
Numerical Simulations of the Weak
Approximation Error for Parabolic

Stochastic Partial Differential
Equations

Master Thesis

Helga Thum

August 2013

Advisor: Prof. Dr. Arnulf Jentzen

Department of Mathematics, ETH Zürich





Abstract

We consider the stochastic heat equation with additive and multiplica-
tive space-time white noise and look at a Galerkin spectral method com-
bined with a linear implicit Euler. The goal of this thesis is to observe
how the weak approximation error of a stochastic partial differential
equation with nonlinear diffusion coefficient behaves. We expect to see
a weak convergence rate of 1− ε.
First the theoretical background of SPDEs from e.g. [DPZ92] [PR07]
is recapitulated. Then the numerical scheme is presented and theo-
retically proven results from the literatur on error convergence rates
are reviewed. Finally, we use numerical experiments and simulations
to look at the convergence of the weak approximation error for the
different diffusion coefficient functions b(x, y) = 1, b(x, y) = 1 − y

5 ,

b(x, y) =
1− y

5
1+y2 for x ∈ (0, 1) and y ∈ R. In the case of the nonlinear

diffusion coefficient we observe that a rate of 1− ε could be possible.

Acknowledgements

I would like to thank my supervisor Prof. Dr. Arnulf Jentzen for the
support he gave me while writing this thesis. Without his help, com-
ments and support it would not have been possible for me to write this
thesis.
Additionally I would like to thank my partner and friends for their
support, help and proofreading.

i





Contents

Contents iii

List of Figures v

List of Tables vi

Introduction 1

1 Stochastic Partial Differential Equations (SPDEs) 5
1.1 Infinite dimensional Wiener Processes . . . . . . . . . . . . . . 5
1.2 Stochastic Integral . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 The SPDE-Setting considered in this thesis . . . . . . . . . . . 8

1.3.1 Notions of solutions . . . . . . . . . . . . . . . . . . . . 10

2 Numerical Discretisation Methods for SPDEs 13
2.1 Spatial and Noise Discretization . . . . . . . . . . . . . . . . . 13
2.2 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Fully Discrete Scheme . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Strong Approximation Error . . . . . . . . . . . . . . . 18
2.4.2 Weak Approximation Error . . . . . . . . . . . . . . . . 19

2.5 Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Multilevel Monte Carlo Method . . . . . . . . . . . . . . . . . . 23

3 Numerical Simulation of the Weak Approximation Error 25
3.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Weak Error . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Random Numbers . . . . . . . . . . . . . . . . . . . . . 26

3.2 SPDEs with additive noise . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



Contents

3.2.2 Deterministic Numerical Error . . . . . . . . . . . . . . 29
3.2.3 Monte Carlo Scheme . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Difference Monte Carlo Scheme . . . . . . . . . . . . . 33
3.2.5 Multilevel Monte Carlo Scheme . . . . . . . . . . . . . 40

3.3 SPDEs with multiplicative noise . . . . . . . . . . . . . . . . . 49
3.3.1 Monte Carlo Scheme . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Difference Monte Carlo Scheme . . . . . . . . . . . . . 50
3.3.3 Multilevel Monte Carlo Scheme . . . . . . . . . . . . . 54

Conclusion 57

Bibliography 59

iv



List of Figures

2.1 Realizations for the Stochastic Heat Equation . . . . . . . . . . . . 17

3.1 Convergence of Infinite Sum to Exact Solution . . . . . . . . . . . 29
3.2 Error of Deterministic Numerical Scheme . . . . . . . . . . . . . . 31
3.3 Error of MC, b(x, y) = 1 . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Distance of two Lines in loglog-Plot . . . . . . . . . . . . . . . . . 36
3.5 Error of DMC: b(x, y) = 1 . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Error of MLMC, semi-discretized, b(x, y) = 1 . . . . . . . . . . . . 45
3.7 Error of MLMC: fully discretized, b(x, y) = 1 . . . . . . . . . . . . 48
3.8 Error of MC: b(x, y) = 1− y

5 . . . . . . . . . . . . . . . . . . . . . . 50

3.9 Error of MC: b(x, y) = 1− y
5

1+y2 . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Error of DMC: b(x, y) = 1− y
5 . . . . . . . . . . . . . . . . . . . . . 53

3.11 Error of DMC: b(x, y) = 1− y
5

1+y2 . . . . . . . . . . . . . . . . . . . . . 53

3.12 Error of MLMC: b(x, y) = 1− y
5 . . . . . . . . . . . . . . . . . . . . 55

3.13 Error of MLMC: b(x, y) = 1− y
5

1+y2 . . . . . . . . . . . . . . . . . . . . 56

v



List of Tables

3.1 Error of Infinite Series of Stochastic Heat Equation . . . . . . . . 28
3.2 Error of Deterministic Numerical Scheme . . . . . . . . . . . . . . 31
3.3 Error of MC, b(x, y) = 1 . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Magnitude of M for given δ . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Error of DMC: b(x, y) = 1 . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Error of MLMC, semi-discretized, b(x, y) = 1 . . . . . . . . . . . . 46
3.7 Error of MLMC: fully discretized, b(x, y) = 1 . . . . . . . . . . . . 48
3.8 Error MC: b(x, y) = 1− y

5 . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Error MC: b(x, y) = 1− y
5

1+y2 . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Error DMC: b(x, y) = 1− y
5 . . . . . . . . . . . . . . . . . . . . . . 52

3.11 Error DMC: b(x, y) = 1− y
5

1+y2 . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Error MLMC: b(x, y) = 1− y
5 . . . . . . . . . . . . . . . . . . . . . 55

3.13 Error MLMC: b(x, y) = 1− y
5

1+y2 . . . . . . . . . . . . . . . . . . . . . . 55

vi



Introduction

In this thesis we want to take a closer look at the weak approximation error
for parabolic stochastic partial differential equations (SPDEs). Working on
the numerical approximation for SPDEs we face many difficulties. On the
one hand we have to consider problems known from numerically solving
deterministic partial differential equations. On the other hand we are faced
with problems triggered by numerically solving stochastic ordinary differen-
tial equations (SODEs). And additionally new issues arise resulting from the
infinite dimensional nature of the underlying noise processes. (cf. [JK11])
For an overview of the up to now published papers in this topic we refer to
the papers cited in [GK03] or the survey article [JK09].
Stochastic partial differential equations are used as a model in many appli-
cations. This area of mathematics is especially motivated by the need to
describe random phenomena studied in natural sciences like physics, chem-
istry, biology, and in control theory [DPZ92].
So, how can we define SPDEs? Basically, we combine deterministic partial
differential equations with some kind of noise. We then get equations of the
form

dX(t) = (AX(t) + F(X(t))dt + B(X(t))dW(t).

This will be described in Chapter 1. In this thesis, we concentrate on the
stochastic heat equation. Thus, we simplify the above equation to

dX(t) = ∆X(t)dt + B(X(t))dW(t),

where B is a multiplication operator of the form

(B(v)u)(x) = b(x, v(x)) · u(x)

(see Section 1.3 for details).
Taking a closer look at the noise in this equation we see that we can split it

1



Introduction

into two types, additive and multiplicative noise. We speak of additive noise
if the operator B is a constant operator and of multiplicative noise if B is not
constant.
Our goal in this thesis is to simulate numerically the weak approximation
error

εN =
∣∣∣E [ϕ(XT)]−E

[
ϕ(YN

T )
]∣∣∣

(for an exact definition see Section 2.4.2). The weak error of numerical meth-
ods for SPDEs is already the topic of many papers. As examples we can list
[DP09] [Deb11] [LS13] [KLL11] [KLL12] [Bré12] [DBD06] [GKL09] [Hau03b]
[Hau10] [DPJR10] [Kru12]. But to the best of my knowledge no simulations
were made in any of these papers. This might be due to the computational
effort necessary for Monte Carlo and Multilevel Monte Carlo methods. How-
ever, in the case of multiplicative noise it makes sense to use such methods
as it is in general no longer possible to calculate exact solutions of these
SPDEs explicitly.
Additionally, there are no theoretical results known for the weak approxi-
mation error of this kind of numerical schemes for SPDEs with nonlinear
diffusion coefficients. We find results for different diffusion coefficients in
[Deb11] or [AL12]. However, for the non-linear case the assumptions made
in these papers are very restrictive.
We study in Section 3.3 two different cases. First, a linear diffusion coeffi-
cient

b(x, y) = 1− y
5

and then a nonlinear diffusion coefficient

b(x, y) =
1− y

5
1 + y2 .

Especially for the second case the there are no theoretical results on the weak
approximation error available.
Our results coincide for additive noise and multiplicative noise with linear
diffusion coefficient with the results found e.g. in [WG12] [Deb11] [AL12].
We are able to observe a behaviour that may let us suspect a convergence
rate 1− ε for the weak approximation error of the stochastic heat equation.
Our main result is the following: we observe that in simulations a similar
result could be possible for the multiplicative noise with nonlinear diffusion
coefficient.
To achieve these results we are not only using the classical Monte Carlo
and Multilevel Monte Carlo schemes, but also the Difference Monte Carlo
scheme. The scheme will be shown in detail in Section 3.2.4.

2



Structure of the Thesis

Starting with a bit of theoretical background we will recapitulate in Chapter
1 some important definitions and results concerning Hilbert space valued
Wiener Processes, stochastic integrals with respect to these processes and
the different kind of solutions of SPDEs. The chapter is not intended to be
a self-contained introduction into this field of mathematics. Such an intro-
duction can be found e.g. in [PR07] or [DPZ92], for example. The goal is
to introduce the notation used here and give some results needed later on
in the thesis. Additionally, the SPDE setting used in this thesis will be de-
scribed.
In Chapter 2 we take a detailed look at the numerical methods used in the
simulations. The basic numerical method is a spectral Galerkin method in
space combined with the Linear Implicit Euler method in time. This dis-
cretization is then combined with Monte Carlo or Multilevel Monte Carlo
schemes. The basic idea of these schemes is quite simple. We take a cer-
tain number of independent samples of the desired value, sum them up and
divide by the number of samples. Thus, we are able to approximate the
expected value of this random variable. We will take a brief look at the per-
formance of these schemes. In addition, in this chapter we will take a look
at two different types of approximation errors, the strong and the weak one.
We will summarize a few theoretical results on these errors for SPDEs.
Finally, in Chapter 3 we describe our numerical experiments. We simulate
the cases of additive and multiplicative noise. The case of additive noise is
used to test our numerical scheme against former results. Here, the Differ-
ence Monte Carlo scheme is described. The idea is to calculate for different
grid sizes an approximate solution and a reference solution on a grid with
double the number of points and approximating this in one step with Monte
Carlo. Thus, we can use that the random variables used in one sample are
not independent and can reduce the number of samples needed.
With all these approaches we simulate the SPDE introduced in the setting in
Section 1.3. It seems as if the convergence rate 1− ε could be achieved.

3





Chapter 1

Stochastic Partial Differential
Equations (SPDEs)

With this chapter we aim at giving a short introduction to stochastic partial
differential equations (SPDEs). We will go mainly along the lines of [PR07]
and [DPZ92] and use also [Kru12] who gave a self-contained and short in-
troduction using the two sources mentioned before.
First we look at Hilbert space-valued Wiener processes. Then we define the
stochastic integral with respect to such processes and look at different kinds
of solutions for SPDEs.
Finally we introduce the SPDE setting used further on in this thesis.

1.1 Infinite dimensional Wiener Processes

Let (H, 〈·, ·〉H , ‖·‖H) and (U, 〈·, ·〉U , ‖·‖U) be separable Hilbert spaces and
let (Ω,F , P) be a probability space with a normal filtration (Ft)t≥0. We con-
sider a operator Q that has to be linear, bounded, self-adjoint and positive
definite. This gives us an eigenbasis (ek)k∈N and eigenvalues (µk)k∈N for
this operator. Then we define the following.

Definition 1.1 [DPZ92, page 86] A stochastic process W : [0, T] × Ω → U is
called a (standard) Q-Wiener process on (Ω,F , P) if

(i) W(0) = 0,

(ii) W has P-a.s. continuous trajectories,

(iii) W has independent increments and

(iv) ∀ 0 ≤ s < t ≤ T, W(t) −W(s) is distributed like a Gaussian random
variable with mean 0 and covariance (t− s)Q.

5



1. Stochastic Partial Differential Equations (SPDEs)

Very useful is the following representation of a Q-Wiener process.

Theorem 1.2 [PR07, Prop. 2.1.10] Let (ek)k∈N be an orthonormal basis of U
consisting of eigenvectors of Q with corresponding eigenvalues (µk)k∈N. Then an
U-valued stochastic process W(t), t ∈ [0, T], is a Q-Wiener process if and only if

W(t) = ∑
k∈N

√
µkβk(t)ek, t ∈ [0, T] , (1.1)

where βk, k ∈ {n ∈N | µn > 0}, are independent real-valued Brownian motions
on a probability space (Ω,F , P).
The series (1.1) even converges in L2 (Ω,F , P; C ([0, T] , U)), and thus always has
a P-a.s. continuous modification. In particular, for any Q as above there exists a
Q-Wiener process on U.

The proof can be found e.g. in [PR07, Prop. 2.1.10]. This result needs
the assumption that the operator Q ∈ L(U) has finite trace. Especially if
Q = IdU this is not the case. However, this is also an important case. A
Wiener process with such a covariance matrix is called white noise (cf. e.g.
[Kru12, page 20]).
To define Wiener processes for more general covariance operators Q ∈ L(U)
we could e.g. look at [DPZ92, Ch. 4.3.1] or [PR07, Ch. 2.5.1]. First we need
the following result.

Theorem 1.3 [PR07, Prop. 2.3.4] If Q ∈ L(U) is nonnegative and symmetric
then there exists exactly one element Q

1
2 ∈ L(U) nonnegative and symmetric such

that Q
1
2 ◦Q

1
2 = Q.

If, in addition, tr Q < ∞ we have that Q
1
2 ∈ L2(U) where

∥∥∥Q
1
2

∥∥∥2

HS(U,H)
= tr Q

and of course L ◦Q
1
2 ∈ HS(U, H) for all L ∈ L(U, H).

In [PR07] it is stated that the proof can be found in [RS72]. With this result
we are able to define two useful spaces. The space U0 = Q

1
2 (U) with the

inner product 〈u0, v0〉U0
=
〈

Q−
1
2 u0, Q−

1
2 v0

〉
U

, for all u0, v0 ∈ U0 and the

space (U1, 〈·, ·〉U1
, ‖·‖U1

). The second space is defined through the Hilbert-
Schmidt embedding J : U0 → U1. Such an embedding always exists. A
proof can e.g. be found in [PR07, Remark 2.5.1]. Finally we can define a so
called cylindrical Q-Wiener process using the following theorem.

Theorem 1.4 [PR07, Prop. 2.5.2] Let (ek)k∈N be an orthonormal basis of U0 =

Q
1
2 (U) and (βk)k∈N a family of independent real-valued Brownian motions. Define

Q1 = J J∗. Then Q1 ∈ L(U1), nonnegative definite and symmetric with finite trace
and the series

W(t) =
∞

∑
k=1

βk(t)Jek, t ∈ [0, T],

6



1.2. Stochastic Integral

converges inM2
T(U1) and defines a Q1-Wiener process on U1. Moreover, we have

that Q
1
2
1 (U1) = J(U0) and for all u0 ∈ U0

‖u0‖U0
=

∥∥∥∥Q−
1
2

1 Ju0

∥∥∥∥
U1

= ‖Ju0‖
Q

1
2
1 U1

,

i.e. J : U0 → Q
1
2
1 U1 is an isometry.

1.2 Stochastic Integral

Now we take a look at the H-valued stochastic Itô-integral. For every
stochastic process Φ : [0, T] × Ω → L(U, H) we denote the stochastic in-
tegral with respect to the Wiener process W as

t∫
0

Φ(σ)dW(σ). (1.2)

A detailed construction of this integral can be found e.g. in [PR07, Ch. 2.3.2]
or [DPZ92, Ch. 4.2]. The idea is to first look at elementary integrands.

Definition 1.5 [PR07, Def. 2.3.1] An L(U, H)-valued process Φ(t), t ∈ [0, T], on
(Ω,F , P] with normal filtration (Ft)t∈[0,T] is said to be elementary if there exists
a partition 0 = t0 < . . . < tk = T, k ∈N, such that

Φ(t) =
n−1

∑
i=0

Φi1(ti ,ti+1](t), t ∈ [0, T] ,

where

• Φi : Ω → L(U, H) is Fti -measurable, w.r.t. strong Borel σ-algebra on
L(U, H), 0 ≤ m ≤ k− 1,

• Φi takes only a finite number of values in L(U, H), 0 ≤ m ≤ k− 1.

In that case the stochastic integral can be defined as

t∫
0

Φ(σ)dW(σ) =
n−1

∑
i=0

Φi(W(ti+1 ∧ t)−W(ti ∧ t)), t ∈ [0, T] .

As a second step a norm on the set of elementary integrands needs to be
defined such that we get an isometry between that space and the space of
square-integrable martingales. This then implies that the definition of the
stochastic integral can be extended to an abstract completion of the space

7



1. Stochastic Partial Differential Equations (SPDEs)

of elementary integrands. And finally, the definition can be extended to all
stochastically integrable processes on [0, T] defined by

NW(0, T; H)

=

Φ : ΩT → L2(U0, H)

∣∣∣∣∣∣ Φ is predictable with P

 T∫
0

‖Φ(s)‖2
L2(U0,H) ds < 0

 = 1


(see e.g. [PR07, page 22ff] for further details).
The following properties will be useful in the remainder of this thesis.

Theorem 1.6 For all Φ ∈ NW(0, T; H) with
T∫
0

E[‖Φ(σ)‖2
L2(U0,H)]dσ < ∞

• [PR07, Prop. 2.3.5] Itô’s isometry

E


∥∥∥∥∥∥

T∫
0

Φ(σ)dW(σ)

∥∥∥∥∥∥
2

H

 = E

 T∫
0

‖Φ(σ)‖2
L2(U0,H) dσ


=

t∫
0

‖Φ(σ)‖2
L2(U0,H) dσ

(1.3)

• [DPZ92, Prop. 4.13] Expectation

E

 t∫
0

Φ(σ)dW(σ)

 = 0 (1.4)

This definition of the stochastic integral can again be expanded to the stochas-
tic Itô-integrals with respect to cylindrical Wiener processes. Details can be
found e.g. in [PR07, Ch. 2.5.2] or [DPZ92, Ch. 4.3.2].

1.3 The SPDE-Setting considered in this thesis

Finally we get to the stochastic partial differential equations. From now on
we will use the now described setting on (0, 1). It can e.g. be found in
[JK11].
Let T ∈ (0, ∞), let H = U = L2((0, 1), R) and let (Ω,F , P) be a probability
space with a normal filtration (Ft)t∈[0,T]. From now on we fix Q = IdH and
let (Wt)t∈[0,T] be a cylindrical Q-Wiener process with respect to the filtration
(Ft)t∈[0,T]. We consider the stochastic partial differential equation (SPDE)

dXt = [AXt + F(Xt)] dt + B(Xt)dWt,
X(0) = ξ,

(1.5)

8



1.3. The SPDE-Setting considered in this thesis

for t ∈ [0, T]. Consider the following assumptions:

Assumption 1.7 [JK11, cf. Section 5.3]

• linear operator A: Let A : D(A) ⊂ H → H be equal to the Laplacian
operator with Dirichlet boundary conditions times a constant κ ∈ (0, ∞).
For this operator we get the eigenvalues λj ∈ R, j ∈N, given by

λj = κπ2 j2 (1.6)

and the eigenfunctions ej ∈ H, j ∈N, given by

ej(x) =
√

2 sin (jπx) (1.7)

for x ∈ (0, 1).
Then we can write the linear operator A : D(A) ⊂ H → H as

Av = ∑
i∈I

λi 〈ei, v〉H ei

for all v ∈ D(A) with D(A) =

{
w ∈ H

∣∣∣∣ ∑
i∈I
|λi|2 |〈ei, w〉H |

2 < ∞
}

.

Additionally, define for r ∈ R the real Hilbert spaces of domains of fractional
powers of the linear operator −A : D(A) ⊂ H → H by Hr := D((−A)r)
with norm ‖·‖Hr := ‖(−A)r(·)‖H.

• drift term F: Let c ∈ [0, ∞) be a real number. Let f : (0, 1)×R → R be a
Borel measurable function with

1∫
0

| f (x, 0)|2 dx < ∞

| f (x, y1)− f (x, y2)| ≤ c |y1 − y2|

for all x ∈ (0, 1) and all y1, y2 ∈ R. Then F : H → H

(F(v))(x) = f (x, v(x))

for all x ∈ (0, 1), v ∈ H defines a globally Lipschitz continuous mapping.
This operator F is known as Nemytskii operator.

• diffusion term B: Let β ∈ (− 1
2 ,− 1

4 ) and let c ∈ [0, ∞). Let b : (0, 1)×
R→ R be a Borel measurable function with

1∫
0

|b(x, 0)|2 dx < ∞

|b(x, y1)− b(x, y2)| ≤ c |y1 − y2|

9



1. Stochastic Partial Differential Equations (SPDEs)

for all x ∈ (0, 1) and all y1, y2 ∈ R.
Define B : H → HS(H, Hβ) by

(B(v)u) (w) =

1∫
0

b(x, v(x)) · u(x) · w(x)dx

for all u, v ∈ H, w ∈ H−β as a globally Lipschitz continuous mapping.

• initial value ξ: The treatment of the initial condition is not the main diffi-
culty in the treatment of SPDEs. For our setting we choose to set the initial
value to zero, ξ ≡ 0 (cf. e.g. [Kru12, page 132]).

1.3.1 Notions of solutions

Such SPDEs can have different notions of solutions. For instance, in [PR07]
we find

Definition 1.8 [PR07, Def. F.0.2] A D(A)-valued predictable process X(t), t ∈
[0, T] is called an analytically strong solution of problem (1.5) if

X(t) =
t∫

0

AXs + F(Xs)ds +
t∫

0

B(Xs)dWs, P− a.s.,

for each t ∈ [0, T]. In particular, the integrals on the right-hand side have to be
well-defined.

Definition 1.9 [PR07, Def. F.0.3] A H-valued predictable process X(t), t ∈ [0, T]
is called an analytically weak solution of problem (1.5) if

〈X(t), ζ〉 =
t∫

0

〈X(s), A∗ζ〉+ 〈F(Xs), ζ〉 ds +
t∫

0

〈ζ, B(Xs)dWs〉 , P− a.s.,

for each t ∈ [0, T] and ζ ∈ D(A∗). In particular, the integrals on the right-hand
side have to be well-defined.

Definition 1.10 [PR07, Def. F.0.1] A H-valued predictable process X(t), t ∈
[0, T] is called a mild solution of problem (1.5) if

X(t) =
t∫

0

eA(t−s)F(Xs)ds +
t∫

0

eA(t−s)B(Xs)dWs, P− a.s., (1.8)

for each t ∈ [0, T]. In particular, the integrals on the right-hand side have to be
well-defined.

10



1.3. The SPDE-Setting considered in this thesis

With the above assumptions we get e.g. by [JK11, Theorem 5.1] that

dXt(x) = [κ∆Xt(x) + f (x, Xt(x))] dt + b(x, Xt(x))dWt(x) (1.9)

with X0(x) = 0 and Xt(0) = Xt(1) = 0 for x ∈ (0, 1), t ∈ [0, T] has a unique
(up to modifications) mild solution X : [0, T]×Ω→ Hβ+ 1

2
.

Mostly, we will use the case of f (x, y) = 0 for all x ∈ (0, 1), y ∈ R. For b we
choose different functions. In the case b(x, y) = 1 for all x ∈ (0, 1), y ∈ R we
get the stochastic heat equation with additive noise, and with b(x, y) = 1− y

5

for all x ∈ (0, 1), y ∈ R and b(x, y) =
1− y

5
1+y2 for all x ∈ (0, 1), y ∈ R we get

multiplicative noise.
In summary we can conclude that we get the following three settings:

dXt(x) = κ∆Xt(x)dt + dWt(x) (1.10)

dXt(x) = κ∆Xt(x)dt +
Xt(x)

5
dWt(x) (1.11)

dXt(x) = κ∆Xt(x)dt +
1− Xt(x)

5
1 + Xt(x)2 dWt(x) (1.12)

for x ∈ (0, 1), t ∈ [0, T].

11





Chapter 2

Numerical Discretisation Methods for
Stochastic Partial Differential

Equations

In this chapter we again look at the setting introduced in Section 1.3. Now
we want to revisit a method for the numerical discretization of this specific
SPDE.
First, we will take a look at the spatial and noise discretization, in particular
the spectral Galerkin method. Then we will add a temporal discretization
and consider a fully discrete scheme for the stochastic heat equation with
space-time white noise.
Additionally, we will present different ways to look at the error of a numeri-
cal scheme.
Finally, the classical Monte Carlo method and the Multilevel Monte Carlo
method are presented.

2.1 Spatial and Noise Discretization

Spatial discretizations are normally achieved by finite elements methods, fi-
nite difference methods or spectral Galerkin methods. Examples of finite el-
ements and finite differences can for example be found in [ANZ98], [BTZ04],
[Hau08], [Rot02], [Wal05], [GKL09]. Here we only use the spectral Galerkin
method and give a short introduction to this method (see e.g. [GK96]).

13



2. Numerical Discretisation Methods for SPDEs

Spectral Galerkin Method

Again we consider the setting of Section 1.3 and thus the SPDE

dXt(x) = [AXt(x) + f (x, Xt(x))] dt + b(x, Xt(x))dWt(x), (2.1)

where (Wt)t∈[0,T] is a cylindrical Id-Wiener process with respect to (Ft)t∈[0,T]
(see Section 1.3.1). As introduced in Section 1.3 we will use the linear oper-
ator A = κ

(
∂2

∂x2

)
. Using its eigenfunctions 1.7 as an orthonormal basis we

can write every function as

v =
∞

∑
n=1
〈en, v〉 en.

Thus, we can use the projection PN : H → H, N ∈N, defined by

PN(v) =
N

∑
n=1
〈en, v〉 en

for all v ∈ H, N ∈N, to project each of these functions on the N-dimensional
subspace SN ⊂ H, N ∈N, defined by

SN = PN(H) =

{
N

∑
n=1

cnen

∣∣∣∣∣ cn ∈ R

}
∼= RN

spanned by the first N eigenfunctions of A.
If we now look at the solution Xt of our SPDE we get the stochastic process
XN : [0, T]×Ω→ SN , N ∈N

XN
t = eAtPN(X0) +

t∫
0

eA(t−s)FN(XN
s )ds +

t∫
0

eA(t−s)BN(XN
s )dWs, P− a.s.,

where FN : SN → SN is defined by

FN(v) = PN(FN(v))

and BN : SN → HS(H, SN) by

BN(v)u = PN(B(v)(PN(u)).

It is important to notice that this is not the same as just projecting the solu-
tion Xt onto the space SN as we would then get

PN(Xt) = eAtPN(X0) +

t∫
0

eA(t−s)PN(F(Xs))ds +
t∫

0

eA(t−s)PN(B(Xs)dWs),

14



2.2. Temporal Discretization

P-a.s.
The first version can also be written in the form of a finite dimensional
SPDE. We write the N-dimensional Galerkin SDE that corresponds to the
SPDE (2.1) as

dXN
t =

(
AXN

t + FN(XN
t )
)

dt + BN(XN
t )dWt. (2.2)

2.2 Temporal Discretization

After the spatial discretization we now need a temporal discretization to get
a completely discretized numerical scheme. This can be found for instance
in [Tho97] and [Kru12]. First, we define a rational function approximating
the exponential function.

Definition 2.1 A rational function r : C → C is called a rational approximation
of the exponential eλ of order p ≥ 1 if

r(λ) = eλ +O
(

λp+1
)

. (2.3)

Using such a rational function we can now take a look at the homogeneous
heat equation

dXt = AXt, D× [0, ∞)

where A is the Laplacian operator with Dirichlet boundary conditions and
D is a bounded domain in Rd. With the technique described in Section 2.1
we get a semidiscrete version of this equation reading as

dXN
t = ANXN

t . (2.4)

Our goal is now to further discretize this in time. We first define time steps
of size ∆t. Thus, we want to define the solution XN

k at time tk = k · ∆t, k =
1, . . . K. As described e.g. in [Tho97] we can assume that the solution oper-
ator of equation (2.4) has to be the exponential e(tAN). Therefore, it makes
sense to define a discrete solution through

XN
k+1 = r(∆tAN)XN

k .

Here, r is the rational approximation (2.3).
For choosing this function r there are different possibilities. One would be

r(x) =
1

1− x

15



2. Numerical Discretisation Methods for SPDEs

which leads to the implicit Euler approximation used in the remainder of
this thesis. Other possibilities would be

r(x) = 1 + x

for the explicit Euler or

r(x) =
1 + 1

2 x
1− 1

2 x

for the Crank-Nicolson scheme.
This technique can be expanded to our general problem (2.1).

2.3 Fully Discrete Scheme

Combining the Galerkin method and the linear implicit Euler scheme we get
the scheme (cf. e.g. in [JR10]) YN,K : Ω× [0, T]→ H, N, K ∈N with

YN,K
tk+1

=PN

(
I − T

K
A
)−1 (

YN,K
tk

+
T
K
· FN(YN,K

tk
)

)
(2.5)

+

tk+1∫
tk

PN

(
I − T

K
A
)−1

BN(YN,K
tk

)dWs, (2.6)

where tk = kT
K . Thus, in matlab we get the following basic scheme. It is a

slightly changed version of the code in [JR10].

1 Y = zeros(1,N); %initalisation for process

2 A = -pi^2*(1:N).^2/100;

3 for k = 1:K %for time stepping

4 y = dst(Y) * sqrt(2);

5 dW = dst( randn(1,N) .* sqrt(2/K));

6 y = y + f(y)/K + b(y).*dW;

7 Y = idst(y) / sqrt(2) ./ (1-A/K);

8 end

9 z=sum(Y.^2); %norm

We want to have a closer look at this numerical scheme. First we show an
example.

Example 2.2 (Stochastic Heat Equation) As introduced in 1.3 we look at the
stochastic heat equation

dXt(x) =
[

κ

(
∂2

∂x2

)
Xt(x) + f (x, Xt(x))

]
dt + b(x, Xt(x))dWt(x)

16



2.3. Fully Discrete Scheme

where κ is a small parameter, we will have κ = 1
100 . Using

f (x, y) = 0

A = κ
∂2

∂x2

for all x ∈ (0, 1) in equation (2.1) and apply scheme (2.5) we can plot random
paths. In Figure 2.1 we see this for three different choices of the function b. In

(1) b(x, y) =
1− y

5
1+y2 was used, in (2) b(x, y) = 1 − y

5 and in (3) b(x, y) = 1.
The behaviour of these realizations is in general very similar. These will also be the
choices of b used later on in this thesis.

Figure 2.1: Realizations for the Stochastic Heat Equation

17



2. Numerical Discretisation Methods for SPDEs

2.4 Error Analysis

Here we give a short review on results in literature on error analysis for
SPDEs.

2.4.1 Strong Approximation Error

The strong approximation is e. g. defined in [BJLS12].

Definition 2.3 [BJLS12, page 102f] Let (YN)N∈N and X be stochastic processes.
(YN)N∈N converges to X at time T in the strong Lp-sense if

lim
N→∞

E
[∥∥∥XT −YN

T

∥∥∥p

H

]
= 0.

In addition, (YN)N∈N converges to X at time T in the strong Lp-sense with order
α if there exists a real number C ∈ [0, ∞) such that for every N ∈N it holds that∥∥∥XT −YN

T

∥∥∥
Lp(Ω,H)

≤ C
Nα

.

This strong error for SPDEs is the subject of many papers. It is, for example,
analysed in [KLL10] [Kru12] and [Hau03a]. The settings in these papers are
somewhat different from the one considered here. However, we can state
the following well known facts. For the spatially discretized XN

t defined in
(2.2) we get this (cf. e.g. [GK96]).

Theorem 2.4 Assume the setting in Section 1.3. For every ε ∈ (0, 1
2 ) and every

p ∈ [0, ∞) there exists a real number Cε,p ∈ [0, ∞) such that for every N ∈ N it
holds that ∥∥∥XT − XN

T

∥∥∥
Lp(Ω,H)

≤
Cε,p

N( 1
2−ε)

. (2.7)

If we look at the fully discretized scheme we find (cf. e.g. [Wal05])

Theorem 2.5 Assume the setting in Section 1.3. For every ε ∈ (0, 1
2 ) and every

p ∈ [0, ∞) there exists a real number Cε,p ∈ [0, ∞) such that for every N ∈N and
every K ∈N it holds that

∥∥∥XT −YN,K
T

∥∥∥
Lp(Ω,H)

≤ Cε,p

(
1

N( 1
2−ε)

+
1

K(
1
4−ε)

)
. (2.8)

18



2.4. Error Analysis

2.4.2 Weak Approximation Error

More important for this thesis is, however, the weak error. Again e.g. in
[BJLS12] we find this definition:

Definition 2.6 [BJLS12, page 103] Let (YN)N∈N and X be stochastic processes.
(YN)N∈N converges to X at time T in the numerically weak sense if it holds for
every infinitely often differentiable function ϕ : H → R

lim
N→∞

E
[

ϕ(YN
T )
]
= E [ϕ(XT)] .

In addition, (YN)N∈N converges to X at time T in the numerically weak sense with
order α if for the same ϕ there exists a real number C ∈ [0, ∞) such that for every
N ∈N it holds that ∣∣∣E [ϕ(XT)]−E

[
ϕ(YN

T )
]∣∣∣ ≤ C

Nα

This weak error for stochastic partial differential equations is the topic of
many papers, e.g. [DP09] [Deb11] [LS13] [KLL11] [KLL12] [Bré12] [DBD06]
[GKL09] [Hau03b] [Hau10] [Kru12] [DPJR10]. So why look at it again in
detail? There are mainly two reasons:

• Simulation: To the best of my knowledge none of these papers contain
simulations for SPDEs using some kind of Monte Carlo scheme. In
[Kru12] some numerical experiments are made. However, they use
the special properties of the stochastic heat equation and of geometric
Brownian motion to explicitly calculate a specific solutions for these
equations and eliminate any randomness. Here, this is also used as
a first step in Section 3.2.1 and 3.2.2. But for the multiplicative noise,
especially with nonlinear diffusion coefficient, this approach is in gen-
eral no longer possible. Therefore, in Section 3.3 we have to use a
Monte Carlo method.

• Nonlinear Case: Most of the papers dealing with the weak approxima-
tion error for SPDEs restrict themselves to the case of additive noise.
Even papers looking at the case of multiplicative noise, like [Deb11],
make very restrictive assumptions. This can for example be found in
Remark 2.3 in [Deb11] right after the main result Theorem 2.2. The
remark restricts the results found in that paper to affine linear diffu-
sion coefficients. These results are also cited in Theorem 2.7 in this
thesis. Later on in Section 3.3 we will choose the nonlinear diffusion
coefficient

b(x, y) =
1− y

5
1 + y2

and use simulations to look at the weak approximation error.

19



2. Numerical Discretisation Methods for SPDEs

Before going on we want to collect some results about the weak approxima-
tion error. In [Deb11] we find the following.

Theorem 2.7 [Deb11, Theorem 2.2] Assume that F and B are C3
b functions from

H to H and L(H). Additionally, B satisfies for any x, y, h ∈ H

‖B(x)‖L(H) ≤ C(‖x‖H + 1)

‖B(x)− B(y)‖L(H) ≤ C ‖x− y‖H∥∥B′′(x) · (h, h)
∥∥

L(H)
≤ C

∥∥∥(−A)−1/4h
∥∥∥2

H
.

Then for any initial value ξ ∈ H, T > 0, ε > 01, the temporal semi-discretization
XK

T : Ω× [0, T]→ H, K ∈N, satisfies the following weak error estimate:

∣∣∣E [ϕ(XT)]−E
[

ϕ(XK
T )
]∣∣∣ ≤ C(T, |ϕ|C3

b
, ‖ξ‖H , ε)

K(
1
2−ε)

.

As we can also read in [Deb11] Remark 2.3 the assumptions in Theorem
2.7 are quite restrictive. They are fulfilled for additive noise or noise of
the form BXdW, where B is a linear operator from H to L(H). Otherwise,
it implies that the noise is a perturbation of such noise. Therefore, our

diffusion coefficient b(x, y) = 1− y
5

1+y2 is not subject of this theorem.
For additive noise we find in [WG12] the following

Theorem 2.8 [WG12, Theorem 2.1, β = 1
2 ] Suppose that for all y ∈ H

‖F(y)‖H ≤ L(‖y‖H + 1)∥∥F′(y)
∥∥

L(H)
≤ L∥∥F′′(y)

∥∥
L(H×H;H)

≤ L

and let Xt be the exact solution of (2.1) and XK
t : [0, T] ×Ω → H, K ∈ N, its

temporal semi-discretization. Assume additionally that ϕ ∈ C2
b(H; R) and the

initial data ξ ∈ H. Then for every K ∈N∣∣∣E [ϕ(XT)]−E
[

ϕ(XK
T )
]∣∣∣ ≤ C(‖ξ‖H , T, ε, ϕ, L)

K(
1
2−ε)

for arbitrary small ε < 1
2 and T

K ≤
T
2 .

For the spatial discretization of the nonlinear stochastic heat equation we
find in [AL12]

1There is a misprint in the original version of this theorem. Not only should the assump-
tion 2.4 be fulfilled but also assumption 2.5. The second one is the restrictive one.

20



2.5. Monte Carlo Method

Theorem 2.9 [AL12, Theorem 1.1] Assume either B(x) = Id or B(x) = C +
Ax + b̃(x) where C ∈ L(H), A ∈ L(H, L(H)) and b̃ ∈ C2

b(H− 1
2
, L(H)) and let

X and XN be the solutions of the equations (2.1) and (2.2), respectively. Then, for
every test function ϕ ∈ C2

b(H; R) and γ ∈ [0, 1
2 ), we have∣∣∣E [ϕ(XT)]−E

[
ϕ(XN

T )
]∣∣∣ ≤ C

N2γ
.

In Chapter 3 we will use numerical simulations and experiments to take a
look at these rates of weak approximation.

2.5 Monte Carlo Method

Now we have a fully discretized numerical scheme. But we still got the
problem of simulating a solution that is a random realization. We are more
interested in the expectation or second moment of these realizations as the
realizations can vary largely with every simulation. Here, one possibility is
the Monte Carlo method. In this method we use basically the strong law of
large numbers.
The following well-known definition can be, for instance, found in [BJLS12].

Definition 2.10 [BJLS12, Def. 2.3.1] Let (Ω,F , P) be a probability space and
Xn ∈ L1 (P; R) , n ∈ N be independent, identically distributed (i.i.d.) random
variables. Then the random variables

EN [X] =
X1 + . . . + XN

N

for N ∈N are defined as Monte Carlo approximation of E [X].

To look at the behaviour of the so defined random variables we now review
the widely known root mean square error of the Monte Carlo method.

Theorem 2.11 [BJLS12, Thm. 2.5.1] Let Xn ∈ L2 (P; R) , n ∈N, be i.i.d. random
variables. Then∥∥∥∥E [X1]−

X1 + . . . + XN

N

∥∥∥∥
L2(P;R)

=
1√
N

√
Var (X1)

≤ 1√
N
‖X1‖L2(Ω,R)

for all N ∈N.

21



2. Numerical Discretisation Methods for SPDEs

Proof First we need to look at the variance of a sum of square integrable
random variables. By definition and the linearity of expectation

Var

(
N

∑
i=1

Xi

)
= E

( N

∑
i=1

Xi −E [Xi]

)2


=
N

∑
i,j=1

E
[
(Xi −E [Xi])

(
Xj −E

[
Xj
])]

=
N

∑
i,j=1

Cov
(
Xi, Xj

)
.

As the random variables in this theorem are independent they are uncorre-
lated, too. So for i 6= j we get

Cov
(
Xi, Xj

)
= 0.

and thus,

Var

(
N

∑
i=1

Xi

)
=

N

∑
i=1

Var (Xi) .

By the definition of the variance and the above equality we thus get

E

[∣∣∣∣E [X1]−
X1 + . . . + XN

N

∣∣∣∣2
]
= Var

(
X1 + . . . + XN

N

)
=

Var (X1) + . . . + Var (XN)

N2

=
N ·Var (X1)

N2 =
Var (X1)

N

for all N ∈N.
For the second inequality we use that

Var (X) = E
[
(X−E [X])2

]
= E

[
X2]− (E [X])2

≤ E
[
X2] = ‖X‖2

L2(P;R)

(2.9)

which finishes the proof. �

Therefore, we conclude that the Monte Carlo approximation converges to
the expectation in the root mean square sense with order 1

2 .

22



2.6. Multilevel Monte Carlo Method

2.6 Multilevel Monte Carlo Method

One problem of the Monte Carlo method is the large number of samples
needed to achieve a good result. To reduce this problem we try a different
approach, the Multilevel Monte Carlo Method. This method can be found,
for instance, in [Gil08] [Hei01] or in [BL12].
There we find the following approach. Let Y be again a random variable on
the probability space (Ω,A, P) with values in the Hilbert space H. The goal
is to approximate this variable. Now let (V`, ` ∈N0) be a sequence of finite-
dimensional subspaces of H and (Y`, ` ∈N0) a sequence of approximations
of Y, where Y` ∈ V`. Now, a trick is used: the telescopic sum. Thus, we get

YL = Y0 +
L

∑
`=1

(Y` −Y`−1) .

As in the case of the Monte Carlo method we are interested in the expecta-
tion of this random variable. By using the linearity of expectation we see

E [YL] = E [Y0] +
L

∑
`=1

E [Y` −Y`−1] . (2.10)

Now each of this summands can be approximated by the Monte Carlo
scheme described in Section 2.5. We approximate E [Y` −Y`−1] by the corre-
sponding Monte Carlo estimator EM`

[Y` −Y`−1] with M` independent sam-
ples and thus

EL [YL] = EM0 [Y0] +
L

∑
`=1

EM`
[Y` −Y`−1] .

M` depends here on the level `.
We still have to decide how to choose the number of samples at each level.
We will take a closer look at this question during our numerical simulations
in Section 3.2.5.
How does this method behave compared with the classical Monte Carlo
scheme? E.g. in [BL12] we find

Theorem 2.12 [BL12, Thm. 2.3] Let (Y`, ` ∈N0) converge weakly to Y of order
α > 0 and assume

Var [Y` −Y`−1] ≤ (C2)
2 2−2β`

and Var [Y0] = (C3)
2. Now we choose M0 = 22αL for the first level and for every

level ` = 1, . . . , L M` = 22(αL−β`)`2(1+ε). Then, the error is bounded by∥∥∥E [YL]− EL [Yl ]
∥∥∥

L2(Ω;B)
≤ (C1 + C3 + C2ζ (1 + ε)) 2−αL,

and thus we get the same order of convergence as for the Monte Carlo scheme.

23





Chapter 3

Numerical Simulation of the Weak
Approximation Error

With our numerical experiments we aim at using Monte Carlo and Multi-
level Monte Carlo simulations to make conclusions about possible conver-
gence rates for stochastic partial differential equations (SPDEs) with multi-
plicative noise.
For SPDEs with additive noise there are already papers which give us in-
formation about the convergence rates and the weak errors. Some of them
were listed in Section 2.4.2. That gives us the possibility to use the results of
these papers as a reference.
Hence, we first look at SPDEs with additive noise to get a reference about
how well the beforehand presented methods work. We look at different
scenarios: The convergence of the infinite sum of the exact solution, the de-
terministic numerical error and the weak error of the Monte Carlo and the
Multilevel Monte Carlo method. Furthermore we use another method, the
Difference Monte Carlo method. This method will be described in detail in
3.2.4.
Then, we go on to SPDEs with multiplicative noise and look at different
diffusion coefficients. In these cases we no longer have the possibility to
determine an exact solution or look at the deterministic error. Therefore, we
restrict our analysis to different Monte Carlo schemes. We plot again the
weak error of the Monte Carlo, the Difference Monte Carlo and the Multi-
level Monte Carlo method.
But first, we give some preliminary remarks about the numerical calculation
of the weak approximation error and the use of random numbers.

25



3. Numerical Simulation of the Weak Approximation Error

3.1 Preliminary Remarks

3.1.1 Weak Error

For the whole chapter we will again assume the setting from Section 1.3.
In all following numerical experiments we are interested in the weak error

eN,K(T) =
∣∣∣E [ϕ

(
YN,K

T

)
− ϕ (X(T))

]∣∣∣ , (3.1)

where we choose always the test function

ϕ(h) = ‖h‖2

as mentioned before in Section 2.4.2.
We will analyse the convergence rate of this error. If the error is plotted in
a loglog-plot we get the convergence rate as the slope of the resulting line.
This slope can be calculated in matlab using the ”polyfit” command.
Another possibility would be the experimental order of convergence (EOC) as
e.g. described in [Kru12]. Taking two successive values of N, for example
N1 and N2 compute

EOC(N1, N2) =
log(eN2,K(T))− log(eN1,K(T))

log(N1)− log(N2)
. (3.2)

This EOC is given with every error.

3.1.2 Random Numbers

Another important point regarding our numerical simulations is the gener-
ation of random numbers. Throughout this thesis I used matlab for the
numerical experiments and simulations. As these simulations are very time
consuming I used the ETH cluster Brutus (see [wik13]). On this cluster the
default matlab version is 7.14(2012a). To generate random variables I used
that version and first set a random seed with rng(’shuffle’). This random
seed was saved for every simulation to guarantee reproducibility.
To speed up computations it makes sense to run a Monte Carlo simulation
in parallel. Using the “Parallel Computing Toolbox” provided by matlab

this works quite uncomplicated. We first have to start a number of paral-
lel workers or sessions. Then we can use the command parfor instead of
the normally used for. One important question remains. How does matlab

handle random numbers on parallel workers? In the documentation [mat13]
we find

“By default, each worker in a cluster working on the same job
has a unique random number stream.”

26



3.2. SPDEs with additive noise

Thus, we do not need to initialize a random seed for every worker, i.e. mat-
lab session.
Another problem is that we can not predict the order in which the parfor-
loop calculates. As all our calculations are independently and we do not
need to guarantee a special order in which the Monte Carlo samples are
calculated we do not need to look further into this.
Therefore, we are able to get reproducible results.

3.2 SPDEs with additive noise

3.2.1 Exact Solution

As e.g. described in [Kru12] the exact solution of (1.9) with b(x, y) = 1 can
be written as

Xt =

t∫
0

eA(t−s)dWs

=
∞

∑
n=1

en

t∫
0

e−λn(t−s)dβs,

where we use the eigenvalues λn and eigenvectors en of the operator A (see
(1.6) and (1.7)) and the fact that we can write the Wiener process as a sum
of finite dimensional Brownian motions (see 1.1).
Now we look at the second moment of this stochastic process and get

E
[
‖Xt‖2

H

]
=

∞

∑
i=1

E
[
|〈ei, Xt〉|2

]

=
∞

∑
i=1

E


∣∣∣∣∣∣

t∫
0

e−λi(t−s)dβi
s

∣∣∣∣∣∣
2


=
∞

∑
i=1

t∫
0

e−2λi(t−s)ds

=
∞

∑
i=1

t∫
0

e−2λisds

=
∞

∑
i=1

1− e−2λit

2λi
.

27



3. Numerical Simulation of the Weak Approximation Error

Table 3.1: Error of Infinite Series of Stochastic Heat Equation

N Weak Error EOC
2 1.8905
4 1.1197 0.75569
8 0.59532 0.91131
16 0.30694 0.95572
32 0.15587 0.97765
64 0.078542 0.98878
128 0.039424 0.99438
256 0.019751 0.99719
512 0.0098848 0.9986
1024 0.0049448 0.99932
2048 0.0024729 0.99969

Here we used Itô’s formula in the third step (see (1.3)).
This infinite sum can be approximated by choosing a number N and calcu-
lating

ẼN (Xt) =
N

∑
i=1

1− e−2λit

2λi
.

For large N we get a very good approximation of the exact solution. We can
use the following matlab program.

1 N=2^11;

2 y=0;

3 t=1;

4 lam = @(j) 1/100*pi^2*j.^2;

5 exact_solution=sum((1-exp(-2*lam(1:N)*t))./(2*lam(1:N)));

By using different N and calculate the error to a reference solution calculated
with a very high N (here Nre f = 225) we get a convergence rate of this first
approximation towards the exact solution. This can be seen in Figure 3.1.
We see that the numerically calculated points form a straight line in the
loglog-plot. As this line is parallel to the line with slope 1 (the red line in
Figure 3.1) we can conclude that we have a convergence rate of 1.
Another way to present this fact can be found in tabel 3.1. We see the error
for each step size N and the corresponding EOC (see (3.2)). The first EOC
is a little smaller than expected. But from then on we get values that are
always 1 − ε. Additionally we realize that the EOC gets larger for larger
N. We suspect that this is due to getting closer and closer to the reference
solution.

28



3.2. SPDEs with additive noise

Figure 3.1: Convergence of Infinite Sum to Exact Solution

3.2.2 Deterministic Numerical Error

Now we no longer want to calculate the exact solution but want to use the
numerical method introduced in Chapter 2.
We want to analyse the deterministic numerical error of our method. That
means we use the properties of equation (1.9) to eliminate the randomness
in the solution and just look at the approximation error of the numerical
method.
First we have to discretize (1.9) in space as described in Section 2.1 and then
we use the implicit Euler method in Section 2.2 to discretize in time and get

XN
n = (1− ∆tAN)

−1
(

XN
n−1 + ∆Wn−1

)
.

This formula can be used recursively. As we use X0 = 0 as initial condition
we get

XN
n =

n−1

∑
k=0

(I − ∆tAN)
k−n ∆Wk.

We are interested in the second moment of this formula. Thus, by using the
linearity of expectation we calculate

E

[∥∥∥XN
n

∥∥∥2

H

]
= E

∥∥∥∥∥n−1

∑
k=0

(I − ∆tAN)
n−k ∆Wk

∥∥∥∥∥
2

H


=

n−1

∑
k=0

E

[∥∥∥(I − ∆tAN)
k−n ∆Wk

∥∥∥2

H

]
.

29



3. Numerical Simulation of the Weak Approximation Error

By the definition of the stochastic integral in Section 1.2 we get

E

[∥∥∥XN
n

∥∥∥2

H

]
=

n−1

∑
k=0

E


∥∥∥∥∥∥

∆t∫
0

(I − ∆tAN)
k−n dWs

∥∥∥∥∥∥
2

H

 .

For this we can now use Itô’s isometry (1.3) and get a deterministic integral.
Thus, we are able to calculate

E

[∥∥∥XN
n

∥∥∥2

H

]
=

n−1

∑
k=0

∆t∫
0

∥∥∥(I − ∆tAN)
k−n
∥∥∥2

HS(H,H)
ds

=
n−1

∑
k=0

∥∥∥(I − ∆tAN)
k−n
∥∥∥2

HS(H,H)
∆t

=
n−1

∑
k=0

N

∑
j=1

∥∥∥(I − ∆tAN)
k−n ej

∥∥∥2

H
∆t

=
n−1

∑
k=0

N

∑
j=1

∥∥∥∥∥ 1(
1 + ∆tλj

)n−k ej

∥∥∥∥∥
2

H

∆t

=
n−1

∑
k=0

N

∑
j=1

1(
1 + ∆tλj

)2(n−k)
∆t.

By changing the order of the sums and using the geometric series starting
from one

N

∑
k=1

qk =
q
(
qN − 1

)
q− 1

we get

E

[∥∥∥XN
n

∥∥∥2

H

]
=

N

∑
j=1

n−1

∑
k=1

1(
1 + ∆tλj

)2k ∆t

=
N

∑
j=1

((
1 + ∆tλj

)−2n − 1
) (

1 + ∆tλj
)−2(

1 + ∆tλj
)−2 − 1

∆t.

This can be calculated, for specific N and ∆t = 1
K , by

1 N=2^5; K=50000;

2 lambda = @(j) pi^2*j.^2./100;

3 dt=1/K;

4

5 q=(1+dt*lambda(1:N)).^(-2);

6 data=sum((q.*(q.^n-1))./(q-1))*dt;

30



3.2. SPDEs with additive noise

Figure 3.2: Error of Deterministic Numerical Scheme

Table 3.2: Error of Deterministic Numerical Scheme

N Weak Error EOC
2 1.8896
4 1.1188 0.75614
8 0.59446 0.91229
16 0.30608 0.95768
32 0.15501 0.98158
64 0.077683 0.99665
128 0.038569 1.0102
256 0.018903 1.0288
512 0.0090523 1.0622
1024 0.0041426 1.1278
2048 0.00173 1.2597

Again, we can now use different N and calculate the error to a reference solu-
tion with Nre f = 225. Plotting this in a loglog-plot gives us the convergence
rate of the numerical method. In Figure 3.2 we can compare the numerical
error with the line plotted with slope 1. We see again that first we have a
little bit slower convergence but then we are parallel to the red line. In Table
3.2 we see again the EOC. Here this rate is a little bit higher than in the case
of the exact solution. And as in the case before we get higher convergence
rates with larger N.

31



3. Numerical Simulation of the Weak Approximation Error

3.2.3 Monte Carlo Scheme

The next step is now to finally use the Monte Carlo Scheme. As described in
Section 2.5 the idea is to sum up a large number of samples and divide them
by the quantity of these. As proven in Theorem 2.11 the error of the Monte
Carlo Method is of order O(M−1/2), where M is the number of repetitions.

1 % parallel on cluster:

2 cluster = parcluster(’BrutusLSF8h’)

3 matlabpool(cluster,100)

4

5 % number of Monte Carlo repetitions

6 M=20000;

7

8 % set random seet based on current time and save seed.

9 rng(’shuffle’);

10 s=rng(’shuffle’);

11

12 NN = 2.^(1:11);

13

14 K=50000;

15

16 data=zeros(1,length(NN));

17 f = @(x) 0;

18 b = @(x) 1;

19

20 for n=1:length(NN) %for different number of steps in space

21 N=NN(n); %number of steps in space

22 tic

23 z=zeros(1,M); %initialisation for numerical expectation

24

25 parfor m=1:M

26 Y = zeros(1,N); %initalisation for process

27 A = -pi^2*(1:N).^2/100;

28 for k = 1:K %for time stepping

29 y = dst(Y) * sqrt(2);

30 dW = dst( randn(1,N) .* sqrt(2/K));

31 y = y + f(y)/K + b(y).*dW;

32 Y = idst(y) / sqrt(2) ./ (1-A/K);

33 end

34 z(m)=sum(Y.^2);

35 end

36 %Monte Carlo

37 data(n)=sum(z)/M;

38 time(n)=toc;

39 end

40

41 % save the data

32



3.2. SPDEs with additive noise

42 name = [datestr(now, ’yymmddTHHMMSS’) ’.mat’];

43 save(name,’NN’,’data’,’time’,’s’)

44

45 matlabpool close

The above code shows how this can be implemented in matlab. Here the
basic code described in Section 2.2 is used again .
To calculate the Monte Carlo scheme more efficiently I used the BRUTUS
cluster of ETH. A wiki can be found at [wik13]. There we also read that Bru-
tus was ranked the 88th fastest computer in the world in November 20091.
Using this cluster and the Parallel Computing Toolbox offered by matlab

(see 3.1.2) we run the code for the Monte Carlo method in parallel. This is
possible as the individual repetitions for the Monte Carlo scheme are inde-
pendent and do not need any information from each other (cf. Section 3.1.2).
The data displayed in Figure 3.3 and Table 3.3 is calculated parallel on 100
workers on the Brutus cluster. Nevertheless, we need about 5 hours to calcu-
late just the approximation for N = 211. In total this calculation takes about
14 hours. The calculation times for every step can be found in Table 3.3.
As in the two above cases we again have the results plotted and displayed
in a table. In Figure 3.3 we see two simulations of the error of the Monte
Carlo scheme. As a reference we use the exact solution calculated in 3.2.1
and we choose 20′000 samples. It gets clear that for the first few N the
simulations are very much alike. Then the results start to have a quite big
variance. We suppose that the variance gets smaller with more Monte Carlo
samples. However, while the simulations are consistent we again see a con-
vergence rate of about one. This can be seen as the simulated error is parallel
to the line with slope 1 (printed in red). Additionally, we can take a look
at Table 3.3. As long as we do not have a big variance the EOC is again
about one. Afterwards it gets quite chaotic and does not yield any valuable
information. To take a better look at this variance an additional simulation
was done with 80′000 sampes for N = 27, 28, 29. In Figure 3.3 we see this
simulation as green points. And it really seems as if the variance can be
significantly reduced by the usage of more samples.

This step of our experiments is the first one that also makes sense for multi-
plicative noise. It can be found in 3.3.1.

3.2.4 Difference Monte Carlo Scheme

As we are only interested in the behaviour of the weak error we now look at
another scheme that directly gives us this error. Schemes like this have been
used before. One example can be found in [JKN09, Page 54]. This scheme

1http://www.clusterwiki.ethz.ch/brutus/Brutus_cluster

33

http://www.clusterwiki.ethz.ch/brutus/Brutus_cluster


3. Numerical Simulation of the Weak Approximation Error

Figure 3.3: Error of MC, b(x, y) = 1

Table 3.3: Error of MC, b(x, y) = 1

N Weak Error EOC Weak Error EOC time (in sec)
2 1.9193 0 1.8763 2613.6
4 1.1038 0.79803 1.0932 0.7793 2624.9
8 0.538 1.0369 0.59619 0.87474 2671.4
16 0.29245 0.87939 0.29563 1.012 2779.3
32 0.12725 1.2006 0.14601 1.0177 2852.2
64 0.075813 0.74712 0.07064 1.0475 3020.1
128 0.01264 2.5844 0.032744 1.1093 3438.9
256 0.017794 -0.49339 0.011778 1.4751 4273.4
512 0.024692 -0.47264 0.0090901 0.37372 5018.3
1024 0.033175 -0.42608 0.031936 -1.8128 8592.6
2048 0.0040396 3.0378 0.017532 0.86518 17585

N Weak Error EOC time (in sec)
128 0.027865 13796
256 0.02413 0.20762 17147
512 0.013692 0.81751 20073

34



3.2. SPDEs with additive noise

helps to reduce the time needed to compute the error. For estimating the
weak error ∣∣∣E [ϕ(XT)]−E

[
ϕ(XN

T )
]∣∣∣ = ∣∣∣E [ϕ(XT)− ϕ(XN

T )
]∣∣∣

as above not the exact solution E [ϕ(XT)] but a reference solution is used.
The idea is now to always look at a reference that uses only double the
points to discretize in space. These references are calculated for every step.
Additionally, as we are not able to calculated the expectation directly, we use
again the classical Monte Carlo scheme. Thus, we get the approximation∣∣∣E [ϕ(X2N

T )
]
−E

[
ϕ(XN

T )
]∣∣∣ = E

[
ϕ(X2N

T )− ϕ(XN
T )
]

≈ 1
M(N)

[
M(N)

∑
m=1

ϕ(X2N,m
T )− ϕ(XN,m

T )

]
.

If we take a closer look at the error of this approximation we see

εN =

∥∥∥∥∥E
[

ϕ(X2N
T )− ϕ(XN

T )
]
− 1

M(N)

[
M(N)

∑
m=1

ϕ(X2N,m
T )− ϕ(XN,m

T )

]∥∥∥∥∥
L2(Ω,R)

=
1√

M(N)

√
Var

(
ϕ(X2N

T )− ϕ(XN
T )
)

≤ 1√
M(N)

∥∥∥ϕ(X2N
T )− ϕ(XN

T )
∥∥∥

L2(Ω,R)
,

by the mean square error of the Monte Carlo method from Theorem 2.11.
Using now the Lipschitz constant of ϕ we get

εN ≤
‖ϕ‖Lip

∥∥X2N
T − XN

T

∥∥
L2(Ω,H)√

M(N)

≤
‖ϕ‖Lip

(∥∥X2N
T − XT

∥∥
L2(Ω,H)

+
∥∥XN

T − XT
∥∥

L2(Ω,H)

)
√

M(N)

≤
‖ϕ‖Lip const · N(ε− 1

2 )√
M(N)

,

(3.3)

where in the last step the strong error described in Theorem 2.4 was used.
The question is how to choose the number of Monte Carlo samples. As we
are mainly interested in the convergence rate of our approximation we need
to look at the slope of the line printed in a loglog-plot. The idea is now that
the plot of the Difference Monte Carlo approximation and the plot of the
real weak error should be parallel. If we now look at Figure 3.4 we see two
parallel lines in a loglog-plot with distance δ. We see that

|log(g(N))− log( f (N))| = δ

35



3. Numerical Simulation of the Weak Approximation Error

and therefore

log
(

g(N)

f (N)

)
= δ

g(N)

f (N)
= eδ

Figure 3.4: Distance of two Lines in loglog-Plot

In our case one of the lines is the weak error of our scheme, say f (N) and
the other g(N) is the approximated error calculated with our scheme. The
approximated error is the weak error plus our approximation error, thus

g(N) = f (N) + εN .

Combining the last two equations we get

εN

f (N)
= eδ − 1.

As we have a weak error of order 1− ε we get

eδ − 1
N

= f (N) · (eδ − 1) = εN ≈
const√

MN
,

where the last part follows from equation (3.3). Thus, we can conclude that
we need to choose M as

M =
const

(eδ − 1)2 N.

In Table 3.4 we see how the function (eδ − 1)−2 behaves.

36



3.2. SPDEs with additive noise

Table 3.4: Magnitude of M for given δ

delta M
0.5 2.3762
0.1 90.408
0.01 9900.4
0.001 9.99e+05
0.0001 9.999e+07

Implementing this in matlab gives us the following code:

1 % parallel on cluster:

2 cluster = parcluster(’BrutusLSF8h’)

3 matlabpool(cluster,100)

4

5 % set random seet based on current time and save seet

6 rng(’shuffle’);

7 s=rng(’shuffle’);

8

9 NN = 2.^(1:11);

10

11 K=50000; %number of steps in time

12

13 data=zeros(1,length(NN));

14 time=zeros(1,length(NN));

15

16 %f: drift, b: diffusion coefficient

17 f = @(x) 0;

18 b = @(x) 1;

19

20 for n=1:length(NN) %for different number of steps in space

21 tic

22

23 N1=NN(n); % number of steps in space

24 N2=2*N1;

25 M=N1*10; % number of Monte Carlo sampes

26

27 z=zeros(1,M);

28 parfor m=1:M %for Monte Carlo

29

30 Y1 = zeros(1,N1); %initalisation for process

31 Y2 = zeros(1,N2);

32 A1 = -pi^2*(1:N1).^2/100;

33 A2 = -pi^2*(1:N2).^2/100;

34

35 for k = 1:K %for time stepping

36 % generate random numbers

37

38 r=randn(1,max(N1,N2));

37



3. Numerical Simulation of the Weak Approximation Error

39

40 % calculate one step for first stepsize

41 y1 = dst(Y1) * sqrt(2);

42 dW1 = dst( r(1:N1) .* sqrt(2/K));

43 y1 = y1 + f(y1)/K + b(y1).*dW1;

44 Y1 = idst(y1) / sqrt(2) ./ (1-A1/K);

45

46 % calculate one step for second stepsize

47 y2 = dst(Y2) * sqrt(2);

48 dW2 = dst( r(1:N2) .* sqrt(2/K));

49 y2 = y2 + f(y2)/K + b(y2).*dW2;

50 Y2 = idst(y2) / sqrt(2) ./ (1-A2/K);

51 end

52 z1=sum(Y1.^2);

53 z2=sum(Y2.^2);

54 z(m)=abs(z1-z2);

55 end

56 %Monte Carlo

57 data(n)=sum(z)/M;

58

59 time(n)=toc;

60 end

61

62 % save the data

63 name = [datestr(now, ’yymmddTHHMMSS’) ’.mat’];

64 save(name,’NN’,’data’,’time’,’s’)

65

66 matlabpool close

In Figure 3.5 and Table 3.5 we see the result of these calculations. First we
have a convergence rate less than one and in the end the rate gets larger.
That could be again due to the proximity to the exact solution. However,
for the bigger part of the diagram the simulated error is parallel to the red
line with slope one. The same can be seen in Table 3.5. An EOC of approxi-
mately one can be calculated.
Additionally, there is another very important difference between this calcu-
lation and the classical Monte Carlo scheme: the derivation time. Approx-
imating the weak error with the Difference Monte Carlo scheme is much
more efficient in terms of computation time. Especially for small N only a
fraction of the time is required to calculate the classical Monte Carlo scheme.
Unfortunately, as we need a number of Monte Carlo samples of order O(N)
much more computation time for larger N is used. In that case we need
more time than, for example, for the calculations in Figure 3.3. However,
our numerical results here are also much better than in Section 3.2.3.

For multiplicative noise the corresponding results can be found in 3.3.2.

38



3.2. SPDEs with additive noise

Figure 3.5: Error of DMC: b(x, y) = 1

Table 3.5: Error of DMC: b(x, y) = 1

N Weak Error EOC time (in sec)
2 0.59539 24.996
4 0.50422 0.23977 19.169
8 0.26695 0.91748 20.234
16 0.15105 0.82156 40.424
32 0.077567 0.9615 83.986
64 0.038987 0.99243 165.18
128 0.019069 1.0318 405.79
256 0.0087564 1.1228 982.19
512 0.0033073 1.4047 3021.6
1024 0.00086166 1.9404 12995

39



3. Numerical Simulation of the Weak Approximation Error

3.2.5 Multilevel Monte Carlo Scheme

The next simulations use the Multilevel Monte Carlo scheme described in
Section 2.6. We have to keep in mind that this scheme approximates again
the solution of an SPDE and not directly the weak error as the Difference
Monte Carlo described in 3.2.4. The question is now how we should choose
the number of Monte Carlo samples on each level of the calculation. In The-
orem 2.12 we already see a possible way to choose the number of samples.
Here we will look at our setting described in Section 1.3 and derive the num-
ber of samples needed using this specific SPDE.
To get a reasonable number of samples we have to guarantee that the vari-
ance of our solution is bounded and, thus, stays small. We know that the
solution of the spatial discretisation of the heat equation (1.9) is

T∫
0

eAN(T−s)dWs.

Using the representation of the Wiener process in (1.1) we can write this as

T∫
0

eAN(T−s)dWs =
N

∑
j=1

ej

T∫
0

e−λj(T−s)dβ
j
s (3.4)

Additionally we know from Theorem 1.6, equations (1.4) and (1.3) that

E

 t∫
0

Φ(σ)dW(σ)

 = 0

and

Var

 t∫
0

Φ(σ)dW(σ)

 =

t∫
0

E
[
Φ2] dt.

Therefore, we know that the stochastic integral in (3.4) has a normal distri-
bution with expectation equal to zero and variance equal to

T∫
0

e−2λj(T−s)ds.

40



3.2. SPDEs with additive noise

Thus, it is true in distribution that

T∫
0

eAN(T−s)dWs =
N

∑
j=1

ej

T∫
0

e−λj(T−s)dβ
j
s

=
N

∑
j=1

ejN

0,
T∫

0

e−2λj(T−s)ds


=

N

∑
j=1

ejN

0,
T∫

0

e−2λj(s)ds



=
N

∑
j=1

ej

√√√√√ T∫
0

e−2λjsds

T
N (0, T)

=
N

∑
j=1

ej

√√√√√ T∫
0

e−2λjsds

T
β

j
T.

Calculating this integral and re-substituting
N
∑

j=1
ejβ

j
T by WN

T gives us

YN :=
N

∑
j=1

ej

√
1− e−2λjT

2λjT
β

j
T

=

√
e2AN T − I

2ANT
WN

T .

(3.5)

To simplify the calculations we assume that N = 2L and thus L = log2 (N).
By using the definition of the Multilevel Monte Carlo scheme in Section 2.10
with the above defined stochastic process YN we get

E

[∥∥∥YN
∥∥∥2

H

]
= E

[∥∥∥Y20
∥∥∥2

H

]
+

L

∑
l=1

E

[∥∥∥Y2l
∥∥∥2

H
−
∥∥∥Y2l−1

∥∥∥2

H

]
=

1− e−2π2T

2π2T
+ E

[∥∥∥W1
T

∥∥∥2

H

]
+

L

∑
l=1

E

[∥∥∥Y2l
∥∥∥2

H
−
∥∥∥Y2l−1

∥∥∥2

H

]

=
1− e−2π2T

2π2 +
L

∑
l=1

Ml

∑
j=1

∥∥∥Y2l
∥∥∥2

H
−
∥∥∥Y2l−1

∥∥∥2

H
Mj

.

(3.6)

Here we calculated the first summand directly.
Now we want to look at the variance corresponding to the expectation in

41



3. Numerical Simulation of the Weak Approximation Error

(3.6). We look at each level independently and get

Var

Ml

∑
j=1

∥∥∥Y2l ,j
∥∥∥2

H
−
∥∥∥Y2l−1,j

∥∥∥2

H
Ml

 =
Ml

∑
j=1

Var


∥∥∥Y2l ,j

∥∥∥2

H
−
∥∥∥Y2l−1,j

∥∥∥2

H
Ml



=
Ml

∑
j=1

Var
(∥∥∥Y2l ,j

∥∥∥2

H
−
∥∥∥Y2l−1,j

∥∥∥2

H

)
M2

l

≤
Ml

∑
j=1

∥∥∥∥∥∥∥Y2l
∥∥∥2

H
−
∥∥∥Y2l−1

∥∥∥2

H

∥∥∥∥2

L2(Ω;R)

M2
l

This is true as the random variables in each Monte Carlo sample are inde-
pendent of each other and thus are uncorrelated. The last step is due to
equation (2.9).
Now we look at each of the summands individually. By definition of the
L2-norm we get

∥∥∥∥∥∥∥Y2l
∥∥∥2

H
−
∥∥∥Y2l−1

∥∥∥2

H

∥∥∥∥2

L2(Ω;R)

= E

[∥∥∥∥∥∥∥Y2l
∥∥∥2

H
−
∥∥∥Y2l−1

∥∥∥2

H

∥∥∥∥2

H

]

= E

[∥∥∥Y2l
∥∥∥2

H
−
∥∥∥Y2l−1

∥∥∥2

H

]
.

Using the calculations above in (3.5) we conclude

∥∥∥∥∥∥∥Y2l
∥∥∥2

H
−
∥∥∥Y2l−1

∥∥∥2

H

∥∥∥∥2

L2(Ω;R)

= E

 2l

∑
j=1

∣∣∣e2λjT − 1
∣∣∣

2λjT

∥∥∥ejβ
j
T

∥∥∥2

H
−

2l−1

∑
j=1

∣∣∣e2λjT − 1
∣∣∣

2λjT

∥∥∥ejβ
j
T

∥∥∥2

H


=

2l

∑
j=2l−1+1

1− e2λjT

2λjT
E

[∥∥∥ejβ
j
T

∥∥∥2

H

]
.

As E

[∥∥∥ejβ
j
T

∥∥∥2

H

]
= T as in Theorem 1.6 equation (1.3) we get

∥∥∥∥∥∥∥Y2l
∥∥∥2

H
−
∥∥∥Y2l−1

∥∥∥2

H

∥∥∥∥2

L2(Ω;R)

=
2l

∑
j=2l−1+1

1− e2λjT

2λj
.

42



3.2. SPDEs with additive noise

Now we want to estimate this sum. This requires the following idea. If we
look at the integral of x−p we know for p < 1

∞∫
N

1
xp dx =

[
x1−p

1− p

]x=∞

x=N

=
1

(1− p) Np−1 .

Therefore, we can conclude for the corresponding sum that
∞

∑
k=n

1
kp ≤

const
np−1 .

Thus, we get ∥∥∥∥∥∥∥Y2l
∥∥∥2

H
−
∥∥∥Y2l−1

∥∥∥2

H

∥∥∥∥2

L2(Ω;R)

≤
∞

∑
j=2l−1+1

1− e2λjT

2λj

≤
∞

∑
j=2l−1+1

1
λj

≤
∞

∑
j=2l−1+1

1
j2

≤ const
2l−1 .

Finally we get

Var

Ml

∑
j=1

∥∥∥Y2l ,j
∥∥∥2

H
−
∥∥∥Y2l−1,j

∥∥∥2

H
Ml

 ≤ Ml

∑
j=1

const
M2

l · 2l−1
.

Now we want to balance this variance with the error N(ε−1). Thus, we look
at

1
N

=
const

M2
l · 2l−1

and conclude that we should choose

Ml =
const · N

2l−1

at each level l.
If we remember the result in Theorem 2.12 we realize that we had there

Ml = 22(αL−βl)l2(1+ε).

As we defined L = log2(N) this is of the same form as the result calculated
here.

43



3. Numerical Simulation of the Weak Approximation Error

Semidiscrete Version

Using once again the stochastic heat equation with additive noise (diffusion
coefficient b(x, y) = 1), we derived in (3.5) the spatial semi-discretization

YN =

√
e2AN T − I

2ANT
WN

T .

As WN
T is distributed as a N-dimensional Gaussian random variable with

expectation 0 and variance T we can simulate the Multilevel Monte Carlo
scheme

EL
[

ϕ(YN)
]
= EN0 [ϕ(Y0)] +

L

∑
`=1

EN`
[ϕ(Y`)− ϕ(Y`−1)] ,

with ϕ(x) = ‖x‖2
H. This is how this could be solved in matlab

1 NN=2.^(1:13);

2

3 T=1;

4 kappa=1/100;

5

6 A=-(1:max(NN)).^2*pi^2*kappa;

7 B=sqrt((exp(2*A*T)-1)./(2*A*T))’;

8

9 MLMC=zeros(size(NN));

10

11 for n=1:length(NN)

12 tic

13 N=NN(n);

14

15 L=log2(N);

16

17 %Level 0

18 MLMCn=B(1)^2*T;

19

20 %Level 1 to L

21 for l=1:L

22 Ml=N/2^(l-6); %number of repetitions

23 v=repmat(B(2^(l-1)+1:2^l),1,Ml).*randn(2^(l-1),Ml)*sqrt(T);

24 level=sum(sum(v.^2))/Ml;

25

26 % % for better readability:

27 % for j=1:Ml

28 % v=B(2^(l-1)+1:2^l).*randn(1,2^(l-1))*sqrt(T);

29 % level=level+sum(v.^2)/Ml;

30 % end

31

44



3.2. SPDEs with additive noise

32 MLMCn=MLMCn+level;

33 end

34 MLMC(n)=MLMCn;

35 time(n)=toc;

36 end

Figure 3.6: Error of MLMC, semi-discretized, b(x, y) = 1

As we see in Table 3.6 these calculations are much faster then the above.
That is however not very surprising as we use a semi-linear approach here.
Nevertheless there is quite a bit of variance left as we see in Figure 3.6.
Setting the constant in the calculation of the number of Monte Carlo samples
per level Ml to a higher value helps but gives us also higher calculation times.
Both the plot and the table show again that the convergence rate is about
one. The variance leads to up and downs in the results. Therefore, the EOC
is not very readable and there are even negative values. However, looking
at the general behaviour of the points gives us a quite good picture of the
semi-linear scheme.

Fully Discrete Version

Again, the semi-linear approach is only a possible way to go in the case
of additive noise (b(x, y) = 1). Therefore, we need to look at the fully dis-

45



3. Numerical Simulation of the Weak Approximation Error

Table 3.6: Error of MLMC, semi-discretized, b(x, y) = 1

N Weak Error EOC Weak Error EOC time (in sec)
2 1.8285 1.9521 0.00014397
4 1.1229 0.70338 1.0127 0.94677 0.00015283
8 0.54502 1.0429 0.59577 0.76541 0.00016861
16 0.30663 0.82984 0.29058 1.0358 0.00023944
32 0.16835 0.86499 0.1709 0.7658 0.00036109
64 0.12663 0.41083 0.057853 1.5627 0.00061901
128 0.051004 1.312 0.035849 0.69047 0.0012049
256 0.026409 0.94956 0.023772 0.59267 0.0024687
512 0.0084901 1.6372 0.01606 0.56575 0.0042314
1024 0.013685 -0.68877 0.0049233 1.7058 0.0086449
2048 0.0042183 1.6979 0.0033584 0.55188 0.019086
4096 0.0018389 1.1978 0.0010929 1.6196 0.046592
8192 0.0016868 0.12456 0.0048125 -2.1386 0.10679

cretized scheme and use the Multilevel Monte Carlo again. We use the same
number of samples per level Ml as above and the code uses parts of the code
for the Difference Monte Carlo method described in 3.2.4. Thus, we get the
following code.

1 % parallel on cluster:

2 cluster = parcluster(’BrutusLSF8h’)

3 matlabpool(cluster,100)

4

5 % set random seet based on current time and save seed.

6 rng(’shuffle’);

7 s=rng(’shuffle’);

8

9 NN = 2.^(1:11);

10

11 K=50000; %number of steps in time

12

13 data=zeros(1,length(NN));

14 time=zeros(1,length(NN));

15

16 %f: drift, b: diffusion coefficient

17 f = @(x) 0;

18 b = @(x) 1;

19

20

21 for n=1:length(NN) %for different number of steps in space

22 tic

23

24 N=NN(n); %number of steps in space

25 L=log2(N); %number of levels

26

46



3.2. SPDEs with additive noise

27 %level 0

28 Ml=1/2^(-6);

29 z=zeros(1,Ml); %initialisation for numerical expectation

30 parfor m=1:Ml

31 z(m)=EulerGalerkin(1,K,f,b);

32 end

33 MLMCn=sum(z)/Ml;

34

35 for l=1:L %level 1 to L

36 Ml=N/2^(l-6); %number of repetitions

37 clear z;

38 z=zeros(1,Ml);

39 N1=2^l;

40 N2=2^(l-1);

41 parfor m=1:Ml %for Monte Carlo

42 Y1 = zeros(1,N1); %initalisation for process

43 Y2 = zeros(1,N2);

44 A1 = -pi^2*(1:N1).^2/100;

45 A2 = -pi^2*(1:N2).^2/100;

46

47 for k = 1:K %for time stepping

48 % generate random numbers

49 r=randn(1,max(N1,N2));

50

51 % calculate one step for first stepsize

52 y1 = dst(Y1) * sqrt(2);

53 dW = dst( r(1:N1) .* sqrt(2/K));

54 y1 = y1 + f(y1)/K + b(y1).*dW;

55 Y1 = idst(y1) / sqrt(2) ./ (1-A1/K);

56

57 % calculate one step for second stepsize

58 y2 = dst(Y2) * sqrt(2);

59 dW = dst( r(1:N2) .* sqrt(2/K));

60 y2 = y2 + f(y2)/K + b(y2).*dW;

61 Y2 = idst(y2) / sqrt(2) ./ (1-A2/K);

62 end

63 z1=sum(Y1.^2);

64 z2=sum(Y2.^2);

65 z(m)=abs(z1-z2);

66 end

67 %Monte Carlo

68 MLMCn=MLMCn+sum(z)/Ml;

69 end

70 data(n)=MLMCn;

71 time(n)=toc;

72 end

73

74 % save the data

75 name = [datestr(now, ’yymmddTHHMMSS’) ’.mat’];

47



3. Numerical Simulation of the Weak Approximation Error

76 save(name,’data’,’time’,’NN’,’s’)

77

78 matlabpool close

Figure 3.7: Error of MLMC: fully discretized, b(x, y) = 1

Table 3.7: Error of MLMC: fully discretized, b(x, y) = 1

N Weak Error EOC time (in sec)
2 1.4333 34.176
4 1.2958 0.14542 80.735
8 0.68269 0.92459 156.81
16 0.49321 0.46903 305.64
32 0.22197 1.1519 645.62
64 0.039609 2.4864 1331.1
128 0.1581 -1.9969 2279.6
256 0.063306 1.3204 4600.8

As in the above cases we again notice that in Figure 3.7 the error of the
MLMC decreases with about the same slope as the red line (slope 1). The
EOC in Table 3.7 does not give us very convincing results. This is due to
the variance that is still quite high. With a calculation time of about 2.5
hours for the first eight powers of two we are slower than with the Differ-

48



3.3. SPDEs with multiplicative noise

ence Monte Carlo scheme but still considerably faster than with the classical
Monte Carlo scheme.
The corresponding results with multiplicative noise can be found in Section
3.3.3.

3.3 SPDEs with multiplicative noise

Finally, we are in the position to look at a SPDE with multiplicative noise.
Our simulations will again be limited to the stochastic heat equation (1.9).
However, we now no longer choose a constant diffusion coefficient but use
another function b(t, X(t)). In the following sections we will always look
at two different kinds of diffusion coefficients. First we look at the case of
affine linear b. There we will choose

b(x, y) = 1− y
5

as an example.
So in the matlab code we have to replace the line b = @(x) 1 by b = @(x)

1-x/5.
There are already some theoretical papers looking at cases like this, for ex-
ample [Deb11].
Additionally we also look at the case of nonlinear diffusion coefficients. Our
example will be

b(x, y) =
1− y

5
1 + y2 .

This leads to replacing b = @(x) 1 by b = @(x) (1− x/5)./(1+ x.̂ 2).
To the best of my knowledge there are up till now no theoretical results
about the convergence of the weak approximation error of this kind of nu-
merical schemes using this diffusion coefficient (cf. Section 2.4.2).
In these cases it is no longer possible to calculate an exact solution, to look
at the numerical error directly or use a semi-linear approach as we did in
the additive case. Thus, we have to directly use the different Monte Carlo
schemes described above.
The idea is now to use the code used in Section 3.2 and only change the dif-
fusion coefficient. We use the same parameters for e.g. the number of Monte
Carlo samples, the number of steps in time or space. We would expect to
see the same convergence rates as before.
We start with the classical Monte Carlo scheme, then go on to the Difference
Monte Carlo scheme and finish with the Multilevel Monte Carlo scheme.
In this new setting we are confronted with another problem: We are no
longer able to calculate an exact solution or at least a very near approxi-
mation of the exact solution. Thus, we have to use a reference solution to

49



3. Numerical Simulation of the Weak Approximation Error

calculate the weak approximation error. From now on we always use the
solution calculated with the highest number of grid points N in space as a
reference solution.

3.3.1 Monte Carlo Scheme

With the classical Monte Carlo scheme we see results that are very similar to
the first case. For the reference solution we used a number of grid points of
211. At first the convergence rate is very near to one as can be seen in Figures
3.8 and 3.9. Then we again see quite a big variance. Again we calculate for
three grid sizes a simulation with the higher number of samples (80′000
instead of 20′000). And we see once more an improvement in the result.
Not surprisingly we have the same calculation times as before in the case
described in Section 3.2.3.

Figure 3.8: Error of MC: b(x, y) = 1− y
5

3.3.2 Difference Monte Carlo Scheme

The difference Monte Carlo gives us now two advantages. We have lower
computation times and we do no longer need a reference solution. As we

50



3.3. SPDEs with multiplicative noise

Table 3.8: Error MC: b(x, y) = 1− y
5

N Weak Error EOC time (in sec) Weak Error EOC time (in sec)
2 2.2516 2679.5
4 1.3829 0.70327 2681.1
8 0.79076 0.8064 2737.2
16 0.41245 0.93901 2861.7
32 0.20604 1.0013 2904.8
64 0.1156 0.8338 3107.2
128 0.046333 1.319 3525.9 0.047539 13985
256 0.008129 2.5109 4385.6 0.023 1.0475 17477
512 0.026563 -1.7083 5098.1 0.025955 -0.1744 20252
1024 0.0094281 1.4944 8796.3

Figure 3.9: Error of MC: b(x, y) = 1− y
5

1+y2

51



3. Numerical Simulation of the Weak Approximation Error

Table 3.9: Error MC: b(x, y) = 1− y
5

1+y2

N Weak Error EOC time (in sec) Weak Error EOC time (in sec)
2 0.49855 1949.3
4 0.30834 0.69323 2015.2
8 0.17673 0.80296 2068.5
16 0.097547 0.85738 2191.1
32 0.045575 1.0978 2248.4
64 0.016146 1.497 2406.1
128 0.019401 -0.26492 2881.6 0.0073638 0 14017
256 0.010802 0.84479 3877.5 0.0049461 0.57415 17439
512 0.013072 -0.27518 4850 0.0018689 1.4041 20706
1024 0.012282 0.08999 8914.1

Table 3.10: Error DMC: b(x, y) = 1− y
5

N Weak Error EOC time (in sec)
2 0.54524 27.519
4 0.75882 -0.47686 27.342
8 0.60647 0.32331 28.568
16 0.3346 0.85798 59.641
32 0.19701 0.7642 113.6
64 0.13499 0.54544 218.79
128 0.08815 0.61477 522.87
256 0.054696 0.68853 1236.7
512 0.033554 0.70494 3569.6
1024 0.01793 0.90409 13849
2048 0.0073789 1.2809 49113

see in Figure 3.11 we have a much lower convergence rate for small N in

the nonlinear case b(x, y) = 1− y
5

1+y2 . However, increasing N we again achieve a
convergence rate of 1− ε. In this case we simulated an additional point for
N = 212. This simulations needs with a parallelization on 100 workers about
70 hours. Then we realize that as in the case of constant diffusion coefficient
we get a higher convergence rate. Here about 1.5.
We have to mention that we have close to no variance at all. With each
calculation we get the same result.

52



3.3. SPDEs with multiplicative noise

Figure 3.10: Error of DMC: b(x, y) = 1− y
5

Figure 3.11: Error of DMC: b(x, y) = 1− y
5

1+y2

53



3. Numerical Simulation of the Weak Approximation Error

Table 3.11: Error DMC: b(x, y) = 1− y
5

1+y2

N Weak Error EOC time (in sec)
2 0.18998 26.869
4 0.19063 -0.0049592 28.065
8 0.17754 0.10267 32.538
16 0.12097 0.55346 57.133
32 0.099037 0.28863 114.47
64 0.067153 0.5605 221.66
128 0.048655 0.46488 527.5
256 0.032357 0.58848 1250.1
512 0.018922 0.77405 3641.8
1024 0.0097295 0.95961 13810
2048 0.0039311 1.3074 52689
4096 0.0014239 1.4651 247220

In Figure 3.10 for the linear b(x, y) = 1− y
5 it looks a little bit different. The

convergence rate seems very stable right from the beginning (ignoring the
first, very small N). It seem though that the convergence rate does not reach
1− ε but stays more around 0.7. A simulation with higher N could perhaps
give us a better understanding of the behaviour observed here.

3.3.3 Multilevel Monte Carlo Scheme

With the Multilevel Monte Carlo Scheme we are back at our old problems.
We need to use the solution calculated with the finest grid as reference solu-
tion. The calculation time is, however, not as bad as in the classical Monte
Carlo case.
We see again a quite big variance and thus the EOC calculated in the Tables
3.12 and 3.13 is of not much use. If we look at the plots 3.12 and 3.13, though,
we see that a convergence rate of 1− ε is a good approximation of the one
seen there.
Again the result could be made more clear by using higher N or increasing
the number of samples on each level.

54



3.3. SPDEs with multiplicative noise

Figure 3.12: Error of MLMC: b(x, y) = 1− y
5

Table 3.12: Error MLMC: b(x, y) = 1− y
5

N Weak Error EOC time (in sec)
2 3.0553 35.112
4 2.5259 0.27452 80.733
8 1.3049 0.95291 155.74
16 1.233 0.081696 300.28
32 0.1242 3.3114 575.08
64 0.13852 -0.15745 1096
128 0.12536 0.14405 2170.1

Table 3.13: Error MLMC: b(x, y) = 1− y
5

1+y2

N Weak Error EOC time (in sec
2 0.80534 36.78
4 0.68563 0.23218 83.497
8 0.48445 0.50108 164
16 0.33526 0.53105 315.95
32 0.21817 0.61985 609.11
64 0.08021 1.4436 1128.3
128 0.06925 0.21196 2194.6

55



3. Numerical Simulation of the Weak Approximation Error

Figure 3.13: Error of MLMC: b(x, y) = 1− y
5

1+y2

56



Conclusion

The main goal of this thesis was to give an experimental convergence rate
for the weak approximation error of the stochastic heat equation with space
time white noise and a nonlinear diffusion coefficient.
We were starting from the assumption that the same setting with additive
noise has a convergence rate of 1− ε. Therefore, we expected to see the same
rate also in the more complex setting of nonlinear diffusion coefficients.
After revisiting the theory behind stochastic partial differential equations
and the above mentioned former results, we started numerical experiments.
The first bunch of experiments was made using a constant diffusion coef-
ficient. This helped to understand the used numerical scheme, a spectral
Galerkin method combined with the linear implicit Euler scheme. While
using different methods to cope with the randomness of the solution we ob-
served that it was always possible to achieve a convergence rate of 1− ε.
The above mentioned methods were the classical Monte Carlo method, the
Multilevel Monte Carlo method and the Difference Monte Carlo method.
The last one is a scheme that gives us directly the weak approximation error.
It has two advantages over the other two methods. On the one hand a faster
calculation is possible. On the other hand we do not need to calculate an
exact solution or a reference solution to get the weak approximation error.
In summary we can conclude from these first numerical simulations that
the Monte Carlo method is computationally very costly, but gives us good
results. With the Multilevel Monte Carlo method we do not need that much
computational time, but it was not possible for us to get as good results as
with the classical Monte Carlo scheme. The Difference Monte Carlo scheme
gives a little different results. There the results vary only a little. But the
convergence rate is not as clear. It starts with a rate of about 1. But then
the convergence gets faster and approaches a rate of 2. This could be due
to the fact that the difference between different grids gets less and less the
finer the grid.
Therefore, it was possible to confirm the previously known results.

57



3. Numerical Simulation of the Weak Approximation Error

Afterwards we looked at other diffusion coefficients. We used the functions

b(x, y) = 1− y
5

and

b(x, y) =
1− y

5
1 + y2 .

Again the three different method Monte Carlo, Multilevel Monte Carlo and
Difference Monte Carlo were used. As an additional obstacle we had to
face the fact that we no longer where able to calculate a exact solution as
reference for the weak approximation error. Therefore, we always used the
solution approximated on the finest grid as a reference solution. This leads
sometimes to a slower convergence rate for higher N as we are getting in
the proximity of the reference solution.
In the figures illustrating the results for Monte Carlo and Multilevel Monte
Carlo scheme we see a result very similar to the former ones. We have a con-
vergence rate of about 1 with a high variance for larger N. For the Difference
Monte Carlo scheme we again note different results. Looking at the linear
diffusion coefficient b(x, y) = 1− y

5 we see a convergence rate that stabilizes
very fast, but does not reach the expected result of 1. It is more at about 0.7.

The result of the nonlinear diffusion coefficient b(x, y) = 1− y
5

1+y2 differs again.
We see first a very slow convergence and then reach the expected rate of
1− ε only for quite large N.
All in all we conclude that we were able to numerically show that a conver-
gence rate is possible for these more complex diffusion coefficients.
Further steps would now be to look at these results from a more theoretical
point of view. Especially the Difference Monte Carlo scheme would be a
meaningful area for further research. The behaviour of this scheme is not
totally clear at this moment.
Additionally it would make sense to rerun some of the simulations above
with more time and for a larger number of grid points N. This would give
a clearer picture of the convergence rates evaluated.

58



Bibliography

[AL12] Adam Andersson and Stig Larsson, Weak convergence for a spatial
approximation of the nonlinear stochastic heat equation, arXiv preprint
arXiv:1212.5564 (2012), 18 pages.

[ANZ98] E.J. Allen, S.J. Novosel, and Z. Zhang, Finite element and difference
approximation of some linear stochastic partial differential equations,
Stochastics: An International Journal of Probability and Stochastic
Processes 64 (1998), no. 1-2, 117–142.

[BJLS12] Andrea Barth, Arnulf Jentzen, Annika Lang, and Christoph
Schwab, Numerical analysis of stochastic ordinary differential equa-
tions, lecture notes, 2012.

[BL12] Andrea Barth and Annika Lang, Multilevel monte carlo method with
applications to stochastic partial differential equations, International
Journal of Computer Mathematics 89 (2012), no. 18, 2479–2498.

[Bré12] Charles-Edouard Bréhier, Approximation of the invariant measure
with an euler scheme for stochastic pde’s driven by space-time white
noise, arXiv preprint arXiv:1202.2707 (2012), 31 pages.

[BTZ04] Ivo Babuska, Raúl Tempone, and Georgios E Zouraris, Galerkin
finite element approximations of stochastic elliptic partial differential
equations, SIAM Journal on Numerical Analysis 42 (2004), no. 2,
800–825.

[DBD06] Anne De Bouard and Arnaud Debussche, Weak and strong order
of convergence of a semidiscrete scheme for the stochastic nonlinear
schrodinger equation, Applied Mathematics and Optimization 54
(2006), no. 3, 369–399.

59



Bibliography

[Deb11] Arnaud Debussche, Weak approximation of stochastic partial differen-
tial equations: the nonlinear case, Mathematics of Computation 80
(2011), no. 273, 89–117.

[DP09] Arnaud Debussche and Jacques Printems, Weak order for the dis-
cretization of the stochastic heat equation, Mathematics of Computa-
tion 78 (2009), no. 266, 845–863.

[DPJR10] Giuseppe Da Prato, Arnulf Jentzen, and Michael Roeckner, A
mild itô formula for spdes, arXiv preprint arXiv:1009.3526 (2010), 39
pages.

[DPZ92] Guiseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infi-
nite dimensions, Cambridge University Press, 1992.

[Gil08] Michael B Giles, Multilevel monte carlo path simulation, Operations
Research 56 (2008), no. 3, 607–617.

[GK96] W. Grecksch and P.E. Kloeden, Time-discretised galerkin approxima-
tions of parabolic stochastic pde’s, Bulletin of the Australian mathe-
matical society 54 (1996), no. 1, 79–86.

[GK03] István Gyöngy and Nicolai Krylov, On the splitting-up method and
stochastic partial differential equations, The Annals of Probability 31
(2003), no. 2, 564–591.

[GKL09] Matthias Geissert, Mihály Kovács, and Stig Larsson, Rate of weak
convergence of the finite element method for the stochastic heat equation
with additive noise, BIT Numerical Mathematics 49 (2009), no. 2,
343–356.

[Hau03a] Erika Hausenblas, Approximation for semilinear stochastic evolution
equations, Potential Analysis 18 (2003), no. 2, 141–186.

[Hau03b] , Weak approximation for semilinear stochastic evolution equa-
tions, Stochastic analysis and related topics VIII, Springer, 2003,
pp. 111–128.

[Hau08] , Finite element approximation of stochastic partial differential
equations driven by poisson random measures of jump type, SIAM Jour-
nal on Numerical Analysis 46 (2008), no. 1, 437–471.

[Hau10] , Weak approximation of the stochastic wave equation, Journal
of computational and applied mathematics 235 (2010), no. 1, 33–
58.

60



Bibliography

[Hei01] Stefan Heinrich, Multilevel monte carlo methods, Large-scale scien-
tific computing, Springer, 2001, pp. 58–67.

[JK09] Arnulf Jentzen and Peter E. Kloeden, The numerical approximation
of stochastic partial differential equations, Milan Journal of Mathemat-
ics 77 (2009), no. 1, 205–244.

[JK11] Arnulf Jentzen and Peter E. Kloeden, Taylor approximations for
stochastic partial differential equations, CBMS-NSF regional confer-
ence series in applied mathematics, no. 83, siam Philadelphia,
2011.

[JKN09] A Jentzen, PE Kloeden, and A Neuenkirch, Pathwise approximation
of stochastic differential equations on domains: higher order convergence
rates without global lipschitz coefficients, Numerische Mathematik
112 (2009), no. 1, 41–64.

[JR10] Arnulf Jentzen and Michael Röckner, A milstein scheme for spdes,
arXiv preprint arXiv:1001.2751 (2010), 37 pages.

[KLL10] Mihály Kovács, Stig Larsson, and Fredrik Lindgren, Strong con-
vergence of the finite element method with truncated noise for semilin-
ear parabolic stochastic equations with additive noise, Numerical Algo-
rithms 53 (2010), no. 2-3, 309–320.

[KLL11] , Weak convergence of finite element approximations of linear
stochastic evolution equations with additive noise, BIT Numerical
Mathematics 52 (2011), no. 1, 85–108.

[KLL12] , Weak convergence of finite element approximations of linear
stochastic evolution equations with additive noise ii: Fully discrete
schemes, arXiv preprint arXiv:1203.2029v1 (2012), 24 pages.

[Kru12] Raphael Kruse, Strong and weak approximation of semilinear stochas-
tic evolution equations, Ph.D. thesis, Universität Bielefeld, Bielefeld,
2012.

[LS13] Felix Lindner and René L Schilling, Weak order for the discretiza-
tion of the stochastic heat equation driven by impulsive noise, Potential
Analysis 38 (2013), no. 2, 345–379.

[mat13] Matlab documentation: Control random number
streams, http://www.mathworks.ch/ch/help/distcomp/

control-random-number-streams.html, July 2013.

[PR07] Claudia Prévôt and Michael Röckner, A concise course on stochastic
partial differential equations, Springer, 2007.

61

http://www.mathworks.ch/ch/help/distcomp/control-random-number-streams.html
http://www.mathworks.ch/ch/help/distcomp/control-random-number-streams.html


Bibliography

[Rot02] Ch. Roth, Difference methods for stochastic partial differential equa-
tions, ZAMM-Journal of Applied Mathematics and Mechanic-
s/Zeitschrift für Angewandte Mathematik und Mechanik 82
(2002), no. 11-12, 821–830.

[RS72] Michael Reed and Barry Simon, Methods of modern mathematical
physics: Vol.: 1.: Functional analysis, Academic press, 1972.

[Tho97] Vidar Thomée, Galerkin finite element methods for parabolic problems,
vol. 25, Springer Verlag, 1997.

[Wal05] John B. Walsh, Finite element methods for parabolic stochastic pde’s,
Potential Analysis 23 (2005), no. 1, 1–43.

[WG12] Xiaojie Wang and Siqing Gan, Weak convergence analysis of linear im-
plicit euler method for semilinear stochastic partial differential equations
with additive noise, Journal of Mathematical Analysis and Applica-
tions (2012), 151—-169.

[wik13] Brutus wiki, http://www.clusterwiki.ethz.ch/brutus/Brutus_
wiki, June 2013.

62

http://www.clusterwiki.ethz.ch/brutus/Brutus_wiki
http://www.clusterwiki.ethz.ch/brutus/Brutus_wiki

	Contents
	List of Figures
	List of Tables
	Introduction
	Stochastic Partial Differential Equations (SPDEs)
	Infinite dimensional Wiener Processes
	Stochastic Integral
	The SPDE-Setting considered in this thesis
	Notions of solutions


	Numerical Discretisation Methods for SPDEs
	Spatial and Noise Discretization
	Temporal Discretization
	Fully Discrete Scheme
	Error Analysis
	Strong Approximation Error
	Weak Approximation Error

	Monte Carlo Method
	Multilevel Monte Carlo Method

	Numerical Simulation of the Weak Approximation Error
	Preliminary Remarks
	Weak Error
	Random Numbers

	SPDEs with additive noise
	Exact Solution
	Deterministic Numerical Error
	Monte Carlo Scheme
	Difference Monte Carlo Scheme
	Multilevel Monte Carlo Scheme

	SPDEs with multiplicative noise
	Monte Carlo Scheme
	Difference Monte Carlo Scheme
	Multilevel Monte Carlo Scheme


	Conclusion
	Bibliography

