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Abstract

This thesis first gives an introduction to finite element methods. Later on,
different hp-adaptive stategies will be discussed and compared theoretically and
by numerical experiments.
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1 Introduction

This paper first gives an introduction to the construction of the finite element
method (FEM). We introduce a general second order elliptic boundary value
problem (BVP), deduce the weak formulation of it and give a criterion for the
existence and uniqueness of the solution. After that we discretize our problem
and derive a sufficient criterion to get existence as well as uniqueness of the
solution.
Furthermore, the concept of the finite element space on a mesh is introduced.
We explain the different refinement strategies and when to choose which.

Later on, the basic adaptive algorithm is explained, which should give an idea
of the structure of all the algorithms discussed. Sections 4 and 5 are going to
give a more detailed explanation of the substeps of the basic algorithm:

Section 4 introduces the following two a posteriori error estimators:

• a residual error estimator taking advantage of certain properties of the
Legendre polynomials.

• an equilibrated error estimator gained by a famous theorem called hyper-
circle method

Reliability and Efficiency is proven for both estimators. The second one also
shows p-robustness – an important, but rarely found property. It guarantees
the error estimator to remain efficient even at high polynomial degree.

In section 5 two marking strategies, called maximum strategy and (weighted)
fixed energy fraction and two hp-deciders are introduced and explained. The
hp-decider consists of the following ideas:

• a method which estimates the analyticity of the solution by looking at the
decay of the coefficients of its Legendre series.

• an approach solving a minimalization problem to get the best refinement
method on each element

After the theory is set, a complete MATLAB framework for 1D-hp-FEM is
constructed. By numerical experiments, the algorithms are tested extensively
and the obtained results are discussed and compared with the theory.
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2 A basic overview of FEM

2.1 The model problem for elliptic differential equations

In this section we introduce a classical second order elliptic boundary value
problem, without making any assumptions and restrictions about the regularity
of the involved domains but boundedness. The statements, definitions and
theorems made here are found in most of the literature written about FEM.
This introduction is based on the detailed explanations in [8], [1] and [6].

The classical second order elliptic BVP consists of a functional equation and
boundary conditions.
Let Ω ⊂ Rd, C ∈ C0

(
Ω,Rd,d

)
∩C1

(
Ω,Rd,d

)
, symmetric and uniformly positive

definite, b ∈ C0
(
Ω,Rd

)
, c ∈ C0

(
Ω,R

)
, uniformly positive, d ∈ {1, 2, 3} we

define the linear Operator L as follows:

Lu = −div (C gradu) + b · gradu+ cu for u ∈ C0
(
Ω,R

)
∩ C2 (Ω,R) (1)

Now, let f ∈ C0
(
Ω,R

)
, ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, g ∈ C0

(
ΓD,R

)
and

h ∈ C0
(
ΓN ,R

)
. Then the classical elliptic boundary value problem is defined in

the following way:

Find u ∈ C0
(
Ω,R

)
∩ C2 (Ω,R) such that

Lu = f in Ω
u = g on ΓD (2)

n ·C gradu = −h on ΓN

where n denotes the exterior unit normal vector to Ω. The equations (2)2, (2)3

are called Dirichlet, respectively Neumann boundary conditions.

We call this formulation classical, since all equations are assumed to hold point-
wise. But is the pointwise definiton sufficient to capture the most of physically
meaningful solutions of such problems? The answer is no. There are much more
physically meaningful solutions than one gets by solving this classical BVP. For
example in (2) C was assumed to be C1 to get the equation (2)1 to be pointwise
well defined. But in nature there are a lot of problems with simply continuous
or even discontinuous conductivity C.
Another problem might arise on the boundary. Since the boundary conditions
are just defined on ΓN and ΓD, which are open in ∂Ω, there might be some
points P ∈ ΓD ∩ ΓN , on which it is not specified which boundary condition to
take.
Hence, we have to change the pointwise equations into equations in distribu-
tional sense to be able to capture the solutions mentioned above, i.e. to weaken
the sense in which the equations of (2) hold.

2.2 The variational formulation of the second order ellip-
tic problem

The discussion above leads us to a distributional reformulation of the classical
second order elliptic BVP, the variational formulation:
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Find u ∈ U : a(u, v) = f(v) ∀ v ∈ V (3)

This formulation can be constructed from equation (2)1 by multiplying v ∈ V
and then integrating over the whole domain Ω. The space V is called test space
and U trial space which are always assumed to be Banach spaces. In this paper,
we will always assume that f ∈ L2(Ω) and set U = V = H1

ΓD
(Ω), the Sobolev

space of square integrable functions, defined as follows:

H1(Ω) =
{
v ∈ L2 (Ω)| grad v ∈ L2 (Ω)

}
H1

ΓD (Ω) =
{
v ∈ L2(Ω)| grad v ∈ L2(Ω) ∧ T1v = 0 on ΓD

}
(4)

where T1 : H1(Ω)→ H1/2(∂Ω) is the trace operator, and H1/2(∂Ω) is given by:

H1/2(∂Ω) = {v ∈ L2(∂Ω)| |v|2H1/2(∂Ω)

=
∫

Ω

∫
Ω

|v(x)− v(y)|
|x− y|d+1

dS(x)dS(y) <∞} (5)

In our case, a(u, v) and f(v) will always have the form

a(u, v) =
∫

Ω

L(u)(x)v(x)dx +
∫

ΓN

C gradu(x) · nv(x)dS(x)

=
∫

Ω

− div (C gradu(x)) v(x) + b · gradu(x)v(x) + cu(x)v(x)dx

−
∫

ΓN

hv(x)dS(x)

=
∫

Ω

C gradu(x) · grad v(x) + b · gradu(x)v(x) + cu(x)v(x)dx

f(v) =
∫

Ω

f(x)v(x)dx +
∫

ΓN

h(x)v(x)dS(x)− a(g̃(x), v(x))

(6)

where T1g̃ = g on ΓD.
The last line of the derivation of a(u, v) in (6) is obtained by applying integration
by parts (IBP) to the first term. By convention, the boundary term occuring
from the IBP is written into f(v), therefore we get an additional boundary term
at the beginning of (6).
The additional term a(g̃, v) in (6) ensures that the Dirichlet boundary conditions
hold. Simply solving the BVP without this additional term would give us a
solution ũ which is equal to zero on ΓD. To get now the demanded function
u, which fulfills also (2)2, we have to add some function g̃ ∈ H1(Ω) to ũ which
comes up to g on ΓD and can be derived by applying T−1

1 to g. Since this g̃
may not be zero in Ω, we have to subtract a(g̃, v) in (2)1 to ensure that u still
satisfies the equation.

Remark: In this formulation, the boundary conditions are integrated into the
variational formulation (6), such that we do not need to include any additional
equations.

The Sobolev space H1
ΓD

(Ω) guarantees existence and uniqueness of the solution.
To derive this statement, let us first introduce some definitions.
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A continuous sesquilinear form a : V ×V → R on some Hilbert space V is called
V -elliptic, if

∃α > 0 : a(v, v) ≤ α‖v‖2V ∀ v ∈ V (7)

The norm induced by such a V -elliptic sesquilinear form is called energy norm.

A continuous sesquilinear form a : U×V → R, for U , V Hilbert spaces, is meant
to fulfill the inf-sup conditions, if

∃γ > 0 :

inf
u∈U\{0}

sup
v∈V \{0}

|a(u, v)|
‖u‖U‖v‖V

≥ γ (8)

∀ v ∈ V \{0} :
sup

u∈U\{0}
|a(u, v)| > 0 (9)

Further let V ′ be the dual space of V , i.e. the space of all continuous linear
functionals on V and

A : U → V ′

u 7→ a(u, ·) (10)

the operator associated with the sesquilinear form a. Then from (8) results
injectivity of A and closedness of Im(A(U)) ⊂ V ′. Moreover (9) gives addition-
ally the density of Im(A(U)) ⊂ V ′ which yields together with the closedness the
surjectivity of A. Thus we get bijectivity of A, which proves the existence and
uniqueness of the solution u ∈ U such that (3) holds. One can easily see, that
if some sesquilinear form a is V -elliptic, a also satisfies the inf-sup conditions.

But what about the H1
ΓD

(Ω)-ellipticity of our a from (6)? It follows directly
from the Poincaré-Friedrichs inequalities. They state that for all choices of
boundary conditions, in particular for the mixed conditions, we get for Ω ⊂ Rd,
and µ(ΓD) > 0:

∃C > 0 : ‖u‖L2(Ω) ≤ C‖gradu‖L2(Ω) ∀u ∈ H1
ΓD (Ω) (11)

where C is only depending on properties of the domain Ω. This immediately
involves the H1

ΓD
(Ω)-ellipticity of a.

2.3 Galerkin discretization of the variational formulation

The spaces U and V from problem (3) are mostly not finite dimensional. Hence,
to be able to do numerical calculations on (3), we have to discretize U and V .
We do this by simply taking finite dimensional subspaces UN ⊂ U and VN ∈ V
such that dim(UN ) = m, dim(VN ) = n <∞. Moreover we require that the inf-
sup conditions have to hold also in the discrete case to guarantee existence and
uniqueness of the solution. The discrete problem, called Galerkin discretization
now looks as follows:

Find uN ∈ UN such that a(uN , vN ) = f(vN ) ∀ vN ∈ VN (12)
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where a, f remain the same as in (3). By taking {ϕ1, ϕ2, ..., ϕm} as a basis of
UN and {ψ1, ψ2, ..., ψn} of VN we can reformulate equation (12) as

Au = f

A = (a(φk, ψj))j=1,...,m;k=1,...,n ∈ Rm,n (13)
u = (uj)j=1,..,n ∈ Rn

f = (f(ψj))j=1,..,m ∈ Rm

A is called Galerkin Matrix, f load vector and u is the vector with the coefficients
of uN relatively to the basis {ϕ1, ϕ2, ..., ϕm}. In a concrete implementation of
the FEM, this system would be solved numerically for a suitable basis which
produces, in the best case, a very sparse matrix.
If one substitutes uN in (12) by u − uN , where u is solution of the variational
problem (3), one gets (by using linearity of a in the first argument):

a(u− uN , vN ) = a(u, vN )− a(uN , vN ) = f(vN )− f(vN ) = 0 ∀ vN ∈ VN (14)

This property is called Galerkin orthogonality. By further transformation one
derives a first estimate of the error u − uN in energy norm. More precisely we
get that the solution uN of the discrete variational problem is the best possible
approximation of u under all wN ∈ UN :

‖u− uN‖2a = a(u− uN , u− uN )
= a(u− uN , u− wN ) + a(u− uN , wN − uN )
= a(u− uN , u− wN )
≤ ‖u− uN‖a‖u− wN‖a ∀wN ∈ UN

(15)

where in the second equality, we used antilinearity in the second argument of
a. The third equality uses Galerkin orthogonality (14) and the inequality we
get by applying Cauchy-Schwarz. After reducing ‖u− uN‖a on both sides and
taking the infimum over all wN ∈ UN , we get the desired estimate, called

Lemma 1 (Céas Lemma)

‖u− uN‖a ≤ inf
wN∈UN

‖u− wN‖a (16)

This valuation builds the basis for most of the a posteriori error estimates, which
we will derive later on.

2.4 Finite element space

In this section we will specify how the finite dimensional spaces UN and VN
from the last section look like in practice and what bases would be the best
choice.

The basic idea is to partition our domain Ω into a mesh and then defining the
finite element space Sp

l (M)on it.
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A mesh M of Ω ⊂ Rd is a finite collection Ki
M
i=1 with M ∈ N of open, non-

degenerate intervals (d = 1) or polygons (d = 2) for which the following condi-
tions hold

i) Ω̄ =
M⋃
i=1

K̄i

ii)Ki ∩Kj = ∅ ⇔ i 6= j (17)

iii)∀i, j ∈ {1, ...,M}, i 6= j : K̄i ∩ K̄j =


∅
v ∈ V
e ∈ E

where V is the set of all vertices and E the set of all edges of M.

Sp
l (M) := {v ∈ Cl(Ω̄) : v|Ki ∈ Wpi(Ki)∀Ki ∈M} (18)

for Wk = Pk, Qk. The spaces Pk and Qk are named space of multivariate
respectively of tensor product polynomials of degree k ∈ N and defined in the
following way:

Pk(Rd) = {x ∈ Rd 7→
∑
α∈Nd0
|α|≤p

καxα, κα ∈ R}

Qk(Rd) = {x ∈ Rd 7→
∑
α∈Nd0

|αi|≤p∀i∈{1,2,..,d}

καxα, κα ∈ R} (19)

One can show that the following compatibility condition holds: Let Ω, Ω1,Ω2 ⊂
Rd bounded Lipschitz domains with Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = ∅. Then for
u ∈ L2(Ω), u|Ωi ∈ C1(Ω̄i), i = 1, 2 it holds:

u ∈ H1(Ω)⇔ u ∈ C(Ω̄) (20)

Thus we get that Sp
0 (M) ⊂ H1(Ω). If we take VN = UN = Sp

0 (M) (in notation
from section 2.3) we get by H1(Ω)-ellipticity of a that Sp

0 (M) is a valid space
for the Galerkin discretization.

2.5 A priori estimates

In this section we shortly give an idea how the error and the FEM behaves
asymptotically in the ideal case. To do this we are going to list some a priori
estimates without giving any proofs, since we need it just to relate our numer-
ical results with the theoretically best convergence behaviour. From this, we
want to get an idea when to choose h- and when p-refinement. Further we will
restrict ourselves to the one dimensional case, since all our computations will
take place in 1D.
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Theorem 1 Let Ω = (a, b) ⊂ R be an interval and M be any mesh in Ω.
Assume that u ∈ H1(Ω) satisfies

u′ ∈ Hki(Ki) ∀i ∈ {1, ...,M}, ki ≥ 1. (21)

Then there is a function s ∈ Sp
1 (M) such that

‖u′ − s′‖2L2(Ω) ≤
M∑
i=1

(
hi
2

)2si (pi − si)!
(pi + si)!

‖u′‖2Hsi (Ki)
(22)

‖u− s‖2L2(Ω) ≤
M∑
i=1

(
hi
2

)2ti+2 (pi − ti)!
pi(pi + 1)(pi + ti)!

‖u′‖2Hti (Ki) (23)

where 0 ≤ si, ti ≤ min(pi, ki). (c.f. [8, p.76])

Using Céas Lemma (16) and the continuity i.e. boundedness of the factors in
(1) we get that the estimate (22) of the theorem above also bounds the error of
the Galerkin solution in energy norm.
Taking N = dimSp

0 (M) ∼ p
h as a work measure, we get from the above theorem

that for pure h-refinement for u ∈ Hk(Ω) and h = maxi∈{1,..,M} hi and p =
mini∈{1,..,M} pi we have:

‖u− uN‖a ≤ CN−min(p,k) (24)

and for pure p-refinement we get:

‖u− uN‖a ≤ CN−k (25)

with C independent of h and p, but depending on k.
Moreover, for an analytic function u in Ω̄ we get that

‖u− uN‖a ≤ C e−κN , (26)

C independent of p, by local analytical extension of u into the power series on
an ellipsis centered around every element Ki (for more details see [6]).
For singular functions u we don’t get such a strong convergence, but combin-
ing h- and p- refinement usefully, one could attain the following convergence
rate:

‖u− uN‖a ≤ C e−κ
√
N (27)

with C, κ independent of h and p (for further information c.f. [8, 3.3.6, Thm.
3.36]).
From this result it follows directly that we get convergence for our FEM algo-
rithm if we either refine the mesh or ingrease the polynomial degree. Addition-
ally, one might recognize that for locally smooth functions (i.e. for functions
u ∈ Hki with ki big), it is more efficient to increase the polynomial degree pi
than refining hi.
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3 Basic adaptive algorithm for FEM

From here on, we will restrict ourselves to the one dimensional case of (2) and
(3) with homogeneous Dirichlet boundary conditions and b, c ≡ 0:
Find u ∈ H1

0 ((a, b)), for a ≤ b, a, b ∈ R and C piecewise constant∫ b

a

C(x)u′(x)v′(x) dx =
∫ b

a

f(x)v(x)dx ∀ v ∈ H1
0 ((a, b)). (28)

Now let us introduce the basic algorithm on which all the adaptive refinement
strategies in FEM are based on.

1. Initialization: We begin with a coarse uniform decomposition of Ω into
Elements K1, ...,KM represented by the vectors h and p, both of size M , con-
taining the length of the intervalls Ki and the local polynomial degree on Ki

for i ∈ {1, ...,M}. We call this decomposition K(0) and set j = 0.

2. Galerkin solution: On the current grid K(j), j ≥ 0, we solve the linear
system resulting from the discretized problem.

3. Error estimation: Based on the Galerkin solution we calculate an a
posteriori error estimate ε and store the local errors in the vector ε. If it holds
that ε < tol for some tolerance tol we are finished. Otherwise we continue
with

4. Marking elements: Now we choose the elements needing to be refined
using our local error estimates in ε.
The most common ways to decide whether an element has to be refined or not
are the maximum strategy and the fixed energy fraction. In fact we initialize a
vector mark of length M with

marki =

{
1 Ki has to be refined
0 Ki has not to be refined

5. Refinement of marked elements: Depending on our refinement strat-
egy:

Pure h-refinement : We refine all marked elements Kn by splitting hn into two
parts δhn and (1− δ)hn (usually δ = 1

2 ), i.e. changing the n-th entry of h into
δhn and enlarging the length of h and p by one element, placed immediately
after the nth entry and containing (1− δ)hn respectively pn.

pure p-refinement : We refine all marked elements Kn by enlarging the n-th
entry of p by s (usually, s = 1 is chosen).

automatic hp-refinement : We need a criterion which decides automatically be-
tween h-refinement and p-refinement on the marked element Kn in such a way
that the desirable convergence mentioned in (26) resp. (27) is to expect. (See
section 5 for details)
Finally we get a new refined decomposition K(j+1), set j = j + 1 and continue
with step 3.
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Until now, the steps 1. and 2. have been discussed. The next section will focus
on step 3, which is the basis and the most crucial step of adaptive h-, p- and
hp-refinement. Step 4 and 5 will be discussed later on in section 5.
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4 A posteriori estimates

In this section we want to focus on the crucial step of the adaptive algorithm,
the a posteriori error estimates.
We are going to look at two different ways to estimate the energy error of the
Galerkin solution, the first way derives an residual error estimator which can
be directly computed after having derived the Galerkin solution uN . The other
one is an equilibrating method, this means that an equilibrated local BVP is
solved to get the estimate.
For both estimators, we are going to show reliability, efficiency and locality.
For us, locality is important since otherwise we are not able to do adaptive
refinement.

An error estimator ε is reliable if

∃Crel : ‖u− uN‖a ≤ Crelε+ h.o.t. (29)

An error estimator ε is efficient if

∃Ceff : ε ≤ Ceff‖u− uN‖a + h.o.t. (30)

where h.o.t contains all functions converging in an higher order than ‖u−uN‖a,
i.e. converging o(‖u− uN‖a) and Ceff , Crel only depend on problem and mesh
parameters. (c.f. [9, p. 16, def. 1.2])

Moreover we derive more information about the dependencies of the constants
in (29) and (30) to get a better understanding of the convergence behaviour.
Satisfying these two properties guarantees that the estimator bounds the error
(reliability), behave in a similar way as the exact error does (efficiency and re-
liability) and gives a bound for the overestimation (efficiency).

4.1 Residual error estimation

In this subsection we fully discuss the properties of the following residual error
estimator (c.f. [3, p. 1111, 1112]) :

ε2Ki = ν2
Ki + δ2

Ki (31)

=
1

Cipi(pi + 1)
‖resKi‖2L2(Ki)

+
h2
i

4Cip2
i

‖f −Πq
Mf‖

2
L2(Ki)

∀i ∈ {1, 2, ...,M} (32)

ε2 =
M∑
i=1

ε2Ki (33)

where

resKi := Πp
Mf + Ciu

′′
N . (34)
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4.1.1 Reliability of the residual error estimate

We first want to estimate the following term for arbitrary v ∈ H1
0 (Ω) and

vN ∈ Sp
0 (M).

a(u− uN , v) = a(u− uN , v − vN ) (35)
= f(v − vN )− a(uN , v − vN ) (36)

=
∫

Ω

(f + (Cu′N )′)(v − vN ) dx+ (37)∑
z∈V

(C(z+)u′N (z+)− C(z−)u′N (z−))(v − vN (z))

=
∫

Ω

(f + (Cu′N )′)(v − vN ) dx (38)

in (36) Galerkin orthogonality is used and in (38) we exploit that

v(z) = vN (z)∀z ∈ V, (39)

if we choose vN in the following way:

vN |Kj (x) :=
∫ x

φ−1
j (−1)

sj(ν) dν + v(φ−1
j (−1)) (40)

where

sj(ν) =
pj−1∑
i=0

aji

√
2
hj
Li(φi(ν)) (41)

aji =
2i+ 1

2

∫
Kj

v′(ξ)

√
2
hj
Li(φj(ξ)) dξ, (42)

which are well defined, using the completeness of {Li(x)}∞i=0 in L2((−1, 1))
respectively {

√
2/hjLi(φj(x))}∞i=0 in L2(Kj). Then by definition

vN (φ−1
j (−1)) = v(φ−1

j (−1))∀j ∈ {1, ...,M} (43)

and further ∀j ∈ {1, ...,M}

v(φ−1
j (1))− v(φ−1

j (−1)) =
∫
Kj

v′(ν) dν = 2aj0 (44)

vN (φ−1
j (1))− vN (φ−1

j (−1)) =
∫
Kj

v′N (ν) dν = 2aj0 (45)

by the orthogonality properties of the Legendre polynomials. And therefore we
get the wanted property (39) of vN .

In the next part we continue with the derivation of our residual error esti-
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mate.

a(u− uN , v) =
M∑
i=1

∫
Ki

(f + Ciu
′′
N )(v − vN ) dx (46)

=
M∑
i=1

∫
Ki

(Πq
Mf + Ciu

′′
N + f −Πq

Mf)(v − vN ) dx (47)

=
M∑
i=1

∫
Ki

resKi(v − vN ) dx+
∫
Ki

(f −Πq
Mf)(v − vN ) dx (48)

where Πq
Mf is an arbitrary projection (for example the projection chosen in

(165)) of f onto Sq
0 (M) with qi ≥ pi + 1 ∀i ∈ {1, ...,M}. We continue by the

estimation of the first term. Using the bubble function

ωKi := (φ−1
i (1)− x)(x− φ−1

i (−1)) (49)

we get

|
∫
Ki

resKi(x)(v − vN )(x) dx| = |
∫
Ki

√
ωKi(x) resKi(x)

(v − vN )(x)√
ωKi(x)

dx| (50)

≤
(∫

Ki

ωKi(x)| resKi(x)|2 dx
∫
Ki

|(v − vN )(x)|2

ωKi(x)
dx
)1/2

(51)

≤
(∫

Ki

ωKi(x)| resKi(x)|2 dx
)1/2 1√

Cipi(pi + 1)
‖
√
Ci(v′ − v′N )‖L2(Ki) (52)

the last inequality is obtained using (40) and using that for x ∈ Ki it holds:

(v − vN )(x) =
∫ x

φ−1
i (−1)

∞∑
j=pi

aij

√
2
hi
Lj(φi(t)) dt (53)

=
∞∑
j=pi

aij

∫ x

φ−1
i (−1)

√
2
hi
Lj(φi(t)) dt. (54)

Further using (174) we get∫ x

φ−1
i (−1)

√
2
hi
Lj(φi(t)) dt =

√
hi√

2j(j + 1)
(φi(x)2 − 1)L′j(φi(x)), (55)
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and inserting this above:

∫
Ki

|(v − vN )(x)|2

ωKi(x)
dx =

∫
Ki

(∑∞
j=pi

aij
√
hi√

2j(j+1)
(φi(x)2 − 1)L′j(φi(x))

)2
(φ−1
i (1)− x)(x− φ−1

i (−1))
dx (56)

=
∞∑
j=pi

(aij)
2hi

2j2(j + 1)2

∫
Ki

−4
h2
i

(φi(x)2 − 1)L′j(φi(x))2 dx

(57)

=
∞∑
j=pi

2(aij)
2

hij2(j + 1)2

∫ 1

−1

(1− x2)L′j(x)2 dx (58)

=
∞∑
j=pi

j(j + 1)
j2(j + 1)2

2(aij)
2

(2j + 1)
(59)

≤ 1
Cipi(pi + 1)

‖
√
Ci(v′ − v′N )‖2L2(Ki)

. (60)

In the last inequality we make use of (171) and in (57) we use the definition of
our transformation φi(x) (see (154)), to get that

φi(x)− 1 = −2 + 2
x− a−

∑i−1
l=1 hl

hi
(61)

= − 2
hi

(
a+

i∑
l=1

hl − x

)
(62)

= − 2
hi

(
φ−1
i (1)− x

)
(63)

and analogously φi(x) + 1 = 2
hi

(
x− φ−1

i (−1)
)
.

Moreover in (58) we exploit that∫ 1

−1

(1− x2)L′i(x)L′j(x) dx = δij
2i(i+ 1)

2i+ 1
. (64)

With this, we arrive at equation (52).

Furthermore

‖
√
Ci(v′ − v′N )‖L2(Ki) ≤ ‖Ci

∞∑
j=pi

aij

√
2
hi
Lj(φi(x))‖L2(Ki) (65)

≤ ‖
√
Civ
′‖L2(Ki). (66)

The inequalities hold by definition of vN as an integral over the truncated Leg-
endre series of v′.

Continuing from (48) and repeating the same procedure as for the first term we
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get

a(u− uN , v) =
M∑
i=1

∫
Ki

resKi(v − vN ) dx+
∫
Ki

(f −Πq
Mf)(v − vN ) dx (67)

≤
M∑
i=1

(
‖√ωKi resKi ‖L2(Ki) + ‖√ωKi(f −Πq

Mf)‖L2(Ki)

)
· 1√

Cipi(pi + 1)
‖
√
Civ
′‖L2(Ki) (68)

and therefore applying (68) for v = u− uN and using that ωKi(x) ≤ h2
i /4 ∀x ∈

Ki we get that the demanded estimator (32) bounds the error in energy norm:

‖u− uN‖2a ≤
M∑
i=1

((νKi + δKi)‖u− uN‖a,Ki) (69)

≤

√√√√ M∑
i=1

(ν2
Ki

+ δ2
Ki

)‖u− uN‖a (70)

where the last inequality follows by applying Cauchy-Schwarz for sums and
shows reliability of our estimator ε with Crel = 1.

4.1.2 Efficiency of the residual error estimator

To get our error estimator bounded from above by the energy error, we extend
the the proof written down breathly in [3, p. 1112]. First we use that equations
(48) hold for an arbitrary v ∈ H1

0 (Ω) and vN ∈ Sp
1 (M), such that (39) holds.

For every i ∈ {1, 2, ...,M} we set

v :=

{
ωKi resKi x ∈ Ki

0 otherwise
(71)

vN :≡ 0 (72)

with ωKi defined as in (49). v lies for sure in H1
0 (Ω) since it is piecewise

smooth.

We get the following result:∫
Ki

ωKi(resKi)
2 dx =

∫
Ki

{
Ci(u− uN )′(ωKi resKi)

′

− (f −Πq
Mf)ωKi resKi

}
dx (73)

≤ ‖u− uN‖a,Ki‖(ωKi resKi)
′‖L2(Ki)

+ ‖√ωKi(f −Πq
Mf)‖L2(Ki)‖

√
ωKi resKi ‖L2(Ki) (74)

using Cauchy-Schwarz inequality and that Ci are constants which can be switched
in and out of the integral without changing anything. Now we introduce an in-
verse estimate for w ∈ Pq for some q ∈ N:

‖(ωKiw)′‖L2(Ki) ≤ 4(q + 1)‖√ωKiw‖L2(Ki) (75)
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which can be shown in a similar way as in (56)−(60) (c.f. [3, p.1110]). Applying
this estimate to resKi ∈ Pqi in (74), we get

‖√ωKi resKi ‖L2(Ki) ≤
(
4(qi + 1)‖u− uN‖a,Ki + ‖√ωKi(f −Πq

Mf)‖L2(Ki)

)
(76)

≤ 4(
qi
pi

+ 1)pi

(
‖u− uN‖a,Ki +

hi
2pi
‖(f −Πq

Mf)‖L2(Ki)

)
(77)

exploiting that the bubble function satisfies ωKi(x) ≤ h2
i /4 ∀x ∈ Ki, 1

pi
≤ 1 and

1
qi+1 ≤

1
pi

after definition of qi (see paragraph following after (48)). By using
that for arbitrary values x, y ∈ R it holds

x+ y =
√
x2 + 2xy + y2 ≤

√
4x2 + 4y2 = 2

√
x2 + y2 (78)

we arrive at our goal:

‖√ωKi resKi ‖L2(Ki) ≤ 8(
qi
pi

+ 1)pi

√
‖u− uN‖2a,Ki +

h2
i

4p2
i

‖(f −Πq
Mf)‖2L2(Ki)

(79)

= Ceff

√
‖u− uN‖2a,Ki + δ2

Ki
(80)

which shows efficiency of the residual error estimator with constant

Ceff = 8 · max
i∈{1,...,M}

{
qi
pi

}
+ 1

Remark: It is assumed that the oscillation term δKi converges higher order
than the error of the Galerkin discretization in energy norm (data saturation
assumption). Computationally we enforce this by using the implicit interpola-
tion of a high order quadrature for the integration or taking the L2-projection
onto the polynomial space Sq

0 (M), with q choosen big enough.

4.2 Equilibrated error estimator

To get an estimation of the error in energy norm, this estimator, described
in [2], is a linear combination of the solutions of the new local boundary value
problems containing projected and equilibrated terms:

For i ∈ {1, 2, ...,M − 1} find σi ∈ RT p+1
−1 (supp(Ψi)):

σ′i = rKi inK ∈ supp(Ψi) (81)

σ−i (xi)− σ+
i (xi) = (rxii )− − (rxii )+ (82)

σi(xi−1) = σωi(xi+1) = 0 (83)

with

rKi := Ψi (Π(f) + Cu′′N ) (84)

(rxii )− − (rxii )+ := C(xi)−(u′N )−(xi)− C(xi)+(u′N )+(xi) (85)

19



where Ψi is the hat basis function associated with the vertex φ−1
i (1) =: xi

(x0 := φ−1
1 (−1)), supp(Ψi) = Ki ∪Ki+1, Π(f) is the L2-orthogonal projection

of f onto Sp
0 (M) and

RT p−1(D) := {τ ∈ L2(D) : τ |K ∈ Pp+1, T ⊂ D,T ∈M} (86)

is the broken Raviart-Thomas space defined on a domain D.
Outside of supp(Ψi) we extend σi by the zero-function.

The error estimator coming out of this local problem looks as follows:

ε2hyp :=
M∑
i=1

ε2hyp,Ki (87)

ε2hyp,Ki := ‖ 1√
Ci
σ∆‖2L2(Ki)

+
h2
i

4Cip2
i

‖f −Π(f)‖2L2(Ki)
(88)

σ∆ :=
M−1∑
i=1

σi (89)

We directly begin with showing reliability and efficiency. For the proof of effi-
ciency and p-robustness, we are just going to give an idea of the construction,
since the whole proof is quite long. We refer to the results in the paper of
Braess [2].
P-robustness is a rare but very desirable property of error estimators, since from
this we get an estimator for the error without any p-dependent constant. This
means that we do not have a loss of efficiency for large p.

4.2.1 Reliability of the equilibrated error estimator

Reliability follows from a famous Theorem of Prager and Synge, called hyper-
circle method (c.f. [1, p. 141]).

Theorem 2 Let v ∈ H1
0 (Ω) for Ω = (a, b) satisfying σ′ + f = 0.

Then it holds for the solution u of (28):

‖u− v‖2a + ‖ 1√
C

(Cu′ − σ)‖2L2(Ω) = ‖
√
C(v′ − 1

C
σ)‖2L2(Ω). (90)
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Proof:

‖ 1√
C

(Cv′ − σ)‖L2(Ω) =
∫

Ω

1
C

(Cv′ − σ)2 dx (91)

=
∫

Ω

(v′ − 1
C
σ)(Cv′ − σ) dx (92)

=
∫

Ω

C(v′ − 1
C
σ)2 dx (93)

=
∫

Ω

C(v′ − u′)(v′ − 1
C
σ) dx

+
∫

Ω

C(u′ − 1
C
σ)(v′ − 1

C
σ) dx (94)

= ‖v − u‖2a + 2
∫

Ω

C(v′ − u′)(u′ − 1
C
σ) dx

+ ‖
√
C(u′ − 1

C
σ)‖2L2(Ω) (95)

where, using that C is piecewise constant and applying integration by parts we
get for the integral in (95):∫

Ω

C(v′ − u′)(u′ − 1
C
σ) dx = −

∫
Ω

(v − u)(Cu′′ − σ′) dx

+ (u(x)− v(x))(C(x)u′(x)− σ(x))|bx=a (96)
= 0 (97)

using that Cu′′ = −f = σ′ and v(a) = v(b) = u(a) = u(b) = 0 by definition.
Thus the theorem is proven (c.f. [1].

Remark: We notice that (90) also holds locally on the elements Kj , setting
v = uN and using what is stated in (116).

Using that for our σ∆ it holds by definition

(σ∆)′ =
M−1∑
i=1

σ′i =
M−1∑
i=1

Ψi (Π(f) + Cu′′N ) = Π(f) + Cu′′N . (98)

If we use the hypercircle method with σ := σ∆ −Cu′N , f := Π(f) and v := uN ,
we get

‖ũ− uN‖a ≤ ‖
√
C(u′N −

1
C

(σ∆ − Cu′N ))‖L2(Ω) = ‖ 1√
C
σ∆‖L2(Ω) (99)

where ũ is the solution of (28) with right hand side Π(f).

Applying that the inequality holds also locally we substitute Ω by Ki. Further
using the results written down in (68) and derived there before by analyzing the
residual error estimator

‖
√
Ci(u− ũ)‖2L2(Ki)

≤ hi

2
√
Cipi

‖f −Π(f)‖L2(Ki)‖
√
Ci(u− ũ)‖L2(Ki), (100)
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we arrive at our aim that the estimator is reliable with constant Crel = 1:

‖u− uN‖2a = ‖u− ũ‖2a + ‖ũ− uN‖2a (101)

≤
M∑
i=1

(
h2
i

4Cip2
i

‖f −Π(f)‖2L2(Ki)
+ ‖ 1√

Ci
σ∆‖L2(Ki)

)
(102)

= ε2hyp. (103)

This error estimator makes use of the fact that we just need to solve the mixed
problem above with a polynomial right hand side as derived by analyzing the
residual error estimator. It makes life much easier, since we now can solve the
problem pointwise on every element K by just integrating over rKωi ∈ Pp+1

(this integration is exact for quadrature of order p+1), thus the result lies in
RT p+1
−1 (supp(Ψi)). By fitting the constants (c.f. implementation found in 8.3.2)

we get our σi. Existence of the σi is then given by the fact, that

< ri, 1 >= 0 < ri, v > := a(ũ− uN ,Ψiv) (104)

=
∫

supp(Ψi)

Π(f)Ψiv dx− a(ΨiuN , v) (105)

=
i+1∑
j=i

(∫
Kj

r
Kj
i v dx

)
+ (rxii )−v(xi)− − (rxii )+v(xi)+

(106)

using Galerkin orthogonality and that the constant function 1 ∈ Sp
0 (M) (c.f.

[2]).

4.2.2 Efficiency of the equilibrated error estimator

As already stated above, only an idea of the proof is given here. For more
details, see [2], where the proof is explained in detail for the two-dimensional
case.

We first have to show that the dual norm of the local residuals

‖ri‖∗ := sup
v∈H1(supp(Ψi))/R

< r, v >

‖v′‖L2(supp(Ψi))
(107)

is bounded by the energy norm of the error ‖ũ − uN‖a,supp(Ψi) with constants
independent of hi and pi, i ∈ {1, 2, ...,M}.
After that it is proven, that for our ri with rKi ∈ Pp+ 1(K) we get

< ri, 1 >= 0 =⇒ inf
σ∈RTp+1

−1,0

σ′=ri

‖σ‖L2(supp(Ψi)) ≤ C‖ri‖∗ (108)

with C independent of hi and pi, i ∈ {1, 2, ...,M} and

RT p+1
−1,0 :=

{
v ∈ RT p+1

−1 | v|∂ supp(Ψi) = 0
}
. (109)

Thus the result follows by first applying (101) and (100) and afterwards com-
bining with the two statements (107), (108).
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5 Marking and Refinement

5.1 Marking elements

In this section we explain in detail what is shortly mentioned in part 4 of our
basic algorithm for adaptive FEM. Our aim is to mark those elements of our
decomposition K(j) which promise to decrease our error the most after being
refined. The main considerations which give rise to the strategies are quite
intuitive (c.f. [3, 3.2, (3)]).
Refinement has to be done on elements with big estimated local error εKi0
compared to the error εKi of the others. The two most common techniques are
the maximum strategy and the fixed energy fraction.

5.1.1 Maximum strategy

For θ ∈ (0, 1) set

marki = 1 :⇔ εKi ≥ (1− θ) max
i∈{1,..,M}

εKi (110)

5.1.2 Fixed energy fraction

For θ ∈ (0, 1) define mark such that

M∑
i=1

markiε
2
Ki ≥ θ

2
M∑
i=1

ε2Ki (111)

To be efficient, mark should be chosen as small as possible fulfilling the property
(111).
For hp-refinement, we are going to introduce a weighted fixed energy fraction,
defined in the following way:
For θ ∈ (0, 1) and weights Ii, i ∈ {1, ...,M} define mark such that

M∑
i=1

marki(IiεKi)
2 ≥ θ2

M∑
i=1

ε2Ki (112)

5.2 Refinement of marked elements

For pure h- and p-refinement, the marking strategy is all we need.
But for the mixed hp-refinement we have to discuss how to find reasonable auto-
matic decision criteria. Going back to the a priori error estimates written down
in 2.5, we conclude that it might be reasonable to search for information about
the local analyticity of our solution u.
The decision criterion we are going to discuss first does this by expanding u
locally into its Legendre series and estimating its Bernstein radius.
Further we are going to discuss another approach which generates a minimiza-
tion problem out of which we get the marking of elements together with the
most efficient refinement pattern.
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5.2.1 Estimation of analyticity

The idea is to estimate the local regularity on Kj of the exact solution u by
calculating the coefficients bji of its Legendre series and estimating the elemental
Bernstein radius (The Bernstein radius ρj = 2(a+b)

hj
, where a is the length of

the semi-major and b the length of the semi-minor axes, is the radius of the
ellipse on whose interior the Legendre series converges absolutely and uniformly
on any closed set).
We are able to calculate the first Legendre coefficients bji for i ∈ {0, ..., pj} of u
since they are identical to those of uN . The reason why follows from the fact
that for c(x) ≡ 0 we have using the Galerkin orthogonality for v|Kj (x) = x ∈
Sp

0 (M):

0 = a(u− uN , v) (113)

=
∫
Kj

Cj(u− uN )′(x) dx (114)

= Cj(u− uN )(φ−1
j (1))− Cj(u− uN )(φ−1

j (−1)) (115)

using that the homogeneous Dirichlet boundary conditions also hold for the
Galerkin discretization uN , we get:
∀j ∈ {1, ...,M}

u(φ−1
j (1)) = uN (φ−1

j (1)) (116)

u(a) = uN (a) = 0 (117)

and therefore we can write uN in the form (40) since it follows by construction
of Sp

0 (M): ∫
Kj

Cj(u− uN )′(x)v′(x) dx = 0 ∀v ∈ Sp
0 (M) (118)

⇔
∫
Kj

Cj(u− uN )′(x)v′(x) dx = 0 ∀v ∈ Ppj (Kj) (119)

⇔
∫
Kj

Cj(u− uN )′(x)w(x) dx = 0 ∀w ∈ Ppj−1(Kj) (120)

(121)

which implies

Πpj−1
Kj

(u− uN )′(x) = Πpj−1
Kj

u′(x)− u′N (x) = 0 ∀x ∈ Kj (122)

and hence ∫ x

φ−1
j (−1)

Πpj−1
Kj

u′(ν) dν = uN (x)− uN (φ−1
j (−1))

= uN (x)− u(φ−1
j (−1)) ∀x ∈ Kj . (123)

The last equality follows by (116).
Now applying integration by parts to (120) we get together with the nodal
exactness of uN that∫

Kj

Cj(u− uN )(x)w(x) dx = 0 ∀w ∈ Ppj−2(Kj). (124)
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Further, making use of the properties of the Legendre polynomials, we get that
the first pi + 1 Legendre coefficients of the solution u are identical to those of
uN .

Let us now look back at the Bernstein radius, which is obtained by calculat-
ing

lim sup
i→∞

|bji |
1/i =

1
ρj

=: θj , (125)

but we have to settle for a computable approximation θ̂j of θj . We will get θ̂j
in the following way:
First we take the i-th power of equation (125) and then apply the logarithm:

log |bji | ∼ i log
1
ρj

i→∞ (126)

Now we fit the slope mj in

|log|bji || = imj + nj (127)

by linear regression to the already computed yi := log|bji | for i ∈ {0, ..., pj} and
get:

mj = 6
2
∑pj−2
i=0 iyi − (pj − 2)

∑pj−2
i=0 yi

(pj − 1)((pj − 1)2 − 1)
(128)

which can be used for the approximation as:

θ̂j = e−mj (129)

Our completed algorithm now decides between h- and p-refinement based on an
arbitrarily chooseable parameter θ ∈ (0, 1):{

p-refinement if θ̂j >= θ

h-refinement otherwise
. (130)

For more details on this decider, we refer to the article [7].

5.2.2 Minimization

The idea is to choose the most effective refinement pattern out of patterns
{1, 2, ..., l} for l ∈ {1, 2, ..., 5} on every element which has to be refined.

1. bisection:
subdivision of Kj into K ′ and K ′′ where h′ = h′′ = 1

2hj

2. common p-refinement:
the polynomial degree pj on Kj is increased by 1

3. graded bisection:
subdivision of Kj into K ′ and K ′′ where h′ = 0.15hj and h′′ = 0.85hj
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4. graded bisection:
subdivision of Kj into K ′ and K ′′ where h′ = 0.85hj and h′′ = 0.15hj

5. p-refinement:
the polynomial degree pj on Kj is increased by 2

The is composed of two steps:

• one solves for every pattern l ∈ {1, ..., 5} a local problem to get an index
for its efficiency

• by a minimization problem we determine the most effective pattern on
each element and which elements need to be refined

In the following we will discuss the two steps in detail:

Step 1: Getting a local index for efficiency

First we have to define the index of efficiency βlKi for every pattern l ∈ {1, 2, ..., 5}.

βlKi :=
pi

‖√ωKi resKi ‖L2(Ki)
sup

w̃N∈Ṽ lN,Ki

{∫
Ki

resKi w̃N dx

‖w̃N‖L2(Ki)

}
(131)

where Ṽ lN,Ki is the new FES of functions with compact support in Ki, locally
refined by pattern l. By few transformations (applying the same property as
used in (52) to ‖w̃′N‖L2(Ki)) we can interpret the index as the angle between
span {√ωKi resKi}, which represents the span of our energy error indicating
function (see (34)), and the new refined space times 1√

ωKi
. This is an index

of efficience of the refinement in the following way: The bigger the angle the
smaller the projection of √ωKi resKi onto our new space, the smaller we ex-
pect the L2-norm of the residual times the bubble function √ωKi in our new
refined space to be. Moreover the estimate in (32) shows that a minimal norm
of this type gives us a minimal bound from below for the energy error of the
new Galerkin solution.

To compute βlKi we take advantage of the fact that the solution z̃lN ∈ Ṽ lN,Ki
of ∫

Ki

(z̃lN )′(x)w̃′N (x) dx =
∫
Ki

resKi(x)w̃N (x) dx ∀w̃N ∈ Ṽ lN,Ki (132)

satisfies ∫
Ki

resKi w̃N dx

‖w̃′N‖L2(Ki)
=

∫
Ki

(z̃lN )′w̃′N dx

‖w̃′N‖L2(Ki)
(133)

≤
‖(z̃lN )′‖L2(Ki)‖w̃′N‖L2(Ki)

‖w̃′N‖L2(Ki)
(134)

= ‖(z̃lN )′‖L2(Ki) (135)

=

∫
Ki

resKi z̃
l
N dx

‖(z̃lN )′‖L2(Ki)

(136)
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and thus by definition

βlKi =
pi

‖√ωKi resKi ‖L2(Ki)
‖(z̃lN )′‖L2(Ki) (137)

Step 2: Minimization problem

Let A(j) ⊂ K(j) be the set containing elements needing to be refined in the
jth refinement step, then the above mentioned minimization problem looks as
follows:
Find A(j) ⊂ K(j) and (lKi)

M
i=1 such that

M∑
i=1

dof lKiKi

β
lKi
Ki

−→ min, (138)

under the constraint that the weighted fixed energy fraction holds∑
Ki∈A(j)

(
β
lKi
Ki
εKi

)2

≥ θ2
∑

Ki∈K(j)

ε2Ki (139)

where dof lKi is the new number of local degrees of freedom after having applied
pattern l to the local FES and εKi is a local error indicator. The parameter
θ ∈ (0, 1) can be chosen arbitrarily.
In practice, using that the summands in (138) are all positive by definition, we
find the minimum by choosing lKi in such a way that

lKi := argminl∈{1,...,5}

{
dof lKi
βlKi

}
. (140)

Further we construct A(j) in such a way that it is as small as possible, while
still fulfilling the constraint.
In the case that the constraint can not be fulfilled, we will choose θ and lKi
in a way explained in the next paragraph. It would be favourable to make the
constraint hold since one can show that satisfying the constraint implies uniform
decrease of the error in energy norm as stated and shown in [3, p.1115 ff].

Thus we will choose θ ∈ (0, 1) and lKi in such a way that:

1. θ ∈ (0, β0), if β0 > 0
where β0 := mini∈{1,..,M}

(
minl∈{1,..,5}(βlKi)

)
and lKi as explained above

in (140).

2. θ ∈ (0, β1w0), if β1w0 > 0

where w0 := mini∈{1,..,M}

(
minl,l′∈{1,..,5}(

doflKi
dofl

′
Ki

)
)
−ε for some small ε > 0

and lKi as explained above in (140).

3. θ ∈ (0, β1), if β1 > 0
where β0 := mini∈{1,..,M}

(
maxl∈{1,..,5}(βlKi)

)
and lKi := argmaxl∈{1,..,5}(βlKi).
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where the list is sorted in descending priority. It is left to the reader to ensure
that the conditions listed above in every option ensure the constraint to hold.
If none of the conditions can be fulfilled, we continue by a global refinement step.

For more information about this hp-decider, see [3].
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6 Numerical experiments and results

After the theoretical discussions, we are going to discuss the solution of the
problem written down in (28) with C = 1 and (a, b) = (0, 1) for the following
right hand sides f :

f1(x) = (1 + sχ(v,w)(x)) sin(2πx) s, v, w ∈ R (141)

f2(x) = sin(2π eαx) α ∈ R+ (142)

where

χ(v,w) :=

{
1 x ∈ (v, w)
0 otherwise

. (143)

Looking at the a priori estimates written down in 2.5, we expect the adaptive
FEM algorithm to converge exponentially in

√
N for hp-refinement and alge-

braically in N for pure h-refinement and pure p-refinement, where N is the
number of degrees of freedom.

6.1 Results for f1

The function f1 we have taken in our experiments to analize, how the algorithms
behave at discontinuities.
For f1, to be efficient, the algorithms should prefer h-refinement in regions
around v and w, since in v and w we have a discontinuity, and p-refinement in
the other parts of (0, 1), since the function is locally smooth there.

The results show that for f1 all the algorithms react on the jumps in v and w:
Refinement is done mostly at the elements containing v or w, where the local
error is one of the largest. This is absolutely what we expect from theory and
want the algorithms to do. But suprisingly, not only h-refinement has been
applied at these discontinuities, but also p-refinement. In the results from all
the algorithms, the highest local polynomial degree is found on the elements
situated around v and w.

The reason might be that the deciders often do not take the theoretically optimal
decision. The decider solving the minimization problem is better in choosing
a efficient refinement, as we see by comparing figures 1-4. A reasonable ex-
planation could be, that the algorithm estimating the local analyticity of the
function makes by construction a lot of approximations to compute some lim-
its. The idea of the decider to solve a minimization problem, i.e. to compare
the effect of different refinements on the error seems to be more reasonable and
accurate. But we should have in mind that it is still only an approximation,
which might cause errors. Thus, it is not surprising, knowing what the theo-
retical background tells us, that the convergence of the energy errors is quite
a bit better for the minimization-decider. But there is no obvious difference
between the algorithms using a different error estimator (c.f. exact errors in
figure 5). The theoretically expected exponential convergence in

√
N is given

for all hp-adaptive algorithms, since the graphs describe more or less straight
lines.
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Analyzing the convergence plot in figure 5, we recognize that the equilibrated
error estimator underestimates the error while the residual error estimator over-
estimates the error. From the theoretical point of view, both error estimators
should overestimate the error with coefficient Crel = 1. The residual error es-
timator behaves as expected, but with the equilibrated one, there might be
something wrong. Since the behaviour of the estimator is similar to the exact
error, we might think that the reason could be the data oscillation term, which
has been neglected in the implementation. But neither taking higher order
quadrature nor increasing the polynomial space, where we project the function
f on, redoes the underestimation of the equilibrated error estimator. Thus there
might be a constant term missing in the implementation of the equilibrated error
estimator which has not been found yet.

In spite of this underestimation, the algorithms using the equilibrated error esti-
mator converge quite fast. The theoretically expected exponential convergence
is given for all hp-adaptive algorithms, since the graphs in figure 5 describe more
or less straight lines.

In figure 6 the convergence behaviour of algorithms combining the residual error
estimator with the weighted fixed energy fraction and the hp-decider solving the
minimization problem is plotted for different options of patterns (c.f. 5.2.2).
We can see that both pure h- and p-refinement are not as fast converging as the
hp-adaptive algorithms, again as the theoretical analysis predicts. But there is
no obvious difference between the variuos algorithms using h- and p- refinement,
except the last one (Pattern 1-5). This algorithm has, compared to the others,
the additional choice to increase the local polynomial degree by 2.
Analyzing the refinement steps of this algorithm, we notice that the pattern 5
is chosen often, even on elements containing v and w. This is in contrast to
the theory which would recommend h-refinement there. As above, the decider
prefers p-refinement, the reason is probably that the function is smooth resp.
behaves nicely except in the two jumps in v and w (c.f. refinement behaviour
of the smooth but highly oscillating function f2, where tendencially more h-
refinement has been chosen).

In the last figure containing data about the function f1, we see the exact error
plotted vs. the execution time of the different algorithms. The algorithm com-
bining the residual error estimator with the weighted fixed energy fraction is the
most efficient one. In general, the residual error estimator gives better results.
The reason is probably the inefficient implementation of the equilibrated error
estimator, since the convergence rates of the error vs. degrees of freedom are
similar for both estimators.
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Figure 1: FES data of the adaptive algorithm combining the residual error
estimator with the maximum marking strategy (θ = 0.2) and the hp decider
estimating analyticity(θ = 0.3) for f1 with v = 0.2, w = 0.8, s = 1
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Figure 2: FES data of the adaptive algorithm combining the equilibrated error
estimator with the maximum marking strategy (θ = 0.2) and the hp decider
estimating analyticity(θ = 0.3) for f1 with v = 0.2, w = 0.8, s = 1
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Figure 3: FES data of the adaptive algorithm combining the residual error
estimator with the weighted fixed energy fraction (θ = 0.2) and the hp decider
solving a minimization problem for f1 with v = 0.2, w = 0.8, s = 1
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Figure 4: FES data of the adaptive algorithm combining the equilibrated error
estimator with the weighted fixed energy fraction (θ = 0.2) and the hp decider
solving a minimization problem for f1 with v = 0.2, w = 0.8, s = 1
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Figure 5: Convergency of the energy error for f1 with v = 0.2, w = 0.8, s = 1,
for the hp adaptive algorithms whose FES data is plotted above.
The abbreviations in the legend mean the following:
est.: estimated error in energy norm
exact : exact error in energy norm
equil.: equilibrated error estimator
res.: residual error estimator
max : maximum marking strategy
w. energy : weighted fixed energy fraction
anal.: hp decision by analyticity
min.: hp decision by solving the minimization problem
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Figure 6: Convergency of the algorithm consisting of the residual error esti-
mator, the weighted fixed energy fraction for marking elements and the hp
decisioner which solves a minimization problem. Plotted is the convergence us-
ing different patterns (see first part of the subsection minimization) for f1 with
v = 0.2, w = 0.8 and s = 1.
The abbreviations in the legend mean the following:
only p: Only the common p-refinement is applied (algorithm uses only fixed
energy fraction and then does p-refinement).
pattern 1 : Only h-refinement (bisection) is applied (algorithm uses only fixed
energy fraction and then does h-refinement).
pattern 1-2 : In every step there is to choose between h- and p- refinement by
solving the minimization problem.
pattern 1-3 : As in in pattern 1-2 but additionally there is a pattern doing
graded bisection (h′ = 0.15h, h′′ = 0.85h).
pattern 1-4 : As in in pattern 1-3 but additionally there is a pattern doing
another graded bisection (h′ = 0.85h, h′′ = 0.15h).
pattern 1-5 : As in in pattern 1-4 but additionally there is a pattern doing
another p-refinement (p = p+ 2).
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Figure 7: Efficiency of the algorithms in reducing the exact error in time for f1

with v = 0.2, w = 0.8, s = 1, again for the hp adaptive algorithms whose FES
data is plotted above.
The abbreviations in the legend mean the following:
equil.: equilibrated error estimator
res.: residual error estimator
max : maximum marking strategy
w. energy : weighted fixed energy fraction
anal.: hp decision by analyticity
min.: hp decision by solving the minimization problem
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6.2 Results for f2

The challenge for the algorithm is to get an accurate enough solution in spite
of the high oscillation of f2 near 1. f2 is a smooth function and thus the hp-
algorithms should do p-refinemnent the most to be efficient. Further it should
notice the increasing oscillation of the function towards 1 and hence doing more
and more refinement near 1.

The results nicely show that towards 1 there is indeed more refinement done
than in the other regions. Near 1, the size of the elements is getting smaller, thus
a lot of h-refinement has been applied. Nevertheless, doing p-refinement would
be better, not just theoretically, as convergence plots confirm (c.f. convergence
plot 13).

Again, with the decider estimating the local analyticity we get good (exponential
convergence is again attained), but not as good convergence results as with the
decider solving the minimization problem. Looking at the FES data, we observe
that the analyticity-decider prefers h-refinement, whereas the other one does in
general more p-refinement and only increases the h-refinement steps slightly near
1. That could be the reason for the better convergence of the second one.

Now we are going to examine the difference between the results of the two
error estimators. Similarly to the case of f1, the equilibrated error estimator
underestimates the error. This underlines again the conclusion made during the
analysis of f1: there might be a constant missing in the implementation.

In figure 13 we see the convergence behaviour of algorithms combining the resid-
ual error estimator with the weighted fixed energy fraction and the hp-decider
solving the minimization problem and having different options of patterns (c.f.
5.2.2). This time, the algorithm doing pure p-refinement steps converges best.
This is exactly what we theoretically expect. Also the hp-algorithm who choses
the refinement out of patterns 1−5 converges better than the other hp-adaptive
algorithms. Again, this is not surprising, since pattern 5, increasing the local
polynomial degree by 2, would be the best choice ( f2 is smooth). Nevertheless,
there are only few differences between the exponential convergence behaviour of
the hp-adaptive algorithms. Only the algorithm using pure h-refinement con-
verges quite slowly and algebraically (we notice the slight decrease of the slope
of the graphs marked by squares).

The graphs in figure 14, showing the efficiency of the algorithms, look quite
different than for f1. The convergence of the algorithms with the hp-decider
estimating analyticity is better than the convergence of the others. This stands
in contrast to the convergence of the exact energy error plotted relatively to
the degrees of freedom. Moreover the algorithm using the equilibrated error
estimator converges best.
An explication for this behaviour we find in the construction of the hp-deciders.
The hp-decider estimating analyticity is much cheaper to compute than the
other one. Therefore running time per iteration is quite a bit shorter. For
the smooth function f2, the faster running time per iteration wins over the
algorithm’s inefficient choice between h- and p-refinement. Thus, it is faster
despite doing more refinement steps.

39



For f1 this is not the case since we have discontinuities in v and w. It makes a
huge difference if the algorithm executes a p- or a h-refinement step. Doing h-
refinement improves the error remarkably while applying p-refinement the error
remains more or less the same. Thus it is much more important to choose the
most efficient refinement pattern near discontinuities. It therefore pays off to
use the more expensive but accurate minimization-decider.
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Figure 8: FES data of the adaptive algorithm combining the residual error
estimator with the maximum marking strategy (θ = 0.2) and the hp decider
estimating analyticity(θ = 0.3) for f2 with α = 2.5

40



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

FES data at iteration 10

partition of (0,1)

e
le

m
e

n
ta

l
p

o
ly

n
o

m
ia

l
d

e
g

re
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

FES data at iteration 20

partition of (0,1)

e
le

m
e

n
ta

l
p

o
ly

n
o

m
ia

l
d

e
g

re
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

partition of (0,1)

e
le

m
e

n
ta

l
p

o
ly

n
o

m
ia

l
d

e
g

re
e

FES data at iteration 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

f(
x
)

x

plot of right hand side

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5
x 10

−3

u
(x

)

x

plot of solution

Figure 9: FES data of the adaptive algorithm combining the equilibrated error
estimator with the maximum marking strategy (θ = 0.2) and the hp decider
estimating analyticity(θ = 0.3) for f2 with α = 2.5
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Figure 10: FES data of the adaptive algorithm combining the residual error
estimator with the weighted fixed energy fraction (θ = 0.2) and the hp decider
solving a minimization problem for f2 with α = 2.5
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Figure 11: FES data of the adaptive algorithm combining the equilibrated error
estimator with the weighted fixed energy fraction (θ = 0.2) and the hp decider
solving a minimization problem for f2 with α = 2.5
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Figure 12: Convergency of the energy error for f2 with α = 2.5, for the hp
adaptive algorithms whose FES data is plotted above.
The abbreviations in the legend mean the following:
est.: estimated error in energy norm
exact : exact error in energy norm
equil.: equilibrated error estimator
res.: residual error estimator
max : maximum marking strategy
w. energy : weighted fixed energy fraction
anal.: hp decision by analyticity
min.: hp decision by solving the minimization problem
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Figure 13: Convergency of the algorithm consisting of the residual error es-
timator, the weighted fixed energy fraction for marking elements and the hp
decisioner which solves a minimization problem. Plotted is the convergence us-
ing different patterns (see first part of the subsection minimization) for f2 with
α = 2.5.
The abbreviations in the legend mean the following:
only p: Only the common p-refinement is applied (algorithm uses only fixed
energy fraction and then does p-refinement).
pattern 1 : Only h-refinement (bisection) is applied (algorithm uses only fixed
energy fraction and then does h-refinement).
pattern 1-2 : In every step there is to choose between h- and p- refinement by
solving the minimization problem.
pattern 1-3 : As in in pattern 1-2 but additionally there is a pattern doing
graded bisection (h′ = 0.15h, h′′ = 0.85h).
pattern 1-4 : As in in pattern 1-3 but additionally there is a pattern doing
another graded bisection (h′ = 0.85h, h′′ = 0.15h).
pattern 1-5 : As in in pattern 1-4 but additionally there is a pattern doing
another p-refinement (p = p+ 2).
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Figure 14: Efficiency of the algorithms in reducing the exact error in time for f2
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res.: residual error estimator
max : maximum marking strategy
w. energy : weighted fixed energy fraction
anal.: hp decision by analyticity
min.: hp decision by solving the minimization problem
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7 Conclusion

Looking back we have theoretically derived and implemented different hp-adaptive
algorithms, consisting of freely mixed combinations of two error estimators and
two hp-deciders. Quite some time was needed for the implementation of the
1D-hp-FEM framework. Programming skills have been improved and a lot has
been learned by planning this big framework.

The results of the implementations are satisfactory: All adaptive algorithms
yield exponential convergence to the exact solution. The behaviour of the dif-
ferent error estimators is quite similar, although there remains an unexplained
underestimation by the equilibrated error estimator. On the other hand we get
noticable differences with the choice of the hp-deciders. Close inspection has
shown that the decider estimating the analyticity of the solution can be recom-
mended if the solution is expected to be quite smooth. In every case, the other
decider is a more robust, albeit expensive choice.

Further investigations could search for the causes of the underestimation of
the equilibrating error estimator, resp. find a probably missing constant. In
general, the efficient implementation of the algorithms did not lie in the focus
of this thesis and could be a natural choice for ongoing work.
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8 Documentation of Implementation

8.1 General structure of the program

Here we will look at the main structure of the implementation. First there is a
initialization of general parameters and variables.

1 %% Initialization

3 clear all;

5 % start timer

tstart = tic;

7
% Grid and PDE-coefficients

9 h = [1/3;1/3;1/3];

p = 2*ones(size(h));

11 a = 0;

C = ones(size(p));

13 c = zeros(size(p));

15 % Weight for marking elements , has to be in (0,1)

theta = 0.2;

17
% parameter , necessary for knapsack algorithm (used in fixed energy fraction)

19 nu = 0.1;

21 % parameter , used in hp-decider (analyticity)

gamma = 0.3;

23
% stores the number of h- or p-refinements

25 % o is initialized for the hp-decider (min), 1<=o<=5,

% for the other decider (analyticity) it is set to o=2.

27 o = 2;

number = zeros(1,o);

29
% tolerance and iteration control

31 tol = 10^(-5);

iter = 1;

33 maxiter = 30;

oo = 1;

Now, the right hand side is choosen and the according first derivative of the
exact solution is calculated.
%% Initialization of function f_1

2
% right hand side

4 v = 0.2;

w = 0.8;

6 s = 1;

f = @(x) sin(2*pi*x).*(1+s*(x>=v).*(x<=w));

8
% exact solution and first derivative

10 ei = s*sin(2*pi*v)/(2*pi)^2;

en = s*sin(2*pi*w)/(2*pi)^2;

12 ek = s*cos(2*pi*v)/(2*pi);

el = s*cos(2*pi*w)/(2*pi);

14 e = sin(2*pi)/(2*pi)^2;

c22 = v*ek-ei;

16 c3 = el*w-en-c22;
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c33 = -c3;

18 c2 = c3-el;

c1 = ek+c2;

20 u = @(x) sin(2*pi*x)/(2*pi)^2.*(1+s*(x>=v).*(x<=w))+...

(x<=v).*c1.*x+(c2.*x+c22).*(x>=v).*(x<=w)+...

22 (x>=w).*(c3.*x+c33);

u_diff = @(x) cos(2*pi*x)/(2*pi).*(1+s*(x>=v).*(x<=w))+c1*(x<=v)+c2*(x<=w).*(x>=v)+...

24 c3*(x>=w);

or

%% Initialization of function f_2

2
% right hand side

4 alpha=2.5;

f = @(x) sin(2*pi*exp(alpha*x));

6
% first derivative of solution

8 const=-1/(2*pi*(1-exp(alpha)))*...

(cos(2*pi)+2*pi*double(sinint(2*pi))-...

10 cos(2*pi*exp(alpha))-2*pi*exp(alpha)*double(sinint(2*pi*exp(alpha))))+0.0029;

u_diff=@(x) -1/alpha*double(sinint(2*pi*exp(2.5*x))+const);

Then the first error estimation is evaluated.

1 %% First error estimation

3 % evaluates the the quadrature nodes for order of input

quad = gau_leg(max(p)+1);

5 quad2 = gau_leg(2*max(p)+5);

7 % computes the galerkin solution

[u_N,A] = calc_solution(a,h,p,f,C,c,quad,v,w);

9
% calculates the estimated local errors

11 [eps] = equilibrated_error_indicator(f,u_N,a,h,p,C,v,w,quad);

13 % global error

err = sqrt(sum(eps));

15
% store degrees of freedom

17 dof = sum(p)+1;

19 % calculates the exact error in energy norm

err_exact(iter) = exact_error_energy(u_diff ,u_N,a,h,p,quad2 ,C,v,w)

where in row 11 there we insert the chosen estimator. In the code printed above
the equilibrated error estimator is used. One can also substitute by

[eps] = error_indicator(a,u_N,p,h,f,quad,C,v,w);

to apply the residual error estimator.

After that, the loop checking the breaking criteria begins. Then the marking
and refinement step and the error estimation of the refined FES is done:

1 %%% Iteration step

3 % slope , checking the breaking criteria

while(err(iter) > tol && iter <= maxiter)

5
%% marking elements
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7 mark = marker_max(theta ,eps);

9 %% hp-decider

marks = mark_h_p_analyt_ext(mark,gamma ,u_N,h,p);

11
% actualization of the number of refinements

13 number(1,1) = number(1,1)+sum(marks(:,1));

number(1,2) = number(1,2)+sum(marks(:,2));

15
%% refinement step

17 p = p_increase(p,marks(:,2),1);

[h,p,c,C] = h_graded_bisection(h,p,c,C,marks(:,1),0.5);

19
% actual time is stored

21 t(iter)=toc(tstart);

23 % iteration is finished , new iteration begins

iter = iter +1;

25
%% error estimation

27 % calculates new nodes and weights of quadrature

quad = gau_leg(max(p)+1);

29 quad2 = gau_leg(2*max(p)+5);

31 % new Galerkin solution

[u_N,A] = calc_solution(a,h,p,f,C,c,quad,v,w);

33
% estimated new local error

35 eps=equilibrated_error_indicator(f,u_N,a,h,p,C,v,w,quad);

37 % global error

err(iter) = sqrt(sum(eps))

39
% new degrees of freedom is stored

41 dof(iter)=sum(p)+1;

43 % new exact error in energy norm

err_exact(iter)=exact_error_energy(u_diff ,u_N,a,h,p,quad2 ,C,v,w)

for the hp-decider which estimates the analyticity and
%%% Iteration step

2
% slope , checking the breaking criteria

4 while(err(iter) > tol && iter <= maxiter)

6 %% marking elements and hp-decider

[mark,I] = marker_energy_loc(theta ,eps,norm_res ,nu,a,p,h,C,c,f,u_N,quad,v,w,o);

8
% actualization of the number of refinements and construction of marking vectors

10 marks = zeros(length(I),5);

for k = 1:length(p)

12 for j = 1:o

if mark(k) == 1 && I(k) == j

14 marks(k,j) = 1;

number(1,j) = number(1,j)+1;

16 end

end

18 end

20 %% refinement step

p = p_increase(p,marks(:,2),1);

22 p = p_increase(p,marks(:,5),2);
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[h,p,c,C] = h_graded_bisection(h,p,c,C,...

24 [marks(:,1),marks(:,3),marks(:,4)],[0.5,0.15,1-0.15]);

26 % actual time is stored

t(iter)=toc(tstart);

28
% iteration is finished , new iteration begins

30 iter = iter +1;

32 %% error estimation

% calculates new nodes and weights of quadrature

34 quad = gau_leg(max(p)+1);

quad2 = gau_leg(2*max(p)+5);

36
% new Galerkin solution

38 [u_N,A] = calc_solution(a,h,p,f,C,c,quad,v,w);

40 % estimated new local error and L2-norm of the residual , needed for the hp-decider

[norm_res ,~] = error_indicator(a,u_N,p,h,f,quad,C,v,w);

42 eps=equilibrated_error_indicator(f,u_N,a,h,p,C,v,w,quad);

44 % global error

err(iter) = sqrt(sum(eps))

46
% new degrees of freedom is stored

48 dof(iter)=sum(p)+1;

50 % new exact error in energy norm

err_exact(iter)=exact_error_energy(u_diff ,u_N,a,h,p,quad2 ,C,v,w)

for the hp-decider solving the minimization problem. Again, one can substitute
the equilibrated error estimator by the residual one.

It follows the implementation of different algorithms, necessary for the compu-
tations.

8.2 Galerkin solution

The basis function used in the implementation are the 1D hierarchic shape func-
tons {bn}Mp+1

n=1 for (S)0
p(M) on Ω = (a, c), a ≤ c.

To be able to define and understand this basis, we first introduce the following
local shape functions {b̂n}p+1

n=1, defined on (−1, 1):

b̂1(x) =
1− x

2
=
L0(x)− L1(x)

2
, (144)

b̂2(x) =
1 + x

2
=
L0(x) + L1(x)

2
, (145)

b̂n(x) =

√
2n− 3

2

∫ x

−1

Ln−2(t)dt (146)

=
1√

2(2n− 3)
(Ln−1(x)− Ln−3(x)) , p+ 1 ≥ n ≥ 3 (147)
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Then the symmetric mass matrix M̂ and the matrix K̂ defined below have the
following form:

M̂ = (
∫ 1

−1

b̂i(x) b̂j(x) dx)p+1
i,j=1 (148)

M̂ =



2
3

1
3 − 1√

6
1

3
√

10
0 · · · · · · 0

2
3 − 1√

6
− 1

3
√

10
0 · · · · · · 0

M̂3,3 0 M̂3,5
. . . 0

. . . . . . . . .
...

M̂i,i 0 M̂i,i+2
. . .

...
. . . . . . . . . 0

M̂p−1,p−1 0 M̂p−1,p+1

M̂p,p 0
sym M̂p+1,p+1


where M̂i,i = 2

(2i−1)(2i−5) and M̂i,i+2 = −1

(2i−1)
√

(2i−3)(2i+1)

K̂ = (
∫ 1

−1

b̂′i(x) b̂′j(x) dx)p+1
i,j=1 (149)

K̂ =



1
2 − 1

2 0 · · · · · · 0
1
2 0 · · · · · · 0

1 0 · · · 0
. . . . . .

...
. . . 0

sym 1


Now we want to work on the domain Ω = (a, b), where a ≤ b together with the
following mesh:
For M ∈ N:

M = {Ki}Mi=1 (150)

Ki := (a+
i−1∑
j=1

hj , a+
i∑

j=1

hj), i ∈ {1, 2, ...,M}, (151)

∀j : hj > 0,
M∑
j=1

hj = c− a (152)

To get the 1D hierarchic shape functions for (S)0
p(M) defined on this interval,

we do the following transformations:
For i ∈ {1, 2, ...,M}:

φi : Ki → (−1, 1) (153)

x 7→ φi(x) := −1 + 2
x− a−

∑i−1
j=1 hj

hi
(154)
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The basis functions {bi}
∑M
j=1 pj+1

i=1 of the whole space (S)0
p(M) are defined as

follows:

The basis functions associated with node i ∈ {0, 1, ...,M} are for i ∈ {0, 1, ...,M}:

b
∑i
j=0 pj+1(x) =


b̂2(φi(x)) x ∈ Ki , (K0 = ∅)
b̂1(φi+1(x)) x ∈ Ki+1 , (KM+1 = ∅)
0 otherwise

(155)

The basis functions associated with element Ki are the following:
For i ∈ {1, 2, ...,M} and n ∈ {2, 3, ..., pi}:

b
∑i−1
j=0 pj+n(x) =

{
b̂n+1(φi(x)) x ∈ Ki

0 otherwise
(156)

To make life easier, we define a local-global mapping γi for i ∈ {1, 2, ...,M}:

γi : {1, ..., pKi} → {1, 2, ...
M∑
j=1

pj + 1} (157)

x 7→ γi(x) =


∑i−1
j=1 pj + 1 x = 1∑i
j=1 pj + 1 x = 2∑i−1
j=1 pj + x+ 1 otherwise

(158)

The Galerkin matrix Ai of Ki now is obtained by a linear combination of M̂
and K̂:

Ai =
(∫ b

a

C(x)bγi(n)′(x) bγi(k)′(x) dx+
∫ b

a

c(x)bγi(n)(x) bγi(k)(x) dx
)pi+1

n,k=1

(159)

=
(
Ci

∫ 1

−1

b̂n
′
(x) b̂k

′
(x)φi(x)′ dx+ ci

∫ 1

−1

b̂n(x) b̂k(x)φ−1
i

′
(x) dx

)pi+1

n,k=1

(160)

=
2
hi
CiK̂ +

hi
2
ciM̂ (161)

where the 2
hi

respectively hi
2 terms come from transformation of the integral

(determinants of φi respectively φ−1
i ).

The global Galerkin matrix A now is obtained by beginning with A = 0
and then adding all local matrices Ai on the correct places (see numbering
of bases in (156),(155)). We do this by using our local-global mappings γi
for i ∈ {1, 2, ...,M} and get A by summing over all i ∈ {1, 2, ...,M} and all
j, k ∈ {1, 2, ..., pi + 1}

A(γi(k), γi(j)) = A(γi(k), γi(j)) + Ai (162)
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The load vector f i on the element Ki one gets by evaluating

f i = (
∫ 1

−1

f(φ−1
i (x)) b̂n(x)φ−1

i

′
(x) dx)pi+1

n=1 (163)

= (hi/2
maxj∈{1,...,M}(pi)+1∑

k=1

wkf(φ−1
i (xk)) b̂n(xk))pi+1

n=1 . (164)

We use the Gauss-Legendre quadrature formula (computed by the Golub/Welsch
algorithm cf. [5]) with maxj∈{1,...,M}(pj)+1 nodes, which gives us an order of at
least 2 maxj∈{1,...,M}(pj) + 2 which guarantees exact integration of polynomials
of degree 2 maxj∈{1,...,M}(pj) + 1. We write

f(φ−1
i (x)) = fKimax(pj)

(φ−1
i (x)) + (f(φ−1

i (x))− fKimax(pj)
(φ−1
i (x))) (165)

where (fKimax(pj)
(φ−1
i (x))) is the projection of f(φ−1

i (x)) onto P2 max(pj)+1(Ki)
produced by interpolation of f by Lagrange polynomials and nodes chosen at
the zeros of Lmax pj+1(x), the (max pj + 1)th Legendre polynomial.
We assume the energy norm of the second term to converge higher order than
the error in energy norm.

The global load vector f we get by the same procedure as for A:
For i ∈ {1, 2, ...,M} and j ∈ {1, 2, ..., pi + 1}

f(γi(j)) = f(γi(j)) + f i (166)

Finally we have implemented the whole linear system Au = f and get u by
simply solving it with the backslash operator in Matlab.

In this thesis, we work only with homogeneous Dirichlet boundary conditions,
so we simply neglect the two basis functions which are associated with the nodes
on the boundary of omega, i.e. we just solve the system

(ak,l)
∑M
j=1 pj

k,l=2 (ul)
∑M
j=1 pj

l=2 = (fl)
∑M
j=1 pj

l=2 (167)

and set u1, u2 = 0.
The ideas and formulas, not having an extra citation added, are found in the
text above are found in [8] at p.57− 66 or in [4].

Below, the implemented algorithms to solve the Galerkin problem and for eval-
uating the Galerkin solution and its derivatives are listed:

1 % This function calculates the Gauss -Legendre quadrature weight vector

% data.w and the vector containing the quadrature nodes data.x of length p,

3 % i.e. the Gauss -Legendre quadrature of order 2p on the interval (-1,1)

5
% Computations are after Golub/Welsh which showed that the eigenvalues of

7 % the matrix J computed below are the roots of the Legendre polynomial.

9 function data = gau_leg(p)

11 %initialization
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b = 1:p;

13 b = b./sqrt(4*b.*b-1);

J = diag(b,-1)+diag(b,1);

15
% computation of eigenvectors and values

17 [ev,ew] = eig(J);

for i = 1:p+1

19 ev(:,i) = ev(:,i)./norm(ev(:,i));

end

21
% calculate output arguments

23 data.x = diag(ew);

data.w = 2*(ev(1,:).*ev(1,:));

25 end

1 %This function computes the local mass matrix M_hat for 1D hierarchic

%shape funcions and initial value p (local polynomial degree).

3
function [M_hat] = local_M(p)

5 if p < 1

error(’input argument has to be p>=1’,p)

7 else M_hat=zeros(p+1);

M_hat(1:2,1:2) = [2/3,1/3;1/3,2/3];

9 if p >= 2

M_hat(1,3) = -1/sqrt(6);

11 M_hat(2,3) = M_hat(1,3);

M_hat(3,1) = M_hat(1,3);

13 M_hat(3,2) = M_hat(1,3);

end

15 if p >= 3

M_hat(1,4) = 1/(3*sqrt(10));

17 M_hat(2,4) = -M_hat(1,4);

M_hat(4,1) = M_hat(1,4);

19 M_hat(4,2) = M_hat(2,4);

end

21 for i = 3:p+1

M_hat(i,i) = 2/((2*i-1)*(2*i-5));

23 if(p+1 >= i+2)

M_hat(i,i+2) = -1/((2*i-1)*sqrt((2*i-3)*(2*i+1)));

25 M_hat(i+2,i) = M_hat(i,i+2);

end

27 end

end

29 end

1 % This function computes the local matrix K_hat , containing inner product

% of derivatives of 1D hierarchic basis functions for initial value p (local

3 % polynomial degree).

5 function [K_hat] = local_K(p)

if p < 1

7 error(’input argument has to be p>=1’,p)

else K_hat = eye(p+1);

9 K_hat(1:2,1:2) = [0.5,-0.5;-0.5,0.5];

end

% This function evaluates the ’number ’th local 1D-hierarchic basis

2 % function in x.

4 function y = local_b(number ,x)

6 if number == 1
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y = (1-x)/2;

8 elseif number == 2

y = (1+x)/2;

10 else

y = (legendre_pol(number -1,x)-legendre_pol(number -3,x))...

12 /sqrt(2*(2*number -3));

end

14 end

% This function evaluates the transformation phi_inv:(-1,1)-->Ki

2 % in x.

% The needed inputs are:

4 % i number of element

% x evaluating point

6 % a from omega=(a,b)

% h vector containing h(i), the length of the

8 % element/interval i

10 function y = phi_inv(i,x,a,h)

y = h(i)*0.5.*(x+1)+a+sum(h(1:i-1));

12 end

% This function computes the corresponding index of the global

2 % basis functions from the vector j, containing indices of the local

% basisfunctions of the ith element.

4 % Needed input:

% p the vector containing the local polynomial degrees.

6 % i index of the element

% j index of local basis function (can be vector of numbers)

8 % p vector containing local polynomial degrees

10 function [globalnumber] = gamma_(i,j,p)

for k = 1:length(j)

12 if j(k) > p(i)+1

error(’j has to be in {1,2,...,p(i)+1}’);

14 elseif j(k) == 1

globalnumber(k) = sum(p(1:i-1))+1;

16 elseif j(k) == 2

globalnumber(k) = sum(p(1:i))+1;

18 else globalnumber(k) = sum(p(1:i-1))+ j(k)-1;

end

20 end

end

1 % This function computes the global Galerkin matrix A for

% a(u,v)= int(C(x)u’(x)v’(x)+c(x)u(x)v(x)dx) for

3 % the 1D hierarchic shape functions and the following

% initial values:

5 % p vector with entries p(i), the local polynomial

% degree on element i.

7 % h vector with entries h(i), the length of the

% element/intervall i

9 % C density vector , containing the elemental density

% given from the PDE

11 % c given from the PDE, is anyway 0 in our computations , but

% has been implemented , since at this time, it was not yet

13 % known if it would be used.

% bd given from the PDE, is anyway 0 in our computations ,

15 % since we always have homogeneous dirichlet boundary

% conditions , but at time of implementation it has not yet

17 % been known , if it would be used.
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19 function [A] = global_galerkin(p,h,C,c,bd)

if(nargin == 4)

21 bd = 0;

end

23 if length(p) ~= length(h)

error(’length of p and h have to be equal’,p,h)

25 end

if length(h)==1 && p==1

27 A = 1;

return

29 end

B=zeros(sum(p)+1);

31 M_hat = local_M(max(p));

K_hat = local_K(max(p));

33 for i = 1:length(p)

B(gamma_(i,1:p(i)+1,p),gamma_(i,1:p(i)+1,p)) = ...

35 B(gamma_(i,1:p(i)+1,p),gamma_(i,1:p(i)+1,p)) + ...

C(i) * 2/h(i) * K_hat(1:p(i)+1,1:p(i)+1) + ...

37 c(i) * h(i)/2 * M_hat(1:p(i)+1,1:p(i)+1);

%where the 2/h(i) and h(i)/2 come from transformation and c(i),

39 %C(i) from the bilinearform a(v,w)

end

41 if bd == 0

A = B(2:end -1,2:end -1);

43 else A = B;

end

45 end

1 % This function computes the Galerkin load vector F for

% p vector containing local polynomial degrees

3 % h vector containing h(i) lenght of i.element/intervall

% f right hand side of DGL, function handle

5 % v,w data of f_1, position of jumps , needed to get accurate

% results for the quadrature

7 % quad containing weights quad.w and quadrature nodes quad.x

% of gauss -legendre quadrature of order p(i)+1

9 % a a from omega = (a,b)

% bd given from the PDE, is anyway 0 in our computations , since we

11 % always have homogeneous dirichlet boundary conditions , but at

% time of implementation it has not yet been known , if it would

13 % be used.

15 function F = load_f(a,p,h,quad,f,v,w,bd)

if nargin==7

17 bd=0;

end

19
L = zeros(sum(p)+1,1);

21 for k = 1:length(p)

for i = 1:p(k)+1

23 q = a+sum(h(1:k-1));

g = @(x) f(x)*local_b(i,-1+2*(x-q)/h(k));

25 L(gamma_(k,i,p),1) = L(gamma_(k,i,p),1)+...

integrate_on_element(k,g,a,h,v,w,quad);

27 end

end

29 if bd == 0

if length(h) == 1 && p(1) == 1

31 F = 0; return

end

33 F = L(2:end -1);

else F = L;

35 end
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end

% This function solves the Galerkin problem and returns the

2 % coefficients of u_N relatively to

% the 1d hierarcical shape functions.

4 % Input data:

% p vector with entries p(i), the local polynomial

6 % degree on element i.

% h vector with entries h(i), the length of the

8 % element/intervall i

% f right hand side of DGL, function handle

10 % v,w data of f_1, position of jumps , needed to get accurate

% results for the quadrature

12 % quad containing weights quad.w and quadrature nodes quad.x

% of gauss -legendre quadrature of order p(i)+1

14 % a a from omega = (a,b)

% C density vector , containing the elemental density given from

16 % the PDE

% c given from the PDE, is anyway 0 in our computations , but has

18 % been implemented , since at this time, it was not yet known ,

% if it would be used.

20
function [coeff_uN ,A] = calc_solution(a,h,p,f,C,c,quad,v,w)

22 % get global Galerkin matrix

A = global_galerkin(p,h,C,c);

24 % compute right hand side

F = load_f(a,p,h,quad,f,v,w);

26 % compute projection in terms of global shape functions

coeff_uN = A\F;

28 if length(h) == 1 && p(1)==1

coeff_uN = [coeff_uN;0];

30 else coeff_uN = [0;coeff_uN;0];

end

32 end

% This function evaluates the Legendre polynomial of Order p at the entries

2 % of the vector x.

4 function y = legendre_pol(p,x)

if p < 0

6 error(’p has to be >0’,p)

elseif p == 0

8 y = ones(size(x));

elseif p == 1

10 y = x;

elseif p >= 2

12 y1 = ones(size(x));

y0 = x;

14 for i=2:p

y = ((2*i-1)/i)*x.*y0 - ((i-1)/i)*y1;

16 y1 = y0;

y0 = y;

18 end

end

20
end

1 % This function evaluates the first derivative of the number_th

% 1d hierarchical shape function in x.

3 % Needed input:

% number index of the hierarchical shape function , the

5 % derivative shoud be evaluated of.
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% x evaluation point/ vector

7
function y = first_derivative_localbasis(number ,x)

9
% initialization

11 y = zeros(size(x));

13 % Evaluate the derivative of the local shape function with index number % at the vector x

if number == 1

15 y = -1/2*ones(length(x),1);

elseif number == 2

17 y = 1/2*ones(length(x),1);

else

19 y = sqrt((2*number -3)/2)*legendre_pol(number -2,x);

end

21
end

%This function calculates the 2nd derivative of the lokal 1D hierarchic

2 %shape functions by using the identity for derivatives of legendre

%polynomials and the fact that we can write every lokal basis function

4 %in terms of sums of legendre polynomials.

6 %The function returns the vector y, containing the values of the

%derivative of b_number evaluated in x.

8
%For this evaluation it does not matter what boundary condition we have,

10 %since the 2nd derivative of the hat functions is everywhere 0.

%Input arguments:

12 %number number of local basis function

%x vector in which the 2nd derivative of u should be evaluated

14 % in.

16 function y = second_derivative_localbasis(number ,x)

18 %first calculate the 2nd derivative of the local shape functions with index

%number at the vector x

20
%Initialization

22 y = zeros(size(x));

24 if number ~= 1 && number ~= 2

y = sqrt((2*number -3)/2)./(x.^2-1).*(number -2).*...

26 (x.*legendre_pol(number -2,x)-legendre_pol(number -3,x));

end

28 end

1 % This function evaluates the Galerkin solution uN in x (can be vector)

% using the coordinates u relatively to 1D hierarchic shape functions.

3 % Needed are:

% p vector containing the elemental polynomial degree

5 % h vector containing h(i) lenght of i.element/intervall

% u the coordinates relatively to 1D hierarchic shape functions

7 % x vector containing points on which uN has to be evaluated

% a a from omega =(a,b)

9
function y = evaluate_uN(p,h,u,x,a)

11 y = zeros(size(x));

for i = 1:length(p)

13 for j = 1:p(i)+1

l = gamma_(i,j,p);

15 y = y + u(l).*(sum(h(1:i-1))<x).*...
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(x<=sum(h(1:i))).*local_b(j,-1+2*(x-a-sum(h(1:i-1)))/h(i));

17 end

end

19 end

1 % This function evaluates first derivative of the Galerkin solution u_N

% in x (can be vector)

3 % using the coordinates u relatively to 1D hierarchic shape functions.

% Needed are:

5 % p vector containing the elemental polynomial degree

% h vector containing h(i) lenght of i.element/intervall

7 % u the coordinates relatively to 1D hierarchic shape functions

% x vector containing points on which uN has to be evaluated

9 % a a from omega =(a,b)

11 function y = evaluate_uN_derivative(p,h,u,x,a)

y = zeros(size(x));

13 for i = 1:length(p)

for j = 1:p(i)+1

15 l = gamma_(i,j,p);

y = y + u(l).*(sum(h(1:i-1))<x).*...

17 (x<=sum(h(1:i))).*...

first_derivative_localbasis(j,-1+2*(x-a-sum(h(1:i-1)))/h(i))*2/h(i);

19 end

end

21 end

1 % evaluate_uN_derivative(p,h,u,x,a)

% This function evaluates the Galerkin solution uN in a gridpoint x

3 % taking the limit from the element i lying nearby x,

% using the coordinates u relatively to 1D hierarchic shape functions.

5 % Needed are:

% i index of a neighbouring element of node x from which the limit of the

7 % galerkin solution u_N to x is taken

% p vector containing the elemental polynomial degree

9 % h vector containing h(i) lenght of i.element/intervall

% u the coordinates relatively to 1D hierarchic shape functions

11 % x gridpoint on which the limit of uN on the element i has to be evaluated

% a a from omega =(a,b)

13
function y = evaluate_uN_derivative_limit(i,p,h,u,x,a)

15 y = zeros(size(x));

for j = 1:p(i)+1

17 l = gamma_(i,j,p);

y = y + u(l).*...

19 first_derivative_localbasis(j,-1+2*(x-a-sum(h(1:i-1)))/h(i))*2/h(i);

end

21 end

1 % This function evaluates the second derivative of the Galerkin solution

% u_N in x (can be vector)

3 % using the coordinates u relatively to 1D hierarchic shape functions.

% Needed are:

5 % p vector containing the elemental polynomial degree

% h vector containing h(i) lenght of i.element/intervall

7 % u the coordinates relatively to 1D hierarchic shape functions

% x vector containing points on which uN has to be evaluated

9 % a a from omega =(a,b)

11 function y = evaluate_uN_second_derivative(p,h,u,x,a)

y = zeros(size(x));

13 for i = 1:length(p)
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for j = 1:p(i)+1

15 l = gamma_(i,j,p);

y = y + u(l).*(sum(h(1:i-1))<x).*...

17 (x<=sum(h(1:i))).*...

second_derivative_localbasis(j,-1+2*(x-a-sum(h(1:i-1)))/h(i))...

19 *(2/h(i))^2;

end

21 end

end

% This function integrates the function handle g over the k_th element

2 % of the mesh starting in a and being defined by the vector h.

% Moreover in elements where v and w are contained , the integration is

4 % seperately calculated on (x_{k-1},v) and (v,x_k) respectively

% (x_{k-1},w) and (w,x_k) or (x_{k-1},v) and (v,w) and (w,x_k).

6 % This separation is necessary for the function f_1, since there are

% jumps in v and w. If we would not do this separation , we would need high

8 % order quadrature to get good enough integration results.

% Needed input:

10 % k index of element

% g function handle of function which has to be integrated over

12 % h vector containing h(i) length of i-th element/interval

% a a from omega = (a,b)

14 % v,w data of f_1, position of jumps , needed to get accurate

% results for the quadrature

16 % quad containing weights quad.w and quadrature nodes quad.x

% of gauss -legendre quadrature of order p(i)+1

18
function y = integrate_on_element(k,g,a,h,v,w,quad)

20
y=0;

22
% testing if v and w lie in k.element

24 if a+sum(h(1:k-1))+eps < v && a+sum(h(1:k))-eps >w

26 %integrate over partitions of k.element by v,w

q = a+sum(h(1:k-1));

28 z = [v-q;w-v;q+h(k)-w];

for j = 1:3

30 for m = 1:length(quad.x)

o = phi_inv(j,quad.x(m),q,z);

32 y = y+g(o)*quad.w(m)*z(j)/2;

end

34 end

36 % testing if only v lies in k.element

elseif a+sum(h(1:k-1))+eps < v && a+sum(h(1:k))-eps > v

38
%integrate over partitions of k.element by v

40 q = a+sum(h(1:k-1));

z = [v-q;q+h(k)-v];

42 for j = 1:2

for m = 1:length(quad.x)

44 o = phi_inv(j,quad.x(m),q,z);

y = y+g(o)*quad.w(m)*z(j)/2;

46 end

end

48
% testing if only w lies in k.element

50 elseif a+sum(h(1:k-1))+eps < w && a+sum(h(1:k))-eps > w

52 %integrate over partitions of k.element by w

q = a+sum(h(1:k-1));
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54 z = [w-q;q+h(k)-w];

for j = 1:2

56 for m = 1:length(quad.x)

o = phi_inv(j,quad.x(m),q,z);

58 y = y+g(o)*quad.w(m)*z(j)/2;

end

60 end

else

62 for m=1:length(quad.x)

o=phi_inv(k,quad.x(m),a,h);

64 y=y+g(o)*quad.w(m)*h(k)/2;

end

66 end

end

1 % This function evaluates the exact error in energy norm,

% taking the difference of the derivative of the exact solution

3 % and the Galerkin solution and calculating its energy norm

% (high order quadrature is used).

5 % Input data:

% u_diff function handle of the derivative of the exact solution

7 % p vector containing the elemental polynomial degree

% h vector containing h(i) length of i-th element/interval

9 % u_N the coordinates relatively to 1D hierarchic shape functions

% f right hand side of DGL, function handle

11 % v,w data of f_1, position of jumps , needed to get accurate

% results for the quadrature

13 % quad containing weights quad.w and quadrature nodes quad.x

% of gauss -legendre quadrature of order p(i)+1

15 % a a from omega = (a,b)

% C density vector , containing the elemental density given

17 % from the PDE

19 function err = exact_error_energy(u_diff ,u_N,a,h,p,quad,C,v,w)

err = 0;

21 g = @(x) (u_diff(x)-evaluate_uN_derivative(p,h,u_N,x,a))^2;

for k = 1:length(h)

23 g_loc = @(x) C(k)*g(x);

err = err+integrate_on_element(k,g_loc ,a,h,v,w,quad);

25 end

err = sqrt(err);

27 end

8.3 Error estimators

1 % This function calculates the value of the L2(K_k)-projection of

% the function f at point x.

3 % Input:

% x evaluation point

5 % k number of element , in which x is contained

% p vector containing the elemental polynomial degree

7 % h vector containing h(i) length of i-th element/interval

% f right hand side of DGL, function handle

9 % v,w data of f_1, position of jumps , needed to get accurate

% results for the quadrature

11 % quad containing weights quad.w and quadrature nodes quad.x

% of gauss -legendre quadrature of order p(i)+1

13 % a a from omega = (a,b)

15 y = evaluate_proj(k,f,h,p,a,v,w,quad,x)
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17 % initialization

y = zeros(size(x));

19
% calculates the Legendre coefficients

21 a_proj = orth_proj_K(k,f,h,p,a,v,w,quad);

23 % evaluation in point x

for i = 1:length(a_proj)

25 y = y+a_proj(i)*legendre_pol(i-1,-1+2*(x-a-sum(h(1:k-1)))/h(k))...

*sqrt(2/h(k));

27 end

end

% This function calculates the first p(k) coefficientsis of the legendre series

2 % interpolating f.

% They are needed to calculate the L2(K_k)-orthogonal projection of f

4 % onto P_{p(k)-1}(K_k), since it is calculated interpolating f by the first

% p Legendre polynomials.

6 % Needed input:

% k element , on which projection should be done

8 % p vector containing the elemental polynomial degree

% h vector containing h(i) length of i-th element/interval

10 % f right hand side of DGL, function handle

% v,w data of f_1, position of jumps , needed to get accurate

12 % results for the quadrature

% quad containing weights quad.w and quadrature nodes quad.x

14 % of gauss -legendre quadrature of order p(i)+1

% a a from omega = (a,b)

16
function a_proj = orth_proj_K(k,f,h,p,a,v,w,quad)

18
% initialization

20 a_proj=zeros(p(k),1);

22 % calculation

for i = 0:p(k)-1

24 g = @(x)(2*i+1)*0.5*sqrt(2/h(k))*f(x)*...

legendre_pol(i,-1+2*(x-a-sum(h(1:k-1)))/h(k));

26 a_proj(i+1) = integrate_on_element(k,g,a,h,v,w,quad);

end

28 end

8.3.1 Residual error estimator

%This function computes the eps for the residual error estimator

2 %Needed intput:

% p vector containing the elemental polynomial degree

4 % h vector containing h(i) length of i-th element/interval

% u_N the coordinates relatively to 1D hierarchic shape

6 % functions

% f right hand side of DGL, function handle

8 % v,w data of f_1, position of jumps , needed to get accurate

% results for the quadrature

10 % quad containing weights quad.w and quadrature nodes quad.x

% of gauss -legendre quadrature of order p(i)+1

12 % a a from omega = (a,b)

% C density vector , containing the elemental density given from the PDE

14
function [norm_res ,eps] = error_indicator(a,u_N,p,h,f,quad,C,v,w)

16
% Initialization
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18 eps=zeros(size(p));

norm_res=zeros(size(p));

20
for k = 1:length(h)

22 q = a+sum(h(1:k-1));

g = @(x) zeros(size(x));

24 for i = 1:p(k)+1

g = @(x) g(x)+u_N(gamma_(k,i,p))*...

26 second_derivative_localbasis(i,-1+2*(x-q)/h(k));

end

28
% here we use the L2-projection of f to evaluate the error

30 % estimator.

g = @(x) C(k)*(C(k)*g(x)*4/h(k)^2+...

32 evaluate_proj(k,f,h,2*p+5,a,v,w,quad,x))^2.*omeg(k,x,h);

norm_res(k) = norm_res(k)+integrate_on_element(k,g,a,h,v,w,quad);

34 end

eps = 1./(C.*p.*(p+1)).* norm_res;

36 end

8.3.2 Equilibrated error estimator

%This function computes the eps for the equilibrated error estimator

2 %Needed input:

% p vector containing the elemental polynomial degree

4 % h vector containing h(i) length of i-th element/interval

% u_N the coordinates relatively to 1D hierarchic shape

6 % functions

% f right hand side of DGL, function handle

8 % v,w data of f_1, position of jumps , needed to get accurate

% results for the quadrature

10 % quad containing weights quad.w and quadrature nodes quad.x

% of gauss -legendre quadrature of order p(i)+1

12 % a a from omega = (a,b)

% C density vector , containing the elemental density given from the PDE

14
function epsilon = equilibrated_error_indicator(f,u_N,a,h,p,C,v,w,quad)

16
% initialization

18 epsilon = zeros(size(h));

xk_1 = a;

20 xk = xk_1+h(1);

resk_1 = @(x) zeros(size(x));

22
% calculating projection of f onto K_1

24 proj_f = @(x) evaluate_proj(1,f,h,p+1,a,v,w,quad,x);

26 % calculating estimator by integrating the residual on every element

res = @(x) evaluate_uN_second_derivative_local(1,p,h,u_N,x,a);

28 for k = 1:length(h)-1

res_T = @(x) (C(k)*res(x)+proj_f(x))*...

30 local_b(2,-1+2*(x-a-sum(h(1:k-1)))/h(k));

q = a+sum(h(1:k-1));

32 p1 = @(x) integrate_on_element(1,res_T ,q,x-q,v,w,quad);

resk = @(x) (resk_1(x)+p1(x))^2;

34
% calculating L2-norm of the local error estimate consisting of fluxes

36 % sigma_{k-1} and sigma_k

intk = integrate_on_element(k,resk,a,h,v,w,quad);

38 epsilon(k) = 1/C(k)*intk;

40 % initialization of data on new element
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xk_1 = xk;

42 xk = xk+h(k+1);

44 % calculating the new residual and integrating it

res = @(x) evaluate_uN_second_derivative_local(k+1,p,h,u_N,x,a);

46 proj_f = @(x) evaluate_proj(k+1,f,h,p,a,v,w,quad,x);

res_T = @(x) (C(k+1)*res(x)+proj_f(x))*...

48 local_b(1,-1+2*(x-a-sum(h(1:k)))/h(k+1));

q = a+sum(h(1:k));

50 p2 = @(x) integrate_on_element(1,res_T ,q,x-q,v,w,quad);

52 % evaluating the constants

r_vertex = C(k+1)*evaluate_uN_derivative_limit(k+1,p,h,u_N,xk_1,a)-...

54 C(k)*evaluate_uN_derivative_limit(k,p,h,u_N,xk_1,a);

resk_1 = @(x) p2(x)+p1(xk_1)+r_vertex;

56 end

58 % calculates the error estimation for the last element

resk = @(x) resk_1(x)^2;

60 intk = integrate_on_element(length(h),resk,a,h,v,w,quad);

epsilon(end) = 1/C(end)*intk;

62 end

8.4 Marking strategies

% This function decides weather an element has to be refined or not by the

2 % maximum strategy. It returns an vector of length of number of elements ,

% containing 1 for elements to be refined , 0 otherwise.

4 % Input data:

% theta weight theta E (0,1) (theta =1: no element would be marked

6 % theta =0: all elements would be marked)

% eps local error indikator , ie. vector containing the estimated

8 % local element errors

10 function mark=marker_max(theta ,eps)

12 % initialization

mark = zeros(size(eps));

14
% checking if eps(k) is to big i.e. has to be refined (has to => mark(k)=1)

16 for k = 1:length(eps)

if eps(k) >= (1-theta)*max(eps)

18 mark(k) = 1;

end

20 end

end

1 % This function performs the fixed energy fraction marking strategy

% using an knapsack algorithm.

3 % Input data:

% theta parameter in (0,1) ( 0= no element is going to be marked;

5 % 1= all elements are going to be marked}

% nu parameter in (0,1), regulates number of iterations

7 % eps vector containing local estimated error

9 function mark = knapsack2(theta ,nu,eps)

11 % initialization

s= 0;

13 tau = 1;

max_eps=max(eps);

15 mark = zeros(size(eps));
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eps_ges=sum(eps);

17
% knapsack algorithm

19 while s < theta^2*eps_ges

tau=tau-nu;

21 for k=1:length(mark)

if mark(k)==0

23 if eps(k) > tau*max_eps

mark(k) = 1;

25 s = s + eps(k);

end

27 end

end

29 end

end

% This function performs the weighted fixed energy fraction marking strategy

2 % using a knapsack algorithm. The algorithm is needed for the hp-decider which

% solves the minimization problem.

4 % Input data:

% theta parameter in (0,1) ( 0= no element is going to be marked;

6 % 1= all elements are going to be marked}

% nu parameter in (0,1), regulates number of iterations

8 % eps vector containing local estimated errorfunction

% frac weights for the weighted fixed energy fraction.

10 % p vector containing the elemental polynomial degree

12 mark = knapsack(theta ,nu,eps,frac,p)

14 % initialization

s = 0;

16 tau = 1;

e = eps.*frac.^2;

18 max_e = max(e);

mark = zeros(size(p));

20 eps_ges = sum(eps);

22 % knapsack algorithm

while s < theta^2*eps_ges

24 tau = tau-nu;

for k = 1:length(mark)

26 if mark(k) == 0

if e(k) > tau*max_e

28 mark(k) = 1;

s = s + e(k);

30 end

end

32 end

end

34 end

8.5 hp-decider

8.5.1 Estimation of analyticity

% This function returns the marking matrix (first column for h-, second for

2 % p-refinement) generated by the hp-decider estimating the regularity by extending the

% solution by legendre series

4 %(convergence radius >= theta --> smooth enough --> p-refinement

% otherwise h-refinement)

6 % Needed data:
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% p vector containing the elemental polynomial degree

8 % mark vector of the same length as p with entry 1 if element sould be refined

% 0 otherwise

10 % h vector containing h(i) length of i-th element/interval

% u_N the coordinates relatively to 1D hierarchic shape functions

12 % theta parameter in (0,1)

14 function h_or_p = mark_h_p_analyt_ext(mark,theta ,u_N,h,p)

16 % initialization

h_or_p=zeros(length(mark),2);

18
% calculation

20 for k=1:length(mark)

if mark(k)==1

22 theta_el=inv_bernsteinrad(u_N,h,p,k);

if theta_el <=theta

24 h_or_p(k,2)=1;

else h_or_p(k,1)=1;

26 end

end

28 end

end

1 % This function estimates the inverse of the local bernstein radius of u_N

% on the k_th element. The algoritm is needed for the hp-decider

3 % estimating analyticity.

% Needed input data:

5 % k index of element on which the inverse of the local bernstein

% radius of u_N should be calculated

7 % p vector containing the elemental polynomial degree

% h vector containing h(i) length of i-th element/interval

9 % u_N the coordinates of the solution of the BVP

% relatively to 1D hierarchic shape functions

11
function theta_el = inv_bernsteinrad(u_N,h,p,k)

13 a = zeros(p(k)+1,1);

l = sqrt(h(k)/2);

15
a(1) = l*0.5*(u_N(gamma_(k,1,p))+u_N(gamma_(k,2,p)));

17 a(2) = l*0.5*(u_N(gamma_(k,2,p))-u_N(gamma_(k,1,p)));

for i = 2:p(k)

19 a(i+1) = l*1/sqrt(2*(2*i-1))*u_N(gamma_(k,i+1,p));

a(i-1) = a(i-1)-l*1/sqrt(2*(2*i-1))*u_N(gamma_(k,i+1,p));

21 end

y = abs(log(abs(a)));

23 num = 0:p(k);

m = 6*(2*num*y-p(k)*sum(y))/(p(k)+1)/((p(k)+1)^2-1);

25 theta_el = exp(-m);

end

8.5.2 Minimization

1 % This function is marker and decider at one time. It stands for the

% hp-decider which solves the minimization problem and returns a

3 % vector mark of the same length as h, which contains 1, if the

% element has to be refined , 0, otherwise.

5 % I is a matrix , of size length(h)xo, which contains 1 in (k,j) if

% the k-th. element should be refined by pattern j.

7 % Input data:

% p vector containing the elemental polynomial degree

9 % h vector containing h(i) length of i-th element/interval
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% u_N the coordinates relatively to 1D hierarchic shape

11 % functions

% f right hand side of DGL, function handle

13 % v,w data of f_1, position of jumps , needed to get accurate

% results for the quadrature

15 % quad containing weights quad.w and quadrature nodes quad.x

% of gauss -legendre quadrature of order p(i)+1

17 % a a from omega = (a,b)

% C density vector , containing the elemental density given

19 % from the PDE

% c given from the PDE, is anyway 0 in our computations , but

21 % at time of implementation it has not yet been known , if

% it would be used.

23 % theta parameter for marking elements in (0,1)

% nu parameter for marking elements , needed to use knapsack.m

25 % algorithm

% o indicates that the patterns 1-o can be chosen to do the

27 % refinement step

% eps vector containing the local estimated error in energy

29 % norm

% norm_res vector containing the elemental L2-norm of the residual ,

31 % calculated in algorithm error_indicator.m

% bd given from the PDE, is anyway 0 in our computations ,

33 % since we always have homogeneous dirichlet boundary

% conditions , but at time of implementation it has not yet

35 % been known , if it would be used.

37 function [mark,I] = marker_energy_loc(theta ,eps,norm_res ,nu,a,p,h,C,c,f,...

u_N,quad,v,w,o,bd)

39 if nargin == 15

bd = 0;

41 end

if o > 5

43 error(’o has to be <=5’,o)

end

45
% initialization

47 normelres = norm_res;

beta_ = zeros(length(p),o);

49 omega = zeros(length(p),o);

frac = zeros(size(p));

51 I = zeros(size(p));

I_max = zeros(size(p));

53 minq = zeros(size(p));

maxq = zeros(size(p));

55
% loop: iteration over the patterns 1 to o

57 for n = 1:o

59 % initialization , setting to zero in every step

normz2 = zeros(size(p));

61
for i = 1:length(p)

63
% the local bvp from which we get beta_i^n, the index of efficiency of pattern n

65 % on element i is solved and the L2- norm of the derivative is stored in norm2_z(i).

[z,p_loc ,h_loc] = solve_loc(i,n,h,p,a,u_N,C,c,quad,f,v,w);

67 q = a+sum(h(1:i-1));

for j = 1:length(h_loc)

69 g = @(x) zeros(size(x));

for m = 1:p_loc(j)+1

71 g = @(x) g(x)+z(gamma_(j,m,p_loc))*...
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first_derivative_localbasis(m,-1+2*(x-q-sum(h_loc(1:j-1)))...

73 /h_loc(j))*2/h_loc(j);

end

75 g = @(x)g(x).^2;

normz2(i) = normz2(i)+...

77 integrate_on_element(j,g,q,h_loc ,v,w,quad);

end

79 end

81 % the local degrees of freedom are stored in omega

if n==1 || n==3 || n==4

83 omega(:,n)=2*p+1;

elseif n==2

85 omega(:,n)=p+2;

elseif n==5

87 omega(:,n)=p+3;

end

89
% the index beta is computed and stored

91 beta_(:,n) = p.*sqrt(normz2)./sqrt(normelres);

end

93
% the minimization problem is solved and different conditions are checked.

95 % This is done to get the constraint fulfilled if possible (cf. theory).

for k = 1:length(p)

97 [frac(k),I(k)] = min(omega(k,:)./beta_(k,:));

frac(k) = beta_(k,I(k));

99 minq(k) = min(beta_(k,:));

[maxq(k),I_max(k)] = max(beta_(k,:));

101 %[max_val(k),I_max(k)] = max(omega(k,:)./beta_(k,:));

end

103 minminq = min(minq);

minmaxq = min(maxq);

105 oldmin = 10;

for k = 1:o

107 for m = 1:o

if min(omega(:,k)/omega(:,m)) <= oldmin

109 oldmin = min(omega(:,k)/omega(:,m));

end

111 end

end

113 oldmin = oldmin -2.2204e-016;

if minminq > 0

115 if theta >= minminq

theta = minminq/2;

117 end

elseif oldmin > 0 && minmaxq > 0

119 if theta >= oldmin*minmaxq

theta = oldmin*minmaxq*1/2;

121 end

elseif minmaxq > 0

123 if theta >= minmaxq

theta = minmaxq/2;

125 end

I = I_max;

127 frac = maxq;

else mark = ones(size(h)); return;

129 end

mark = knapsack(theta ,nu,eps,frac,p);

131 end

1 % omeg is a weight function , used in our weighted fixed energy fraction marker.

% Needed input data:
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3 % k number of element

% x value in which we want to evaluate w

5 % h vector containing elemental/intervall sizes

7 function y = omeg(k,x,h)

y = (sum(h(1:k))-x).*(x-sum(h(1:k-1)))*(x<=sum(h(1:k))).*(x>sum(h(1:k-1)));

9 end

1 % This function solves a local BVP for the hp-decider solving a minimization problem.

% Is needed to get the values beta_i^n, indicating the efficiency of the refinement

3 % step on element k by pattern n.

%Needed input:

5 % k index of element on which the local problem should be solved

% n index of pattern for which the local problem should be solved

7 % p vector containing the elemental polynomial degree

% h vector containing h(i) length of i-th element/interval

9 % u_N the coordinates relatively to 1D hierarchic shape functions

% f right hand side of DGL, function handle

11 % v,w data of f_1, position of jumps , needed to get accurate results

% for the quadrature

13 % quad containing weights quad.w and quadrature nodes quad.x

% of gauss -legendre quadrature of order p(i)+1

15 % a a from omega = (a,b)

% C density vector , containing the elemental density given from the PDE

17 % c given from the PDE, is anyway 0 in our computations , but has been

% implemented , since at this time, it was not yet known , if it would be used.

19
function [z,p_loc ,h_loc]=solve_loc(k,n,h,p,a,u_N,C,c,quad,f,v,w)

21
if n == 1 || n == 3 || n == 4

23 if n == 1

h_loc = 0.5*[h(k);h(k)];

25 elseif n == 3

h_loc = [0.15*h(k);0.85*h(k)];

27 else h_loc = [0.85*h(k);0.15*h(k)];

end

29 p_loc = [p(k);p(k)];

A = global_galerkin(p_loc ,h_loc ,C(k)*ones(2,1),c(k)*ones(2,1));

31 f = load_f_res(k,p,h,a,u_N,h_loc ,p_loc ,C,quad,f,v,w);

else

33 if n == 2

p_loc = p(k)+1;

35 else p_loc = p(k)+2;

end

37 h_loc = h(k);

A = global_galerkin(p_loc ,h_loc ,C(k),c(k));

39 f = load_f_res(k,p,h,a,u_N,h_loc ,p_loc ,C,quad,f,v,w);

end

41 z = A\f;

z = [0;z;0];

43 end

1 % This function computes the load vector F needed for the hp-decider

% solving the minimization problem.

3 % Input data:

% k element the load vector has to be evaluated on

5 % p vector containing the elemental polynomial degree

% h vector containing h(i) length of i-th element/interval

7 % p_loc vector containing the polynomial degrees of the locally refined element k

% h_loc vector containing the the lengths of the new elements

9 % of the locally refined element k

% u_N the coordinates relatively to 1D hierarchic shape functions
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11 % f right hand side of DGL, function handle

% v,w data of f_1, position of jumps , needed to get accurate results

13 % for the quadrature

% quad containing weights quad.w and quadrature nodes quad.x

15 % of gauss -legendre quadrature of order p(i)+1

% a a from omega = (a,b)

17 % C density vector , containing the elemental density given from the PDE

% bd given from the PDE, is anyway 0 in our computations ,

19 % since we always have homogeneous dirichlet boundary

% conditions , but at time of implementation it has not yet

21 % been known , if it would be used.

23 function F = load_f_res(k,p,h,a,u_N,h_loc ,p_loc ,C,quad,f,v,w,bd)

if nargin == 12

25 bd = 0;

end

27 L = zeros(sum(p_loc)+1,1);

q = a+sum(h(1:k-1));

29 g = @(x) zeros(size(x));

for i = 1:p(k)+1

31 g = @(x) g(x)+u_N(gamma_(k,i,p))*...

second_derivative_localbasis(i,-1+2*(x-q)/h(k));

33 end

g = @(x) C(k)*g(x)*4/h(k)^2+f(x);

35 for j = 1:length(p_loc)

for i=1:p_loc(j)+1

37 g_loc = @(x) g(x).*local_b(i,-1+2*(x-q-sum(h_loc(1:j-1)))/h_loc(j));

L(gamma_(j,i,p_loc),1) = L(gamma_(j,i,p_loc),1)+...

39 integrate_on_element(j,g_loc ,q,h_loc ,v,w,quad);

end

41 end

if bd == 0

43 if length(h) == 1 && p(1) == 1

F=0; return

45 end

F=L(2:end -1);

47 else F=L;

end

49 end

Moreover c.f. 8.4 to see the implementation of the marker included in the mean
implementation.

8.6 hp-refinement step

1 % This function does the p-refinement , i.e. increases the local polynomial

% degree on marked elements by s.

3 % Input data:

% p vector containing the elemental polynomial degree

5 % mark_p vector of the same length as p with entry 1 if element

% should be p-refined , 0 otherwise

7
function [p_new] = p_increase(p,mark_p ,s)

9
for k = 1:length(p)

11 if mark_p(k) == 1

p(k)=p(k)+s;

13 end

end

15 p_new = p;

end
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% This function does the h-refinement step by enlarging the vector h by 1 and

2 % writing the new elemental lengths into h.

% Further , the vectors p, c, and C have to actualized.

4 % Input data:

% p vector with entries p(i), the local polynomial

6 % degree on element i.

% h vector with entries h(i), the length of the

8 % element/intervall i

% C density vector , containing the elemental density given from the PDE

10 % c given from the PDE, is anyway 0 in our computations , but

% has been implemented , since at this time, it was not yet

12 % known , if it would be used.

% mark_h matrix of size (length(p),length(sigma)) with entry

14 % 1 in mark_h(i,j) if element it should be h-refined with

% weight sigma(j), 0 in mark_h(i,j) otherwise

16 % sigma vector containing weights in (0,1)

% for grading the bisection: h’= sigma*h, h’’ = (1-sigma)*h.

18
function [h_new ,p_new ,c_new ,C_new] = h_graded_bisection(h,p,c,C,mark_h ,sigma)

20 if nargin == 5

sigma = 0.15;

22 end

n = length(sigma);

24 for k = 1:n

if sigma(n) >= 1 || sigma(n) <= 0

26 error(’the entries of sigma have to be chosen in (0,1)’,sigma)

end

28 end

h_new = zeros(sum(sum(mark_h))+length(h),1);

30 p_new = zeros(size(h_new));

c_new = zeros(size(p_new));

32 C_new = zeros(size(p_new));

k=1;

34 s=0;

while k <= length(h)

36 h_new(k+s) = h(k);

c_new(k+s) = c(k);

38 C_new(k+s) = C(k);

p_new(k+s) = p(k);

40 for i=1:n

if(mark_h(k,i) == 1)

42 h_new(k+s) = h(k)*sigma(i);

h_new(k+s+1) = h(k)*(1-sigma(i));

44 c_new(k+s+1) = c(k);

C_new(k+s+1) = C(k);

46 p_new(k+s+1) = p(k);

s = s+1;

48 end

end

50 k = k+1;

end

52 end
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9 Appendix

9.1 Properties of the Legendre polynomials

The Legendre polynomials are recursively defined in the following way:

L0(x) = 1 (168)
L1(x) = x (169)

Ln+1(x) =
2n+ 1
n+ 1

xLn(x)− n

n+ 1
Ln−1(x) ∀n ∈ N \ {0, 1} (170)

Some important properties of the Legendre polynomials are:
orhtogonality: ∫ 1

−1

Ln(x)Lm(x)dx =

{
2

2n+1 ifn = m

0 otherwise
(171)

properties of differentiation:

Ln(x) =
L′n+1(x)− L′n−1(x)

2n+ 1
(172)

furthermore the Legendre polynomials fulfill the following differential equa-
tion:

(x2 − 1)L′n(x) = n(xLn(x)− Ln−1(x)) (173)

= n(n+ 1)
∫ x

−1

Ln(t) dt (174)

For all the formulas stated in this section cf. [8, APPENDIX C.2].
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