented in matrix form.
In one dimensional space FEM works on a given domain G = [a; b] with a; b 2 R, on which a

mesh �h that is de�ned as �h = fxk : k = 0; : : : ; N + 1g, N > 0, with a sequence of mesh points

a = x0 < x1 < : : : < xN+1 = b;

and the elements are the disjoint subintervals of G, Ki = [xi; xi+1] 8i 2 f0; : : : ; Ng.
The distance between elements is the mesh witdth

hk = xk+1 � xk for k = 0; :::; N + 1:

De�nition 6 A uniform mesh UN (0; 1) is a series of intervals Kk = [xk; xk+1], called elements
de�ned by the grid points

xk =
k

N + 1
; for k = 0; :::; N + 1:

A uniform mesh can also be denoted with �h with hk � h. A plot of an example of a uniform
mesh is displayed in Figure 2.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.1: A uniform mesh with N = 9 re�nements

We denote the space of piecewise polynomial functions on G with a partitioning mesh �h as

Sp (G; �h) = ff : G! R : f jKi is a polynomialg :

11



2.1 h- and p- FEM for analytic functions

Functions f that are analytic in the whole domain are locally given by convergent power
series and satisfy

sup
x2G

����dkfdxk
(x)

���� � Ck+1k!;

for some constant C > 0 and for every k, which means all of their derivatives are square integrable
and so are in H1 (G) := \k2NHk (G). Using �nite element methods for these type of functions p-
re�nement is enough to achieve exponential convergence rates, as we will see in this section. But
for functions that have singularities on known points in space or time, we will need hp-re�nement,
which is discussed in the next section.
Increasing the uniform polynomial order on all elements in FEM, or p-FEM is understood

as in [Sw98, Remark 3.18.] the re�nement from S1 (G; �h) increasing p in S
p (G; �h). Increasing

the uniform mesh width h on all elements is called the h-FEM and is understood as decreasing
h uniformly in Sp (G; �h). hp-FEM will be explained in Section 2.2.

2.1.1 Basis functions on the reference element

To approximate functions by piecewise polynomial functions we chose Legendre polynomials
(Figure 2.2) that are de�ned on (�1; 1) by applying the Gram-Schmidt process in L2 (�1; 1) on
the monomials f�pg1p=0. The Legendre polynomials satisfy the Legendre di�erential equation��

1� �2
�
L0p (�)

�0
+ p (p+ 1)Lp (�) = 0

Lp (1) = 1;

and more importantly the orthogonality propertyZ 1

�1
Ln (�)Lm (�) d� =

2

2n+ 1
�n=m n;m � 2; (2.1)

which leads to the sti�ness matrix derived from the di�usion term being diagonal in higher
polynomial orders, as described in Section 2.1.6.

12
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Figure 2.2: Legendre polynomials

The reference element shape functions fNigpi=0 can be built from Legendre polynomials. They
read as follows, on the reference element K̂ = (�1; 1)

N̂0 (�) =
1 + �

2
; N̂1 (�) =

1� �
2

;

N̂p (�) =
1p

2 (2p� 1)
(Lp � Lp�2) (�) p � 2;

and are depicted in Figure 2.3.

1 0.5 0 0.5 1
0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
element basis functions

N0
N1
N2
N3
N4
N5

Figure 2.3: Polynomial basis functions on the reference element K̂

The shape functions of the elements Ki are de�ned via the mapping 'i : K̂ ! Ki

N i
j (x) =

�
N̂j
�
'�1i (x)

�
8x 2 Ki

0 otherwise
; (2.2)
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where 'i is a di�eomoprhishm, meaning it is a bijective mapping with 'i 2 C1
�
K̂;Ki

�
and

'�1i 2 C1
�
Ki; K̂

�
.

On each element the external shape functions N0 and N1 form hat functions on two neigh-
bouring elements: N i

0 on Ki and N
i+1
1 on Ki+1 as depicted in Figure 2.4. The higher order

polynomials, N i
k with k � 2 are internal shape functions, with 0 values on the boundaries of the

element they are de�ned on.

x_i x_{i+1} x_{i+2}
0

1

N
0
i

N
1
i+ 1

N
1
i  + N

0
i+ 1

Figure 2.4: Linear shape functions forming hat functions on two consecutive mehs elements

Space of piecewise polynomial functions on G, with a partitioning mesh �h can then be
characterized as

Sp (G; �h) = span
��
N i
j

	
i2f0;:::;Ng;j2f1;:::;pig

�
with N i

j as in (2.2):

2.1.2 Basis function numbering and assembly

On the elements Ki with i 2 f0; : : : ; Ng we introduce a numbering scheme for the basis
functions in a way that we �rst index the external shape functions fbigi2N from 1 to N + 2, so

the neighbouring N i
0 and N

i+1
1 linear shape functions form hat functions, and their contributions

will add up during assembly. Then we number the internal shape functions from N + 3 to M ,
where M is the number of all basis functions in a continuous Galerkin (cG) setting, and

M = N + 2 +

NX
i=0

(pi � 1) = 2 +
NX
i=0

pi;

where pi is the polynomial degree on element Ki, and we have altogether N + 2 linear hat
functions.
The resulting numbering of the basis functions will be then on bi (x) for i 2 f1; :::;Mg, �rst

the linear hat functions from 1 to N + 2

bn (x) = N i
0 (x) +N

i+1
1 (x) x 2 Ki [Ki+1; 2 � n � N + 1; i = n� 2

b1 (x) = N0
0 (x) x 2 K0

bN+2 (x) = N1
N (x) x 2 KN ;

and then the higher order polynomial shape function are numbered elementwise as

bn (x) = N i
k (x) x 2 Ki; n > N + 1;

i = max

8<:m 2 N : 2 +N +
mX
j=0

(pj � 1) � n

9=; ;

k = n�

0@2 +N +
nX
j=0

(pj � 1)

1A :

14



Using a cG scheme we sum up the contributions from neighbouring linear shape functions,
thus forming hat functions which will only allow continuous functions within Sp (G; �h)

Example 7 The numbering of shape functions in N + 1 = 4 elements where the polynomial
order on each element is 3 reads as follows

shape function: N0 N1 N2 N3
element K0 2 1 6 7
element K1 3 2 8 9
element K2 4 3 10 11
element K3 5 4 12 13

2.1.3 Static condensation

Since the �rst N + 1 basis functions represent the linear external shape functions, and the
rest are internal, higher order polynomial shape functions, solving a system of linear equations
Au = f can be done separately, where A 2 RM�M representing a linear operator in Sp (G; �h)

and u;f 2 RM are representing two piecewise polynomial functions, u; f 2 Sp (G; �h).
First let us partition the matrix A as

A =

�
A00 A10

A01 A11

�
where

A00 = fAi;jg ; i; j 2 f1; : : : ; N + 2g ;
A10 = fAi;jg ; i 2 f1; : : : ; N + 2g ; j 2 fN + 3; : : : ;Mg ;
A01 = fAi;jg ; i 2 fN + 3; : : : ;Mg ; j 2 f1; : : : ; N + 2g ;
A11 = fAi;jg ; i; j 2 f1; : : : ; N + 2g ;

and the vectors u and f as

u =

�
u0
u1

�
and f =

�
f
0
f
1

�
:

Then we �rst have to solve for only the degrees of freedom of external shape functions, i.e.�
A00 �A10 (A11)

�1
A01

�
u0 = f

0
�A10 (A11)

�1
f
1
;

then solve for the internal shape functions

A11u1 = f
1
�A01u0:

The advantage of this procedure is that the condition numbers for the submatrices A11 and�
A00 �A10 (A11)

�1
A01

�
are several orders of magnitude lower than that of A, and therefore

we can achieve higher accuracy partitioning the system this way.

2.1.4 Solving the pricing PIDE

Discretizing the weak formulation of (1.5) in the FE space Sp (G; �h) for functions f (t; x) 2
Sp (G; �h), in the form

f (t; x) =
MX
i=1

u (t) bi (x) x 2 G;

15



with the basis functions from Section 2.1.2 will lead to a semi-discrete form*
MX
j=1

@tuj (t) bj (x) ;
MX
i=1

vibi (x)

+
L2

+
�2

2

*
MX
j=1

uj (t) b
0
j (x) ;

MX
i=1

vib
0
i (x)

+
L2

(2.3)

+aL

0@ MX
j=1

uj (t) bj (x) ;
MX
i=1

vibi (x)

1A = r

*
MX
j=1

uj (t) bj (x) ;
MX
i=1

vibi (x)

+
L2

;

for all v 2 RM . This can be rephrased to

v>
�
@tu (t) +

�2

2
Au (t) + Su (t)

�
= v> (rMu (t)) 8v 2 RM ;

and so the semi-discrete version of (1.5) reads as follows.

@tu (t) +
�2

2
Au (t) + Su (t) = rMu (t) ;

Mu (0) = g

The matrices M, A and S are de�ned in (2.5), (2.9) and (2.12) respectively.
The task of discretization can thus be broken down to three smaller problems. First is the L2

projection of an arbitrary function f : G ! R to Sp (G; �h) using the mass matrix, the second
task is a Laplace-operator equation using the sti�ness matrix derived from the di�usion term
and the third is a L�evy operator equation, using the sti�ness matrix derived from the jump term.

2.1.5 L2 projection

Projecting an arbitrary function g 2 L2 into the �nite element space Sp (G; �h) = span fbig
corresponds to solving

us = argmin
us2Sp(G;�h)

ku� gkL2(G) : (2.4)

Using the weak formulation, we need to �nd u 2 Sp (G; �h) such that
R
G
uvd� =

R
G
gvd�

8v 2 H1 (G), or using the bilinear form notation hu; viL2 = hg; viL2 , which can be discretized as
in (2.3) to

Mu = g (2.5)

where Mi;j = hbj ; biiL2 , and gi = hg; biiL2 .
Since the basis functions are de�ned on the reference element, every entry of the mass matrix

can be written as integrals on the reference element. Every block of the mass matrix cMp
i;j which

corresponds to an element-pair Ki �Kj is a p� p matrix, p being the uniform polynomial order

on all elements, and cMp
i;j has entries

cMp
k;l =

Z 1

�1
N̂l (�) N̂k (�) d� k; l 2 f0; :::; pg :

Once the local matrices are computed, the contribution of each shape function is assembled
to form the global mass matrix

M =
h0
2

0BBB@
cMp0

0
. . .

0

1CCCA+ h1
2

0BBB@
0 cMp1

. . .

0

1CCCA+ :::+ hN+1
2

0BBB@
0
0

. . . cMpN+1

1CCCA :
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Theorem 8 Solving (2.4) with uniform meshes and uniform polynomial orders on elements will
lead to the error of the approximation us, the solution of (2.5), being

kg � uskL2 � C kg0kHk

hminfp;kg+1

pk+1
; 8g 2 Hk (G) ; (2.6)

where C is independent of h and p but depends on k.

Proof. See [Sw98, Theorem 3.17].
Analytic functions are smooth in the sense that g(k) 2 L2 for k 2 N, which leads to g 2 Hk (G)

for k 2 N. This means for analytic functions we expect an arbitrarily high algebraic convergence
in p, the uniform polynomial degree on all elements from K0 to KN , and this convergence can
be understood as exponential.

Theorem 9 With us and g from (2.4) the p-FEM will have error bounds

kg � uskL2 � C (1 + ln p)
2
p2e��p;

for some constants C, � that only depend on g.

Proof. See [MeSw98, Corrolary 4.9].

Theorem 10 With us and g from (2.4) the error bound for the h-FEM will be

kg � uskL2 � Cu;ph
�p�1; for analytic g, (2.7)

where h is a uniform mesh width on G, and all all rates of convergence will be shown below.

Proof. See [So99, Theorem 4.].
Numerical results of rates of convergences shown in Figure 2.6 (right) and Figure 2.7 (right)

suggest that the error bound for the h- and p-FEM solution for L2 projection should be rephrased.

Proposition 11 With us and g from (2.4) the error bound for the h- and p-FEM is given as

kg � uskL2 � C1 exp ((lnh� C2) (p+ 1)) ; for analytic g,

for some constants C1; C2 � 0.

This means that we observe algebraic convergence in h re�nement with the rate of convergence
of p + 1, and exponential convergence in the polynomial degree with the rate of convergence of
(� lnh+ C2) as shown on Figure 2.7 (right) and Figure 2.10 (right).
The condition number of a matrix measures the sensitivity of the solution of a linear system

to changes or errors in the data. It gives an indication of the accuracy of the results from matrix
inversion and the linear equation solution.[QSS07, Chapter 3.1.1] It plays a crucial role in the
accuracy of iterative solvers like the Generalized Minimal RESidual algorithm [SaSc86].
We can observe that the condition number of the mass matrix in (2.5) increases algebraically

with p but stays constant as h decreases (after a certain point), and static condensation reduces
it signi�cantly, as displayed in Figure 2.5.
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Figure 2.5: Condition number of the mass matrix as mesh size decreases (left) and as the
polynomial degree increases (right).

Displaying the results of (2.5) for u (x) = sin (�x) on G = (0; 1) in Figure 2.6 for various
uniform polynomial orders we observe an algebraic convergence in the mesh size displayed as
linear lines in a log-log plot, and the rate of convergence being p+1, as described in Proposition
11.

Figure 2.6: Algebraic L2 converge with mesh re�nement for L2-projection (left) and the rate of
convergence with di�erent uniform polynomial degrees (p)

Then using a uniform mesh on [0; 1], we observe exponential convergence by increasing uni-
form polynomial order on each element, displayed as linear lines in a semi-log plot in Figure 2.7.
The observed exponential rate of convergence for every mesh size is of (� lnh+ C2) as suggested
in Proposition 11.
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Figure 2.7: Exponential L2 converge with the increase of the uniform polynomial degrees (p)
for L2-projection (left) and the rate of convergence with di�erent mesh sizes.

2.1.6 Poisson's equation

Solving for u

�u00 = f on G (2.8)

u (x) = 0 on @G;

with f 2 L2 (G) leads to the variational formulation that reads:
Find u 2 V =

�
u 2 H1 (G) : u (x) = 0; x 2 @G

	
such that

hu0; v0iL2 = hf; viL2 8v 2 V;

which can be discretized using the FEM space Sp (G; �h) to

Au = f; (2.9)

where Ai;j =


b0j ; b

0
i

�
L2
, and f i = hf; biiL2 .

Let bApi be a local matrix for the Laplace operator on the element Ki with entries

bApi
k;l =

Z 1

�1
rN̂l (�)rN̂k (�) d� k; l 2 f0; :::; pg :

Then the sti�ness matrix A can be assembled from the local matrices de�ned on the elements
by adding up the contributions of the shape functions as

A =
2

h0

0BBB@
bAp0

0
. . .

0

1CCCA+ 2

h1

0BBB@
0 bAp1

. . .

0

1CCCA+ � � �+ 2

hN+1

0BBB@
0
0

. . . bApN+1

1CCCA :

From the orthogonality property of the Legendre polynomials in (2.1) we will have
D
rN j

l ;rN i
k

E
L2
=

�fi=jg�fk=lg for i; j � 2. This means that the sti�ness matrix for the higher order polynomials,
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A11 after static condensation, will be a diagonal matrix with entries of 2=hi, which is constant
when using uniform meshes, so its condition number will be

cond (A11) = 1:

Therefore the condition number of the system solving for the linear shape functions equals the
condition number of the full system

cond
�
A00 �A10 (A11)

�1
A01

�
= cond (A) :

It can be observed that the condition number of (2.9) increases algebraically as h decreases,
as displayed in Figure 2.8 (left) and it is constant in p, as displayed in Figure 2.8 (right).

Figure 2.8: Condition number of the sti�ness matrix derived from the Lalpace operator
increasing in mesh size (h) and staying constant in the uniform polynomial degree

(p)

Following Proposition 11, results of solving the system with uniform meshes and uniform
polynomial orders on every element will lead to the approximation

us = argmin
us2Sp(G;�h)

ku� gkL2

with g being the strong solution of (2.8), to have error bounds

kus � gkL2 � C1 exp ((ln (h)� C2) (p+ 1)) ; for analytic g.

Displaying the results for g (x) = sin (�x) on [0; 1], and observing an algebraic convergence
in the mesh size displayed as linear lines in a log-log plot in Figure 2.9.
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Figure 2.9: Algebraic rate of convergence in L2-norm with mesh re�nement for Laplace
equation (left) and the rate of convergence with di�erent uniform polynomial

degrees (p).

Then using a uniform mesh on [0; 1], and having exponential convergence by increasing uni-
formly the polynomial order on the elements, displayed as linear lines in a semi-log plot in Figure
2.10.

Figure 2.10: Exponential rate of convergence in L2-norm with the increase of the uniform
polynomial degrees (p) for Laplace equation (left) and the rate of convergence

with di�erent mesh sizes.
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2.1.7 L�evy operator equation

Solving the equation

In order to be able to solve (1.5) we consider

ALu = f; (2.10)

where

ALu =
Z
Rnf0g

(u (x+ y)� u (x)� u0 (x) y) � (dy) ;

meaning that AL is the generator of a pure jump process characterized by the L�evy triplet
(0; 0; �).
In a symmetric CGMY setting this equals

ALu =
Z
Rnf0g

(u (x+ y)� u (x)� u0 (x) y) e
��jyj

jyj�+1
dy:

We discretize problem in (2.10) using the basis functions from Section 2.1.2 to

Su = f; (2.11)

where

Si;j =


ALbj ; bi

�
L2

=

Z
R

Z
Rnf0g

�
bj (x+ y)� bj (x)� b0j (x) y

�
� (dy) bi (x) dx (2.12)

=

Z
R

Z
Rnfxg

b0j (y) b
0
i (x) k

(�2) (x� y) dydx;

and
f
i
= hf; biiL2 :

Computing elements of S numerically

Using polynomial basis functions the integrals in (2.12) will not be available in closed form.
Therefore we need to compute the elements of S numerically.
In order to do this we transform each shape function to the reference element, N i

k being
the k-th shape function on the element Ki. We will take care of the task of combining the
neighbouring linear shape functions to hat functions in the assembly of the global matrix by
adding up their contributions.
We can now de�ne a local sti�ness matrix on the element pair Ki �Kj as Ŝi;j , with entries

Ŝ(i;k);(j;l) =

1Z
�1

1Z
�1

rN̂l
�
�y
�
rN̂k (�x) k(�2)

�
'i (�x)� 'j

�
�y
��

d�yd�x;

k 2 f0; : : : ; pig ; l 2 f0; : : : ; pjg ;
for i; j 2 f1; : : : ; N + 1g
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where pi and pj are the highest order of polynomial shape functions on the elements Ki and Kj

respectively.
For numerical integration on the reference element we will distinguish four cases: diagonal

blocks Ŝi;i on Ki�Ki; super-diagonal blocks Ŝi;i+1 on Ki�Ki+1; sub-diagonal blocks Ŝi;i�1 on

Ki �Ki�1 and far from diagonal blocks of Ŝi;j on Ki �Kj for ji� jj � 2. We discuss the the
computation of the sti�ness matrix more in detail in Appendix B.
Since the L�evy operator is not a local operator, the assembly of the sti�ness matrix is more

involved than for local operators, as sown in (2.13)

S =

0B@Ŝ0;0 � � � 0
...
0

1CA+ � � �+
0B@0 � � � Ŝ0;j � � � 0

...
0

1CA+ � � �+
0B@0 � � � Ŝ0;N+1

...
0

1CA

+

0BBBBBB@

0
...

Ŝi;0 � � � 0
...
0

1CCCCCCA+ � � �+
0BBBBBB@

0
...

0 � � � Ŝi;j � � � 0
...
0

1CCCCCCA+ � � �+
0BBBBBB@

0
...

0 � � � Ŝi;N+1
...
0

1CCCCCCA (2.13)

+

0B@ 0
...

ŜN+1;0 � � � 0

1CA+ � � �+
0B@ 0

...

0 � � � ŜN+1;j � � � 0

1CA+ � � �+
0B@ 0

...

0 � � � ŜN+1;N+1

1CA
Numerical integration on the reference element of diagonal blocks
As an example we will now show the calculation of a sti�ness matrix for a CGMY process on

G = (�1; 1), with a single element K0 = G.
Since the L�evy density k for the CGMY model is strongly singular at 0, i.e. k (x) � x�(Y+1)

as x ! 0 and so k(�2) (x� y) might be discontinuous on the diagonal of (�1; 1)2, the second
antiderivative has the form as in [Po08, Appendix B], and behaves near 0 as k(�2) (x) � x1�Y .

Figure 2.11: CGMY L�evy-density (left) and its second antiderivate (right)

To integrate k(�2) (x� y) on (�1; 1)2 we apply Du�y's trick [Du82], and divide (�1; 1)2 into
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two triangles where k(�2) (x� y) has singularity only on one side, so we'll have two integrals as

1Z
�1

1Z
�1

k(�2) (x� y) dydx =
1Z

�1

xZ
�1

k(�2) (x� y) dydx+
1Z

�1

1Z
x

k(�2) (x� y) dydx;

and for the ease of numerical integration we transform each triangle to a rectangle, with singu-
larity at one side. For the lower triangle we have with the new variable z = 1� y+1

x+1 :

1Z
�1

xZ
�1

k(�2) (x� y) dydx = �
1Z

�1

0Z
1

k(�2) (x� [x� z (x+ 1)]) (x+ 1) dzdx

=

1Z
�1

1Z
0

k(�2) (x� [x� z (x+ 1)]) (x+ 1) dzdx:

For the upper triangle we have, with the new variable z = y�x
1�x

1Z
�1

1Z
x

k(�2) (x� y) dydx =
1Z

�1

1Z
0

k(�2) (x� [x+ z (1� x)]) (1� x) dzdx:

Now both integrals have singularity at z = 0, so we need a mesh that is re�ned towards that
singularity.
We discuss the numerical integration more in detail with results of convergence in Appendix

A.

Complexity of the linear system

The condition numbers of the sti�ness matrix increase with both N and p, but the condition

number of the linear sub-system
�
S00 � S10 (S11)�1 S01

�
decreases with the polynomial order

p, as shown in Figure 2.12-2.14 for the CGMY model with C = 1; G = M = 5 and various
tail-exponents.
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Figure 2.12: Condition numbers for (2.11) with Y = 0 for the wole system and the two
sub-systems after static condensation as mesh size decreases (left column) and as

the uniform polynomial degree increases (right column)

Figure 2.13: Condition numbers for (2.11) with Y = 0:5 for the wole system and the two
sub-systems after static condensation as mesh size decreases (left) and as the

uniform polynomial degree increases (right)
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Figure 2.14: Condition numbers for (2.11) with Y = 1:5 for the wole system and the two
sub-systems after static condensation as mesh size decreases (left) and as the

uniform polynomial degree increases (right)

Remark 12 The CGMY model with parameter Y > 1 is of in�nite variation, with singularity
of the L�evy density of k (x) � xY+1 as x! 0.

Results

Theorem 13 The solution of the linear system (2.11), uh;p (x), with uniform mesh width and
uniform polynomial orders across the elements results in

uh;p (x) = argmin
u2Sp(G;�h)

ku� gkL2 for analytic g;

where g is the solution of (2.10) the error can be bounded as

kuh;p � gkL2 � Cu;�h
p+1:

Proof. See [Sw98, Thm. 3.17].
Displaying the results for the CGMY L�evy operator with parameters C = 1, G = M = 5,

Y = 0:5, and for the function g (x) = x4 (1� x)4, we observe an algebraic convergence in mesh
size, shown as a linear line in a log-log plot in Figure 2.15 (left), with rate of convergence p+ 1
as shown in Figure 2.15 (right).
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Figure 2.15: L2 convergence of (2.10) using mesh re�nements (left) and the rate of convergence
for di�erent uniform polynomial degrees (right).

Remark 14 The convergence starts to deteriorate around 10�9 and this is partly due to the
fact that the function f = ALg, for a polynomial g, has coe�cients expressed with conuent
hypergeometric functions that are evaluated numerically. The other reason for the deterioration
is that the entries of the sti�ness matrix are calculated numerically, and for further details on
variational crimes turn to [Sw98, Chapter 2.4].

We observe an exponential convergence in the polynomial degree shown as a linear line in a
semi-log plot in Figure 2.16 (left) with rate of convergence of � ln (h) as shown in Figure 2.16
(right).

Figure 2.16: L2 convergence of (2.10) increasing polynomial order (left) and the rate of
convergence for di�erent mesh sizes (right).
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2.2 hp FEM for functions with singularity

Even for the simple plain vanilla options the payo� functions have a singularity at the strike,
meaning they are piecewise linear, but not di�erentiable at the strike. So they are only in
H

3
2�" (R), and not in H2 (R) which would yield optimal, second order convergence for the �-

scheme with � = 0:5. Our aim is pricing of digital barriers with discontinuity at the barrier, so
the payo� is not even in continuous, resulting in the function being only in H

1
2�" (R).

We have previously shown that using uniform meshes for the p-FEM solver will give us
exponential convergence, as described in Proposition 11, but only for analytic functions. In
order to achieve exponential rate of convergence with functions having singularity we will use hp
mesh re�nement as in [SzBa91, Ch. 4.1.].

Example 15 A well known example of the superiority of hp FEM is from [Sw98, Chapter 3.4]
describing the L2 projection of a boundary layer function in the form of

u (x) = exp
�
�x
d

�
on G = (0; 1)

where d 2 (0; 1] is a parameter that can approach 0. The performance of three methods are
presented in Figure 2.17: the h-FEM with hat functions as basis functions (since u is continuous)
and a uniform mesh grid with mesh width h; the p-FEM with the single element K0 = G with
increasing uniform polynomial degree and an hp-FEM on two elements K0 = (0; dp) and K1 =
(dp; 1), where p is the uniform polynomial degree on both elements.

Figure 2.17: Convergence of the L2 projection of the function u (x) = exp (�x=d) with d = 0:09
(left) and d = 10�6 (right).

2.2.1 Meshes

De�nition 16 A geometric graded mesh GN� (0; 1) with N re�nements and a grading factor � 2
(0; 1) on [0; 1] is, just like a uniform mesh from De�nition 6, a series of elements Kk = [xk; xk+1]
with the grid points

x0 = 0;

xk = �N+1�k; for k = 1; :::; N + 1:
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A plot of an example for a geometric graded mesh with � = 1=2, N = 4 is displayed in Figure
2.18.

0 1/16 1/8 1/4 1/2 1

Figure 2.18: A geometric graded mesh with grading factor � = 0:5.

From [SzBa91, Ch. 4.1.] we know the grading factor of

�� =
�p
2� 1

�2
yields an optimal performance for hp-FEM when using a geometric graded mesh with grading
factor �� and polynomial degree on elements

pj = d�je � 2 R:

Theorem 17 For the ease of notation suppose that the singularity of the function is at x0 = 0,
as in Example 15, then we will have exponential convergence in the degrees of freedom as

inf
us2Sp(G;GN� )

ku� uskL2(G) � C1 exp
�
�C2

p
M
�
;

where M is the number basis functions, C1; C2 > 0.

Proof. See [Sw98, Thm 3.36].

2.2.2 Sti�ness matrix for the L�evy operator on a geometric mesh

Discretizing the equation ALu = f in the hp-FE space leads to a matrix equation

Su = f;

where S is the sti�ness matrix with elements as

Si;j =


ALbj ; bi

�
L2
;

where bi is the k-th order basis function on the element Ki, as described in Section 2.1.2, f is a
load vector with elements

f
i
= hf; biiL2 :

As shown above, in the case of a L�evy operator the elements of the sti�ness matrix can be
written as

Sm;n =

xiZ
xi�1

xjZ
xj�1

b0n (y) b
0
m (x) k

(�2) (x� y) dydx;

where bn is the k-th order shape function on the element Ki, and bm is the l-th order shape
function on Kj as described in Section 2.1.2. By substituting with the di�eomorphism 'j : K̂ !
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Kj , 'j (�x) =
xj+xj�1

2 +
xj�xj�1

2 �x, and 'i
�
�y
�
analogously, we compute the integral on the

reference element

Sm;n =

1Z
�1

1Z
�1

b0n (y)
�
'i
�
�y
��
b0n
�
'j (�x)

�
k(�2)

�
'j (�x)� 'i

�
�y
�� hj

2
d�y

hi
2
d�x;

and by using that rN̂p (x) = r
�
N i
p (' (x))

�
= rN i

p (' (x))'
0 (x) 8i, we have

S(i;k)(j;l) =

1Z
�1

1Z
�1

rN̂l
�
�y
�
rN̂k (�x) k(�2)

�
'j (�x)� 'i

�
�y
��

d�yd�x:

Proposition 18 To compute the local blocks Ŝi;j of the sti�ness matrix on the reference element

K̂ � K̂ for i; j = 1; : : : ; N + 1 de�ne quadratures points and weights as

�
x

= g 
 cT ; �
y
= g 
 cT ; w = wg 
 wTc [ wg 
 wTc if i = j; (2.14)

�
x;y

= c
 cT ; w = wc 
 wcT if ji� jj = 1; (2.15)

�
x;y

= g 
 gT ; w = wg 
 wgT if ji� jj � 2; (2.16)

where g is a vector of Gauss{Legendre quadrature points of length n with associated weights wg
as in [Wi09, Ch. 5.1] and c is a vector of composite Gauss quadrature points of length n with
associated weights wc as in [Wi09, Ch. 5.2]. Then the error���S(i;k)(j;l) � Dw;rN̂l ��y�rN̂k ��x� k(�2)

�
'j

�
�
x

�
� 'i

�
�
y

��E���
will convergence to 0 exponentially in n.

Proof. To compute the integrals derived from the L�evy operator on blocks further from the
diagonal, we can use simple Gauss{Legendre quadratures since k(�2) decays exponentially from
0 to make k(�2) (x� y) relatively constant on element pairs that are not neighbours. For this
we need the relative distance of the elements to decay fast enough
The length of the element in one dimension is given as

jKij = jxi � xi+1j = �N+1�i � �N+1�(i+1) = �N+2�i
�
1

�
� 1
�
:

For numerical integration on Ki �Kj , the two elements Ki and Kj (w.l.o.g. suppose i < j)
can be illustrated as

x_ i x_ i+ 1 x_ j x_ j+ 1

30



Then the relative distance is

�i;j =
dist (Ki;Kj)

max fjKij ; jKj jg
assume i < j

=
xj � xi+1
xj+1 � xj

and since ji� jj � 2

� �N+1�j (1� �)
�N+1�(j+1) (1� �)

=
1

�
:

As a result from [Wi09, Theorem 6.3.1.], when the relative distance of elements decays fast
enough (by choosing � < Cf=4), using simple Gauss{Legendre quadrature rules yields exponen-
tial convergence in quadrature points for the integration of the local sti�ness matrices.
For the computation of local sti�ness matrices next to or on the diagonal of S we need

composite-Gaussian quadrature rule for optimal convergence.
The assembly is carried out as in (2.13) in Section 2.1.7.
Condition numbers for the full system S, and subsystems after static condensation is depicted

in Figure 2.19 for di�erent degrees of singularity, using geometric meshes with grading factor
� = �� and polynomial increase slope � = 1.

Figure 2.19: Condition numbers of the L�evy sti�ness matrix with varios degrees of singularity.

In the VG case with Y = 0, using underre�nement, meaning using a larger grading factor,
stops the explosion of the condition number, so with � = 0:5 we have
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Results of using hp-FEM with for L�evy operators on functions with singularities is discussed
in the next chapter.
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Chapter 3

Numerical Examples of hp-FEM
from Option Pricing

3.1 Option pricing in Black{Scholes setting

From the pricing equation in (1.1) we will have in log-price x = lnS

@tu (t; x) +
�2

2
@xxu (t; x) +

�
�2

2
� r
�
@xu (t; x) + ru (t; x) = 0; on (0; T )�G

u (0; x) = g (x) : on G;

with g (x) = (ex �K)+ for European call contracts.

3.1.1 Variational formulation

The variational formulation reads:
Find u 2 L2

�
(0; T ) ;H1 (R)

�
\H1

�
(0; T ) ; L2 (R)

�
such that

h@tu; viL2 +
�2

2
hu0; v0iL2 +

�
�2

2
� r
�
hu0; viL2 + r hu; viL2 = 0; on (0; T )� R;

hu; viL2 = hg; viL2 ; on R;

for all test functions v 2 H1 (R).

3.1.2 Localization

We localize the unbounded log-price domain toGR = (�R;R), and solve for u 2 L2
�
(0; T ) ;H1

0 (GR)
�
\

H1
�
(0; T ) ; L2 (GR)

�
such that

h@tu; viL2 +
�2

2
hu0; v0iL2 +

�
�2

2
� r
�
hu0; viL2 + r hu; viL2 = 0; on (0; T )�GR;

hu; viL2 = hg; viL2 ; on GR;

for all test functions v 2 H1
0 (GR), where H

1
0 (GR) =

�
v 2 H1 (GR) : v (x) = 0 for x 2 @GR

	
.
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3.1.3 Discretization in space

We use basis functions of Sp0 (GR; �h) as in Section 2.1.2, then following the steps as in Section
2.1.5 and Section 2.1.6 we get to the semi-discrete formulation

M _u+Au = 0; (3.1)

Mu (0) = g:

3.1.4 �-scheme

We can discretize the system of ODEs in (3.1) in time using the �-scheme. In the time

domain we take a sequence of timesteps fkmgMm=1, with
P
ki = T , and de�ne a time-grid as

t0 = 0, tm =
Pm

i=1 ki, so that tM = T . By setting um = u (tm) we get to a fully discrete scheme,
which in matrix form reads

1

km+1
M
�
um+1 � um

�
+A

�
�um+1 + (1� �)um

�
= 0;

Mu0 = g;

which can be rephrased to a recursion as

(M+ km+1�A)u
m+1 = (M� km+1�A)um;
Mu0 = g;

where g
i
= hg; biiL2 , with g : G! R being the initial condition of the PDE, andMu0 = g stands

for the projection of the initial condition to Sp0 (GR; �h).
Using a uniform mesh for both space and time discretization is far from optimal, we only get

second order convergence as shown in Figure 3.1.
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Figure 3.1: Second order convergece in degrees of of freedom using uniform meshes and
di�erent uniform polynomial orders.
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3.1.5 Re�ned method

As shown in Figure 3.1 using higher order polynomial basis functions did not increase the
rate of convergence due to the singularity of the payo� function at values x which are near at-
the-money. To achieve exponential convergence we move to a di�erent problem de�ned with the
variational formulation

h@teu; viL2 + �2

2
heu0; v0iL2 = 0; on (0; T )� R; (3.2)

heu; viL2 = hg; viL2 ; on R;

for which we have

e�rteu�t; x+ ��2
2
� r
�
(T � t)

�
= u (t; x) :

The formulation in (3.2) has no drift and no penalty terms and so the singularity of eu (t; z)
will stay at z = 0 for t � 0.
Therefore we used two geometric graded meshes in log-price, both re�ning towards 0, and

used a hp-version of the discontinuous Galerkin (hp-dG) time discretization scheme described in
[SoSw99] with a geometric graded time-mesh re�ning towards maturity, i.e. t = 0. As Figure
3.2 shows we have exponential convergence with respect to the degrees of freedom in space. We
used the parameters for the model �BS = 0:3 and r = 0:05; and for the factor for grading the
meshes in space � = 0:5 and in time � = 0:3, with polynomial increase slope of � = 0:5.
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Figure 3.2: Exponential convergence using hp-FEM in both space and time for a European call
option in the Black{Scholes model

3.2 Option pricing in L�evy setting

From u that solves the pricing equation in (1.5) for the CGMY model, we remove the drift
and the discounting to get

e�rteu�t; x+ ��2
2
� r
�
(T � t)

�
= u (t; x)
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which satis�es

@teu (t; x) + Z
Rnf0g

(eu (t; x+ y)� eu (t; x)� @xeu (x) y) k (y) dy = 0; (3.3)

eu (0; x) = g (x) ; x 2 R:

3.2.1 Variational Formulation

The variational formulation of (3.3) reads:
Find u 2 L2 ((0; T ) ;H� (R)) \H1

�
(0; T ) ; L2 (R)

�
such that

h@teu; viL2 + aL (eu; v) = 0; on (0; T )� R
heu; viL2 = hg; viL2 ; on R; (3.4)

� =

�
1 if � > 0
�=2 if � = 0

;

for all v 2 H� (R), where aL (u; v) =
R
R
R
Rnfxg u

0 (t; x) v0 (y) k(�2) (x� y) dydx and Hs (R) is a
Sobolev space of fractional order s de�ned through the Fourier space with the norm for 0 � s � 1

kuk2Hs(R) =

Z
R
(1 + j�j)2s jbu (�)j2 d�;

where bu is the Fourier transform of u.
In Levy setting � governs the singularity of the Levy density as z ! 0 in the sense that

jk (z)j � C
1

jzj�+1
for jzj � 1: (3.5)

3.2.2 Localization

As in the Black{Scholes case we localize in the unbounded log-price domain to GR = (�R;R)
with the space H�

0 (GR) =
n
v 2 H� (R) : ujRnG = 0

o
. Then the localized problem reads:

Find u 2 L2 ((0; T ) ;H�
0 (GR)) \H1

�
(0; T ) ; L2 (GR)

�
such that

h@teu; viL2(GR)
+ aLR (eu; v) = 0; 8v 2 H� (GR) ; a.e. in (0; T )

heu (0) ; viL2(GR)
= hg; viL2(GR)

; 8v 2 H� (GR) ; (3.6)eu (t; x) = 0 on (0; T )�GcR;

where aLR (u; v) =
R
GR

R
GRnfxg u

0 (t; x) v0 (y) k(�2) (x� y) dydx.

3.2.3 Discretization in space and in time using the �-scheme

Discretization of (3.6) in space is analogous to Section 3.1.3 and in time using the �-scheme
is analogous to Section 3.1.4.
The results in Figure 3.3 show that the convergence of the �-scheme is of second order,

regardless of the uniform polynomial degree on the elements.
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Figure 3.3: L2 convergence of a European call price using uniform mesh grid and uniform
polynomial degrees on the elements

3.2.4 Re�ned method

Just as in Section 3.1.5 to achieve exponential convergence we discretized the log-price space
with two geometrically graded meshes re�ning towards 0 with grading factor � = 0:5 and increas-
ing polynomial degree on elements away from 0 with linear slope �. Time domain was discretized
by the hp� dG method on a graded time mesh with grading factor � = 0:5.
The results for Variance Gamma with characteristic parameters � = 0:3, � = 0:01 and � = 0:1

is shown in Figure 3.4.
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Figure 3.4: Exponential convergence in L2 for European call price in Variance Gamma model.

Also in the CGMY model we observe exponential convergence in Figure 3.5 with Y = 0:5
and in Figure 3.6 with Y = 1:5.
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Figure 3.5: Exponential convergence in L2 for European call price in CGMY model with
Y = 0:5.

0 10 20 30 40 50 60 70
10 6

10 5

10 4

10 3

10 2

10 1

degrees of freedom

er
ro

r

L2 convergence of European call price in CGMY
(C=0.2 G=15 M=20 Y=1.5)

Figure 3.6: Exponential convergence in L2 for European call price in CGMY model with
Y = 1:5
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Chapter 4

Lookback Options

4.1 Distribution of the supremum of a L�evy-process

The distribution of the supremum of a L�evy process L̂t = sups2[0;t] Ls is de�ned as

FL̂T (x) := P

"
sup
t2[0;T ]

Lt � x

#
:

The payo� from a digital barrier option with barrier B at maturity is

�T =

�
1 if supt2[0;T ] St < B

0 if supt2[0;T ] St � B.

Let us denote the price of the digital barrier option by uB (t; x) = e�r(T�t)E
h
11fsups2[t;T ] Lt�Bg

���Lt = x
i
.

Proposition 19 The cumulative distribution function of the supremum of a L�evy process satis-
�es the pricing PIDE

@tu�ALu� ru = 0 on (0; T )� R;
u = 1 on R

solved on the log-price domain R and time domain (0; T ). With u0 (T; x) = e�rTFL̂T (�x).

Proof. By using the property of independent increments and the Markov property of the-L�evy
process one has

uH (t; x) = P
h
L̂T < H

���Lt = x
i

= P
h
L̂T < 0

���Lt = x�H
i
= u0 (t; x�H) ;

and then the following holds

FL̂ (x) = P
h
L̂T < x

i
= ux (T; 0) = u0 (T;�x) :

From that the claimed relation between F and u follows.
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Therefore the price of a digital barrier option is the discounted value of the cumulative
distribution function of the supremum supt2[0;T ] Lt of the L�evy process (Lt)t�0. This way the
distribution function of the supremum can be interpreted as a solution of a modi�ed partial
integro-di�erential equation.
So FL̂ (x) can be computed as a solution of

~u (T � t; x) = er(T�t)u0 (T � t; x) = E
h
11fsups2[t;T ] Lt�0g

���Lt = x
i
= P

h
L̂T < 0

���Lt = x
i
;

where u solves a parabolic equation with initial condition given as

@t~u (t; x) +A~u (t; x) = 0 on (0; T )� R; (4.1)

~u (0; x) = 11x<0:

4.1.1 Variational Formulation

The variational formulation of (4.1), where A is from (1.6), is analogous to Section 3.4 and
reads:
Find u 2 L2 ((0; T ) ;H� (R)) \H1

�
(0; T ) ; L2 (R)

�
, such that

h@tu; viL2 + a
L
R (u; v) = 0 8v 2 H� (R) ; a.e. in (0; T ) ,

hu (0) ; viL2 = h11x<0; viL2 ;

� =

�
1 if � > 0
�=2 if � = 0

;

where � is from (3.5).

4.1.2 Localization

We can localize the problem to a bounded domain of GR = (�R; 0), and thus impose a zero
Dirichlet boundary condition on GcR. Then the localized problem is as follows:
Find u 2 L2 (J;H�

0 (GR)) \H1
�
J; L2 (R)

�
, such that

h@tu; viL2 + a
L (u; v) = 0 in (0; T )�GR
u (0) = 1 in GR (4.2)

u = 0 in (0; T )�GcR

4.1.3 Discretization

We discretize (4.2) using the Galerkin method on the space Sp (GR; �h) with basis functions
as in Section 2.1.2.
This way the weak formulation in (4.2) can be represented by a system of ODEs in a semi-

discrete form using matrix operators.
Find u 2 L2

�
�J; Sp (GR; �h)

�
, which can be characterized by u2 RM as u (x) =

PM
i=1 uibi (x),

and u satis�es

M
�
u (t) +Au (t) = 0; (4.3)

where M is the mass-matrix de�ned in Section 2.1.5, and A is the sti�ness matrix, de�ned for
the Black{Scholes setting in Section 2.1.6 or for the CGMY setting de�ned in Section 2.1.7.
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We can discretize the system of ODEs from (4.3) in time using the �-scheme as in Section
3.1.4, which can be rephrased to a recursion

(M+ km+1�A)u
m+1
N = (M� km+1�A)umN ;
u0N = 1:

Black{Scholes setting

The analytical solution of (4.1) in the Black{Scholes model follows from [Sh04], for a an arith-
metic Brownian motion Xt = �t+ �Wt. We de�ne the supremum process as X̂t = sups2[0;t]Xt,
then we shall have

P [XT � m] = P
h�
�
T +WT �

m

�

i
;

so by substituting � =
�
r � �2=2

�
=� and m = x=� into the formula of [Sh04, Corollary 7.2.2.]

we will get

P
h
X̂T � x

i
= � exp

 
2
r � �2

2

�2
x

!
�

0@�x�
�
r � �2

2

�
T

�
p
T

1A+�
0@x�

�
r � �2

2

�
T

�
p
T

1A :

As show in Figure 4.1, without graded meshes the convergence in the L2
�
L2
�
norm is far

from optimal, and in L2 the convergence is just of second order.
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Figure 4.1: Convergence for the supremum of the Black{Scholes model using linear-FEM and

�-scheme. L2 and L1 errors measure the di�erence of u (T; x) and P
h
X̂T � x

i
.

L�evy setting

The solution of (4.1) in a CGMY model with Y = 1:3 converges also only with second order
as shown in Figure 4.2.

41



102 103
105

104

103

102

101
Convergence of error for dis tribution of sup

0<t<T
 X

t
 with FEM

degrees of freedom

er
ro

r

N2

L2 error

L∞ error

Figure 4.2: Convergence for the supremum of the CGMY model using linear-FEM and
�-scheme.

4.1.4 Re�ned method

As shown previously in Section 3.1.5 and Section 3.2.4, using geometric graded meshes and
higher order polynomials yields exponential convergence even if the initial condition has singu-
larity. To compute the distribution of the supremum we applied a geometric graded mesh for
GR = (�R; 0) with a grading factor of � = 0:5, and a geometric mesh in time with grading factor
� =

�p
2� 1

�2
. The results for the Black{Scholes model are in Figure 4.3, and for the CGMY

model in Figure 4.4.
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Figure 4.3: Exponential convergence in L2 for the solution of the supremum of the geometric
Brownian motion with hp-FEM in space and time.
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Figure 4.4: Exponential convergence in L2 for the solution of the supremum of the CGMY
process with hp-FEM in space and time.
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4.2 Price of a Lookback Option

Theorem 20 The payo� of a �xed strike lookback call option is a function g of the supremum
at maturity of the underlying price process, so the fair price of the option is

v (S0) =

Z 1

0

�
1� FL̂T (x)

�
deg (x) + eg (0) ;

where eg (x) = g (S0e
x).

Proof. For the price of the lookback-option, v, we have

v (S0) = E
h
g
�
ŜT

�i
= E

h
g
�
S0e

L̂T
�i

=

Z 1

0

g (S0e
x)FL̂T (dx) :

From [Sa99, Lemma 17.6] we have that for an arbitrary function � of bounded variation, and
a non-negative random variable X with cumulative distribution function FX

E [� (X)] =
Z 1

c

� (x) dFX (x) =

Z 1

c

(1� FX (x)) d� (x) + � (c) ;

and the relation follows.

Theorem 21 In the CGMY process
�
1� FL̂ (x)

�
exp (x) is integrable if G;M � 1 holds.

Proof. The expression
R
R

�
1� FL̂T (x)

�
exp (x) dx is the expectation E

h
exp

�
L̂T

�i
, for which

we can use [Sa99, Theorem 25.18] stating if

E [� (jLtj)] <1 for some t > 0;

then
E
h
�
�
L̂t

�i
<1 for every t > 0:

In the CGMY model, where � (dx) = k (x) dx, and the L�evy density has the form of

k (x) =
exp (�G jxj)
jxj1+Y

11x<0 +
exp (�M jxj)
jxj1+Y

11x>0;

we can write

E [� (jLtj)] =

Z
R
ejxjk (x) dx

=

Z 0

�1
ejxj

exp (�G jxj)
jxj1+Y

dx+

Z 1

0

ejxj
exp (�M jxj)
jxj1+Y

dx

=

Z 0

�1

exp (� (G� 1) jxj)
jxj1+Y

dx+

Z 1

0

exp (� (M � 1) jxj)
jxj1+Y

dx;

which will be �nite if G� 1 � 0 and M � 1 � 0, meaning G;M � 1.
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4.2.1 Numerical Results

Numerical results in the Black{Scholes case with �BS = 0:3 are compared with the closed
form solution from [CoVi91], the results are seen in Figure 4.5 with hp-FEM in both time and
space. Also the results for the CGMY model with Y = 1:7 shown in Figure 4.6 show exponential
convergence in the degrees of freedom.
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Figure 4.5: Exponential convergence in lookback-option price for the Black{Scholes model
using hp-FEM in both space and time discretization.
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Figure 4.6: Exponential convergence in lookback-option price for the CGMY model using
hp-FEM in both space and time discretization.
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Appendix A

Numerical integration on the
reference element

We want to integrate numerically
R 1
�1
R 1
�1 k

(�2) (x� y) dydx in order to compute the diagonal
elements in the sti�ness matrix.
Since k, and k(�i) have singularity at 0, k(�2) (x� y) will have a singularity on the diagonal

of [�1; 1]2.

1 0.5 0 0.5 1

1

0

1
0

0.05
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0.35

So we apply Du�y's trick [Du82], and divide [�1; 1]2 into two triangles where k(�2) (x� y)
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has singularity only on one side, as
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1

So we'll have two integrals as

1Z
�1

1Z
�1

k(�2) (x� y) dydx =
1Z

�1

xZ
�1

k(�2) (x� y) dydx+
1Z

�1

1Z
x

k(�2) (x� y) dydx;

and for the ease of numerical integration we transform each triangle to a rectangle, with singu-
larity at one side. For the lower triangle we have with the new variable z = 1� y+1

x+1 :

1Z
�1

xZ
�1

k(�2) (x� y) dydx = �
1Z

�1

0Z
1

k(�2) (x� [x� z (x+ 1)]) (x+ 1) dzdx

=

1Z
�1

1Z
0

k(�2) (x� [x� z (x+ 1)]) (x+ 1) dzdx:

For the upper triangle we have, with the new variable z = y�x
1�x

1Z
�1

1Z
x

k(�2) (x� y) dydx =
1Z

�1

1Z
0

k(�2) (x� [x+ z (1� x)]) (1� x) dzdx:

Now both integrals have singularity at z = 0, so we want to have a mesh that is re�ned
towards that singularity.
We chose the composite Gaussian quadrature rule for the z coordinate, as in [Wi09, Ch. 5],
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and a Gauss{Legendre quadrature rule for x, then for [�1; 1]� [0; 1] we'll have a mesh as
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Numerically we create the mesh with two matrices de�ned as

X = g 
 11�ncg ;
Z = 1ng�1 
 cgT ;

where g is a vector of 1-d Gauss{Legendre points on [�1; 1], cg is a vector of composite Gauss
points on [0; 1], nz is the length of cg and nx is the length of g: The weights of these coordinates
are also stored as well, and the algorithm is as follows:

Algorithm 22
[x cg; w cg] = compgauss(0; 1; n; sigma; mu; 1);
[x g; w g] = gauleg(m);
X = kron(x g; ones(1; length(x cg)));
Z = kron(x cg; ones(length(x g); 1));
KL = k2(X� (X� Z: � (X+ 1))): � (X+ 1);
intL = w g � KL � w cg;
KU = k2(X� (Z: � (1� X) + X)): � (1� X);
intU = w g � KU � w cg;
int = intL + intU;

To test the convergence of the code we chose n=(3:10) and mu=2. The results of the code
can be compared with a simple Gauss{Legendre algorithm where cg is replaced with Gauss{
Legendre quadrature points of the same length.
To compute the theoretical value to which the code should converge we do the following for
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the lower triangle with a change of variable z = x� y
1Z

�1

xZ
�1

k(�2) (x� y) dydx = �
1Z

�1

0Z
x+1

k(�2) (z) dzdx

=

1Z
�1

x+1Z
0

k(�2) (z) dzdx

=

1Z
�1

�
k(�3) (0+)� k(�3) (x+ 1)

�
dx

=

1Z
�1

k(�3) (0+) dx�
1Z

�1

k(�3) (x+ 1) dx

= 2k(�3) (0+)�
2Z
0

k(�3) (v) dv

= 2k(�3) (0+)�
�
k(�4) (0+)� k(�4) (2)

�
= 2k(�3) (0+)� k(�4) (0+) + k(�4) (2) ;

and for the upper triangle it's analogously 2k(�3) (0�)� k(�4) (0�) + k(�4) (�2).
Where, in the CGMY model

k(�3) (0�) = C
� (2� �)

2
�Y�2�

k(�4) (0�) = C
� (3� �)

6
�Y�3� ;

with �+ = M and �� = G, and the convergence, compared with a simple Gauss-Legendre rule
on both axis with the same number of points looks like
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Appendix B

Sti�ness matrix with the L�evy
kernel

Discretizing the equation Au = f in the hp-FE space leads to a matrix equation

Su = f ;

where S is the sti�ness matrix with elements as

Sm;n =


ALbn; bm

�
L2
;

where bm is the k-th order basis function on the element Ki. f is the load vector with elements

fm = hf; bmiL2 :

As shown above, in the case of a L�evy operator the elements of the sti�ness matrix can be
written as

S(i;k)(j;l) =

xiZ
xi�1

xjZ
xj�1

rN i
l (y)rN

j
k (x) k

(�2) (x� y) dydx;

where N i
k is the p-th order shape function on the element Ki, and k

(�2) is the second antiderivate
of the L�evy measure � (dx) = k (x) dx. By substituting with the di�eomorphism 'i (�x) =
xi+xi�1

2 + xi�xi�1
2 �x, and �y analogously, we move to the reference element

S(i;k)(j;l) =

1Z
�1

1Z
�1

rN i
l

�
'i
�
�y
��
rN j

k

�
'j (�x)

�
�
�
'j (�x)� 'i

�
�y
�� hj

2
d�y

hi
2
d�x;

and by using that rN̂ (x) = r (N (f (x))) = rN (f (x)) f 0 (x), we'll have

S(i;k)(j;l) =

1Z
�1

1Z
�1

rN̂l
�
�y
�
rN̂k (�x) �

�
'j (�x)� 'i

�
�y
��

d�yd�x:

From here we will distinguish four cases for the local sti�ness matrices de�ned element-vise

1. diagonal blocks of Si;i
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2. sup-diagonal blocks of Si;i+1

3. sub-diagonal blocks of Si;i�1

4. o� diagonal blocks of Si;j , where ji� jj � 2.

B.1 Diagonal blocks

In this case we have integrals of the type

Z Z
rN̂l

�
�y
�
rN̂k (�x) �

�
'i (�x)� 'i

�
�y
��

d�yd�x,

and since the kernel � has singularity at 0, the integral will have singularity at the vertex,
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so we apply Du�y's trick [Du82], and have

S(i;k)(i;l) =

1Z
�1

�xZ
�1

rN̂l
�
�y
�
rN̂k (�x) �

�
'j (�x)� 'i

�
�y
��

d�yd�x

+

1Z
�1

1Z
�x

rN̂l
�
�y
�
rN̂k (�x) �

�
'j (�x)� 'i

�
�y
��

d�yd�x;

then do a change of variables for the lover triangle as �y = �u (1 + �x) + �x and for the upper
triangle as �y = v (1� �x) + �x, to have

S(i;k)(i;l) =

1Z
�1

1Z
0

rN̂l (�u (1 + �x) + �x)rN̂k (�x) �
�
'j (�x)� 'i (�u (1 + �x) + �x)

�
(1 + �x) d�yd�x

+

1Z
�1

1Z
0

rN̂l (v (1� �x) + �x)rN̂k (�x) �
�
'j (�x)� 'i (v (1� �x) + �x)

�
(1� �x) d�yd�x;
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where now both integrals are on a rectangle with singularity on the lower edge, so a composite
Gaussian quadrature rule is used to discretize both u and v, and a simple Gauss{Legendre is
used to discretize along �x.
The algorithm looks like

Algorithm 23
[x cg; w cg] = comp gauss(n);
[x g; w g] = gau leg(m);
X = kron(x g; ones(1; n));
Z = kron(ones(m; 1); x cg);
Y u = X+ Z: � (1� X);
Y l = X� Z: � (1+ X);
grad N x = legendre grad(X);
grad N yu = legendre grad(Y u);
grad N yl = legendre grad(Y l);
K u = k2([m x+ h x=2 � X]� [m y+ h y=2 � Y u]): � (1� X);
K u = k2([m x+ h x=2 � X]� [m y+ h y=2 � Y l]): � (1+ X);
% elements

for i = 1 : p y+ 1
for i = 1 : p x+ 1
S(i; j) = w g

0�(grad N yu(i): � grad N x(j): � K u+ grad N yl(i): � grad N x(j): � K l) � w cg;
end

end

B.2 Sup-diagonal blocks

For the blocks of Si;i+1, the kernel k
(�2) in the integral

Z Z
rN̂l

�
�y
�
rN̂k (�x) �

�
'i+1 (�x)� 'i

�
�y
��

d�yd�x

will have a singularity in one corner of K̂ � K̂
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and so we discretize both �x and �y with a composite Gauss quadrature, re�ning towards �x % 1
and �y & �1.
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Algorithm 24
[x cg; w cg] = comp gauss(n);
X = kron(1� 2 � x cg; ones(1; n));
Y = kron(ones(n; 1); 2 � x cg� 1);
grad N x = legendre grad(X);
grad N y = legendre grad(Y);
K = k2((m x+ h x=2 � X)� (m y+ h y=2 � Y));
% elements

for i = 1 : p y+ 1
for i = 1 : p x+ 1
S(i; j) = �4 � w cg0�(grad N y(i): � grad N x(j): � K) � w cg;
end

end

B.3 Sub-diagonal blocks

For the blocks of Si;i�1, the kernel k
(�2) in the integral

Z Z
rN̂l

�
�y
�
rN̂k (�x) �

�
'i�1 (�x)� 'i

�
�y
��

d�yd�x

will have a singularity in one corner of K̂ � K̂
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and so we discretize both �x and �y with a composite Gauss quadrature, re�ning towards �y % 1
and �x & �1.

Algorithm 25
[x cg; w cg] = comp gauss(n);
X = kron(2 � x cg� 1; ones(1; n));
Y = kron(ones(n; 1); 1� 2 � x cg);
grad N x = legendre grad(X);
grad N y = legendre grad(Y);
K = k2((m x+ h x=2 � X)� (m y+ h y=2 � Y));
% elements

for i = 1 : p y+ 1
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for i = 1 : p x+ 1
S(i; j) = �4 � w cg0�(grad N y(i): � grad N x(j): � K) � w cg;
end

end

B.4 O� diagonal blocks

To compute the integrals derived from the L�evy operator on blocks further from the diagonal,
we can use simple quadratures since k(�2) decays fast enough away from 0 to make k(�2) (x� y)
relatively constant on element pairs that are not neighbours. For this property we need the
relative distance of the elements to decay fast enough, and it is shown in Proposition 18, but
with

�reli;j =
dist (Ki;Kj)

max fjKij ; jKj jg
w.l.o.g. suppose i < j

=
xj � xi
h

since ji� jj � 2 for o�-diagonal blocks

� h

h
= 1

B.5 Assembly of the global sti�ness matrix

We index the basis functions in a way that we �rst number the external shape functions from
1 to N + 1, so the neighbouring N0 and N1 linear basis functions form hat functions, and so
their contributions will add up during assembly. Then we number the internal shape functions
from N + 2 to M , where M is the number of all shape functions in all elements, and

M = 1 +

NX
i=1

pi;

where pi is the polynomial degree on element Ki, and we have altogether N + 1 linear hat
functions (two of which are "half-hats").
Then the assembly algorithm looks like

Algorithm 26 (Assembly of integral-operator sti�ness matrix)
for i = 1 : nElements
for j = 1 : nElements
idx i = mesh:basisnumbering(i; :);
idx j = mesh:basisnumbering(j; :);
Aloc = local stiffness(mesh:coord(i); mesh:coord(j); mesh:poly(i); mesh:poly(j));
A(idx i; idx j) = A(idx i; idx j) + Aloc;
end

end
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