
ETH Zürich
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Chapter 1

Introduction

1.1 The ideal Magnetohydrodynamic equations

The magnetohydrodynamic (MHD) equations describe the behaviour of electrically con-

ducting fluids. For the ideal MHD equations we have to couple the Euler equations of

fluid dynamics and the Maxwell equations of electrodynamics. A semi-conservative form

of the ideal MHD equations is given by

Continuity equation:
@⇢

@t
+ div(⇢u) = 0 (1.1)

Equation of motion:
@

@t
(⇢u) + div(⇢u⌦ u+ (p+

1

2
(B ·B))I �B⌦B) = �Bdiv(B)(1.2)

Induction equation:
@B

@t
+ div(u⌦B�B⌦ u) = �udiv(B) (1.3)

Energy equation:
@E

@t
+ div

✓
(E + p+

1

2
B2)u� (u ·B)B

◆
= �(u ·B)div(B)(1.4)

where ⇢ = ⇢(x, t) denotes the mass density, j the current density, B the magnetic field, p

the pressure, � the ratio of specific heats and u is the vector of velocities. The RHS (right

hand side) of (1.1) - (1.4) is called the Godunov-Powell source term. Since div(B) = 0

one could neglect it to receive a conservative form of the MHD equations. However,

we keep it to make the equations Galilean invariant and to gain certain properties, like

stability, for numerical schemes.

We will now give a derivation of this equations. First we will look at the conservation

of mass (1.1). Therefore let W ⇢ R3 be a compact set with piecewise smooth boundary

@W and outer normal n(x). The mass in W is given by
R
W ⇢(x, t) dx. The rate of flow

over a given point x, the flux f(x, t), is given by velocity times the mass density

f(x, t) = ⇢u. (1.5)

1
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Therefore the flow over the boundary @W is given by the surface integral
R
@W f(x, t) ·

n(x) dSx. If we assume now that no mass is created or destroyed in W , then the

quantity can only change due to flow through the boundary @W . Hence we get that

d

dt

Z

W
⇢(x, t) dx = �

Z

@W
f(x, t) · n(x) dS(x). (1.6)

If we assume that u and ⇢ are di↵erentiable functions, then by the divergence theorem

it follows that

Z

W

@

@t
⇢(x, t) dx = �

Z

@W
f(x, t) · n(x) dS(x) =

Z

W
div(f(x, t)) dx. (1.7)

Since W is arbitrary, this implies

@⇢

@t
+ div(⇢u) = 0, (1.8)

We have thus proven the Continuity equation (1.1).

Similar momentum is also conserved. Momentum ⇢u is also advected by velocity, so the

flux due to advection is the tensor product ⇢u⌦u. In addition to advection, momentum

is a↵ected by the pressure, given by the stress tensor pI with I 2 R3⇥3 denoting the

identity matrix. We get the flux

f(x, t) = ⇢u⌦ u+ pI. (1.9)

Furthermore we have to take forces that are acting on the medium, the body forces, into

account. This is the Lorentz force F = q(E + u ⇥ B) acting on a particle carrying an

electric charge q moving with velocity u under the magnetic field B and electric field E.

We will not include the electric force qE, since it is negligible as we shall shortly show.

Therefore the magnetic body force acting on the volume W is

X

k: pk in W

qk(uk ⇥B) =

0

@
X

k: pk in W

qkuk

1

A⇥B = j⇥B (1.10)

where pk denotes a particle with electric charge qk moving with speed uk and j the

current density. We get that the change of momentum equals the change over the

boundary plus the body forces acting on the medium inside the Volume W

d

dt

Z

W
⇢u dx = �

Z

@W
(⇢u⌦ u+ pI) · n(x) dS(x) + .j⇥B (1.11)

Assuming di↵erentiability as before, we get with the divergence theorem and since W

was arbitrary
@

@t
(⇢u) + div(⇢u⌦ u+ pI) = j⇥B. (1.12)
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By using standard vector identities and the continuity equation (1.1) we get an equivalent

form

⇢

✓
@u

@t
+ Juu

◆
= �rp+ j⇥B. (1.13)

where Ju denotes the Jacobian matrix of u Before we continue our derivation of the

magneto-hydrodynamic equations we will state the classic Maxwell equation and derive

them.

Faraday’s law of induction rot(E) = �@B
@t

(1.14)

Ampere’s law rot(B) = µ0j+ µ0✏0
@E

@t
(1.15)

Gauss’s law div(E) =
⇢e
✏0

(1.16)

Gauss’s law for magnetism div(B) = 0 (1.17)

We will give a short derivation of these equations. Gauss’s law for magnetism (1.17)

follows from the fact that due to observations it’s assumed that there are no magnetic

monopoles in nature. Therefore if we take an arbitrary volume W 2 R3 the flux through

the boundary @W is zero. Using the divergence theorem we get

0 =

Z

@W
B dS(x) =

Z

W
div(B) (1.18)

and since W was arbitrary this implies (1.17).

Next we will use Coulomb’s law to show Gauss’s law (1.16). Coulombs law is an exper-

imental fact. One of its versions states that the force acting on a particle at rest with

charge q and position r is

F(r) =
q

4⇡✏0

Z

R3
⇢e(r

0)
r� r0

|r� r0|3dr
0 (1.19)

where ⇢e is the electric charge density and ✏0 is the permittivity of free space. By the

definition of the electric field E = F
q and by talking the divergence on both sides in the

distributional sense we get (1.16)

div(E)(r) =
1

✏0

Z

R3
⇢e(r

0)�(r� r0)dr0 =
⇢e(r)

✏0
(1.20)

where �(r) denotes the delta distribution with pole at r. We used that div( r
|r|3 ) = 4⇡�(r).

For Faraday’s induction law we will look at two inertial frames. Let our laboratory

frame O be at rest with coordinates x, electric field E and a time independent magnetic

field B. Now we will move a conductor loop, encasing the area S, with constant speed



Chapter 1. Introduction 4

u0 across this magnetic field. We denote the reference frame O0 co-moving with the

conductor loop. Then its coordinates are denoted by x0 = x � u0t. If we look at a

particle with charge e moving with speed u in the laboratory frame O it receives the

Lorentz force

F = e(E+ u⇥B). (1.21)

In the moving frame O0 the particle with charge e is moving with speed u� u0 receives

the force

F0 = e(E0 + u⇥B0 � u0 ⇥B0). (1.22)

Since the forces F and F0 must be the same and B0(x0) = B0(x � u0t) = B(x) it holds

that

E0(x0) = E(x) + u0 ⇥B0(x0) = E(x) + u0 ⇥B(x). (1.23)

Hence the electromotive force acting on the conductor loop, that is located at @S, is the

line integral

Z

@S
E0 · dx0 =

Z

S
rot(E+ u0 ⇥B) · n dS(x) (1.24)

=

Z

S
(u0div(B)�Bdiv(u0) + JBu0 � Ju0B) · n dS(x) (1.25)

=

Z

S
JBu0 · n dS(x) (1.26)

(1.27)

where we used Stokes theorem for the first equality. Further we used that for the time

independent fields E,B we have the static field equations div(B) = 0 and rot(E) = 0.

On the other hand B0 is not time independent, since B0(x0, t) = B(x) = B(x0 � u0t).

Therefore we get in O0 by the chain rule

@B0

@t
= �JBu0. (1.28)

We get Z

S
rotE0 · n dS(x0) =

Z

@S
E0 · dx0 = �

Z

S

@B0

@t
· n dS(x0). (1.29)

Since we can choose S and the conductor loop arbitrary we get for any inertial system

Faraday’s induction law (1.14)

rotE = �@B
@t

(1.30)

For the derivation of Ampere’s law we will start with a experimental fact, the Biot-

Savart law. It is a magnetic equivalent to Coulomb’s law for magnetic fields and that
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one is obtained by dividing both sides of (1.19) by q. The Biot-Savart law states that

B(r) =
µ0

4⇡

Z

R3
j(r0)⇥ r� r0

|r� r0|3dr
0. (1.31)

Since r�r0

|r�r0|3 = �rr(
1

|r�r0|) and with the product rule for curls

rot

✓
j(r0)

1

|r� r0|

◆
=

1

|r� r0|rot(j(r
0)) +rr

✓
1

|r� r0|

◆
⇥ j(r0) = (1.32)

= � j(r0)⇥rr

✓
1

|r� r0|

◆
(1.33)

where we used that j does not depend on r. We get

B(r) = rot

✓
µ0

4⇡

Z

R3

j(r0)

|r� r0|dr
0
◆

| {z }
=: A(r)

. (1.34)

This implies that

rot(B) = r(div(A))��(A). (1.35)

Since

rr

✓
1

|r� r0|

◆
= �rr0

✓
1

|r� r0|

◆
(1.36)

�

✓
1

r� r0

◆
= �4⇡�(r� r0) (1.37)

it follows

rot(B) = �r
✓
µ0

4⇡

Z

R3
j(r0) ·rr0

1

|r� r0|dr
0
◆
+ µ0

Z

R3
j(r0)�(r� r0)dr0 (1.38)

. We are proofing the classical Ampere’s law for the magneto static case and therefore

div(j) = 0 (1.39)

holds. By performing partial integration on the first term of the right hand side of (1.38)

and using (1.39) we get the classical law of Ampere

rot(B) = µ0j (1.40)

So far we have looked at results from Gauss, Faraday and Ampere. Maxwell’s contri-

bution to the equations (1.14) - (1.17) was that he realized that in the general dynamic
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case Ampere’s law violates the continuity equations of electrodynamics

div(j) = div(⇢eu) = �@⇢e
@t

(1.41)

which is similar to the continuity equation of hydrodynamics (1.8). If we plug �@⇢e
@t into

(1.38) for div(j) instead of setting it zero as in the static case (1.39) we get

�r
✓
µ0

4⇡

Z

R3
j(r0) ·rr0

1

|r� r0|dr
0
◆

= r
✓
µ0

4⇡

Z

R3
div(j(r0))

1

|r� r0|dr
0
◆

= (1.42)

= �r
✓
µ0

4⇡

Z

R3

@⇢e
@t

1

|r� r0|dr
0
◆

= (1.43)

= �µ0

4⇡

Z

R3

@⇢e
@t

rr
1

|r� r0|dr
0 = (1.44)

=
µ0

4⇡

Z

R3

@⇢e
@t

r� r0

|r� r0|3dr
0 = (1.45)

= µ0✏0
@E

@t
. (1.46)

This term is called the displacement current. With the second term of (1.38) we get

Ampere’s law for the dynamic case

rot(B) = µ0j+ µ0✏0
@E

@t
(1.47)

This equation completes the Maxwell equations (1.14) - (1.17).

After we have derived the Maxwell equations, we now have to incorporated them into

the MHD-equations. First we will use Ampere’s law (1.15) without the displacement

current. An explanation why we can neglect the displacement current is given later in

[........LINK..........]. In the following we will chose units such that the magnetic perme-

ability µ0 = 1. Therefore we get j = rot(B) and it follows that

j⇥B = rot(B)⇥B = �B⇥ rot(B) = �1

2
r(B ·B) + JBB (1.48)

with JB denoting the Jacobi matrix. Further, using the product rule, one can show that

� 1

2
r(B ·B) + JBB = �1

2
r(B ·B) + div(B⌦B)�Bdiv(B). (1.49)

Replacing j⇥B in (1.12) according to (1.49) and using r(B ·B) = div(B ·B)I we get

the MHD-approximated Equation of motion

@

@t
(⇢u) + div(⇢u⌦ u+ (p+

1

2
(B ·B))I �B⌦B) = �Bdiv(B) (1.50)



Chapter 1. Introduction 7

This is exactly equation (1.2).

Next we will look at the magnetic induction equation. We start with Faraday’s induction

law (1.14)

rot(E) = �@B
@t

. (1.51)

Further we use a simple version of Ohm’s law that states

E+ u⇥B = ⌘j (1.52)

where ⌘ is the resistivity. Substituting this equation into Faraday’s induction law leads

to
@B

@t
= rot(u⇥B)� rot(⌘j) (1.53)

the so called resistive magnetic induction equation. We are looking at the ideal MHD-

equations and therefore assume that the resistivity is so small that we can neglect the

term rot(⌘j). By using standard vector identities we get

@B

@t
= rot(u⇥B) = �div(u⌦B�B⌦ u) (1.54)

Hence, by adding 0 = �udiv(B) on the right hand side we get the magnetic induction

equation (1.3)
@B

@t
+ div(u⌦B�B⌦ u) = �udiv(B) (1.55)

Next we will look at the energy equation (1.4). We start with the hydrodynamic con-

servation law for energy
@Eh

@t
+ div((Eh + p)u) = 0 (1.56)

where Eh denotes the hydrodynamic energy of an ideal gas. It is composed of the internal

energy and the kinetic energy

Eh =
p

� � 1
+

1

2
⇢u2.

Equation (1.56) is part of the Euler equations. In the magneto hydrodynamic case we

also have to take the work resulting from the electromagnetic force (1.10) acting on the

fluid particles into account. We get

@Eh

@t
+ div((Eh + p)u) = u · (j⇥B) (1.57)
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Using Ohm’s law without resistivity we get

u · (j⇥B) = �j · (u⇥B) = j ·E (1.58)

Further by multiplying Faraday’s induction law (1.14) with B and adding Ampere’s law

(1.15) multiplied with �E without displacement current we get

rot(E) ·B� rot(B) ·E| {z }
= div(E⇥B)

= �1

2

@B2

@t
� j ·E (1.59)

Since div(E⇥B) = B2u+ (u ·B) ·B we get with (1.58) and (1.59) that

u · (j⇥B) = �div(B2u+ (u ·B) ·B)� 1

2

@B2

@t

Plugging this into (1.57) and defining the total energy as the hydrodynamic energy plus

the magnetic pressure E = Eh +
1
2B

2 we get the energy equation

@E

@t
+ div

✓
(E + p+

1

2
B2)u� (u ·B)B

◆
= �(u ·B)div(B) (1.60)

where we added �(u ·B)div(B) = 0.

In (1.10) we neglected the electric force term ⇢eE. Additionally we used Ampere’s law

without the displacement current. We have to discuss why we can neglect those terms,

if ua ⌧ c0, with the Alfvén speed ua = |B|p
µ0⇢

. We start by solving equation (1.15)for j

and substituting the result into the equation of motion (1.13). We get

⇢

✓
@u

@t
+ Juu

◆
= �rp+

1

µ0
rot(B)⇥B� ✏0

@E

@t
⇥B. (1.61)

The displacement current produces an extra �✏0 @E@t ⇥ B term. We will show that this

term is small compared to ⇢@u
@t . For the ideal MHD equations it is assumed that one

can ignore resistivity. Hence Ohm’s law (1.52) is E = �u⇥B and therefore

� ✏0
@E

@t
⇥B = ✏0

@

@t
((u⇥B)⇥B) ⇡ ✏0|B|2@u

@t
=

|B|2

c02µ0

@u

@t
. (1.62)

Therefore the @E
@t term is by the factor |B|2

c20µ0⇢
= ua

2

c02
smaller than the first term ⇢@u

@t in

(1.61). Next we show that the electric force term ⇢eE is small compared to ⇢Juu term.

By Gauss’s law (1.15) and Ohm’s law E = �u⇥B we have

⇢eE = ✏0Ediv(E) =
1

c02µ0
(u⇥B)div(u⇥B) ⇡ |B|2

c02µ0⇢
⇢Juu (1.63)
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In making the last approximation we assume that the length scale of the third term is

comparable to the last term. According to [......LINK to Plasma for Astroph. ....] its

almost always the case that these length scales are at least of same order of magnitude.

We have that ⇢eE is smaller than ⇢Juu by the same factor ua
2

c02
and therefore we can

drop ⇢eE and �✏0 @E@t ⇥B, if ua ⌧ c0.

1.2 The entropy equation

(Warum .. kurze Erklärung)

We will now derive a evolution equation for the pressure. Therefore we start with the

energy equation (1.4) and substitute for the total energy E = 1
2⇢u

2 + p
��1 + 1

2B
2.

@

@t

✓
1

2
⇢u2 +

p

� � 1
+

1

2
B2

◆
+div

✓⇣1
2
⇢u2 +

�p

� � 1
+B2

⌘
u� (u ·B)B

◆
= �(u·B)div(B)

(1.64)

With the product rule we get that

@

@t

✓
1

2
⇢u2

◆
+ div

✓
1

2
⇢u2u

◆
=

u2

2

@⇢

@t
+ ⇢

@u

@t
· u+

u2

2
div(⇢u) + ⇢(Juu) · u

= ⇢
@u

@t
· u+ ⇢(Juu) · u

(1.65)

For the second equality we used the conservation of mass. Next we will use Ohm’s law

without resistivity E = �u⇥B and standard vector identities to get that

B2u� (u ·B)B = B⇥ (u⇥B) = E⇥B. (1.66)

Hence

div(B2u� (u ·B)B) = div(E⇥B) = B · rot(E)�E · rot(B)

=�B · @B
@t

�E · j

=� 1

2

@B2

@t
� (j⇥B) · u

(1.67)

where we used Faraday’s law of induction (1.14), Amperes’s law (1.15) without the

displacement current and Ohm’s law. Applying the two equations (1.65) and (1.67) to

the energy equation (1.64) we get

⇢

✓
@u

@t
+ Juu

◆
· u� (j⇥B) · u+rp · u

| {z }
= 0

�rp·u+ 1

� � 1

@p

@t
+div

✓
�pu

� � 1

◆
= �(u·B)div(B)
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where we used the equation of motion in the form (1.13). By applying the product rule

we get the pressure equation

@p

@t
+ �div(u)p+rp · u = �(� � 1)(u ·B)div(B). (1.68)

With this pressure equation it is possible to derive an entropy equality if we define the

entropy S and the corresponding entropy flux Q as

S = � ⇢s

� � 1
and Q = � ⇢su

� � 1
with s = log(p)� �log(⇢).

We want to prove the following entropy equality

@S

@t
+ div(Q) =

⇢(u ·B)

p
div(B) (1.69)

By the product rule we get

@S

@t
+ div(Q) = � 1

� � 1

⇣
⇢
@s

@t
+
@⇢

@t
s+ div(u)⇢s+ (r⇢ · u)s

| {z }
= ( @⇢@t+div(⇢u))s = 0

+(rs · u)⇢
⌘

where we used the conservation of mass (1.1). Furthermore by substituting s = log(p)�
� log(⇢) and adding 0 = �

��1⇢div(u) �
�

��1⇢div(u) we get that the left side of (1.69) is

equal to

� 1

� � 1

⇣⇢
p

⇣@p
@t

+rp · u
⌘
+ �⇢div(u)��⇢div(u)� �

⇣@⇢
@t

+r⇢ · u
⌘

| {z }
= ��( @⇢@t+div(⇢u)) = 0

⌘

where we used the conservation of mass another time. We are left with � ⇢
(��1)p times

the pressure equality (1.68)

� ⇢

(� � 1)p

⇣@p
@t

+rp · u+ �div(u)p
⌘
=
⇢(u ·B)

p
div(B).

which we just derived from the energy equality. This proves the entropy equality (1.69).

1.3 Characteristic analysis in one space dimension

We can transform the MHD equations in conservative form into the following form

Ut + F(U)x = 0 (1.70)
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with the primitive variables U = [⇢, u1, u2, u3, B1, B2, B3, p]> and the partial derivative

of U with respect to t is denoted by Ut. Because of the one-dimensional assumptions

B1 is a constant. By the chain rule (1.70) is equivalent to

Ut +AUx = 0 (1.71)

where A = FU is the Jacobian of F. Here we don’t force div(B) = 0 since we want

to keep the Powell source term for numerical properties of some schemes. Otherwise it

would follow that (B1)x = 0 and we could reduce the matrix (1.72) to a 7 ⇥ 7 matrix.

In our case

A =

2

6666666666666664

u1 ⇢ 0 0 0 0 0 0

0 u1 0 0 0 B2
⇢

B3
⇢

1
⇢

0 0 u1 0 0 �B1
⇢ 0 0

0 0 0 u1 0 0 �B1
⇢ 0

0 0 0 0 u1 0 0 0

0 B2 �B1 0 0 u1 0 0

0 B3 0 �B1 0 0 u1 0

0 a2⇢ 0 0 0 0 0 u1

3

7777777777777775

(1.72)

where a =
q

�p
⇢ is the sound speed. By looking at the kernel of det(A� �I) we get the

eigenvalues of A

�1,2 = u1 ± cf , �3,4 = u1 ± cA, �5,6 = u1 ± cs, �7,8 = u1 (1.73)

where cf is the fast magneto-sonic wave speed and cs denotes the slow magneto-sonic

wave speed. The waves corresponding to these speeds are longitudinal waves with vari-

ations in density and pressure. The waves belonging to cA, the Alfvén speed, are trans-

verse waves with no variation in pressure and density. The wave that belongs to �7 is

called the entropy wave and it is a contact discontinuity with no variation in pressure

and velocity. Further we have an additional divergence wave with wave speed u1. The
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values of cf , cs and cA are given by

c2f =
1

2

0

@a2 +
B2

⇢
+

s
⇣
a2 +

B2

⇢

⌘2
� 4a2

B1
2

⇢

1

A

c2A =
B1

2

⇢

c2s =
1

2

0

@a2 +
B2

⇢
�

s
⇣
a2 +

B2

⇢

⌘2
� 4a2

B1
2

⇢

1

A

It holds that

cs  cA  cf .

Since the eigenvalues (1.73) are real the MHD equations are hyperbolic. In our case of

eight eigenvalues �7 = �8 and therefore the MHD system of equations is not strictly

hyperbolic. Furthermore there are several cases where some of the other wave speeds

can be equal. For example if B2
1 = a2 and B2

2 +B2
3 = 0 then cs = cA = cf . This case is

called the ”triple umbilic”.

1.4 Numerical schemes

We can write the two dimensional semi-conservative form of the MHD equations (1.1) -

(1.4) in the following form

Wt + F(W)x +G(W)y = S1(W,Wx) + S2(W,Wy) (1.74)

where the vector of conserved variables is given by

W = [⇢, ⇢u1, ⇢u2, ⇢u3, B1, B2, B3, E]>.
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The fluxes are

F(W) =

0

BBBBBBBBBBBBBBB@

⇢u1

⇢u21 + ⇡1 � B2
1
2

⇢u1u2 �B1B2

⇢u1u3 �B1B3

0

u2B1 � u1B2

u3B1 � u1B3

(E + ⇡1)u1 � u1
B2

1
2 �B1(u2B2 + u3B3)

1

CCCCCCCCCCCCCCCA

,

and

G(W) =

0

BBBBBBBBBBBBBBB@

⇢u2

⇢u1u2 �B1B2

⇢u22 + ⇡2 � B2
2
2

⇢u3u2 �B3B2

u1B2 � u2B1

0

u3B2 � u2B3

(E + ⇡2)u2 � u2
B2

2
2 �B2(u1B1 + u3B3)

1

CCCCCCCCCCCCCCCA

,

where we have defined

⇡1 = p+
B2

2 +B2
3

2
, and ⇡2 = p+

B2
1 +B2

3

2

For the Godunov-Powell source term we get

S1(W,Wx) =

0

BBBBBBBBBBBBBBBB@

0

�
⇣
B2

1
2

⌘

x

�B2(B1)x

�B3(B1)x

�u1(B1)x

�u2(B1)x

�u3(B1)x

�u1

⇣
B1

1
2

⌘

x
� (u2B2 + u3B3)(B1)x

1

CCCCCCCCCCCCCCCCA

(1.75)
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and

S2(W,Wy) =

0

BBBBBBBBBBBBBBBBB@

0

�B1(B2)y

�
⇣
B2

2
2

⌘

y

�B3(B2)y

�u1(B2)y

�u2(B2)y

�u3(B2)y

�u2

⇣
B1

2
2

⌘

y
� (u1B1 + u3B3)(B2)y

1

CCCCCCCCCCCCCCCCCA

(1.76)

We will approximate the solution of the problem on the domain [XL, XR]⇥ [YL, YR] and

therefore define a uniform grid with gridsizes �x and �y. We set

xi = XL + i�x, yj = yL + j�y and Ii,j = [xi� 1
2
, xi+ 1

2
)⇥ [yj� 1

2
, yj+ 1

2
). (1.77)

We denote the cell average of W over Ii,j at time tn with Wn
i,j . A standard finite volume

scheme is obtained by integrating the balance law (1.74) over the the cell Ii,j and the

time interval [tn, tn+1) with tn+1 = tn + �tn, where �tn is determined by a suitable

CFL condition. The resulting fully discrete form of the scheme is

Wn+1
i,j = Wn

i,j �
�tn

�x
(Fn

i+ 1
2 ,j

� Fn
i� 1

2 ,j
)� �tn

�y
(Gn

i,j+ 1
2
�Gn

i,j� 1
2
) +�tn(S1

i,j + S2
i,j).

The flux in x-direction

Fn
i+ 1

2 ,j
= F(Wn

i,j ,W
n+1
i,j ).

and the source term S1
i,j are given by solutions to the Riemann problem

Wt + f(W)x = S1(W,Wx), W(x, 0) =

8
<

:
WL, x < 0

WR, x > 0

and the flux and source term in y-direction are obtain by the corresponding Riemann

problem. [ ..... Think about it again ... local conservation but not other probelm ...

maybe leave it away + local conservation]
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1.4.1 A three-wave HLL solver

We approximate the Riemann problem by three waves with wave speeds sL, sR and sM .

The approximate solutions and fluxes are given by

WHLL3 =

8
>>>>>>><

>>>>>>>:

WL, if x
t  sL

W⇤
L, if sL < x

t  sM

W⇤
R, if sM < x

t  sR

WR, if sR < x
t

FHLL3(WL,WR) =

8
>>>>>>><

>>>>>>>:

FL, if x
t  sL

F⇤
L, if sL < x

t  sM

F⇤
R, if sM < x

t  sR

FR, if sR < x
t

The outer wave speeds are chosen as in [...... LINK zu Gurski ....]. The left wave speed

sL for example is chosen as the minimum of the smallest eigenvalue of the matrix (1.72)

evaluated once at WL and once at the Roe averaged state W.

sL = min(u1L � cfL, u1 � cf ) sR = min(u1R + cfR, u1 + cf )

In this solver the middle wave models a material contact discontinuity with similar prop-

erties than the compound entropy/divergence wave. Hence, the velocity field and the

tangential magnetic fields are assumed to be constant across the middle wave. Therefore

u⇤ = u⇤
L = u⇤

R, B⇤
2 = B⇤

2L = B⇤
2R and B⇤

3 = B⇤
3L = B⇤

3R

We do not fix div(B) = 0 and let the normal magnetic field B1 jump across the middle

wave. Across the outer waves it is constant. Since the /di(B) does only change across

the middle wave the source term does only a↵ect the Rankine-Hugoniot conditions for

the middle wave. We get

sL(W
⇤
L �WL) = F⇤

L � FL, (1.78)

sR(W
⇤
R �WR) = F⇤

R � FR, (1.79)

sM (W⇤
R �W⇤

L) = F⇤
R � F⇤

L + S1,⇤ (1.80)
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with

S1,⇤ =

0

BBBBBBBBBB@

0

� (B1R)2�(B1R)2

2

�B⇤
2(B1R �B1L)

�B⇤
3(B1R �B1L)

�u⇤(B1R �B1L)

�u⇤1
(B1R)2�(B1R)2

2 � (u⇤2B
⇤
2 + u⇤3B

⇤
3)(B1R �B1L)

1

CCCCCCCCCCA

(1.81)

We will now explain, why we must have the jump condition (1.80). Since B2, B3 and u

are constant across the middle wave, the source term (1.75) may be written in the form

S1(W,Wx) = (T(u,B)B1)x with

T(u,B) =
⇣
0,

B1

2
, B2, B3,u,

u1B1

2
+ u2B2 + u3B3

⌘>

Therefore

Wt + F(W)x + (T(u,B)B1)x = 0

and local conservation gives

sM (W⇤
R �W⇤

L) = F⇤
R � F⇤

L +T⇤
RB

⇤
1R �T⇤

LB
⇤
1L.

Relation (1.80) then follows from T⇤
RB

⇤
1R �T⇤

LB
⇤
1L = S1,⇤. We define

S1,n
i = S1,⇤

i� 1
2

1(s
M,i� 1

2
�0) + S1,⇤

i+ 1
2

1(s
M,i+1

2
<0) (1.82)

We set u⇤1 = sM , since the middle wave of the exact problem has speed u1. Therefore

we get with (1.78) and (1.79)

⇢⇤✓ = ⇢✓
u1✓ � s✓
sM � s✓

, ✓ 2 {L,R}. (1.83)

Combining all three conservation equation results in

FR � FL = sRWR � sLWL + (sM � sR)W
⇤
R + (sL � sM )W⇤

L + S1,⇤.

We can solve the second component of this equation for sM . Therefore we use equation

(1.83) and that sM = u⇤1L = u⇤1R = u⇤1 to get

sM = u⇤1 =
⇡1R � ⇡1L + ⇢Ru1R(u1R � sR)� ⇢Lu1L(u1L � sL)

⇢R(u1R � sR)� ⇢L(u1L � sL)
.

Similarly, by using local conservation across the outer waves (1.78) and (1.79) we get

⇡⇤1✓ = ⇡1✓ + ⇢✓(u1✓ � s✓)(u1✓ � sM )
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Further we get that

u⇤� =
⇣c� � �d�
↵⇣ + �2

, B⇤
� =

�↵d� � �c�
↵⇣ + �2

with

c� = ⇢Ru�R(u1R � sR)� ⇢Lu�L(u1L � sL)� (B1RB�R �B1LB�L),

d� = B�R(sR � u1R)�B�L(sL � u1L)� (B1Lu�L �B1Ru�R),

↵ = ⇢R(u1R � sR)� ⇢L(u1L � sL), ⇣ = sR � sL, � = B1R �B1L

with � 2 {2, 3}. It can be ensured that the denominator ↵⇣ + �2 6= 0 by modifying the

outer wave speeds slightly

sR � u1R +
1

2
max{(u1L � u1R), 0}+ c̃fR,

sL  u1L � 1

2
max{(u1L � u1R), 0}� c̃fL,

where

c̃2f✓ =
�p✓
⇢✓

+
B2

1✓

⇢✓
(1 + ✏) +

B2
2✓ +B2

3✓

⇢✓
+

s
⇣�p✓ +B2

✓

⇢✓

⌘2
� 4

�p✓B
2
1✓

⇢2✓
, ✓ 2 {L,R}

for some small ✏ > 0. Finally we can compute the intermediate energy

E⇤
✓ =

E✓(u1✓ � s✓) + ⇡1✓u1✓ � ⇡⇤1✓sM +
B2

1✓
2 (u1✓ � sM ) +B1✓(B2✓u2✓ +B3✓u1✓ �B2✓u2✓ �B3✓u1✓)

sM � s✓

Hence, all the intermediate states are determined explicitly. The intermediate fluxes are

now obtained by local conservation (1.78) and (1.79)

F⇤
L = FL + sL(W

⇤
L �WL), F⇤

R = FR + sR(W
⇤
R �WR).

Therefore we get the fluxes for the three wave solver

FH3

i+ 1
2 ,j

=

8
>>>>>>><

>>>>>>>:

Fi,j , if sL,i+ 1
2 ,j

> 0

F⇤
i,j , if sL,i+ 1

2 ,j
 0 and sM,i+ 1

2 ,j
� 0

F⇤
i+1,j , if sM,i+ 1

2 ,j
< 0 and sR,i+ 1

2 ,j
� 0

Fi+1,j , if sR,i+ 1
2 ,j

< 0

As we will see in later numerical experiments the three wave solver does not model Alfvén

waves precisely. Therefore one can introduce a five wave HLL solver. The derivation,

that is similar to the one of the three wave HLL solver, of such a solver, can be found
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in [.....Link to Fuchs .........].

1.4.2 Higher order reconstruction

Instead of using constant functions Wi,j on each cell, one can use linear functions to

obtain second order accuracy in space. For a second order approximation in time we

can use the strong-stability preserving Runge-Kutta scheme.

W ⇤
i,j = Wn

i,j +�tnLn
i,j ,

W ⇤⇤
i,j = W ⇤

i,j +�tnL⇤
i,j ,

Wn+1
i,j =

1

2
(Wn

i,j +W ⇤⇤
i,j ).

with

Ln
i,j = Wn

i,j �
1

�x
(Fn

i+ 1
2 ,j

� Fn
i� 1

2 ,j
)� 1

�y
(Gn

i,j+ 1
2
�Gn

i,j� 1
2
) + S̃1

i,j + S̃2
i,j . (1.84)

We will now define the numerical fluxes F,G and later the source terms S̃1 and S̃2.

ENO reconstruction

The ENO (Essentially Non-Oscillatory) reconstruction is second order accurate for

smooth solutions. We reconstruct in the primitive variables

Ui,j = [⇢i,j ,ui,j ,Bi,j , pi,j ],

that can be obtained by transforming the conservative variables. The ENO-di↵erences

in each direction are given as

D
x
Ui,j =

8
<

:
Ui+1,j �Ui,j , if �xi,j  1

Ui,j �Ui�1,j , otherwise
D

y
Ui,j =

8
<

:
Ui,j+1 �Ui,j , if �yi,j  1

Ui,j �Ui,j�1, otherwise

(1.85)

where

�xi,j =
| (Ui+1,j)�  (Ui,j)|
| (Ui,j)�  (Ui�1,j)|

, �yi,j =
| (Ui,j+1)�  (Ui,j)|
| (Ui,j)�  (Ui,j�1)|

and  is some function called the global smoothness indicator. We use  (U) = E. The

reconstructed linear function in the cell Ii,j is

Ui,j(x, y) = Ui,j +
D

x
Ui,j

�x
(x� xi) +

D
y
Ui,j

�y
(y � yj) (1.86)
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The reconstructed conservative variables can be obtained by transforming the recon-

structed primitive variables.

WENO reconstruction

Alternatively to the ENO-reconstruction, one can look at the following one. Consider

the cell di↵erences

eDxUi,j =
⇣
!x
i,j(Ui+1,j �Ui,j) + (1� !x

i,j)(Ui,j �Ui�1,j)
⌘

eDyUi,j =
⇣
!y
i,j(Ui,j+1 �Ui,j) + (1� !y

i,j)(Ui,j �Ui,j�1)
⌘ (1.87)

with the weights

!x
i,j =

a0i,j
a0i,j + a1i,j

, a0i,j =
1

3(✏+ �x,0i,j )
, a1i,j =

2

3(✏+ �x,1i,j )

!y
i,j =

b0i,j
b0i,j + b1i,j

, b0i,j =
1

3(✏+ �y,0i,j )
, b1i,j =

2

3(✏+ �y,1i,j )

where ✏ > 0 is small and

�x,0i,j = ( (Ui+1,j)�  (Ui,j))
2, �x,1i,j = ( (Ui,j)�  (Ui�1,j))

2,

�y,0i,j = ( (Ui,j+1)�  (Ui,j))
2, �y,1i,j = ( (Ui,j)�  (Ui,j�1))

2.

The indicator function is as well  (V) = E. The approximated solution on each cell Ii,j

is

eUi,j(x, y) = Ui,j +
eDxUi,j

�x
(x� xi) +

eDyUi,j

�y
(y � yj)

The WENO reconstruction is third-order accurate for smooth solutions.

The ENO and WENO reconstruction su↵er from a common problem. The reconstructed

pressure and density may not be positive. For obtaining physically meaningful results it

is essential that these quantities are positive. Therefore we have to modify the di↵erences

(1.85) and (1.87). We won’t go further into detail and refer to [ .... 51 in fuchs = waagan

// fuchs....].

We will now define the second order numerical fluxes (1.84).

Fi+ 1
2 ,j

= F(WE
i,j ,W

W
i+1,j), Gi,j+ 1

2
= G(WN

i,j ,W
S
i,j+1)
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with

WE
i,j = cWi,j(xi+ 1

2
, yj), WW

i,j = cWi,j(xi� 1
2
, yj),

WN
i,j = cWi,j(xi, yj+ 1

2
), WS

i,j = cWi,j(xi, yj� 1
2
).

Here cW denotes the positivity preserving modifications of the ENO or WENO recon-

structed conserved variables W or fW.

The second order source term can be calculated as in (1.82)

S1
i,j = S1,⇤

i� 1
2 ,j

1(s
M,i� 1

2 ,j
�0) + S1,⇤

i+ 1
2 ,j

1(s
M,i+1

2 ,j
<0)

with S1,⇤
i� 1

2 ,j
as in (1.81) but with Wi,j , Wi+1,j replaced by WE

i,j , W
W
i+1,j . Since for

smooth solutions the discretized source Sn
i,j vanishes with (BW

1 )i+1,j � (BE
1 )i,j , we have

to add an extra term to obtain second order consistency. In [....LINK to Fuchs...] it was

suggested to modify the source term in the following way

S1,mod
i,j = S1

i,j +

0

BBBBB@

0

Bi,j

ui,j

ui,j ·Bi,j

1

CCCCCA

1

�x
bDxB1

i,j

where bDx is the positivity preserving modification of the di↵erences (1.87).

1.5 Numerical experiments

1.5.1 Brio-Wu shock tube

This is one of the classical one-dimensional test problems for the ideal MHD. The initial

data is given by

[⇢,u,B, p] =

8
<

:
[1, 0, 0, 0, 0.75, 1, 0, 1] if x < 0.5

[0.125, 0, 0, 0, 0.75,�1, 0, 0.1] else

The computational domain is (x, t) 2 [0, 1]⇥ [0, 0.2]. Further we have Neumann bound-

ary conditions. From left to right the solution (see Figure 1.1) involves five waves: a

fast rarefaction wave, a slow compound wave, a contact wave, a slow shock and a fast

rarefaction wave that already left the computational domain at t = 0.2. The compound
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wave at x ⇡ 0.45 consists of a slow compressive shock and a rarefaction. This behaviour

is a consequence of the fact that the MHD equations are not strictly hyperbolic.
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Figure 1.1: Density ⇢ of the Brio-Wu shock tube problem computed by di↵erent
schemes on a grid with 256 points at time t = 0.2.
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(a) L1-di↵erences ||⇢N � ⇢N/2||L1 of the Brio-Wu shock
tube problem at t = 0.2 plotted against the degrees of
freedom N = 2i for i = 6, . . . , 11
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(b) L1-error in comparison to a reference solution ||⇢ref�
⇢N ||L1 plotted against the degrees of freedom N =
2i for i = 5, . . . , 11. The reference solution was com-
puted with the HLL5-WENO scheme on 213 grid points.

Figure 1.2: Convergence study of di↵erent solvers for the Brio-Wu shock tube.
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1.5.2 Powell-magnetic advection

This one dimensional problem is used to see how a non-constant normal magnetic field

is treated. Schemes that follow the convergence constrain div(B) = 0 ) B1 = const.

typically fail. The initial data is given by

[⇢,u,B, p] = [1, 1, 0, 0, 1� sin(2⇡x), 0.5, 0, 0.5]

With this data the equation for the magnetic field component B1 reduces to the linear

advection equation.
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Figure 1.3: B
1

at time t = 1 computed with di↵erent schemes on a grid with 64 grid
points
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Figure 1.4: L1-di↵erence to the exact solution ||(B
1

)
ex

� (B
1

)N ||L1 plotted against
the degrees of freedom N = 2i for i = 5, . . . , 12 computed for the Powell-magnetic

advection problem.
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1.5.3 Orszag-Tang vortex

In this standard two dimensional test problem. The initial data leads to supersonic

turbulences. It tests how the code handles the formation of shocks and shock-shock

interactions. Further the problem is invariant under 180 degree rotation, providing a

symmetry test for the code. The initial data is given by

[⇢,u,B, p] = [�2,� sin(⇡y), sin(⇡x), 0,� sin(⇡y), sin(2⇡x), 0, �]

where � = 5
3 is the heat capacity ratio. The computational domain is (x, t) 2 [0, 2]2 ⇥

[0, 1]. We use periodic boundary conditions. In Figure (1.9a) we can see the solution

of the problem at t = 1. Since the solution contains shocks we expect at most half of

the order the schemes would have for problems with continuous solutions. Therefore the

first order schemes, such as the HLL3 and HLL5 solver obtain order 1
2 and the second

order schemes obtain order 1. Figure (1.9b) verifies this convergence speeds.

(a) Pressure p of the Orszag-Tang vortex at t = 1, computed
with the HLL5 solver with second order WENO reconstruction
on 10242 grid points.
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(b) L1-error ||pN�pref||L1([0,2]2) plotted against the grid

size N = 2i for i = 5, . . . , 9. The reference solution was
computed with the HLL5-WENO scheme on 10242 grid-
points.

Figure 1.5: Pressure p of the Orszag-Tang vortex at t = 1

1.5.4 Kelvin-Helmholz instability

Let us first look at the hydrodynamic case of the problem. Therefore we set the magnetic

field equal zero. The MHD equations reduce to the Euler equations of gas dynamics.

We will look at a perturbed shear flow and observe how the di↵erent layers mix. The
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(a) HLL3 (b) HLL5

(c) HLL3-WENO (d) HLL5-WENO

Figure 1.6: Pressure p of the Orszag-Tang vortex at t = 1 computed with di↵erent
schemes on 2562 grid points.

shear flow initial data on the domain (x, y) 2 [0, 1]2 is given by

U0(x) =

8
<

:
Umid if I1 < x2 < I2

Uout if x2  I1 or I2  x2

(1.88)

where I1(x1) = 0.25 and I2(x1) = 0.75 are the two interface profiles. We have periodic

boundary conditions on each boundary. Since we chose two interfaces, there is no jump

across the boundary. In the hydrodynamic case the states U✓ = [⇢✓,u✓,B✓, p✓], ✓ 2
{mid,out} are given by

Umid = [1, 0.5, 0, 0, 0, 0, 0, 2.5], and Uout = [2,�0.5, 0, 0, 0, 0, 0, 2.5].

We can perturb this problem in two ways. First we will look at a perturbation of the two

interfaces and later we will perturb the initial value of u2. For the interface perturbation
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we set

I⇤j = I⇤j (x1,!) = Ij + ✏Yj(x1,!), j = 1, 2

where ✏ is the amplitude and

Yj(x1,!) =
mX

n=1

anj (!) cos(2n⇡(b
n
j (!) + x1)), j = 1, 2.

The corresponding problem is then

U0(x,!) =

8
<

:
Umid if I⇤1 (x1,!) < x2 < I⇤2 (x1,!)

Uout if x2  I⇤1 (x1,!) or I⇤2 (x1,!)  x2

(1.89)

In Figure (1.7) we see the approximated density of the initial value problem (1.89) at

t = 1 plotted for grid sizes between 1282 and 20482. The second order accurate HLL5-

WENO scheme was used. The figure suggests that the solution does not converge as

the mesh is refined. We can observe more small scale structures as the mesh is refined.

To further verify the lack of sample convergence we looked in Figure (1.8) at the L1-

di↵erences

||⇢N � ⇢N/2||L1([0,1]), for N = {2i : i = 6, . . . , 11}

of these approximations.

The second perturbation uses slip interfaces (1.88). The velocity in x2-direction is per-

turbed the following way

u2 = A sin(2⇡x1) sin(2⇡x2) (1.90)

where A is the Amplitude of the perturbation. In Figure we look at the L1-di↵erences

||⇢N � ⇢N/2||L1 of approximations computed by the HLL5-WENO scheme. We can see

here as well that these di↵erences don’t converge.
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(a) 1282 (b) 2562

(c) 5122 (d) 10242

(e) 20482

Figure 1.7: Approximate density for the initial data (1.89) for one sample (fixed !)
and with ✏ = 0.02, computed with the second order HLL5-WENO scheme at t = 1 for

di↵erent mesh resolutions.
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Figure 1.8: L1-di↵erences ||⇢N�⇢N/2||L1 with initial data (1.89) computed for a single
sample with the HLL5-WENO scheme plotted against the grid sizes N = 2i for i =

6, . . . , 11

(a) Approximate density for the perturbation (1.90) of the ini-
tial data (1.88) for one sample (fixed !) and with A = 0.01,
computed with the second order HLL5-WENO scheme at t = 1
on a 10242 grid.
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(b) L1-di↵erences ||⇢N�⇢N/2||L1 with initial data (1.89)
computed for a single sample with the HLL5-WENO
scheme plotted against the grid sizes N = 2i for i =
6, . . . , 10

Figure 1.9: Pressure p of the Orszag-Tang vortex at t = 1
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Entropy measure valued solutions

In order to get a more general notion for solutions we will use the concept of Young

measures. First we will give an introduction to Young measure. In Section [.......] we

will look at the measure valued Cauchy problem, a weak, more general formulation of

the Cauchy problem. The approximation of solutions to this measure valued Cauchy

problem are discussed in Section [......].

2.1 Young measures

Let M(RN ) be the Banach space of all finite Radon measures on RN , which are inner

regular Borel measures µ with finite variation kµkM(RN ) = |µ|(RN ) < 1. Further let

C0(RN ) be the Banach space of all continuous real-valued functions on RN which vanish

at infinity, equipped with the supremum norm. Then by a well known form of the Riesz

representation theorem [...link to real and abstract analysis p.364...] M(RN ) can be

identified with C0(RN )0 the dual space of C0(RN ) by the isometric isomorphism

� :

8
<

:
M(RN ) ! C0(RN )0

µ 7! hµ, ·i

with the dual pairing hµ, gi =
R
RN g(⇠)dµ(⇠).

The duality between those two spaces induces a weak-* topology on M(RN ). A sequence

µn 2 M(RN ) converges with respect to this topology to µ 2 M(RN ) if hµn, gi ! hµ, gi
for all C0(RN ). This is also known as narrow convergence.

The set of all probability measures on RN is the subset

P(RN ) :=
�
µ 2 M(RN ) : µ � 0, µ(RN ) = 1

 
.

28
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A Young measure on D ⇢ Rk is a weak-* measurable function

⌫ :

8
<

:
D ! P(RN )

z 7! ⌫z := ⌫(z)

where a function is said to be weak-* measurable if the mapping z ! h⌫z, gi is Borel

measurable for every g 2 C0(RN ). The set of all Young measures from D into RN

is denoted by Y(D,RN ). A sequence of Young measures ⌫n 2 Y(D,RN ) converges

narrowly to ⌫ 2 Y(D,RN ) if

Z

D
'(z)h⌫nz , gidz !

Z

D
'(z)h⌫z, gidz 8 ' 2 L1(D), 8 g 2 C0(D).

This weak-* convergence with respect to the weak-* topology �(L1(D), L1(D)) is de-

noted by h⌫n, gi* []⇤h⌫, gi.
Next we will state a version of the fundamental theorem of Young measures.

Theorem 2.1. Let ⌫n 2 Y(D,RN ) for n 2 N be a sequence of Young measures.

Then there exist a subsequence ⌫m and a nonnegativ measure-valued function ⌫ : D !
M+(RN ) such that

(i)
R
D '(z)h⌫

m
z , gidz !

R
D '(z)h⌫z, gidz 8 ' 2 L1(D), 8 g 2 C0(D).

and further satisfies

(ii) k⌫zkM(RN )  1 for a.e. z 2 D;

(iii) If K ⇢ RN is closed and supp(⌫nz ) ⇢ K for a.e. z 2 D and n large, then supp(⌫z) ⇢
K for a.e. z 2 D.

If one can additionally find for every bounded, measurable E 2 D a nonnengativ  2
C(RN ) with lim|⇣|!1 (⇣) = 1 such that

sup
n

Z

E
h⌫nz ,idz < 1 (2.1)

then

(iv) k⌫zkM(RN )  1 for a.e. z 2 D;

and hence ⌫ 2 Y(D,RN ).
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Proof. Let L1
! (D;M(RN )) be the space of equivalent classes of weak-* measurable

functions µ : D ! M(RN ), equipped with the norm

kµk1,M := ess sup
z2D

kµzkM.

It can be shown [...ref to Ball /4...] that L1
! (D;M(RN )) is isometrically isomorph to

the dual of L1(D;C0(RN )) and therefore a Banach space. Since ⌫n 2 Y(D,RN ) we have

k⌫nk1,M = 1 for all n 2 N and therefore the sequence ⌫n is bounded in L1
! (D;M(RN )).

Hence there exists a ⌫ 2 L1
! (D;M(RN )) and a weak-* convergent subsequence ⌫m of

⌫n. This weak-* convergence with respect to the weak-* topology on L1
! (D;M(RN )) is

lim
m!1

Z

D
h⌫mz , (z, ·)i dz =

Z

D
h⌫z, (z, ·)i dz

for all  2 L1(D;C0(RN )). In particular, letting  (x, ⇠) = '(x)g(⇠) for '(x) 2 L1(D)

and g 2 C0(RN ) proofs (i). Next, we claim that ⌫z � 0 for a.e. z 2 D. If not, then there

would exist a non-negative function  2 L1(D;C0(RN )) such that
R
Dh⌫z, (z, ·)i dz < 0.

But then, since ⌫mz � 0

0 >

Z

D
h⌫z, (z, ·)i dz = lim

m!1

Z

D
h⌫mz , (z, ·)i dz � 0

is a contradiction. (ii) follows from the weak-* semi continuity of the norm k · | 1,M.

To show (iii) let g 2 C0(RN ) with g|K = 0. Therefore h⌫mz , gi = 0 for almost every

z 2 D and m large enough. Hence

Z

D
'(z)h⌫z, gi dz = lim

m!1

Z

D
'(z)h⌫mz , gi dz = 0

for all ' 2 L1(D), and therefore h⌫z, gi = 0 for a.e. z 2 D. This is (iii). Assume now

that (2.1) holds. Fix a set E ⇢ D of finite, nonzero Lebesgue measure �(E) and denote

the average integral over E by
R
E� = 1

�(E)

R
E . For every R > 0 we define

✓R(⇠) =

8
>>><

>>>:

1 (⇠)  R

1 +R� (⇠) R < (⇠)  R+ 1

0 R+ 1 < (⇠)

Since ✓R(⇠) 2 C0(RN ), we have with (ii)

Z

E
� h⌫mz , ✓Ri dz = lim

m!1

Z

E
� h⌫z, ✓Ri dz 

Z

E
� k⌫zkM dz  1.
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Further 1� ✓R(⇠)  (⇠)
R and therefore

Z

E
� 1� h⌫mz , ✓Ri dz = lim

m!1

Z

E
� h⌫mz , 1� ✓Ri dz  1

R

Z

E
� h⌫mz ,i dz

From the above inequality it follows that

1  lim
R!1

lim
m

Z

E
� h⌫mz , ✓Ri dz + lim

R!1
sup
m

1

R

Z

E
� h⌫mz ,i dz

= lim
R!1

Z

E
� h⌫z, ✓Ri dz


Z

E
� k⌫zkM dz  1

where we used (2.1) for the equality. Therefore
R
E� k⌫zkM dz = 1 and since E ⇢ D was

arbitrary we proofed (iv).

Let (⌦,F , P ) be a probability space, D 2 Rd a Borel set and u : ⌦ ⇥ D ! RN a

random field, then we can define its law ⌫ by the induced measure ⌫z := P � u(·, z)�1

and therefore

h⌫z, gi =
Z

RN
g(⇠)d⌫z(⇠) =

Z

RN
g(⇠)d(P � u(·, z)�1)(⇠) =

Z

⌦
g(u(!, z)) dP (!) (2.2)

for g 2 C0(RN ). This defines a Young measure:

Theorem 2.2. If u : ⌦⇥D ! RN is jointly measurable then ⌫z := P � u(·, z)�1 defines

a Young measure from D ! RN .

Proof. Since u is jointly measurable it follows for fixed z that the set {! : u(!, z) 2
U} = u(z, ·)�1(U) is P -measurable.

We need to show that the definition of ⌫ is independent of the choice of the mapping in

the equivalent class of jointly measurable functions u : ⌦ ⇥ D ! RN . Let ũ and û be

two functions such that ũ = û for P ⇥ �-a.e. (!, z), then by applying Tonelli’s theorem

we get

0 =

Z

⌦⇥D
1{ũ 6=û}(!, z)d(P⌦�)(!, z) =

Z

D

Z

⌦
1{ũ 6=û}(!, z)dP (!)d�(z) =

=

Z

D
P ({! : ũ(!, z) 6= û(!, z)})d�(z)

Therefore P ({! : ũ(!, z) 6= û(!, z)}) = 0 for a.e. z 2 D. Hence for every Borel set

U 2 RN

P ({! : ũ(!, z) 2 U}) = P ({! : û(!, z) 2 U})
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for a.e. zinD. Finally ⌫ is weak-* measurable since

h⌫z, gi =
Z

⌦
g(u(!, z)) dP (!)

which is measurable in z for every g 2 C0(RN ).

Next we construct a measurable random field from a given Young measure.

Theorem 2.3. For every Young measure ⌫ 2 Y(D,RN ) there exists a probability space

(⌦,F , P ) and a function u : ⌦ ⇥ D ! RN such that u is measurable on the product

�-algebra on ⌦⇥D and such that u has law ⌫.

In particual we can choose the probability space as ([0, 1),B,�) with B denoting the Borel

�-algebra on [0, 1) and � the Lebesgue-measure.

Proof. We will proof the theorem on the probability space ([0, 1),B,�) and N = 1. For

n 2 N and j 2 Z we define

F j
n =

8
>>>>>>><

>>>>>>>:

(�1,�2n) if j = �22n

[�2n(j � 1),�2nj) if j = �22n + 1, ..., 22n

[2n,1) if j = 22n + 1

; else.

a partition of R into two outer intervalls and 22n inner intervalls of Lebesgue measure

2�n Let pjn(z) =
P

lj ⌫z(F
l
n). Since C0(R) is dense in L1(R) and ⌫ 2 Y(D,R) we have

that pjn(z) : R ! [0, 1) is measureable for all n, j. Further pjn(z) = 0 for j < �22n and

pjn(z) = 1 for j > �22n + 1. For n arbitrary but fixed we can define a function

un(!, z) := ⇠jn with j such that pj�1
n (z)  ! < pjn(z)

where ⇠jn 2 F j
n can be chosen arbitrarily. This function is well-defined for all (!, z) 2

⌦⇥D and for fixed z piecewise constant in !.

Next we will proof that un is measureable on the product �-algebra between F and the

Borel �-algebra on D. Since un only takes finitly many values ⇠jn, it su�ces to show

that u�1
n (⇠jn) is measureable for each ⇠jn. Indeed,

u�1
n (⇠jn) =

�
(!, z) 2 ⌦⇥D : pj�1

n (z)  ! < pjn(z)
 

= (⌦⇥D) \
�
(!, z) 2 ⌦⇥ R : pj�1

n (z)  !
 
\
�
(!, z) 2 ⌦⇥ R : ! < pjn(z)

 
,

the intersection between the epigraph of pj�1
n and the hypograph of pjn which are mea-

sureable, since all pnj are. Since the partition Fm
j j2Z is a refinement of Fn

j j2Z whenever
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m > n it follows |un(!, z) � um(!, z)| < �(Fn
j ) = 2�n with m,n chosen, depending on

(!, z), large enough. Hence un converges pointwise to some function u : ⌦⇥D ! R and

therefore u is measurable by the measurability of each un.

Finally by Lebesgue’s theorem of dominated convergence and the definition of the

Lebesgue integral we have for every g 2 C0(R) and z 2 D that

Z

⌦
g(u(!, z))dP (!) = lim

n

Z

⌦
g(un(!, z))dP (!) = lim

n

X

j

⌫z(F
j
n)g(⇠

j
n) =

Z

R
g(⇠)d⌫z

2.2 The measure valued Cauchy problem

Since standard numerical schemes may not converge [...Link to MVS..] and new struc-

tures are found at smaller and smaller scale it is reasonable to look at a di↵erent (weaker)

notion of solutions. Entropy solutions, whenever they exist should be included in this

class of solutions.

Instead of looking for an integrable function which solves the Cauchy problem

@

@t
u+ div(f(u)) = s(u)

u(x, 0) = u0

(2.3)

we generalize the problem and require the solution to be a Young measure. With the

notation of the previous section we introduce the following generalized problem

@

@t
h⌫, idi+ div(h⌫, fi) = h⌫, si

⌫(x,0) = �x

(2.4)

with given initial data �x 2 Y(Rd,RN ). A Young measure ⌫ 2 Y(Rd ⇥ R+,RN ) is a

measure valued (MV) solution of (2.3) if (2.3) holds in the sense of distributions. That

is

Z

R+

Z

RN

@

@t
'(x, t)h⌫(x,t), idi+rx'(x, t) · h⌫(x,t), fi dxdt+

Z

RN
h�x, idi'(x, 0) dx (2.5)

=

Z

R+

Z

RN
hs, idi'(x, t) dxdt (2.6)

for all test functions ' 2 C1
c (Rd ⇥ R+). If ⌫ 2 Y(Rd ⇥ R+,RN ) additionally satisfies

for every entropy pair (⌘, q) and all non-negative 0  ' 2 C1
c (Rd ⇥ R+) the entropy
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inequality

Z

R+

Z

RN

@

@t
'(x, t)h⌫(x,t), ⌘i+rx'(x, t) · h⌫(x,t), qi dxdt+

Z

RN
h�x, ⌘i'(x, 0) dx (2.7)

�
Z

R+

Z

RN
h⌫(x,t), ⌘0si'(x, t) dxdt (2.8)

where ⌘0 denotes the derivative with respect to the conserved variables of the entropy

function ⌘, then ⌫ is called an entropy measure valued (EMV) solution.

Let �u(x,t) denote the Delta distribution with a singularity at u(x, t) so that h�u(x,t), fi =
f(u(x, t)). Then every entropy solution u of (2.3) give rise to an EMV solution ⌫ of (2.3)

by defining ⌫(x,t) := �u(x,t). Therefore the set of EMV solutions with initial data � = �u0

is at least as large as the set of entropy solutions of (2.3) with initial data u0.

2.3 Construction of approximate EMV solutions for con-

servation laws

In this section we will only look at conservation laws in one space dimension. The gener-

alization to more dimensions is straightforward and can be found in [.....Ulrik-diss......].

The source term s in is set to zero and therefore in the definition of the EMV solution

(2.6), (2.8) the right hand sides are zero.

For the construction of approximate EMV solutions we will begin with a suitable nu-

merical scheme. Lets look at a finite volume/di↵erence scheme with locally Lipschitz

continuous numerical flux function F�x
i+1/2, where �x is the mesh size. Further let the

numerical flux be consistent with the given flux function f . Let F�x
i+1/2 depend on the

(2p+1)-points around u�x
i , where u�x(t) := {u�x

i (t)}Ni=1 denotes the numerical approx-

imation generated by the semi discrete (continuous in time) scheme. Let the discretized

initial data be denoted by u�x
0 and write for the evolution operator S�x such that

u�x = S�x(u�x
0 ).

The following Algorithm explains how we obtain a approximate EMV solution.

Step 1: Let � 2 Y(R,RN ) be the inital Young measure in (2.3). According to Theorem

2.3 there exists a probability space (⌦,F , P ) and a random field u0 : ⌦ ! L1() such

that � is it’s law.

Step 2: We evolve the dicretized initial random field u�x
0 by applying the described

evolution operator to each ! 2 ⌦ such that u�x(!) = S�x(u�x
0 (!)) to obtain a approx-

imation to the solution u(!), with corresponding random field u0(!).

Step 3: Define the approximate measure valued solution ⌫�x 2 Y(R⇥ R+,RN ) as the

law of u�x with Theorem 2.2. Next we will show that if the numerical scheme satisfies
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a set of criteria the approximate EMV solutions obtained by the above procedure will

converge narrowly to a EMV solution of (2.3).
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