CONE STRATEGIES FOR FORMAL DEFORMATIONS
OF NON-COLLAPSIBLE SIMPLICIAL COMPLEXES

JAN F. KAYATZ

ABSTRACT. The simple homotopy equivalence class of a simplicial
complex consists of complexes resulting from subsequent formal
deformations. We use anticollapses to build cones over collapsible
subcomplexes; depending on the properties of the cone bases, we
obtain a complex with very few simplices after the cones collapse
again. We analyze several strategies to compute cones that lead
to an almost minimal simple homotopy equivalent complex. After
we explained our ideas in theory we discuss the computational
possibilities of the cone-strategies.
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The following collapses simplified the graph by one egde and
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dimensional pure part of its boundary.

Edge contraction: The first step is to add the new vertex uv
and compute the star of w.
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INTRODUCTION

Simplicial complexes play an important role in computer science, dis-
crete mathematics and topology. But usually the necessary amount of
data to describe them is immense and their geometric, topological and
homological properties can only be analyzed by sufficient computing
power and time. Therefore we want to modify a simplicial complex,
reducing the number of simplices but not changing the underlying topo-
logical space.

Common approaches for such a reduction strategy include edge con-
tractions (see for instance [2] or any book on graph theory) (usually
applied on graphs) and collapses (refer to [3] for definitions). The latter
method (collapses) has been analyzed in many aspects (see [8],[9] or
[15]); collapses are easy to implement on a computer and at the first
glance they seem to be able to simplify most simplicial complexes. Yet
the main problem is to find an optimal (or at least good) sequence of
collapses. Random sequences can lead to arbitrarily bad results. Such
a good sequence can only be computed in special cases when one deals
with a p.l. manifold and additional geometrical information is at hand:
[15]. Another severe problem is the existence of simplicial complexes
which are topologically rather trivial but collapses alone are unable to
simplify their discretization, such as the famous dunce cap (refer to
23)).

J.H.C. Whitehead provided the necessary insights to simple homotopy
theory (his work on the subject is collected in [22]) and was able to give
information, when a homotopy equivalence can be realized by collapses
and their inverse process. Therefore we tried to describe a strategy to
simplify a simplicial complex by means of collapses and anticollapses.

Outline. We begin with the basic definitions and some easy properties
of the defined objects. After we have the necessary language we state
the main results in simple homotopy theory which gave rise to our idea,
using anticollapses as a simplification strategy. Then we redefine the
term anticollapse in order to make it algorithmically more accessible
and finally come to cones, their augmentation by anticollapses and the
balance of augmenting and collapsing cones.

We will then include a little detour about edge contractions and other
combinatorial methods and talk about how these constructions can be
realized with collapses and anticollapses.

To find out, whether there are better or worse cones we defined several
cone augmenting strategies such as the “maximal cone” strategy, the
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“pure cone”- and “cone over p.l. manifold” strategy and some others.
In the sections about the implementation we start by describing the
used data structure and then analyze, subroutine by subroutine, the
complexity of our algorithm. Afterwards we provide a different point
of view on the analysis and can improve our estimates a little.

The main problems and trade-offs in our implementation will then be
analyzed and improved where possible.

At last we give some examples how the algorithm behaves in practice.

Results. Our analysis shows a runtime complexity between O(N?)
and O(N) where N is the number of simplices needed to describe a
simplicial complex. We observed that the complexity of the algorithm
depends on the given simplicial complex (its dimension, genus and
triangulation) and the used cone strategy but is usually close to linear.
The most powerful strategy seems to be the “small cone” strategy.
Cones with a larger base manage to decrease the number of simplices
only in certain situations.

The algorithm is able to contract the house with two rooms [1] and the
dunce cap and reach the minimal triangulation for certain topological
spaces such as the torus.
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1. SimPLICIAL COMPLEXES AND POSETS

Definition 1.1 (Simplicial Complex). Let A be a set. A collection
A of subsets of A is called a simplicial complex if for every M € A
and every subset K C M we have: K € A. The elements of A of
cardinality n+ 1 are called n-simplices, or just simplices. By vertex we
denote a 0-simplex, ie. the elements of A.

Definition 1.2 (Subcomplex). A subcomplex of a simplicial complex
A is a subset A which is itself a simplicial complex.

Definition 1.3 (Dimension). We define the dimension of a simplex o
as dim(o) = k — 1 if the cardinality of o equals k. The dimension of a
simplicial complex A is the maximum of the dimensions of its simplices.

Remark. An oriented simplicial complex contains ordered subsets of
A. We identify an ordered set with its image under two transpositions
of its elements (that is, a simplex is the orbit of an ordered set under the
group action of the alternating group, the group of even permutations).
So every simplex has two orientations, denoted by —o and +o.

Before we continue with further definitions about complexes we in-
troduce the notion of categories and functors. This concept is quite
usual and helpful in algebraic topology as it can be used to generalize
several concepts such as tensor products, homology theory etc. We use
functors for the geometric realization of simplicial complexes, the face
poset construction, simple homotopy and also for homology.

Definition 1.4 (Category). A category is a pair (&, #) of classes. &
is the class of objects and .# is the class of morphisms (or arrows),
which contains the identity for every object and the composition of
morphisms.

Example. Here are some examples of categories:

e Sets = (S5, M), the category of sets. The objects are all sets
and the morphisms are set maps.

e Grp = (¥,.%), the category of groups. Objects are groups
and morphisms are group homomorphisms.

e Top = (T,C"), the category of topological spaces. Morphisms
are continuous maps.

e Posets = (P, M,), the category of partially ordered sets. The
morphisms are order preserving set maps.

e Simp = (D, (), the category of simplicial complexes. The
objects are simplicial complexes and the morphisms are cellular
maps, ie. maps which take simplices to simplices.
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Definition 1.5 (Functor). A functor is a map from a category to a
category which maps objects to objects, morphism to morphism and
preserves the identity and compositions. That is, a map

F (O, M) — (O, Ms)

is a functor, if for objects X, Y, Z € &1 and morphisms ¢ : X — Y and
h:Y — Z, we have

e 7 (hog)=F(h)o Z(g)

A functor is called covariant if it preserves the direction of arrows and
contravariant if it flips arrows.

Example. Here are some examples of functors

e The trivial functor F': C — C for a category C.

e The dual vector space functor C' : Vectg — Vecty is a con-
travariant functor which sends a vector space to its dual space
and a linear map to its dual.

e The homology H, : Top — Grp is a covariant functor and the
cohomology H* : Top — Grp is a contravariant functor. Refer
to [16] for an introduction to homology theory.

Further examples can be found throughout this article. We return
now to simplicial complexes.

Definition 1.6 (Boundary Maps). Let K be a simplicial complex,
K™ C K the set of all n-simplices. We define the i* boundary (or
face-) map as
o K —s K
o={vo,...,v} = (o) ={vo,...,V—1,Vig1,-..,Vn}

Definition 1.7 (k-Skeleta). Let k£ € N be a number and A a simplicial
complex. We define the k-skeleton of A as the set of all j-simplices with
J<k.

Definition 1.8 (Geometric Realization of a Simplicial Complex [19]).
The geometric realization of a simplicial complex is a covariant functor

|| : Simp — Top

taking a simplicial complex to a topological space and a cellular map
to a continuous map. Formally:

K| =][E"x 8"/~

neN



ANTICOLLAPSES AND CONES 3

where K" is defined as in 1.6 and S™ is the standard unit simplex in
ReH!:

S" = {(a:o,...,xn) € ]R”H‘xi > 0 and ij = 1}

§=0

and ~ is the glueing relation:
Let e : 8" < 8™*! be the inclusions of the faces of the unit simplex.
Then ~ is generated by

K" ' x 8" > (9'(0),T) ~ (0,6} (T)) € K" x S"

i

for an n-simplex ¢ and T € 8",

Remark. We can embed a finite simplicial complex over k vertices
into R¥:

UV:A — R

v, € Ky (0,...,0,1,0,...,0)
N——
7 times

e€ Ki — {X-¥(0(e)) + (1= A)-¥(d{(e))|A € [0,1]}

that is, we map a simplex to the convex hull of the image under ¥ of
its vertices.

In this paper we started with an abstract simplicial complex as a
combinatorial construction and then defined its geometric realization.
In real life situations however one deals with simplicial complexes which
are derived from a discretization of a manifold; that is, the usual ap-
proach is the other way around. As the concepts in this article deal
only with the discretization, that is, with the combinatorial properties
of a complex, the underlying geometric properties are of no particular
interest,.

Definition 1.9 (Star, Costar and Link of a Simplex [19], pages 11 ff.).
Let A be a simplicial complex and ¢ € A a simplex. We define the
star of o to be the following subcomplex of A:

stara(0) :={T € AlrUo € A}
and the costar of o

costara(o) :== {7 € AlrNo =0}
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ie. the largest subcomplex of A that does not contain the vertices of
o. Finally the link of a simplex is

linka (o) := stara (o) N costara (o)

See fig.1 for an example.

o€ stara (o) costara (o)  linka (o)

FIGURE 1. An example of star, costar and link for a
vertex and an easy two dimensional simplicial complex.

Definition 1.10 (Star, Costar and Link of a Subcomplex). Let AcA
be a subcomplex. We define the star of A to be the complex

stara (A) == U stara (o)
ceA

the costar .
costara (A) = ﬂ costara (o)

and the link

linka (A) := stara (A) N costara (A)

Lemma 1.11. The costar is inclusion reversing: If A, B C A are two
subcomplezes, then

A C B = costara(A) D costara(B)

Proof. Let A C B. Then
costara (B) = ﬂ costara (b)

beB
= ﬂ costara(a) N ﬂ costara (b) C costara(A)
acA be B\A

O

Definition 1.12 (Induced Subcomplexes). A subcomplex A C A is
called induced, if every o € A, 0 = {vg,...,v,} with vg,...,v, € A is
also a simplex in A.
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Lemma 1.13. If (in 1.11) A, B are induced subcomplexes, the impli-
cation works in both directions:

A C B < costara(A) D costara(B)

Proof. Let costara(A) D costara(B). We only need to show that the
vertex set of A is contained in the vertex set of B. From the definition
of costar it follows that if b € B: b ¢ costara(B) and vice versa, and
the same holds for the vertices of A. Together with 1.11 this proves
the lemma. O

Lemma 1.14. For a simplicial complez A and a subcompler A C A,
we have

(1) A C costara (costara(A))

Proof. For every b € costara(A) and a € A we have a € costara (b), by
the definition of costar. Taking the intersection over all b proves the
inclusion. O

Remark. If A C A is induced in 1.14, the inclusion 1.14.(1) becomes
an identity. The proof follows by passing over to the costar on both
sides of the inclusion, the order reversing property of 1.11 and the
definition of costar.

We analyzed the properties of the costar complexes deeper in order
to understand the following definition better. We wish to access those
simplices of a subcomplex, whose star contains simplices both inside
and outside of the subcomplex.

Definition 1.15 (Boundary of an Induced Subcomplex). Let A € A
be an induced subcomplex. The simplicial complex

8(&) ;= linka (costarA(A))

is called the boundary of A.

Definition 1.16 (Poset). A poset is a set P with a strict partial or-
der <.

e We also call the set of minimal elements the atoms and write
A(P)

e We define the levels of P as Py := A(P), P, .= AP\ R), ...,
P, := AP\ S P,) and call a poset leveled if < is the trivial
relation on every level.

e Let y € P, we write P., := {z € P|z > y} for the subposet
above y and analogously P, for the subposet below y.
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o If 2 € A(P_,NP.,) exists and is unique for two elements z,y €
P, we call z the join of x and y and write z = x V y.

o If » € P, N P,y exists and is a unique maximal element of
P., N P.,, we call it the meet of x and y and write z =z A y.

Definition 1.17 (The Face Poset F(A)). Given a simplicial complex
A, we define its face poset F(A) to be the set of simplices of A, partially
ordered by inclusion. Join and meet are naturally defined by union and
intersection, atoms correspond to vertices (see fig.2 for an example). It
is convenient to add an imaginary level —1 below the atoms, containing
the empty set which is dominated by all elements.

FIGURE 2. A complex and its face poset (without the
level —1)

This poset has a few nice properties: first of all it is leveled. Then,
from the simplicial structure, it follows that an element on the level
k — 1 has (’;) smaller elements on the level [ — 1. This information is
crucial when we anticollapse; we have to maintain this simplicial struc-
ture when adding new elements.

Definition 1.18 (Pure Complexes). We call a simplicial complex pure
or to be of homogeneous dimension, if every maximal simplex (that is,
simplices which are not a subset of another simplex) is of the same
dimension.

Definition 1.19 (Order Complex). Let P be a poset. We define its or-
der complex A(P) as the set of chains in P where a chain {c;,..., ¢} C
P is a totally ordered subset.

Remark. The face poset and order complex constructions are functo-
rial: F : Simp — Posets and A : Posets — Simp are functors.

The face poset construction allows us to use either the language of
simplicial complexes or posets, whichever suits our needs better.
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2. SOME SiMPLE HoMOTOPY THEORY

Before we talk about simple homotopy theory (which is a combinato-
rial concept for simplicial complexes) we define some important objects
from homotopy theory and topology.

Definition 2.1 (Homotopy equivalent maps). Let f,g : A — B be
two continuous maps of topological spaces. We say f is homotopic to
g if there is a continuous map

H:Ax][0,1]] — B
H(a,0) = [fla)
H(a,1) = g(a)

and write f 1 qg.

Definition 2.2 (Homotopy equivalent spaces). We call two topological
spaces A, B homotopy equivalent, if there are maps f : A — B and
g: B — A such that fog ~idg and go f ~ idy. We also say that
A is a deformation of B and vice versa. In this case the maps f and ¢
are called homotopy equivalences.

Definition 2.3 (h-Cobordant Spaces (refer to [17])). Let A and B
be topological spaces and I' = A U B their disjoint union. If there
is a manifold M which has the boundary OM = T', then A is called
cobordant to B and vice versa; M is called a cobordism of A and B.
If the inclusions M — A and M — B are homotopy equivalences, A
and B are called h-cobordant.

Definition 2.4 (The Homotopy Extension Property). Given two topo-
logical spaces A and ). A mapi: A — Q is said to have the homotopy
extension property, if for every topological space ¥ and every homotopy
H:AxI— Y and map f:Q — ¥ with foi = H(,1), there is a
homotopy H : Q x I — ¥ which equals to H on the image of (i,4d;)
and H(-,0) = f. That is, the diagram
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commutes. A map with the homotopy extension property is also called
a cofibration.

Definition 2.5 (Punctured spaces and maps). We fix a base point
in every topological space. A punctured space is a pair (K, ky) where
ko € K is the base point, and a punctured map [ : (K, ko) — (L, o) is
a map with f (ko) = lp: “base points map to base points”.

Definition 2.6 (Homotopy Equivalence Class). Let A and B be topo-
logical spaces with the base points ag and by and f : A — B be a
punctured map. We define the homotopy equivalence class of f as

(f) ={9:A— Blg~ f and g(ag) = bo}
that is, all maps which are homotopy equivalent to f relative to the
base points.

Definition 2.7 (Homotopy groups 7). Let (K, ky) be a topological
space. We define

me(K) == { {f) |f : (S*,30) = (K, ko) a punctured map}
the £ homotopy group or, if k = 1, we call it the fundamental group.

Now we get to simple homotopy theory. As mentioned, this is a
combinatorial concept for simplicial complexes - hence we will use the
language of posets for definitions and then explain the correspondence
between the combinatorial approach and homotopy theory.

Let P be the poset of a simplicial complex.

Definition 2.8 (Collapses and Anticollapses). Let o € P be maximal,
say on the level k. If 7 < o is on the level £ — 1 (later we call such
elements premazimal), and there is no & # o above 7, then the removal
of o and 7 yields an elementary collapse; we write P \rq) P and
say P collapses to P. Furthermore, 1f P \(r0) P we also say that P
anticollapses to P and write P o) (See fig.3 for a few examples.)

YN

FIGURE 3. A sequence of five collapses leading from two
triangles to a vertex.

Definition 2.9. We call a simplicial complex collapsible, if there is a
sequence of collapses which remove every one its simplices except for
one vertex.
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Definition 2.10 (Free Faces). We call the simplices which are face of
exactly one maximal simplex free face. A simplicial complex is defi-
nitely not collapsible if it does not have any free faces.

Remark. Collapses and anticollapses (sometimes referred to as “ex-
pansions”) together are called formal deformations.

Remark. A classical question is “Do collapses alone suffice to contract
a 0-homotopic space?” The answer is ‘no’ and standard counterexam-
ples are the dunce hat (see [23]) and the house with two rooms @ (see
[1] or fig.4).

FiGURE 4. Bing’s “House with two rooms”: Homotopy
equivalent to a point but not collapsible - There are no
free edges.

Remark. The inclusion i : |[K| — |L| of a subcomplex K C L has the
homotopy extension property.

Lemma 2.11. [fA \(3?(0),0) B then |A| >~ |B|

We need to show the existence of maps f : |A] — |B| and ¢ : |B| —
| A| whose compositions are homotopic to the identities in the particular
domains.

See fig.5 as an illustration for the proof.

Proof. We assume that |A| C R* (see the remark on page 3) and iden-

tify o with its “image” under the geometric realization. We transform

our spaces such that the simplices o and 07 (o) coincide with the stan-

dard unit simplex S™ or 8™ ! respectively embedded into R¥.

The vector y := (—1,...,—1,1,0,...,0} is orthogonal on 0} (c). Let
N—_— ——

n times

g : |B| — |A| be the inclusion and f : |A| — |B| be defined as

o) = x if z is not in o
" | 4+ h(z)-y otherwise
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Y

a1 (o)

N

R* C RF

FIGURE 5. A homotopy that leads to a collapse.

where

h(xz) =sup{\ € Rz + A -y € 0}/ (o) for some k # 1}

Then fog=1idp and go f < id)4; where the homotopy G translates
the points g(f(z)) by —t - h(z) -y, t € [0, 1] 0O

Simple homotopy theory discusses the possibilities of formal defor-
mations instead of general homotopies. Due to this limitation the ho-
motopy equivalence class of a simplicial complex splits into multiple
disjoint simple homotopy equivalence classes. J.H.C. Whitehead pro-
vided a theorem giving conditions for two CW-complexes to be simple
homotopy equivalent.

Theorem 2.12 (In [3], §22: (22.2) ). A homotopy equivalence g : L —
K of CW-complexes is a simple homotopy equivalence if the Whitehead
group

Wh(m(K)) = Gloo (Z(mi(K)) )/ £ m1(K)

vanishes. The group ring Z(G) of a group G is the ring whose elements
are of the form deG aq - g where the coefficients ay € Z. The matrix
group Gl (R) of a ring R consists of those non-singular matrices which
differ from the unit matriz only in finitely many entries.
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This is an obstruction for h-corbodant spaces. We refer the interested
reader to [3], especially §22 and §24 and literature on higher K-groups
for more information. The following lemma is an easy consequence:

Lemma 2.13. Let A be a finite simplicial complex. The topological
space |Al is contractible if and only if there is a sequence of collapses
and anticollapses leading from A to one of its vertices.

Proof. The inclusion of a subcomplex A — B has the homotopy ex-
tension property and because B N\, A the inclusion is a homotopy
equivalence (as we have shown in 2.11). So, if A N\, %, we have
|A] ~ .

The other implication follows from theorem 2.12: In our case g : |A| —
K is a contraction, ie. K is a vertex. Then

Wh(m (K)) = Wh(rmi (%)) = 0

because in [7] it is shown that Gl (Z)/(—1,1) = 0, for every k > 0 and
as there is only one way to map a sphere to a single point, Z(m(*)) =
7. O

T. Chapman provided a relation between simple homotopies and
homeomorphisms:

Theorem 2.14 (In [3], Appendix (pp.102), “Main Theorem”). Let
X, Y be finite CW-complexes. The map f: X — Y is a simple homo-
topy equivalence if and only if f X idg : X x Q@ =Y x @ is homotopic
to a homeomorphism X x Q — Y X QQ where Q = H;’il[(), 1] is the
Hilbert cube.

These statements unfortunately provide no strategy for an algorithm.
The following refinement of 2.14 from C.T.C. Wall [21] makes sure we
do not have to anticollapse up to a very high level in order to reduce a
simplicial complex.

Theorem 2.15. Let Ay and Ay be two simplicial complexes of the
same simple homotopy type. If dim(A;) = dim(Ay) = n and n # 2,
then Ay /N ... "\ Ay and we never have to go up more than one
dimension. Ifn = 2 we do not have to go up more than two dimensions.

There are conditions for the case n = 2 to make sure that anti-
collapses of dimension 3 suffice (see for example [13]), however these
conditions depend on the fundamental groups of A; and A, - and we
do not want to compute them.
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3. COMBINATORICS OF ANTICOLLAPSES

We provide a different construction for anticollapses which suits our
needs better than “searching for inverse collapses”.

Construction 3.1 (Anticollapses (on a high level)). Let P be a face
poset, 7 € P on the level £ > 0, and assume there are at least two
larger elements o1 5 > 7 on the level k 4 1 such that oy V 0y does not
exist (see fig.6 for a k =1 example). Then, for j =1,2: 0; \ 7 = {w;}
are the two vertices outside 7. By the simplicial structure we know
that 7 is above £ + 1 elements 7; (i = 0,...,k) on the level £ — 1.
The simplex that is to be added to the poset is
0 .=1U {’U)l,’LUQ}

on the level k£ + 2. Define

Mz = {rli € {0,...,k}, 7V {wi,ws} does not exist}
If M2 = {r;}, we add 0 and 7; U {wy, we} =: 7 to the poset, thus
producing an anticollapse:

P/‘(,?’g) PI:PU{01VU2 = 07%}

2 T1 \/{w1,w2}

W2 wy X w1y
T2 T2 Ty

FIGURE 6. Anticollapsing: An explosion of the simplices
whose presence in the complex is to be checked.

Remark. In the case that M**2 = () we know that the boundary of
the simplex 6 is entirely in the complex, but 6 is not. Hence we must
not anticollapse. If |M*1*2| > 1 we go down one level: we select a new
7€ M* "2 and set 6; := 7 U {w;}, i = 1,2, then we compute M""".
If it has only one element, we anticollapse and go up again, if it has
more than one element, we go further down. If it has no element, we
can not proceed.

If M**2 can be reduced to have only one element by anticollapses on
lower levels, we also write P (s ) P, eventhough in this case we have
to add more than 6 and 7 to P.

Construction 3.2 (Anticollapses (on the lowest level)). Let a € P be
an atom. Adding a new atom b and an edge {a, b} yields an anticollapse
on the lowest level. We also write P 7 o) P = P U {b,{a,b}}.
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Remark. We assumed for anticollapses on a high level the existence
of o1 and o9. Lowest level anticollapses make it possible to construct
these elements if necessary.

Lemma 3.3. The above definition of anticollapses is equivalent to our
initial definition.

Proof. Suppose A 9 A and 7 is on the level k£ > 1. Then 6 has at
least two further faces 7 # 7 # 7. Let 0 := 71 A 73. Using our new
definition of anticollapses we get

A Moo A
O

Next we give a first glance of how anticollapses could help simplifying
a simplicial complex:

3.1. Elementary Anticollapses. In the definition of anticollapses, if
7 was chosen to have ezactly two mazimal parents o, o, and if we can

anticollapse P "5 P directly (without work on lower levels), then
P Nor0) strrn) @

and we removed 2 simplices in total. This looks good, but unfortunately
these choices are rarely possible. So we anticollapse on lower levels
to make them become possible - this again increases the number of
simplices by more than 2 and the following collapses probably will not
contervail that. To get an idea how to work around these difficulties we
need to apply our anticollapses on very special places. We introduce
the concept of cones.

4. CONES

Definition 4.1 (Cones). A cone with apex x5 over a simplicial complex
A is a simplicial complex C, (A) with the simplex set

AU{oUuxglo € A} U{xp}

Cones are collapsible - in fact, ordering the elements of A in dimen-
sion decreasing order gives a collapsing sequence. Hence the inclusion of
a complex A into a cone is a homotopy equivalence if A is contractible.
Alternatively one can span a cone over a contractible subcomplex.
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Construction 4.2 (Augmenting a Cone). Let Ag be a simplicial com-
plex and A a collapsible subcomplex, v € A a vertex. We can anticol-
lapse on the lowest level

Ao Moy A

by adding a vertex v and an edge (v,?). Obviously |Ag| ~ |A|. Fur-
thermore C' := A U C,(A) is a cone spanned over a collapsible sub-
complex. See fig.7 for a visualization of the following construction. If
w € O(stara(A)) is a vertex on the boundary! of stars(A), then there
are simplices o1, ..., 0, in A such that o; U {w} € A. For any of these

simplices we have
C Moiu{w}oiufowy) CF

(where sometimes this also includes anticollapses on lower levels).
Furthermore, if B := {o1,...,0,} is collapsible, ie. there is a permu-
tation p such that

B \(ffpmv%(z))\(%(zw%u)) \(%(k—nv%(k)) {opk+1)}

(where 0,11y is a vertex) then the sequence p(k),p(k — 2),...,p(2)
yields a sequence of anticollapses on C:

C /‘(Up(k'+1)U{UJ},0'p(k.+l)U{w,v}) Cp(k+1)

(Op ey {010ty Hwd) (@ U001, -2y U0,0})

| k+1 DA
00 IHw0} 52 U w,0) Uit crl) = C

So C' is again a cone, a larger one than C' because it is spanned over a
larger collapsible subcomplex than A. If the simplicial complex B is not
collapsible, we proceed in the same way with a collapsible subcomplex
B C B. We mention here that our algorithm chooses the subcomplex
containing a vertez of minimal valency? in the l-skeleton of A. We
call this the “least valency first”-method and explain it later. One can

iteratively increase a cone until there is no w € d(stara(A)).

Remark. It should be clear by now why we whished for an alternative
definition of anticollapses. During the cone augmentation we apply
our new definition over and over again whilst the search for inverse
collapses would be less determined.

Lwe will call such vertices “augmenting vertices”

2Valency of a vertex v: The cardinality of the O-skeleton of linka (v); alterna-
tively: the number of edges incident to v.
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A(stara (A))

<

Ao w Ao w

&

FIGURE 7. The objects involved in an augmentation.

4.1. Flat Cones. Above we started with an anticollapse on the lowest
level to add the apex v. We can omit this first step and take any vertex
of A as the apex of the cone (refer to fig.8 for a simple visualization of
regular and flat cones. The figure also holds the main ideas for the fol-
lowing construction). The advantage is that the initial cone is already
given by the star of v in A,.

The further augmentation of this flat cone works exactly in the same
way as above. Topologically both constructions are equally powerful:

A
- o5
( . < @ QC@ ; % U
Regular Cone Flat Cone
/ By R
77 J starA /( AN ,ﬁ
Flat Cone Regular Cone

FiGURE 8. First row: The first three pictures describe
the construction of a regular cone, the following pictures
show how it collapses to a flat cone. Second row: The
first three pictures show the construction of a flat cone
and the following pictures describe the anticollapses to a
regular cone.
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FI1GURE 9. Two subcomplexes P, and P, which have a
dim(P;) — 1 dimensional subcomplex C' in common and
are connected by a path FE.

Let v € C' be the apex of the regularly spanned cone, initially added
by Ao Aw sy A, and Q := {0y, ...,0n} the simplices in stars(0) \
costars(7), ordered in decreasing dimension. By collapsing

~

C \{(00,00\/@) \{(01,01\/11) cee \{(Uk,(rk\/v)\((v,{v,ﬁ}) C

and relabeling v to v we built a flat cone out of a regular cone. The
other direction works the same way, by changing order and vertically
flipping arrows.

4.2. Various Cone Augmenting Strategies. If we chose to aug-
ment the cone only by simplices having certain properties, ie. to let
the base of the cone have more nice properties, the shape of the cone
and also its properties change. We will now discuss such strategies for
the augmentation of the cone and its resulting properties. We apply
our strategies on the descriptive example in fig.9.

Construction 4.3 (Pure Cones). Suppose stara () is a pure subcom-
plex of dimension d. We span a cone over stara(?) with apex v but
chose now only to anticollapse

Ci /‘(0’,0’\/1}) Ci—l—l

if o C 7 € stara(C}), 7 is maximal and of dimension d. Thus our cone
is of pure dimension d + 1, see fig.10

Construction 4.4 (Cones over Manifolds). We call a vertex v criti-
cal if |linka(v)| := |stara(v) N costara(v)| is not homeomorphic to a
sphere. Note that the star of a non critical vertex is pure and homeo-
morphic to a precompact subset of R”. Our strategy is the following:
We augment the cone only by neighbours of non critical vertices. If
the entire boundary of the cone base is critical, we stop augmenting,
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-
Ny,

FiGURE 10. A pure cone base: It grows over P; and P,
but will never contain parts of F since there are vertices
having a non homogeneous star.

see fig.11. These cones are very clean and easy to control. Unfortu-
nately we will see examples where they are not as powerful as the less
restrictive strategies.

o

FIGURE 11. A manifold cone base: In C' the link of a
vertex is not homoeomorphic to a sphere.

Construction 4.5 (Small Cones). Instead of augmenting a cone as
far as possible over those simplices which have “a certain property”, as
above, we just stop as soon as there is a possibility that the following
collapsing phase removes more simplices than we added. The insights
we will gain in 4.4 tell us that the ratio of boundary / total simplices of
the cone base has to be < % We wish to find an ‘as general as possible’
rule to describe cone bases having this property.

Let x be the apex of the cone. We observe the augmentation:

A SAUC(Hv)) AP AUC(stara(v))
b C’m(starA(starA(v)))
AN AR O ( stara (starA(starA(v))))

where we assumed that the simplicial neighbourhood of v is collapsible.
Without eplicitely knowing the complex we can neither compute the
number of interior nor boundary simplices - however we know, that in
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a) and b) the ratio increases, and after that it may in- or decrease.
Hence the strategy for small cones is to augment the cone base only to
stara (stara(v)) and then stop.

Construction 4.6 (Smart Cones). We will later (see 4.4) have a con-
dition for the shape of a cone such that the cone spanning / collapsing
process reduces the number of simplices. Thus another method for
spanning a cone would be to check these conditions after every anti-
collapse and stop the augmentation as soon as the conditions hold. If
we do not succeed to satisfy the condition, we reverse our action and
remove the cone again.

See fig.12 for an example for a smart and a not so smart cone base

FiGURE 12. Smart cones: “Holes” in the topological
space can cause absurd cone augmenting; smart cones
(here over the base Agq-¢) only grow as long as it is
reasonable.

over a 2 dimensional simplicial complex

4.3. Collapsing a Cone. Let A := Aq U C,(A) be a simplicial com-

plex with a cone having apex v and base A, which is a collapsible
subcomplex of Ay. The boundary of A is

OA := stara (costara (A)) N A = linka (costara (A))

ie. DA contains simplices having parents inside and outside of A. We
can order the simplices of A = {01, ..., 0%, Ok41, . .., 01} in such a way,
that the first k& simplices are sorted in decreasing dimension and the
remaining simplices are exactly the ones of dA. Then

~

A \J(Ul,(rl\/v) \,_I(D'Q,O'Q\/’U) v \(((rk,ava) A

which means, we collapse the cone from below.

4.4. The Balance of Building and Collapsing Cones. Suppose
the base of the spanned cone C' has np simplices, among these there
are nyp simplices on the boundary. While building the cone we had to
add 1+ np simplices (in the case of a non-flat cone). When collapsing,
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we remove 2 - (ng — ngp) simplices again. Hence a cone procedure
reduces the number of simplices if

1—|—TLB—2-(RB—TL33):1—n3+2'n33<0

Therefore, another strategy for spanning cones is to track the numbers
ngp and np while augmenting, check the above condition and collapse
if it is satisfied.

4.5. The “Least Valency First” Strategy. When we augment the
cone C'= AUC,(Ap) (Ap is the current cone base), we pick a vertex
w € J(stara(Ap)), where w # x and try to expand the cone by w.

X
B v € B
f »
: Vo w O' N W
Vo P Vg € B

FIGURE 13. A flat cone (apex =z, cone base
{vg,v1, (vo,v1)}) with an ambiguous augmentation:
We could either augment via “({wa}fwzm}) OF Via

/(G w} {w,z,0))

We saw explicitely how to do so if
B :=starp(w) N Ap

was collapsible. If this is not the case we mentioned that we chose
that specific collapsible subcomplex of B which contains the simplices
of least valency. There are three reasons why we think this is a good
choice:

First reason: A simplex o of the base of the cone will be collapsed if
none of its vertices is on the boundary of the base, ie. all its subsim-
plices are faces of another simplex 7 € Apg. If a simplex is adjacent to
many simplices (that is, a simplex whose vertices have a high valency),
then we need to do a lot of anticollapses in the augmentation to span a
cone over its entire neighbourhood. Many anticollapses mean a higher
complexity of the cone and an interim higher number of simplices.
Second reason: The cone method produces vertices of high valency,
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TN

we collapse here

FiGURE 14. We augment the cone via the vertex v
which has a higher valency (4) than vy (3): The following
collapses do not lead to an improvement and we end up
with exactly the same number of simplices as we started.

%ﬂ TN
w w w

_ we collapse here

FiGUurRE 15. We augment the cone using the “least va-
lency first” strategy: The following collapses simplified
the graph by one egde and one vertex.

namely the apices of the cones. Suppose we started with a flat cone
over the cone base A; and the collapsed

AgUC, (A1) N-vo (A

and then proceeded with the second cone with apex xs:

Ay A UG, (M)

and x; € Ay, the cone base of the second cone. The next augmentation
is to add the vertex w € A;\ Ag, chosen as above. Assume w is incident
to £1 and to some other vertex v in A, then it is better to proceed with
the anticollapse ,(wvas,wvovas), because otherwise (,(wvas wvavas)) We
would repeat a similar augmentation as in the first cone (which, obvi-
ously, did not lead to success).

Third reason: The least valency first strategy adjusts imbalances of
the degree in graphs (one dimensional simplicial complexes). Every
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graph is homotopy equivalent to some complete graph K,, which has a
constant degree, hence is perfectly balanced.

4.6. The “Maximum Dimension First” Strategy. Concerning the
choice of the augmenting vertex chosen in linka(A) we just want to
mention that it usually is a good idea to pick that one with the high-
est dimensional star. If the dimension of the star of the augmenting
vertex is lower than the cone base, the cone can not be pure after

the augmentation. The purity of a cone has shown to be a promising
property.

5. FURTHER COMBINATORIAL METHODS

5.1. Shellings. Let oy, ..., 0, be the maximal simplices of a simplicial
complex A. If there is a permutation p € S™ of these simplices such
that

k—1
By = oy N ([ 00t
=1

is pure and dim(oy) — 1 dimensional, for every k = 2,...,n, then A is
called shellable and p a shelling order.

There are combinatorial ways to compute a shelling order. In [12]
shellability is derived from a labeling of a poset.

If By is collapsible, for every k > 2, then the shelling order provides a
sequence of anticollapses: We can inductively span cones:

n—1
A=, (B))U (| o)
=1

where v,, is a vertex of o,(,) such that o) C C,, (B,); such a vertex
always exists. For more complicated By’s, there is probably only little
relation between collapses and shellings.

Shellings can also be used to analyze p.l. homeomorphisms, see [20].

5.2. Edge Contractions. A common way to homotope graphs are
edge contractions: Let G = (V,E) be an undirected graph. If for
u,v € V: (u,v) € E, we can modify G by adding a new vertex uv and
edges (uv,z) if either (u,z) € E or (v,z) € E and then remove u and
v from V and all edges (u,-), (v,-). This process is a homotopy equiv-
alence, if linkg(u) Nlinkg(v) = () in the initial graph G. We denote an
edge contraction by G/(u,v) (G “modulo” the edge (u,v)).
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Op(i)

FIGURE 16. A shelling: The tetrahedron is glued to the
complex on a 2 dimensional pure part of its boundary.

T uv

X3

FiGUurRE 17. Edge contraction: The first step is to add
the new vertex uv and compute the star of u.

(x4, uv)

FiGUurE 18. Edge contraction: For every vertex z; of
starg(u) we add the triangle (u,uv,x;) and collapse it
via the edge (u,x;).

We construct the anticollapses and collapses that lead to the above
edge contraction. We start by adding the new vertex uv (fig.17) and
then add all the edges (uv,x) for every (u,z) € F (fig.18). Suppose
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v,Z1,...,x) are the vertices of linkg(u), then

G /‘(uv,quu) é
/‘(uv\/wl,uv\/(wl,u))\(((wl,u),uv\/(wl,u)) le
/((uv\/:zrk,uv\/(wk,u))\(((wk,u),uv\/(wk,u)) Gwl,...,wk

we repeat the same process for the link of v, although this time we
have to begin with a different step (fig.19 and 20):

UY "
Yo

Y3
Y4

FiGURE 19. Edge contraction: In order to connect v
to uv we anticollapse the triangle (u,v,uv). Then we
compute the star of v.

uv

UV (y;, )

FiGURE 20. Edge contraction: We anticollapse the tri-
angle (v,uv,y;) for every y; € linka(v) and collapse it
via the edge (v, y;).

uv uv

FIGURE 21. Edge contraction: The last step is to re-
move the triangle (u, v, uv) by collapses.
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T1yee T /‘(uv\/v,uv\/(v,u))

/(quy1,uvv(yl,v))\r((yl,v),uvv(yl,v)) Gy1

gy (o)) Sl unv ) G
The last step is to remove the triangle (u, v, uv) (fig.21):

Gyl,...,yk \((u,v),(u,v,uv))\{(u,(u,uv))\{(v,(v,uv)) H
and H = G/(u,v).
The concept of edge contractions can be generalized on higher dimen-
sional simplicial complexes where similar conditions as the link inter-
section above lead to homotopy equivalence (see for instance [4]). The
above recipe to translate edge contractions to anticollapses and col-
lapses translates to this general case almost one to one - however one
has to pay attention in which order the anticollapses are done.
Concerning the question which is more powerful, cone collapsing or
edge contractions, we refer the reader to the footnote on our observa-
tions in table 4 about the torus on page 35.

5.3. Subdivisions and Coarsening. Given two simplicial complexes
Ay 5 with |A;| = |Ay] (up to homeomorphism), we call Ay a subdivision
of Ay if there is a simplicial (cellular) map f : A; — Ay which is
monic. Some subdivisions are simple homotopy equivalences, refer to
[3], §25, Thm. (25.1) for a general theorem. We only provide a recipe
for barycentric subdivisions of simplicial complexes using collapses and
anticollapses:

(1) we glue a simplex of dimension k+1 onto every mazimal simplex
o. (k=dim(0))

(2) we collapse every of these new simplices via the previously max-
imal o’s

(3) for every remaining simplex, we span a cone over its star and
collapse it from below (start with the highest dimensional re-
maining simplices).

The usual combinatorial way for barycentric subdivisions however is to
compute the order complex of the face poset; the explicit construction
is displayed in [11].

If we span cones over small bases, our algorithm behaves like a coars-
ening algorithm; but it does not equal the inverse of barycentrc subdi-
visions.
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5.4. Morse Matchings. R. Forman introduced a Morse theory for
cell-complexes in [6]. Morse functions on simplicial complexes can be
computed by the linear extension of an acyclic matching on the face
poset. An acyclic matching provides a sequence of collapses on a CW
complex. Hence an optimal sequence of collapses can be computed by
an “optimal Morse matching”.

Definition 5.1 (Morse Matching). A matching M on the face poset
of a simplicial complex is a subset M C F(A) x F(A) such that

e every element e € F(A) appears only once in the matching:
Alge M :q=(e,-) or g = (-, e).
e (a,b) € M implies a < b. We write b := u(a) and a := d(b).

A matching M is called a Morse matching if there is no sequence
(a1, u(ar)), (ag, u(ag)), ..., (ak, u(ag)) € M of length > 2 such that

w(ay) = ag,...,u(ar_1) > ag,u(ag) > aq

Definition 5.2. A linear extension is a map L : F(A) — R, or more
generally a map from a poset to a totally ordered set, which preserves
the order.

Optimal Morse matchings are hard to find. See [15], where it is

claimed that this computation is in general NP hard (and that every
polynomial algorithm performs arbitrarily bad for certain posets); in
[9] an integer program is given to compute an optimal Morse matching,.
Many integer programs are NP complete.
Our algorithm however starts with random collapses, just to make sure
that there are no free faces - not to simplify the complex. When we
span cones we can right away produce an almost optimal sequence of
collapses to collapse the cone again.

6. IMPLEMENTATION

6.1. Simplices as Products of Primes. In order to motivate a cer-
tain function used later in the data structure we wish to give an alterna-
tive method of how to describe simplicial complexes. A finite simplicial
complex has for example the vertices vy, vo, ..., v,, and its simplices are
uniquely described by their sets of vertices (modulo orientation).

Let p; be the 4 prime number: p; = 2, p, = 3 and so on. Hence a
simplex {v;,, vj,, - .., v;, } can be encoded as the number

k
§= (_1)/7 ' lej
7j=1
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where we accounted for the orientation by the factor (—1)”. Hence we
can describe a finite simplicial complex as a subset A C Z.

Remark (Join and Meet). Let 01,09, ...,0; be products of primes, ie.
simplices encoded as above. We can compute their join

!
\/O'i = lcm{az|2 = 1,. . ,l}
i=1

and their meet

!
/\O'i = ng{O’l|Z = 1,. . ,l}
i=1

Remark (Bit-Strings instead of Primes). Yet another way to describe
simplices is to write them as long strings of binary values, each position
corresponds to a vertex in the complex. The position j of the simplex
o = 00100...00 is 1, if v; € o and 0 otherwise. Join and meet then
become logical OR and AN D operations.

6.2. Data Structure. We will have one storage container for all sim-
plices involved in our algorithm and handle everything “by reference”.
For the storage we chose a hashtable:

Values | Keys Hashcode
Simplex 1 | Vertex Array [[p; (mod 2°2 — 1)
Simplex 2 | Vertex Array

where the hashcode is the corresponding product of primes modulo
the size of an integer. This hashtable corresponds to the elements of the
face poset of a simplicial complex, currently without the order relation.
Because a face poset is leveled, it suffices if we know this order relation
only for each level, or element, respectively.
Every simplex is an object:

Simplex
vertices | integer array | the vertices of the simplex
parents | simplex list | simplices one level above
children | simplex list | simplices one level below

where a simplex list is
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Simplex List

first Entry the first entry in the list

last Entry the last entry

count, integer | the number of elements
Entry

contents | Simplex | reference to that simplex

next Entry the next entry in the list

previous | Entry previous entry

So we have the elements of F(A) stored in a hashtable and the order
relations < (for only the level directly above and below) included with
each entry.

6.3. Collapsing and Apex Queue. Finally we need to coordinate
the collapsing / anticollapsing sequence. In order to do so, we intro-
duce two queues, the apex queue and the collapsing queue. Each of
which is of the type simplex list and thus is stored sorted. We imple-
ment the possibilities to add new elements both at the end and at the
beginning of the list. This is necessary, because we need to be able
to strictly control the sequence of collapses and not let the algorithm
collapse cones on the wrong way.

The collapsing queue is a list of free faces. Free faces uniquely deter-
mine a collapse, as they have only one simplex above. The apex queue
is a list of all non isolated vertices of the complex. It makes no sense
to span a cone over an isolated vertex.

6.4. The Algorithm. We will now discuss the main subroutines of the
algorithm. After some explanation we directly try to analyze its com-
plexity. We denote the overall number of simplices N. The complexity
of the algorithm does not only depend on that number but also on the
grade of connectivity, genus and dimension of the simplicial complex.
It is probably not possible to bound the run time exactly, however we
wish to give good estimates depending on N. For the sake of simplicity
we drop logarithmic expressions - which means a query in a hashtable
takes constant time.

Subroutine 6.1 (Preparation). We need to compute the collapsing-
and apex queue. We compute them only once, at the beginning of
the algorithm and later only update them as the simplicial complex
changes. If we have a non empty collapsing queue it is reasonable to
collapse, because the main algorithm starts with a cone spanning phase.
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We avoid redundant anticollapses if we start with a non collapsible
complex.

1 for every simplex 0 € A
l1lifo < 71,0 £ 7 # 7 and 7 is maximal, we add o to the
collapsing queue.
1.2 if ¢ is a non isolated vertex, we add it to the apex queue.
2 if the collapsing queue is non empty, collapse.

Complexity Analysis 6.2. Iterating over all simplices has complexity
O(N). Our data structure makes both checking for collapsability or
isolation a task of constant time.

Subroutine 6.3 (Collapsing). If the collapsing queue is nonempty,
the following method collapse iterates over all its elements and tries
to collapse. Note that after a collapse there might be new maximal
simplices and possibly new possibilities for collapses.

1 For every simplex ¢ in the collapsing queue:
1.1 let 7 > o be the only parent of o
1.2 make sure 7 is maximal and ¢ is not below any other n # 7
1.3 remove ¢ and 7 from the hashtable
1.4 if 0 was a vertex, remove it from the apex queue
1.5 update parent references of the children of 7 and o
1.6 for every child @ of o:
1.6.1 if there is only one element above # left, add # to the
very start® of the collapsing queue
1.7 for every child 0 of 7:
1.7.1 if there is only one element above # left, add # to the
very end? of the collapsing queue
1.8 remove o from the queue
2 break, if the queue is empty

Complexity Analysis 6.4. Assume the collapsing queue contains all
N simplices of A. For each of them we check the parents (O(1)),
possibly remove them from the hashtable (O(1)) and the apex queue
(O(log(N)) ~ O(1), if we, for example, sort the queue after genera-
tion). Furthermore we check the children of the collapsed simplices for
maximality (O(d) ~ O(1), where d is the dimension of the collapsed
maximal simplex). Finally, we update the collapsing queue: O(1). This
totals to an overall complexity of order ¢+ N + k € O(N).

3Refer to 6.7 for an exaplanation
4see footnote 3
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Subroutine 6.5 (Spanning a Cone). If there are non isolated vertices
it is possible to span flat cones. This method tries to do so with the
first entry of the apex queue.

1 Pick the next apex a from the apex queue
2 let S be the star of a
3 repeat the following construction until an entire iteration yields
no change
3.1 compute the vertices M = {v,...,v;} of linka(S5)
32 fori=1,...,k:
3.2.1 compute 2 := stara(v;) NS
3.2.2 sort €2 by dimension and sort simplices of same di-
mension by valency, least valency first
3.2.3 for every w € Q (and repeat until an entire iteration
yields no success)
3.2.3.1 anticollapse, if possible: (v, wvave;); that means,
add both simplices to the hashtable.
3.2.3.2 if we anticollapsed add the new simplices also to
S and if w V v; was maximal in A add w V v; to
the collapsing queue.
3.3 next ¢
4 end repeat

Complexity Analysis 6.6. The computation of the star is a delicate
subject. The complexity depends on the properties of the simplicial
complex, such as maximal degree of the 1-skeleton, or more general
the average number of simplices above the apices. We only know that
this number is bounded above by N. Assuming worst case, we iterate
over O(N) vertices, trying to augment the cone. For each of them we
compute their star (O(N)) and intersect it with the cone (O(XN)). For
every element of the intersection we try to anticollapse (O(1)) and add
a new simplex to the collapsing queue (O(1)) and to the cone (O(1)).
Finally, we update the star of the new vertex of the cone (O(1)). This
totals to a runtime (per apex) of O(N?+ N). Note that we considered
a very unrealistic worst case here.

Subroutine 6.7 (The Main Routine). The main algorithm switches
between collapses and anticollapses:

1 prepare
2 collapse A N\, Ay
3setl=0and k=0
4 while k < N
4.1 span a cone A, /Y
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4.2 collapse ¥ N\, Ak

4.3 count the simplices: Na, .,

4.4 if Na,, > Na, discard your work: set Ay, := Ay and
increment [ by 1. otherwise set [ =0

45k —=k+1

Complexity Analysis 6.8. In worst case we have to iterate about
N? times.

6.5. Overall Complexity Analysis. The above step by step analysis
reveals a runtime of O(N*). However, we assumed worst case settings
for each routine that are not compatible with each other. To get an
accurate estimate on the algorithms complexity we obviously need a
new point of view.

We will try to count the operations in the algorithm that involve a
simplex. We use the small cone strategy, which is the easiest to analyze.
Let 7 be any simplex that is not collapsed in the preparation phase.

Suppose 7 = {vg, ..., v4}

e 7 is involved exactly in those cone spanning phases where 7 €
stara (stara(z)), where z is the cone apex.

e We need to compute the star of x, a process whose complex-
ity depends a lot on the implementation. We assume a generic
complexity of this process: O(ggar(N)). According to our pre-
vious analysis, gsar (V) € O(N?) in worst case. Usually it is a
lot better.

o If 7 € stara(z), there are at most d — 1 anticollapses necessary
to augment the cone over 7. Each anticollapse has to check the
presence of certain simplices; this however takes constant time.
In the following collapsing phase the simplex 7 will be removed,
which is again a task taking constant time.

o If 7 € stara (stara(z)) \ stara(z), it is possible that 7 will be
removed in the following collapsing phase or it will be replaced
by another simplex 7 = {v, ..., U, &, Ugs2,...,04}. The latter
possibility has a worse effect on the algorithms complexity.

So we had to compute another star, anticollapse d — 1 times
to augment the cone over 7. In the collapsing phase, 7 will
collapse but 7 survives.

e The replacement of a simplex 7 by a similar simplex 7 can at
most happen L times, where L is the number of vertices in
linka (7). After these L failures, if 7 is contained in a cone, it
will be removed for sure.
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We add up the operations per simplex:
L-(O(gstar(N)) +(d—=1)-O(1)) +O(gstar (N)) +O(1) & (L+1)-O(g(N))

Before we get to the ggar analysis we want to sum up over all simplices.
Multiplying our result by N and setting L to N leads to our previous
result N? - gsiar(N). We have however to consider that L can not be
large for every simplex. L depends on the simplex 7. We compute the
set of simplices with a large L:

M ={reA|L(t) > ¢- N}

and derive by the properties of link and star that M has ~ % - N
elements.

We end up with a complexity O(N - gsiar(N)) which equals O(N3) for
a bad star computation and worst case settings.

6.6. The Star Problem. Every simplex in the data structure holds
information about the simplices directly above and below. Given the
simplicial complex A, its face poset Q = F(A) and a vertex v € A, we
have

F(stara(v)) = U P..(Q)
‘IEP>U(Q)

so the star of a vertex corresponds to the union of all subposets below
any element above an atom . The subroutine which is to compute the
star therefore needs to go up and down, simplex per simplex, level per
level to assemble the star of a vertex. This is an obvious weakness of
our data structure.

If we work with simplicial complexes whose vertices have a small aver-
age degree, there is a way to obviate the star problem. we change the
data structure of simplices:

Simplex

vertices | as before

parents as before

children | as before

maximals | a simplexlist containing all maximal simplices
above this simplex

This modification uses a lot more memory for highly connected sim-
plicial complexes but reduces the cost of the star computation. Note
that going down in a face poset usually is less costy than going up since
the number of children is bounded, the number of parents is not (unlike
reality).
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6.7. Updating the Collapsing Queue. In some cases a collapse
ANy A

produces further free faces: Either faces 7; C 7 or o; C o, or both.
Assume the collapsing queue before the collapse was

(1,m,0,...)

Is there a better or a worse choice for where to add the new free faces?
We add 7; at the beginning of the queue and o; at the end. Why:

o If we continue with o; instead, we “dig” a hole deeper and
deeper into the complex thus producing a chance of building a
house with two (or more) rooms.

e If we continue with 7; we proceed with the collapsing of the
surface of the simplex 7 (and o as well) - hence, by continuing
in that manner we possibly end up with a (vertex, edge) collapse
and reduced the number of vertices.

Hence our collapsing queue will be updated to

(Ti,n, 9,...,0’2')

7. RESULTS

7.1. Benchmarks and Examples. We included an instruction counter
opc which increments for every non trivial operation:

e method calls
e every iteration of for/while loops
o if clauses

We tested our algorithm for an array of topological spaces and tri-
angulations to gauge its complexity and efficiency. To make sure the
algorithm really does what we expect, we used the algorithm described
in [5] to compute the homology of input and output of our algorithm.

7.1.1. Collapsible Complezes. In table 1 we display some benchmarks
on collapsible complexes, or complexes consisting of collapsible connec-
tivity components. Our benchmarks show, that collapsing is almost
linear in the input size, independent of dimension and shape.

We assumed that a random order (combined with 6.7) of collapses leads
to success. It worked for our examples but is not true in general.



ANTICOLLAPSES AND CONES 33

TABLE 1. Random collapses on complexes with > 1 col-
lapsible connectivity components.

Dimension 3 4 4

N2 of vertices 258 2673 1081
N2 of edges | 1248 | 26278 | 10210

N= of triangles | 1748 | 51044 | 19560
N2 of tretrahedra 756 | 33485 | 12570

N= of pentatopes 51044 2140
op. count | 31038 | 966800 | 367960
op.’s per simplex 7,7 8 8,08

7.1.2. The House with Two Rooms. We computed a triangulation of
the house with two rooms and subdivided it, to check how the algorithm
performs. In table 2 we collected our observations. Obviously the

TABLE 2. Benchmarks on various triangulations of the
house with two rooms.

Triangulation of > very coarse | coarse fine | very fine
N= of vertices 17 111 689 4185

N2 of edges 25 344 2092 12608

N< of triangles 39 234 1404 8424

op. count 17325 | 347056 | 2286922 | 29929925

op.’s per simplex 156,08 | 503,709 | 546,45 | 1186,89

complexity is not linear in the number of simplices, but it is definitely
below quadratic. We assume that there are some logarithmic factors
depending on the number of cones spanned.

7.1.3. Non Contractible Topological Spaces. 1t is in general not easy
to determine whether the number of simplices in a simplical complex
can be reduced or not. We have of course the criterion 4.4 which is
to be analyzed for every possible cone — which is not feasible for large
complexes. This means, that there is no criterion for the algorithm
to stop trying to span cones. In our description of the algorithm we
repeated spanning cones until the current cone augmenting strategies
fail for every apex.

We observed that in some cases the number of vertices does not de-
crease monotonically before reaching a minimal state; hence the above
termination criterion would prevent the algorithm from finding an op-
timal triangulation. For this reason we changed the algorithm to have
no termination criterion at all; we just span a cone (using whichever
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TABLE 3. Minimal triangulations of non contractible
simplicial complexes after a number of invocations. (In-
put / Output sizes are given as (vertices, edges, triangles,

)

Space Input Size Invocations | Output Size
9-sphere (798, 2388, 1592) 1 (4,6, 4)
(4778, 14328, 9552) 6 (4,6,4)
Torus (31, 95, 64) 10 (7,21,14)
(94, 282, 188) 11| (7,21,14)
(564, 1692, 1128) 10| (7,21,14)
Surface of genus 2 | (458, 1380, 920) 13| (23,101, 76)
(2758, 8280, 5520) 15| (17,80,61)
Complement of a (1572, 9575, 153609, 5 (5,8,4)
solid torus 7365)
(33881, 224049, 5 (5,8,4)
368846, 178677)
Complement of two | (922, 5521, 8740, 13| (1L,41,31)
enlinked solid tori | 4140)
(37205, 250372, 14| (9,30,22)
421792, 208624 )

augmenting strategy) for every element in the apex queue — and we
even remove vertices from the apex queue if they were once contained
in a cone base.

This version of the algorithm does not ensure to return a minimal® tri-
angulation, but can be invoked repeatedly until the return value meets
the expectations, for instance by a ‘for loop’ or by repeated calls from
a user.

We had to find out how many calls to the algorithm suffice in general
to reach a minimal state. Therefore we (repeatedly) barycentrically
subdivided non contractible simplicial complexes and invoked the al-
gorithm until we reached a certain minimal state. We collected our
observations in table 3.

7.2. Comparison of Augmenting Strategies. There are some dif-
ferences in the results of our algorithm if we use various augmenting
strategies. We collected our observations in table 4.

The only drawback of small cones is that we need very many of
them to simplify a simplicial complex. We implemented a cone counter

5“minimal” for the current cone strategy
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FiGURE 22. The initial complex collapses, then is sim-
plified first by the “cone over manifold” strategy and then
by maximal cones.

and computed the "¢/ ... ratio which we also used to analyze
the complexity. Every gauging resulted in a value between 0.018 and
0.031 cones per simplex; the value seems to decrease if we take a finer
triangulation. We have also observed that the algorithm does the most
simplifications during the first invocation; the values® we collected in
table 3 would be a lot smaller if we accepted output values which were
only a bit larger than the optimal.

TABLE 4. Capabilities of different cone augmenting strategies

Strategy | Maximal | Manifold | Small
Contracts 1> | Sometimes® | Sometimes | Yes

Minimizes a wedge of spheres® Yes Yes Yes
Computes topological cliques® Yes No Yes?
Minimizes a torus No No Yes®

%Yes for some triangulations, No for others

ba topological space consisting of spheres of different dimensions which have one
vertex in common

€A clique is a maximal complete subgraph. A topological clique is a graph homeo-
morphic to a complete graph.

4Refer to [10] for more information on topological cliques

“We know from [14] that “irreducible” (for edge contractions) tori have 9 or 10
vertices. The cone strategy finds vertex minimal (see [18]) triangulations with 7
vertices.

So the small cone strategy is obviously superior to all the other
“greedy” strategies. Only the “smart cone” strategy is able to revert
to a better cone base if it augmented in an inept way. The greedy cone
strategies, especially the maximal cones, will even deteriorate a bad
cone.

6for the number of invocations
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8. RESUME

We collect our insights on the algorithm:

The cone strategy is very powerful to reduce the number of simplices
and find vertex minimal triangulations for many topological spaces. It
is more powerful than similar algortihms including edge contractions.
The algorithm has in theory a complexity between O(N) and O(N*)
depending on the assumptions taken for the simplicial complex. The
gauging however shows that the algorithm performs well and its com-
plexity is almost linear, modulo logarithmic expressions.

In order not to modify the geometrical properties of the complex, it is
reasonable to span the cones over subcomplexes with “nice” properties.
P.I. manifold cone bases are good but too restrictive. Small cones, that
is, cones over stara (stara(v)) (where v is the apex) lead to the best
results.
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