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Abstract

In this thesis we introduce and analyse a residual-type a posteriori error estimator for a discontin-
uous Galerkin (DG) method applied to the Helmholtz equation with Robin boundary condition at
high wavenumbers k. The estimator can be used for adaptive mesh refinement, and controls the
error caused by the nonconformity of the method as well as the approximation error in the norm
k‖·‖L2+|·|H1 . As a model problem, we consider the case of convex polygons and hp-finite elements.
In the classical theory, a posteriori estimators provide bounds of the error up to constants depend-
ing linearly on k. In the present work, we prove a reliability estimate, where the occuring constant
becomes k-independent under certain assumptions on the FEM space, which require a minimum of
O(k2) degrees of freedom in two dimensions. In this setting, efficiency will be shown to hold with
a constant depending on a power of log(k). The proof is based on recent findings in the study of
highly indefinite Helmholtz problems, which show that our choice of space allows a pollution-free
discretization. This theory is also applicable to the DG formulation, which is moreover known to
admit unique solutions under much weaker conditions than conventional Galerkin methods. This
leaves us with an adaptive method, that avoids pollution and additionally has favourable stability
properties. A series of numerical experiments is conducted to illustrate the performance of the
error estimator and the adaptive algorithm.





Contents

Introduction 1

1 Preliminaries 3

1.1 Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Elements, Edges, Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Admissible Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Geometric Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Finite Element Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Broken Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Weighted Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Discontinuous Galerkin (DG) Formulation and Splitting of the Solution 11

2.1 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Splitting of the Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 DG Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 DG Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Adjoint Helmholtz Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Stability and Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Approximation Theorems 25

3.1 C1 Clément Type Interpolant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Estimates Independent of ω̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 C1-hp-Interpolant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Conforming Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Inverse Inequalities and Liftings . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Conforming Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

i



ii

4 A Posteriori Error Estimation 55
4.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Non-weighted Error Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Weighted Error Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 Error Indicator Without Jump Term . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Numerical Experiments 79
5.1 Adaptive Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Plane Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 L-shaped Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.1 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Non-constant Wavenumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.1 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 95



List of Figures

3.1 Patch maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Argyris element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Convergence for different values of k, Ex. 1 . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Ratio of the exact and estimated error, Ex. 1 . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Estimated and exact error on elements, Ex. 2 . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Adaptive mesh and DGFEM solution, Ex. 2 . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Critical meshwidth, Ex. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Solution, Ex. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7 Adaptive meshes, Ex. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.8 Uniform vs. adaptive ref., Ex. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.9 Adaptive ref. for different values of θ, Ex. 3 . . . . . . . . . . . . . . . . . . . . . . . 89
5.10 Domain and wavenumber, Ex. 4, 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.11 Mesh and DGFEM solution, Ex. 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.12 Mesh and DGFEM solution, Ex. 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.13 Mesh and DGFEM solution, Ex. 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.14 Mesh and DGFEM solution, Ex. 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.15 Estimated convergence, Ex. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.16 Estimated convergence, Ex. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

iii





Introduction

Consider the Helmholtz equation with Robin boundary condition:

−∆u− k2u = f in Ω

−∇u · n+ iku = g on ∂Ω,

where n is the outer normal, f ∈ L2(Ω), g ∈ H1/2(∂Ω), Ω ⊆ R
2 is a convex polygonal domain, and

k > 0 is the wavenumber. If k is large, this problem is highly indefinite, and it is well-known that
low order finite element methods suffer from the so called pollution effect. This means that they fail
to approximate the solution properly, unless a surprisingly stringent resolution condition is imposed
on the meshwidth h, typically this is k2h = O(1). The condition implicates, that a minimum of
O(k4) degrees of freedom is needed in two dimensions. Moreover, a posteriori error estimators are
marred by their dependence on the inf-sup condition, which is known to grow linearly in k for
certain domains. This results in an overestimation of the error, thereby challenging the estimators
usefulness in adaptive algorithms. Naturally it is of interest to improve such methods in order to
avoid these problems.

A new k-explicit a priori analysis was conducted in [26, 27]. There it is shown, that a pollution-
free discretization of the Helmholtz equation is possible under certain requirements regarding the
FEM space: In the case of convex polygons and hp-finite elements, the mesh needs to be geo-
metrically refined towards the vertices of the polygon, the polynomial degree p must be of size
O(log(k)), and hk/p should be sufficiently small. This theory relies on a splitting of the solution
of the Helmholtz equation, and we will shortly recall the essential points in Section 2.2 and further
elaborate in Section 2.4.

In [25] a discontinuous Galerkin method, based on the mentioned splitting, was analysed. The
advantages of this formulation manifest themselves in the following properties: Only very mild as-
sumptions are necessary to ensure the existence of a discrete solution (see Theorem 2.3.5). Moreover,
k-independent quasi optimality of the method is guaranteed under the above resolution condition
of the FEM space, which mandates a minimum of O(k2) degrees of freedom in two dimensions as
compared to O(k4) (cf. Theorem 2.4.2 and Remark 2.4.3).

Particularly in view of the necessary mesh refinement in neighbourhoods of the vertices, it is
desireable to have an adaptive algorithm for this problem. Therefore, the primary goal of this
thesis is to find an a posteriori error estimator for the discontinuous Galerkin formulation of [25],
which is efficient and reliable with constants depending very weakly on k. To be more precise, we
will restrict ourselves to the case of hp-finite elements on regular triangular meshes. The constant
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in the reliability estimate will be independent of the wavenumber, provided that the FEM space
meets the mentioned requirements. The constant in the efficiency estimate will likewise not depend
on k, but on some power of p. The choice p = O(log(k)), effectively entails polynomial dependence
on log(k) in this case. The specific problem of the k-dependence will be overcome as in [15] by an
Aubin-Nitsche type argument and the approximability of the adjoint problem, which again relies
heavily on the theory from [26, 27].

The structure of this thesis is as follows: In Chapter 1, we define function spaces and set up
necessary notation. In Chapter 2, a model problem is given, and we briefly summarize the relevant
material concerning the DG method from [25]. Furthermore, we recall the findings of [27], and,
based on this, extend some results on convergence and stability from [25] to our specific setting.
Chapter 3 will be concerned with two approximation theorems. It serves as a preparation for the
subsequent chapter on a posteriori estimators, but is of interest in itself: First, we will introduce
an H2-conforming Clément type interpolant for the Sobolev space Wn,q, with the property that it
locally reproduces the optimal convergence rates for derivatives up to order n − 1 on admissible
triangulations. Afterwards, we proceed with the study of the approximation of discontinuous
piecewise polynomials by globally continuous piecewise polynomials on regular triangular meshes.
In Chapter 4, an a posteriori error estimator is presented, and efficiency and reliability will be
proved. Finally, Chapter 5 is dedicated to numerical experiments. We will compare convergence
rates for uniform and adaptive refinement, and test the adaptive algorithm with problems that are
not covered by our theory.



Chapter 1

Preliminaries

In this chapter, we introduce the notation and function spaces which will be used in the following.
Most of it is fairly standard, and we keep close to [9, Chapter 2 § 5], [27, Section 1], [30, Section
4.4.1], and [24, Section 1.1].

Let us start with a few general remarks. Throughout this thesis C > 0 will be a constant which
does not depend on the meshwidth h, the polynomial degree p, the wavenumber k, and the solution
u. Yet, it possibly depends on the shape regularity constant γ, which will be defined in (1.1.4),
and occasionally on some other parameters. The constant C is not fixed and may change in each
occurence. Moreover, we use the notation

f(x) . g(x)

to indicate that there exists a constant C > 0, not depending on the aforementioned parameters,
such that f(x) ≤ Cg(x) for every x in the domain of the two real valued functions f and g. If we
have f . g together with f & g we write f ∼ g.

Further, the (weak) j-th derivative of v in x direction is denoted byDj
xv, and for some multiindex

α ∈ N
d
0, we write Dαv := Dα1

x1
. . . Dαd

xd
v.

In the following let Ω ⊆ R
2 be a connected open polygonal domain with

∂Ω = ∂Ω. (1.0.1)

1.1 Triangulations

1.1.1 Elements, Edges, Vertices

We set up the terminology for elements, edges, and vertices of a triangulation. Let T be a finite
set of open triangles K ⊆ Ω such that

⋃

K∈T

K = Ω and K ∩K ′ = ∅,

for all K,K ′ ∈ T with K 6= K ′. Let K ∈ T be an element of T . We call the three corners
V1, V2, V3 of K its vertices, and each side of K is an edge of K. The set of all vertices belonging

3
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to an element K ∈ T is denoted by N (K). Let e be an edge of K. Then e is always considered
to be closed in R

2. We say e is an interior edge if there exists an element K ′ 6= K in T , such
that e is an edge of both elements and e 6⊆ ∂Ω. Otherwise e is called a boundary edge of the
triangulation T . The set of all interior edges belonging to some K ∈ T is denoted by EI(K).
Similarly, for the boundary edges we write EB(K), and for all edges of the element K we write
E(K) := EI(K) ∪ EB(K). A subset ω ⊆ Ω is called a patch of T , if for some n ∈ N it can be
written as

ω =
n⋃

j=1

Kj , (1.1.1)

where Kj ∈ T for all j ∈ {1, . . . , n} and for every j ∈ {2, . . . , n} it holds that Kj shares an interior
edge with an element from the set {K1, . . . ,Kj−1}. For the triangulation of this patch we write
Tω, and sometimes consider ω to be a set of elements rather than a polygon. The sets of elements
belonging to a patch ω, an edge e, or a vertex V are denoted by

K(ω) :=
{
K ∈ T : K ⊆ ω

}
,

K(e) :=
{
K ∈ T : K ∩ e 6= ∅

}
,

K(V ) :=
{
K ∈ T : K ∩ V 6= ∅

}
.

We use the following notation for sets of vertices and edges belonging to a patch ω:

N (ω) :=
⋃

{K∈T :K⊆ω}

N (K), and E(ω) :=
⋃

{K∈T :K⊆ω}

E(K)

with similar definitions for interior and boundary edges. In the special case where the patch is the
whole domain we write for the fixed triangulation T

N := N (T ) := N (Ω), and E := E(T ) := E(Ω),

with analogue definitions for interior and boundary edges. The set E is called the skeleton of T .
Finally, the notation N (e) and E(V ) stands for the endpoints of the edge e respectively for the set
of edges with endpoint V .

Patches that will be of importance to us are those associated with an element K, an edge e, or
a vertex V (without further assumptions on T the following sets generally are no patches in the
sense of (1.1.1)):

ωK := ω1
K :=

⋃

{K′∈T :K′∩K 6=∅}
K ′,

and further for j ∈ N, j > 1

ωj
K :=

⋃

K′∈K(ωj−1
K )

ω1
K′ .

Replacing K with e or V we obtain analogue definitions for ωj
e and ωj

V .
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1.1.2 Admissible Triangulations

Definition 1.1.1 (Admissible triangulations). Let T be a finite set of open triangles K ⊆ Ω.
We say that T is an admissible triangulation of Ω provided that

(i)
⋃

K∈T K = Ω.

(ii) Let K 6= K ′ be two elements of T . Then K ∩ K ′ is either empty, it consists of a common
vertex V , or it consists of an entire common edge e of K and K ′.

(iii) Let K ∈ T and |T | > 1. Then there exists an element K ′ ∈ T , K ′ 6= K and K ∩K ′ is an
entire common edge of K and K ′.

(iv) For every V ∈ N (T ) it holds that ωV is a patch in the sense of (1.1.1).

In this case we also write (Ω, T ) for the tupel. Moreover, a property of a function defined on Ω is
said to hold piecewise if it holds for the restriction of the function to each element K ∈ T .

As a consequence of (1.0.1) and due to the requirements of an admissible triangulation, hanging
nodes and slit domains are excluded. Let us make some further comments on the notation.

• Even though E is a set of edges, we write short

∫

E
h dS :=

∑

e∈E

∫

e
h dS,

for functions h with h ∈ L1(e) for every e ∈ E .

• To capture the size of elements we use the three quantities

hK := diam(K), he := |e|, hV := min
K∈ωV

hK . (1.1.2)

The meshwidth hT of T is the maximal size of an element:

hT := max
K∈T

hK . (1.1.3)

• The reference element K̂ ⊆ R
2 and the reference edge ê ⊆ R are defined as

K̂ :=
{
(x, y) ∈ R

2 : x, y > 0 and x+ y < 1
}
, ê := [0, 1],

where sometimes ê is considered to be naturally embedded in R
2. For every K ∈ T there is

an affine isomorphism FK : R2 → R
2 called the element map with FK(K̂) = K. In case we

want ê or 0 ∈ R
2 to be mapped onto a specific edge e ∈ E(K) or a vertex V ∈ N (K), we

use the notation FK,V and FK,e instead of FK . To shorten notation we define the edge map
Fe := FK,e|ê : ê → e, and for V ∈ N (e) the map Fe,V as the edge map with the additional
property Fe,V (0) = V . The element maps allow us to define shape regularity.
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Definition 1.1.2 (Shape regularity). Let T be an admissible triangulation of Ω and let γ > 0.
Then we say T is γ-shape regular if we have

h−1
K ‖F ′

K‖L∞(K̂) + hK‖(F ′
K)−1‖L∞(K̂) ≤ γ, (1.1.4)

for every K ∈ T .

Shape regularity implies two important characteristics of the mesh that are stated in the fol-
lowing lemma [24, Lemma 1.3].

Lemma 1.1.3. Let T be an admissible γ-shape regular triangulation of Ω. Then there exists an
integer M = M(γ) > 0 such that the following is true.

(i) For every V ∈ N (T ) it holds that no more than M elements of T share the vertex V .

(ii) Let K,K ′ ∈ T with K ∩K ′ 6= ∅. Then

M−1hK ≤ hK′ ≤ MhK . (1.1.5)

If (1.1.5) holds, we also say that K and K ′ are comparable in size. The last definitions we
need to make in this section are about reference patches.

Definition 1.1.4 (Reference patches of the first type). Let γ > 0 and let M = M(γ) > 0
be the constant from Lemma 1.1.3. For every j ∈ {3, . . . ,M} we consider a fixed closed regular
polygon ω̂j ⊆ R

2 with j sides, center 0 ∈ R
2 and such that the farthest distance from a point in

ω̂j to its center is one. By defining interior edges on ω̂j as the lines connecting 0 with a corner of
ω̂j, we then obtain a triangulation Tj of ω̂j in a natural way. The elements in this triangulation

are denoted by {K̂j
1 , . . . , K̂

j
j }. The finite set B̂(γ) of reference patches is given as the set of all

patches (in the sense of (1.1.1)) ω̂ belonging to one of the polygons ω̂j with the triangulation Tj,
j ∈ {3, . . . ,M}.

With the above notation let now V ∈ N (T ). Additional to element maps we also consider
patch maps FV : R2 → R

2 such that FV (ω̂V ) = ωV for a suitable ω̂V ∈ B̂(γ). They are defined to
be the continuous piecewise affine extension of a fixed Lipschitz continuous piecewise affine (with
regards to the triangulations T |ωV and Tj , where ω̂V = ω̂j) homeomorphism between ω̊V and ˚̂ωV .

1.1.3 Geometric Meshes

For σ ∈ (0, 1) and L ∈ N we construct meshes T̂ (σ, L) on the reference element K̂ as follows:
T̂ (σ, 0) is a fixed admissible triangulation such that the only vertices on the boundary are (0, 0),
(σ, 0), (0, σ), (1, 0), (0, 1), and the only element abutting at the origin is determined by the three
vertices (0, 0), (σ, 0) and (0, σ). Starting with T̂ (σ, L), the triangulation T̂ (σ, L+1) is obtained by
additionally furnishing the single element of T̂ (σ, L) that abuts at the vertex 0 with a scaled version
of the triangulation T̂ (σ, 1), such that this is still an admissible triangulation (i.e. the scaling maps
0 to 0).
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Definition 1.1.5. Let Ω ⊆ R
2 be a polygon with J ∈ N corners A1, . . . , AJ , which we call its

apices. Let h > 0, L ∈ N, σ ∈ (0, 1), and let T be a γ-shape regular admissible triangulation of
Ω. Then we call T a geometric mesh with grading factor σ and L layers provided that the
following is satisfied: Assume that no element of T touches more than one apex. Then, starting
from a quasi-uniform triangulation T̂ on Ω with mesh size h, that means for each K ∈ T̂ we have

c−1
2 hK ≤ h ≤ c2hK ,

for some fixed c2 > 0, T is obtained by furnishing elements abutting at an apex with a scaled version
of the triangulation T̂ (σ, L), such that the resulting mesh is regular and refined towards the apices
(i.e. the scaling maps 0 to the apex). The triangulation restricted to the uniform part of the mesh
is denoted by Tunif , and the rest of the triangulation is denoted by Tgeo. In this case we also write
T = T (h, σ, L), respectively Tunif (h, σ, L) and Tgeo(h, σ, L) for the uniform and the geometric part
of the triangulation.

We mention that this definition implies that elements touching the apex are of size O(hσL).
Moreover, there exists a constant cgeo > 0 such that for every element K ∈ Tgeo with Aj /∈ K for
every j ∈ {1, . . . , J} and dist(K,Aj) ≤ c1h we have

c−1
geohK ≤ dist(K,Aj) ≤ cgeohK . (1.1.6)

1.2 Spaces

1.2.1 Finite Element Space

Let T be an admissible γ-shape regular triangulation of Ω. In our setting we work with polynomials
of degree pK on each element K. The polynomial degrees are collected in the vector p := (pK)K∈T ,
which is called a polynomial degree distribution. For d, p ∈ N we define the following spaces
of polynomials

Pp(R
d) := span

{

xj11 . . . xjdd : j1, . . . , jd ∈ N0 ∧
d∑

j=1

jd ≤ p

}

,

Qp(R
d) :=

d⊗

j=1

Pp(R),

and further for every e ∈ E(T ) and K ∈ T

Pp(e) :=
{
q ◦ F−1

e |e : q ∈ Pp(R)
}
,

Pp(K) :=
{
r ◦ F−1

K |K : r ∈ Pp(R
2)
}
.

The space in which we approximate our solution is

Sp(T ) :=
{
v ∈ L2(Ω) : v|K ∈ PpK (K) ∀K ∈ T

}
.
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If pK = p for all K ∈ T , we also write Sp(T ) := Sp(T ). Similar to (1.1.5) we want to bound the
change of polynomial degree for neighbouring elements. To ensure this, it will generally be assumed
that if K ′ ⊆ ωK , then

γ−1pK ≤ pK′ ≤ γpK , (1.2.1)

where γ > 0 is a constant. For simplicity of notation we use the same letter as for γ-shape regularity,
and consider γ to be a constant associated with the finite element space Sp(T ). Furthermore we
employ the notation

pe := min
K∈ωe

pK , pV := min
K∈ωV

pK ,

to get local polynomial degrees, and

pT := min
K∈T

pK , (1.2.2)

to get the lowest polynomial degree of p.

1.2.2 Broken Sobolev Spaces

The usual notation Hs(ω) and W s,p(ω) is used to denote Sobolev spaces for s > 0, p ∈ [1,∞], and
some open nonempty set ω ⊆ R

2 (see [2, Paragraphs 3.2 and 7.57]). The norms on these spaces
are ‖ · ‖Hs(ω), ‖ · ‖W s,p(ω), and | · |Hs(ω), with the last one being the standard seminorm on Hs(ω)
(defined via Fourier transformation). On the domain Ω with the triangulation T we define the
broken Sobolev space Hs

T (Ω) for s > 0 as

Hs
T (Ω) :=

∏

K∈T

Hs(K). (1.2.3)

For convenience, functions in this product space are identified with functions defined on Ω, and
by the notation v|K ∈ Hs(K) we mean the component of v ∈ Hs

T (Ω) that belongs to K. If
v|K ∈ C0(K), we define for x ∈ K

v|K(x) := lim
y→x

y∈K

v(y).

On the spaces Hs
T (Ω) we introduce the piecewise gradient ∇T : H1

T (Ω) → L2(Ω)3 and the piecewise
Laplace operator ∆T : H2

T (Ω) → L2(Ω). They are simply the elementwise application of ∇ and ∆,
and are therefore well-defined on the broken Sobolev spaces.

For s > 1/2 and v|K ∈ Hs(K) there exists a trace (v|K)|∂K ∈ Hs−1/2(∂K) [2, Chapter 7].
Hence the trace of v ∈ Hs

T (Ω) belongs to

∏

K∈T

Hs−1/2(∂K).
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In this case we write e.g., (v|K) |e for some e ∈ E(K) to denote the restriction of the boundary trace
of v|K ∈ Hs(K) to the edge e ⊆ ∂K. Moreover we will need jumps and mean values on interior
edges. Let e ∈ EI be shared by K,K ′ ∈ T . Then

JvKN |e := (v|K)|e · nK + (v|K′)|e · nK′ ,

{v}|e :=
1

2

(

(v|K)|e + (v|K′)|e
)

,

where nK ,nK′ are the respective outer normal vectors on the boundary of K and K ′ and v can
also be vector valued. Additionally, we define the jump

JvK|e := (v|K)|e − (v|K′)|e,

where the sign of this term is arbitrary, unless explicitly stated otherwise. Finally, we write ∂nu :=
∇u · n for the normal derivative on the boundary.

1.2.3 Weighted Sobolev Spaces

We introduce a set of weighted Sobolev spaces. Let µ ∈ [0, 1), k > 0, and n ∈ N0, then we define

Φn,µ,k+1(x) := min






1,

|x|
min

{

1, n+1
k+1

}







n+µ

. (1.2.4)

For a polygonal domain Ω with apices A1, . . . , AJ and some µ ∈ [0, 1)J we further set

Φn,µ,k+1(x) :=
J∏

j=1

Φn,µj ,k+1(x−Aj). (1.2.5)

Moreover, if n ∈ N0 then

|∇nu(x)|2 :=
∑

{α∈N2
0:|α|=n}

n!

α!
|Dαu(x)|2.

Definition 1.2.1. Let Cu, k, ν > 0 and µ ∈ [0, 1)J . The space Bµ,k(Cu, ν) is given by

Bµ,k(Cu, ν) :=
{

u ∈ H1(Ω) :k‖u‖L2(K) + |u|H1(Ω) ≤ Cuk ∧

‖Φn,µ,k+1∇n+2u‖L2(Ω) ≤ Cu(νmax{n, k})n+2 ∀n ∈ N0

}

, (1.2.6)

where Φn,µ,k+1 is as in (1.2.5).





Chapter 2

Discontinuous Galerkin (DG)
Formulation and Splitting of the
Solution

The purpose of this chapter is to introduce a DG method for the Helmholtz equation and gather a
few important results on stability and existence of a solution of this formulation. In [26] a splitting
of the solution of the Helmholtz equation was derived for the special case where the domain is
a ball centered at zero, and it was shown that this allows a pollution free discretization of the
Helmholtz equation. In [27] the theory was extended to domains with analytic boundary and to
convex polygonal domains, and in [25] a DG method based on this splitting was analysed again on
domains with analytic boundary. Here, we consider this method on convex polygonal domains and
give a k-explicit convergence result in Section 2.4. Moreover, in Section 2.2 we shortly touch on
the subject of pollution, which explains the reasoning behind the whole theory, and subsequently
recall the decomposition of the solution.

2.1 Model Problem

Let Ω ⊆ R
2 be a convex polygonal domain satisfying (1.0.1). Let f ∈ L2(Ω) and let g ∈ H1/2(∂Ω).

Then we consider the Helmholtz equation on Ω with Robin boundary condition

−∆u− k2u = f in Ω, (2.1.1a)

∇u · n+ iku = g on ∂Ω, (2.1.1b)

where n is the outer normal vector and k > 0 is a constant. The variational formulation of this
problem is: Find u ∈ H1(Ω) such that

a(u, v) = F (v) ∀v ∈ H1(Ω), (2.1.2)

with the sesquilinear form

a(u, v) :=

∫

Ω
∇u∇v − k2uv dx+ ik

∫

∂Ω
uv dS,

11
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and the linear functional

F (v) :=

∫

Ω
fv dx+

∫

∂Ω
gv dS.

This problem has a unique solution that depends continuously on the data [22, Proposition 8.1.3]:

Theorem 2.1.1. Let Ω be a bounded Lipschitz domain. Then there exists a constant C(Ω, k) > 0
such that for every f ∈ H−1(Ω) and g ∈ H−1/2(∂Ω), there exists a unique solution u ∈ H1(Ω) of
(2.1.2). Moreover,

k‖u‖L2(Ω) + |u|H1(Ω) ≤ C(Ω, k)
(

‖f‖H−1(Ω) + ‖g‖H−1/2(∂Ω)

)

.

On convex domains the constant can be chosen independent of k [22, Proposition 8.1.4]:

Theorem 2.1.2. Let Ω ⊆ R
2 be a bounded convex domain, and let f ∈ L2(Ω) and g ∈ H1/2(∂Ω).

Then there exists a constant C(Ω) > 0 independent of k such that the solution u of (2.1.2) satisfies

k‖u‖L2(Ω) + |u|H1(Ω) ≤ C(Ω)
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
,

|u|H2(Ω) ≤ C(Ω)
(

(1 + k)
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
+ ‖g‖H1/2(Ω)

)

.

2.2 Splitting of the Solution

2.2.1 Pollution

Before we discuss the splitting of the solution, we shortly explain why, when applying h-FEM to
the Helmholtz equation, one needs to choose the meshwidth h in dependence of the wavenumber
k. We further describe the problem of pollution, which is intended to motivate our preceedings
henceforth. In order to do so, let us take a look at two examples given in [7, Section 2.2] and [21,
Section 4.5.3]:

Consider the problem

−u′′ − k2u = f in (0, 1), (2.2.1a)

u(0) = 1, (2.2.1b)

u′(1)− iku(1) = 0, (2.2.1c)

for some k > 0 and f ∈ L2(0, 1). A variational formulation for this problem is: Find u ∈ V such
that

b(u, v) = (f, v)L2(0,1) ∀v ∈ V, (2.2.2)
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where

V :=
{
v ∈ H1(0, 1) : v(0) = 0

}
,

b(u, v) :=

∫

(0,1)
u′v′ dx− k2

∫

(0,1)
uv dx− iku(1)v(1).

A mesh on the domain (0, 1) is obtained by dividing it into uniform intervalls of the size h > 0.
We then denote the space of piecewise linear functions vh satisfying vh(0) = 0 on this mesh by Vh.
Furthermore, we write uh for the associated FEM solution in Vh, and uI for the linear interpolant
of u in the nodes of our mesh. As it is mentioned in [21, Section 4.5.3], uI is the best approximation
of u in Vh w.r.t. to | · |H1(0,1). Also, it is well-known [21, (4.4.2)] that in this situation |u− uI |H1 ≤
Ch|u|H2 , where C > 0 does not depend on either k or h. Now let f ≡ 0. Then the exact solution
is given by u(x) = exp(ikx), and it fulfills k‖u‖L2 = |u|H1(0,1). Hence we have for the relative error
of the best approximation in the H1-seminorm

|u− uI |H1

|u|H1

≤ C
h|u|H2

|u|H1

≤ Chk.

As a first observation, it is therefore sensible to impose hk ≤ 1 as a minimal condition on the
meshwidth h. Otherwise one cannot expect the FEM solution uh to be a proper approximation of
u, which is also intuitively clear, since u(x) = exp(ikx) oscillates with frequency k. If h ≫ 1/k this
oscillation cannot be reproduced by uh.

Now let us return to the general situation where f in (2.2.1) is not necessarily zero. By sub-
tracting b(u− uh, vh) from the left-hand side, integrating by parts, and using that uI interpolates
u (which e.g. gives uI(1) = u(1)), it can be checked that

b(uh − uI , vh) = k2(u− uI , vh) ∀vh ∈ Vh. (2.2.3)

Moreover, if kh ≤ 1, then according to [21, Lemma 4.12] we have for the finite element solution uh
of (2.2.2) (with Vh instead of V ) that |uh|H1 ≤ C‖f‖L2(0,1), where C > 0 does not depend on h
and k. Thus with (2.2.3)

|uh − uI |H1 ≤ Ck2‖u− uI‖L2(0,1)

and further with ‖u− uI‖L2 ≤ Ch|u− uI |H1 [21, (4.4.2)]

|u− uh|H1 ≤ |u− uI |H1 + |uI − uh|H1 . |u− uI |H1 + k2‖u− uI‖L2

. (1 + k2h)|u− uI |H1 ∼ (1 + k2h) inf
vh∈Vh

|u− v|H1 .

This estimate is not too pesimistic and the factor 1 + k2h can indeed be seen in numerical experi-
ments (cf. Figure 5.1).

Let us sum up these deliberations. Whereas kh ≤ 1 seems to be a necessary resolution condition
to approximate the function u in the space Vh, the FEM additionally requires k2h ≤ 1, in order
for uh to be close to the best approximation of u in Vh. This is because even though the FEM is
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quasi optimal, the constant indicating the difference between the FEM solution uh and the best
approximation uI depends on the wavenumber k. In dimension d ∈ N the condition k2h ≤ 1 entails
that we need at least O(k2d) degrees of freedom. Therefore, large values of k can make the FEM
impractical. This strong dependence of the quasi optimality constant on the wavenumber is known
as pollution. A precise definition can be found in [7, Def. 2.1] or [21, Section 4.6.1].

2.2.2 Decomposition Theorem

The solution u of (2.1.2) allows the following splitting [27, Theorem 4.9]:

Theorem 2.2.1 (Decomposition). Let Ω ⊆ R
2 be a convex polygonal domain. Assume that the

solution u of (2.1.2) satisfies an a priori estimate of the type

k‖u‖L2(Ω) + |u|H1(Ω) . kϑ
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
,

for some ϑ ≥ 0. Then there exist constants C, ν, and µ ∈ [0, 1)J independent of k such that for
every f ∈ L2(Ω) and g ∈ H1/2(∂Ω), the solution u of (2.1.2) can be written as u = uA + uH2,
where for all n ∈ N0 there holds

k‖uA‖L2(Ω) + |uA|H1(Ω) ≤ Ckϑ
(

‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)

, (2.2.4a)

‖Φn,µ,k+1∇n+2uA‖L2(Ω) ≤ Cνnkϑ−1max(n, k)n+2
(

‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)

, (2.2.4b)

k2‖uH2‖L2(Ω) + k|u|H1(Ω) + |u|H2(Ω) ≤ C
(

‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)

. (2.2.4c)

Remark 2.2.2. Recall that if Ω is a convex polygon, then, according to Theorem 2.1.2, the
constant ϑ can be chosen as 0. Moreover, as it is mentioned in [27, Remark 4.10], in this case any
(small) value µ ∈ (0, 1) is permitted for the entries of µ.

Let us roughly describe the idea of the proof of Theorem 2.2.1. At first the data f, g is decom-
posed by Fourier transformation into a low frequency part containing frequencies up to O(k) and
a high frequency part containing the remaining frequencies. Then the linearity of the equation is
exploited, and one obtains a smooth but oscillating function uA, belonging to the low frequency
part, and the function uH2 , which belongs to the high frequence part and is less smooth, but whose
H2-norm can be controlled independent of k. For the details, see [27].

With this splitting at hand, the strategy is as follows: The function uH2 is approximated with
a Clément type interpolant, and the constant stemming from this approximation is independent of
k since ‖uH2‖H2(Ω) ∼ ‖f‖L2(Ω) + ‖g‖H1/2(∂Ω) independent of k. The smooth part uA on the other
hand, can be approximated with an exponential convergence rate in the polynomial degree p. The
choice p ∼ log(k) will then absorb unfavorable polynomial k dependencies in this case. All in all,
we can thus approximate u optimally such that the approximation constants do not depend on
k, and the minimal number of degrees of freedom is O(kd). We will demonstrate this in detail in
Section 2.4.



CHAPTER 2. DGFEM 15

2.3 DG Method

We recall the DG method described in [25].

2.3.1 DG Formulation

The following formulation was originally proposed in [16] (cf. Remark 2.3.2). A DG formulation
for (2.1.1) is: For a test space S ⊆ H2

T (Ω) and real valued weight functions α, β, δ ∈ L∞(E), find
uT ∈ S such that

aT (uT , v) = FT (v) ∀v ∈ S, (2.3.1)

with the sesquilinear form aT : H
3/2
T (Ω)×H

3/2
T (Ω) → C

aT (u, v) :=(∇T u,∇T v)L2(Ω) −
∫

EI

JuKN · {∇T v} dS −
∫

EI

{∇T u} · JvKN dS

−
∫

EB

δu∇T v · n dS −
∫

EB

δ∇T u · nv dS

− 1

ik

∫

EI

βJ∇T uKN J∇T vKN dS − 1

ik

∫

EB

δ∇T u · n∇T v · n dS

+ ik

∫

EI

αJuKN JvKN dS + ik

∫

EB

(1− δ)uv dS − k2(u, v)L2(Ω) (2.3.2)

and the linear functional FT : H
3/2
T (Ω) → C

FT (v) := (f, v)L2(Ω) −
∫

EB

δ
1

ik
g∇T v · n dS +

∫

EB

(1− δ)gv dS.

Moreover, we introduce the mesh-dependent norms

‖v‖2DG := ‖∇T v‖2L2(Ω) + k−1‖β1/2J∇T vKN‖2L2(EI) + k‖α1/2JvKN‖2L2(EI)

+ k−1‖δ1/2∇T v · n‖2L2(EB) + k‖(1− δ)1/2v‖2L2(EB) + k2‖v‖2L2(Ω), (2.3.3)

‖v‖2DG+ := ‖v‖2DG + k−1‖α−1/2{∇T v}‖2L2(EI). (2.3.4)

The mesh-dependent weights α, β and δ have to be chosen in consideration of a) balancing the
different error terms of the DG-norm in a priori error estimates b) ensuring that there exists a
unique solution of (2.3.1) c) ensuring favorable stability properties of the formulation. Here we
consider hp-finite elements (i.e. S = Sp(T )). Then these weights are defined on each edge e of the
skeleton as

α(x) := a
p2e
khe

, β(x) := b
khe
pe

, δ(x) := d
khe
pe

∀x ∈ e, (2.3.5)

where a > 0, b ≥ 0, and d > 0 are at our disposal and do not depend on he, pe or k. The parameter
a still needs be chosen with care, in particular it has to be sufficiently large (see [25, Remark 2.2]).
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From now on we will assume that this is the case. The choice of b and d is less critical, and we
consider them to be of size O(1) (cf. Theorem 2.3.5).

Remark 2.3.1. In [25, (2.8)] β and δ are defined to be constant on the whole skeleton:

β = b
khT
pT

, δ = d
khT
pT

. (2.3.6)

In (2.3.5) we defined them to depend on the local meshwidth and local polynomial degree. Therefore
they are smaller, which in turn weakens the DG-norm, but it has no affect on the analysis or proofs
given in [25]. That is to say, all statements of [25] remain to be true with the use of β, δ from
(2.3.5) instead of (2.3.6), but the DG-norm and consequently the convergence results are weaker
in this case.

Remark 2.3.2. A derivation of the formulation in the case of local plane waves instead of poly-
nomials can be found in [16, 17]. It is related to the so called ultra weak formulation. The idea
is to use integration by parts and replace derivatives on the boundary with appropriate numerical
fluxes. In [25] the method was adapted for hp-finite elements. For a general discussion on such DG
methods see [4, 11].

2.3.2 Adjoint Helmholtz Problem

The adjoint Helmholtz problem and its approximabilty play a major in the analysis.

Definition 2.3.3. Let w ∈ L2(Ω). The adjoint Helmholtz problem is given by: Find z ∈
H1(Ω) such that

a(v, z) = (v, w)L2(Ω) ∀v ∈ H1(Ω). (2.3.7)

With this notation we introduce the adjoint solution operator N∗
k , which maps the right-hand side

w ∈ L2(Ω) to its solution z:

N∗
k (w) := z.

Moreover, we call

σ∗
k(S) := sup

w∈L2(Ω)

inf
ΨS∈S

k‖N∗
k (w)−ΨS‖DG+

‖w‖L2(Ω)
(2.3.8)

the adjoint approximation property.

We will need that the discrete adjoint formulation is consistent:

Lemma 2.3.4 (Adjoint consistency). Let Ω ⊆ R
2 be a polygonal domain and let w ∈ L2(Ω).

Then (2.3.7) is a well-posed problem. Denote its solution by z. Then z satisfies

aT (v, z) = (v, w)L2(Ω) ∀v ∈ H
3/2+ε
T (Ω).
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Proof. This follows from Remark 2.6 and Lemma 2.7 in [25]. �

With Remark 2.3.1 in mind, let us now quote the following result of the a priori analysis
conducted in [25, Section 3]. The theorem states that a solution to the discrete problem exists, and
that the method is in some sense quasi-optimal [25, Theorem 3.8]:

Theorem 2.3.5. Let Ω ⊆ R
2 be a polygonal Lipschitz domain, and let S = Sp(T ). Let the

assumptions on α, β, and δ from Section 2.3.1 be satisfied, and assume moreover that ‖δ‖L∞(Ω) <
1/3. Then (2.3.1) has a unique solution uT ∈ Sp(T ). Additionally, there exist constants C,C∗ > 0
independent of hT , pT , and k such that if σ∗

k(S
p(T )) < C∗ then

‖u− uT ‖DG ≤ C inf
v∈Sp(T )

‖u− v‖DG+ .

2.4 Stability and Convergence

In [25] it was announced without proofs that their a priori analyis, performed for smooth domains,
can be extended to the case of convex polygons by means of the techniques proposed in [27], where
convex polygons were considered in a conforming FEM setting. It is the purpose of this section to
carry this out in detail. In order to do so we will adapt proofs from [27] and [23, Chapter 3] to fit
our situation. The assumption that the domain has smooth boundary, has the advantage that the
solution is smooth enough such that it can be approximated well on uniform meshes. In the case
of polygonal domains on the other hand, one observes singularities at the apices, which is why we
need to work with the geometric meshes defined in Section 1.1.3, and the weighted Sobolev spaces
introduced in Section 1.2.3. Our goal is to prove the following theorem:

Theorem 2.4.1. Let Ω ⊆ R
2 be a convex polygonal domain. Let T (h, σ, L) be an admissible

γ-shape regular geometric triangulation of Ω as in Definition 1.1.5. Let k ≥ k0 > 1, p ∈ N, p ≥ 3,
and assume that there exist constants C1, C2 > 0 such that

kh

p
≤ C1 (2.4.1a)

p ≤ C2L. (2.4.1b)

Further assume that δ in (2.3.5) satisfies ‖δ‖L∞(Ω) < 1/3. Then, for every µ ∈ (0, 1) there exist
constants b, c, C, λ > 0, independent of k, h, L, and p such that for every f ∈ L2(Ω) and g ∈
H1/2(∂Ω) it holds for the solution u of (2.1.1) that

inf
v∈Sp(T )

‖u− v‖DG+ ≤ C
(

‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)

×
(

kh

p
+ (h1−µ + h2)

(

hµpkσL
(

1 +
√
kσLh+ kσLh

)

+ pkechk−bp +
khµ

λp

(
kh

λp

)p−1
))

. (2.4.2)
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Before we prove this theorem, let us discuss its implications.

Theorem 2.4.2. Let the assumptions of the previous theorem be satisfied. Let the grading factor
σ ∈ (0, 1), let µ ∈ (0, 1), and let C3 > 0. Then there exist constants C4, C5, C6 > 0 independent of
k, h, L, and p such that if

kh

p
≤ C4, log(k) + 1 ≤ C5p ≤ C6L, (2.4.3)

then (see (2.3.8))

σ∗
k (S

p(T (h, σ, L))) ≤ C3. (2.4.4)

Denote the unique solution of (2.3.1) by uT . If additionally C3 ≤ C∗, where C∗ is the constant
from Theorem 2.3.5, then there exists C > 0 independent of k, h, and p such that

‖u− uT ‖DG ≤ C
h1−µ + h

p

(

‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)

. (2.4.5)

Proof. According to the proof of [25, Corollary 4.9], Theorem 2.2.1 is applicable to the solution
of the adjoint problem as well (with g ≡ 0 in this case). Hence Theorem 2.4.1 gives the existence of
the constants C4, C5, C6: First we assume h < 1 and consider k times the right-hand side of (2.4.2)
without the term ‖f‖L2(Ω) + ‖g‖H1/2(∂Ω), as g ≡ 0 and ‖f‖L2(Ω) cancels (cf. (2.3.8)). Polynomial

growth in k can then be absorbed by the exponential terms exp(chk − bp) and (kh/(λp))p−1 upon
adjusting C4, C5 in (2.4.3) (also use kh ≤ C4p). Moreover, polynomial growth in p and k is absorbed
by the factor σL if C6 is small enough. We are then left with an estimate of the type

σ∗
k(S

p(T (h, σ, L))) ≤ C(k−n
0 + C4),

where n depends on C4, C5, C6 and can be chosen arbitrarily large by decreasing those constants.
This gives (2.4.4) if h < 1. We turn to the case h ≥ 1. According to (2.4.3) we have h ≤ C4p/k0.
Thus, polynomial terms in h amount to polynomial growth in p, and can again be absorbed as in
the first case. The second part of the statement is then an immediate consequence of Theorem
2.3.5 and Theorem 2.4.1, as we may assume

(h1−µ + h2)

(

hµpkσL
(

1 +
√
kσLh+ kσLh

)

+ pkechk−bp +
khµ

λp

(
kh

λp

)p−1
)

.
h1−µ

p
.

This is shown as above and by adjusting constants once more. �

Remark 2.4.3. For a fixed number J ∈ N of apices, the resolution condition in Theorem 2.4.2
implies a minimum of

O(k2) +O(J log(k)3) for k → ∞
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degrees of freedom: From the condition kh/p ≤ C4 we obtain in two dimensions O(k2) degrees of
freedom belonging to the uniform mesh, viz (p+2)(p+1)/2 per element of which there are in Tunif
at least O(h−2) . O(k2/p2) (if we choose h as large as possible). The number of elements in Tgeo
is bounded by O(JL) ∼ O(J log(k)), and with the polynomial degree p ∼ log(k) we therefore get
at most O(J log(k)3) degrees of freedom in this case. This is a significant improvement over the
O(k4) degrees of freedom one needs in the case of h refinement, as we heuristically illustrated in
Section 2.2.1. In terms of DOF vs. error, the pollution effect is thus avoided with this choice of
finite element space, at least up to the factor µ > 0 which can be chosen arbitrarily small.

Remark 2.4.4. Theorem 2.4.2 was stated with the assumptions that Ω is convex, f ∈ L2(Ω), and
g ∈ H1/2(∂Ω). This implies u ∈ H2(Ω). With stronger requirements, respectively for smoother
solutions, one probably obtains better approximation rates. However, this does not follow directly
from the present analysis.

Let us come to the proof of Theorem 2.4.1. We distinguish between the approximation on
Tunif (h, σ, L), the approximation on elements abutting at apices, and the approximation on Tgeo(h, σ, L)
without those elements. The next lemma treats the latter.

Lemma 2.4.5. Let u ∈ Bµ,k(Cu, ν), where this space is as in Definition 1.2.1. Let A = Aj be
an apex of Ω and set µ := µj. Let T = T (h, σ, L) be a geometric γ-shape regular triangulation of
Ω and denote by S the elements K ∈ T such that dist(A,K) ≤ h and A /∈ K. Then there exist
constants b, c, C > 0, depending on µ, ν, γ, and cgeo (cf. (1.1.6)) but independent of k, h, and p,
such that there exists a function v ∈ Sp(S) with

(
∑

K∈S

k2‖u− v‖2L2(K) + |u− v|2H1(K) + (k + h−1
K )‖u− v‖2L2(∂K) + hK‖∇((u− v)|K)‖2L2(∂K)

)1/2

≤ CCu

(

(k + 1)
(
h+ h1−µ

)
+ (k + 1)2

(
h2 + h2−µ

) )

e−bpech(k+1).

Proof. Let K ∈ S. Let Π∞
p,T : H1(Ω) → Sp(T ) be the operator defined in [23, (3.3.3)]. By

choosing ‘ε’ = 1/(k + 1) in [23, Lemma 3.4.7], we get as in the proof of [23, Lemma 3.4.7] that for
some constants b, c > 0 there holds

‖u|K −Π∞
p,T u|K‖L∞(K) + hK‖∇(u|K −Π∞

p,T u|K)‖L∞(K)

≤ CCu(k + 1)
(

hK(k + 1) + (hK(k + 1))1−µ
)

e−bpechK(k+1).
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Let eK := u|K −Π∞
p,T u|K . Then, with [23, Lemma 3.4.6] we get

∑

{K∈T :A/∈K}
hK‖∇(eK)‖2L2(∂K) .

∑

{K∈T :A/∈K}
h2K‖∇(eK)‖2L∞(K)

.
∑

{K∈T :A/∈K}
C2C2

u(k + 1)4
(

h2K + h2−2µ
K

)

e−2bpe2chK(k+1)

. C2
u(k + 1)4

(
h2 + h2−2µ

)
e−2bpe2ch(k+1).

Similar computations lead to the estimates

∑

{K∈T :A/∈K}
k2‖eK‖2L2(K) ≤ CC2

u(k + 1)4
(
h4 + h4−2µ

)
e−2bpe2ch(k+1),

∑

{K∈T :A/∈K}
|eK |2H1(K) ≤ CC2

u(k + 1)2
(
h2 + h2−2µ

)
e−2bpe2ch(k+1),

∑

{K∈T :A/∈K}
k‖eK‖2L2(∂K) ≤ CC2

u(k + 1)3
(
h3 + h3−2µ

)
e−2bpe2ch(k+1),

∑

{K∈T :A/∈K}
h−1
K ‖eK‖2L2(∂K) ≤ CC2

u(k + 1)2(h2 + h2−2µ)e−2bpe2ch(k+1).

Summing over all elements concludes the proof. �

Next, we approximate the function on elements in the uniform part of the mesh.

Lemma 2.4.6. Let T = T (h, σ, L) be a geometric γ-shape regular triangulation of Ω, let p ∈ N,
and assume that (2.4.1) is satisfied. Let u ∈ Bµ,k(Cu, ν) and set µ := minj µj. Then there exist
constants c, C, b, λ > 0 independent of k, h and p, but depending on µ, γ, ν, and Ω, and a function
v ∈ Sp(Tunif ) such that

(
∑

K∈Tunif

k2‖u− v‖2L2(K) + |u− v|2H1(K) + (k + h−1
K )‖u− v‖2L2(∂K) + hK‖∇(u− v)‖2L2(∂K)

)1/2

≤ CCuk

(

(hk)1−µe−bp +

(
kh

λp

)p)

Proof. We proceed along the lines of the proof of [27, Proposition 5.6]. Fix K ∈ Tunif . Then
d := dist(K,Aj) ≥ ch for all vertices Aj , and some fixed c > 0. We define

C2
K :=

∑

n≥0

(
1

2νmax{k, n}

)2(n+2)

‖Φn,µ,k+1∇n+2u‖2L2(K),
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and observe that due to (1.2.6)
∑

K∈T

C2
K ≤ 2C2

u. (2.4.6)

Similar as in the proof of [27, Proposition 5.6], by distinguishing several cases for the values of n
and k, and by using the Definition of Φn,µ,k+1, it can be shown that there exists C1(Ω) > 0 such
that for all n ∈ N0

‖∇n+2u‖L2(K) . CK min{1, kd}2−µ(C1(Ω)ν)
n+2max

{

k,
n

d

}n+2
,

and therefore

‖∇n+2(u ◦ FK)‖L2(K̂) .
CK

h
min{1, kd}2−µ(C1(Ω)νh)

n+2max
{

k,
n

d

}n+2
.

With this, Lemma C.2 in [26] gives a polynomial v ∈ Pp(K), and constants C, λ > 0, depending
on ν, such that for m ∈ {0, 1, 2}, due to ‖u− v‖Wm,2(K) ≤ Ch‖u− v‖Wm,∞(K), it holds that

hm|u− v|Hm(K) ≤ CCK min{1, kd}2−µ

((
h/d

λ+ h/d

)p+1

+

(
kh

λp

)p+1
)

. (2.4.7)

Distinguishing between the cases d ≥ 1/k and d < 1/k, one can check that

(k + h−1)min{1, kd}2−µ

(
h/d

λ+ h/d

)p+1

. kmin{1, kh}1−µ

(
1

cλ+ 1

)p

(for details see again the proof of [27, Proposition 5.6]). Hence we obtain with (2.4.7) and (2.4.1)

(k + h−1)‖u− v‖L2(K) + |u− v|H1(K) + h|u− v|H2(K)

. CKk

(

min{1, kh}1−µ

(
1

cλ+ 1

)p

+

(
kh

λp

)p)

. (2.4.8)

Together with the trace inequality

‖w‖2L2(∂K) ≤ C
(

‖w‖L2(K)|w|H1(K) + h−1
K ‖w‖2L2(K)

)

(2.4.9)

(see, e.g., Lemma 3.1.4), we get

√
h‖∇((u− v)|K)‖L2(∂K) ≤ CCKk

(

min{1, kh}1−µ

(
1

cλ+ 1

)p

+

(
kh

λp

)p)

,

and similary, using either the estimate for k‖u−v‖L2(K) or h
−1‖u−v‖L2(K) from (2.4.8), we obtain

√
k‖u− v‖L2(∂K) ≤ CCKk

(

min{1, kh}1−µ

(
1

cλ+ 1

)p

+

(
kh

λp

)p)

,

h−1/2‖u− v‖L2(∂K) ≤ CCKk

(

min{1, kh}1−µ

(
1

cλ+ 1

)p

+

(
kh

λp

)p)

.
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Summing over all elements and using (2.4.6) concludes the proof. �

We are now in a position to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. With Theorem 2.2.1 we decompose u = uA + uH2 and approximate
both parts separately.
1st Step: We start with the approximation of uH2 . A more general proof with the use of an element
by element construction can be found in [25, Theorem 4.11] (the assumption that Ω has analytic
boundary is not necessary for this part of the proof). However, since we construct another suitable
interpolation operator later on (with stricter assumptions on the domain than in [25]), we show the

estimate anyway. Theorem 3.1.10 gives an operator Ihp,02 : H2(Ω) → Sp(T ) ∩ C0(Ω) with

‖v − Ihp,02 v‖Hm(K) ≤ C

(
hK
pK

)2−m

|v|H2(ωK) ∀m ∈ {0, 1, 2},

‖v − Ihp,02 v‖L2(e) +
he
pe

‖∇((v − Ihp,02 v)|K)‖L2(e) ≤ C

(
he
pe

)3/2

|v|H2(ωe)

for every v ∈ H2(Ω), K ∈ T , and e ∈ E(K). With (kα)−1|e ∼ he/p
2, β/k|e ∼ he/p, δ/k|e ∼ he/p,

and he . h we get

‖∇(uH2 − Ihp,02 uH2)‖2L2(K) ≤ C
h2

p2
|uH2 |2H2(ωK),

k2‖uH2 − Ihp,02 uH2‖2L2(K) ≤ C
k2h2

p2
h2

p2
|uH2 |2H2(ωK),

‖(δ/k)1/2∂n(uH2 − Ihp,02 uH2)‖2L2(e) ≤ C
h2

p2
|u|2H2(ωe)

,

k‖uH2 − Ihp,02 uH2‖2L2(e) ≤ C
kh

p

h2

p2
|uH2 |2H2(ωe)

,

‖(β/k)1/2J∇T (uH2 − Ihp,02 uH2)KN‖L2(e) ≤ C
h2

p2
|uH2 |2H2(ωe)

,

‖(kα)−1/2{∇T (uH2 − Ihp,02 uH2)}‖2L2(e) ≤ C
h2

p3
|uH2 |2H2(ωe)

,

where, depending on the term, e is either an edge on the boundary or an interior edge. The error
of the jump of uH2 − Ihp,02 uH2 across an edge is zero because Ihp,02 uH2 ∈ C0(Ω). Hence all terms
in (2.3.4) are accounted for, and by summing over all elements and edges and with kh/p ≤ C1 and
(2.2.4c) we obtain

‖uH2 − Ihp,02 uH2‖DG+ ≤ C

(

h

p
+

(
h

p

)2
)
(

‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)

.

2nd Step: We approximate uA. First, let us introduce the following norm:

‖w‖2
D̃G(K)

:= k2‖w‖2L2(K) + |w|2H1(K) +

(
1

hK
+ k

)

‖w‖2L2(∂K) +
hK
p

‖∇w‖2L2(∂K).
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Then for v1, v2 ∈ Sp(T ) we have

‖v1 − v2‖2DG+ . p2
∑

K∈T

‖v1 − v2‖2D̃G(K)
,

where p2 comes from the weight α, and we generously multiply it with all terms. Let us start with
the elements touching an apex. With (2.2.4c) and (2.2.1a) we get

|uA|H2(Ω) = |u− uH2 |H2(Ω) ≤ |u|H2(Ω) + |uH2 |H2(Ω)

≤ C

(

(1 + k)
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
+ ‖g‖H1/2(∂Ω)

︸ ︷︷ ︸

=:Cf,g

)

.

Now let K ∈ T and Aj ∈ K. With Theorem 3.1.10 there exists a polynomial vK ∈ P3(K) such
that

‖uA − vK‖L2(K) . Cf,g(k + 1)h2K , |uA − vK |H1(K) . Cf,g(k + 1)hK ,

‖uA − vK‖L2(∂K) . Cf,g(k + 1)h
3/2
K , ‖∇(uA − vK)‖L2(∂K) ≤ Cf,g(k + 1)h

1/2
K ,

and thus with hK ∼ hσL in this case

‖uA − vK‖D̃G(K) ≤ Cpk
(

1 +
√
khσL + khσL

)

hσL
(

‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)

, (2.4.10)

where we have used k ∼ k + 1 because of k > 1.
Next, we consider approximation on Tgeo. According to Theorem 2.2.1 and Remark 2.2.2 we

have uA ∈ Bµ,ν(CuA , ν), where µj := µ for all j ∈ {1, . . . , J}, µ is arbitrary in (0, 1), and

CuA =

(

‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

k

)

.

Denote the set of elements touching an apex by TA. Then, with Lemma 2.4.5 we get a function
vgeo ∈ Sp(Tgeo\TA) such that

p




∑

K∈Tgeo\TA

‖uA − vgeo‖2D̃G(K)





1/2

≤ Cpk(h1−µ + h2)echk−bp
(

‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)

.

(2.4.11)

Finally, we consider approximation on Tunif . With Lemma 2.4.6 we obtain vunif ∈ Sp(Tunif )
such that

p




∑

K∈Tunif

‖uA − vunif‖2D̃G(K)





1/2

≤ Cp

(

(hk)1−µe−bp +

(
kh

λp

)p)(

‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)

.

(2.4.12)

Combining the estimates from Step 1 with (2.4.10), (2.4.11), and (2.4.12) concludes the proof. �





Chapter 3

Approximation Theorems

This chapter is devoted to two types of approximation results. The first type of approximation we
consider, is Clément type interpolation. That is, we approximate Sobolev functions inWn,q(Ω) with
piecewise polynomials. The approximant is constructed such that it simultaneously approximates
higher derivatives up to order n−1 and is H2-conforming. We have already used the first property
in the proof of Theorem 2.4.1. For the purposes of this thesis, the advantage of the second property
lies in the fact that the normal component of the gradient does not jump.

The second result is concerned with the approximation of discontinuous piecewise polynomials
by globally continuous piecewise polynomials. Typically in the a posteriori analysis of DG methods,
the error is estimated by inserting a continuous function and using the triangle inequality. Therefore
such a result needs to be established.

3.1 C1 Clément Type Interpolant

In order to obtain our interpolant, we will follow the proof for the hp-Clément interpolant of W 1,q

functions given in [24] and adapt it where necessary. To begin with, we introduce some notation
and construct element mappings as well as reference elements that we use in the following lemmata.
They differ from the usual setting, in that we will have a set of reference elements and an infinite set
of reference patches rather than a finite one. In this section we adhere to the convention 1/∞ := 0.
Moreover, in what follows, we shall assume that T is an admissible γ-shape regular triangulation
of Ω.

3.1.1 Notation

Let K ∈ T and e ∈ E(K). Then there exists a unique map F̃K,e : R2 → R
2 and a unique similar

triangle K̃ with the properties that K̃ ⊆
{
(x, y) ∈ R

2 : y ≥ 0
}
, F̃K,e is a composition of a dilation,

a rotation, and a translation such that F̃K,e([−1, 1]×0) = e and F̃K,e(K̃) = K. Clearly K̃ and F̃K,e

are then well-defined. In case e is not of interest to us, we pick an arbitrary but fixed e ∈ E(K)
and use the notation F̃K := F̃K,e. The triangle K̃ has the three vertices Ṽ1(K̃), Ṽ2 := (−1, 0)
and Ṽ3 := (1, 0). Since T is γ-shape regular, there is a lower bound for the interior angles of K̃.

25
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Therefore there exists R(γ) > 0 and 0 < Θ(γ) < π/2 such that V1 ∈ ã(γ) with

ã(γ) :=

{

r(sin(θ), cos(θ)) ∈ R
2 :

1

R(γ)
≤ r ≤ R(γ) and θ ∈

[π

2
−Θ(γ),

π

2
+ Θ(γ)

]}

.

Of course ã(γ) is a compact subset of
{
(x, y) ∈ R

2 : y > 0
}
. Now let ωV be the patch belonging to

V ∈ N (T ). Then we pick an edge e ∈ E(V ) and denote by F̃V : R2 → R
2 the unique function that is

a composition of a dilation, a rotation, and a translation such that F̃V (0) = V and F̃V ([0, 1]×{0}) =
e. The reference patch belonging to V is then defined as ω̃V := F̃−1

V (ωV ). The patch ω̃V naturally
inherits a triangulation Tω̃V from the triangulation T |ωV of ωV . The situation and the difference
between the two patch maps FV and F̃V are depicted in Figure 3.1.

Definition 3.1.1 (Reference patches of the second type). Let the set of reference tri-
angles, denoted by Ã(γ), be given as the set of triangles K̃ with the three vertices Ṽ2 = (−1, 0),
Ṽ3 = (1, 0), and Ṽ1 ∈ ã(γ) arbitrary. Moreover, we introduce the infinite set B̃(γ) of reference
patches of the second type: Let Υ be the set of tupels (Ω, T ), such that Ω ⊆ R

2 is a polygonal
domain with (1.0.1), and T is an admissible γ-shape regular triangulation of Ω. Then with the
above notation

B̃(γ) :=
⋃

(Ω,T )∈Υ

⋃

V ∈N (T )

{(ω̃V , Tω̃V )}.

If we do not care about the (not necessarily unique) triangulation of a patch we write ω̃ ∈ B̃(γ),
and mean that (ω̃, Tω̃) = (ω̃V , Tω̃V ) for some (ω̃V , Tω̃V ) ∈ B̃(γ).

Per definition, we have for every γ-shape regular mesh T , K ∈ T , and V ∈ N (T ), that K̃ ∈ Ã(γ)
and (ω̃V , Tω̃V ) ∈ B̃(γ). The next lemma gathers some elementary facts.

Lemma 3.1.2. We employ the above notation.

(i) There exists a reference square Ŝ(γ) ⊆ R
2 with center 0 ∈ R

2 such that ω̃ ∈ Ŝ(γ) for every
ω̃ ∈ B̃(γ).

(ii) The maps F̃V and F̃K,e are conformal, they are in C∞(R2) ∩ W 1,∞(R2), and they have the
properties

h−1
V ‖F̃ ′

V ‖L∞(R2) + hV ‖(F̃ ′
V )

−1‖L∞(R2) ∼ 1, (3.1.1)

h−2
V | det F̃ ′

V |+ h2V | det(F̃ ′
V )

−1| ∼ 1, (3.1.2)

where the constants hidden in the ∼-notation only depend on γ and q.

(iii) Let v ∈ Pp(R
2). Then v ◦ F̃V and v ◦ F̃−1

V are in Pp(R
2).

(iv) Let n ∈ N, q ∈ [1,∞] and v ∈ Wn,q(ωV ) for V ∈ N (T ). Then ṽ := v ◦ F̃V ∈ Wn,q(ω̃V ) and
for every m ∈ {0, . . . , n}

|ṽ|Wm,q(ω̃V ) ∼ h
m−2/q
V |v|Wm,q(ωV ), (3.1.3)

where the constant hidden in the ∼-notation only depends on n, γ, and q.
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F−1
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V

Figure 3.1: Behaviour of the two patch maps FV : ω̂V → ωV and F̃V : ω̃V → ωV .

Proof.

(i) The property of a triangulation T being γ-shape regular implies that the ratio of the diameter
of neighbouring elements is bounded from below and from above by constants depending on
γ only. Also, the lengths of different edges of the same triangle are comparable in size. The
patch ω̃ is a scaled version of some patch ωV with these properties, and thus they also hold
for ω̃. Since one (possibly interior) edge of the patch (ω̃, Tω̃) has length one, Ŝ(γ) exists.

(ii) Per definition the maps F̃V and F̃K,e consist of a dilation, a rotation, and a translation, such
that some edge e with length he is mapped to [0, 1]× {0}. Therefore the dilation must be of
size he ∼ hV , and (3.1.1) as well as (3.1.2) hold. It is also clear that these maps are conformal
(as a composition of conformal maps) and that they are in C∞(R2).

(iii) The composition of a dilation, a rotation, or a translation with a polynomial of degree p is a
polynomial of degree p.

(iv) For the last item let v ∈ Wn,q(ωV ). First assume that F̃V is the composition of a rotation
and a translation. Then for m ∈ {0, . . . , n} we obviously have

|ṽ|Wm,q(ω̃) = |v|Wm,q(ωV ).

Thus it is sufficient to consider F̃V (x) := hx with h ∼ hV . Let α ∈ N
2
0 be a multiindex with

|α| = m, and denote by Dαv the respective (weak) partial derivative of v. Then we get with
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Dαṽ = h|α|(Dαv) ◦ F̃V and for q < ∞
∫

ω̃V

(Dαṽ)q dx =

∫

ω̃V

((Dαv) ◦ F̃V )
qh|α|q dx

=

∫

ωV

(Dαv)qhmq| det(F̃−1
V )′| dx

=

∫

ωV

(Dαv)qhmq−2 dx.

This gives the assertion for q ∈ [1,∞). The case q = ∞ follows immediately from Dαṽ =
h|α|(Dαv) ◦ F̃V .

�

3.1.2 Estimates Independent of ω̃

For the proof of our C1 interpolant we have to apply standard extension and trace results as well
as the Deny-Lions Lemma on the reference patches ω̃ ∈ B̃(γ). The constants appearing in these
estimates should then be independent of these (infinitely many) patches. We now give proofs, that
constants depending solely on γ and the smallest outer angle of the domain can be chosen. Let us
motivate with an intuitive argument why this should work: The polygon ω̃ is determined by its
finitely many vertices. The set of possible vertices is compact in a suitable space. If the constants
now depend continuously on these vertices, the desired upper bounds must exist.

First, we introduce an extension operator for Sobolev spaces.

Lemma 3.1.3 (Extension). Let ω̃ ∈ B̃(γ) with θ > 0 being the smallest outer angle of this
polygon. Let v ∈ Wn,q(ω̃) for q ∈ [1,∞] and let n ∈ N. Then there exists an extension Ev ∈
Wn,q(R2) of v and a constant C > 0 depending only on n, q, γ, and θ such that

‖Ev‖Wn,q(R2) ≤ C‖v‖Wn,q(ω̃).

Moreover,

Eω̃ :=

{

Wn,q(ω̃) → Wn,q(R2)

v 7→ Ev

is a linear operator.

Proof. An inspection of the derivation of the extension operator in Section VI.3 in [31] shows
that this is true (we now switch to their notation): There it is proved, that for a bounded Lipschitz
domainD ⊆ R

n, n ≥ 2, there exists a bounded linear extension operator fromW k,p(D) toW k,p(Rn)
for 1 ≤ p ≤ ∞ and non-negative integral k . In a first step this is shown for so called special Lipschitz
domains D, which are of the type D =

{
(x, y) ∈ R

n+1 : y ≥ ϕ(x)
}
for some Lipschitz continuous

function ϕ (see Theorem 5’ on page 181 in [31]). It is also remarked that the region D enters the
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continuity constant only via its Lipschitz bound. In a second step a covering argument is used to
generalize this. With the same notation as in [31] let Ui, i ∈ N be such a covering of the boundary
of D. Assume further, that Di with Di ∩ Ui = D ∩ Ui are the associated local special Lipschitz
domains with Lipschitz bounds Mi for i ∈ N. The bounds appearing in this second part of the proof
then depend on the constants ε, N , and M , which fulfill the following properties: The constant
ε > 0 must be small enough such that B(x, ε) ⊆ Ui for some i ∈ N for every x ∈ ∂D. The integer
N ∈ N must be large enough such that no point of Rn lies in more than N members Ui of the
covering. Finally, M must be larger than any Mi. The assertion follows, if we prove that ε, N , and
M can be chosen, depending only on γ and θ such that these constants are relevant for all possible
domains ω̃. We observe that ω̃ has the following properties:
1. It is a polygon, where the number of outer edges is bounded by some C1(γ) < ∞.
2. The length of an edge is bounded from above by some constant C2(γ) > 0 and from below by
1/C2(γ).
3. The inner angles of ω̃ and the outer angles of ω̃ are bounded from below by some constant
C3(γ, θ) > 0.
4. The distance of two vertices Ṽ ′ 6= Ṽ ′′ of ω̃ is bounded from below by a constant C4(γ, θ) > 0.
5. The distance of a vertex Ṽ ′ 6= 0 and an outer edge e of ω̃ not sharing the vertex Ṽ ′, is bounded
from below by a constant C5(γ, θ) > 0.
The first two points follow from the γ-shape regularity of T . For the third point we remark
that interior angles of elements of shape regular triangulations are bounded from both directions
according to Lemma 1.1.3, which entails the same for ω̃. The fourth point is a consequence of
the second and the third point: Suppose this is not true. It holds that Ṽ ′ and Ṽ ′′ are either
connected via an edge e or they are not, in which case 0, Ṽ ′, and Ṽ ′′ form a triangle (note that
the vertex 0 is connected with all others by an edge). Since the length of the edges connecting 0
and Ṽ ′ respectively 0 and Ṽ ′′ are bounded from below, the angle ∢Ṽ ′0Ṽ ′′, and thus some inner
or outer angle (if it already is the outer angle), would have to become arbitrarily small, which
contradicts point three. Now let δ1 := C5/3, and for every vertex on the boundary we choose a
ball of radius δ1, with center the respective vertex. It is easy to see that there exists a constant
0 < δ2 < δ1/2, 1/(2C2) depending on C1 and δ1 such that a ball of radius δ2 with a center that lies
on an edge e ⊆ ∂ω̃ and is more than δ1/2 from each vertex away, does not intersect or touch any
other boundary edge. We cover the part of the edges with distance from each vertex more than
δ1/2 with balls of radius δ2 such that their centers are no farther than δ2/2 and no less than δ2/3
along the boundary apart. The set of all these balls is denoted by (Ui)i∈I , and they cover the whole
boundary per construction. Now we can choose ε > 0 depending only on δ2 such that B(x, ε) ⊆ Ui

for every x ∈ ∂ω̃V and some i ∈ I. Also, the first two points show that the length of the boundary
of ω̃V is bounded from above. Together with the condition that the center of two balls covering
the boundary are no closer than δ2/3, we then observe that there exists N ∈ N only depending
on γ and θ such that |I| < N . It remains to check the condition on M . Let Di := Ui ∩ D for
every i ∈ I. Note that we chose δ1, δ2 small enough such that the sets Di are connected. Upon
rotating and extending Di, we may assume without loss of generality that Di is a special Lipschitz
domain, with Lipschitz constant Mi either zero (if Ui does not contain a vertex) or bounded from
above by a constant depending on the smallest possible outer angle. Hence any Mi is bounded by
a global constant M depending on γ and θ only. The fact that Eω̃ is a linear operator is part of
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the formulation of Theorem 5 in [31, p. 181]. This concludes the proof. �

Lemma 3.1.4 (Trace). Let ω̃ ∈ B̃(γ) and let q ∈ [1,∞]. Then there exists a constant C > 0
depending only on γ and q (but not on ω̃) such that for all v ∈ W 1,q(ω̃)

‖v‖Lq(∂ω̃) ≤ C
(

‖v‖1−1/q
Lq(ω̃) |v|

1/q
W 1,q(ω̃)

+ ‖v‖Lq(ω̃)

)

. (3.1.4)

Proof. It is well-known that (3.1.4) holds for polygonal star shaped domains, with a constant
depending on the respective domain. For a proof in the case q = 2, see for example [14, Lemma
3.1], the proof for q 6= ∞ allows the same lines. For q = ∞, we point out that W 1,∞ functions
are Lipschitz continuous [2, Lemma 4.28], and hence the estimate is trivial with the constant not
depending on the domain since it is one. We are left with the case q < ∞ and want to show, that
a uniform constant valid for all domains ω̃ ∈ B̃(γ) exists.

Let K̃ be an element of the triangulation Tω̃ of ω̃, and let FK̃ : K̃ → K̂ be an affine function

with FK̃(K̂) = K̃. The crucial point is, that there exist constants C1, C2 > 0 depending only on γ
with

C1 ≤ diam(K̃ ′) ≤ C2,

for any element K̃ ′ of ω̃′ for an arbitrary ω̃′ ∈ B̃(γ). This holds due to Lemma 1.1.3 and because
one (possibly interior) edge of (ω̃, Tω̃) is [0, 1]× {0} and therefore of size one. Since interior angles
of these triangles are bounded from below as well, we have constants C3, C4 > 0 depending only on
γ with

C3 ≤ inf
K̂

| detF ′
K̃
| ≤ sup

K̂

| detF ′
K̃
| ≤ C4,

and

C3 ≤ ‖F ′
K̃
‖L∞(K̂) + ‖F ′

K̃

−1‖L∞(K̂) ≤ C4.

Using this, we observe for an edge ẽ = FK̃(ê) of K̃ by transforming the integrals

‖v‖Lq(ẽ) ≤ C‖v ◦ FK̃ |ê‖Lq(ê) ≤ C‖v ◦ FK̃ |∂K̂‖Lq(∂K̂)

≤ C
(

‖v ◦ FK̃‖1−1/q

Lq(K̂)
‖∇(v ◦ FK̃)‖1/q

Lq(K̂)
+ ‖v ◦ FK̃‖Lq(K̂)

)

≤ C
(

‖v‖1−1/q

Lq(K̃)
‖∇v‖1/q

Lq(K̃)
+ ‖v‖Lq(K̃)

)

.

We have also used that v ◦ FK̃ ∈ W 1,q(K̂) if v ∈ W 1,q(K̃), which can be checked directly. We

conclude the argument by summing over all edges ẽ ∈ E(ω̃) respectively all elements K̃ ∈ Tω̃ and
applying Cauchy-Schwarz for sums. �
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Next, we consider the Poincaré inequality. Let ω̃ ∈ B̃(γ) and ω̂ ∈ B̂(γ) such that Fω̃(ω̂) =
ω̃, where Fω̃ is a continuous piecewise (restricted to an element) affine function that fulfills this
property. This means F−1

ω̃ restricted to an element K̃ ∈ Tω̃ can be seen as F−1
K̃

from the above

proof. Then let v ∈ W 1,q(ω̃) and

v ◦ Fω̃ :=
1

|ω̂|

∫

ω̂
v ◦ Fω̃ dx,

which is well-defined, because Lq(ω̂) is embedded in L1(ω̂). With the Poincaré inequality there
then exists a constant CP (ω̂, q) such that for q ∈ [1,∞]

‖v ◦ Fω̃ − v ◦ Fω̃‖Lq(ω̂) ≤ CP (ω̂, q)|v ◦ Fω̃|W 1,q(ω̂).

Lemma 3.1.5 (Poincaré inequality). Let ω̃ ∈ B̃(γ) and let q ∈ [1,∞]. Then there exists a
constant CP > 0 depending only on γ and q (but not on ω̃) such that we have for all v ∈ W 1,q(ω̃)

‖v − v ◦ Fω̃‖Lq(ω̃) ≤ CP ‖∇v‖Lq(ω̃). (3.1.5)

Proof. Let q < ∞. We follow the arguments of [33, Proposition 3.11]. There holds

∫

ω̃
|v − v ◦ Fω̃|q dx =

∫

ω̂
|v ◦ Fω̃ − v ◦ Fω̃|q| detF ′

ω̃| dx

≤ CP (ω̂, q)
q‖ detF ′

ω̃‖L∞(ω̂)

∫

ω̂
|∇(v ◦ Fω̃)|q dx

≤ CP (ω̂, q)
q‖ detF ′

ω̃‖L∞(ω̂)‖ det(F−1
ω̃ )′‖L∞(ω̃)‖F ′

ω̃‖qL∞(ω̂)|v|
q
W 1,q(ω̃)

,

where we transformed the integral back in the last step. As in the above proof it is clear that the
quantity

‖ detF ′
ω̃‖L∞(ω̂)‖ det(F−1

ω̃ )′‖L∞(ω̃)‖F ′
ω̃‖qL∞(ω̂)

is bounded from above and below by a constant depending on γ, because Fω̃ restricted to an element
behaves like F−1

K̃
from above. Since there is only a finite number of reference patches in B̂(γ), the

desired constant, depending only on γ and q, must exist.

Now let q = ∞. Then with v ◦ Fω̃ being the integral mean of this function on ω̂, and ∇(v◦Fω̃) =
(∇v ◦ Fω̃)F

′
ω̃ in a weak sense, we obtain for a constant C(ω̂) > 0

‖v − v ◦ Fω̃‖L∞(ω̃) = ‖v ◦ Fω̃ − v ◦ Fω̃‖L∞(ω̂)

≤ C(ω̂,∞)|v ◦ Fω̃|W 1,∞(ω̂,∞) ≤ C(ω̂)|v|W 1,∞(ω̃)|Fω̃|W 1,∞(ω̂).

With similar arguments as in the case q < ∞ we get the assertion for q = ∞. �
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Since we want to obtain higher order approximation results, we will need a similar statement
as the above one for the Deny-Lions Lemma. The arguments we just used cannot work in this
case. The reason is that the map Fω̃ in the above proof has the properties that v ◦ Fω̃ is in W 1,q

if v ∈ W 1,q and v ◦ Fω̃ is still a polynomial of degree zero, namely a constant. With the use of Fω̃

we can therefore simply map functions on ω̃ to functions on ω̂, approximate them there, and pull
them back. The distortion of the approximation error is then described by the derivative of Fω̃

and its inverse, respectively their determinants, all of which can be controlled. Since Fω̃ is merely
Lipschitz, an equivalent statement does not hold if v ∈ Wn,q for some n > 1 and the approximating
polynomial is not a constant but of degree larger than zero. We will circumvent this by relating the
constant from the Deny-Lions Lemma, in the following referred to as Deny-Lions constant, to the
Poincaré constant. Since we already have bounded the Poincaré constant, this will give us an upper
bound for the other one. The next lemma achieves this. Together with the Poincaré inequality, it
also gives an alternative proof of the Deny-Lions Lemma.

Lemma 3.1.6 (Bound of the Deny-Lions constant). Let q ∈ [1,∞]. Let n, d ∈ N and let
ω ⊆ R

d. Assume that there exists a map v 7→ v ∈ R such that for every v ∈ W 1,q(ω) there holds

‖v − v‖Lq(ω) ≤ CP (ω, q)‖∇v‖Lq(ω).

Then there exists a map v 7→ rv ∈ Pn−1(R
d) and a constant CDL(ω, n, q) > 0 such that for every

v ∈ Wn,q(ω)

‖v − rv‖Wn,q(ω) ≤ CDL(ω, n, q)|v|Wn,q(ω)

and

CDL(ω, n, q) ≤
{

dn/q(n+ 1)(d+1)/qCP (ω, q)
n if q < ∞

dn(n+ 1)d+1CP (ω, q)
n if q = ∞.

Moreover, if v 7→ v is linear, then the map v 7→ rv is linear.

Proof. If n = 1, then v is the desired approximant. The idea is to construct a polynomial of
higher degree in an analogue way.
1st Step: Let v ∈ Wn,q(ω) for some n ∈ N. Then we define

vn,n := v

and for l ∈ {0, . . . , n− 1}

vl,n := vl+1,n −
∑

j1,...,jd∈N0∑
m jm≤l

(

Dj1
x1 . . . D

jd
xdvl+1,n

)

xj11 . . . xjdd

j1! . . . jd!
. (3.1.6)

With vn := v0,n we obviously have vn ∈
{
v + r : r ∈ Pn−1(R

d)
}
. Hence the task is now to prove

‖vn‖Wn,q(ω) ≤
{

dn/q(n+ 1)(d+1)/qCP (ω, q)
n|v|Wn,q(ω) if q < ∞

dn(n+ 1)d+1CP (ω, q)
n|v|Wn,q(ω) if q = ∞.
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2nd Step: Let α ∈ N
d
0 be a multiindex with 0 ≤ |α| ≤ n. We want to show that Dαvn = (Dαv)n−|α|.

This is trivial if |α| = 0. For the remaining cases it is sufficient to prove Dxm(vn) = (Dxmv)n−1 for
every m ∈ {1, . . . , d}. Without loss of generality we consider the case m = 1. To this end let us
compute

Dx1vn−1,n = Dx1v −
∑

j1,...,jd∈N0∑
m jm≤n−1

Dx1





(

Dj1
x1 . . . D

jd
xdv
)

xj11 . . . xjdd

j1! . . . jd!





= Dx1v −
∑

j1∈N,j2,...,jd∈N0∑
m jm≤n−1

(

Dj1−1
x1 . . . Djd

xd(Dx1v)
)

xj1−1
1 . . . xjdd

(j1 − 1)! . . . jd!

= Dx1v −
∑

j1,...,jd∈N0∑
m jm≤n−2

(

Dj1
x1 . . . D

jd
xd(Dx1v)

)

xj11 . . . xjdd

j1! . . . jd!

= (Dx1v)n−2,n−1.

We now proceed by induction on l. With (3.1.6) and the induction hypothesis Dx1vl+1,n =
(Dx1v)l,n−1 we get

Dx1vl,n = Dx1vl+1,n −
∑

j1∈N,j2,...,jd∈N0∑
m jm≤l

(

Dj1−1
x1 . . . Djd

xd(Dx1vl+1,n)
)

xj1−1
1 . . . xjdd

(j1 − 1)! . . . jd!

= (Dx1v)l,n−1 −
∑

j1,...,jd∈N0∑
m jm≤l−1

(

Dj1
x1 . . . D

jd
xd(Dx1v)l,n−1

)

xj11 . . . xjdd

j1! . . . jd!

= (Dx1v)l−1,n−1.

Thus for l = 1

Dx1vn = Dx1v1,n = (Dx1v)0,n−1 = (Dx1v)n−1.

3rd Step: We claim that for l ∈ N and q < ∞ there holds ‖vl‖Lq(ω) ≤ CP (ω, q)
ldl/q|v|W l,q(ω). Our

assumptions and the second step imply

‖vl‖qLq(ω) = ‖v1,l − v1,l‖qLq(ω) ≤ CP (ω, q)
q|v1,l|qW 1,q(ω)

= CP (ω, q)
q

∑

m∈{1,...,d}

‖Dxmv1,l‖qLq(ω)

= CP (ω, q)
q

∑

m∈{1,...,d}

‖Dxmvl‖qLq(ω) = CP (ω, q)
q

∑

m∈{1,...,d}

‖(Dxmv)l−1‖qLq(ω),

where we have also used that vl = v0,l = v1,l−v1,l, which yields Dxmv1,l = Dxmvl. By repeating the
same argument we get all derivatives of order l of v (some of them several times) on the right-hand
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side and hence with a crude estimate the claim.
4th Step: It remains to prove the assertion. Let q < ∞. Using what we already know we get

‖vn‖qWn,q(ω) =
n∑

l=0

|vn|qW l,q(ω)
=

n∑

l=0

∑

{α∈Nd
0:|α|=l}

‖Dαvn‖qLq(ω)

=
n∑

l=0

∑

{α∈Nd
0:|α|=l}

‖(Dαv)n−|α|‖qLq(ω)

≤
n∑

l=0

CP (ω, q)
q(n−l)dn−l

∑

{α∈Nd
0:|α|=l}

|Dαv|q
Wn−|α|,q(ω)

≤
n∑

l=0

CP (ω, q)
q(n−l)dn−l

∑

{α∈Nd
0:|α|=l}

|v|qWn,q(ω)

≤
n∑

l=0

CP (ω, q)
q(n−l)dn−l(l + 1)d|v|qWn,q(ω) ≤ CP (ω, q)

qndn(n+ 1)d+1|v|qWn,q(ω).

Taking the q-th root concludes the proof for q < ∞. In the case q = ∞ steps 3 and 4 need to be
repeated without taking the q-th power. �

The following corollary states what we actually aspire. It is a direct consequence of the previous
two lemmata.

Corollary 3.1.7. Let ω̃ ∈ B̃(γ), q ∈ [1,∞], and n ∈ N. Then there exists a linear map v 7→ rv ∈
Pn−1(R

2) and a constant CDL > 0 depending only on γ, n, and q such that for all v ∈ Wn,q(ω̃)

‖v − rv‖Wn,q(ω̃) ≤ CDL|v|Wn,q(ω̃).

3.1.3 C1-hp-Interpolant

We now construct our interpolant. As always we work with a γ-shape regular admissible triangu-
lation T . In particular, we do not have hanging nodes. This has the important consequence that
it is easy to find a C l partition of one for l ∈ {0, 1} and functions with local support. In the case
l = 0, the hat functions provide this partition of one. If l = 1 the Argyris element ensures its
existence. The next lemma will discuss this in more detail. With this at hand, we can then reduce
the problem of finding an interpolant with the desired approximation properties on Ω, to a local
problem.

Lemma 3.1.8 (Partition of unity). Let T be an admissible γ-shape regular triangulation of Ω.
Then there exist piecewise polynomials ϕV ∈ S5(T ) ∩ C1(Ω), V ∈ N (T ) such that supp(ϕV ) ⊆ ωV
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Figure 3.2: The Argyris element and its 21 degrees of freedom as depicted in [10, Fig. 3.9]: The
point denotes an evaluation of the function, the inner circle stands for the evaluation of the two
first derivatives, the outer circle stands for the evaluation of the three second derivatives and the
arrows represent evaluations of the normal derivative at the center of each edge.

for every V ∈ T and

∑

V ∈N (T )

ϕV ≡ 1 in Ω. (3.1.7)

Moreover, there exists a constant C = C(γ) > 0 such that for every V ∈ N (T )

‖ϕV ‖L∞(Ω) + hV |ϕV |W 1,∞(Ω) + h2V |ϕV |W 2,∞(Ω) ≤ C, (3.1.8)

and for every K ∈ T , n ∈ N

hnV ‖ϕV |K‖Wn,∞(K) ≤ C. (3.1.9)

Proof. 1st Step: In order to construct the functions ϕV we employ the Argyris element as
described in [10, Example 3.2.10]. The Argyris element is of type C1-P5, i.e. polynomials of
total degree five on a triangle are considered, such that matching values of the shared degrees
of freedom of adjacent elements result in continuously differentiable functions. Its 21 degrees of
freedom consist of the six derivatives up to order two in each vertex, which makes eighteen, and
the three normal derivatives at the midpoint of each edge, which makes 21 in total (see Figure
3.2). These values determine a polynomial of degree five and its gradient on the boundary of the
triangle: The restriction of the polynomial on an edge is again a polynomial of degree five. Since
the function value, as well as the first and second derivative in the endpoint of this edge are known,
so is the polynomial (this is easily checked). Similarly, the function values of the normal derivative
in the endpoints and the midpoint of the edge, together with the first derivative of the normal
derivative in the endpoints are sufficient to determine the normal derivative, which is a polynomial
of degree four, along this edge. Now we denote by NK

i : P5(K) → R, i ∈ {1, . . . , 21} the functionals
that evaluate one of those 21 degrees of freedom for a polynomial of degree five on an arbitrary
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triangle K. We assume that NK
1 , NK

2 , NK
3 are the point evaluations at the three vertices V1, V2, V3

of K. Additionally, let

NK :=

{

P5(K) → R
21

r 7→ (NK
i (r))21i=1.

We claim that NK is injective. Suppose that NK(r) = 0 and r 6= 0. Then, on account of the above
deliberations, there holds r ≡ 0 ≡ ∇r on ∂K. Thus r ∈ P5(K) is of the type r(x) = L2

1L
2
2L

2
3r̃(x),

where Li is a linear function that is zero along the edge ei and constant along parallels of ei,
i ∈ {1, 2, 3}, and r̃ is another polynomial. This is a contradiction since r is only of degree five.
The dimension of P5(K) is 21 as well and therefore NK is clearly bijective. This implies that
polynomials rKi ∈ P5(K) with NK

j (rKi ) = δi,j exist. In particular

rK1 + rK2 + rK3 ≡ 1 in K, (3.1.10)

because rK1 + rK2 + rK3 is the unique polynomial r ∈ P5 with NK
j (r) = δ1,j + δ2,j + δ3,j for all

j ∈ {1, . . . , 21}.
2nd Step: We now construct ϕV . Let V ∈ N (T ) and K ∈ K(V ). With the notation from
the beginning of this section recall that F̃K(K̃) = K. The triangle K̃ ∈ Ã(γ) has the three
vertices Ṽ1, Ṽ2, and Ṽ3 where, without loss of generality, Ṽ1 ∈ ã(γ), Ṽ2 = (−1, 0), Ṽ3 = (0, 1), and
F̃K(Ṽ1) = V . It is easily seen that

NK
j (rK̃i ◦ F̃−1

K ) = δi,j ∀i ∈ {1, 2, 3} , j ∈ {1, . . . , 21},

and therefore rK̃i ◦ F̃−1
K = rKi for every i ∈ {1, 2, 3}. Hence, due to (3.1.10),

ϕV :=
∑

K∈K(V )

rK̃1 ◦ F̃−1
K (3.1.11)

results in a partition of unity if we repeat this process for every V ∈ N (T ).
3rd Step: We show (3.1.8) and (3.1.9). Let K̃ ∈ Ã(γ) and let again Ṽ1 ∈ ã(γ), Ṽ2 = (−1, 0), and
Ṽ3 = (0, 1) be its vertices. To indicate that K̃ ∈ Ã(γ) is determined by the vertex Ṽ1 ∈ ã(γ), we
write K̃(Ṽ1), and to simplify some notation we define

ri(Ṽ1) := r
K̃(Ṽ1)
i ,

Ni(Ṽ1) := N
K̃(Ṽ1)
i .

We claim that ri(Ṽ1) depends continuously on Ṽ1 ∈ ã(γ) as a function of the space C1(BR(0)),
where R > 0 is large enough such that the closed ball BR(0) ⊆ R

2 contains ã(γ). To this end let
c(r) ∈ R

21 be the vector containing the coefficients of r ∈ P5 w.r.t. the basis 1, x, y, . . . , x5, y5 in
some fixed order. We also write r = r(c). Let M(Ṽ1) ∈ R

21×21 be the matrix, such that the i-th
row represents the linear functional

Ni(Ṽ1) :=

{

R
21 → R

c 7→ Ni(Ṽ1)(r(c)).
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Then M(Ṽ1) obviously depends continuously on Ṽ1 ∈ ã(γ) in C0(R21×21). With ci(Ṽ1) := c(ri(Ṽ1))
we get

M(Ṽ1) · ci(Ṽ1) = (δi,j)
21
j=1, ∀i ∈ {1, . . . , 21}.

Therefore M(Ṽ1) is regular and ci(Ṽ1) = M(Ṽ1)
−1(δi,j)

21
j=1. All occuring maps are continuous and

therefore ci(Ṽ1) depends continuously on Ṽ1. Thus the map
{

ã(γ) → R

Ṽ1 7→ ‖ri(Ṽ1)‖W 5,∞(BR(0))

is well-defined, continuous, and it has a maximum C in the compact set ã(γ). The fact that F̃V is
linear (which means that derivatives of order higher than one are zero), together with (3.1.1) and
(3.1.11), proves (3.1.8) and (3.1.9), because |ϕV |W 6,∞(K) = 0 since ϕV |K ∈ P5(K). �

The next theorem is a bit more involved. It states the needed approximation property of Wn,q

functions by polynomials [24, Theorem A.3]:

Theorem 3.1.9. Let d ∈ N. Set I := I1 × · · · × Id, with Ii being a bounded interval for every
i ∈ {1, . . . , d}. Let R ∈ N. Then for each N ∈ N0 there exists a bounded linear operator JR,N :
L1(I) → QN (I) with the following properties: For each q ∈ [1,∞] there exists a constant C > 0,
which depends only on R, q and I, such that for all N ≥ R− 1 and all 0 ≤ r ≤ R

JR,Nu = u ∀u ∈ QR−1, (3.1.12)

‖u− JR,Nu‖W l,q(I) ≤ C(N + 1)−(r−l)|u|W r,q(I), l = 0, . . . , r. (3.1.13)

These preliminaries constitute sufficient preparation such that we are now able to prove the
main result of this section. Let us first highlight the differences to Theorem 2.1 in [24] on which
our construction is based: The interpolant in [24] approximates W 1,q functions with continuous
piecewise polynomials. The interpolant in the following theorem locally inherits the approximation
properties of JR,N from Theorem 3.1.9. This means, we observe better approximation rates for
smoother functions, for example (h/p)n instead of h/p in the Lq-norm forWn,q functions. Moreover,
we get approximation of higher derivatives. Additionally, the interpolant in item (i) maps to C1-
functions rather than C0-functions. Therefore it is H2-conforming. At the same time we emphasize
that slit domains are excluded, and the occuring constant behaves worse than in [24] (cf. Remark
3.1.14). The proof follows the one in [24, Theorem 2.1] and the changes are mostly owed to the
fact that we work with higher derivatives and different reference patches. Furthermore, we point
out that the following operators Ihpn and Ihp,0n are no projectors.

Theorem 3.1.10 (Clément type quasi-interpolation). Let T be an admissible γ-shape regular
triangulation of the polygonal domain Ω ⊆ R

2. Denote the smallest outer angle of Ω by θ and
assume that θ > 0. Let p be a polynomial degree distribution on T satisfying (1.2.1). Assume that
q ∈ [1,∞] and let n ∈ N.



38

(i) Assume that ⌊(pT −5)/2⌋ ≥ n−1. Then there exists a bounded linear operator Ihpn : Wn,q(Ω) →
Sp(T ) ∩ C1(Ω) such that for every K ∈ T

|u− Ihpn u|Wm,q(K) ≤ C

(
hK
pK

)n−m

|u|Wn,q(ωK) ∀m ∈ {0, . . . , n}, (3.1.14)

and for every e ∈ E(K)

‖Dm((u− Ihpn u)|K)‖Lq(e) ≤ C

(
he
pe

)n−m−1/q

|u|Wn,q(ωe) ∀m ∈ {0, . . . , n− 1}, (3.1.15)

where Dm((u− Ihpn u)|K) stands for all partial derivatives of order m of u− Ihpn u restricted to
K, and C > 0 only depends on n, q, γ, and θ.

(ii) Assume that ⌊(pT − 1)/2⌋ ≥ n − 1. Then there exists a bounded linear operator Ihp,0n :

Wn,q(Ω) → Sp(T ) ∩ C0(Ω) such that (3.1.14) and (3.1.15) hold with Ihp,0n u instead of Ihpn u
for a constant C > 0 solely depending on n, q, γ, and θ.

Proof. 1st Step: We start with the proof of (i) and fix n ∈ N and q ∈ [1,∞]. Let v ∈ Wn,q(ω̃V )
for a fixed vertex V and recall that pV = minK∈ωV

pK . Furthermore we choose NV := ⌊(pV −5)/2⌋,
and denote by Ev ∈ Wn,q(Ŝ) the extension from Lemma 3.1.3 with Ŝ being the reference square
from Lemma 3.1.2. Corollary 3.1.7 gives a polynomial rv ∈ Pn(R

2) such that

‖v − rv‖Wn,q(ω̃V ) ≤ CDL|v|Wn,q(ω̃V ). (3.1.16)

We now define for every V ∈ N (T ) the operator

JV :=

{

Wn,q(ω̃V ) → PpV −5(Ŝ)

v 7→ rv + Jn,NV
(E(v − rv)).

(3.1.17)

This operator is linear according to Lemma 3.1.3 and Corollary 3.1.7. Moreover, it maps to
PpV −5(Ŝ) because Jn,NV

: Wn,q(Ŝ) → QNV
⊆ P2NV

, rv ∈ Pn and by assumption

NV = ⌊(pV − 5)/2⌋ ≥ ⌊(pT − 5)/2⌋ ≥ n− 1, (3.1.18)

which gives n ≤ 2n ≤ pV − 5 and obviously 2NV ≤ pV − 5. Equation (3.1.18) also implies that
we can apply the approximation property (3.1.13) of the operator Jn,NV

from Theorem 3.1.9 and
obtain for every m ∈ N with 0 ≤ m ≤ n (r,R := n in Theorem 3.1.9)

‖v − JV (v)‖Wm,q(ω̃V ) = ‖v − rv − Jn,NV
(E(v − rv))‖Wm,q(ω̃V )

≤ C‖E(v − rv)− Jn,NV
(E(v − rv))‖Wm,q(Ŝ)

≤ C(NV + 1)−(n−m)‖E(v − rv)‖Wn,q(Ŝ)

≤ C(NV + 1)−(n−m)‖v − rv‖Wn,q(ω̃V )

≤ Cp
−(n−m)
V |v|Wn,q(ω̃V ), (3.1.19)
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where we have used NV + 1 ∼ pV , Lemma 3.1.3 and (3.1.16). Note that the occuring constant
only depends on n, q, γ, and θ due to Corollary 3.1.7 and Lemma 3.1.3: Any outer angle ϑ of ω̃V

is either an outer angle of Ω or bounded from below by an interior angle of an element in T , and
hence ϑ is bounded from below by a constant depending on γ and θ.
2nd Step: Let us now consider the function u ∈ Wn,q(Ω), and we define uV := u|ωV , ũV := uV ◦ F̃K ,
and uV,pV := JV (ũV ) ◦ F̃−1

V ∈ PpV −5(ωV ) for V ∈ N (T ). This is well-defined, because according to
Lemma 3.1.2 it holds that ũV ∈ Wn,q(ω̃V ). Let m ∈ N and 0 ≤ m ≤ n. With v := ũV in (3.1.19)
we obtain using item (iv) of Lemma 3.1.2

|u− uV,pV |Wm,q(ωV ) = |u− JV (ũV ) ◦ F̃−1
V |Wm,q(ωV ) ≤ C|ũV − JV (ũV )|Wm,q(ω̃V )h

2/q−m
V

≤ Cp
−(n−m)
V h

2/q−m
V |ũV |Wn,q(ω̃V ) ≤ C

(
hV
pV

)n−m

|uV |Wn,q(ωV )

=

(
hV
pV

)n−m

|u|Wn,q(ωV ). (3.1.20)

For the edge estimate, let m be an integer with 0 ≤ m ≤ n−1 and let e ∈ E(K) be some edge of the

element K that belongs to the patch ωV . Moreover, let ẽ := F̃−1
V (e), then | det((F̃V |ẽ)′)|1/q ∼ h

1/q
V .

Similar as in Lemma 3.1.2, the fact that F̃V is a composition of a scaling of size hV , a rotation,
and a translation, shows that for an integer l and v ∈ W l,q(ωV )

‖Dl(v ◦ F̃V )‖Lq(ω̃V ) ∼ hlV ‖(Dlv) ◦ F̃V ‖Lq(ω̃V ),

‖Dl+1(v ◦ F̃V )‖Lq(ω̃V ) ∼ hlV |(Dlv) ◦ F̃V |W 1,q(ω̃V ).

We now make use of this observation, Lemma 3.1.4, (3.1.19), and again item (iv) of Lemma 3.1.2.
Then we obtain

‖Dm(u− uV,pV )‖Lq(e) = ‖Dm(u− uV,pV ) ◦ F̃V ‖Lq(ẽ)| det((F̃V |ẽ)′)|1/q

≤ Ch
1/q
V

(

‖Dm(u− uV,pV ) ◦ F̃V ‖1−1/q
Lq(ω̃V )|D

m+1(u− uV,pV ) ◦ F̃V |1/qW 1,q(ω̃V )

+ ‖Dm(u− uV,pV ) ◦ F̃V ‖Lq(ω̃V )

)

≤ Ch
1/q
V

(

h−m
V ‖Dm(ũV − JV (ũV ))‖1−1/q

Lq(ω̃V )‖D
m+1(ũV − JV (ũV ))‖1/qLq(ω̃V )

+ h−m
V ‖Dm(ũV − JV (ũV ))‖Lq(ω̃V )

)

≤ C|ũV |Wn,q(ω̃V )h
−m+1/q
V

(

p
−(n−m)+1/q
V + p

−(n−m)
V

)

≤ C

(
hV
pV

)n−m−1/q

|uV |Wn,q(ωV ) = C

(
hV
pV

)n−m−1/q

|u|Wn,q(ωV ). (3.1.21)

3rd Step: With the partition of unity (ϕV )V ∈N (T ) from Lemma 3.1.8, we put together the inter-
polant as follows:

Ihpn (u) :=
∑

V ∈N (T )

ϕV uV,pV .
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The first observation is that Ihpn u ∈ Sp(T ): Per construction (see (3.1.17)), we have uV,pV ∈ PpV −5.

This together with ϕV ∈ S5(T ) readily gives u ∈ Sp(T ). Moreover, Ihpn u ∈ C1(Ω) because uV,pV
is a polynomial, ϕV ∈ C1(Ω), supp(ϕV ) ⊆ ωV , and ∇ϕV |∂ωV

= ϕV |∂ωV
≡ 0. The approximation

properties are now easily obtained. We keep in mind that



∑

V ∈N (K)

ϕV





∣
∣
∣
∣
∣
K

≡ 1.

Therefore, for m ∈ N, 0 ≤ m ≤ n and with (3.1.9)

|u− Ihpn u|Wm,p(K) ≤ C
∑

V ∈N (K)

|ϕV (u− Ihpn u)|Wm,p(K)

≤ C
∑

V ∈N (K)

∑

m1,m2∈N0
m1+m2=m

|ϕV |Wm1,∞(K)|u− Ihpn u|Wm2,q(K)

≤ C
∑

V ∈N (K)

∑

m1,m2∈N0
m1+m2=m

h−m1
V

(
hV
pV

)n−m2

|u|Wn,q(ωK)

≤ C

(
hV
pV

)n−m

|u|Wn,q(ωK),

where we have used (3.1.20). This proves (3.1.14). For the edge estimate let e ∈ E(K). We use
(3.1.21) and once more (3.1.9). Then for every m ∈ {0, . . . , n− 1}

‖Dm((u− Ihpu)|K)‖Lq(e) =

∥
∥
∥
∥
∥
∥

∑

V ∈N (e)

Dm((uV − uV,pV )ϕV |K)

∥
∥
∥
∥
∥
∥
Lq(e)

≤ C
∑

V ∈N (e)

∑

m1,m2∈N0
m1+m2=m

‖Dm1ϕV |K‖L∞(e)‖Dm2(uV − uV,pV )‖Lq(e)

≤ C
∑

V ∈N (e)

∑

m1,m2∈N0
m1+m2=m

h−m1
e

(
he
pe

)n−m2−1/q

|u|Wn,q(ωV )

≤ C

(
he
pe

)n−m−1/q

|u|Wn,q(ω−e).

We also used that ϕV |K is a polynomial, which yields

‖Dm1ϕV |K‖L∞(e) ≤ ‖Dm1ϕV |K‖L∞(K) . h−m1
K . h−m1

e .

Retracing the steps of the construction, we see that Ihpn is in fact linear. We mention once more
that all occuring constants depend solely on n, q, γ, and θ.
4th step: Finally, we consider (ii). This result is obtained by using hat functions in steps 1-3
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instead of the functions ϕV . This will only affect the smoothness of Ihp,0n u but it does not change
the approximation properties on the elements or edges. �

We conclude this section with a few remarks on the above proof.

Remark 3.1.11. The core of the proof of Theorem 3.1.10 is Theorem 3.1.9. In one dimension this
theorem is a consequence of trigonometric approximation results (for details see Chapter 7 of [12]).
The d-dimensional interpolation operator is then the d-fold tensor product of the one dimensional
interpolation operator.

Remark 3.1.12. Locally the operator Ihpn has the same properties as the operator in Theorem
3.1.9. Therefore, we may have stated Theorem 3.1.9 more generally by relaxing the condition
⌊(pT −5)/2⌋ ≥ n−1 to a local one (with a local smoothness parameter nV , and the local polynomial
degree pV ). This would result in approximation properties that are linked with the local smoothness
of the function.

Remark 3.1.13. The same line of reasoning as above leads to an interpolant which lies in C l(Ω)
for some l ∈ N, if a partition of unity with functions from C l(Ω) ∩ Sp(T ) is available for a p ∈ N.
In particular, the use of a Cl-Pp element, which contains all polynomials of degree p for some
p ∈ N, rather than the Argyris element, would not change steps two and three in the proof of
Lemma 3.1.8. Moreover, arguments similar to the ones we have used should work to generalize
the theorem to spaces with higher dimension d > 2. The condition on the polynomial degree then
reads ⌊(pT − p)/d⌋ ≥ n− 1.

Remark 3.1.14. The largest outer angle θ only played a role in the proof of Lemma 3.1.3. Since
we assumed θ > 0, unlike the operator derived in [24], our interpolation operator does not allow
slit domains. Throughout this thesis, constants depending on Ω will only depend on the smallest
outer angle of Ω. In particular if Ω is convex, then the constant can be chosen independent of the
domain.

3.2 Conforming Error

In this section we construct a conforming approximant. That means, we approximate a discontin-
uous piecewise polynomial v ∈ Sp(T ) with a continuous piecewise polynomial v∗ ∈ Sp(T )∩C0(Ω).
We then wish to bound the error by a constant multiplied with the L2-norm of the jump of v
across the edges. The question is then, how this constant depends on the local meshwidth and
polynomial degree. Theorem 3.2.7 will give an answer to this, and it turns out that this weight
is the same one that is used for the jump terms in the DG-norm (see Corollary 3.2.9). Results
of this type have been established in various papers and for several different situations (hanging
nodes, quadrilaterals, 3D), see for example [34, Section 4.3], [35, Remark 4.5] and the references
therein. The method of proof is very straightforward: Lifting operators are used to correct the
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discontinuities along the edges and at the vertices. Nonetheless the proof will be lengthy and also a
bit technical. Here we follow the ideas of [19, Section 5]. The difference is, that whereas in [19] the
error in the H1-seminorm was of interest, we desire simultaneous approximation in the L2-norm
and in the L2-norm on the skeleton. To achieve this, an optimal vertex lifting will be constructed
in Lemma 3.2.5. Such liftings and some elementary inverse inequalities are the purpose of the next
subsection. After that we have enough at hand to prove Theorem 3.2.7.

3.2.1 Inverse Inequalities and Liftings

Inverse inequalities

We quote two basic theorems distinguishing between one- and two-dimensional results. They will
prove useful throughout the rest of this thesis.

Theorem 3.2.1 (1D Inverse inequalities). Let I = (a, b) be a bounded interval and let
h = b− a. Then for every polynomial v ∈ Pp(I) we have

‖v′‖L2(I) ≤ 2
√
3
p2

h
‖v‖L2(I), (3.2.1a)

‖v′‖L∞(I) ≤
2p2

h
‖v‖L∞(I), (3.2.1b)

‖v‖L∞(I) ≤ 4
√
3

p√
h
‖v‖L2(I). (3.2.1c)

Proof. A proof is given in Theorem 3.91 and Theorem 3.92 in [30]. �

Theorem 3.2.2 (2D Inverse inequalities). Let K̂ be the reference triangle and let ê ∈ E(K̂)
be an edge of K̂. Then there exists a constant C > 0 not depending on p such that for every
polynomial v ∈ Pp(K̂) it holds that

‖v‖L∞(K̂) ≤ Cp2‖v‖L2(K̂), (3.2.2a)

‖v‖L2(ê) ≤ Cp‖v‖L2(K̂), (3.2.2b)

‖∇v‖L2(K̂) ≤ Cp2‖v‖L2(K̂). (3.2.2c)

Proof. A proof can be found in [30, Theorem 4.76]. �

Trace Liftings

Lifting operators allow us to find polynomials with prescribed values on either the boundary or at
a vertex of an element K. The crucial point is, that the L2- and H1-norm of these polynomials are
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small. For some of the original work on these polynomial liftings we refer to [5, 6]. The following
theorem provides an H1-stable lifting from the boundary.

Theorem 3.2.3 (Edge lifting). Let K̂ be the reference triangle and let Γ be the closed union of
the edges of K̂. Then there exists a linear extension operator L : C(Γ) → H1(K̂) and a constant
C > 0 with the property that if v ∈ C(Γ) is a polynomial of degree p on every edge e ∈ E(K̂), then
L(v) ∈ Pp(K̂) and for every v ∈ C(Γ)

‖L(v)‖L2(K̂) ≤ C‖v‖L2(Γ), (3.2.3a)

‖L(v)‖H1(K̂) ≤ C‖v‖H1/2(Γ). (3.2.3b)

Proof. A proof is given in Theorem B.4 in [24]. �

To control the H1/2-norm in (3.2.3b), we will use the following well-known Lemma.

Lemma 3.2.4. Let v ∈ Pp([0, 1]) and let p ∈ N. Then there exists a constant C > 0 independent
of p such that

‖v‖H1/2(0,1) ≤ Cp‖v‖L2(0,1). (3.2.4)

Proof. This is an interpolation result. With the notation of [12, Chapter 6] it holds (on R

or on closed intervals) that (L2,W 1,2)1/2,2 = H1/2, where the space on the left-hand side is an

interpolation space (see [12, p. 196] and use the well-known fact that B2
1/2,2 = H1/2). According

to [32, Section 1.3.3], for an interpolation couple (X,Y ) (see [32, Section 1.2.1]) it holds that

‖v‖(X,Y )θ,q ≤ Cθ,q‖v‖1−θ
X ‖f‖θY ∀v ∈ (X,Y )θ,q.

Thus with the inverse estimate (3.2.1a), X := L2, Y := W 1,2, θ := 1/2, and q := 1 there exists a
constant C > 0 such that we can bound

‖v‖H1/2(0,1) ≤ C‖v‖1/2
L2(0,1)

‖v‖1/2
H1(0,1)

≤ Cp‖v‖L2(0,1),

and hence (3.2.4) holds. �

Item (iii) in the next lemma gives us a vertex lifting. Equation (3.2.2a) shows that it is optimal
in the L2-norm. Conversely, item (i) basically states that (3.2.1c) is sharp.

Lemma 3.2.5 (Vertex lifting). Let n, p ∈ N and p > n. Let

K̂ =
{
(x, y) ∈ R

2 : x, y > 0 ∧ x+ y < 1
}

and let ê = [0, 1].
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(i) There exists a constant C > 0 independent of p and a polynomial πp ∈ Pp(ê) with the
properties

πp(0) = 1, πp(1) = 0, ‖πp‖L2(ê) ≤
C

p
. (3.2.5)

(ii) There exists a constant C(n) > 0 independent of p such that if q ∈ Pp(ê) with q(0) = 1 then

‖π⌈p/n⌉‖L2(ê) + ‖πp−n‖L2(ê) ≤ C(n)‖q‖L2(ê). (3.2.6)

(iii) There exist constants C1, C2 > 0 independent of p and a polynomial Πp ∈ Pp(K̂) with the
properties

Πp(0, 0) = 1, Πp|{x+y=1} ≡ 0, ‖Πp‖L2(∂K̂) ≤ C1‖πp‖L2(ê) ≤ C2
1

p

‖Πp‖L2(K̂) ≤
C1

p2
, ‖∇Πp‖L2(K̂) ≤ C1p‖πp‖L2(ê) ≤ C2.

(3.2.7)

Proof.

(i) We work with the Legendre polynomials (Pl)l∈N0 . According to [1, 22.2.10] they form a
system of L2-orthogonal polynomials on [−1, 1] with

‖Pl‖2L2(−1,1) =
2

2l + 1
, Pl(1) = 1 ∀l ∈ N0.

Therefore, if v =
∑p

l=1 alPl and
∑p

l=1 al = 1, we also have v(1) = 1. We define π1(x) :=
(1− x) ∈ P1(ê) and now consider the case p > 1. Since

p−1
∑

l=1

(
l

p3

)1/2

∼
∫ p−1

1

x1/2

p3/2
dx ∼ 1

and

∥
∥
∥
∥
∥

p−1
∑

l=1

(
l

p3

)1/2

Pl

︸ ︷︷ ︸

=:vp

∥
∥
∥
∥
∥

2

L2(−1,1)

=

p−1
∑

l=1

l

p3
2

2l + 1
∼ 1

p2
,

the assertion follows, if we multiply the polynomial vp with cp(x+ 1) for a suitable constant
cp (which is bounded independent of p from both directions) and transform it from [−1, 1] to
the intervall [0, 1].
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(ii) With q(0) = 1 and the inverse estimate (3.2.1c), we have 1/p ≤ C‖q‖L2(ê). Hence

‖πp−n‖L2(ê) ≤
C

p− n
≤ C

p

p− n

1

p
≤ Cn
︸︷︷︸

=:C(n)

‖q‖L2(ê)

and upon adjusting C(n)

‖π⌈p/n⌉‖L2(ê) ≤
Cn

p
≤ C(n)‖q‖L2(ê).

(iii) First, we define Πp(x, y) := 1− (x+ y) for all p ∈ {1, 2, 3}. If p > 3 let

Πp(x, y) := (1− x− y)π⌊p/2−1⌋(x)π⌊p/2−1⌋(y).

We have

‖Πp‖L2(K̂) ≤ ‖π⌊p/2−1⌋‖2L2(ê) ≤
C

p2
. (3.2.8)

To obtain the H1-bound we combine (3.2.8) with (3.2.2c). The other properties can be
checked easily as well.

�

3.2.2 Conforming Approximation

To state the local approximation properties of the conforming approximant, we first introduce a
local set of edges:

Definition 3.2.6. Let T be an admissible triangulation of Ω ⊆ R
2. Let e ∈ E(T ) be an edge of T

and let K ∈ T be an element of T . Then we denote the union of interior edges e′ belonging to the
respective patch by ρK and ρe:

ρK :=
⋃

e′∈EI(ωK)

e′, ρe :=
⋃

e′∈EI(ωe)

e′. (3.2.9)

The construction of the conforming approximant is an important step to prove reliability of a
DGFEM a posteriori estimator. The approximant will be constructed as a function in Sp(T ) ∩
C0(Ω). The fact that the function is in Sp(T ) is not important in order to prove reliability of the
error estimator. However, it will allow us to bound the jump terms by other error terms later on
(see Lemma 4.1.13).

Theorem 3.2.7 (Conforming approximant). Let T be an admissible γ-shape regular triangula-
tion of Ω. Let v ∈ Sp(T ) and let p be a polynomial degree distribution satisfying (1.2.1) and pT ≥ 1.
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Then there exists a constant C > 0 solely depending on γ, and a function v∗ ∈ Sp(T )∩C0(Ω) such
that for every edge e ∈ E(T ) and for every element K ∈ T there holds

‖v − v∗‖2L2(e) ≤ C‖JvK‖2L2(ρe)
, (3.2.10a)

‖v − v∗‖2L2(K) ≤ ChK‖JvK‖2L2(ρK), (3.2.10b)

‖∇(v − v∗)‖2L2(K) ≤ C
p2K
hK

‖JvK‖2L2(ρK). (3.2.10c)

Proof. Let us first outline the main steps to be taken. In order to prove this theorem we will
split the function v into a nodal part, an edge part, and an interior part:

v = vN + vE + vI .

The nodal part vN , which is generally not continuous, is chosen such that its limit coincides with
the one of v in each vertex on each element. The edge part vE will coincide with v − vN on each
element on each edge (thus it is also generally not continuous). The interior part is then given by
vI = v − vN − vE , and it is continuous. After this splitting is defined, we will approximate each
part separately with continuous functions vN∗ , vE∗ , and vI∗ and put everything back together in the
end. The general idea is to construct the edge and nodal part in such a way, that they can be
approximated with a continuous function and the respective error is bounded by appropriate jump
terms only. This is done via the lifting operators from above. The interior part does not need to
be approximated since it is already continuous. Throughout this proof we will use the fact that the
diameter hK and the polynomial degree pK of the element K are comparable with the ones of its
neighbours, without mentioning this at every instance. Moreover, we recall that

pV = min
K∈ωV

pK .

Working with the polynomial degree pV on the patch ωV will guarantee that we stay in Sp(T ).
The proof proceeds in six steps.
1st Step: We establish some notation used throughout this proof. To begin with, we define for
every V ∈ N (T )

mV := max
{K,K′∈K(V ):∃e∈E(K)∩E(K′)}

∣
∣v|K(V )− v|K′(V )

∣
∣, (3.2.11)

MV := max
{K,K′∈K(V )}

∣
∣v|K(V )− v|K′(V )

∣
∣. (3.2.12)

The number of elements sharing the vertex V is bounded by a constant C depending on γ and
therefore

mV ≤ MV ≤ CmV . (3.2.13)

We denote by KV and K ′
V the two elements for which the maximum mV is reached in (3.2.11), and

write eV for the edge shared by those two elements. We remark that eV ∈ EI is always an inner
edge, regardless of whether V is on the boundary or not. Then

qV := JvK|eV
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is a polynomial of degree max(pKV
, pK′

V
) on eV , and we choose its sign such that qV (V ) ≥ 0.

Moreover, we define for every V ∈ N (T ) the values

aV :=
1

|K(V )|
∑

K∈K(V )

v|K(V ) (3.2.14)

and for every K ∈ K(V )

jV (K) := v|K(V )− aV . (3.2.15)

Then aV is the arithmetic mean of the different limits of v at the vertex V , and jV (K) is its
difference with the limit on the element K. It is easy to see that

|jV (K)| ≤ MV ≤ CmV , (3.2.16)

for all V ∈ N (T ) and K ∈ K(V ). Furthermore, we set with ΠpV ∈ PpV (K̂) from Lemma 3.2.5

rKV := ΠpV ◦ F−1
K,V ∈ PpV (K), (3.2.17)

for every K ∈ T and V ∈ N (K). Recall that FK,V : K̂ → K is the affine map with FK,V (0) = V .
Therefore the function rKV fulfills rKV (V ) = 1 and rKV (V ′) = 0 for all V ′ 6= V .
2nd Step: Having disposed of this preliminary step, we turn our attention to the construction of the
nodal part vN . We start by defining local node functions vNV ∈ Sp(T ) such that supp(vNV ) ⊆ ωV ,
vNV |K(V ′) = 0 for every K ∈ T , V ′ 6= V , and the limits of vNV coincide with the ones of v on each
element K ∈ K(V ) at the vertex V : Let

vNV |K :=

{

v|K(V )rKV if K ∈ ωV

0 else,
(3.2.18)

for every K ∈ T . It is easy to see that vNV fulfills the above properties. Now we define the nodal
part vN ∈ Sp(T ) as

vN :=
∑

V ∈N (T )

vNV . (3.2.19)

A few observations are in order. First of all, it holds indeed that

(v − vN )|K(V ) = v|K(V )− vNV |K(V ) = v|K(V )− v|K(V ) rKV (V )
︸ ︷︷ ︸

=1

= 0,

for every K ∈ T and every V ∈ N (K). Moreover, for K ∈ K(V ) we want to estimate some norms
of these functions on K, which will be important later.
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• Using (3.2.6), (3.2.7), and (3.2.16), we observe

‖jV (K)rKV ‖L2(K) ≤ ChV |jV (K)|‖rKV ◦ FK,V ‖L2(K̂) ≤ ChV mV ‖ΠpV ‖L2(K̂)

≤ CmV
hV
pV

‖πpV ‖L2(ê) ≤ C
h
1/2
V

pV
‖qV ‖L2(eV )

= C
h
1/2
V

pV
‖JvKN‖L2(eV ) ≤ C

h
1/2
K

pK
‖JvK‖L2(ρK). (3.2.20)

For the inequality in the second line we transfered the integral to the edge eV and used
qV (V ) = |JvK|eV (V )| = mV , as well as (3.2.6) with q = qV ◦ FeV , where FeV : ê → eV . This
gives

mV ‖πpV ◦ F−1
eV

‖L2(eV ) ≤ C‖qV ‖L2(eV ) = C‖JvK‖L2(eV ). (3.2.21)

• Per construction we have that for some edge e, rKV |e is either zero or fulfills ‖rKV |e‖L2(e) ≤ ‖πp◦
FeV ‖L2(eV ) (cf. (3.2.7) and (3.2.17)). With (3.2.6), and because |JvK|e(V )| ≤ mV = |JvK|eV (V )|
for every edge e with one endpoint being the vertex V , we thus get for every e ∈ E

‖jV (K)rKV ‖L2(e) ≤ C‖JvKN‖L2(eV ) ≤ C‖JvK‖L2(ρe). (3.2.22)

Note that if e /∈ E(V ), then (3.2.22) is trivial since rKV |e ≡ 0.

• For the H1-seminorm on the element K we compute similarly and again with (3.2.7)

‖∇(jV (K)rKV )‖L2(K) ≤ CmV ‖∇ΠpV ‖L2(K̂) ≤ CmV pV ‖πpV ‖L2(ê)

≤ C
pV

h
1/2
V

‖JvKN‖L2(eV ) ≤ C
pK

h
1/2
K

‖JvK‖L2(ρK). (3.2.23)

• Finally we will bound the jump of vN across an interior edge e ∈ EI . Let e be shared by the two
elements K,K ′ and let V, V ′ be its two endpoints. Since supp(vNV ′′) ⊆ ωV ′′ , ∀V ′′ ∈ N (T ), only
the functions vNV and vNV ′ can be nonzero along e. Hence, the combination of the definitions
(3.2.18), (3.2.17), (3.2.11) of vN , rKV , and mV , together with (3.2.21), imply

‖JvN K‖L2(e) ≤ ‖JvNV K‖L2(e) + ‖JvNV ′K‖L2(e)

= ‖(v|K(V )− v|K′(V ))πpV ◦ (FK,e|ê)−1‖L2(e)

+ ‖(v|K(V ′)− v|K′(V ′))πpV ′ ◦ (FK,e|ê)−1‖L2(e)

≤ mV ‖πpV ◦ (FK,e|ê)−1‖L2(e) +mV ′‖πpV ′ ◦ (FK,e|ê)−1‖L2(e)

≤ C
(

‖JvK‖L2(eV ) + ‖JvK‖L2(eV ′ )

)

≤ C‖JvK‖L2(ρe). (3.2.24)
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Inspection of the steps shows that all appearing constants only depend on γ.
3rd Step: We want to define vE and vI . To begin with, we construct local lifting operators
associated with an edge and an element. Let e ∈ E(T ) and let q ∈ Pp(e) with q(V ) = q(V ′) = 0 for
both endpoints V, V ′ of e. We can extend q continuously by zero on the whole boundary ∂K of an
element K ∈ K(e) and denote this function with q∂K . With this, the element map FK : K̂ → K,
and L from Theorem 3.2.3 we define for every e ∈ E(T ) and K ∈ K(e) the lifting operator

LK,e :=

{

{q ∈ Pp(e) : q(V ) = 0 ∀V ∈ N (e)} → H1(K)

q 7→ L(q∂K ◦ FK |∂K̂) ◦ F−1
K .

Now let w := v − vN , then w|K(V ) = 0 for all K ∈ T , V ∈ N (T ). With the notation wK := w|K
and wK,e := wK |e, the function LK,e(wK,e) ∈ Pp(K) is well-defined. We call vE with

vE |K :=
∑

e∈E(K)

LK,e(wK,e) (3.2.25)

for every K ∈ T , the edge part of v. Finally, we define the interior part vI of v by

vI := v − vN − vE .

Note that vI |e ≡ 0 for every e ∈ E(T ) and therefore vI ∈ C0(Ω). We also point out that vN , vE ,
and vI are all in Sp(T ).
4th Step: We construct the approximant vN∗ ∈ Sp(T ) ∩ C0(Ω) of vN . With (3.2.14) and (3.2.17)
let

vN∗,V |K :=

{

aV r
K
V if K ∈ K(V )

0 else,

for every K ∈ T . It is clear that vN∗,V is a continuous function on Ω with

supp(vN∗,V ) ⊆ ωV , vN∗,V (V
′) = δV,V ′ · aV .

The approximant

vN∗ :=
∑

V ∈N (T )

vN∗,V (3.2.26)

is then in Sp(T )∩C0(Ω) and has the property vN∗ (V ) = aV . Now let us bound the L2-error of our
approximation. With definition (3.2.19) of vN and (3.2.26) of vN∗ we get

‖vN − vN∗ ‖L2(K) ≤
∑

V ∈N (T )

‖vNV − vN∗,V ‖L2(K) =
∑

V ∈N (K)

‖vNV − vN∗,V ‖L2(K)

=
∑

V ∈N (K)

‖v|K(V )rKV − aV r
K
V ‖L2(K).
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Further with jV (K) = v|K(V )− aV and (3.2.20)

‖vN − vN∗ ‖L2(K) ≤
∑

V ∈N (K)

‖jV (K)rKV ‖L2(K) ≤ C
∑

V ∈N (K)

hK
1/2

pK
‖JvK‖L2(ρK)

≤ C
h
1/2
K

pK
‖JvK‖L2(ρK), (3.2.27)

where ρK is as in Definition 3.2.6. In a similar fashion and using (3.2.23), we compute

‖∇(vN − vN∗ )‖L2(K) ≤
∑

V ∈N (T )

‖∇(vNV − vN∗,V )‖L2(K) =
∑

V ∈N (K)

‖∇(vNV − vN∗,V )‖L2(K)

=
∑

V ∈N (K)

‖∇(v|K(V )rKV − aV r
K
V )‖L2(K) =

∑

V ∈N (K)

‖jV (K)∇(rKV )‖L2(K)

≤ C
∑

V ∈N (K)

pK√
hK

‖JvK‖L2(ρK) ≤ C
pK√
hK

‖JvK‖L2(ρK). (3.2.28)

5th Step: In this step we construct the approximant vE∗ ∈ Sp(T ) ∩ C0(Ω) of vE . Recall that
wK,e = ((v − vN )|K)|e. For every edge e ∈ T we then define the polynomial qe ∈ Pp(e) as

qe :=







wK,e if e = E(K) ∩ E(K ′) and pK ≤ pK′ ,

wK′,e if e = E(K) ∩ E(K ′) and pK > pK′ ,

wK,e if e ∈ EB(K).

(3.2.29)

We have qe(V ) = 0 for V ∈ N (e), since wK,e respectively wK′,e fulfill this. Thus we are able to
extend qe continuously with zero on the other edges of an element K ∈ K(e), and LK,e(qe) ∈ Pp(K)
is well-defined and vanishes on ∂K\e. The approximant defined as

vE∗ |K :=
∑

e∈E(K)

LK,e(qe), (3.2.30)

for every K ∈ T , is then continuous and in Sp(T ) because, for interior edges, qe is defined as the
polynomial with the smaller polynomial degree of the two adjacent elements. We begin with the
estimate in the L2-norm. Recalling that functions with superscript ∂K denote extensions by zero
on ∂K, we obtain with the linearity of the operator LK,e

‖vE − vE∗ ‖L2(K) =
∑

e∈E(K)

‖LK,e(wK,e)− LK,e(qe)‖L2(K)

=
∑

e∈E(K)

‖LK,e(wK,e − qe)‖L2(K)

=
∑

e∈E(K)\EB

‖L((w∂K
K,e − q∂Ke |∂K̂) ◦ FK |∂K̂) ◦ F−1

K ‖L2(K),
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since per definition (3.2.29) it holds that qe = wK,e if e ∈ EB. Now we use a scaling argument,
(3.2.3a), and |w∂K

K,e|e−q∂Ke |e| ≤ |wK,e−wK′,e|, where K ′ is the element sharing the common interior

edge e with K. This allows to bound the L2-error with

‖vE − vE∗ ‖2L2(K) =
∑

e∈EI(K)

∫

K

(

L((w∂K
K,e − q∂Ke ) ◦ FK |∂K̂) ◦ F−1

K

)2
dx

=
∑

e∈EI(K)

∫

K̂

(

L((w∂K
K,e − q∂Ke ) ◦ FK |∂K̂)

)2
| detF ′

K | dx

≤ C
∑

e∈EI(K)

h2K

∫

K̂

(

L((w∂K
K,e − q∂Ke ) ◦ FK |∂K̂)

)2
dx

≤ C
∑

e∈EI(K)

h2K

∫

F−1
K (e)

(

(w∂K
K,e − q∂Ke ) ◦ FK

)2
dS

≤ C
∑

e∈EI(K)

h2K

∫

F−1
K (e)

(
|wK,e − wK′,e| ◦ FK

)2
dS

≤ C
∑

e∈EI(K)

hK
∥
∥wK,e − wK′,e

∥
∥2

L2(e)
. (3.2.31)

In the last step the one-dimensional integral was transfered back to the edge e. With (v−vN )K,e :=
((v − vN )|K)|e = wK,e and similar definitions for vK,e and vNK,e, we get

‖wK,e − wK′,e‖L2(e) = ‖(v − vN )K,e − (v − vN )K′,e‖L2(e)

≤ ‖vK,e − vK′,e‖L2(e) + ‖vNK,e − vNK′,e‖L2(e)

= ‖JvK‖L2(e) + ‖JvN K‖L2(e). (3.2.32)

The jump of vN was bounded in (3.2.24) and hence

‖vE − vE∗ ‖2L2(K) ≤ C
∑

e∈EI(K)

he‖JvK‖2L2(e) ≤ ChK‖JvK‖2L2(ρK). (3.2.33)

It remains to estimate the error in the H1-seminorm. Similar calculations as above, a scaling
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argument, and (3.2.3b) lead to

‖∇(vE − vE∗ )‖2L2(K) ≤
∑

e∈EI(K)

‖∇(LK,e(wK,e − qe))‖2L2(K)

=
∑

e∈EI(K)

‖∇(L((w∂K
K,e − q∂Ke ) ◦ FK |∂K̂) ◦ F−1

K )‖2L2(K)

≤ C
∑

e∈EI(K)

‖∇(L((w∂K
K,e − q∂Ke ) ◦ FK |∂K̂))‖2

L2(K̂)

≤ C
∑

e∈EI(K)

‖(wK,e − qe) ◦ FK‖2
H1/2(F−1

K (e))

= C
∑

e∈EI(K)

∥
∥(wK,e − wK′,e) ◦ FK

∥
∥2

H1/2(F−1
K (e))

= C
∑

e∈EI(K)

∥
∥((v − vN )K,e − (v − vN )K′,e) ◦ FK

∥
∥
2

H1/2(F−1
K (e))

, (3.2.34)

where K ′ is again the element with e = E(K) ∩ E(K ′). With Lemma 3.2.4, we obtain

‖((v − vN )K,e − (v − vN )K′,e) ◦ FK‖H1/2(F−1
K (e))

≤ ‖JvK ◦ FK‖H1/2(F−1
K (e)) + ‖JvN K ◦ FK‖H1/2(F−1

K (e))

≤ CpK

(

‖JvK ◦ FK‖L2(F−1
K (e)) + ‖JvN K ◦ FK‖L2(F−1

K (e))

)

,

and conclude with (3.2.24)

∥
∥∇(vE − vE∗ )

∥
∥
2

L2(K)
≤ C

p2K
hK

‖JvK‖2L2(ρK). (3.2.35)

6th Step: Finally, we prove the assertion. Let vI∗ := vI ∈ Sp(T )∩C0(Ω) and consider the approxi-
mant

v∗ := vN∗ + vE∗ + vI∗ ∈ Sp(T ) ∩ C0(Ω).

The desired estimates (3.2.10b) and (3.2.10c) follow with (3.2.27) and (3.2.33):

‖v − v∗‖2L2(K) ≤
(

‖vN − vN∗ ‖2L2(K) + ‖vE − vE∗ ‖2L2(K) + ‖vI − vI∗‖2L2(K)

)

≤ ChK‖JvK‖2L2(ρK),

respectively with (3.2.28) and (3.2.35):

‖∇(v − v∗)‖2L2(K) ≤ C
(

‖∇(vN − vN∗ )‖2L2(K) + ‖∇(vE − vE∗ )‖2L2(K) + ‖∇(vI − vI∗)‖2L2(K)

)

≤ C
p2K
hK

‖JvK‖2L2(ρK).
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It remains to prove (3.2.10a). Let e ∈ EB be a boundary edge with endpoints V, V ′, and
belonging to the element K. Then with the notation from the first step and (3.2.22)

‖vN − vN∗ ‖L2(e) = ‖(v|K(V )rKV − aV r
K
V ) + (vK(V ′)rKV ′ − aV ′rKV ′)‖L2(e)

≤ |jV (K)|‖rKV ‖L2(e) + |jV ′(K)|‖rKV ′‖L2(e)

≤ C
(

‖JvK‖L2(eV ) + ‖JvK‖L2(eV ′ )

)

.

Recall that vI |e = vI∗ |e ≡ 0 and vE |e = vE∗ |e for boundary edges (cf. (3.2.29)). Therefore

‖v − v∗‖2L2(e) ≤ C
(

‖vN − vN∗ ‖2L2(e) + ‖vE − vE∗ ‖2L2(e) + ‖vI − vI∗‖2L2(e)

)

≤ C‖JvK‖2L2(ρe)
,

which gives (3.2.10a) for boundary edges. To prove the estimate for interior edges, the contribution
of the edge part additionally needs to be taken into account. Assume that e ∈ EI(K)∩EI(K ′) and
without loss of generality let vE |K |e 6= vE∗ |K |e. Then (cf. (3.2.29) and (3.2.25))

‖(vE − vE∗ )|K‖L2(e) = ‖vE |K − vE |K′‖L2(e) = ‖(v − vN )|K − (v − vN )|K′‖L2(e)

≤ ‖JvK‖L2(e) + ‖JvN K‖L2(e). (3.2.36)

The first term after the last equality sign is the one we want to get, and the second one was bounded
in (3.2.24). This concludes the proof. �

Remark 3.2.8. In light of (3.2.2b), the weight hK instead of hK/p2K in (3.2.10b) seems to be
suboptimal. In fact, whereas the error of the nodal part would give hK/p2K (cf. (3.2.27)), the
problem is that the edge lifting (3.2.3a) is only stable (but not more) in L2. However, as the next
corollary shows, the weights are good enough for us. For tensor product spaces (on quadrilaterals)
an optimal edge lifting can be constructed (for example with the use of πp from (3.2.5)). In this
case the optimal weight is obtained (see [35], where Lagrange polynomials associated with Gauss-
Lobatto nodes are used).

We now state the above theorem in the way it will be used it in the next chapter.

Corollary 3.2.9 (Conforming error). With the same assumptions as in the previous theorem,
there exists a constant C > 0 solely depending on γ such that for every v ∈ Sp(T ) there is a
function v∗ ∈ Sp(T ) ∩ C0(Ω) with

k2‖v − v∗‖2L2(Ω)+‖∇(v − v∗)‖2L2(Ω) + k‖v − v∗‖2L2(∂Ω)

≤ C

a

∑

e∈EI

(

1 +
k2h2e + khe

p2e

)

‖(kα)1/2JvK‖2L2(e), (3.2.37)

where α is as in (2.3.5).

Proof. Recall that kα|e = ap2e/he. Summing over all elements and with the use of Theorem 3.2.7
we readily obtain (3.2.37). �





Chapter 4

A Posteriori Error Estimation

The goal of this chapter is to find an a posteriori error estimate for the solution of (2.3.1). We
make use of some general techniques as described in [3, 28, 33] and apply ideas from [13] and [15].
To start with, we will define non-weighted error indicators and prove that they can be used to
estimate the error from above. This means that the estimator is reliable. Afterwards we consider
weighted error indicators, which then allows to prove efficiency in the succeeding section.

4.1 Reliability

Two problems will have to be dealt with to obtain a reliability estimate: The first one is that the
sesquilinear form aT is not coercive on H3/2(Ω) (and does not even fulfill a G̊arding inequality),
which is a general concern of DG methods. The second one is the lower order term −k2(·, ·)L2(Ω)

contained in aT , and this is characteristic for the Helmholtz equation. The first problem will
be overcome by introducing a new sesquilinear form, the second one can be resolved with an
Aubin-Nitsche-type argument. Before we start, as a preparatory result, we compute an alternative
representation of the term aT (u− uT , v), which will be needed frequently in the following.

Lemma 4.1.1. Let u ∈ H
3/2+ε
T (Ω) be the solution of (2.1.2) for some ε > 0 and let uT be the

solution of (2.3.1). Then we have for every v ∈ H
3/2+ε
T (Ω)

aT (u− uT , v) =
∑

K∈T

∫

K
(f +∆T uT + k2uT )v dx−

∫

EI

J∇T uT KN{v} dS +

∫

EI

JuT KN{∇T v} dS

+

∫

EB

(1− δ)(g − ∂nuT − ikuT )v dS − 1

ik

∫

EB

δ(g − ∂nuT − ikuT )∂nv dS

− ik

∫

EI

αJuT KN JvKN dS +
1

ik

∫

EI

βJ∇T uT KN J∇T vKN dS. (4.1.1)
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Proof. With definition (2.3.2) of aT we get

aT (u− uT , v) =(∇T (u− uT ),∇T v)L2(Ω) − k2(u− uT , v)L2(Ω)

−
∫

EI

Ju− uT KN · {∇T v} dS −
∫

EI

{∇T (u− uT )} · JvKN dS

−
∫

EB

δ(u− uT )∇T v · n dS −
∫

EB

δ∇T (u− uT ) · nv dS

− 1

ik

∫

EI

βJ∇T (u− uT )KN J∇T vKN dS − 1

ik

∫

EB

δ∇T (u− uT ) · n∇T v · n dS

+ ik

∫

EI

αJu− uT KN JvKN dS + ik

∫

EB

(1− δ)(u− uT )v dS. (4.1.2)

Moreover, −∆u−k2u = f in Ω. Integrating by parts, we then obtain for the term (∇T (u−uT ), v)−
k2(u− uT , v) in (4.1.2) with the so called DG magic formula

(∇T (u− uT ),∇T v)−k2(u− uT , v)L2(Ω) =

∑

K∈T

(
∫

K
−∆T (u− uT )v dx+

∑

e∈∂K

∫

e
∇T (u− uT ) · nKv dS

)

− k2(u− uT , v)L2(Ω)

=
∑

K∈T

∫

K
(f +∆T uT + k2uT )v dx+

∑

e∈EB

∫

e
∇T (u− uT ) · nv dS

+
∑

e∈EI

∫

e

(

J∇T (u− uT )KN{v}+ {∇T (u− uT )}JvKN
)

dS, (4.1.3)

where nK is the outer normal of the domain K, and n is the outer normal of Ω. Now we insert
(4.1.3) into (4.1.2) and use ∂n(u− uT ) + ik(u− uT ) = g− ∂nuT − ikuT on ∂Ω. This yields for the
integrals on the boundary

−
∫

EB

δ(u− uT )∂nv dS − 1

ik

∫

EB

δ∂n(u− uT )∂nv dS −
∫

EB

δ∂n(u− uT )v dS

+ ik

∫

EB

(1− δ)(u− uT )v dS +

∫

EB

∂n(u− uT )v dS =

∫

EB

(1− δ)(g − ∂nuT − ikuT )v dS − 1

ik

∫

EB

δ(g − ∂nuT − ikuT )∂nv dS.

The regularity of the solution u ∈ H3/2+ε, ε > 0 implies JuKN = J∇T uKN = 0 for interior edges,
which is why these terms vanish. Finally, we put everything together and aggregate the right terms
which gives (4.1.1). �
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4.1.1 Non-weighted Error Indicator

Definition 4.1.2 (Error indicators). Let u ∈ H3/2+ε(Ω) be the solution of (2.1.2) and let
uT ∈ Sp(T ) be the solution of (2.3.1). Then we introduce for every K ∈ T the local error
indicators of uT :

ηRK
(uT )

2 :=

(
hK
pK

)2

‖∆T uT + k2uT + f‖2L2(K), (4.1.4a)

ηEK
(uT )

2 :=
∑

e∈EI(K)

1

2
‖(β/k)1/2J∇T uT KN‖2L2(e) +

∑

e∈EB(K)

he‖g − ∂nuT − ikuT ‖2L2(e), (4.1.4b)

ηJK (uT )
2 :=

∑

e∈EI(K)

1

2
‖(αk)1/2JuT K‖2L2(e), (4.1.4c)

ηK(uT )
2 :=ηRK

(uT )
2 + ηEK

(uT )
2 + ηJK (uT )

2. (4.1.4d)

The first one is also called the internal residual and the second term in (4.1.4b) is the edge
residual. The global error indicator of uT is given by

η(uT )
2 :=

∑

K∈T

ηK(uT )
2.

When no confusion can arise we omit the argument uT and write ηK := ηK(uT ), and similar for
the other quantities.

We start our analysis of these error indicators with the following lemma that bounds the error,
with respect to a norm that is linked to the DG-norm, by parts of the estimator plus the k-weighted
L2-norm of the actual error. As we have already mentioned, neither aT nor aT + k2(·, ·)L2(Ω) is

coercive on H3/2(Ω). To avoid this problem, one has to define a new sesquilinear form. Oftentimes
this is done via lifting operators. We choose a different path, and simply drop those integrals in
aT , which destroy coercivity. This idea has been used similarly for an interior penalty h-DGFEM
in [13, Section 5.6.2.2]. At this point, the C1 interpolant from Chapter 3 will come into play and
allow us to avoid terms containing jumps of the gradient.

Lemma 4.1.3. Let u ∈ H3/2+ε(Ω) be the solution of (2.1.2) for some ε > 0. Let uT ∈ Sp(T )
be the solution of (2.3.1) with S = Sp(T ), where T is an admissible γ-shape regular triangulation
of Ω and pT fulfills pT ≥ 5. Further assume a ≥ 1. Then there exists a constant C > 0 solely
depending on γ, b,d, and Ω such that

‖∇(u− uT )‖L2(Ω) + k‖u− uT ‖L2(Ω) +
√
k‖u− uT ‖L2(∂Ω)

≤ CCconf




∑

K∈T

(
η2RK

+ η2JK
)
+
∑

e∈EB

he‖g − ∂nuT − ikuT ‖2L2(e)





1/2

+ 2k‖u− uT ‖L2(Ω),

(4.1.5)
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where, with hT , pT as in (1.1.3), (1.2.2),

Cconf :=

(

1 +
khT
pT

+

(
khT
pT

)2
)1/2

. (4.1.6)

Proof. We introduce

ãT (v1, v2) := (∇T v1,∇T v2)L2(Ω) + k2(v1, v2)L2(Ω) + ik

∫

∂Ω
v1v2 dS,

and the associated norm

‖v‖2ã := |ãT (v, v)|, (4.1.7)

where v1, v2, v ∈ H1
T (Ω). This norm is equivalent to the left-hand side of (4.1.5). Integrating by

parts we observe for sufficiently smooth functions v1, v2

ãT (v1, v2) =
∑

K∈T

∫

K
∇T v1∇T v2 + k2v1v2 dx+ ik

∫

∂Ω
v1v2 dS

=
∑

K∈T





∫

K
−∆T v1v2 + k2v1v2 dx+

∑

e∈E(K)

∫

e
∇T v1 · nv2 dS



+
∑

e∈EB

ik

∫

e
v1v2 dS

=
∑

K∈T

(∫

K
(−∆T v1 − k2v1)v2 dx+ 2k2

∫

K
v1v2 dx

)

+
∑

e∈EB

∫

e
(ikv1 + ∂nv1)v2 dS

+
∑

e∈EI

∫

e
J∇T v1KN{v2}+ {∇T v1}Jv2KN dS.

Since u is a solution of (2.1.2), it holds that −∆T (u− uT )− k2(u− uT ) = ∆T uT + k2uT + f in Ω
and ∂n(u − uT ) + ik(u − uT ) = g − ∂nuT − ikuT on ∂Ω. Let ϕ ∈ H1(Ω). Then we have JϕK = 0
and, because of u ∈ H3/2+ε(Ω), we also have JuK = J∇T uK = 0 on interior edges. Therefore,

ãT (u− uT , ϕ) =

∫

Ω
(∆T uT + k2uT + f)ϕ dx−

∫

EI

J∇T uT KNϕ dS +

∫

EB

(g − ∂nuT − ikuT )ϕ dS

+ 2k2(u− uT , ϕ)L2(Ω). (4.1.8)

With u∗T denoting the conforming approximant of uT constructed in Theorem 3.2.7, Corollary 3.2.9
implies due to a ≥ 1

‖u− uT ‖ã ≤ ‖u− u∗T ‖ã + ‖u∗T − uT ‖ã

≤ ‖u− u∗T ‖ã + CCconf




∑

e∈EI

‖(kα)1/2JuT K‖2L2(e)





1/2

. (4.1.9)
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To estimate the first term in (4.1.9) we define the set

Φ :=
{

ϕ ∈ H1(Ω) ∩H
3/2+ε
T (Ω) : ‖ϕ‖ã ≤ 1

}

.

Moreover, let Ihp := Ihp1 be the interpolation operator from Theorem 3.1.10. Then (u− u∗T )/‖u−
u∗T ‖ã ∈ Φ and we obtain again with Corollary 3.2.9 and Cauchy-Schwarz

‖u− u∗T ‖ã ≤ sup
ϕ∈Φ

|ãT (u− u∗T , ϕ)|

≤ sup
ϕ∈Φ

|ãT (u− uT , ϕ)|+ sup
ϕ∈Φ

|ãT (uT − u∗T , ϕ)|

≤ sup
ϕ∈Φ

|ãT (u− uT , ϕ)|+ sup
ϕ∈Φ

‖u− u∗T ‖ã‖ϕ‖ã

≤ sup
ϕ∈Φ

∣
∣
∣ãT (u− uT , ϕ)− aT (u− uT , I

hpϕ)
︸ ︷︷ ︸

=0

∣
∣
∣+ CCconf




∑

e∈EI

‖(kα)1/2JuT K‖2L2(e)





1/2

.

(4.1.10)

Next, we use representation (4.1.8) of ãT (u−uT , ϕ) and representation (4.1.1) of aT (u−uT , I
hpϕ)

to evaluate the term in the remaining supremum

ãT (u− uT , ϕ)− aT (u− uT , I
hpϕ) =

∫

Ω
(∆T uT + k2uT + f)ϕ dx−

∫

EI

J∇T uT KNϕ dS +

∫

EB

(g − ∂nuT − ikuT )ϕ dS

+ 2k2(u− uT , ϕ)L2(Ω)

−
(∫

Ω
(∆T uT + k2uT + f)Ihpϕ dx−

∫

EI

J∇T uT KN{Ihpϕ} dS +

∫

EI

JuT KN{∇T Ihpϕ} dS

+

∫

EB

(1− δ)(g − ∂nuT − ikuT )Ihpϕ dS −
∫

EB

δ

ik
(g − ∂nuT − ikuT )∂nIhpϕ dS

− ik

∫

EI

αJuT KN JIhpϕKN
︸ ︷︷ ︸

=0

dS +
1

ik

∫

EI

βJ∇T uT KN J∇T IhpϕKN
︸ ︷︷ ︸

=0

dS

)

=

∫

Ω
(∆T uT + k2uT + f)(ϕ− Ihpϕ) dx−

∫

EI

J∇T uT KN (ϕ− Ihpϕ) dS

+

∫

EB

(g − ∂nuT − ikuT )(ϕ− Ihpϕ) dS +

∫

EB

δ(g − ∂nuT − ikuT )(Ihpϕ) dS

−
∫

EI

JuT KN{∇T Ihpϕ} dS +

∫

EB

δ

ik
(g − ∂nuT − ikuT )∂nIhpϕ dS + 2k2(u− uT , ϕ)L2(Ω).

(4.1.11)

We denote the terms after the last equality sign in (4.1.11) from left to right with T1, . . . , T7 and
seperately investigate the integrals T1, . . . , T6 in the sequel. For T1, we use (3.1.14) and obtain

∣
∣
∣
∣

∫

K
(∆T uT + k2uT + f)(ϕ− Ihpϕ) dx

∣
∣
∣
∣
≤ C

∥
∥∆T uT + k2uT + f

∥
∥
L2(K)

‖∇ϕ‖L2(ωK)

hK
pK

.
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With the inverse estimate (3.2.2b) and the stability of Ihp in H1(K) it holds for K ∈ K(e), due to
a scaling argument, that

‖∇T I
hpϕ|K‖L2(e) ≤ C

pe

h
1/2
e

‖∇Ihpϕ‖L2(K) ≤ C
pe

h
1/2
e

‖∇ϕ‖L2(ωK) . (4.1.12)

Let now e ∈ EI . Recall that β/k|e ∼ he/pe. Thus we get for T2 with (3.1.15)
∣
∣
∣
∣

∫

e
J∇T uT KN (ϕ− Ihpϕ) dS

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

e

(

(β/k)1/2J∇T uT KN

)(

(β/k)−1/2(ϕ− Ihpϕ)
)

dS

∣
∣
∣
∣

≤ C‖(β/k)1/2J∇T uT KN‖L2(e)‖∇ϕ‖L2(ωe).

With αk|e ∼ p2e/he and (4.1.12) we observe for T5

∣
∣
∣
∣

∫

e
JuT KN{∇T Ihpϕ} dS

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

e

(

(αk)1/2JuT KN

)(

(αk)−1/2{∇T Ihpϕ}
)

dS

∣
∣
∣
∣

≤ C‖(αk)1/2JuT KN‖L2(e)‖{∇T Ihpϕ}‖L2(e)
h
1/2
e

a1/2pe

≤ C‖(αk)1/2JuT KN‖L2(e)‖∇ϕ‖L2(ω2
e)
.

Next we consider boundary edges. Let e ∈ EB. Then we obtain for T3 with the approximation
property (3.1.15)

∣
∣
∣
∣

∫

e
(g − ∂nuT − ikuT )(ϕ− Ihpϕ) dS

∣
∣
∣
∣
≤ C‖g − ∂nuT − ikuT ‖L2(e)‖∇ϕ‖L2(ωe)

(
he
pe

)1/2

.

Recall that δ|e ∼ khe/pe. In particular, δ ≤ CkhT /pT and moreover

δ

k1/2
∼ k1/2he

pe
≤ C

(
khT
pT

)1/2(he
pe

)1/2

.

Again we apply (3.1.15) and therefore get for T4

∣
∣
∣
∣

∫

e
δ(g − ∂nuT − ikuT )(Ihpϕ) dS

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

e
δ(g − ∂nuT − ikuT )(Ihpϕ− ϕ+ ϕ) dS

∣
∣
∣
∣

. ‖g − ∂nuT − ikuT ‖L2(e)‖δ(Ihpϕ− ϕ)‖L2(e)

+ ‖g − ∂nuT − ikuT ‖L2(e)‖δϕ‖L2(e)

. ‖g − ∂nuT − ikuT ‖L2(e)

(

1 +
khT
pT

)

×
(

‖∇ϕ‖L2(ωe) + ‖
√
kϕ‖L2(e)

)(he
pe

)1/2

.

With (4.1.12) and δ/k|e ∼ he/pe, we bound T6

∣
∣
∣
∣

∫

e

δ

ik
(g − ∂nuT − ikuT )∂nIhpϕ dS

∣
∣
∣
∣
≤ C‖g − ∂nuT − ikuT ‖L2(e)‖∇ϕ‖L2(ω2

e)
h1/2e . (4.1.13)
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These estimates now imply for the supremum in (4.1.10)

sup
ϕ∈Φ

∣
∣
∣ãT (u− uT , ϕ)− aT (u− uT , I

hpϕ)
∣
∣
∣ .

∑

K∈T

∥
∥∆T uT + k2uT + f

∥
∥
L2(ωK)

‖∇ϕ‖L2(ωK)

hK
pK

+
∑

e∈EI

‖(β/k)1/2J∇T uT KN‖L2(e) ‖∇ϕ‖L2(ωe)

+
∑

e∈EB

‖g − ∂nuT − ikuT ‖L2(e) ‖∇ϕ‖L2(ωe)

(
he
pe

)1/2

+
∑

e∈EB

‖g − ∂nuT − ikuT ‖L2(e)

×
(
he
pe

)1/2(

1 +
khT
pT

)(

‖
√
kϕ‖L2(e) + ‖∇ϕ‖L2(ωe)

)

+
∑

e∈EI

‖(αk)1/2JuT KN‖L2(e) ‖∇ϕ‖L2(ω2
e)

+
∑

e∈EB

‖g − ∂nuT − ikuT ‖L2(e)‖∇ϕ‖L2(ω2
e)
h1/2e + 2k2 ‖u− uT ‖L2(K) ‖ϕ‖L2(K) . (4.1.14)

Putting together (4.1.9), (4.1.10), and (4.1.14) and using Cauchy-Schwarz for sums, we have

‖u− uT ‖ã .

(
∑

K∈T

∥
∥∆T uT + k2uT + f

∥
∥
2

L2(K)

(
hK
pK

)2

+
∑

e∈EB

‖g − ∂nuT − ikuT ‖2L2(e)

(
he
pe

+ he

)(

1 +
khT
pT

)2

+
∑

e∈EI

‖(αk)1/2JuT KN‖2L2(e)

)1/2

+ 2k‖u− uT ‖L2(Ω)

+ CCconf




∑

e∈EI

‖(kα)1/2JvK‖2L2(e)





1/2

,

and therefore

‖u− uT ‖ã .CCconf




∑

K∈T

(
η2RK

+ η2JK
)
+
∑

e∈EB

he‖g − ∂nuT − ikuT ‖2L2(e)





1/2

+ 2k‖u− uT ‖L2(Ω),

which gives (4.1.5). �

Remark 4.1.4. Lemma 4.1.3 also holds for pT ≥ 1 if we add the sum over the terms η2EK
on the

right-hand side of (4.1.5). This follows, if we work with Ihp,01 instead of Ihp1 from Theorem 3.1.10
for the values 1 ≤ pT < 5. In this case we bound for e ∈ EI(K) with (4.1.12)

1

ik

∫

e
βJ∇T uT KN J∇T IhpϕKN dS ≤ C‖(β/k)1/2J∇T uT KN‖L2(e)p

1/2
e ‖∇ϕ‖L2(ωK)
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since this term does not vanish in (4.1.11). Whereas this results in slightly worse constants (namely
by the factor

√
pe) for pT < 5, it will merely alter the overall constant in Lemma 4.1.3 (after adding

the terms η2EK
).

The next corollary shows that the remaining terms in the DG-norm are, up to some factor,
bounded by η(uT ) + k‖u− uT ‖L2(Ω).

Corollary 4.1.5. With the same assumptions as in the previous lemma, it holds that

‖u− uT ‖DG ≤ C
(

C
3/2
confη(uT ) + C

1/2
confk ‖u− uT ‖L2(Ω)

)

,

for some C = C(γ, b, d,Ω) > 0.

Proof. If we compare the DG-norm (2.3.3) with the left-hand side of (4.1.5), we see that the
only terms missing are the ones containing the jumps of the function and the gradient on interior
edges, and the one containing the normal derivative of uT on the boundary. To estimate the latter,
we remark that ∂nu = g − iku on ∂Ω and thus it holds on e ∈ EB that

(
he
pe

)1/2

∂n(u− uT ) =

(
he
pe

)1/2

(g − ikuT − uT ) + ik1/2
(
khe
pe

)1/2

(u− uT )

which in turn yields

‖(δ/k)1/2∂n(u− uT )‖L2(e) . ‖(he/pe)1/2∂n(u− uT )‖L2(e)

. ‖g − ∂nuT − ikuT ‖L2(e)

(
he
pe

)1/2

+

(
khT
pT

)1/2

‖k1/2(u− uT )‖L2(e)

and

‖(δ/k)1/2∂n(u− uT )‖2L2(∂Ω) .
∑

e∈EB

‖g − ∂nuT − ikuT ‖2L2(e)

he
pe

+
khT
pT

∑

e∈EB

‖k1/2(u− uT )‖2L2(e).

(4.1.15)

Since C
1/2
conf times the left-hand side of (4.1.5) contains the square root of the second term on

the right-hand side of (4.1.15), and η(uT )
2 contains (an upper bound for) the first term on the

right-hand side of (4.1.15), the square root of both terms is bounded by

C
(

C
3/2
confη(uT ) + C

1/2
confk‖u− uT ‖L2(Ω)

)

,

due to, and with the notation of, the previous lemma. For the jump terms let e ∈ EI . Then

‖(αk)1/2Ju− uT K‖L2(e) = ‖(αk)1/2JuT KN‖L2(e),

‖(β/k)1/2Ju− uT KN‖L2(e) = ‖(β/k)1/2JuT KN‖L2(e),
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and they are already contained in η(uT ) as well. By summing over all interior edges, we conclude

‖u− uT ‖DG ≤ C
(

C
3/2
confη(uT ) + C

1/2
confk ‖u− uT ‖L2(Ω)

)

for some appropriate C > 0. �

In order to bound the error with our estimator, it remains to treat the term k‖u − uT ‖L2(Ω).
We will show that k‖u− uT ‖L2(Ω) is, up to some constant, bounded by η(uT ) multiplied with the
adoint approximability constant σ∗

k(S
p(T )) from (2.3.8). If the space Sp(T ) is rich enough (cf.

Theorem 2.4.2), Cconf and σ∗
k will be bounded, which implicates that η estimates the error from

above. The key idea of this proof comes from [15, Lemma 4.7].

Lemma 4.1.6. Let the assumptions of Lemma 4.1.3 be fulfilled. Then there exists a constant
C > 0 solely depending on γ, b,d and Ω such that with σ∗

k(S
p(T )) from (2.3.8) we have

k‖u− uT ‖L2(Ω) ≤ Cη(uT )σ
∗
k(S

p(T )). (4.1.16)

Proof. 1st Step: The first step is to show that for every ϕ ∈ H1(Ω) ∩H
3/2
T (Ω) there holds

|aT (u− uT , ϕ)| ≤ Cη(uT )‖ϕ‖DG+ . (4.1.17)

To this end we employ (4.1.1) to evaluate aT (u− uT , ϕ) = aT (u− uT , ϕ− Ihpϕ). Then

|aT (u− uT , ϕ− Ihpϕ)| =
∣
∣
∣
∣
∣

∫

Ω
(∆T uT + k2uT + f)(ϕ− Ihpϕ) dx−

∫

EI

J∇T uT KN{ϕ− Ihpϕ} dS

+

∫

EI

JuT KN{∇T (ϕ− Ihpϕ)} dS − ik

∫

EI

αJuT KN Jϕ− IhpϕKN dS

+
1

ik

∫

EI

βJ∇T uT KN J∇T (ϕ− Ihpϕ)KN dS +

∫

EB

(1− δ)(g − ∂nuT − ikuT )(ϕ− Ihpϕ) dS

− 1

ik

∫

EB

δ(g − ∂nuT − ikuT )∂n(ϕ− Ihpϕ) dS

∣
∣
∣
∣
∣
.

Taking into account JIhpϕKN = J∇IhpϕKN ≡ 0 on interior edges, we compute similarly as in the
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proof of Lemma 4.1.3

|aT (u− uT , ϕ− Ihpϕ)| ≤

C
∑

K∈T

‖∆T uT + k2uT + f‖L2(K)‖∇ϕ‖L2(ωK)
hK
pK

+ C
∑

e∈EI

(

‖(β/k)1/2J∇T uT KN‖L2(e)‖∇ϕ‖L2(ωe)‖(β/k)−1/2‖L∞(e)

(
he
pe

)1/2

+ ‖(kα)1/2JuT KN‖L2(e)

(

‖(kα)−1/2{∇ϕ}‖L2(e) + ‖(kα)−1/2{∇Ihpϕ}‖L2(e)

)

+ ‖(kα)1/2JuT KN‖L2(e)‖(kα)1/2JϕK‖L2(e) + ‖(β/k)1/2J∇T uT KN‖L2(e)‖(β/k)1/2J∇ϕKN‖L2(e)

)

+ C
∑

e∈EB

(

‖g − ∂nuT − uT ‖L2(e)‖∇ϕ‖L2(ωe)

(
he
pe

)

+ ‖(δ/k)1/2(g − ∂nuT − uT )‖L2(e)

×
(

‖(δ/k)1/2∇ϕ · n‖L2(e) + ‖(δ/k)1/2∇Ihpϕ · n‖L2(e)

)
)

.

As in (4.1.12) we bound ‖∇Ihpϕ‖L2(e) ≤ Cpe/h
1/2
e ‖∇ϕ‖L2(ω2

e)
for every e ∈ E . With

(αk)1/2|e ∼ pe/h
1/2
e , (β/k)1/2|e ∼ (he/pe)

1/2, (δ/k)1/2|e ∼ (he/pe)
1/2,

definition (2.3.4) of the DG+-norm, and Cauchy-Schwarz for sums, we then deduce (4.1.17):

|aT (u− uT , ϕ)| ≤ C

(
∑

K∈T

‖∆T uT + k2uT + f‖2L2(K)

(
hK
pK

)2

+
∑

e∈EI

(

‖(αk)1/2JuT K‖2L2(e) + ‖(β/k)1/2J∇T uT KN‖2L2(e)

)

+
∑

e∈EB

he‖g − ∂nuT − uT ‖2L2(e)

)1/2

‖ϕ‖DG+

≤ Cη(uT )‖ϕ‖DG+ .

2nd Step: We prove the assertion. The technique used in the following to bound the L2-norm
is an Aubin-Nitsche-type argument. Consider the solution z of the adjoint problem (2.3.7) with
right-hand side k2(u− uT ), i.e.

a(v, z) = (v, k2(u− uT ))L2(Ω) ∀v ∈ H1(Ω).

Moreover, let zε
′

S ∈ Sp(T ) be such that

‖z − zε
′

S ‖DG+ ≤ inf
ΨS∈Sp(T )

‖z −ΨS‖DG+ + ε′,
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for a given ε′ > 0. Then with Lemma 2.3.4

k2‖u− uT ‖2L2(Ω) = (u− uT , k
2(u− uT ))L2(Ω) = aT (u− uT , z) = aT (u− uT , z − zε

′

S ).

Due to the adjoint approximation property (2.3.8) we have

‖z − zε
′

S ‖DG+ ≤ σ∗
k(S

p(T ))
‖k2(u− uT )‖L2(Ω)

k
+ ε′.

By using (4.1.17), we get

k2‖u− uT ‖2L2(Ω) = aT (u− uT , z − zε
′

S ) ≤ Cη(uT )‖z − zε
′

S ‖DG+

≤ Cη(uT )
(
σ∗
k(S

p(T ))‖k(u− uT )‖L2(Ω) + ε′
)
,

and whence (4.1.16) for ε′ → 0. �

4.1.2 Weighted Error Indicator

Before we gather the previous results in one theorem, we generalize the error indicators by multi-
plying the residuals as well as the gradient jump with weight functions, and add data oscillation
terms as it is done in [28]. Let K̂ be the reference element. Then we define the weight functions

Φê(x) := x(1− x), x ∈ ê = [0, 1],

ΦK̂(x) := dist(x, ∂K̂), x ∈ K̂.

We get weight functions ΦK and Φe associated with elements and edges, by scaling ΦK̂ and Φê:

ΦK = cKΦK̂ ◦ F−1
K , Φe = ceΦê ◦ F−1

e , (4.1.18)

where the scaling factors cK and ce are such that

∫

K
ΦK dx =

∫

K
1 dx,

∫

e
Φe dS =

∫

e
1 dS.

The following inverse estimates then hold.

Theorem 4.1.7. Let −1 < ζ < ξ and ν ∈ [0, 1]. Then there exist C1(ζ, ξ), C2(ν) > 0 such that
for all p ∈ N, q ∈ Pp(ê), and r ∈ Pp(K̂)

∫

ê
Φζ
ê(x)q

2 dx ≤ C1p
2(ξ−ζ)

∫

ê
Φξ
êq

2 dx, (4.1.19a)

∫

K̂
Φζ

K̂
r2 dx ≤ C1p

2(ξ−ζ)

∫

K̂
Φξ

K̂
r2 dx, (4.1.19b)

∫

K̂
Φ2ν
K̂
|∇r|2 dx ≤ C2p

2(2−ν)

∫

K̂
Φν
K̂
r2 dx. (4.1.19c)
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Proof. A proof is given in Lemma 2.4 and Theorem 2.5 in [28]. �

Definition 4.1.8 (Weighted error indicators). Denote by fpK the L2-orthogonal projection
of f |K ∈ L2(K) onto PpK (K), and let gpK be the L2-orthogonal projection of g|e ∈ L2(e) onto
PpK (e), where e ∈ EB(K). With the same terminology as in Definition 4.1.2 and for ζ ∈ [0, 1] the
weighted error indicators are given by

ηζ;RK
(uT )

2 :=

(
hK
pK

)2

‖(∆T uT + k2uT + fpK )Φ
ζ/2
K ‖2L2(K), (4.1.20a)

ηζ;EK
(uT )

2 :=
∑

e∈EI(K)

1

2
‖(β/k)1/2J∇T uT KNΦζ/2

e ‖2L2(e)

+
∑

e∈EB(K)

he‖(gpK − ∂nuT − ikuT )Φ
ζ/2
e ‖2L2(e), (4.1.20b)

ηζ;K(uT )
2 :=ηζ;RK

(uT )
2 + ηζ;EK

(uT )
2 + ηJK (uT )

2. (4.1.20c)

When no confusion can arise we omit the argument uT and write ηζ;K := ηζ;K(uT ), and similar
for the other quantities. Furthermore

osc2K :=
h2K
p2K

‖f − fpK‖2L2(K) +
∑

e∈EB(K)

he‖g − gpK‖2L2(e),

represents the oscillation of the data.

Remark 4.1.9. In Defintion 4.1.8, f and g is locally projected on polynomials of degree pK .
Another polynomial degree may be chosen as long as it is of size O(pK). Such a choice would not
influence subsequent results.

Now that we have our weighted error indictators, we can state the next theorem, which is the
main result of this section on reliability. It summarizes the above estimates.

Theorem 4.1.10 (Reliability estimate). Let T be an admissible γ-shape regular triangulation of
Ω and let p be a polynomial degree distribution on T satisfying (1.2.1). Moreover, let u ∈ H3/2+ε(Ω)
be the solution of (2.1.2) for some ε > 0, and let uT ∈ Sp(T ) be the solution of (2.3.1) with
S = Sp(T ) and pT ≥ 1. Let ζ ∈ [0, 1] and assume that a ≥ 1. Then there exists a constant C > 0
solely depending on γ, b,d, and Ω (cf. Remark 3.1.14), such that with σ∗

k(S
p(T )) from (2.3.8) and

Cconf as in (4.1.6)

‖u− uT ‖DG ≤ CC
3/2
conf

(

1 + σ∗
k(S

p(T ))
)

η(uT ), (4.1.21)
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and

‖u− uT ‖DG ≤CC
3/2
conf

(

1 + σ∗
k(S

p(T ))
)

×
(
∑

K∈T

p2ζK

(

ηζ;RK
(uT )

2 + ηζ;EK
(uT )

2
)

+ ηJK (uT )
2 + osc2K

)1/2

. (4.1.22)

Proof. Let at first pT ≥ 5. Estimate (4.1.21) follows directly from Corollary 4.1.5 and Lemma
4.1.6. For (4.1.22), we set ‘ζ’ = 0 and ‘ξ’ = ζ in the inverse estimate (4.1.19b) and obtain

η2RK
≤ h2K

p2K
‖f − fpK‖2L2(K) +

h2K
p2K

‖∆T uT + k2uT + fpK‖2L2(K)

≤ h2K
p2K

‖f − fpK‖2L2(K) +
h2K
p2K

p2ζK ‖(∆T uT + k2uT + fpK )Φ
ζ/2
K ‖2L2(K)

=
h2K
p2K

‖f − fpK‖2L2(K) + p2ζK η2ζ;RK
.

Similarly with (4.1.19a)

η2EK
≤ p2ζη2ζ;EK

+
∑

e∈EB(K)

he‖g − gpK‖2L2(e).

Therefore

η2 =
∑

K∈T

η2RK
+ η2EK

+ η2JK ≤
∑

K∈T

p2ζK η2ζ;RK
+ p2ζK η2ζ;EK

+ η2JK + osc2K .

Together with the first estimate, this proves (4.1.22) for pT ≥ 5.
The case 1 ≤ pT < 5 is shown similarly and with the use of Remark 4.1.4. �

Remark 4.1.11. The squared edge residual in (4.1.20b) has the weight he instead of he/pe, which
is what could be expected. The problem occurs in (4.1.13), where we used an inverse inequality to
bound the normal derivative of Ihpϕ on the edge e ∈ EB(K) by

‖∂nIhpϕ‖L2(e) ≤ C
pe√
he

‖∇T I
hpϕ‖L2(K) ≤ C

pe√
he

‖∇ϕ‖L2(ωK),

which is off by
√
pe. Whereas a similar issue could be resolved on interior edges by using a C1

interpolant, we would, for example, have to use an interpolant with a stable normal derivative to
get rid of this suboptimality. With a general interpolation operator this can only be achieved if at
least the H3/2-norm, instead of the H1-norm, of ϕ can be controlled. All subsequent results are
affected by this, and overcoming this problem would improve most constants in the theorems of
this and the following section on efficiency by the factor

√
pe. However, at least in practice, where

khK/pK ≤ C and pK ∼ log(k), this should only be of minor importance since pK is then almost a
logarithmic term of hK .
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4.1.3 Error Indicator Without Jump Term

We shall now consider yet another version of the error estimator. The next lemma will show,
that the jump term in the error estimator can be omitted. The price we pay is twofold: a) As a
requirement of the lemma, the constant a needs to be large enough and we do not give a precise
lower bound for this condition. b) The weight belonging to the jump of the gradient in η0;EK

will
increase by

√
pe, and this is likely to be suboptimal.

Such a result is important if one wants to prove convergence of an adaptive algorithm, which
we will not do here however. The reason is, that the error estimator η ideally should monotonically
decrease when refining the triangulation T . The increasing factor αk = ap2e/he of the jump term
ηJK in the error estimator from Definition 4.1.2 can then be an obstacle. On the other hand, the
observation that the jump term is not a necessary contribution to the error indicator, at least if we
weight the jump strong enough, is of course interesting in itself.

Definition 4.1.12 (Error indicators without jump term). With η0;RK
from Definition 4.1.8

we introduce the local error indicators

η̃EK
(uT )

2 :=
∑

e∈EI(K)

pe
1

2
‖(β/k)1/2J∇T uT KN‖2L2(e)

+
∑

e∈EB(K)

he‖(gpK − ∂nuT − ikuT )‖2L2(e), (4.1.23a)

η̃K(uT )
2 :=η0;RK

(uT )
2 + η̃EK

(uT )
2, (4.1.23b)

and the global error indicator

η̃(uT )
2 :=

∑

K∈T

η̃K(uT )
2.

When no confusion can arise we omit the argument uT and write η̃K := η̃K(uT ), and similar for
the other quantities.

Lemma 4.1.13. With ηJK from Definition 4.1.2 there exist constants C = C(γ, b, d) > 0 and
Ca = Ca(γ) > 0 such that if a > Ca, then

∑

K∈T

η2JK ≤ C
∑

K∈T

(
η̃2K + osc2K

)
. (4.1.24)

Proof. Recall that

η2JK = ηJK (uT )
2 =

∑

e∈EI(K)

1

2
‖(αk)1/2JuT K‖2L2(e).

The idea is to test our variational formulation (2.3.1) with a properly selected test function, as it
was similarly done in [13]. Due to Galerkin orthogonality, it holds with the conforming approximant
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u∗T ∈ Sp(T ) from Theorem 3.2.7 that

aT (u− uT , uT − u∗T ) = 0.

Hence with

kα(x)|e ≡ a
p2e
he

, (β/k)(x)|e ≡ b
he
pe

, (δ/k)(x)|e ≡ d
he
pe

,

JuT − u∗T KN = JuT KN , and (4.1.1) we obtain

∑

e∈EI

‖(αk)1/2JuT KN‖2L2(e) ≤
∑

K∈T

hK
pK

‖∆T uT + k2uT + f‖L2(K)
pK
hK

‖uT − u∗T ‖L2(K)

+
∑

e∈EI

p1/2e ‖(β/k)1/2J∇T uT KN‖L2(e)

(
1

bhe

)1/2

‖{uT − u∗T }‖L2(e)

+
∑

e∈EB

h1/2e ‖g − ∂nuT − ikuT ‖L2(e)
1

h
1/2
e

‖uT − u∗T ‖L2(e)

+
∑

e∈EB

h1/2e ‖g − ∂nuT − ikuT ‖L2(e)
dh

1/2
e

pe
‖∂n(uT − u∗T )‖L2(e)

+
∑

e∈EI

p1/2e ‖(β/k)1/2J∇T uT KN‖L2(e)

(
bhe
p2e

)1/2

‖J∇T (uT − u∗T )KN‖L2(e)

+
∑

e∈EI

‖(αk)1/2JuT KN‖L2(e)

(
he
ap2e

)1/2

‖{∇T (uT − u∗T )}‖L2(e). (4.1.25)

Let e ∈ E(T ). Then either e is shared by some elements K and K ′, or e is a boundary edge
belonging to the element K. In the first case we define Ke := K∪K ′, and recall that ρK = EI(ωK),
ρe = EI(ωe). The bounds in Theorem 3.2.7 together with the inverse inequality (3.2.2b) yield

p2K
h2K

‖uT − u∗T ‖2L2(K) ≤
C

a
‖(αk)1/2JuT KN‖2L2(ρK),

1

he
‖{uT − u∗T }‖2L2(e) ≤C

p2e
h2e

‖uT − u∗T ‖2L2(Ke)
≤ C

a
‖(αk)1/2JuT KN‖2L2(ρe)

,

1

he
‖uT − u∗T ‖2L2(e) ≤C

p2e
h2e

‖uT − u∗T ‖2L2(K) ≤
C

a
‖(αk)1/2JuT KN‖2L2(ρe)

,

he
p2e

‖∂n(uT − u∗T )‖2L2(e) ≤C‖∇T (uT − u∗T )‖2L2(K) ≤
C

a
‖(αk)1/2JuT KN‖2L2(ρe)

,

he
p2e

‖J∇T (uT − u∗T )KN‖2L2(e) ≤C‖∇T (uT − u∗T )‖2L2(Ke)
≤ C

a
‖(αk)1/2JuT KN‖2L2(ρe)

.

By using these estimates, each term except the last one in (4.1.25) can be bounded by either
η̃EK

+ oscK or ηRK
+ oscK multiplied with ‖(αk)1/2JuT KN‖L2(ρK). For the remaining term, we use
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again the inverse inequality (3.2.2b) as well as (3.2.10c) which gives

∑

e∈EI

‖(αk)1/2JuT KN‖L2(e)

(
he
ap2e

)

‖{∇T (uT − u∗T )}‖L2(e) ≤
C

a

∑

e∈EI

‖(αk)1/2JuT KN‖2L2(ρe)
.

If a > Ca for some constant Ca > 0, which only depends on γ, we can absorb this term in
the left-hand side of (4.1.24). Applying Cauchy-Schwarz for sums and dividing both sides by
‖(αk)1/2JuT KN‖L2(EI) finishes the proof. �

Let us state the reliability estimate in this case:

Theorem 4.1.14 (Reliability estimate). Let a > Ca as in Lemma 4.1.13. With the assumptions
from Theorem 4.1.10 and Cconf as in (4.1.6), we have

‖u− uT ‖DG ≤ CCconf

(

1 + σ∗
k(S

p(T ))
)
(
∑

K∈T

(
η̃K(uT )

2 + osc2K
)

)1/2

, (4.1.26)

for some C = C(γ, b, d).

Proof. Theorem 4.1.10, Lemma 4.1.13, and a comparison of the error indicators η̃EK
and η0;EK

readily give (4.1.26). The reason why we didn’t include dependence on Ω in the constant, is that
using the continuous interpolation operator from [24] (where the constant does not depend on Ω)

instead of Ihp1 from Theorem 3.1.10, would alter the constants in the proofs leading up to Theorem
4.1.10 according to the situation of Definition 4.1.12. That is, we would obtain Theorem 4.1.10 in
the case ζ = 0 with η̃EK

instead of η0;EK
. �

4.2 Efficiency

Besides being reliable, it is also important that the error indicators are bounded by the actual error
on the element. This (local) property is called efficiency, and it means that the error indicators
do not overestimate the error. Typically in hp-FEM the local error indicators can be shown to be
efficient only up to a constant depending on the polynomial degree pK (at least with the proofs
that are available up to date). With the use of the weighted residuals it is possible to compromise
between efficiency and reliability. Enhancing the parameter ζ from above causes the reliability
constant to grow and the efficiency constant to drop, and vice versa. The proof for the efficiency
of the error estimator is similar as in the conforming FEM, for which it is given in [28]. Therefore,
in order to bound the residuals, we keep close to this paper and also to [19, Theorem 3.2]. Let us
start with the internal residual.

Lemma 4.2.1 (Efficiency of the internal residual). Let ζ ∈ [0, 1] and ε > 0. Let ηζ;RK
be as
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in Definition 4.1.8. Then there exists Cε = Cε(ε, γ) > 0 independent of k, hK , pK such that

η2ζ;RK
≤Cε

(

p
2(1−ζ)
K |u− uT |2H1(K)

+ p
max{1+2ε−2ζ,0}
K

((
khK
pK

)2

‖k(u− uT )‖2L2(K) +
h2K
p2K

‖f − fpK‖2L2(K)

))

. (4.2.1)

Proof. First let 1/2 < ζ ≤ 1. We define vK := (∆T uT + k2uT + fpK )Φ
ζ
K and point out that

‖vKΦ
−ζ/2
K ‖L2(K) = (pK/hK)ηζ;RK

. With −∆u− k2u = f in K we get

‖vKΦ
−ζ/2
K ‖2L2(K) =

∫

K
(∆T uT + k2uT + fpK )vK dx

=

∫

K
(∆T uT + k2uT + f)vK + (fpK − f)vK dx

=

∫

K
∆T (uT − u)vK + k2(uT − u)vK + (fpK − f)vK dx

=

∫

K
∇T (u− uT )∇T vK + k2(uT − u)vK + (fpK − f)vK dx

≤ |uT − u|H1(K)|vK |H1(K) + ‖k2(uT − u)Φ
ζ/2
K ‖L2(K)‖vKΦ

−ζ/2
K ‖L2(K)

+ ‖(f − fpK )Φ
ζ/2
K ‖L2(K)‖vKΦ

−ζ/2
K ‖L2(K), (4.2.2)

since ΦK is zero on the boundary of K. Now we take a look at the H1-seminorm of vK . With the
inverse estimates (4.1.19c), (4.1.19b) (with ‘ζ’ = 2(ζ−1) and ‘ν’ = ‘ξ’ = ζ), and |∇Φζ

K | . |Φζ−1
K |/hK

we find

|vK |2H1(K) ≤ 2

∫

K
Φ2ζ
K |∇T (∆T uT + k2uT + fpK )|2 dx+ 2

∫

K
(∆T uT + k2uT + fpK )

2|∇Φζ
K |2 dx

≤ C
p
2(2−ζ)
K

h2K

∫

K
Φζ
K(∆T uT + k2uT + fpK )

2 dx+
C

h2K

∫

K
Φ
2(ζ−1)
K (∆T uT + k2uT + fpK )

2 dx

≤ C
p
2(2−ζ)
K

h2K

∫

K
Φζ
K(∆T uT + k2uT + fpK )

2 dx

≤ Cp
2(1−ζ)
K

p2K
h2K

‖vKΦ
−ζ/2
K ‖2L2(K).

In order to apply the inverse estimate, we needed ζ > 1/2 since only then the requirement 2ζ−2 >

−1 is satisfied. Now we use ‖ΦK‖L∞(K) ≤ C and ‖vKΦ
−ζ/2
K ‖L2(K) = (pK/hK)ηζ;RK

. Canceling the

term ‖vKΦ
−ζ/2
K ‖L2(K) in (4.2.2) then leads to the assertion in the first case:

ηζ;RK
≤ C

(

p1−ζ
K |u− uT |H1(K) +

khK
pK

‖k(u− uT )‖L2(K) +
hK
pK

‖f − fpK‖L2(K)

)

. (4.2.3)
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For the second case let 0 ≤ ζ ≤ 1/2. With (4.1.19b) and then (4.2.3) we find for ξ := 1/2 + ε

ηζ;RK
≤ Cpξ−ζ

K ηξ,RK

≤ Cpξ−ζ
K

(

p1−ξ
K |u− uT |H1(K) +

khK
pK

‖k(u− uT )‖L2(K) +
hK
pK

‖f − fpK‖L2(K)

)

= C

(

p1−ζ
K |u− uT |H1(K) + p

1/2+ε−ζ
K

(
khK
pK

‖k(u− uT )‖L2(K) +
hK
pK

‖f − fpK‖L2(K)

))

,

where C depends on ε only. �

The above lemma shows that the weighted internal residual on each element is, up to data
oscillations and constants depending on pK , bounded by the actual error on this element in a
suitable norm. Since we consider the error in the DG-norm, the remaining terms in the local error
estimator ηζ;K essentially already are error terms associated with this element (in order to see that,
the weighted edge residual needs to be slightly modified, as we will do below). Nonetheless, we
continue with our analyis and proceed with the edge part ηζ;EK

. First, an extension result is needed
to treat the edge error indicator [28, Lemma 2.6]:

Lemma 4.2.2. Let K̂ be the reference element, and let ê = [0, 1] × {0}. Let ζ ∈ (1/2, 1]. Then
there exists a constant C = C(ζ) > 0, such that for every ǫ ∈ (0, 1], p ∈ N, and q ∈ Pp(ê) there

exists an extension vê ∈ H1(K̂) of qΦζ
ê with

vê|ê = qΦζ
ê and vê|∂K̂\ê ≡ 0, (4.2.4a)

‖vê‖2L2(K̂)
≤ Cǫ‖qΦζ/2

ê ‖L2(ê), (4.2.4b)

‖∇vê‖2L2(K̂)
≤ C(ǫp2(2−ζ) + ǫ−1)‖qΦζ/2

ê ‖L2(ê). (4.2.4c)

Lemma 4.2.3 (Efficiency of the edge residual and gradient jumps). Let ζ ∈ [0, 1] and
ε > 0. Let ηζ;EK

be as in Definition 4.1.8. Then there exists Cε = Cε(ε, γ) > 0 independent of
k, hK , pK such that for every e ∈ EI

‖(β/k)1/2J∇T uT KNΦζ/2
e ‖2L2(e) ≤Cεp

max{1−2ζ+2ε,0}
e

(

pe|u− uT |2H1(ωe)

+ p2εe

((
khe
pe

)2

‖k(u− uT )‖2L2(ωe)
+

h2e
p2e

‖f − fpe‖2L2(ωe)

))

(4.2.5)
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and

η2ζ;EK
≤Cεp

max{1−2ζ+2ε,0}
K

(
∑

e∈EB(K)

(

hek‖
√
k(u− uT )‖2L2(e) + he‖g − gpK‖2L2(e)

)

+ p2K |u− uT |2H1(ωK) + p1+2ε
K

((
khK
pK

)2

‖k(u− uT )‖2L2(ωK) +
h2K
p2K

‖f − fpK‖2L2(ωK)

))

.

(4.2.6)

Proof. Recall that

ηζ;EK
(uT )

2 =
∑

e∈EI(K)

1

2
‖(β/k)1/2J∇T uT KNΦζ/2

e ‖2L2(e)

+
∑

e∈EB(K)

he‖(gpK − ∂nuT − ikuT )Φ
ζ/2
e ‖2L2(e). (4.2.7)

We merely prove the second estimate, i.e. we accept (4.2.5) and only consider the edge residual

‖(gpK − ∂nuT − ikuT )Φ
ζ/2
e ‖L2(e). The proof of (4.2.5) is very similar, and both estimates follow by

the arguments from the proof given in [28, Lemma 3.5]. Let at first ζ ∈ (1/2, 1] and let e ∈ EB(K).
Furthermore, let we ∈ H1(K) be the pullback of vê with q := (gpK − ∂nuT − ikuT ) ◦ Fe in Lemma
4.2.2 (where Fe : ê → e). Because of (4.2.4a), we have we|∂K\e ≡ 0. Together with ∂nu+ iku = g
on ∂Ω we obtain therefore

‖(gpK − ∂nuT − ikuT )Φ
ζ/2
e ‖2L2(e) =

∫

∂K
∂n(u− uT )we dS +

∫

e
(ik(u− uT ) + (gpK − g))we dS.

(4.2.8)

For the second integral we get

∫

e
(ik(u− uT ) + (gpK − g))we dS ≤

(
‖k(u− uT )‖L2(e) + ‖gpK − g‖L2(e)

)
‖we‖L2(e)

≤
(
‖k(u− uT )‖L2(e) + ‖gpK − g‖L2(e)

)

× ‖(gpK − ∂nuT − ikuT )Φ
ζ/2
e ‖L2(e), (4.2.9)

where we have used the definition of we and the fact that Φe is pointwise bounded by some constant

(independent of he, cf. (4.1.18)), which implies Φζ
e . Φ

ζ/2
e . For the first integral on the right-hand
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side of (4.2.8) we compute
∫

e
∂n(u− uT )we dS =

∫

∂K
∇T (u− uT ) · nwe dS

=

∫

K
∇T (u− uT )∇T we dx+

∫

K
∆T (u− uT )we dx

=

∫

K
∇T (u− uT )∇T we dx+

∫

K
k2(uT − u)we dx

−
∫

K
(∆T uT + k2uT + f)we dx

≤ |u− uT |H1(K)|we|H1(K) + ‖k2(uT − u)‖L2(K)‖we‖L2(K)

+ ‖∆T uT + k2uT + fpK‖L2(K)‖we‖L2(e) + ‖fpK − f‖L2(K)‖we‖L2(K).

(4.2.10)

Lemma 4.2.2 gives upper bounds for |we|H1(K) and ‖we‖L2(K):

|we|2H1(K) ≤ C
1

hK
(ǫp

2(2−ζ)
K + ǫ−1)‖(gpK − ∂nuT − ikuT )Φ

ζ/2
e ‖2L2(e),

‖we‖2L2(K) ≤ ChKǫ‖(gpK − ∂nuT − ikuT )Φ
ζ/2
e ‖2L2(e),

where ǫ will be chosen below. Note that the above constant does not depend on ǫ. Combining this

with (4.2.10), (4.2.9), and (4.2.8) and canceling the term ‖(gpK − ∂nuT − ikuT )Φ
ζ/2
e ‖L2(e) yields

‖(gpK − ∂nuT − ikuT )Φ
ζ/2
e ‖L2(e) ≤C

((
1

hK
(ǫp

2(2−ζ)
K + ǫ−1)

)1/2

|u− uT |H1(K) + (hKǫ)1/2

×
(

‖∆T uT + k2uT + fpK‖L2(K) + ‖fpK − f‖L2(K)

+ ‖k2(u− uT )‖L2(K)

)

+ ‖k(u− uT )‖L2(e) + ‖gpK − g‖L2(e)

)

.

Now we use η0;RK
in (4.2.1) to bound ‖∆uT + k2uT + fpK‖L2(K). This gives

he‖(g − ∂nuT − ikuT )Φ
ζ/2
e ‖2L2(e) ≤he‖g − gpK‖2L2(e) + hek‖

√
k(u− uT )‖2L2(e)

+
(

ǫp
2(2−ζ)
K + ǫ−1 + ǫp4K

)

|u− uT |2H1(K)

+ ǫp3+2ε
K

(

h2K
p2K

‖f − fpK‖2L2(K) +

(
khK
pK

)2

‖k(u− uT )‖2L2(K)

)

+ ǫh2Kk2‖k(u− uT )‖2L2(K).

The assertion for ζ ∈ (1/2, 1] then follows by summing over all edges, using (4.2.5), and choos-
ing ǫ = 1/p2K . Now let ζ ∈ [0, 1/2]. Then, with ξ = 1/2 + ε in (4.1.19b), we obtain ηζ;EK

≤
C(ε)p

1/2+ε−ζ
K ηξ;EK

and furthermore (4.2.6) in this case. �
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So far we have seen that ηζ;RK
+ηζ;EK

is bounded by data oscillations, the k-weighted L2-error,
the error in the H1-seminorm, and the k1/2-weighted L2-error on the boundary. Now we take a
closer look at the jump term ηJK from Definition 4.1.2. We already absorbed the jump terms in
the rest of the estimator in Section 4.1.3, thus the jumps are easily bounded with the above error
terms. However, the statement is not a local one.

Lemma 4.2.4 (Efficiency of the jumps). Let ε > 0, and let a > Ca as in Lemma 4.1.13. Then
there exists a constant Cε = Cε(ε, γ) > 0, such that

∑

K∈T

η2JK =
∑

e∈EI

‖(αk)1/2JuT KN‖2L2(e)

≤ Cε

∑

e∈EB(K)

p1+2ε
K

(

hek‖
√
k(u− uT )‖2L2(e) + he‖g − gpK‖2L2(e)

)

+ Cε

∑

K∈T

(

p2+4ε
K

((
khK
pK

)2

‖k(u− uT )‖2L2(K) +
h2K
p2K

‖f − fpK‖2L2(K)

)

+ p3+2ε
K |u− uT |2H1(K)

)

. (4.2.11)

Proof. Lemmata 4.2.1 and 4.2.3 imply the estimates

h2K
p2K

‖∆T uT + k2uT + fpK‖2L2(K) ≤ Cε

(

p2K |u− uT |2H1(K) + p1+2ε
K

×
((

khK
pK

)2

‖k(u− uT )‖2L2(K) +
h2K
p2K

‖f − fpK‖2L2(K)

))

,

and

∑

e∈EB(K)

he‖gpK − ∂nuT − ikuT ‖2L2(e) +
∑

e∈EI(K)

pe‖(β/k)1/2J∇T uT KN‖2L2(e)

≤ Cεp
1+2ε
K

(
∑

e∈EB(K)

(

khK‖
√
k(u− uT )‖2L2(e) + he‖g − gpK‖2L2(e)

)

+ p2K |u− uT |2H1(ωK) + p1+2ε
K

((
khK
pK

)2

‖k(u− uT )‖2L2(ωK) +
h2K
p2K

‖f − fpK‖2L2(ωK)

))

.

Equation (4.2.11) is therefore an immediate consequence of Lemma 4.1.13. �

Remark 4.2.5. In contrast to the residuals, there is not really a point in considering a weighted
version of the jump. This is because ηJK is both: a part of the error in the DG-norm, and an error
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indicator. Of course, the same can be said about the jump of the gradient since it is also contained
in the DG-norm. However, since we constructed the conforming approximant as a function of
C0(Ω) and not C1(Ω), the arguments in Section 4.1.3 do not work for the jump of the gradient,
although they possibly might be extended to this case with an appropriate C1 approximant at
hand. Therefore we used a weighted version to prove efficiency for this term.

At the end of this section we summarize our results in one theorem.

Theorem 4.2.6 (Efficiency estimate). Let T be an admissible γ-shape regular triangulation of
Ω with a polynomial degree distribution p satisfying (1.2.1). Let u ∈ H3/2+ε(Ω) be the solution of
(2.1.2) for some ε > 0, and let uT ∈ Sp(T ) be the solution of (2.3.1) with S = Sp(T ). Additionally,
let the error indicators ηζ;K be as in Definition 4.1.8 for some ζ ∈ [0, 1]. Then, for every ε > 0
there exists a constant Cε = Cε(ε, γ) > 0 such that

η2ζ;K ≤Cεp
max{1−2ζ+2ε,0}
K

(
∑

e∈EB(K)

(

hek‖
√
k(u− uT )‖2L2(e) + he‖g − gpK‖2L2(e)

)

+ p2K |u− uT |2H1(ωK) + p1+2ε
K

((
khK
pK

)2

‖k(u− uT )‖2L2(ωK) +
h2K
p2K

‖f − fpK‖2L2(ωK)

))

+
1

2

∑

e∈EI(K)

‖(αk)1/2JuT K‖2L2(e). (4.2.12)

Moreover, if a > Ca for Ca as in Lemma 4.2.4, then with η̃K from Definition 4.1.12

η̃2K ≤Cεp
1+2ε
K

(
∑

e∈EB(K)

(

hek‖
√
k(u− uT )‖2L2(e) + he‖g − gpK‖2L2(e)

)

+ p2K |u− uT |2H1(ωK) + p1+2ε
K

((
khK
pK

)2

‖k(u− uT )‖2L2(ωK) +
h2K
p2K

‖f − fpK‖2L2(ωK)

))

,

(4.2.13)

and
∑

K∈T

η20;K ≤ Cε

∑

e∈EB

p1+2ε
e

(

hek‖
√
k(u− uT )‖2L2(e) + he‖g − gpK‖2L2(e)

)

+ Cε

∑

K∈T

(

p2+4ε
K

((
khK
pK

)2

‖k(u− uT )‖2L2(K) +
h2K
p2K

‖f − fpK‖2L2(K)

)

+ p3+2ε
K |u− uT |2H1(K)

)

. (4.2.14)

Proof. Estimates (4.2.12) and (4.2.14) are a direct consequence of the above discussion on effi-
ciency. For (4.2.13) we remark that according to (4.2.5) it holds that pe‖(β/k)1/2J∇T uT KN‖2L2(e) is
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bounded by the right-hand side of (4.2.6) for ζ = 0. Since this term is the only difference between
η̃2EK

and η20;EK
, Lemmata 4.2.1 and 4.2.3 conclude the proof. �

Remark 4.2.7. The constant Cε in Theorem 4.2.6 does not depend on the wavenumber k. If the
finite element space fulfills the resolution condition from Theorem 2.4.2, we have hek . p, where p is
considered to be the global polynomial degree as in Theorem 2.4.2. Therefore the error estimators
η̃K and ηζ;K are bounded by oscillation terms and the actual error on the element multiplied with
a power of p. Let us now assume p . log(k), which Theorem 2.4.2 suggests to be reasonable. In
this case we get an efficiency estimate with a constant depending linearly on said power of log(k),
and, moreover, reliability holds with a constant independent of k due to the Theorems 4.1.10 and
4.1.14.





Chapter 5

Numerical Experiments

In this chapter we perform numerical experiments to test parts of the theory from the previous
chapters. Several issues are of interest. We will test the reliability of the error estimator and
compare uniform vs. adaptive refinement for a nonsmooth problem. Moreover, we will observe
how the algorithm behaves in settings that are not covered by our theory, namely for non-constant
k and non-convex domains. All of the following experiments were conducted in Matlab. The
program used for testing is based on the finite element toolbox LehrFEM, documentation of which
can be found online 1. Before we begin, let us very briefly explain the adaptive algorithm and some
aspects of the implementation.

5.1 Adaptive Algorithm

We shortly describe the typical adaptive scheme (see, e.g., [29] for more details). The standard
adaptive algorithm consists of the repeated realization of the four modules

SOLVE ESTIMATE MARK REFINE

Solve

The module Solve finds the solution uT of (2.3.1) for a given mesh T , data f, g, a wavenumber k,
and a polynomial degree p. In practice, all integrals in (2.3.1) are computed by quadrature on the
edges and elements. This means that integrals including the functions f and g are generally not
evaluated exactly, in contrast to the other ones (up to rounding errors).

Estimate

The ability to estimate the error on each element is the crucial prerequisite for any adaptive
algorithm. As an error estimator, we use an adapted version of η̃K from Definition 4.1.12: For
simplicity the oscillation terms are omitted, and we work with the functions f, g instead of fpK , gpK .

1http://www.sam.math.ethz.ch/~hiptmair/tmp/LehrFEMManual.pdf

79
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Nonetheless, this simplified version will also be referred to as η̃K in the following. Again, integrals
are computed by quadrature. We have seen that the estimator is reliable and efficient if the
resolution condition from Theorem 2.4.2 is fulfilled.

Mark

After having computed the local estimators η̃K , one needs to decide which elements to refine. Here,
this is done via Dörfler’s marking strategy: Fix the triangulation T and let uT be the respective
discrete solution. Denote by S some subset of T . We write

η̃(uT ,S)2 :=
∑

K∈S

η̃2K . (5.1.1)

Now let θ ∈ (0, 1]. Then the set of marked elements M ⊆ T is defined to be such that

|M| = min
{S⊆T :θη̃(uT ,S)≥η̃(uT ,T )}

|S|, (5.1.2)

where |S| denotes the cardinality of S. In general, M can also be taken as any set fulfilling
θη̃(uT ,M) ≥ η̃(uT , T ). However, sorting the entries of (η̃K)K∈T does not really add to the com-
plexity of the algorithm, so one can make use of this optimization without relinquishing too much
computational time.

Refine

In this step at least all marked elements are refined. For the purpose of eliminating hanging nodes,
possibly other elements need to be refined as well. The program achieves this with largest edge
bisection and a recursive refinement procedure.

We also use our estimator as a stopping criterion for the algorithm: If, after the estimation
step, the estimated error falls below some given tolerance, the loop consisting of the four modules
is aborted. Of course, particularly in a practical situation, it needs to be taken into account that
reliability merely holds up to an unknown constant.

Remark 5.1.1. Here, we only consider h-refinement for fixed polynomial degree p on all elements.
With our a priori knowledge, p can be chosen accordingly, i.e. p ∼ log(k), and the adaptive
algorithm takes care of the mesh refinement. Naturally, it would be desirable that the algorithm
also recognizes on which elements the polynomial degree should be increased. Such strategies aim
for larger polynomial degrees on elements where the function is assumed to be smooth (see, e.g.,
[20]).

Remark 5.1.2. For a large class of problems, convergence and even quasi-optimality of the
adaptive FEM can be proved. In the case of an interior penalty discontinuous Galerkin (IPDG)
FEM, quasi-optimality was shown for an elliptic problem in [8]. Moreover, convergence of an
adaptive IPDG method applied to the Helmholtz equation was established in [18].
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Figure 5.1: Comparison of the relative error in the norm k‖ ·‖L2 + | · |H1 , for the polynomial degrees
p = 1 and p = 3 for different values of k in Example 1.

5.2 Plane Wave

The parameters a = 30, b = 1, and d = 1/4 from (2.3.5) are fixed for all experiments in this chapter.
The error will be measured in the norm k‖ ·‖L2(Ω)+ | · |H1(Ω). If we apply adaptive mesh refinement
to a problem in the following, the cardinality of the initial mesh is always O(1) independent of k
and p. We start our experiments with two problems, where the analytic solution is a plane wave
in both cases.

5.2.1 Example 1

Consider (2.1.1) on the domain Ω := (0, 1)2. The data f, g is chosen such that u(x, y) = exp(ik(x+
y)) is the exact solution. As u does not have any singularities, it is reasonable to refine the mesh
uniformly. In Figure 5.1, we compare the relative error for different wavenumbers and p = 1, 3.
As expected, we observe pollution for polynomial degree 1, which causes the rounded bump in the
convergence plot. With the moderate choice p = 3, this can be avoided (k = 5, 10) respectively
strongly reduced (k = 40, 80) for the plotted wavenumbers, as the optimal decay rate of the error
is obtained (almost) immediately after convergence starts. Moreover, we notice that for large k
convergence does not start until a certain meshwidth is reached. This critical meshwidth is larger
in the case p = 1 since the j-th point in the plots corresponds to the j-th uniformly refined mesh.

Next we test the reliability of the error estimator. Figure 5.2 shows the ratio (k‖u − uT ‖L2 +
|u − uT |H1)/η̃(uT ) of the actual error and the estimated error for different polynomial degrees
and wavenumbers. Recall that in the reliability estimate (4.1.26), the factor σ∗

k(S
p(T )) and an

unknown constant occured. We only bounded σ∗
k(S

p(T )) under certain requirements on the space
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Figure 5.2: Ratio of the exact error k‖u − uT ‖L2 + |u − uT |H1 and the estimated error η̃(uT ) for
different values of k in Example 1.

(see Theorem 2.4.2) and this factor may be large for large element sizes, which is why the estimator
differs considerably from the actual error in this case. Moreover, in the range of large meshwidths,
σ∗
k also grows with the wavenumber k, which is hinted in the plots. We observe that for larger

polynomial degree, the peak of the ratio occurs earlier, is smaller, and the curves drop faster
afterwards. It can be seen that at some point the curves settle on a value between 1/10 and 1. For
higher polynomial degrees, we noticed that the corrider in which this ratio has its values, further
tightens around the presumed limit of the curves.

5.2.2 Example 2

Now we consider (2.1.1) on the domain Ω := (0, 2π)2 with the analytic solution u(x, y) = exp(ikx).
The appropriate data is in this case

f ≡ 0, g(x, y) =







0 if x = 0

2ik if x = 2π

ikeikx otherwise

∀x, y ∈ ∂Ω. (5.2.1)

Notice that the data near the edge contained in
{
(x, y) ∈ R

2 : x = 0
}
corresponds to the case u ≡ 0.

The imaginary part of the solution is sin(kx). In Figure 5.4(b), the imaginary part of the DGFEM
solution is plotted for a uniformly refined mesh, polynomial degree p = 1, and wavenumber k = 5.
The discrete solution is close to zero on an area close to the left boundary and plausible only at
the far right of the domain. The meshwidth is hT = 0.098 as compared to k2 = 25 and would
principally suffice to resolve the solution but is still within the range of the pollution effect.
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Let us take a look how the adaptive algorithm refines the mesh. In Figure 5.3, the error estimator
and the exact error are plotted on each element after 20 adaptive refinements. We observe, that
the estimator fails to recognize the error on the large elements in the left part of the domain. The
reason is this: As we have seen in Figure 5.4(b), the solution is almost zero in the left part of the
domain if hT is too large. As f ≡ 0 and g ≡ 0 on the edge where x = 0, the terms

‖∆T uT + k2uT + f‖L2(K) and ‖g − ∂nuT − ikuT ‖L2(e),

are almost zero for an element K and a boundary edge e in this part of the domain. In addition
to that, the jump of the gradient and the function are small as well, and hence η̃K is small (cf.
(4.1.23)). As a result, the adaptive algorithm at first refines the mesh mainly in the right part of
the domain, as can be seen in Figure 5.4(a). In Figure 5.5(b), we observe that at some point this
difference in element size vanishes and the mesh is practically uniform. Uniform refinement is what
one would expect, knowing the smoothness of the solution. Moreover, we see in Figure 5.5(a) that
the element size at which the mesh becomes uniform is close to the critical meshwidth at which
significant decrease of the error begins. It therefore seems, that elements in the right part of the
domain are refined until the error estimator starts do drop, at which point refinement of the mesh
shifts towards the left part of the domain. It is not too surprising that refinement in the right part
stops at a reasonable point, since we expect the error estimator to decrease, as soon as the discrete
solution starts to resemble the actual solution, or in other words, as soon as the critical meshwidth
is reached. Two things should be noted:

• It is clear that reliability is not a local property, and here we have an example where η̃K
differs significantly from the actual error on some elements in the left part of the domain. Of
course, one should keep in mind that these elements are relatively large, which means that
σ∗
k could be large (cf. Theorems 2.4.2 and 4.1.14). Therefore, the gap between the estimator

and the error is not just a consequence of the fact that reliability does not hold locally, but
in accordance with our theory, which suggests that this gap may also occur for the global
estimator η̃ if the FEM space is too small. Figure 5.5(c) shows that this is indeed the case
for large meshwidths.

• At least in this example, the adaptive algorithm apparently perceives what the critical mesh-
width is: Even though the exact error is underestimated at first, and elements with large
differences in size are generated, further decrease in element size slows down at the mesh-
width where convergence is observed for uniform refinement, and the adaptively refined mesh
becomes almost uniform as well. Before this meshwidth is reached, no significant convergence
can be observed for uniform refinement, and hence for such element sizes it does not really
matter whether the mesh is uniform or not. In Figure 5.5(c) we observe that, even though
the refinement seems to be suboptimal at first, there is practically no difference in the con-
vergence of the error for uniform or adaptive refinement. Of course, with the knowledge of
the pollution effect and the requirements in the previous chapters, one could simply start the
adaptive algorithm with an appropriately refined mesh (e.g., as in Theorem 2.4.2). But this
and the following examples indicate that the adaptive algorithm is capable to take care of
this initial refinement by itself.
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Figure 5.3: Comparison of the local estimator η̃K and the exact error in the norm k‖ · ‖L2 + | · |H1

on each element for Example 2 and 1248 elements after 20 adaptive refinements. The error in the
left part of the domain is not yet properly recognized by the estimator.
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(b) ℑ(uT ) for a uniformly refined mesh with 8192 elements
and hT = 0.098.

Figure 5.4: Adaptive mesh and imaginary part of the DGFEM solution for a uniform mesh with
large meshwidth, k = 5, and p = 1 in Example 2. The exact solution is u(x, y) = exp(ikx), and
therefore ℑ(u(x, y)) = sin(kx).
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(c) Error k‖u−uT ‖L2 +|u−uT |H1 for uniform and adap-
tive refinement (with θ = 0.7) and the estimated error η̃
for adaptive refinement

Figure 5.5: In Figure (b) it can be seen that the adaptive algorithm, applied to Example 2 with
k = 5 and p = 1, at first generates a mesh with very diverse element sizes, which then turns into
an almost uniform mesh at about the 36th refinement. This refinement corresponds to a maximum
edge length of 0.049. In all three plots, the red line marks this meshwidth, respectively the point
at which this adaptive refinement takes place. We observe that convergence for uniform refinement
starts shortly before this mesh size is reached. Moreover, at this refinement, the error estimator
surpasses the actual error in this example.
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5.3 L-shaped Domain

5.3.1 Example 3

For the third example, we consider the L-shaped domain Ω := (−1, 1)×(0, 1)∪(−1, 0)×(−1, 1). The
DG method is applied to (2.1.1) with f, g such that the exact solution is given by u(x, y) = J1/2(kr),

where J1/2 denotes the respective Bessel function of the first kind, and r =
√

x2 + y2 is the distance
to 0. The Bessel function and u are plotted in Figure 5.6. The problem is chosen such that the
solution has a singularity at the reentrant corner situated at 0, which will serve to illustrate the
advantages of adaptive over uniform refinement. This example has also been used in [18].

Figure 5.7 shows two adaptive meshes generated by the algorithm for polynomial degree p = 1
and wavenumber k = 10. We observe that the mesh is refined towards the singularity at 0.
Moreover, the oscillating nature of the solution u is reflected in the structure of the mesh. It is
coarser in areas where u is close to linear (cf. Figure 5.6) and can thus be approximated well by
the linear basis functions.

In Figure 5.8, we compare uniform with adaptive refinement for different values of k and p.
The singularity causes suboptimal convergence rates for uniform mesh refinement, and the supe-
riority of the adaptive method is evident. We observe optimal convergence rates for the adaptive
algorithm applied with the polynomial degrees p = 2, 4. Again, it takes some initial refinements
until the asymptotic regime is reached. In addition to that, the plots confirm once more that larger
wavenumbers require more refinements in order for the error to catch up with the estimator. The
pollution effect seems to be perceived a bit weaker by the estimator. Recall, that the space Sp(T )
suggested in Theorem 2.4.2 avoids pollution and allows to bound the factor σ∗

k(S
p(T )). In this

case, the estimated error should describe the behaviour of the actual error up to some constant. In
practice, the occuring constants in Theorem 2.4.2 are unknown, and it is not clear at which point
the FEM space is rich enough. However, it can be seen that this seems to be the case for k = 5
and p = 2 in Figure 5.8 as well as for k = 10 and p = 4, since no delay is observed for either curve
(estimator or error).

In Figure 5.9, the adaptivity parameter θ is varied and compared to the case of uniform refine-
ment. We see that smaller θ amounts to better approximations, but there is almost no difference
for the values θ = 0.3, 0.5, 0.7, all of which yield optimal convergence rates. The only case standing
out is θ = 0.99, and even then the optimal rate can be preserved.

5.4 Non-constant Wavenumber

The examples in this section deal with non-constant k in (2.1.1), i.e. k = k(x, y). All discrete
solutions that are plotted in this section, seem to accurately describe the essence of the exact
solution, in so far, as no substantial change of appearance is observed for further mesh refinement
or increase of the polynomial degree.
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Figure 5.6: The solution u = J1/2(kr) in Example 3 for k = 10, and the Besselfunction J1/2(x),
whose derivative goes to infinity for x → 0.
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Figure 5.7: Meshes obtained by the adaptive algorithm for Example 3.
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Figure 5.8: Comparison of the actual error k‖u−uT ‖L2(Ω)+ |u−uT |H1(Ω) and the estimated error
η̃(uT ), using uniform and adaptive refinement with θ = 0.7 in Example 3 for different values of k
and p.
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Figure 5.9: Comparison of the error for adaptive refinement and different values of θ in Example 3.

5.4.1 Example 4

Consider the domain Ω := (0, 2π)2. We partition Ω into the ball Ω2 := B3/2(π, π) and its com-
plement Ω1 := Ω\Ω2. Let k1, k2 > 0. The function k is now defined to be piecewise constant
k(x, y) := k11Ω1 + k21Ω2 (see Figure 5.10). As the right-hand side in (2.1.1) we take f ≡ 0.
Moreover let g2 be as in (5.2.1) with wavenumber k1, and let

g1(x, y) :=







−1 if x = 0

i if x = 2π

0 else.

(5.4.1)

In Figure 5.11, the adaptively refined mesh and the real part of the DGFEM solution are plotted
for k1 = 1, k2 = 10, and the boundary data g1. Pronounced refinement can be seen in the vicinity
of the circle across which the wavenumber jumps. Moreover, the meshwidth is much smaller inside
the circle where the wavenumber is high. The plot suggests that this refinement is in accordance
with the smoothness properties of the solution. Figure 5.12 implies, that strong refinement close to
the jump of the wavenumber is not necessarily obtained. The plot shows the mesh and the real part
of the discrete solution for k1 = 10, k2 = 1, and the boundary data g2. In this case, the solution
appears to be smooth respectively almost zero near the left part of the inner circle on which we
have k ≡ k2. This is recognized by the algorithm and results in a coarse mesh in the corresponding
area.

Figure 5.15 reflects the convergence of the error estimator in these examples for several values
of θ and uniform refinement. Once more, adaptive refinement with θ 6= 0.99 appears to deliver
asymptotically optimal behaviour, and hardly any difference can be seen for these values of θ. The
curve for θ = 0.99 has a slightly worse convergence rate, but is evidently still superior to the one
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Figure 5.10: Domain and wavenumber in Examples 4 and 5.

belonging to uniform mesh refinement.

5.4.2 Example 5

For the last example, we consider the same domain as above, together with the data f ≡ 0 and
g as in (5.4.1). Let again k1, k2 > 0 and let k(x, y) := k11[0,3)(x) + k21[3,2π](x) (see Figure 5.10).
The initial mesh on the domain consists of two elements. The position of the jump is chosen in
such a way that edges of elements will never lie on this line. Figure 5.13 shows the mesh and the
real part of the discrete solution for this setting. The adaptive algorithm proceeds as expected,
and refines the mesh according to the local wavenumber and close to where k jumps. We also
observe enhanced refinement in the corners and some characteristics of the solution are insinuated
by the mesh. Finally, in Figure 5.14, the mesh and the real part of the discrete solution with the
continuous wavenumber k(x, y) = 1/2 + 4x are plotted, and Figure 5.16 displays the convergence
of the estimator for Example 5. In the first case, where k is discontinuous, we expect the adaptive
algorithm to perform better. However, within the plotted range, we only notice a slight advantage
of the adaptive method, which again yields an optimal convergence rate. In the second case, where
k(x, y) = 1/2 + 4x, the rate appears to be optimal for both refinement methods, which is not
surprising since k is smooth. However, adaptive refinement achieves a better distribution of the
elements and their sizes, which is why the adaptive curve is superior up to a constant.

These examples indicate that the adaptive algorithm, applied with the error estimator η̃K ,
properly accomplishes the task of refining the mesh according to the properties of the solution.
Singularities and wave characteristics are recognized by the estimator, and we observed optimal
convergence rates.
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Figure 5.11: Adaptively refined mesh with θ = 0.7 and real part of the DGFEM solution on this
mesh for Example 4 with k1 = 1, k2 = 10, and the boundary data g1.
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Figure 5.12: Adaptively refined mesh with θ = 0.7 and real part of the DGFEM solution on this
mesh for Example 4 with k1 = 10, k2 = 1, and the boundary data g2.
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Figure 5.13: Adaptively refined mesh with θ = 0.7 and real part of the DGFEM solution on this
mesh for Example 5 with k1 = 10 and k2 = 4.
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Figure 5.14: Adaptively refined mesh with θ = 0.7 and real part of the DGFEM solution on this
mesh for Example 5 with k(x, y) = 1/2 + 4x.
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Figure 5.15: The convergence of the error estimator η̃(uT ) in Example 4 for two non-constant
functions k(x, y) and the boundary data g1, g2, respectively.
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