
Semester Project : Generalized Tensor Models for
Recurrent Neural Networks

Nitya Afambo

Supervisor:
Prof. Dr. Schwab Christoph

Advisor:
Dr. Maksim Rakhuba

May 25, 2020

Contents

1 Introduction 2

2 Generalized Tensor Decompositions 2

3 Tensor Neural Networks 4
3.1 Machine Learning framework and setup . 4
3.2 Tensor networks . 4

4 Universality and expressivity of ReLU tensor networks 8
4.1 Grid tensors . 9
4.2 Universality of ReLU tensor networks . 13
4.3 Expressivity of ReLU tensor networks . 16

5 Numerical Experiments 18
5.1 Methodology . 19
5.2 Results . 21

1

Abstract

The purpose of the present semester paper is to study from a theoretical and practi-
cal point of view, the so-called depth e�ciency of neural networks using the framework
provided by tensor methods. More precisely, we look at how one can relate certain
network architectures to certain tensor decompositions. We focus on recurrent neural
networks while briefly discussing the case of shallow feedforward networks for the sake
of comparaison. The theoretical exposition follows [5] and [6] where we give more de-
tailed proofs of the statements. Unless stated otherwise, all theoretical results come
from these two papers. The practical work consists in the implementation of so-called
generalized tensor networks and conducting numerical experimentation to verify how
well theoretical results hold in practice.

1 Introduction

Recent years have seen machine learning algorithms increase in popularity due to their ability
to solve complex problems. In particular, deep learning and artificial neural networks have
gained attention by outperforming other machine learning algorithms when considering tasks
such as image and speech recognition. Although widely used, there are still attempts today
to interpret and obtain a better comprehension of how these deep learning algorithms work.
Examples of such attempts consist in visualizing activation values for neurons in the network
([12]) and interpretability based on pixel-wise decompositions of images ([2]). A recent line of
work tries to address the question of the expressive power of deep networks by establishing
a connection between certain tensor decompositions and certain network architectures by
seeing the weights of a network as a single tensor.

This semester paper studies approaches relying on tensor-based methods that naturally
have many applications in the context of machine learning which makes extensive use of mul-
tidimensional arrays. In what follows we focus on tensor decompositions of the weight tensor
and see how they lead to various neural network architectures. The paper is structured as
follows. In section 2 we recall the relevant tensor-based notions as well as introduce so-called
generalized tensors. Section 3 introduces the problem framework of solving a classification
problem with tensor networks. Theoretical results concerning these networks are proved in
section 4 and how well these results hold in practice is verified by numerical experimentations
presented in section 5.

2 Generalized Tensor Decompositions

In this section, we recall all the necessary definitions and basic results concerning tensors that
we will need and use in subsequent sections. In our current setting, a tensor is understood
to be a multidimensional array

W 2 RM1⇥···⇥MT , (1)

where T is the order and Mi 2 N is the dimension in mode i of the tensor. Given two tensors
A and B of order P and Q respectively, their tensor product A ⌦ B is the tensor of order
P +Q defined by

(A⌦B)i1...iP j1...jQ = Ai1...iP ·Bj1...jQ . (2)

2

In what follows, we take tensor products between vectors u 2 RM1 and v 2 RM2 , in which
case the tensor product coincides with the standard outer product. Standard tensor decom-
positions are obtained by expressing a tensor as a weighted sum of tensor products. Such
decompositions can thus be generalized if we are able to generalize the tensor operator. For
this purpose, let ⇠ : R ⇥ R 7! R be an associative and commutative binary operator, i.e
⇠(⇠(x, y), z) = ⇠(x, ⇠(y, z)) and ⇠(x, y) = ⇠(y, x) 8x, y, z 2 R respectively. The tensor prod-
uct can be generalized as follows: for tensors A, B of order P and Q respectively, we define
their generalized outer product A⌦⇠ B to be an (P +Q) order tensor with entries

(A⌦⇠ B)i1...iP j1,...JQ = ⇠(Ai1...iP ,Bj1...JQ). (3)

Given a choice of subset of axes of W as in (1), s = {i1, i2, ..., ims} and its complement
t = {j1, j2, ..., jT�ms}, the matricization of W specified by (s, j) is a matrix

W
(s,t)

2 RMi1Mi2 ...Mims
⇥Mj1Mj2 ...MjT�ms (4)

corresponding to a reshape of W . For a tensor W 2 RM1⇥...⇥MN where we assume N to
be even, we will particularly be interested in the matricization where odd modes correspond
to rows and even modes to columns i.e s = {1, 3, ..., N � 1} and t = {2, 4, ..., N}. For this
particular matricization, element Wi1...iN is mapped to index (l, j) with

l = 1 +
N/2X

n=1

(i2n�1 � 1)
N/2Y

k=n+1

M2k�1

and

j = 1 +
N/2X

n=1

(i2n � 1)
N/2Y

k=n+1

M2k.

The vectorization of W is a linear transformation that converts W into a column vector
vec(W) 2 R

QN
n=1 Mn . More specificly, we stack into a vector the columns of the matrix cor-

responding to the matricization of the tensor along its first mode.

Tensor decompositions allow one to express a tensor as a weighted sum of tensor products.
For tensors with an exponentially large number of elements, such decompositions have the
benefit of providing us with a way of compactly represent them using a smaller amount
of elements. The two decompositions we will focus on are the Canonical Polyadic (CP)
decomposition and the Tensor Train (TT) decomposition. The CP decomposition of W 2

RM1⇥...⇥MT is given by

W =
RX

r=1

�rv
(1)
r ⌦ v(2)

r ⌦ ...⌦ v(T)
r (5)

where v(i)
r 2 RMi . The minimal R such that the decomposition (5) exists is called the

CP-rank of the tensor. For a given R, finding the best rank-R approximation of a tensor W

argminX :RankCP (X)R||W �X ||F (6)

is an NP-hard and ill-posed problem. A connection between the CP rank of a tensor and
its matrizications that we will need later on is given in the following lemma.

3

Lemma 2.1. Let W be a tensor with rankCP (W) = r. Then for any matrizication of W (s,t)

we have that rank(W (s,t)) r, where the ordinary matrix rank is assumed.

The Tensor Train decomposition is given by

W =
R1X

r1=1

...

RT�1X

rT�1=1

g(1)
r0r1 ⌦ g(2)

r1r2 ⌦ ...⌦ g(T)
rT�1rT

(7)

where g(t)
rt�1rt 2 RMt and r0 = rT = 1 by definition. For a given t, if we gather the vectors

g(t)
rt�1,rt for all indices rt�1 2 {1, ..., Rt�1}, rt 2 {1, ..., Rt} we obtain a three dimensional ten-

sor G
(t)

2 RM⇥Rt�1⇥Rt . The tensors {G
(t)
}
T�1
t=1 are called TT-cores and the minimal values

of {Rt}
T�1
t=1 such that the decomposition (7) exists are called TT-ranks.

If we replace ⌦ with ⌦⇠ in (5) and (7) we obtain so-called generalized tensor decompositions.

3 Tensor Neural Networks

3.1 Machine Learning framework and setup

We consider a classification problem to be solved using a neural network on a dataset
{(X(b), y(b))}Lb=1. We make the assumption that X(b) is a sequence of vectors :

X(b) = (x(1),x(2), ...,x(T)), x(i)
2 RN (8)

and introduce a parametric feature map

f✓ : RN
7! RM (9)

where we suppose M < N , thus allowing us to obtain lower dimensional representations
{f✓(x(k))}Tk=1 of our features. Now, let l(X) be the score functions of the network (the
output of the last hidden layer) for a single class when the input data is X. We write

l(X) = hW ,�(X)i = (vec(W))>vec(�(X)) (10)

where W 2 RM⇥M⇥...⇥M is an order T tensor corresponding to the weights of our network
to be trained and �(X) is the so-called feature tensor:

�(X) = f✓(x
(1))⌦ f✓(x

(2))⌦ ...⌦ f✓(x
(T)). (11)

3.2 Tensor networks

We know show how tensor decompositions naturally appear in the previous setting by show-
ing how di↵erent tensor decompositions of the weight tensor W in (10) lead to neural
networks with di↵erent architectures. We consider the two networks presented in Fig 1
implementing respectively shallow and recurrent architectures.

4

Figure 1: Representation of shallow (left) and recurrent (right) neural networks. Neurons
in the hidden layer correspond to multilinear units. Arrows indicates that an element

serves as input to the unit. The initial input Z0 is set to be equal to 1.

We start by defining multilinear units. For x1 2 Rn1 , ...,xT 2 RnT , a multilinear unit
G 2 Rn1⇥···⇥nT⇥k defines a multilinear map G : Rn1 ⇥ · · ·⇥ RnT 7! Rk as

G(x1, ...,xT) = z,

zj =
X

i1,...,iT

Gi1,...,iT ,jxi1
1 · · · xiT

T .

Now consider the shallow neural network in Fig. 1 where each neuron Gr in the hidden layer
is a multilinear unit taking as input the T features of our data and mapping into R (i.e k=1).
Let us write this unit as a rank-1 tensor:

Gr = v(1)
r ⌦ · · ·⌦ v(T)

r . (12)

An explicit expression for the score function of this network is given by

l(X) =
RX

r=1

G
�
f✓(x

(1)), ..., f✓(x
(T))
�

=
RX

r=1

✓ MX

i1,...,iT=1

[v(1)
i1,rf✓(x

(1))i1]...[v(T)
iT ,rf✓(x

(T))iT]

◆

=
RX

r=1

hf✓(x
(1)),v(1)

r i ⌦ · · ·⌦ hf✓(x
(t)),v(T)

r i

= hf✓(x
(1))⌦ · · ·⌦ f✓(x

(T)),
RX

r=1

v(1)
r ⌦ v(2)

r ⌦ · · ·⌦ v(T)
r i.

(13)

and hence can be represented as in (10) with W given by (5). From this, it can readily be
seen that the CP -decomposition of a weight tensor leads to a shallow neural network.

5

Taking into account potential constants, the general expression is

l(X) =
RX

r=1

�r[hf✓(x
(1)),v(1)

r i ⌦ ...⌦ hf✓(x
(t)),v(T)

r i]. (14)

A similar derivation is now done for a network with recurrent-like architecture as in Fig.1.
Given a vector r = (r0, r1, ..., rT�1, rT) of positive integers with r0 = rT = 1, we consider
bilinear units Gk 2 Rrk�1⇥m⇥rk , taking as input zk�1 (output of the previous unit), the
feature vector f✓(x(k)) and mapping into Rrk for k = 1, ..., T . As before, we can compute the
score function of such a network as

l(X) = GT (zT�1, f✓(x
(T)))

=

RT�1X

rT�1=1

zrT�1

T�1

MX

m=1

GrT�1,m
T f✓(x

(T))m

| {z }
=hf✓(x(T)),grT�1,rT i

=

RT�1X

rT�1=1

zrT�1

T�1 hf✓(x
(T)),grT�1,rT i

=

RT�1X

rT�1=1

"
GT�1

�
zT�2, f✓(x

(T�1))
�
#

rT�1

hf✓(x
(T)),grT�1,rT i

=

RT�1X

rT�1=1

"
RT�2X

rT�2=1

MX

m=1

GrT�2,m,rT�1

T�1 zrT�2

T�2 f✓(x
(T�1))m

#
hf✓(x

(T)),grT�1,rT i

=

RT�2X

rT�2=1

RT�1X

rT�1=1

zrT�2

T�2 hf✓(x
(T)),grT�1,rT i

"
MX

m=1

GrT�2,m,rT�1

T�1 f✓(x
(T�1))m

#

| {z }
hf✓(x(T�1),grT�2,rT�1i

= ...

=
R1X

r1=1

...

RT�1X

rT�1

zr11

T�1Y

t=2

hf✓(x
(t)),grt�1,rti

=
R1X

r1=1

...

RT�1X

rT�1

T�1Y

t=2

hf✓(x
(t)),grt�1,rti

"
MX

m=1

Gr0,m,r1
1 f✓(x

(1))m
#

| {z }
=hf✓(x(1)),gr0,r1 i

=
R1X

r1=1

...

RT�1X

rT�1=1

TY

t=1

hf✓(x
(t)),g(t)

rt�1rti

= hf✓(x
(1))⌦ · · ·⌦ f✓(x

(T)),
R1X

r1=1

...

RT�1X

rT�1=1

g(1)
r0r1 ⌦ g(2)

r1r2 ⌦ · · ·⌦ g(T)
rT�1rT

i.

(15)

6

Taking the matrices {G
(t)
}
T
t=1 of the score function (using the same notation and as pre-

viously defined) to be TT -cores of the weight tensor of a network, we thus see that its
TT -decomposition realizes the recurrent network shown in Fig.1. More concretely, a con-
nection with recurrent neural networks can be seen in the following way. Define the hidden
states

h(1)
2 RR1 : h(1)

r1 = hf✓(x
(1)),g(1)

r0r1i (16)

h(t)
2 RRt : h(t)

rt =
Rt�1X

rt�1=1

hf✓(x
(1)),g(1)

rt�1rtih
(t�1)
rt�1

, t = 2, ...T (17)

Lemma 3.1.
l(X) = h(T)

2 R. (18)

Proof. A direct computation gives

l(X) =
R1X

r1=1

...

RT�1X

rT�1=1

TY

t=1

hf✓(x
(t)), g(t)rt�1,rti

=
R1X

r1=1

...

RT�1X

rT�1=1

TY

t=2

hf✓(x
(t)), g(t)rt�1,rtihf✓(x

(1)), g(1)r0,r1i

=

RT�1X

rT�1=1

...
R1X

r1=0

TY

t=2

hf✓(x
(t)), g(t)rt�1,rtih

(1)
r1

=

RT�1X

rT�1=1

...
R2X

r2=0

TY

t=3

hf✓(x
(t)), g(t)rt�1,rti

R1X

r1=1

hf✓(x
(2)), g(2)r1,r2ih

(1)
r1

=

RT�1X

rT�1=1

...
R2X

r2=0

TY

t=3

hf✓(x
(t)), g(t)rt�1,rtih

(2)
r2

= ...

=

RT�1X

rT�1=1

TY

t=2

hf✓(x
(T)), g(T)

rT�1,rT
ih(T�1)

rT�1

= h(T)

(19)

Using the TT-cores, we can write (17) as

h(t)
k =

X

i,j

G
(t)
i,j,k[f✓(x

(t))⌦ h(t�1)]i,j

= g(h(t�1),x(t),⇥(t)
G), k = 1, ..., Rt

(20)

for some function g and where ⇥(t)
G contains weights from G and f✓. We see that (17) is

reminiscent of hidden states equations of recurrent neural networks.

7

The networks as defined so far have limited practical use since they only implement multi-
plicative nonlinearities. By using instead generalized tensor decompositions, replacing ⌦ in
(14) and (20) with ⌦⇠, allows for various nonlinearities. Henceforth, we consider

• Generalized shallow networks with ⇠-nonlinearity with score function

l(X) =
RX

r=1

�r⇠
�
hf✓(x

(1)),v(1)
r i, ..., hf✓(x

(T)),v(T)
r i
�

(21)

• Generalized RNN with ⇠-nonlinearity with hidden states

h(t)
k =

X

i,j

G
(t)
i,j,k[C

(t)f✓(x
(t))⌦⇠ h

(t�1)]i,j (22)

and score function
l(X) = h(T). (23)

where the introduced matrices C(t) act on the input states in order to account for the
possibility of generalized shallow networks being able to be represented as generalized RNNs
of width 1.

Proposition 3.2. If we replace the generalized outer product ⌦⇠ in (22) with the standard
outer product ⌦, we can subsume matrices Ct into tensors Gt without loss of generality.

Proof.
h(t)
k =

X

i,j

G
(t)
i,j,k[C

(t)f✓(x
(t))⌦ h(t�1)]i,j

=
X

i,j

G
(t)
i,j,k

X

l

C(t)
il f✓(x

(t))lh
(t�1)
j

=
X

l,j

G̃
(t)
l,j,kf✓(x

(t))lh
(t�1)
j , G̃l,j,k =

X

i

Gi,j,kC
(t)
i,l

=
X

l,j

G̃
(t)
l,j,k[f✓(x

(t))⌦ h(t�1)]i,j

(24)

where we see that the TT-cores G(t) are replaced by the cores ˜
G(t).

4 Universality and expressivity of ReLU tensor net-
works

The expressive power of a neural network is its ability to approximate functions. Depth ef-
ficiency refers to the known empirical fact that, for a fixed number of parameters, networks
with deep architectures are typically more expressive then those with shallow ones. The
notion of universality expresses the idea that, under mild conditions, neural networks are
able to represent a large class of functions (in a sense to be made precise) The purpose of
this section is to formalize this for generalized networks with ReLU non-linearity activation

8

⇠(x, y) = max(x, y). The two main results concern universality and expressivity of these
networks. For this purpose, we first need to define grid tensors and prove certain statements
about them.

4.1 Grid tensors

Given a template of fixed vectors X = {x(1), ...,x(M)
}, the grid tensor of X (for a given

network with score function l) is defined to be the tensor of order T and dimension M in
each mode with entries given by

�(l)(X)i1i2...iT = l(X), X =
�
x(i1),x(i2), ...,x(iT)

�
(25)

it 2 {1, ..., T}. Grid tensors will allow us to measure the expressiveness of generalized neural
networks. This is done by asking if for a given tensor H 2 RM⇥M...⇥M of order T , there exits
a generalized network with grid tensor equal to H. Define the matrix F 2 RM⇥M by

F = [f✓(x
(1)) | f✓(x

(2)) | ... | f✓(x
(M))]> (26)

Using F, we can write the grid tensor of a generalized shallow network in the following form

�l(X) =
RX

r=1

�r

�
Fv(1)

r

�
⌦⇠

�
Fv(2)

r

�
⌦⇠ ...⌦⇠

�
Fv(T)

r

�
(27)

since for X = (x(i1),x(i2), ...,x(iT)) we have

l(X) =
RX

r=1

�r⇠
�
hf✓(x

(i1)),v(i1)
r i, ..., hf✓(x

(iT)),v(iT)
r i

�
(28)

=
RX

r=1

�r

�
Fv(1)

r

�
i1
⌦⇠

�
Fv(2)

r

�
i2
⌦⇠ ...⌦⇠

�
Fv(T)

r

�
iT

(29)

=
RX

r=1

�r[
�
Fv(1)

r

�
⌦⇠ ...⌦⇠

�
Fv(T)

r

�
]i1,i2...iT (30)

= �l(X)i1i2...iT . (31)

For generalized RNNs, a recursive expression of the grid tensor is given in the following
proposition .

Proposition 4.1. The grid tensor of a generalized RNN network has the following form:

�(l,0)(X) = h(0)
2 R

�(l,1)(X)km1 =
P

i,j G
(1)
i,j,k

�
C(1)FT

⌦⇠ �l,0
�
im1j

2 RR1⇥M

�(l,2)(X)km1m2 =
P

i,j G
(2)
i,j,k

�
C(2)FT

⌦⇠ �l,1
�
im2jm1

2 RR2⇥M⇥M

9

...

�(l,T)(X)km1m2...mT =
P

i,j G
(T)
i,j,k

�
C(T)FT

⌦⇠ �l,1
�
imT jm1...mT�1

2 R1⇥M⇥M⇥M⇥M

�l(X) = �(l,T)(X)1,:,:,...,:

Proof. Define h(q)(m1, ...,mq) 2 RRq to be the hidden state at time step q for a generalized
RNN with input X = (x(m1),x(m2), ...,x(mq)). Then we claim that

�(l,q)(X)k,m1,...,mq = h(q)
k (m1, ...,mq), q = 1, ..., T. (32)

It is enough to prove (32) since then for X = (xi1 , ...,x(iT)) an arbitrary sequence of tem-
plates, we will have

�l(X)i1,...,iT = �(l,T)(X)1,i1,...,iT = h(T)(i1, ..., iT) = l(X) (33)

which is what we want to prove. We prove (32) by induction on q. For q = 1 we have

�(l,1)(X)k,m1 =
X

i,j

G
(1)
i,j,k

�
C(1)FT

⌦⇠ �
l,0
�
im1j

(34)

=
X

i,j

G
(1)
i,j,k⇠

⇣
[C(1)FT]im1 ,h

(0)
j

⌘
(35)

=
X

i,j

G
(1)
i,j,k⇠

⇣
[C(1)f✓(x

(m1))]i,h
(0)
j

⌘
(36)

= h(1)
k (x(m1)). (37)

If (32) is true for 1 q < T then

�(l,q+1)(X)k,m1,...,mq+1 =
X

i,j

G
(q+1)
i,j,k

�
C(q)FT

⌦⇠ �
l,q
�
imq+1jm1,...,mq

(38)

=
X

i,j

G
(q+1)
i,j,k ⇠

⇣
[C(q+1)FT]imq+1 ,�

l,q
j,m1,...,mq

⌘
(39)

=
X

i,j

G
(q+1)
i,j,k ⇠

⇣
[C(q+1)f✓(x

(mq+1))]i,h
(q)
j (m1, ...,mq)

⌘
(40)

= h(q+1)
k (x(m1), ...,x(mq+1)) (41)

by our assumption that hq(m1, ...,mq) is the hidden state at time step q.

In what follows, we consider the parametric family of feature maps

F = {f✓(x) = �(w>x+ b), ✓ = (w, b) 2 Rn
⇥ R} (42)

where �(·) is sigmoidal (i.e, monotonic, with limz!�1�(z) = c, limz!+1�(z) = C for some
constants c, C 2 R) or the ReLU activation function, �(z) = max(z, 0). Furthermore, as in
[3], we consider the following conditions:

10

• Continuity: f✓(x) is continuous with respect to ✓ and x.

• Non-degeneracy: For any x(1), ...,x(T)
2 Rn pairwise distinct, there exits f✓1 , ..., f✓T 2

F such that if we define f(x) = (f✓1(x), ..., f✓T (x)), then F 2 RM⇥M defined in (26) is
non-singular.

We then have the following result (claim 1, [3])

Proposition 4.2. The parametric family F satisfies the non-degeneracy condition.

The converse also holds, i.e, under mild conditions on the functions f , one can choose
template vectors such that F is invertible (claim 2, [3]):

Proposition 4.3. Let f✓1 , ..., f✓M : Rn
7! R be any linearly independent continuous func-

tions. Then there exits x(1), ...,x(M)
2 Rn such that the corresponding matrix F is non

singular

Proof. Write the determinant of F as a function of (x(1), ...,x(M)):

detF (x(1), ...,x(M)) =
X

�2SM

sign(�)
MY

i=1

f✓�(i)(x
(i)), (43)

where SM is the permutation group on {1, ...,M} and sign(�) 2 {+1,�1}. Hence detF is
a linear combination of the product functions {(x(1), ...,x(M)) 7!

QM
i=1 f✓di (x

(i))}d1,...,dM2[M]

which are linearly independent since the f✓1 , ..., f✓M are linearly independent. It follows that
detF , seen as a function, is not identically zero i.e there exits x(1), ...,x(M)

2 Rn such F is
non singular.

We now take f✓ to be an a�ne map followed by the ReLU activation : f✓(x) = �(Ax+b).
The previous two proposition show that without loss of generality, we may assume F to be
invertible. We fix some templates X and make the additional assumption that value of score
functions outside of the grid tensor generated by X is irrelevant for classification. The next
results shows that the set of grid tensors realized by generalized RNN is closed under taking
linear combinations.

Lemma 4.4. Given two generalized RNNs with grid tensors �lA(X), �lA(X) and arbitrary
⇠-nonlinearity, there exists a generalized RNN with grid tensor �lC (X) satisfying

�lC (X) = a�lA(X) + b�lB(X), 8a, b 2 R. (44)

Proof. Suppose the RNNs have respectively weight parameters

⇥A =
⇣
{C(t)

A }
T
t=1, {G

(t)
A }

T
t=1 2 RLA⇥Rt�1,A⇥Rt,A

⌘
, (45)

and
⇥B =

⇣
{C(t)

B }
T
t=1, {G

(t)
A }

T
t=1 2 RLB⇥Rt�1,B⇥Rt,B

⌘
. (46)

Then the network with weights

C(t)
C 2 R(LA+LB)⇥M

11

C(t)
C =

"
C(t)

A

C(t)
B

#

G
(1)
C 2 R(LA+LB)⇥1⇥(R1,A+R1,B)

[G(1)
C]i,:,: =

8
>><

>>:

h
[G(1)

A]i,:,: 0
i

i 2 {1, ..., LA}

h
0 [G(1)

B](i�LA),:,:

i
i 2 {LA + 1, , ..., LA + LB}

G
(t)
C 2 R(LA+LB)⇥(Rt�1,A+Rt�1,B)⇥(Rt,A+Rt,B), 1 < t < T

[G(1)
C]i,:,: =

8
>>>>>><

>>>>>>:

"
[G(t)

A]i,:,: 0

0 0

#
i 2 {1, ..., LA}

"
0 0

0 [G(t)
B]i,:,:

#
i 2 {LA + 1, , ..., LA + LB}

G
(T)
C 2 R(LA+LB)⇥(RT�1,A+RT�1,B)⇥1

[G(1)
C]i,:,: =

8
>>>>>><

>>>>>>:

"
a[G(T)

A]i,:,:
0

#
i 2 {1, ..., LA}

"
0

b[G(T)
B](i�LA),:,:

#
i 2 {LA + 1, , ..., LA + LB}

(47)

satisfies

h(t)
C =

"
h(t)
A

h(t)
B

#
, 0 < t < T (48)

and
h(T)
C = ah(T)

A + bh(T)
A (49)

which directly shows the claim. Indeed, a direct computation gives

12

(h(1)
C)k =

X

i

(G(1)
C)i,1,k⇠

⇣
[C(1)

C f✓(x
(1)]i, (h

(0)
C)])

=
LAX

i=1

(G(1)
A)i,1,k⇠

⇣
[C(1)

A f✓(x
(1))]i, (h

(0)
A)]) {k R1,A}+

LA+LBX

i=LA+1

(G(1)
B)i,1,k⇠

⇣
[C(1)

B f✓(x
(1))]i, (h

(0)
B)]) {R1,A + 1 k R1,A +R1,B}

= (h(1)
A)k {kR1,A} + (h(1)

B)k {R1,A+1kR1,A+R1,B}

(50)

and by an induction argument we get for 1 t < T

(h(t)
C)k =

X

i,j

(G(t)
C)i,t,k⇠

⇣
[C(t)

C f✓(x
(t)]i, (h

(t�1)
C)j])

=
LAX

i=1

Rt�1,AX

j=1

(G(t)
A)i,j,k⇠

⇣
[C(t)

A f✓(x
(t))]i, (h

(t�1)
A)j]) {k R1,A}+

LA+LBX

i=LA+1

Rt�1,A+Rt�1,BX

j=Rt�1,A+1

G
(t)
B)i,j,k⇠

⇣
[C(t)

B f✓(x
(t))]i, (h

(t�1)
B)]) {R1,A + 1 k R1,A +R1,B}

= (h(t)
A)k {kR1,A} + (h(t)

B)k {R1,A+1kR1,A+R1,B}
(51)

and for t = T we get (49) by the exact same argument.

4.2 Universality of ReLU tensor networks

We now move on to proving the universality result. For this, some intermediate results will
be needed.

Proposition 4.5. For any associative and commutative binary operator ⇠, an arbitrary
generalized rank 1 shallow network with ⇠-nonlinearity can be represented as a generalized
RNN with unit ranks R1 = = RT�1 = 1 and ⇠-nonlinearity.

Proof. If the parameters of the generalized shallow network are ⇥ = {�, {v(t)
}
T
t=1} then the

generalized RNN with weights

C(t) =
�
v(t)
�T

2 R1⇥M (52)

G
(t) =1, t < T (53)

G
(T) =� (54)

satisfies the desired property since

h(t) = G
(t)⇠
�
[C(t)f✓(x

(t)),h(t�1)]
�

= ⇠
�
hf✓(x

(t)),v(t)
i,h(t�1)), t = 1, ..., T � 1

(55)

13

and the corresponding score function

h(T) = �⇠
�
hf✓(x

(T),v(T)
i,h(T�1))

= �⇠
�
hf✓(x

(T)),v(T)
i, [⇠

�
hf✓(x

(T�1)),v(T�1)
i,h(T�2))])

= �⇠
�
hf✓(x

(T)),v(T)
i, hf✓(x

(T�1)),v(T�1)
i,h(T�2))

= ...

= �⇠
�
hf✓(x

(T)),v(T)
i, ..., hf✓(x

(1)),v(1))i)

(56)

which equals the score function realized by a generalized shallow network with weights ⇥.

Lemma 4.6. Let "(j1,j2,...,jT) be an arbitrary one-hot tensor defined as

"j1,j2,...,jT(i1,i2,...,iT) =

(
1 jt = it 8t 2 {1, ..., T},

0 otherwise.
(57)

Then there exits a generalized RNN with rectifier nonlinearities such that its grid tensor
satisfies

�l(X) = "(j1,j2,...,jT). (58)

Proof. We first prove the result for generalized shallow networks by explicitly constructing
construction such a network for F = I, the identity. Consider a generalized shallow network
defined by the weights

⇥ =
⇣
{�r}

R=2
r=1 , {v

(t)
r }

R=2,T
r=1,t=1 2 Rm

⌘
(59)

with �1 = 1,�2 = �1,v(1)
1 = v(2)

1 = ... = v(T)
1 = the vector with all values equal to 1 and

v(t)
2 = ejt , the vector with all values equal to 1 except the value in position jt equal to 0.

The grid tensor realized by this network is then given by

�l(X) =
2X

r=1

�r

�
Fv(1)

r

�
⌦⇠ ...⌦⇠

�
Fv(T)

r

�

= [(F)⌦⇠ ...⌦⇠ (F)]� [(Fej1)⌦⇠ ...⌦⇠ (FejT)].

(60)

Hence,
�l(X)i1,...,iT = max{ i1 , ..., iT , 0}�max{(ej1)i1 , ..., (ejT)iT , 0}

= {(i1,...,iT)=(j1,...,jT)},
(61)

which proves the claim for generalized shallow networks. Clearly, the constructed rank
2 generalized shallow network can be written as a linear combination of rank 1 network
generalized shallow networks. By proposition (4.5), each of these rank 1 shallow networks
can be represented in a form of generalized RNN. Lemma 4.4 gives us the existence of the
desired generalized RNN.

Now that we have these two results, we can state and prove the following theorem.

14

Theorem 4.7. Let H 2 RM⇥...⇥M be an arbitrary tensor of order T. Then there exists a
generalized shallow network and a generalized RNN with rectifier non linearity ⇠(x, y) =
max(x,y,0) such that the grid tensor of each of the networks coincides with H

Proof. By lemma 4.6, for each basis tensor "(i1,i2,...,iT) there exists a generalized RNN with
rectifier nonlinearities such that its grid tensor equals ". By lemma (4.4) we can construct
a RNN with grid tensor

�(l)(X) =
X

i1,i2,...,iT

Hi1,i2,...,iT "
(i1,i2,...,iT) = H. (62)

Using 4.6 and the fact that the collection of grid tensors of shallow generalized networks is
closed under taking linear combinations, the exact same proof as above proves the claim for
generalized shallow networks.

Theorem (4.7) also holds for product nonlinearities.

Proposition 4.8. Theorem (4.7) holds with product nonlinearity ⇠(x, y) = xy

Proof. Fix a template of vectors X = {x(1), ...,x(T)
} such that F is invertible and consider a

network with weight tensor

Ĥi1,i2,...,iT =
X

j1,...,jT

Hj1,...,jTF
�1
j1,i1 ...F

�1
jT ,iT

. (63)

Then a direct computation shows that the grid tensor realized by this network using non
multiplicative nonlinearity is given by

�(X)i1,...,iT = l((x(i1), ...,x(iT)))

=
MX

l1,...,lT=1

Ĥl1,l2,...,lT�l1,l2,...,lT ((x
(i1), ...,x(iT)))

=
MX

l1,...,lT=1

X

j1,...,jT

Hj1,...,jTF
�1
j1,l1

...F�1
jT ,lT

!
f✓(x

(i1))l1 ...f✓(x
(iT))lT

= Hi1,...,iT

MX

l1,...,lT=1

F�1
i1,l1

...F�1
iT ,lT

f✓(x
(i1))l1 ...f✓(x

(iT))lT

!
+ [remainder terms]| {z }

=0

= Hi1,...,iT

MX

l1=1

F�1
i1,l1

Fl1,i1 ...

MX

lT=1

F�1
iT ,lT

FlT ,iT

!

| {z }
=1

= Hi1,...,iT

(64)
where the remainder terms corresponds to a double sum over indices (j1, ..., jT) 6= (i1, ..., iT)
and is thus equal to 0 (using the fact that FF�1 = I). Thus the network with weight tensor Ĥ
and multiplicative nonlinearity has grid tensor equal to H. By taking the CP -decomposition
and TT -decomposition of Ĥ, we respectively get generalized CP and generalized TT net-
works with multiplicative nonlinearity which shows the claim.

15

4.3 Expressivity of ReLU tensor networks

The next objectif is to prove two expressivity results. The first says generalized RNN are
more expressive then their shallow counterparts.

Theorem 4.9. For every value of R there exits a generalized RNN with ranks R and
rectifier nonlinearity which is exponentially more e�cient than shallow networks, i.e, the
corresponding grid tensor may be realized only by a shallow network with rectifier nonlinear-
ity of width at least 2

MTmin(M,R)T/2.

Proving theorem 4.9, will require the following two lemmas, the first given without proof
(claim 9, [3]):

Lemma 4.10. Let �l(X) be a grid tensor generated by a generalized shallow network of rank
R and ⇠(x, y) = max(x,y,0). Then

rank[�l(X)](sodd,teven) R
TM

2
, (65)

where the ordinary matrix rank is assumed

Lemma 4.11. Without loss of generality, assume that xi = ei. Let 1(p,q) denote the matrix
of size p ⇥ q with each entry being 1, I(p,q) the matrix of size p ⇥ q with I(p,q)ij = �ij and
b = [1�min(M,R),0T

R�1] 2 R1. Consider the generalized RNN with ⇠(x, y) = max(x, y, 0)

C(t) =

(
1(M,M)

� IM,M t odd

1(M+1,M)
� I(M+1,M) t even

(66)

G
(t) =

8
><

>:

I(M,R)
2 R(M⇥1⇥R) t odd"

1(M,R)

b

#
2 R(M+1)⇥R⇥1 t even

(67)

Then the corresponding grid tensor satisfies

rank[�l(X)](sodd,teven) � min(M,R)T/2
TM

2
(68)

where the ordinary matrix rank is assumed.

Proof. First we show that for inputs of the form X = (xi1 ,xi1 , ...,xiT/2
,xiT/2

) with i1

R, ..., iT/2 R we have l(X) = 0 and l(X) = 1 in all other cases. Let ej1 , ej2 be respectively
the first and second input vectors of the network. For the first input vector ej1 at time step
1 we have

⇥
C(1)ej1

⇤
i
= {i 6=j1} and so the first hidden state is given by

h(1)
k =

min(R,M)X

i=1

{i=k}⇠(
⇥
C(1)ej1

⇤
i
, 0) = max({k 6=j1}, 0) = {k 6=j1}, k = 1, ..., R (69)

16

i.e the first hidden state corresponds to the bitwise negative of the input. Similarly, for the
second time step we have

⇥
C(2)ej2

⇤
i
= {i 6=j2} for i = 1, ...,M ,

⇥
C(2)ej2

⇤
M+1

= {j2 6=M} and
the hidden state at time 2 is

h(2) =
min(M,R)X

i=1

⇠(
⇥
C(2)ej2

⇤
i
,h(1)

i) + (1�min(R,M))⇠(
⇥
C(2)ej2

⇤
M+1

,h(1)
1)

=
min(M,R)X

i=1

max({i 6=j2}, {i 6=j1}, 0) + (1�min(R,M))max({M 6=j2}, {1 6=j1}, 0)

(70)

If j1 = j2 (i.e ej1 = ej2) then the previous line is equal to (min(M,R)�1)+(1�min(M,R) = 0
and the process continues. Otherwise, we get min(M,R) + (1 � min(M,R) = 1 and it is
not hard to see that this will be the final output of the network. In other words, this
networks measures pairwise similarity and the claim mentionned at the beginning of the
proof is verified. If follows that [�(X)l](sodd,teven) is a matrix with min(M,R)T/2 entries on
the diagonal equal to 0 and the remaining entries equal to 1. The rank of such a matrix is
RT/2 + 1 if R < M and MT/2 otherwise, proving the lemma.

The proof of theorem 4.9 can now be completed and uses the matricization into even and
odd modes of the grid tensors. It relies on the idea that for architectures realizing the same
grid tensor, upper and lower bounds on the matrix rank of a matricization allow to compare
the sizes of the corresponding architectures.

Proof. If we consider the example constructed in the proof of lemma 4.11, then lemma 4.10
tells us that the rank if the shallow network with rectifier nonlinearity which is able to
represent the same grid tensor is at least 2

TMmin(M,R)T/2

The next theorem shows that this expressivity property of generalized RNN is however
limited.

Theorem 4.12 (Expressivity 2). For every value of R, there exists an open set of generalized
RNNs with rectifier non-linearity ⇠(x, y) = max(x, y, 0), such that for each RNN in this open
set, the corresponding grid tensor can be realized by a rank 1 shallow network with rectifier
non-linearity.

Proof. Denote by I(p,q) the matrix of size p⇥q such that I(p,q) = �i,j and a(p1,...,pd) the tensor
of shape p1 ⇥ ...⇥ pd with every entry being a. Consider a generalized RNN with weights

C(t) =
�
F(T)

��1
, G(t) =

8
><

>:

2(M,1,R) t = 1

1(M,R,R) t = 2, ..., T � 1

1(M,R,1) t = T

(71)

The grid tensor realized by this generalized RNN is �(l)(X) = 2(MT)T�1(M,...,M). Indeed,
we have

�(l,0)(X) = 0

�(l,1)(X)km1 =
X

i

G
(1)
i,1,k

�
I(M,M)

⌦⇠ 0
�
im1j

=
X

i

2⇥max{I(M,M)
im1

, 0} = 2

17

�(l,2)(X)km1m2 =
X

i,j

(I(M,M)
⌦⇠ �

(l,1))im2jm1 =
X

i,j

2 = 2(MR)

...

and so on where we see the claim clearly holds. This tensor can be represented by a rank
1 generalized shallow network and we show that this still holds when adding a perturbation
collectively denoted by ".

�(l,0)(X) = 0 2 R,

�(l,1)(X)km1 =
X

i,j

G
(1)
i,j,k

�
(I(M,M) + ")⌦⇠ 0

�
im1j

2 RR1⇥M = 1⌦ (2+ "),

�(l,2)(X)km1m2 =
X

i,j

G
(2)
i,j,k

�
(I(M,M) + ")⌦⇠ �l,1

�
im2jm1

= 1⌦ (2MR+ ")⌦ 1,

...

�(l,T)(X)km1m2...mT = 1 ⌦(2(MR)T�1 + ")⌦ 1...⌦ 1,

�l(X) = �(l,T)(X)1,:,:,...,: = (2(MR)T�1 + ")⌦ 1...⌦ 1,

using the fact that A ⌦⇠ B = A ⌦ 1 when each element of A is greater or equal to B.
We claim that this grid tensor can be represented by a rank 1 shallow network with weight
setting

� = 1, vt =

(
F�1(2(MR)T�1 + ") t = 1

0 t > 1
(72)

Indeed, the corresponding grid tensor �̃(X) satisfies

�̃(X)i1,...,iT = � ·max{hf✓(x)
(i1),v(1)

1 i, 0}

= max{hf✓(x)
(i1),F�1(2(MR)T�1 + ")i, 0}

=
MX

m=1

Fi1m

MX

j=1

(F�1)mj

�
2(MR)T�1 + "

�
j

!

=
�
2(MR)T�1 + "

�
i1

= �(X)i1,...,iT .

(73)

5 Numerical Experiments

The numerical experiment conducted mainly consisted in implementing the generalized net-
works and attempting to reproduce the results in [5] and [6]. Part of the work done consisted
in implementing the non-generalized versions of these networks. Since they are less general
and of less interest, we only present the numerical results for the generalized networks. The
purpose of these experiments is to asses both the performance and expressivity of these
networks.

18

5.1 Methodology

We used four datasets for our experiments: toy datasets “Moons” and “Circles” ([10]), visual
datasets MNIST ([8]), CIFAR10 ([7]) and sentiment analysis dataset IMDB ([9]). Proceeding
as in [6] we modify our datasets (after performing standard feature prepossessing such as
standardization) so that they have the desired sequential structure (this modification is only
applied to the visual datsets). One natural approach consists in extracting patches from the
image along each chanel and stacking them into a matrix. Adopting this point of vue, each
column corresponds to a time step. Figure (2) illustrates this process. As feature map, we
take f✓ to be an a�ne map followed by a ReLU activation.

Generalized RNNs require to specify the choice of the initial hidden state h(0).We ini-
tialize h(0) as unit of the considered non-linearity, i.e an element u such that ⇠(x, y, u) =
⇠(x, y)8x, y 2 R. For instance, u = 0 for ⇠(x, y) = max{x, y, 0}.

Figure 2: Illustration of extraction procedure producing, turning a (32⇥ 32) MNIST digit
into a (64⇥ 16) image and a (32⇥ 32⇥ 3) CIFAR10 image into a (64⇥ 48) image.

We implement the networks using Tensorflow ([1]). The parameters to be optimized for the
shallow networks are

⇥ =
⇣
{�r}

R
r=1 2 R, {v(t)

r }
R,T
r=1,t=1 2 RM

⌘

and for generalized RNN

⇥ =
�
{C(t)

}
R
r=1 2 RL⇥M , {G(t)

}
T
t=1 2 RL⇥Rt�1⇥Rt

�
.

In both cases we use the Adam optimizer and categorical cross-entropy loss function. In
order to achieve the best test accuracy, the choice of most hyper-parameters such as the
learning rate, choice of rank of the networks and number of training epochs depended on the
specific choice of non linearity being used.

The choice of the initial initialization has a significant impact on the performance of the
networks. A widely applied heuristic is for the distribution of the weights to be normally
distributed with mean 0 and variance 1. While obtaining the distribution of the weight
tensor is not straightforward, with certain non-linearities we can still initialize the weights
such as to obtain the desired expectation and variance. We derive the following results.

19

Proposition 5.1. Assume product non-linearity ⇠(x, y) = xy. Then the following initializa-
tion schemes

• Generalized shallow network: �r
iid
⇠ N (0, 1) , v(t)

r
iid
⇠ NM(0, (1

R)
1/T IM)

• Generalized RNN: g(t)
rt�1rt

iid
⇠ NL(0, (1/

TY

t=1

Rt)
1/T IL)

give weight tensors with zero expectation and unit variance.

Proof. For generalized shallow networks, an element of the weight tensor is given by

Wi1i2...iT =
RX

r=1

�rv
(1)
ri1
...v(T)

riT
,

hence using standard formulas for the expectation and variance of products of independent
random variables we get

E[Wi1i2...iT] =
RX

r=1

E[�r]| {z }
=0

E[v(1)
ri1
]...E[v(T)

riT
] = 0

Var (Wi1i2...iT) =
RX

r=1

"
�
Var(�r) + E[�r]

2
� TY

t=1

⇣
Var(v(t)

rit
) + E[v(t)

rit
]2
⌘
� E[�r]

2
TY

t=1

E[v(t)
rit
]2
#

=
RX

r=1

Var(�r)
TY

t=1

Var(v(t)
rit
)

= R(
1

R
)

1
T T = 1.

(74)
For generalized RNN, one can show by a similar computation that the result does indeed
hold.

Proposition 5.2. Assume additive non-linearity ⇠(x, y) = x + y. Then the following ini-
tialization schemes

• Generalized shallow network: �r
iid
⇠ N (0, 1

R) , v
(t)
r

iid
⇠ NM(0, 1

T IM)

• Generalized RNN: g(t)
rt�1rt

iid
⇠ NL(0,

1
TR1...RT�1

IL)

give weight tensors with zero expectation zero and variance one.

Proof. In the first case we get

Wi1i2...iT =
RX

r=1

�r

TX

t=1

v(t)
rit

!
,

20

hence similarly as in proposition (5.1) we get

E[Wi1i2...iT] =
RX

r=1

TX

t=1

E[�r]| {z }
=0

E[v(t)
rit
] = 0

Var (Wi1i2...iT) =
RX

r=1

TX

t=1

h�
Var(�r) + E[�r]

2
� ⇣

Var(v(t)
rit
) + E[v(t)

rit
]2
⌘
� E[�r]

2]E[v(t)
rit
]2
i

=
RX

r=1

Var(�r)
TX

t=1

Var(v(t)
rit
)

=
RX

r=1

1

R

TX

t=1

1

T
= 1.

(75)

For generalized RNN, one can show by a similar computation that the result does indeed
hold.

These initialization did indeed lead to slightly better performance and worked well with the
other non linearities as well.

The purpose of the second numerical experiment is to further asses the expressivity of gen-
eralized RNNs compared to shallow networks for rectifier non-linearity. This is done by
generating a number of generalized RNNs with di↵erent vales of TT-ranks and computing
a lower bound on the rank of shallow networks necessary to realize the same grid tensor.
Concretely, we proceed as follows:

1. Randomly generate parameters of a generalized RNN according to a N (0, 1) distribution as
well as the matrix F followed by an element-wise ReLU activation.

2. Compute the corresponding grid tensor �(X) using the recursive formula given in proposition
(4.1).

3. Compute the matricization rank[�l(X)](sodd,teven) and estimate the lower bound R using
lemma (4.10).

We now present the results of our experimentations in the following section.

5.2 Results

Test accuracies of the generalized networks with various nonlinearities can be found in Table
1. Classification of the toy datasets is a relatively easy problem and serves as a sanity check
as to the performance of the networks which achieve an accuracy of 1. Furthermore, as we
can see in Figure 3, the networks are able to implement non trivial decision boundaries for
two dimensional datasets and various non-linearities.

21

Figure 3: Decision boundaries for two dimensional datasets produced by a generalized
RNN for various non linearites (from left to right : ⇠(x, y) = xy, ⇠(x, y) =max(x, y, 0),

⇠(x, y) =ln(ex + ey),⇠(x, y) =x+ y, ⇠(x, y) =
p
x2 + y2).

Fig 4 shows test accuracy on the IMDB dataset for rectifier nonlinearity, highlighting the
fact that generalized shallow network of much higher rank is needed to achieve the level of
performance of generalized RNNs.

Figure 4: Test accuracy on the IMDB dataset for generalized RNNs and generalized
shallow networks with respect to the total number of parameter with non linearity

⇠(x, y) = max(x, y, 0). For simplicity, the same number of training epochs was used each
time, which explains the slight drop in accuracy when considering large number of

parameters. Nonetheless, the graph still shows that generalized RNN are more expressive
then their shallow counterparts.

22

⇠(x, y) xy max(x, y, 0) ln(ex + ey) x+ y
p
x2 + y2

Generalized CP Network

Moon 1.00 1.00 1.00 1.00 1.00
Circle 1.00 1.00 1.00 1.00 1.00
MNIST 0.9727 0.9426 0.9127 0.9503 0.9557
CIFAR10 0.4398 0.4522 0.455 0.5001 0.509
IMDB 0.738 0.756 0.754 0.738 0.754

Generalized TT Network

Moon 1.00 1.00 1.00 1.00 1.00
Circle 1.00 1.00 1.00 1.00 1.00
MNIST 0.9593 0.9632 0.9154 0.9503 0.9598
CIFAR10 0.4355 0.4463 0.4220 0.4726 0.4336
IMDB 0.814 0.748 0.82 0.814 0.794

Table 1: Test accuracy of the generalized networks with various nonlinearities. Reported
accuracies correspond to best accuracy obtained across multiple runs of training. In

particular, di↵erent hyper parameters are used for di↵erent data sets and nonlinearities.

Figure 5 presents the results of our second experiment where we randomly generate 20 RNNs
for each rank of interest. For TT-ranks equal to 1, 2, 4 and 8, the mean lower bound rank of
generalized shallow networks obtained were 1.3, 7.6, 11.4 and 16.2 respectively with standard
deviations equal to 0.7, 7.8, 8.5, 8.0. We see that indeed, as the rank of the generalized RNN
increases, a much greater rank is necessary for an equivalent shallow network. We note
hower that our results di↵er from those presented by the authors, in particular for R=8 we
do not obtain nearly as many lower bounds greater then 30. We found that the method of
initialization of the tensor cores greatly a↵ect the obtained lower bounds and this might be
reason for this.

Figure 5: Distribution of lower bounds on the rank of generalized shallow networks
equivalent to randomly generated generalized RNNs of ranks 1, 2, 4, 8 (M = 10, T = 6) for

rectifier non-linearity (bars side by side).

23

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je↵rey Dean,
Matthieu Devin, Sanjay Ghemawat, Geo↵rey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

[2] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PloS one, 10(7), 2015.

[3] Nadav Cohen and Amnon Shashua. Convolutional rectifier networks as generalized
tensor decompositions. In International Conference on Machine Learning, pages 955–
963, 2016.

[4] IU S Iliashenko, IU S Iliashenko, Julij S Iljašenko, Yulij Ilyashenko, Ûlij S Il’âšenko,
and S Yakovenko. Lectures on analytic di↵erential equations, volume 86. American
Mathematical Soc., 2008.

[5] Valentin Khrulkov, Oleksii Hrinchuk, and Ivan Oseledets. Generalized tensor models
for recurrent neural networks. arXiv preprint arXiv:1901.10801, 2019.

[6] Valentin Khrulkov, Alexander Novikov, and Ivan Oseledets. Expressive power of recur-
rent neural networks. arXiv preprint arXiv:1711.00811, 2017.

[7] Alex Krizhevsky, Vinod Nair, and Geo↵rey Hinton. Cifar-10 (canadian institute for
advanced research).

[8] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[9] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association
for Computational Linguistics.

[10] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine
Learning research, 12:2825–2830, 2011.

[11] Igor Rostislavovich Shafarevich and Miles Reid. Basic algebraic geometry, volume 2.
Springer, 1994.

[12] Jason Yosinski, Je↵ Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understand-
ing neural networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

24

