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Abstract

In this semester paper we establish the advantage of nonlinear approximation over linear
approximation methods. In particular we consider approximations of solutions of the Dirichlet
problem on bounded Lipschitz domains. The paper is structured into three parts: In the first
section we introduce multidimensional wavelet bases, Besov spaces and interpolation spaces.
We continue with proving a regularity result for the mentioned Dirichlet problem. Finally the
approximation spaces of n-term wavelet approximation are characterized via Besov spaces, and
we conclude that they are larger than for a linear approximation method.

1 Introduction

In this section we introduce the basic notation and state several lemmas and theorems which we
need later on. Throughout this paper we will use the notation f(x) ∼ g(x) to indicate that there
exist c1, c2 > 0 such that

c1f ≤ g ≤ c2f. (1)

1.1 Wavelets

We start by constructing a multidimensional wavelet basis. In this paper ϕ ∈ L2(R) always denotes
a scaling function, which generates a multiresolution analysis, and ψ ∈ L2(R) is its corresponding
wavelet. For any such pair, x ∈ Rd, d > 1, α ∈

{
β ∈ {0, 1}d : β 6= 0d

}
we define

ϕd(x) :=

d⊗

i=1

ϕ(xi), (2)

ψd,α(x) :=
⊗

{i:αi=0}

ϕ(xi)
⊗

{i:αi 6=0}

ψ(xi). (3)

Now consider the set of functions:

B1
1 :=

{

ϕd(x− k) : k ∈ Zd
}

, (4)

B2
1 :=

{

2
ld
2 ψd,α(2

l
x− k) : α 6= 0d, l ∈ N0, k ∈ Zd

}

, (5)

B1 := B1
1 ∪ B2

1. (6)

For η ∈ B we define Iη := 2−l(k + [0, 1]d) if η has the scaling parameters l, k, which we call level
(l) and shift parameter (k). Notice that |Iη| ∼ | supp(η)|.

Lemma 1. The set B1 forms a basis of L2(Rd). Moreover if ϕ is an orthonormal scaling function,
i.e. integer shifts of the function are orthonormal, then we get an orthonormal basis of Rd as well.

Proof. It is well known that the span of stepfunctions of the type 1⊗d
i=1 Ai

, with measurable

Ai ⊂ R, |Ai| < ∞, is dense in L2(Rd), where |Ai| denotes the Lebesgue measure of the set Ai.
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These functions can be written as the product
∏d

i=1 1Ai(xi). Since C := {ϕ(x− k) : k ∈ Z} ∪
{

2
l
2ψ(2lx− k) : l ∈ N0, k ∈ Z

}

is a basis of L2(R) we can now choose fi ∈ span(C) such that

‖fi − 1Ai‖L2(R) < εi. Then for d = 2

‖f1f2 − 1A11A2‖L2(R2) ≤ ‖f1f2 − f11A2‖L2(R2) + ‖f11A2 − 1A11A2‖L2(R2)

≤ ‖1A2 − f2‖L2(R) ‖f1‖L2(R) + ‖1A1 − f1‖L2 ‖1A2‖L2(R) . (7)

If we choose ε1 := ε/2 and ε2 := ε/(2 ‖f1‖L2), we see that the span of the functions η1⊗ η2 is dense
in L2(R2), if we identify η1 ⊗ η2 with the function η1(x1)η2(x2). Hence L2(R) ⊗ L2(R) = L2(R2),
in the sense that there exists an isomorphism between these spaces. Still for d = 2 in (4) and (5),
and with

V0 := span{B1
1} (8)

Wl := span
{

2lΨ2,α(2
l
x− k) : α 6= 0d, k ∈ Zd

}

(9)

Vl := V0 ⊕
l−1⊕

j=0

Wl, ∀l > 0, (10)

we have
⋃∞

l=0 Vl = L2(R). It is a property of the functions ϕ, ψ, that the above sums are in fact

direct. Since the Vl are nested we also get
⋃∞

l=0 Vl ⊗ Vl = L2(R) ⊗ L2(R) = L2(R2). It holds that
Vl = Vl−1 ⊕Wl−1, and we have for l = 1

Vl ⊗ Vl = V1 ⊗ V1 = (V0 ⊕W0)⊗ (V0 ⊕W0)

= (V0 ⊗ V0)⊕ (V0 ⊗W0)⊕ (W0 ⊗ V0)⊕ (W0 ⊗W0)

= (V0 ⊗ V0)⊕
l−1⊕

j=0

((Wj ⊗Wj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)) . (11)

An induction step in l now easily proves (11) for all l > 1. Therefore a basis of Vl ⊗ Vl is given by
all functions in B1 with level less than l. Unifying over all levels l then gives the set B1. According
to the above considerations the span of this set must be dense in L2(R2), and therefore B1 is a
basis of L2(R2). Finally, an induction step in d proves the claim for all d > 1. It is obvious from
the definition that the basis is orthonormal if ϕ is an orthonormal scaling function. ✷

We will also work with another basis, which in contrast to the above one, cannot be defined on
bounded domains (cf. [Woj97, Prop. 5.2]):

Lemma 2. Suppose the scaling function ϕ generates a multiresolution analysis. Then the set of
functions

B2 :=
{

2
ld
2 ψd,α(2

l
x− k) : α 6= 0d, l ∈ Z, k ∈ Zd

}

(12)

forms a Riesz basis of L2(Rd).

We will especially work with theDaubechies wavelets (see Figure 1), to which we refer as ϕm, ψm.
They are constructed in [Dau92, Chapter 6]. The scaling function ϕm generates a multiresolution
analysis and ψm is its wavelet. They have the following properties: They are orthogonal, have
compact support and m vanishing moments. This means ψm is orthogonal to polynomials of
degree less than m. Moreover as m goes to infinity they become arbitrarily smooth.
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Figure 1: A few examples of the Daubechies scaling functions ϕm and wavelets ψm. As m grows,
the support and smoothness of these functions grow as well.

1.2 Besov spaces

Definition 3. For any Lipschitz domain Ω ⊂ Rd, d ≥ 1 the Besov space Bs
p,q(Ω), 0 < p ≤

∞, 0 < q <∞, 0 < s <∞ can be defined as follows:

‖f‖Bs
p,q(Ω) := ‖f‖Lp(Ω) +

(∫ ∞

0
(t−sω[s]+1(f, t,Ω)p)

q dt

t

) 1
q

︸ ︷︷ ︸

=:|f |Bs
p,q

, (13)

Bs
p,q(Ω) :=

{

f ∈ Lp(Ω) : ‖f‖Bs
p,q(Ω) <∞

}

, (14)
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where

ωn(f, t,Ω)p := sup
h∈Rd

|h|≤t

‖∆n
h(f)‖Lp(Ωh,n), (15)

∆n
h(f)(x) :=

n∑

k=0

((
n

k

)

(−1)n−kf(x+ kh)

)

,

= ∆n−1
h (∆hf), if ∆h(f)(x) := f(x+ h)− f(x), (16)

Ωh,n := {y ∈ Ω : y + kh ∈ Ω ∀0 ≤ k ≤ n}. (17)

Moreover if p = q we use the shorter notation Bs
p(Ω) := Bs

p,p(Ω), and if the context is clear
we furthermore omit the Ω. Using a partition of unity we can define Bs

p,q(∂Ω) as the set of all

measurable functions g, which locally can be written as g(x, φ(x)) := f(x) where f ∈ Bs
p,q(R

d−1),
and ∂Ω is the graph of the function φ.

Here is a characterization of these spaces in terms of their wavelet coefficients [DD97, Prop. 2.1,
Prop 2.2] and [DeV98, Remark 7.4].

Lemma 4. Let ϕ,ψ ∈ Cr(R) be a scaling function and its associated wavelet, and r > s ≥ 0.
Then for p ∈ (0,∞)

‖f‖Bs
p(R

d) ∼

∥
∥
∥
∥
∥
∥

∑

η∈B1
1

〈f, η〉η

∥
∥
∥
∥
∥
∥
Lp(Rd)

+




∑

η∈B2
1

|Iη|
− ps

d |〈f, η〉|p





1
p

. (18)

And therefore for τ := (s/d+ 1/2)−1

‖f‖Bs
τ (R

d) ∼

∥
∥
∥
∥
∥
∥

∑

η∈B1
1

〈f, η〉η

∥
∥
∥
∥
∥
∥
Lτ (Rd)

+




∑

η∈B2
1

|〈f, η〉|τ





1
τ

, (19)

as well as

|f |Bs
τ (R

d) ∼




∑

η∈B2

|〈f, η〉|τ





1
τ

. (20)

Remark 5. The Besov spaces fullfill the following well known embeddings: For p ≥ 1 and s > 0
Bs

p,min(p,2)(R
d) →֒ W s,p(Rd) →֒ Bs

p,max(p,2)(R
d), where W s,p(Rd) is the (fractional) Sobolev space

with smoothness s in the Lp norm. The notation ”→֒” indicates a continuous embedding. In
particular that means Bs

2 = Hs. Also Bs′

p′,q′(R
d) →֒ Lp(Rd) if the point (1/p′, s′) lies above the line

with slope d throught the point (1/p, 0) in the 1/p × s plane that is for s′ > d(1/p′ − 1/p) (see
Figure 2).
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Figure 2: Besov spaces Bs′

p′,q′(R
d) correspond to the points (1/p′, s′) in this figure. Points in the

light blue area above the dashed line with slope d, are compactly embedded in the space Lp(Rd).
Points in the white area below the dashed line are never embedded in Lp(Rd) and points on the
dashed line may or may not be embedded in Lp(Rd) depending on their parameter q′ that cannot
be seen in this picture.

1.3 Interpolation spaces

We shortly describe the concept of real interpolation. Let X,Y be a pair of Banach spaces such
that Y is continuously embedded in X. Then we define the K-functional as

K(f, t,X, Y ) := inf
g∈Y

‖f − g‖X + t ‖g‖Y , (21)

and generally use the shorter notation K(f, t) := K(f, t,X, Y ). We are now able to construct
intermediate spaces using the K-functional. Let θ ∈ (0, 1) and q ∈ [1,∞], then

(X,Y )θ,q :=






f ∈ X + Y :

(
∫

(0,∞)
(t−θK(f, t))q

dt

t

) 1
q

<∞






, (22)

‖f‖(X,Y )θ,q
:=

(
∫

(0,∞)
(t−θK(f, t))q

dt

t

) 1
q

. (23)

It is sometimes handy to work with the discretized norm.

Lemma 6. Let q ∈ [1,∞], θ ∈ (0, 1) and ρ > 1. In the above setting we have
∥
∥
∥
∥

(

ρjθK(f, ρ−j)
)

j≥0

∥
∥
∥
∥
lq
∼ ‖f‖(X,Y )θ,q

. (24)
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Proof. Let a > 0, t > a and g ∈ Y then

K(f, t) ≤ ‖f‖X
≤ ‖f − g‖X + ‖g‖X
≤ c1(‖f − g‖X + a ‖g‖Y ), (25)

since Y is continuously embedded in X. This holds for any g ∈ Y and hence K(f, t) ≤ c1K(f, a)
∀t > a. For a/2 < t < a

K(f, t) ≥ inf
g∈Y

‖f − g‖X +
a

2
‖g‖Y

≥
1

2
K(f, a), (26)

and therefore
∫ a

a
2

(K(f, t)t−θ)q
1

t
dt ≥ c2K(f, a)q. (27)

We obtain from (25) and (27)

∫ ∞

0
(K(f, t)t−θ)q

1

t
dt =

∫ a

0
(K(f, t)t−θ)q

1

t
dt+

∫ ∞

a
(K(f, t)t−θ)q

1

t
dt

≤

∫ a

0
(K(f, t)t−θ)q

1

t
dt+ c1K(f, a)q

≤ c3

∫ a

0
(K(f, t)t−θ)q

1

t
dt. (28)

Thus it is equivalent to take the integral from zero to any positive constant a, in particular we now
choose a = 1. To discretize this integral we remark that K(f, t) is monotonuously decreasing for
t→ 0. For t ∈ [ρ−(j+1), ρ−j ] and with the notation g(t) := t−θK(f, t),

ρjθK(f, ρ−(j+1)) ≤ g(t) ≤ ρ(j+1)θK(f, ρ−j). (29)

Like in (26) we have K(f, ρ−(j+1)) ≥ (1/ρ)K(f, ρ−j):

ρjθ−1K(f, ρ−j) ≤ g(t) ≤ ρ(j+1)θK(f, ρ−j)

⇔ ρ(jθ−1)(g(ρ−j)ρ−jθ) ≤ g(t) ≤ ρ(j+1)θ(g(ρ−j)ρ−jθ)

⇔ ρ−1g(ρ−j) ≤ g(t) ≤ g(ρ−j)ρθ, (30)

and therefore

c4

∫ ρ−j

ρ−(j+1)

g(ρ−j)q
1

t
dt ≤

∫ ρ−j

ρ−(j+1)

g(t)
1

t
dt ≤ c5

∫ ρ−j

ρ−(j+1)

g(ρ−j)q
1

t
dt

⇒ c4g(ρ
−j)q ≤

∫ ρ−j

ρ−(j+1)
g(t)q

1

t
dt ≤ c5g(ρ

−j)q. (31)
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Summing j from 0 to ∞ and taking the q-th root we conclude

c4





∞∑

j=0

ρjθqK(f, ρ−j)q





1
q

≤

(∫ 1

0
(t−θK(f, t))q

1

t
dt

) 1
q

≤ c5





∞∑

j=0

ρjθqK(f, ρ−j)q





1
q

. (32)

✷

Remark 7. A similar proof gives [DL93, p. 56]

|f |Bs
p,q

∼





∞∑

j=0

2js(ω[s]+1(f, 2
−j ,Rd)p)

q





1
q

. (33)

In certain situations the discretized norm (24) can be slightly modified. A typical application of
the following lemma is the case X = Lp, Y =W k,p and | · |Y = | · |W k,p .

Lemma 8. Let X,Y be a pair of Banach spaces such that Y is densely and continuously embedded in
X and ‖g‖Y ∼ ‖g‖X+|g|Y , where |·|Y is a seminorm on Y . With K̃(f, t) := infg∈Y ‖f − g‖X+t|g|Y
and for any ρ > 1 we can define the following equivalent norm on (X,Y )θ,q




∑

j≥0

(ρjθK̃(f, ρ−j))q





1
q

︸ ︷︷ ︸

=:|f |(X,Y )θ,q

+ ‖f‖X ∼ ‖f‖(X,Y )θ,q
. (34)

Proof. Since |f |Y ≤ ‖f‖Y , it is clear that |f |(X,Y )θ,q ≤ ‖f‖(X,Y )θ,q
(cf. (21) and (24)). Also notice

that due to the continuous embedding of Y in X

K(f, 1) = inf
g∈Y

‖f − g‖X + ‖g‖Y ≥ c(‖f − g‖X + ‖g‖X) ≥ c ‖f‖X , (35)

which is why we can absorb ‖f‖X in ‖f‖(X,Y )θ,q
, and obtain that the LHS is bounded by a constant

multiplied with the RHS in (34). For the other direction we remark that
∥
∥(ρ−j(1+θ) ‖f‖X)j≥0

∥
∥
lq
∼

‖f‖X and

∥
∥
∥ρ−j(1+θ) ‖f‖X

∥
∥
∥
lq
+
∥
∥
∥ρjθK̃(f, ρ−j)

∥
∥
∥
lq
≥
∥
∥
∥ρjθ(K̃(f, t) + ρ−j ‖f‖X)

∥
∥
∥
lq
. (36)
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Hence we compare the elements of the sequences in the lq norms in (24) respectively (36):

K(f, ρ−j) = inf
g∈Y

‖f − g‖X + ρ−j ‖g‖Y

≤ inf
g∈Y

‖f − g‖X + cρ−j(|g|Y + ‖g‖X)

≤ inf
g∈Y

‖f − g‖X + cρ−j(|g|Y + ‖f − g‖X + ‖f‖X)

≤ 2(c+ 1) inf
g∈Y

‖f − g‖X + cρ−j(|g|Y + ‖f‖X)

≤ 2(c+ 1)(K̃(f, 2−j) + ρ−j ‖f‖X). (37)

This finishes the proof. ✷

Let us make a few observations:

• X ∩ Y ⊂ (X,Y )θ,q ⊂ X + Y , with ‖h‖X+Y := inff+g=h ‖f‖X + ‖g‖Y , and ‖f‖X∩Y =
max(‖f‖X , ‖f‖Y ).

• Denote by B(X,Y ) all bounded linear operators from a Banach space X to a Banach space
Y . If T ∈ B(X1, Y1) ∩ B(X2, Y2) then T ∈ B((X1,X2)θ,q, (Y1, Y2)θ,q). This is called the
interpolation property.

• (X,Y )s1,q1 ⊂ (X,Y )s2,q2 if either s1 > s2 or s1 = s2 ∧ q1 ≤ q2.

The three claims above follow very straightforward from the definition of the norm in the interpo-
lation spaces, respectively the discretized version (24), and the fact that any n ∈ N, n ≥ [s] + 1
instead of [s]+ 1 defines an equivalent norm in (13). The first two points above characterize inter-

polation spaces, and show that the spaces we constructed are in fact interpolation spaces. The
following theorem is a bit more involved. It is an important result and known as the reiteration

theorem [DL93, Theorem 7.3, p. 195]:

Theorem 9. Let X,Y be a pair of Banach spaces. For 0 < θ < 1, 0 < θ1, θ2 < 1, q ∈ [1,∞] we
have the identities

((X,Y )θ1,q, Y )θ,q = (X,Y )θ1+θ(1−θ1),q, (38)

(X, (X,Y )θ2,q)θ,q = (X,Y )θθ2,q, (39)

((X,Y )θ1,q, (X,Y )θ2,q)θ,q = (X,Y )θ1+θ(θ2−θ1),q. (40)

To complete this discussion of interpolation spaces we give an interesting example of an interpolation
space [DL93, p. 196]:

Theorem 10. Let θ ∈ (0, 1), q ∈ [1,∞], r > 0 and p ∈ [1,∞]. Then

(Lp(R),W r,p(R))θ,q = Bθr
p,q(R). (41)
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2 Regularity

In this section we will procede as in the papers [JK95], [DD97] and the references given therein.
Let us now consider the problem

∆v = 0 on Ω,

v = g on ∂Ω, (42)

where Ω ⊂ Rd is a bounded Lipschitz domain, and d ≥ 3. In this setting we have the following
result [JK95, Thm. 5.1, Thm 5.15]:

Theorem 11. Let p = 2, d ≥ 3, s ∈ [0, 1], let Ω ⊂ Rd be a bounded Lipschitz domain, and

g ∈ Bs
p(∂Ω). Then there exists a unique weak solution v ∈ B

s+1/p
p (Ω) for the Dirichlet problem

(42).

Remark 12. Theorem 5.1 in [JK95] is stated for the largest set of pairs p > 0, s ∈ (0, 1) such
that Theorem 11 holds. This set is a polygonal domain in the 1/p × s plane. The proof of the
existence is done by showing the statement for Sobolev functions on certain parts of the boundary,
and then using interpolation techniques and the fact that Besov spaces are interpolation spaces.
Let us motivate this for our case where p = 2. We need:

g ∈ L2(∂Ω) ⇒ u ∈ B
1/2
2 (Ω), (43)

g ∈W 1,2(∂Ω) ⇒ u ∈ B
3/2
2 (Ω). (44)

This follows more or less directly from results by Dahlberg [Dah77], [Dah80], Jerison and Kenig
[JK81] and characterizations of Besov spaces [JK95, Thm. 4.1, Thm. 4.2] (cf. proof of Theorem
5.15 [JK95]). Now, with (41) for bounded Lipschitz domains and for any s ∈ (0, 1)

(
L2(∂Ω),W 1,2(∂Ω)

)

s,2
= Bs

2(∂Ω), (45)
(

B
1/2
2 (Ω), B

3/2
2 (Ω)

)

s,2
= B

s+1/2
2 (Ω). (46)

Since the solution operator, which maps the boundary function g to the solution v, is continuous
and linear in (43) and (44), we obtain Theorem 11 from the interpolation property, i.e. this operator
is then also continuous for the interpolated spaces, that is, from (45) to (46).

The regularity result for the solution of the Dirichlet problem (42) can be further improved for
harmonic functions. In order to do so, we need the following theorem [DD97, Theorem 3.1]:

Theorem 13. Let v ∈ Bs
2(Ω) be a harmonic function, for some s > 0 and a bounded Lipschitz

domain Ω. For every integer m > s we have

∥
∥d(x, ∂Ω)m−sDmv(x)

∥
∥
L2(Ω)

≤ c ‖v‖Bs
2(Ω) (47)

for a constant c > 0.

Now we can improve Theorem 11.
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Theorem 14. Let Ω ⊂ Rd be a bounded Lipschitz domain, v ∈ Bs
2(Ω) a harmonic function and

s > 0. Then

v ∈ Bt
τ (Ω), where (48)

τ :=

(
t

d
+

1

2

)−1

and 0 < t <
sd

d− 1
. (49)

Proof. Throughout this proof we work with the Daubechies wavelets ϕm, ψm, where m is large
enough such that ϕm, ψm is in Bs

τ (R
d). Since Ω is a bounded Lipschitz domain there is a bounded

linear extension operator mapping v ∈ Bt
2(Ω) to v̂ ∈ Bs

2(R
d). We now define

B̃ := {η ∈ B1 : Ω ∩ supp η 6= ∅} , (50)

B̃1 := B̃ ∩ B1
1, (51)

B̃2 := B̃ ∩ B2
1, (52)

and gain the function

ṽ :=
∑

η∈B̃1

〈v̂, η〉η +
∑

η∈B̃2

〈v̂, η〉η. (53)

From the definition it is clear that ṽ|Ω = v. With Ω̃ := supp(ṽ) there exist constants c1 and c2 such
that

‖v‖Bs
2(Ω) ≤ c1 ‖ṽ‖Bs

2(Ω̃) ≤ c1 ‖v̂‖Bs
2(R

d) ≤ c2 ‖v‖Bs
2(Ω) . (54)

The first two inequalities follow from (18) and the orthogonality of the Daubechies wavelets, and the
last inequality is the continuity of the extension operator. Therefore all three terms are equivalent,
and we continue working with ṽ. The first sum in (53) is in Bt

τ (Ω̃) because it is a finite sum, since
|Ω̃| < ∞ and B̃1 consists of integer shifts of a compactly supported function, and all η are in Bt

τ .
The main part of the proof is thus to show that the second sum in the expansion (53) belongs to
Bt

τ (Ω̃). According to Lemma 4 this is equivalent to




∑

η∈B̃2

|〈ṽ, η〉|τ





1
τ

<∞. (55)

In order to estimate this sum we need to distinguish between functions with support on the bound-
ary and the rest. We sort the functions whose support has empty intersection with ∂Ω into sets
according to their level l and the distance of the support to the boundary:

Dl :=
{

η ∈ B̃2 : |Iη| = 2−ld
}

, (56)

Dl,j :=
{

η ∈ Dl : j2
−l ≤ d(supp(η), ∂Ω) < (j + 1)2−l

}

, (57)

D◦
l := Dl\Dl,0. (58)

The sets D◦
l =

⋃

j≥1Dl,j form a partition of the inner functions, i.e. the functions with support in

Ω̊. The rest of the proof consists of first estimating the sum over the inner functions, and then the
sum over functions with support on the boundary.
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• Inner functions: The support of the functions η ∈ B̃2 is the linear transformation of at most
2d − 1 bounded Lipschitz domains, namely the supports of the unshifted basis functions at
level l = 0 in (3). With the Bramble-Hilbert Lemma and a scaling argument we then get the
standard result that for w ∈Wm,2 there exists a polynomial P of degree less than m s.t.

‖w − P‖L2(supp(η)) ≤ c| supp(η)|
m
d |w|Wm,2(supp(η)). (59)

Recall that ϕm, ψm and hence all η ∈ B̃2 are orthogonal to polynomials of degree less than
m. With the notation δ(x) := d(x, ∂Ω), δη := d(supp(η), ∂Ω) and for suitable polynomials Pη

it holds that

|〈ṽ, η〉| = |〈ṽ − Pη, η〉|

≤ ‖ṽ − Pη‖L2(supp(η)) ‖η‖L2(supp(η))
︸ ︷︷ ︸

=1

(59)

≤ c|Iη|
m
d |ṽ|Wm,p(supp(η))

≤ c|Iη|
m
d δs−m

η

(
∫

supp(η)
(|δ(x)m−sDmv(x)|)2dx

) 1
2

︸ ︷︷ ︸

=:µη

. (60)

With this, |Iη| = 2−ld and Hölder’s inequality

∑

η∈D◦
l

|〈ṽ, η〉|τ ≤ c
∑

η∈D◦
l

µτη2
−mτlδ(s−m)τ

η

≤ c




∑

η∈D◦
l

(µη)
τ 2

τ





τ
2



∑

η∈D◦
l

(2−mτlδ(s−m)τ
η )

2
2−τ





2−τ
2

. (61)

The functions in the same level are shifts of fixed lengths of finitely many compactly supported
basis functions. Consequently a point x lies in the support of at most c̃ functions η ∈ D◦

l for
some c̃ ∈ N. The sum over the µ2η in (61) can be easily bounded:

∑

η∈D◦
l

µ2η =
∑

η∈D◦
l

∫

supp(η)
|δ(x)m−sDmv(x)|2dx

≤ c̃

∫

Ω̃
|δ(x)m−sDmv(x)|2dx

≤ c ‖ṽ‖2
Bs

2(Ω̃)
, (62)

where the last inequality follows from Theorem 13. For the second sum in (61) we use that Ω is
a bounded Lipschitz domain and therefore |Dl,j| ≤ c2l(d−1). Also Dl,j = ∅ if diam(Ω) < j2−l,
i.e. j > c2l. With this, (61), (62) and using that for η ∈ Dl,j δη ≥ j2−l by the definition of

11



Dl,j, we get the estimate

∑

η∈D◦
l

|〈ṽ, η〉|τ ≤ c





c2l∑

j=1

∑

η∈Dl,j

2−
2mτl
2−τ δ

(s−m)2τ
2−τ

η





2−τ
τ

≤ c





c2l∑

j=1

2l(d−1)2−
2mτl
2−τ (j2−l)

(s−m)2τ
2−τ





2−τ
2

= c





c2l∑

j=1

2l(d−1− 2mτ
2−τ

− 2τ(s−m)
2−τ

)j
(s−m)2τ

2−τ





2−τ
2

= c



2l(d−1− 2sτ
2−τ

)
c2l∑

j=1

j
2τ(s−m)

2−τ





2−τ
τ

. (63)

In order for the sum in (63) to be uniformly bounded in l we need

2τ(s −m)

2− τ
< −1. (64)

Notice that 0 < τ < 2 by its definition. Therefore this condition can be satisfied by choosing
m large enough, and we obtain

∑

η∈D◦
l

|〈ṽ, η〉|τ ≤ c2l(
(d−1)(2−τ)

2
−sτ). (65)

Now we sum over all levels

∞∑

l=0

∑

η∈D◦
l

|〈ṽ, η〉|τ ≤ c
∞∑

l=0

2l(
(d−1)(2−τ)

2
−sτ). (66)

The above sum is now over all inner functions. It is finite iff

(d− 1)(2− τ)

2
− sτ < 0. (67)

Plugging in the definition of τ = (t/d+ 1/2)−1 = (2d)/(2t + d) we get

(d− 1)(2 −
2d

2t+ d
)− 2s

2d

2t+ d
< 0

⇔ (d− 1)(2(2t + d)− 2d) − 2s2d < 0

⇔ (d− 1)t− sd < 0

⇔ t <
sd

d− 1
, (68)

which was our initial assumption (49).
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• Functions on the boundary: It remains to estimate the sum of the wavelet coefficients be-
longing to basis functions that are nonzero on the boundary. Recall that these were the sets
Dl,0, and we already observed |Dl,0| ≤ c2l(d−1). Using twice Hölder for sequences we get

∞∑

l=0

∑

η∈Dl,0

1 · |〈ṽ, η〉|τ ≤
∞∑

l=0




∑

η∈Dl,0

1





2−τ
2



∑

η∈Dl,0

|〈ṽ, η〉|2





τ
2

≤ c

∞∑

l=0

2l
(d−1)(2−τ)

2 2−τls



22ls
∑

η∈Dl,0

|〈ṽ, η〉|2





τ
2

≤ c

(
∞∑

l=0

2l(
(d−1)(2−τ)

2
−sτ) 2

2−τ

) 2−τ
2





∞∑

l=0

∑

η∈Dl,0

22sl|〈ṽ, η〉|2





τ
2

. (69)

According to Lemma 4 the second sum is bounded by ‖ṽ‖Bs
2(Ω̃) <∞. For the first sum to be

finite we get the condition

2

2− τ

(
(d− 1)(2 − τ)

2
− sτ

)

< 0

⇔
(d− 1)(2 − τ)

2
− sτ < 0, (70)

which is the same as (67), and already fulfilled by assumption. This concludes the proof that
(55) holds. Therefore ṽ ∈ Bt

τ (Ω̃) and thus v ∈ Bt
τ (Ω).

✷

We finish this section by summing up the above theorems to gain the following result for equation
(42).

Corollary 15. Let Ω ⊂ Rd be a bounded Lipschitz domain and d ≥ 3. Assume that g ∈ Bs
2(∂Ω) =

Hs(∂Ω) for s ∈ (0, 1). For any t with 0 < t < (s + (1/2))d/(d − 1) and τ = (t/d + 1/2)−1 there
exists a unique weak solution v ∈ Bt

τ (Ω) of the Dirichlet problem (42).

3 n-term wavelet approximation

The goal of this section is to find a characterization of approximation spaces for n-term wavelet
approximation. Most results are taken from the chapters 1,4 and 7 in [DeV98] and also from
[Sau12]. We start by explaining the term n-term approximation. Suppose that we have a seperable
Banach space X, and a basis (bn)n∈N of X. With the definition

Xn := span {bi : 1 ≤ i ≤ n} , (71)

Xn :=
⋃

{Λ⊂N:|Λ|≤n}

span {bi : i ∈ Λ} , (72)
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we can consider two types of approximation for an element f ∈ X: We could either approximate f
in the n dimensional subspace Xn of X, or we could find an approximation of f in the n dimensional
manifold Xn, which is a subset of X. Since Xn is not a linear space, this type of approximation is
also called nonlinear approximation. For example, if X = L2([0, 1]) and the bn are hat functions,
then the linear method is consistent with finding the approximant in the set of piecewise linear
functions with n fixed nodes depending on the first n hat functions. With the nonlinear method
however, we approximate our target function with a piecewise linear function where the location
of the n nodes can be freely choosen within the possible nodes of our basis. This will be a dense
subset of the intervall [0, 1]. Obviously we expect a nonlinear method to perform better. The space
we will be looking at is X = L2(Rd), and the basis (bn)n∈N will be the wavelet basis B2 from (12).
In the following we characterize functions whose error in the n-term approximation decays at a
certain order s.

Definition 16. Let X be a Banach space, and (Xn)n∈N a sequence of nested subsets of X, such
that their union is dense in X. Suppose moreover that aXn = Xn ∀a ∈ R and Xn + Xn ⊂ Xκn for
a fixed integer κ ∈ N. For 0 < q <∞, s > 0 and with dX(f,Xn) := infg∈Xn ‖f − g‖X we define

As(X) := As
∞ :=

{
f ∈ X : dX(f,Xn) = O(n−s) as n→ ∞

}
, (73)

As
q(X) :=






f ∈ X :

(
∞∑

n=1

(nsdX(f,Xn))
q 1

n

) 1
q

<∞






, (74)

and call them the approximation spaces of approximation order s. We define a quasinorm
on As

q by

‖f‖As
q
:= ‖f‖X +

(
∞∑

n=1

(nsdX(f,Xn))
q 1

n

) 1
q

︸ ︷︷ ︸

=:|f |As
q

, (75)

with the second term being a quasiseminorm on As
q(X). If there is no ground for confusion we omit

the X and write As := As(X) and anlogue for As
q.

Another example for the setting of Definition 16 is the case of approximation by rational functions.
It is clear that for

Xn :=

{

R =
P

Q
: P,Q ∈ R[x], deg(P ),deg(Q) ≤ n

}

, (76)

as well as for the n-dimensional manifolds Xn above, κ in Definition 16 can be chosen as 2, and the
other assumptions are also fullfilled.

Remark 17. Functions in As are those for which the error of the best approximation in the
spaces Xn decays at order s. The parameter q allows a finer distinction between these functions.
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We observe for 0 < q <∞

∞∑

j=0





2(j+1)−1∑

n=2j

(2jsdX(f,X2j+1))q2−(j+1)



 ≤
∞∑

n=1

(nsdX(f,Xn))
q 1

n

≤
∞∑

j=0





2(j+1)−1∑

n=2j

(2(j+1)sdX(f,X2j))
q2−j



 , (77)

and obtain

|f |As
q
∼




∑

j≥0

(2jsdX(f,X2j ))
q





1
q

. (78)

It is possible to describe the approximation spaces in terms of the wavelet coefficients, and gain
the results of this section in a direct way. We will not do so however and use a theorem, which is
stated in the general Banach space setting above. For the proof we need the following Lemma.

Lemma 18. Let (aj)j≥0 be a sequence of nonnegative real numbers. For 0 < s < r and q ∈ [1,∞],
there exists a constant c such that

∥
∥
∥
∥
∥
∥

(

2(s−r)j
j
∑

k=0

2krak

)

j≥0

∥
∥
∥
∥
∥
∥
lq

≤ c
∥
∥(2sjaj)j≥0

∥
∥
lq

(79)

Proof. We start with the case 1 < q <∞. Let 1/q + 1/q′ = 1, then with α := (r − s)/2 > 0 and
by Hölder’s inequality

∑

j≥0

2(s−r)qj

(
j
∑

k=0

2rkak

)q

≤
∑

j≥0

2(s−r)qj

(
j
∑

k=0

(2αk)q
′

) q
q′

︸ ︷︷ ︸

≤c2αjq

(
j
∑

k=0

(2(r−α)k)q

)

≤ c
∑

j≥0

2−αjq

(
j
∑

k=0

(2(r−α)k)q

)

= c
∑

k≥0

(2(r−α)kak)
q c
∑

j≥k

2−αjq

︸ ︷︷ ︸

≤2−αkq

≤ c
∑

k≥0

(2skak)
q. (80)
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For q = 1

∑

j≥0

2(s−r)j
j
∑

k=0

2rkak =
∑

k≥0

2rkak
∑

j≥k

2(s−r)j

︸ ︷︷ ︸

≤c2(s−r)k

≤ c
∑

k≥0

2skak, (81)

and for q = ∞

2sj2−rj
j
∑

k=0

2rkak ≤ 2sj2−rj
∥
∥(2sjaj)j≥0

∥
∥
lq

j
∑

k=0

2(r−s)k ≤ c2sj
∥
∥(2sjaj)j≥0

∥
∥
lq
2−sj, (82)

which proves (79). ✷

Theorem 19. Let X and Y be a pair of Banach spaces where Y is continuously and densely
embedded in X, with ‖f‖Y ∼ ‖f‖X + |f |Y for a seminorm | · |Y on Y . Assume that (Xn)n∈N0 is
a sequence of nested subsets of Y , that fullfills the assumptions in Definition 16, and there exists
r > 0 for which the Jackson inequality

dX(f,Xn) ≤ c1n
−r|f |Y ∀f ∈ Y, ∀n ∈ N0, (83)

and the Bernstein inequality

|f |Y ≤ c2n
r ‖f‖X ∀f ∈ Xn, ∀n ∈ N0, (84)

hold for some constants c1, c2 > 0. For q ≥ 1 and r > s we then have

As
q(X) = (X,Y )s/r,q . (85)

Proof. In this proof we work with the norm representation (78) of the interpolation space, and
use the notation X̃j := X2j . With (78) and ρ = 2r in (34) we need to show

‖f‖X +




∑

j≥0

(2jsK̃(f, 2−jr))q





1
q

︸ ︷︷ ︸

=|f |(X,Y )s/r,q

∼ ‖f‖X +




∑

j≥0

(2jsdX(f, X̃j))
q





1
q

︸ ︷︷ ︸

=|f |As
q

, (86)

where K̃(f, t) = infg∈Y ‖f − g‖X + |g|Y . For the first direction we bound the error of the best
approximation by the K̃-functional. For any gj ∈ X̃j ⊂ Y and g ∈ Y

dX(f, X̃j) ≤ ‖f − gj‖X
≤ ‖f − g‖X + ‖g − gj‖X . (87)
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We minimize over gj ∈ X̃j and use the Jackson estimate (83) for the second term in (87) to obtain

dX(f, X̃j) ≤ c(‖f − g‖X + 2−jr|g|Y ). (88)

Minimizing over g ∈ Y then yields

dX(f, X̃j) ≤ cK̃(f, 2−jr), (89)

and we get |f |As
q

≤ c|f |(X,Y )s/r,q . For the other direction we choose elements fj ∈ Xj with

dX(f, fj) ≤ 2dX(f, X̃j) and use the triangle inequality

K̃(f, 2−jr) ≤ ‖f − fj‖X + 2−jr|fj|Y

≤ ‖f − fj‖X + 2−jr




|f0|Y +

j
∑

k=1

| fk − fk−1
︸ ︷︷ ︸

∈X̃κk

|Y




 . (90)

Now we make use of the Bernstein inequality (84) and of dX(f, fk) ≤ 2dX(f, X̃k) ∀k = 0, . . . , j

K̃(f, 2−rj) ≤ ‖f − fj‖X + c̃(κ)2−rj




|f0|Y +

j
∑

k=1

2rk ‖fk − fk−1‖X
︸ ︷︷ ︸

≤‖fk−f‖X+‖f−fk−1‖X




 . (91)

Again because of Bernstein |f0|Y ≤ c2 ‖f‖X ≤ c2(‖f‖X + ‖f − f0‖X), and thus

K̃(f, 2−rj) ≤ c2−rj

(

‖f‖X +

j
∑

k=0

2(k−j)rdX(f, X̃k)

)

. (92)

The next step is to multiply both sides with 2sj and to take the lq norm of the sequences with
index j. Lemma 18 then finishes the proof with ak := dX(f, X̃k)

∥
∥
∥
∥

(

2sjK̃(f, 2−rj)
)

j≥0

∥
∥
∥
∥
lq
≤ c

∥
∥
∥
∥
∥
∥

(

2(s−r)j ‖f‖X + 2(s−r)j
j
∑

k=0

2rkdX(f, X̃k)

)

j≥0

∥
∥
∥
∥
∥
∥
lq

≤ c





∥
∥
∥
∥

(

2(s−r)j ‖f‖X

)

j≥0

∥
∥
∥
∥
lq
+

∥
∥
∥
∥
∥
∥

(

2(s−r)j
j
∑

k=0

2rkdX(f, X̃k)

)

j≥0

∥
∥
∥
∥
∥
∥
lq





≤ c
(

‖f‖X + |f |As
q

)

. (93)

✷

To describe the approximation spaces for the n-term wavelet approximation, we now find a space
Y that fits the above setting.
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Lemma 20. Let X = L2(Rd), Y = Bt
τ (R

d) for t > 0 and 1/τ = t/d + 1/2. Assume that the
wavelet ψ with which we define the basis B2 in (12) has m vanishing moments where m > t and
ψ ∈ Bt+δ

τ,q′ for some δ > 0, q′ ∈ (0,∞]. Let Xn be the sets

Xn :=
⋃

{Λ⊂B2:|Λ|≤n}

span {η : η ∈ Λ} . (94)

Then there exists c > 0 such that the Jackson and Bernstein inequalities hold

dL2(f,Xn) ≤ cn−
t
d |f |Bt

τ
∀f ∈ Bt

τ , (95)

|f |Bt
τ
≤ cn

t
d ‖f‖L2 ∀f ∈ Xn. (96)

Proof. First of all let us remark, that the assumptions on the wavelet ψ are sufficient so that we
can use the characterization in terms of wavelet coefficients from Lemma 4 ([DeV98, p. 119]). We
start with the more difficult Jackson inequality (95). According to (20) we have

|f |Bt
τ
∼




∑

η∈B2

|〈f, η〉|τ





1
τ

, (97)

and therefore for any ε > 0

| {η ∈ B2 : |〈f, η〉| > ε} | ≤ c|f |τBt
τ
ε−τ . (98)

With Λj :=
{
η ∈ B2 : 2

j < |〈f, η〉| < 2j+1
}
we get

∞∑

j=k

|Λj | ≤ c|f |τBt
τ
2−kτ , (99)

since due to (98) |Λj | ≤ |f |τBt
τ
2−jτ . Let

gj :=
∑

η∈Λj

〈η, f〉η, and (100)

fk :=
∑

j≥k

gj , (101)

then

‖f − fk‖L2 =

∥
∥
∥
∥
∥
∥

k−1∑

j=−∞

gj

∥
∥
∥
∥
∥
∥
L2

≤
k−1∑

j=−∞

‖gj‖L2 . (102)

Notice that fk → f for k → −∞. To estimate ‖gj‖L2 we use that its wavelet coefficients are
bounded by 2j+1 by construction, and that B2 is a Riesz basis in L2, and obtain

‖gj‖
2
L2 =

∥
∥
∥
∥
∥
∥

∑

η∈Λj

〈f, η〉η

∥
∥
∥
∥
∥
∥

2

L2

≤ c
∑

η∈Λj

|〈f, η〉|2 ≤ c22(j+1)|Λj | ≤ c2j(2−τ)|f |τBt
τ
, (103)
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where the last step follows again from (98). Summing over j from −∞ to k − 1 we conclude from
(102) and (103)

‖f − fk‖L2 ≤ c|f |
τ
2

Bt
τ

k−1∑

j=−∞

2
j(2−τ)

2 ≤ c|f |
τ
2

Bt
τ
2k(1−

τ
2
). (104)

In terms of expansion coefficients N(k) of fk with N(k) = O(|f |τBt
τ
2−kτ ) for k → −∞ because of

(99), this means

dL2(f,XN(k)) ≤ c|f |Bt
τ
N(k)−

1
τ
(1− τ

2
)

≤ c|f |Bt
τ
N(k)

1
2
− 1

τ = c|f |Bt
τ
N(k)−

t
d . (105)

The monotone decay of the approximation error dL2(f,Xn), and the (at most) exponential and

monotone growth of N(k) imply that there is a constant c̃ with dL2(f,Xn) ≤ c̃|f |Bt
τ
n−

t
d ∀n ∈ N:

sup
n≥N(1)

dL2(f,Xn)

n−
t
d

≤ sup
k∈N

dL2(f,XN(k))

N(k + 1)−
t
d

≤ c|f |Bt
τ
sup
k∈N

(
N(k + 1)

N(k)

) t
d

≤ c̃|f |Bt
τ
, (106)

which proves (95). The Bernstein inequality (96) is particularly easy in our setting because B2 is
a Riesz basis in L2(Rd) (that is not true for Lp where p 6= 2). If f ∈ Xn, then

f =
∑

η∈Λ

〈f, η〉η (107)

for a Λ ⊂ B2 with |Λ| ≤ n. With (20) and Hölder’s inequality we get for such an f

|f |Bt
τ
≤ c




∑

η∈B2

|〈f, η〉|τ





1
τ

≤




∑

η∈B2

|〈f, η〉|τ
2
τ





1
τ

τ
2



∑

η∈B2

1τ
2

2−τ





1
τ

2−τ
2

≤ c ‖f‖L2 |Λ|(
1
τ
− 1

2
) = c ‖f‖L2 n

− t
d . (108)

✷

Corollary 21. Let X = L2(Rd) and Xn be the spaces

Xn :=
⋃

{Λ⊂B2:|Λ|≤n}

span {η : η ∈ Λ} . (109)
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Assume that the wavelet ψ with which we define the basis B2 in (12) has m vanishing moments for
some m > t and ψ ∈ Bt+δ

τ̃,q′ for t > 0, δ > 0 and some q′ ∈ (0,∞]. With 1/τ̃ = t/d+1/2, q ≥ 1 and
for s < t we then have

As/d
q (L2(Rd)) =

(

L2(Rd), Bt
τ̃ (R

d)
)

s/t,q
, (110)

and in particular for 1/τ = s/d+ 1/2

As/d
τ (Rd) = Bs

τ (R
d). (111)

Proof. The assumptions in Definition 16 are easily checked. Formula (110) then follows directly
from Theorem 19 and Lemma 20. Equation 111 is an interpolation result similar to Theorem 10,
see [DeV98, Remark 7.6]. In fact τ is the only value for q such that the approximation space is a
Besov space. ✷

Remark 22. We obtained the results in Corollary 21 for the domain Rd, d ≥ 1. This can
be generalized to bounded Lipschitz domains Ω ⊂ Rd, by using a bounded extension operator
E : Bs

p(Ω) → Bs
p(R

d), and then considering only those wavelets that are nonzero on Ω. If we return
to the setting and notation of Corollary 15, we obtain that the convergence rate of the n-term
wavelet approximation for the solution of (42) is t/d. Of course we have to keep in mind that this
is only true if the wavelet we are working with is smooth enough.
Now let us go back to Corollary 21. With Bs0

p0,q(R
d) →֒ Bs1

p1,q(R
d) for s0−s1 = (d/p0−d/p1) [Tri10,

Section 2.7.1, p. 127] we obtain Hs(Ω) = Bs
2,2(Ω) →֒ Bs+ε

τ,2 (Ω) →֒ Bs
τ (Ω), where ε depends on d and

s. Therefore Hs(Ω) ( A
s/d
∞ , and Hs(Ω) is the approximation space with order s/d for the linear

method we described at the beginning of this section. That means the approximation space for the
nonlinear method is larger.
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