
ReLU DNN expression of sparse gpc expansion
in uncertainty quantification

Master thesis

submitted in partial fulfilment of
the requirements for the degree of

Master of Science ETH in Mathematics

ETH Zürich

Joost Aart Adriaan Opschoor∗

Student ID: 16-931-776

ojoost@student.ethz.ch

Supervisor:

Prof. Dr. Christoph Schwab

Seminar for Applied Mathematics,

Department of Mathematics, ETH Zürich

Monday 3rd September, 2018

Minor revision on
Tuesday 30th October, 2018

∗The author would like to thank Jakob Zech for the fruitful discussions. He is indebted to his supervisor
for introducing him to the active research areas this thesis reviews and for stimulating conversations and
feedback throughout the project.





Abstract

In this thesis, we show a result on the expressive power of deep ReLU networks. We study
a countably parametric elliptic diffusion equation with parameter space U = [−1, 1]N and
show that its parameter-to-solution map u : U → H2 ∩H1

0 ((0, 1)2) can be approximated
efficiently by a family of deep ReLU networks. We show a lower bound on the convergence
rate in terms of the network size. The result we show is a generalisation of [75, Theorem 4.8
p. 22], which addresses a countably parametric diffusion equation on the spatial domain
(0, 1). We show that the analogous result holds on (0, 1)2. The proof is based on the
efficient approximation of products by deep ReLU networks introduced in [89] and the
sparsity of the generalised polynomial chaos expansion (gpc expansion for short) of u
in the sense of `p-summability of the norms of the gpc coefficients for some 0 < p < 1
(shown in [3]). The proof is constructive if the gpc coefficients are known. The bound
on the convergence rate for the approximation of u only depends on the summability of
the gpc coefficients and the convergence rate of deep ReLU network approximations of
functions in H2 ∩ H1

0 ((0, 1)2). In particular, our main result also holds for parametric
PDEs with infinitely many parameters. In that sense, it does not suffer from the curse of
dimensionality.

iii



Contents

1 Introduction 1
1.1 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Deterministic methods . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Non-residual feedforward neural networks . . . . . . . . . . . . . . . 6
1.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Deep learning literature on approximation theory and on solving

PDEs numerically . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Theorem 4.8 from [75] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Index set F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Parameter space U . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.4 Parametric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 ReLU neural network calculus 15
2.1 Formal description of non-residual feedforward ReLU neural networks . . . 15

2.1.1 Assumptions on the architecture and notation for networks with
such architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Construction of networks from subnetworks . . . . . . . . . . . . . . 18
2.2 ReLU DNN approximation of products . . . . . . . . . . . . . . . . . . . . . 22
2.3 ReLU DNN approximation of products of multiple factors . . . . . . . . . . 25

3 ReLU DNN approximation in H2 ∩H1
0((0, 1)2) 32

3.1 Continuous, piecewise bilinear interpolation in H2 ∩H1
0 ((0, 1)2) . . . . . . . 32

3.2 ReLU DNN approximation of continuous, piecewise bilinear functions on
(0, 1)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Convergence rate of a family of ReLU DNN approximations of functions in
H2 ∩H1

0 ((0, 1)2) in terms of the network size . . . . . . . . . . . . . . . . . 37

4 Properties of the Taylor gpc approximation of the solution map of a
parametric diffusion equation 39
4.1 Properties of the non-parametric diffusion equation . . . . . . . . . . . . . . 39
4.2 Properties of the parametric diffusion equation . . . . . . . . . . . . . . . . 40
4.3 Weighted summability of the H1-norms of the Taylor gpc coefficients of the

solution map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Weighted summability of the H2-norms of the Taylor gpc coefficients of the

solution map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 ReLU DNN approximation of the solution map of a parametric diffusion
equation 47

6 Discussion and directions for further research 54
6.1 Discussion of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Alternatives for the ReLU DNN approximation of Taylor gpc coefficients . . 55

iv



6.2.1 More efficient ReLU DNN approximation of the full grid continuous,
piecewise bilinear interpolants introduced in Section 3.1 . . . . . . . 55

6.2.2 Anisotropic sparse grid-based ReLU DNN approximation . . . . . . 56
6.3 Generalisations of the choice of domain . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Generalisation of Theorem 5.1 to (0, 1)d for d > 2 . . . . . . . . . . . 57
6.3.2 Generalisation of Theorem 5.1 to general polygonal domains . . . . . 57

6.4 Generalisation of the parametric PDE theory in Section 4 . . . . . . . . . . 58

A Properties of concatenations and parallelisations 61

B Proofs 65
B.1 Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2 Proof of Proposition 2.12, Steps 3–5 . . . . . . . . . . . . . . . . . . . . . . 66
B.3 Proof of Proposition 2.14, Step 3 . . . . . . . . . . . . . . . . . . . . . . . . 69
B.4 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
B.5 Proof of Lemma 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.6 Proof of Lemma 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.7 Proof of Proposition 5.1, Step 4 . . . . . . . . . . . . . . . . . . . . . . . . . 74

v



List of Figures

1.1 Example of a graph depicting a ReLU network that has two inputs, one
output, depth 4 and size 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Structure of ×̃m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Structure of
∏̃4

m: a binary tree-structured network of ×̃m-subnetworks. . . 26
3.1 Examples of univariate hat functions. . . . . . . . . . . . . . . . . . . . . . . 33

3.2 ReLU approximation w̃ of w ∈ V (∞)
2 . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Structure of ũ3; the sizes of the subnetworks {Ĩmn;ν tν}ν∈Λ3 ∪ {fν}ν∈Λ3 ∪
{ΦId

2,L,Φ
Id
3,L′} depend on the approximated function u, this figure depicts a

possible situation. By construction of Simul-Shared-Parallel in Remark A.5,
there is only one identity network per Simul-Shared-Parallel-subnetwork.
Moreover, some networks take the output of a hidden layer of one of the
identity networks as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.1 Structure of F4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



1 Introduction

In this section, we first introduce the context of this thesis. Section 1.1 introduces the field
of uncertainty quantification and in particular methods to solve PDEs with random input
using sparse generalised polynomial chaos expansions and approximations. Section 1.2
introduces the field of machine learning and mainly focusses on the deep neural networks
we study. It also reviews some of the relevant deep learning literature. The aim of this
thesis is to combine results from both fields to generalise [75, Theorem 4.8 p. 22], which
is cited in Section 1.3. Section 1.4 introduces notation as well as an index set and a
parameter space we will use throughout this thesis. Finally, in Section 1.5, we give an
outline of Sections 2–6.

1.1 Uncertainty quantification

In science and engineering, many systems can be described mathematically by partial
differential equations (PDEs), whose data (e.g. coefficients, source terms and boundary
value data) describe the properties of the specific system under consideration. One way to
investigate such a system is by solving the PDE numerically for data based on empirical
information. Small deviations in the data can have an immense impact on the solution
of the PDE, especially for non-linear PDEs, see e.g. [87, Section 1.1.1 pp. 1–2]. Such
uncertainties may be a property of the studied system, but are also inherent in data based
on empirical information. The quantitative study of such uncertainties and their influence
on the exact or the numerical solution of the PDE is the active scientific field named
uncertainty quantification (UQ).

UQ includes the development of exact and numerical PDE methods that take into account
the previously described uncertainty. The uncertainty can be modelled by assuming that
the data follow a probability distribution. Such spatial functions that follow a probability
distribution are called random fields. A PDE with such a random field as data is a PDE
with random input (RPDE ). There are multiple ways to approach such an equation, we
now discuss very briefly some of the developed RPDE methods, mainly focussing on gpc
expansions and approximations introduced below. For a more complete introduction to UQ
and in particular gpc expansions and approximations, including references to historically
important literature, we refer to [87, especially Chapter 1 pp. 1–8] or [88]. These also
serve as references for the introduction given in this section.

1.1.1 Monte Carlo simulation

One popular approach is that of Monte Carlo simulation (MC simulation), an example of
a sampling-based method. In short, one computes independent draws from the probability
distribution for the data and solves the deterministic PDE for those values of the data.
Then, some statistical quantities of these solution samples are known to approximate those
of the solution of the RPDE, e.g. the sample average of the solution samples converges to
the mean solution of the RPDE. Although this method has been applied successfully in
many situations, its convergence rate is generally considered slow, e.g. denoting by N the

1



number of deterministic problems that have to be solved, in general one only knows that
the error of the sample average w.r.t. the mean solution is of the order O(N−1/2).

1.1.2 Deterministic methods

Alternatively, there exist nonsampling methods or deterministic methods, e.g. perturbation
methods and, developed more recently, methods based on generalised polynomial chaos
expansions and approximations (for short gpc expansions and approximations, named after
polynomial chaos introduced in [85]). For both types of methods, one chooses bases for
the function spaces from which the data are drawn, e.g. Karhunen Loève bases, see e.g.
[29, Section 3.1 pp. 66–68]. The uncertainty in the data is modelled as uncertainty in
the coefficients with respect to the chosen bases, i.e. these coefficients are modelled to be
drawn from a probability distribution and the data of the RPDE are parametric functions
with these coefficients as parameters. Solving the PDE for each possible value of the
parameters defines a parameter-to-solution map, called solution map. The solution of the
RPDE is determined by this parametric solution map and the probability distribution for
the parameters. The remainder of this thesis is concerned with approximating the solution
map of a parametric PDE, keeping in mind that results can also be applied in the context
of RPDEs.

For the perturbation method, the parametric data map is Taylor expanded (in RPDE
context usually around its mean) and approximated by a truncation of the expansion.
The solution map is then approximated by solving the PDE for this approximation of the
data, which is effective if the fluctuations of the data are small.

Alternatively, a gpc expansion is a polynomial expansion of the solution map in terms of the
parameters. Truncation of a gpc expansion gives a gpc approximation. The coefficients
of gpc expansions are functions in the solution space of the PDE and can themselves
be approximated by Galerkin methods, for instance. This combination is referred to
as a stochastic Galerkin method (SG method), cf. [30, 2, 79, 17]. Collocation methods
are an alternative for Galerkin methods, the combination of a gpc approximation with
a collocation method is referred to as a stochastic collocation method (SC method), cf.
[1, 58, 57]. In case the number of parameters in the gpc expansion is bounded by some
M ∈ N, exponential convergence of an SG approximation in terms of the polynomial order
used in the finite element approximation of the gpc coefficients is shown in [2, Theorems
6.2 and 6.3 p. 818]. However, the error may increase exponentially with M , a phenomenon
called the curse of dimensionality. Hence, convergence rates independent of M are desired.
Such a result was first shown in [79].

Since then, many such results have followed based on sparsity of the gpc expansion as
expressed by the `p-summability of the norms of the gpc coefficients for some 0 < p < 1.
Early results in this direction are [17, Corollaries 7.4 p. 636 and 8.3 p. 644]. In addition,
such sparsity has been derived from the so-called (b, ε)-holomorphy of the solution map, a
term that quantifies the holomorphic complex extendability of the solution map in each of
the parameters. This approach is followed in e.g. [18, 14, 90] and used in [75, Theorems 2.7
p. 6, 3.9 p. 15, 3.10 p. 17 and Corollary 4.1 p. 18]. Another approach, not based on
holomorphic extensions, was developed in [4, 3] and used to prove [75, Corollary 4.3 p. 18
and Theorem 4.8 p. 22]. The main topic of this thesis is [75, Theorem 4.8] (see Section
1.3 ahead), we hence review the second approach in Sections 4.2–4.4 below.

2



1.2 Deep learning

The main point in [75] is that it combines results on the sparsity of gpc expansions derived
in the context of UQ with another quickly expanding field, namely that of machine learning
(ML). The aim of that field is to develop algorithms that can extract features from data
sets and that in new situations can make predictions based on “learned” features, but
without designing the algorithms with those specific features in mind. In this context, the
process by which an algorithm improves the extraction and prediction capabilities based
on an available data set is called learning or training (see Section 1.2.3). Applications
of machine learning are ubiquitous and include image recognition, speech recognition,
autonomous driving and natural language understanding (see [73] and [32, Section 12
pp. 438–481]).

A sub-field of machine learning is deep learning (DL), which is the development and the
study of deep neural networks (DNNs) for machine learning tasks. We refer to the reviews
[45, 73] for an overview of the field up to 2015 and to the general introduction to the field
in [32]. Although most success has been achieved in the past two decades, the concept is
much older ([50]). We note that the principles behind what is now called deep learning
have had different names over time, e.g. cybernetics introduced in [86] and used in the
1950s–1960s and connectionism used in the 1980s–1990s, see [32, Section 1.2.1 pp. 12–18].
The current wave of attention, under the name deep learning, started around 2006, see
[32] and references therein, especially [32, p. 18 and Section 1.2.4 pp. 22–26] and e.g.
[37, 8, 65]. Reasons for the recent success include the increased computational power of
computers, the increased quantity and size of available data sets and the development of
more efficient learning algorithms (see [32, Section 1.2 pp. 12–26]).

1.2.1 Neural networks

More specifically, neural networks (NNs) are computational algorithms that are defined in
terms of a collection of computational nodes that each carry out a computation of specified
type. The type of computation need not be the same for all computational nodes.

For most neural networks, the computational nodes are organised in layers. In this con-
text, depth refers to the number of layers with computational nodes, we will call such
layers computational layers. For the networks we consider, the input of the first compu-
tational layer is given externally, it is the input of the network. It consists of multiple
numbers, called input nodes. Together, they constitute the input layer. All other layers
are computational layers, the last of which is called output layer. The output of this layer
is the output of the network.

Generally, for each computational layer, the type of computation is equal for all nodes
in that layer. In the networks we consider, all computational layers carry out an affine
transformation, which in all those layers except the last is followed by a non-linear trans-
formation called activation. The activation is applied componentwise to the output of the
affine transformation. See [19] for examples of networks whose first computational layer
does not compute the activation function.

Currently, the most popular activation function is the rectified linear unit (ReLU ) σ : R→

3



R : x 7→ max{0, x}, which is globally Lipschitz continuous and hence weakly differentiable
(σ ∈ W 1,∞

loc (R)). Multiple variations of the ReLU exist, most of which are not constant
on (−∞, 0). The reason why is explained in Section 1.2.3. Examples are R → R : x 7→
max{0, x}+0.01 min{0, x} (a leaky ReLU ) and R→ R : x 7→ max{0, x}+min{0, exp(x)−
1} (an exponential linear unit), cf. [16]. In addition, sigmoidal functions are a popular
choice, which are functions ψ that satisfy

ψ : R→ R : lim
x→−∞

ψ(x) = 0, lim
x→∞

ψ(x) = 1, (1.1)

often combined with monotonicity assumptions and regularity assumptions such as (Lips-
chitz) continuity or smoothness. Examples of smooth sigmoidal functions are the logistic
function x 7→ 1

1+e−x and x 7→ 2
π arctan(π2x). We note that the definition of “sigmoidal func-

tion” is not unambiguous, several different definitions can be found in the literature. Be-
sides the ReLU and sigmoidal functions, the binary step unit (BSU ) R→ R : x 7→ 1[x ≥ 0]
is a popular activation function. It is also called Heaviside function. Contrary to the ReLU
and most popular sigmoidal functions, it is discontinuous and not weakly differentiable
(it is not in H1

loc(R)). At the end of Section 1.2.3 on DNN training, we further discuss
activation functions and the importance of their regularity.

Computational layers in which nodes compute the activation function are called hidden
layers. That is, for the networks we consider, all computational layers except for the
output layer are hidden layers. Neural networks with not more than one hidden layer are
called shallow, while networks with multiple hidden layers are called deep. In addition, we
define the size of a network as the number of computational nodes applying the activation
function.

The term “neural network” expresses the inspiration the field has found in neuroscience.
For example, it builds on the idea that intelligent behaviour can result from complexly
structured networks of interacting neurons, which are themselves simple computational
nodes, and that learning is realised by properties of the nodes that change under exter-
nal input (cf. Section 1.2.3 below). Although neural networks have been used to gain
understanding of biological brains (see e.g. [38]), the currently popular neural networks
are designed for machine learning tasks and do not faithfully model biological neural net-
works. To distinguish abstract neural networks from biological ones, the former are called
artificial neural networks (ANNs). We only consider ANNs. The heuristic for the term
“network” is that the dependencies between computational nodes can be represented by
a graph: the dependence of the input of a computational node on the output of another
node can be represented by an edge connecting the two nodes. An example of such a
graph is shown in Figure 1.1.

4



Input layer

First hidden layer

Second hidden layer

Third hidden layer

Output layer

Figure 1.1: Example of a graph depicting a ReLU network that has two inputs, one output,
depth 4 and size 12.

The network properties described so far, i.e. the collection of nodes organised into layers
and the type of computation carried out by each computational node, are part of the
architecture of the network. In addition, the architecture includes a rule that for each
computational layer describes on the output of which layers its input may depend. The
rule we use is described in Section 1.2.2 ahead. In particular, the architecture prescribes
the size of each layer, which is the number of nodes.

In addition to the architecture, the computation carried out by a computational node
also depends on a number of parameters, which are different for each node and are called
coefficients. For each allowed value of the input of the network, the architecture and the
coefficients of all computational nodes together determine the output of the network.

In the literature, the term “neural network” is used to refer to different objects. For
example, it can refer to the architecture, the collection of all coefficients or the function
that sends each allowed input value to the corresponding output value. In this thesis
we will use “neural network” (or simply “network”) to refer to the combination of an
architecture and a collection of corresponding coefficients. They together uniquely define
a function from the set of allowed input values to the set of possible output values, which
we call the realisation of the network, as in [62]. Therefore, we can speak about networks
approximating a function.

Although each network has a unique realisation, the converse is not true: for each function
that can be implemented by a ReLU network of the type described above, there are many
other networks that implement the same function. This first of all follows from the positive
homogeneity of the ReLU:

∀λ ∈ R>0, x ∈ R : σ(λx) = λσ(x).

In addition, Definition 2.4 below introduces networks that implement the identity operator.
As will be discussed in Remark A.2, they can be used to extend networks without changing
their realisation. Example 2.6 below shows a much less trivial case of two networks that
have the same realisation, namely the standard hat function. Similar hat functions will
be used in Sections 2.2 and 3.

Having fixed a realisation, the freedom in coefficients resulting from positive homogeneity

5



could be removed by rescaling the coefficients. The other two types of freedom cannot
simply be removed. In fact, such freedom shows that the relation between networks and
their realisation is very complex. On the one hand, exploiting this complex relationship
could lead to efficient DNN approximations (cf. Section 6.2.2). On the other hand, as a
result, it might be difficult to bound from below the convergence rates of DNN training
algorithms (training is further discussed in Section 1.2.3 below).

1.2.2 Non-residual feedforward neural networks

We restrict ourselves to feedforward ReLU NNs (FF ReLU NNs), which are ReLU networks
with finitely many linearly ordered layers. The input of each layer may only depend on
the outputs of the previous layers. Networks without this property are called recurrent
NNs. They may have feedback connections from the output of a layer to the input of that
layer or the input of a previous layer. Although in some situations recurrent networks
have shown to outperform feedforward networks (cf. [73, e.g. Section 5.13 pp. 95–96]), all
results in this thesis will be obtained without recurrence.

In addition, the networks we use are non-residual, i.e. the input of computational nodes
in a certain layer may only depend on the output of the layer directly before, not on
the output of layers before that layer. Connections between two non-consecutive layers
appearing in residual NNs are called skip connections. Because skip connections could
be implemented by identity networks as defined in Definition 2.4, the assumption that
networks are non-residual is not very restrictive for the derivation of convergence rate
bounds in terms of the network size or the number of non-zero coefficients. It only increases
the number of computational nodes and the number of non-zero coefficients needed to
implement certain functions.

In Section 2.1 ahead, we introduce a formalism to describe the non-residual FF ReLU NNs
we use throughout this thesis.

1.2.3 Training

For DNN training, the architecture is generally fixed beforehand. The coefficients are not
fixed, the aim of training is to optimise the coefficients for the task at hand. Two of
the first models that could be trained were the perceptron introduced in [68] and Adaline
(which stands for adaptive linear) introduced in [84], cf. also [82, 83].

In most cases, the aim of the training process is to find a network that minimises a certain
loss function, which expresses the difference between the output of the network and the
“true” value it needs to approximate. This type of learning uses a data set comprising pairs
of input values and corresponding “true” output values and is called supervised learning.

An example of a supervised learning algorithm is backpropagation introduced in [71]. In
each learning step, the loss function is evaluated on elements of the training data set. The
outcome is used to compute the gradient of the loss function with respect to the coefficients.
At the end of each step, the coefficients are changed along the negative gradient. This
deterministic method is an example of (deterministic) gradient descent. Better results
have been achieved with stochastic gradient descent (SGD), in which in each training step

6



the coefficients are changed along the sum of the negative gradient of the loss function
and a small random term. Choosing the size of the change in coefficients based on the
size of the gradients observed in previous steps further improves the results. An example
of an algorithm that does so is Adam. It was introduced in [42, Algorithm 1 p. 2] and
has since received much attention, cf. also the review of optimisation methods based on
deterministic or stochastic gradient descent in [70, Section 4.6 pp. 7–8] and the recent
article [66] on possible improvements of Adam.

Gradient descent requires differentiability of the activation function. It is desirable that
the activation function is continuously differentiable. In addition, it is undesirable that
the activation function is constant on a part of its domain. It being constant can result
in the vanishing of the gradient of the loss function with respect to the coefficients of
a neuron, which means that the coefficients cannot be optimised anymore by gradient
descent. Such nodes are called dead. In practice, this means that the size of networks
with such activation functions needs to be chosen much larger than theoretically needed,
because a significant part of the nodes will die during the training process.

The ReLU does not have the desired properties, it is only weakly differentiable and it is
constant on (−∞, 0). Variations of the ReLU can be used to overcome one or both of
these issues. The BSU is much less regular, it is discontinuous and its pointwise derivative
vanishes everywhere except in x = 0, where it is not defined.

1.2.4 Deep learning literature on approximation theory and on solving PDEs
numerically

Much literature is available on deep learning. On the one hand, many empirical works
describe the results achieved with state-of-the-art architectures and training algorithms.
Most of those results still lack a theoretical explanation and a proof guaranteeing good
results. On the other hand, much theoretical research has been conducted, building on
results obtained in e.g. information theory, statistics and numerical analysis. Our work is
of the latter form. We will now introduce some of the theoretical results that are related
to the work in this thesis.

If not specified otherwise, the networks discussed in this section are FF NNs whose com-
putational layers compute an affine transformation, in all computational layers except the
output layer followed by activation.

Universality

For a given neural network architecture, the first question to ask is which functions can
be implemented by networks of that architecture. For other functions, one wants to know
how well they can be approximated. A collection of networks with the same architecture,
except for the fact that their layer sizes may differ, is called universal if any function from
a certain function space (e.g. the space of continuous functions or the space of measurable
functions) can be approximated arbitrarily well by networks from that collection.

For n ∈ N, one hidden layer NNs with continuous sigmoidal activation function are uni-
versal in the sense that their realisations are dense in C([0, 1]n) in the topology of uniform

7



convergence on compacta ([20, Theorem 1 p. 306]). See [20, Table 1 p. 312] for an overview
of the results in that paper and similar results at that time. It was shown in [39, Theorem
2.4 p. 362] that the realisations of one hidden layer NNs with non-decreasing sigmoidal
activation function are dense in the space of Borel measurable functions in the sense of
global convergence in measure (the used metric is given in [39, Definition 2.9 and Lemma
2.1 p. 361]). Similar results were obtained in e.g. [28, 6].

An important survey of universality was given in [63]. Based on [47], it was shown in
[63, Theorem 3.1 p. 153] that one hidden layer neural networks with continuous, non-
polynomial activation function are universal, i.e. their realisations are dense in the space
of continuous functions in the topology of uniform convergence on compacta. In the
context of ReLU networks, this result implies universality of ReLU networks with more
than one hidden layer: as discussed in Remark A.2 in Appendix A, the depth of ReLU
networks can easily be increased without changing the realisation.

Expressive power

Universality results, however, do not give any information on the size of the network
or the number of non-zero coefficients needed for the implementation of a function or the
approximation up to a prescribed accuracy. The ability of networks of a given architecture
(i.e. with given depth and size) to implement or approximate functions is called expressive
power. It is one of the main topics in deep learning research. Early results in this direction
were given in [5, 52]. There, bounds were shown on the convergence rate of shallow network
approximations of functions of a certain smoothness in terms of the network size. For
similar results, see the references made there.

More recently, the expressive power of deep networks was studied in e.g. [10] and its
published summary [9]. They showed the efficient representability of so-called affine sys-
tems by neural networks with as activation function a smooth version of the ReLU or a
sigmoidal function of order k ∈ N≥2 as defined in [10, Definition 5.1 p. 19] (their definition
of “sigmoidal” is more general than ours).

The results on expressive power stated above and below have in common that they show
approximation properties in terms of the depth, the size or the number of non-zero coef-
ficients of the networks. They do not show how to find such networks through training.
In addition, in general, no restrictions are posed on the relation between the function to
be approximated and the coefficients of the approximating networks. This relation may
be very complicated, the coefficients need not depend continuously on the approximated
function. In practice, this relation between function and coefficients has to be learned
through DNN training, i.e. it depends on the performance of training algorithms whether
the theoretical approximation results can easily be achieved in practice. Theoretical results
on expressive power serve as benchmarks for the performance of training algorithms.

Efficient ReLU approximation of arithmetics

Many recent results on ReLU DNN convergence rates in terms of the network size (e.g.
the results obtained in [89, 62, 54, 75, 61, 24] and this thesis) depend on the efficient
approximation of products by ReLU DNNs as first proposed in [89, Proposition 3 p. 106]. It

8



exploits the fact that using the results in [77, Section 2.2 pp. 3–4] the function [0, 1] 3 x 7→
x2 can be approximated efficiently by deep ReLU networks ([89, Proposition 2 p. 105]).
We discuss this in more detail in Sections 2.2–2.3 below. A similar result on the efficient
DNN approximation of products is [48, Theorem 1 p. 4], which uses networks with ReLUs
and BSUs. A related result, but not used in [75] or this thesis, is the fact that division
can be implemented efficiently by ReLU networks, which follows from [78, Theorem 1.1
p. 1]. That theorem shows a more general statement, namely that rational functions can
be approximated efficiently by ReLU networks. Interestingly, it also shows the converse,
namely that the realisations of ReLU networks can be approximated efficiently by rational
functions.

Expressive efficiency of depth

A not yet fully understood issue concerning the expressive power of neural networks is the
(dis)advantage of depth. Twenty years ago it was still unclear whether depth was advan-
tageous in general, as depth is not needed for universality ([63, Section 7 pp. 182–187]).
In the mean time, many promising results have been achieved on the expressive efficiency
of depth. The aim is to show that for a fixed network size or a fixed number of non-zero
coefficients deep networks outperform shallow (or less deep) networks at implementing
and approximating functions, e.g. that for deep network approximations the convergence
rate in terms of the network size or the number of non-zero coefficients is better than for
shallow network approximations.

We now recall some results showing the expressive efficiency of depth. One hidden layer
BSU NNs cannot provide localised approximations in Euclidean space of dimension more
than one ([15, Theorem 2.2 p. 609]), whereas two hidden layer BSU NNs can ([15, Theo-
rem 2.3 p. 610]). In [60, 55], it was shown that the realisations of ReLU DNNs are piecewise
linear on a finite partition of their domain. In addition, lower bounds on the maximum
possible number of linear regions were given in terms of depth and layer sizes (e.g. [55,
Theorem 5 p. 7]). It was shown that for networks with fixed layer size this lower bound
grows exponentially with depth ([55, Corollary 6 p. 7]), whereas the maximum number of
linear regions that can be achieved by a single hidden layer network grows polynomially
with the size of the network ([60, Proposition 2 p. 6]), i.e. deep networks can achieve ex-
ponentially more linear regions than shallow networks. The references [51, 53, 64] showed
that compositional functions can be approximated efficiently by DNNs, not by shallow
networks. In [89, 48], DNNs that approximate polynomials were constructed. In both
works, such networks were used to show that deep networks are more efficient at approx-
imating functions from certain smoothness classes than shallow networks. The results in
[89] were achieved using ReLU networks, whereas in [48] networks with ReLUs and BSUs
were used. For the approximation of a multivariate polynomial in n ∈ N variables on a
bounded domain by networks with n times differentiable activation functions with non-
zero Taylor coefficients, it was shown in [67] that the required depth of networks with fixed
layer size grows linearly with n, whereas the required layer size for finite depth networks
grows exponentially with n. The optimal approximability of piecewise smooth functions
by ReLU DNNs was studied in [62]. In particular, they showed a lower bound on the depth
of networks that achieve the optimal convergence rate in terms of the number of non-zero
coefficients. In [61], it was shown that ReLU DNNs are rate-distortion optimal for the
approximation of sinusoidal functions, one-dimensional oscillatory textures and the Weier-
strass function. In particular, in [61, Theorems 6.4 and 6.6 p. 9], it was proved that deep

9



networks with finite width outperform networks with finite depth on the approximation
problems considered in those two theorems.

A more general type of result was obtained in [19], which studies sum-product networks,
which are also called convolutional arithmetic circuits and have a different architecture
than the networks we consider. In [19, Corollary 2 p. 10], the coefficients of sum-product
networks were interpreted as tensors. Under this correspondence, shallow sum-product
networks implement the canonical tensor decomposition and deep sum-product networks
implement the hierarchical Tucker tensor decomposition (HT decomposition, introduced
in [35]), see also [34]. It was shown that Lebesgue-almost every tensor in HT format
has canonical rank growing exponentially with the order of the tensor ([19, Theorem 1
p. 9]), which implies that for any given deep sum-product architecture the realisation of
Lebesgue almost every network of that architecture can only be implemented or approx-
imated arbitrarily closely by shallow sum-product networks of size exponentially growing
with the depth of the deep network ([19, Corollary 2 p. 10]). The strength of this result
is that it shows that almost every deep sum-product network cannot be approximated
efficiently by a shallow network, whereas the previously cited results merely showed this
for specific classes of networks. On the other hand, it is possible that most networks of
interest are elements of the exceptional set of zero Lebesgue measure whose elements can
be approximated by smaller shallow networks. An analogous result for recurrent neural
networks was shown in [41], by showing that deep recurrent neural networks implement
the tensor train decomposition (TT decomposition) introduced in [59].

Numerically solving differential equations with neural networks

We now discuss some results that use neural networks to solve PDEs numerically. The
idea of using neural networks to solve differential equations numerically has been around
for decades, see [46, 43, 44, 49]. Cf. also [76, Section 1.2 p. 3], which discusses more recent
results that use deep learning to solve PDEs.

In order to train neural networks, a loss function is defined that evaluates how well a
function from the solution space of the PDE satisfies the PDE, its boundary conditions
and possibly initial conditions. The loss function can simply be based on the PDE itself,
but also on a variational formulation of the PDE similar to that in Proposition 4.2 below.
The latter approach was used in [23]. Often, e.g. in [46, 43, 44, 49], the loss function is
evaluated on a mesh. Alternatively, in [76] it was proposed to train DNNs by SGD based
on evaluation of the objective function in randomly drawn points in its domain.

Another research topic is the development of training algorithms for the specific purpose
of solving PDEs numerically, see e.g. [69].

Recently, DNNs have even proved successful in numerically solving some specific examples
of high-dimensional parametric PDEs, i.e. methods have been developed that in some
situations can overcome the curse of dimensionality, at least up to a large extent. As
discussed in Section 1.1.2, this can be used to solve RPDEs. An early result in this direction
is [40]. An RPDE is solved by first calculating independent draws for the data of the
underlying PDE. The PDE is then solved numerically for those values of the data, which
gives data-solution pairs with which a DNN can be trained. The references [22, 36, 27]
address high-dimensional non-linear PDEs and backward stochastic differential equations

10



(BSDEs) by showing that they correspond to a stochastic control problem, whose solution
can be approximated using deep reinforcement learning. Numerical experiments show
that problems with dimension of the order 100 can be handled. Another work following
a roughly similar approach is [7]. It also relies on the correspondence of certain fully
non-linear PDEs to BSDEs.

Very recently, the existence of a family of DNN approximations of the solution of a high-
dimensional PDE was shown in [24, Theorem 7.3 p. 30], together with a lower bound on
the convergence rate in terms of the number of non-zero coefficients that does not suffer
from the curse of dimensionality.

The contribution of [75] and this thesis

The results in [75] and this thesis address the expressive power of DNNs and contribute
to the area using DNNs to solve PDEs numerically. The results use the sparsity of gpc
expansions and the efficient ReLU approximation of products to show the existence of a
family of ReLU DNNs approximating the solution map of a parametric PDE and to give
a lower bound on the convergence rate of the approximations in terms of the network size.
The proofs are constructive: the architecture and the coefficients of the approximating
family of networks are constructed explicitly, assuming that the gpc coefficients are known.

1.3 Theorem 4.8 from [75]

The aim of this thesis is to review [75, Theorem 4.8 p. 22] and its extensibility. The
theorem shows the existence of a family of non-residual FF ReLU DNNs (see Section
1.2.2) approximating the solution map of a parametric elliptic diffusion equation on the
domain (0, 1) with a scalar diffusion coefficient that is uniformly elliptic with respect to
the parameters. More precisely, with D = (0, 1), U = [−1, 1]N (see Section 1.4.3 below)
and spaces of real-valued functions V = H1

0 (D) and X = H2 ∩H1
0 (D), it reads:

Theorem 1.1 ([75, Theorem 4.8 p. 22]). “Let 0 < qV ≤ qX < 2 and denote pV ..=
(1/qV + 1/2)−1 ∈ (0, 1) and pX ..= (1/qX + 1/2)−1 ∈ (0, 1). Let βV = (βV ;j)j∈N ∈ (0, 1)N

and βX = (βX;j)j∈N ∈ (0, 1)N be two monotonically decreasing sequences such that βV ∈
`qV (N) and βX ∈ `qX (N), and such that”∥∥∥∥∥

∑
j∈N β

−1
V ;j |ψj(·)|
ā(·)

∥∥∥∥∥
L∞(D)

< 1

and ∥∥∥∥∥
∑

j∈N β
−1
X;j |ψj(·)|
ā(·)

∥∥∥∥∥
L∞(D)

< 1,

∥∥∥∥∥∥
∑
j∈N

β−1
X;j |ψ

′
j(·)|

∥∥∥∥∥∥
L∞(D)

<∞

for ā and all ψj belonging to W 1,∞(D) and with ess inf ā > 0. Assume that in∫
D
a(y, x)∇u(y, x) · ∇v(x) dx = V ′〈f, v〉V , ∀v ∈ H1

0 (D) (1.2)

11



f ∈ L2(D). “[. . . ] Denote for every y ∈ U by u(y, ·) ∈ V the solution of (1.2) for the
affine-parametric diffusion coefficient

a(y, x) = ā(x) +
∑
j∈N

yjψj(x), x ∈ D.

Then, there exists a constant C > 0 such that for every n ∈ N there exists a ReLU
network ũn(y1, . . . , yn, x) with n + 1 input units and for a number Nn ≥ n with r =
min{1, (p−1

V − 1)/(1 + p−1
V − p

−1
X )} there holds the bound

sup
y∈U
‖u(y, ·)− ũn(y1, . . . , yn, ·)‖V ≤ CN−rn .

Moreover, for every n ∈ N,

size(ũn) ≤ C(1 +Nn log(Nn) log log(Nn)),

depth(ũn) ≤ C(1 + log(Nn) log log(Nn)).”

Theorem 5.1 in Section 5 shows that an analogous result holds on the domain (0, 1)2.
Possibilities for further extensions are discussed in Section 6.

1.4 Notation

1.4.1 General notation

We will use the following notation: N = {1, 2, . . .}, N0 = {0, 1, 2, . . .}. Cartesian powers are
denoted by superscripts, e.g. N3

0 = N0 ×N0 ×N0, while certain subsets of N0 are denoted
by subscripts, e.g. N≥2 = {2, 3, . . .} = N>1, N≤k = {1, 2, . . . , k}, N<k = {1, 2, . . . , k − 1}
and (N0)2

≤2n = {0, 1, 2, . . . , 2n}× {0, 1, 2, . . . , 2n}. For any set Λ, we denote its cardinality
by |Λ|.

For statements, we write

1[statement] =

{
1 statement is true,

0 statement is false.

Vectors, sequences and multiindices are written in boldface, e.g. x ∈ R2, y ∈ [−1, 1]N.
Numbers in boldface denote sequences or vectors, e.g. 1 = (1, . . . , 1) ∈ Rd for d ∈ N. For
countable sequences b = (bj)j∈J , we write |b|1 ..=

∑
j∈J bj . In addition, for all d, d1, d2 ∈ N,

we write for vectors in Rd resp. matrices in Rd1×d2

∀b ∈ Rd : ‖b‖`0 ..=

d∑
i=1

1[bi 6= 0], ∀A ∈ Rd1×d2 : ‖A‖`0 ..=

d1∑
i=1

d2∑
j=1

1[Ai,j 6= 0].

For d ∈ N, the d × d identity matrix is denoted by IdRd . In addition, for any set S, the
identity function on S is denoted by IdS .

12



We use the componentwise ordering on (R≥0)N, i.e. ν ≤ µ if and only if ∀j ∈ N : νj ≤ µj .
In addition, we define ν < µ as (ν ≤ µ) ∧ (ν 6= µ).

A set Λ ⊂ NN
0 is downward closed if all µ ∈ NN

0 that satisfy µ ≤ λ for some λ ∈ Λ are also
contained in Λ. For such Λ, we know that |{j ∈ N : ∃λ ∈ Λ : λj 6= 0}| ≤ |Λ|, because we
have ej = (0, . . . , 0, 1, 0, . . .) ∈ Λ for each j satisfying (∃λ ∈ Λ : λj 6= 0), where (ej)j = 1
and ∀i ∈ N, i 6= j : (ej)i = 0.

1.4.2 Index set F

We define F ..= {ν ∈ NN
0 : νj 6= 0 for only finitely many j ∈ N}, i.e. F is the set of finitely

supported sequences with values in N0. For ν ∈ F , we define

suppν ..= {j ∈ N : νj 6= 0}.

Note that NN is uncountable (the famous result by Cantor, cf. [25, Theorem 6B p. 132]),
hence so is NN

0 . However, F is countable, as we will use in many of our results. It follows
from

F =
⋃
n∈N0

⋃
m∈N

{
ν ∈ NN

0 : |ν|1 = n, suppν ⊂ {1, . . . ,m}
}
,

which shows that F is a countable union of finite sets, hence countable.

For a subset Λ ⊂ F , we denote its complement in F by Λc ..= F\Λ. For ν ∈ F , we write
ν! =

∏
j∈N νj !, using that 0! = 1. For ν ∈ F and b ∈ RN, we define bν ..=

∏
j∈N b

νj
j ,

using that 00 = 1. Although these products formally have infinitely many factors, ν ∈ F
ensures that only finitely many factors differ from 1.

1.4.3 Parameter space U

We will study parametric functions with parameters y = (yj)j∈N in U ..= [−1, 1]N. We will
always endow U with the product topology. In 1930 Tychonoff showed that the Cartesian
product of any cardinality of unit intervals endowed with the product topology is compact
Hausdorff ([80, Sections 1 and 2 pp. 546–550]). Second countable compact Hausdorff
spaces are metrisable by Urysohn’s metrisation theorem ([81, Hauptsatz p. 310]). Hence,
U is a compact metrisable space, as is any other countable Cartesian product of compact
intervals. An example of a metric inducing the product topology on [−1, 1]N is

d(y,y′) =
∑
j∈N

2−j
|yj − y′j |

1 + |yj − y′j |

([72, Examples 3.3.20.(b) p. 84]), convergence in the product topology corresponds to
componentwise convergence.

1.4.4 Parametric functions

For a domain D ⊂ Rd with d ∈ N, we denote points in D by x ∈ D or by x ∈ D if d = 1.
For i ∈ {1, . . . , d}, the i’th Euclidean unit vector is denoted by ei.

13



For a Banach space V of functions defined on D, we will study parametric functions
a : U → V : y 7→ a(y). In general, we write a(y) ∈ V , suppressing the spatial variable
x ∈ D in notation. Otherwise, we write a(x,y) ∈ R. Weak and strong partial derivatives
with respect to the spatial variable x ∈ D are both denoted by ∂

∂xi
a for i ∈ {1, . . . , d}

and, more generally, by

∀α ∈ Nd0 : Dαa ..= Dαxa
..=

∂|α|1

∂xα1
1 ∂xα2

2 · · · ∂x
αd
d

a(x,y).

We denote partial derivatives of a with respect to the parameters y ∈ U by

∀ν ∈ F : ∂νa ..= ∂νya
..=

∂|ν|1

∂yν11 ∂y
ν2
2 · · ·

a(x,y).

1.5 Outline

In Section 2, a formalism for non-residual feedforward deep ReLU networks (defined in
Sections 1.2.1 and 1.2.2) is introduced and ReLU approximations of products of two or
more real numbers are studied. Section 3 introduces ReLU approximations of functions in
H2∩H1

0 ((0, 1)2), based on square grid continuous, piecewise bilinear interpolation. For the
ReLU approximation of the interpolants, the ReLU product networks from Section 2 are
used. The main result of Section 3 shows the convergence rate of the ReLU approximations
in terms of the ReLU network size. In Section 4, we study a parametric elliptic diffusion
equation on the domain (0, 1)2 and we derive properties of the corresponding solution map.
This section gives sufficient conditions for the Taylor gpc expansion of the solution map to
be sparse in the sense that the H1-norms of the Taylor gpc coefficients are `p-summable
for some 0 < p < 1. In addition, it is shown that under slightly stronger assumptions
the same holds for the H2-norms of the Taylor gpc coefficients, where p ∈ (0, 1) may
be larger than for the summability of the H1-norms. Truncations of the Taylor gpc
expansion are proposed as approximations of the solution map. The sparsity of the Taylor
gpc expansion is used to show lower bounds on the convergence rate of these Taylor gpc
approximations. Section 5 applies the ReLU approximation of functions in H2∩H1

0 ((0, 1)2)
to the coefficients of the Taylor gpc approximations of the solution map. Combined with
the efficient ReLU approximation of products shown in Section 2, it follows that the
solution map can be approximated efficiently by a family of ReLU networks. This is
expressed by a lower bound on the convergence rate in terms of the network size. This
convergence rate bound depends on the convergence rate of the ReLU approximations of
functions in H2∩H1

0 ((0, 1)2) and the summability exponents of the H1- and the H2-norms
of the Taylor gpc coefficients. Finally, Section 6 discusses the main result of this thesis
(Theorem 5.1) and gives directions for further research. This includes two alternatives
for the ReLU approximation of gpc coefficients, two generalisations of the spatial domain
(0, 1)2 and generalisations of the parametric PDE theory showing sparsity of the gpc
expansion.

14



2 ReLU neural network calculus

We introduce a formal description of non-residual feedforward ReLU neural networks in
Section 2.1 and discuss the approximation of products by such networks in Sections 2.2
and 2.3. Section 2.2 studies ReLU approximations of products of two factors, whereas
Section 2.3 uses such networks for the approximation of products of multiple factors.

2.1 Formal description of non-residual feedforward ReLU neural net-
works

Non-residual FF ReLU NNs have been introduced in Sections 1.2.1–1.2.2. We now in-
troduce a formal description of such networks that is similar to but not equal to the
formalisms introduced in [62, Section 2 pp. 6–8] and [24, Section 5 pp. 16–19].

As discussed in Section 1.2.1, most neural networks consist of computational nodes or-
ganised in layers. The formalism we use describes the network in terms of layers, the
decomposition of layers into nodes is not used explicitly. At the end of Notation 2.2
below, we discuss how this formalism can be rephrased in terms of computational nodes.

We first introduce our assumptions on the network architecture and notation for net-
works of that architecture in Section 2.1.1. Then, we discuss how such networks can be
constructed from multiple subnetworks. Section 2.1.2 mainly contains definitions of such
constructions, many of their basic properties are given in Appendix A.

2.1.1 Assumptions on the architecture and notation for networks with such
architecture

Assumption 2.1 (Architecture, cf. [24, Setting 5.1 pp. 16–17]). The architecture of
networks we study in this thesis is as follows:

We study non-residual FF NNs with inputs x1, . . . , xN0 ∈ R for N0 ∈ N, also denoted as
a vector x = (x1, . . . , xN0) ∈ RN0. The inputs form the input layer, which does not carry
out any computations. It serves as input for the first computational layer. The input layer
is followed by L ∈ N computational layers. For l ∈ {1, . . . , L}, layer l has size Nl ∈ N,
which equals the dimension of the output of that layer.

We study networks in which computational layers 1, . . . , L − 1 carry out an affine trans-
formation followed by a non-linear activation. We use the ReLU activation function
σ : R→ R : x 7→ max{0, x}. In addition, we denote

σ∗ :
⋃
d∈N

Rd →
⋃
d∈N

Rd : (z1, . . . , zd) 7→ (σ(z1), . . . , σ(zd)).

The output layer, which is the last computational layer, carries out an affine transforma-
tion not followed by activation.

Computational layers that apply the activation function are called hidden layers, i.e. com-
putational layers 1, . . . , L−1 are hidden layers. The output layer is the only computational
layer that is not a hidden layer.

15



We now introduce notation for networks whose architecture satisfies Assumption 2.1. In
addition to introducing notation for the coefficients, the depth, the size and the number of
non-zero coefficients of the network, we also give explicit expressions for the computations
carried out by layers of the network. That is, for a network Φ that satisfies Assumption
2.1 and has L computational layers, for l ∈ {1, . . . , L}, we will give an explicit expression
for the function Rσ,l(Φ) : RNl−1 → RNl implemented by the l’th computational layer of Φ
and for Rσ(Φ) : RN0 → RNL , which denotes the realisation of Φ. For these functions, the
subscript σ denotes that Φ has the ReLU activation function.

Notation 2.2 (Cf. [62, Definition 2.1 p. 6] and [24, Setting 5.1 pp. 16–17]). The coeffi-
cients of a network Φ with the architecture of Assumption 2.1 are for each l ∈ {1, . . . , L}
a Nl × Nl−1 weight matrix Al ∈ RNl×Nl−1 whose elements are called weights and a bias
vector bl ∈ RNl whose components are called biases. As mentioned in Section 1.2.1, a
network is determined by its architecture and its coefficients. Given that a network Φ has
the architecture of Assumption 2.1, we identify it with its coefficients: with

NN0,N1,...,NL
L

..= ×
l∈{1,...,L}

(
RNl×Nl−1 × RNl

)
,

we write
Φ = ((A1, b1), (A2, b2), . . . , (AL, bL)) ∈ NN0,N1,...,NL

L . (2.1)

In addition, we define

R ..=
⋃
L∈N

⋃
N0,...,NL∈N

NN0,N1,...,NL
L . (2.2)

As mentioned in Section 1.2.1, neural networks define an input-to-output map called real-
isation. We now describe the functions implemented by each computational layer and the
function implemented by the whole network.

For Φ as in Equation (2.1) and for l ∈ {1, . . . , L− 1}, computational layer l implements

Rσ,l(Φ) : RNl−1 → RNl : zl−1 7→ σ∗(Alz
l−1 + bl), (2.3)

whereas the output layer implements

Rσ,L(Φ) : RNL−1 → RNL : zL−1 7→ ALz
L−1 + bL. (2.4)

All layers together implement the realisation of Φ

Rσ(Φ) : RN0 → RNL : x 7→
(
Rσ,L(Φ) ◦Rσ,L−1(Φ) ◦ · · · ◦Rσ,1(Φ)

)
(x). (2.5)

The computational layers of a neural network are often thought of as composed of com-
putational nodes (see Section 1.2.1). In terms of Equations (2.3)–(2.4), a computational
node outputs one component of the output of a layer, i.e. denoting the elements of Al by
{Al;j,k}j∈{1,...,Nl},k∈{1,...,Nl−1} and the components of zl−1 and bl by {zl−1

k }k∈{1,...,Nl−1} and
{bl;j}j∈{1,...,Nl}, for l ∈ {1, . . . , L} and j ∈ {1, . . . , Nl}, the j’th node of the l’th computa-

tional layer computes for zl−1 ∈ RNl−1

(
Rσ,l(Φ)(zl−1)

)
j

=

σ
(∑Nl−1

k=1 Al;j,kz
l−1
k + bl;j

)
l ∈ {1, . . . , L− 1},∑Nl−1

k=1 Al;j,kz
l−1
k + bl;j l = L.

(2.6)

16



The number of ReLUs in the network equals the number of nodes in the hidden layers:
each such node applies the ReLU activation function once, nodes in other layers do not
contain ReLUs.

Finally, we will use the following definitions:

depth(Φ) ..= L, size(Φ) ..=

L−1∑
l=1

Nl, M(Φ) ..=

L∑
l=1

(‖Al‖`0 + ‖bl‖`0),

i.e. depth(Φ) denotes the number of computational layers of Φ, size(Φ) the number of
ReLUs and M(Φ) the number of non-zero coefficients.

The following lemma holds, cf. [77, Lemmas 2.1 p. 2 and 2.3 p. 3] for non-residual FF
ReLU NNs with input size and output size equal to one and [55, Proposition 4 p. 6]
for non-residual FF ReLU NNs with arbitrary input and output size. The statements in
[60, 55] are more precise, for us the result below suffices.

Lemma 2.3 (Cf. [55, Proposition 4 p. 6]). Every function f : RN0 → R that can be
implemented by a ReLU network as described in Assumption 2.1 and Notation 2.2 has the
following property: there exists a family T = {Tj}j∈{1,...,J} of finitely many convex open

sets such that ∀j ∈ {1, . . . , J} : Tj ⊂ RN0, RN0 =
⋃
j∈{1,...,J} Tj and such that f is linear

on Tj for each j ∈ {1, . . . , J}.

The idea of the proof is that of [60, Lemma 1 pp. 3–4], which gives the result for one
hidden layer. The proof of Lemma 2.3 is given in Appendix B.1.

We now define networks with architecture as in Assumption 2.1 that implement the identity
operator. We will use them to increase the depth of a network without changing the
realisation (Remark A.2). This is sometimes needed when constructing networks from
subnetworks of unequal depth.

Definition 2.4 ([62, Lemma 2.3 and Remark 2.4 p. 7] and [24, Setting 5.2 pp. 17–18]).
Using Notation 2.2, for d ∈ N and L ∈ N≥2, we define the identity network ΦId

d,L ∈
N d,2d,...,2d,d
L with architecture satisfying Assumption 2.1 as

ΦId
d,L

..=

(((
IdRd

− IdRd

)
,0

)
, (IdR2d ,0), . . . , (IdR2d ,0),

((
IdRd − IdRd

)
,0
))

. (2.7)

For d ∈ N and L = 1, we can implement the identity operator by the identity network
ΦId
d,1

..= ((Idd,0)) ∈ N d,d
1 .

Remark 2.5 ([62, Lemma 2.3 and Remark 2.4 p. 7], see also [24, Setting 5.2 pp. 17–18]).
For d ∈ N, L ∈ N≥2 and M ∈ R>0, the networks from Definition 2.4 satisfy

depth(ΦId
d,L) =L, size(ΦId

d,L) = 2(L− 1)d, M(ΦId
d,L) = 2Ld, (2.8)

depth(ΦId
d,1) = 1, size(ΦId

d,1) = 0, M(ΦId
d,1) = d. (2.9)

With σ the ReLU as in Assumption 2.1, it follows from ∀y ∈ R : y = σ(y) − σ(−y) that

17



for d ∈ N and L ∈ N≥2

∀x ∈ Rd : Rσ(ΦId
d,L)(x) = (σ∗)◦L−1(x)− (σ∗)◦L−1(−x) = x,

i.e. Rσ(ΦId
d,L) = IdRd. In addition, Rσ(ΦId

d,1) = IdRd.

As was mentioned in Section 1.2.1, for each function that can be implemented by a ReLU
network, there exist multiple networks that do so. We mentioned two relatively straight-
forward types of network modifications that do not affect the realisation. In the following
example we show a simple but much less trivial example of two networks with the same
realisation.

Example 2.6. In this example we discuss ReLU networks that satisfy Assumption 2.1.
We use Notation 2.2 to denote them.

The standard hat function

g(x) =


2x 0 ≤ x ≤ 1

2 ,

2(1− x) 1
2 < x ≤ 1,

0 x < 0 and x > 1

(2.10)

can be implemented by the depth two network

Φ1 ..=



 1

1

1

 ,

 0

−1
2

−1


 ,
((

2 −4 2
)
, (0)

) , (2.11)

as it computes ∀x ∈ R : Rσ(Φ1)(x) = 2σ(x)− 4σ(x− 1
2) + 2σ(x− 1) = g(x).

Alternatively, the depth three network

Φ2 ..=

(((
1

−1

)
,

(
−1

2
1
2

))
,
((
−2 −2

)
,
(

1
))

,
((

1
)
,
(

0
)))

(2.12)

has realisation ∀x ∈ R : Rσ(Φ2)(x) = σ
(
1− 2σ(x− 1

2)− 2σ(1
2 − x)

)
= g(x).

Note that there is no natural way to find the coefficients of Φ2 from those of Φ1 or vice
versa.

2.1.2 Construction of networks from subnetworks

We will now discuss how multiple subnetworks can be combined into one network. This
includes the concatenation of subnetworks, implementing the composition of realisations,
and the parallelisation of multiple subnetworks. This section mainly contains definitions,
basic properties of the defined networks are given in Appendix A.

In this section we use Assumption 2.1 and Notation 2.2 for all networks.

18



Definition 2.7 ([62, Definition 2.2 p. 6]). For i ∈ {1, 2}, let Li ∈ N, N i
0, N

i
1, . . . , N

i
Li
∈ N

and

Φi = ((Ai1, b
i
1), . . . , (AiLi , b

i
Li)) ∈ N

N i
0,N

i
1,...,N

i
Li

Li

be arbitrary, but such that N2
L2 = N1

0 . We define the concatenation Φ1 • Φ2 ∈

N
N2

0 ,N
2
1 ,...,N

2
L2−1

,N1
1 ,...,N

1
L1

L1+L2−1
as

Φ1 • Φ2 ..=
(

(A2
1, b

2
1), . . . , (A2

L2−1, b
2
L2−1), (A1

1A
2
L2 , A

1
1b

2
L2 + b1

1), (A1
2, b

1
2), . . . , (A1

L1 , b
1
L1)
)
.

(2.13)

Lemma 2.8 ([62, p. 6, below Definition 2.2]). For Φ1 and Φ2 as in Definition 2.7, it holds
that

Rσ(Φ1 • Φ2) = Rσ(Φ1) ◦Rσ(Φ2).

Proof. It follows from Equations (2.3)–(2.4) that

∀x ∈ RN
2
L2−1 :

(
Rσ,1(Φ1) ◦Rσ,L2(Φ2)

)
(x) =σ∗

(
A1

1(A2
L2x+ b2

L2) + b1
1

)
=σ∗

(
A1

1A
2
L2x+A1

1b
2
L2 + b1

1

)
=Rσ,L2(Φ1 • Φ2)(x).

The lemma now follows from the fact that

∀l ∈ {1, . . . , L2 − 1} : Rσ,l(Φ
1 • Φ2) =Rσ,l(Φ

2),

∀l ∈ {2, . . . , L1} : Rσ,L2−1+l(Φ
1 • Φ2) =Rσ,l(Φ

1).

More properties of concatenations are given in Remark A.1. In Remark A.2, we discuss
the concatenation of a network with an identity network from Definition 2.4 in order to
increase the depth of that network without changing its realisation. We use such extensions
for the definition of parallelisations, see Definitions 2.10 and 2.11 below.

For Φ1 and Φ2 as in Definition 2.7, Equation (A.4) from Remark A.1 provides an upper
bound onM(Φ1 •Φ2) containing the term ‖A1

1‖`0‖A2
L2‖`0 . In certain situations that term

may be very large. Therefore, we now define a form of concatenation that has an upper
bound on the number of non-zero coefficients that does not contain such products, see
Equation (A.14) from Remark A.3.

Definition 2.9 ([62, Definition 2.5 p. 7], see also [24, Setting 5.2 pp. 17–18]). For i ∈
{1, 2}, let Li ∈ N, N i

0, N
i
1, . . . , N

i
Li
∈ N and

Φi = ((Ai1, b
i
1), . . . , (AiLi , b

i
Li)) ∈ N

N i
0,N

i
1,...,N

i
Li

Li

be arbitrary, but such that N2
L2 = N1

0 . We define the sparse concatenation of Φ1 and Φ2

as

Φ1 � Φ2 ..= Φ1 • ΦId
N2
L2 ,2
• Φ2 ∈ N

N2
0 ,N

2
1 ,...,N

2
L2−1

,2N2
L2 ,N

1
1 ,...,N

1
L1

L1+L2 . (2.14)

19



Remark A.3 discusses some properties of sparse concatenations.

We now introduce parallelisations of multiple subnetworks, i.e. networks that in parallel
implement the realisations of those subnetworks. For the parallelisation of subnetworks
that have unequal depth, we use identity networks (Definition 2.4) to extend the sub-
networks of less than maximum depth. Such extensions are discussed in Remark A.2.
As in [62, Remark 2.8 p. 7], we have chosen to extend the inputs of subnetworks of less
than maximum depth. Equivalently, parallelisations can be defined using extensions of
the outputs of those subnetworks, cf. [24, Setting 5.2 pp. 17–18].

In Definition 2.10 below, we define the parallelisation of subnetworks that share the same
inputs. As discussed in Remark A.5, the fact that the same inputs are shared by all
subnetworks can be exploited to reduce the number of ReLUs needed to implement the
extension of the inputs.

Besides that, parallelisations of subnetworks that do not share the same inputs are defined
in Definition 2.11 below.

Definition 2.10 ([62, Definition 2.7 and Remark 2.8 p. 7], cf. [24, Setting 5.2 pp. 17–18]).
Let N,N0 ∈ N. For i ∈ {1, . . . , N}, let Li ∈ N, N i

1, . . . , N
i
Li
∈ N and

Φi = ((Ai1, b
i
1), . . . , (AiLi , b

i
Li)) ∈ N

N0,N i
1,...,N

i
Li

Li

be arbitrary, but such that {Φi}i∈{1,...,N} all share the same input in RN0.

Let Lmax ..= maxi∈{1,...,N} L
i. For i ∈ {1, . . . , N}, let ∀l ∈ {1, . . . , Lmax} : Ñ i

l ∈ N be such
that

Φi • ΦId
N0,Lmax−Li+1 ∈ N

N0,Ñ i
1,...,Ñ

i
Lmax

Lmax

and let {Ãil}i∈{1,...,N},l∈{1,...,Lmax} and {b̃il}i∈{1,...,N},l∈{1,...,Lmax} be such that

Φi • ΦId
N0,Lmax−Li+1 = ((Ãi1, b̃

i
1), . . . , (ÃiLmax , b̃iLmax)). (2.15)

For l ∈ {1, . . . , Lmax}, let Ñ tot
l

..=
∑

i∈{1,...,N} Ñ
i
l .

Then, the parallelisation for shared inputs Shared-Parallel(Φ1, . . . ,ΦN ) ∈
NN0,Ñtot

1 ,...,Ñtot
Lmax

Lmax is defined as

Shared-Parallel(Φ1, . . . ,ΦN ) ..=





Ã1
1

...

ÃN1

 ,


b̃1

1
...

b̃N1


 ,




Ã1
2

. . .

ÃN2

 ,


b̃1

2
...

b̃N2


 , . . . ,




Ã1
Lmax

. . .

ÃNLmax

 ,


b̃1
Lmax

...

b̃NLmax



 .

(2.16)

Properties of parallelisations for shared inputs are given in Remark A.4. In short, if all
subnetworks have equal depth, then the parallelisation for shared inputs also has that

20



depth. In addition, in that case, its size and its number of non-zero coefficients equal
the sum of the sizes resp. the number of non-zero coefficients of the subnetworks. If the
subnetworks are not of equal depth, then the depth of the parallelisation for shared inputs
equals the maximum depth, whereas its size and its number of non-zero coefficients are
larger than the sums of those quantities for the subnetworks, as the identity networks add
extra ReLUs.

A potentially smaller network with the same realisation is proposed in Remark A.5.

We now define the parallelisation of subnetworks that do not share the same inputs.

Definition 2.11 ([24, Setting 5.2 pp. 17–18], cf. [62, Definition 2.7 and Remark 2.8 p. 7]).
For N ∈ N and for i ∈ {1, . . . , N}, let Li ∈ N, N i

0, N
i
1, . . . , N

i
Li
∈ N and

Φi = ((Ai1, b
i
1), . . . , (AiLi , b

i
Li)) ∈ N

N i
0,N

i
1,...,N

i
Li

Li

be arbitrary.

Let Lmax ..= maxi∈{1,...,N} L
i. For i ∈ {1, . . . , N}, let ∀l ∈ {0, 1, . . . , Lmax} : Ñ i

l ∈ N be
such that

Φi • ΦId
N i

0,L
max−Li+1 ∈ N

Ñ i
0,Ñ

i
1,...,Ñ

i
Lmax

Lmax

and let {Ãil}i∈{1,...,N},l∈{1,...,Lmax} and {b̃il}i∈{1,...,N},l∈{1,...,Lmax} be such that

Φi • ΦId
N i

0,L
max−Li+1 = ((Ãi1, b̃

i
1), . . . , (ÃiLmax , b̃iLmax)). (2.17)

For l ∈ {0, 1, . . . , Lmax}, let Ñ tot
l

..=
∑

i∈{1,...,N} Ñ
i
l .

Then, the parallelisation Parallel(Φ1, . . . ,ΦN ) ∈ N Ñtot
0 ,Ñtot

1 ,...,Ñtot
Lmax

Lmax is defined as

Parallel(Φ1, . . . ,ΦN ) ..=





Ã1
1

. . .

ÃN1

 ,


b̃1

1
...

b̃N1


 ,




Ã1
2

. . .

ÃN2

 ,


b̃1

2
...

b̃N2


 , . . . ,




Ã1
Lmax

. . .

ÃNLmax

 ,


b̃1
Lmax

...

b̃NLmax



 .

(2.18)

Properties of parallelisations of subnetworks that do not share inputs are given in Remark
A.6. In short, as for parallelisations for shared inputs, the depth of a parallelisation of
subnetworks that do not share inputs equals the maximum of the depths of the subnet-
works. The size and the number of non-zero coefficients equal the sums of the respective
quantities for the subnetworks if all subnetworks are of equal depth. The size and the
number of non-zero coefficients exceed those sums if the subnetworks do not have equal
depth.

21



2.2 ReLU DNN approximation of products

In this section and in the next section we discuss the approximation of products by deep
ReLU networks satisfying Assumption 2.1. We use Notation 2.2 and follow the discussion
in [75, Section 3.2 pp. 9–14], which is based on [89, Section 3.1 pp. 105–106]. The main
result of this section is the following proposition on the approximation of products of two
factors by ReLU networks, adapted from [75, Proposition 3.1 p. 11]. The main difference
with respect to that result is that we show that, under the assumptions made below, the
image of [−M,M ]2 under Rσ(×̃) is contained in [−M2,M2].

Proposition 2.12 ([75, Proposition 3.1 p. 11] and [89, Proposition 3 p. 106]). For M > 0
and 0 < δ < min{M,M2}, there exists a ReLU network ×̃ with two input values whose
realisation satisfies Rσ(×̃)

∣∣
[−M,M ]2

: [−M,M ]2 → [−M2,M2] and

sup
a,b∈[−M,M ]

|a · b−Rσ(×̃)(a, b)| ≤ δ, (2.19)

ess sup
(a,b)∈[−M,M ]2

max

{∣∣∣∣b− d

da
Rσ(×̃)(a, b)

∣∣∣∣ , ∣∣∣∣a− d

db
Rσ(×̃)(a, b)

∣∣∣∣} ≤ δ. (2.20)

Here d
daRσ(×̃)(a, b) and d

dbRσ(×̃)(a, b) denote weak derivatives. For all b ∈ [−M,M ], there
exists a finite set Nb ⊂ (−M,M) such that a 7→ Rσ(×̃)(a, b) is strongly differentiable at
all a ∈ (−M,M)\Nb. In addition, ×̃ has the zero-in-zero-out property, i.e. [a = 0 ∨ b =
0]⇒ Rσ(×̃)(a, b) = 0.

In total, the network comprises O(log(M) + log(1/δ)) layers, ReLUs and non-zero coeffi-
cients.

The main idea behind the proposition is that squares can be approximated efficiently by
deep ReLU networks ([89, Proposition 2 p. 105]), which is exploited by using a polarisation
argument to write the product [−M,M ]2 3 (a, b) 7→ ab ∈ R as a linear combination of
squares. We use that for all a, b ∈ [−M,M ]

ab = 2M2

[(
|a+ b|

2M

)2

−
(
|a|
2M

)2

−
(
|b|

2M

)2
]
. (2.21)

Note that |a+b|
2M , |a|2M ,

|b|
2M ∈ [0, 1]. As in [89, Proposition 2 p. 105], for m ∈ N, we ap-

proximate [0, 1] → [0, 1] : x 7→ x2 by continuous, piecewise linear interpolation on the
equispaced partition T 1

2m of [0, 1] into 2m intervals of size 2−m. The nodes of T 1
2m are

{x1
k

..= k2−m : k ∈ {0, . . . , 2m}}. The continuous, piecewise linear interpolant of x 7→ x2

on T 1
2m is denoted by fm. In Step 3 of the proof of Proposition 2.12, we construct a ReLU

DNN that implements fm.

Note that fm : [0, 1] → [0, 1], 0 7→ 0, 1
2 7→

1
4 , 1 7→ 1, that by convexity of x 7→ x2

∀x ∈ [0, 1] : fm(x) ≥ x2, that fm is strictly increasing on [0, 1] and that

‖x2 − fm(x)‖L∞[0,1] = 2−2m−2, (2.22)

22



‖2x− f ′m(x)‖L∞[0,1] = ess sup
x∈[0,1]

|2x− f ′m(x)|

= sup
j∈{1,...,2m}

sup
x∈[x1j−1,x

1
j ]

∣∣2x− f ′m(x)
∣∣

= sup
j∈{1,...,2m}

sup
x∈[x1j−1,x

1
j ]

∣∣∣∣2x− (x1j )
2−(x1j−1)2

x1j−x1j−1

∣∣∣∣
= sup

j∈{1,...,2m}
sup

x∈[x1j−1,x
1
j ]

∣∣2x− (x1
j + x1

j−1)
∣∣

= 2−m. (2.23)

The properties of fm are discussed in more detail in Step 5 of the proof of Proposition 2.12
in Appendix B.2.

The function fm can be constructed efficiently from the standard hat function

g(x) =


2x 0 ≤ x ≤ 1

2 ,

2(1− x) 1
2 < x ≤ 1,

0 x < 0 and x > 1

(2.24)

= 2σ(x)− 4σ(x− 1
2) + 2σ(x− 1), x ∈ R (2.25)

and sawtooth functions that are constructed as powers of g under function composition:

∀m ∈ N : gm ..= g◦m = g ◦ · · · ◦ g (2.26)

(see also [77, Lemma 2.4 p. 4]). Note that for x ∈ [0, 1] we can leave out the last term in
Equation (2.25), because σ(x − 1) ≡ 0 for x ≤ 1. In terms of these sawtooth functions,
the interpolants {fm}m∈N satisfy the following recurrence:

f0(x) = x = σ(x), x ∈ [0, 1],

∀m ∈ N : fm(x) = fm−1(x)− 2−2mgm(x), x ∈ [0, 1]. (2.27)

We now use this recurrence to prove Proposition 2.12.

Proof of Proposition 2.12. The proof follows [75, pp. 10–11], which is based on [89,
Section 3.1 pp. 105–106], and consists of five steps. In the first step, given for all m ∈
N a ReLU network Fm ∈ R implementing fm, an approximation ×̃m of the product
[−M,M ]2 3 (a, b) 7→ ab is constructed. It is shown that Equations (2.19) and (2.20) hold
for appropriately chosen m. We define ×̃ ..= ×̃m for an appropriate value of m. In the
second step, it is discussed that for each b ∈ [−M,M ] we have strong differentiability of
a 7→ Rσ(×̃)(a, b) at all but finitely many a ∈ [−M,M ] and that Rσ(×̃) has the zero-in-
zero-out property.

The last three steps are given in Appendix B.2. In the third step, for each m ∈ N a ReLU
network Fm that implements fm is constructed. In the fourth step, bounds on the depth,
the size and the number of non-zero coefficients of ×̃ are given. In the fifth step, it is
shown that ∀(a, b) ∈ [−M,M ]2 : |Rσ(×̃)(a, b)| ≤M2.

Step 1. Assume that for all m ∈ N a network Fm ∈ R that implements fm is given. For
m ∈ N and M > 0, based on Equation (2.21), we define ×̃m ∈ R such that it implements

[−M,M ]2 3 (a, b) 7→ 2M2fm

(
|a+ b|

2M

)
− 2M2fm

(
|a|
2M

)
− 2M2fm

(
|b|

2M

)
. (2.28)

23



The structure of ×̃m is depicted in Figure 2.1.

a b

Fm Fm Fm

fm

(
|a|
2M

)
fm

(
|b|

2M

)
fm

(
|a+b|
2M

)

Rσ(×̃m)(a, b)

Figure 2.1: Structure of ×̃m.

We define

×̃m ..=
((
−2M2 −2M2 2M2

)
,0
)
• Parallel(Fm, Fm, Fm) • Φ×̃in, (2.29)

where

Φ×̃in
..=







1

−1

1

−1

1 1

−1 −1


,0


,

 1
2M

 1 1

1 1

1 1

 ,0




, (2.30)

Rσ(Φ×̃in) : R2 → R3 : (a, b) 7→
(
|a|
2M ,

|b|
2M ,

|a+b|
2M

)
. (2.31)

Equation (2.31) follows directly from Equations (2.3)–(2.4). Equation (2.28) follows from
Equation (2.29), Lemma 2.8 and Equations (2.31) and (A.23).

We now determine a value of m ∈ N for which Equations (2.19)–(2.20) hold for ×̃m.

From Equation (2.21), we see that ×̃m approximates the product ab with absolute error
less than δ, as in Equation (2.19), if the squares are approximated with absolute error less
than δ/(6M2). Using Equation (2.22), we find that Equation (2.19) is satisfied for ×̃m
when 2−2m−2 ≤ δ/(6M2), which is satisfied when

2m ≥ 2 log2M + log2(1/δ) + 1. (2.32)

We next derive a sufficient condition on m such that Equation (2.20) holds for ×̃m. Using
Equation (2.23) twice, we find for all (a, b) ∈ [0,M ]2 satisfying a

2M ,
b

2M ,
a+b
2M /∈ {x1

j : j ∈
{0, . . . , 2m}} that∣∣∣∣b− d

da
Rσ(×̃m)(a, b)

∣∣∣∣ = M

∣∣∣∣2a+2b
2M − 2a

2M −
(
f ′m
(
a+b
2M

)
− f ′m

(
a

2M

)) ∣∣∣∣ ≤ 2M2−m, (2.33)

24



which is bounded by δ for
m = dlog2(2M) + log(1/δ)e. (2.34)

For that value of m, using the symmetry in a and b, it follows from Equation (2.33)
that Equation (2.20) is satisfied for ×̃m when the essential supremum is restricted to
(a, b) ∈ [0,M ]2, because a

2M ,
b

2M ,
a+b
2M /∈ {x1

j : j ∈ {0, . . . , 2m}} holds for almost every

(a, b) ∈ [0,M ]2. The analogous result holds when the essential supremum is restricted
to (a, b) ∈ [−M, 0] × [0,M ], (a, b) ∈ [0,M ] × [−M, 0] or (a, b) ∈ [−M, 0]2. This finishes
the proof of Equation (2.20) for ×̃m with m as in Equation (2.34). For that value of
m, Equation (2.32) is also satisfied, i.e. we have shown Equations (2.19)–(2.20) for ×̃m.
Therefore, we define

×̃ ..= ×̃dlog2(2M)+log(1/δ)e. (2.35)

Step 2. For b ∈ [−M,M ], the claimed differentiability of a 7→ Rσ(×̃)(a, b) follows from
Lemma 2.3 using that a 7→ Rσ(×̃)(a, b) can be implemented by

×̃ •

(((
1

0

)
,

(
0

b

)))
.

More explicitly, the piecewise linearity of fm on [x1
k−1, x

1
k] for k ∈ {1, . . . , 2m} shows that

Nb =
{
a ∈ (−M,M) :

{∣∣ a
2M

∣∣ , ∣∣a+b
2M

∣∣} ∩ {x1
j : j ∈ {0, . . . , 2m}} 6= ∅

}
.

The zero-in-zero-out property ([89, Proposition 3(b) p. 106]) directly follows from Equation
(2.28) and the fact that fm has the zero-in-zero-out property, which follows from the fact
that the interpolant fm of x 7→ x2 is exact in the node x1

0 = 0. This finishes Step 2 of the
proof.

Steps 3–5 are given in Appendix B.2.

Remark 2.13 (Cf. [24, Lemma 6.2 p. 20]). Note that for δ ≥ M2 Equation (2.32) holds
for all m ∈ N and that for δ ≥M the right-hand side of Equation (2.34) is bounded from
above by m for all m ∈ N.

In addition, for ×̃ ..=
((

0 0
)
,
(

0
))

, Equation (2.19) holds when δ ≥M2 and Equa-

tion (2.20) holds when δ ≥ M . The other statements of the proposition also hold for this
trivial network.

2.3 ReLU DNN approximation of products of multiple factors

Products of more than two factors can be approximated by a binary tree-structured net-
work of ×̃m-subnetworks defined in Equation (2.29). The following proposition is [75,
Proposition 3.3 p. 11] adjusted to Proposition 2.12.

Proposition 2.14 ([75, Proposition 3.3 p. 11]). For all δ∏̃ ∈ (0, 1) and all n ∈ N≥2, there

exists a ReLU network
∏̃n
∈ R with n input values such that

Rσ

(∏̃n
) ∣∣∣

[−1,1]n
: [−1, 1]n → [−1, 1]

25



and such that

sup
(x1,...,xn)∈[−1,1]n

∣∣∣∣∣∣
n∏
j=1

xj −Rσ
(∏̃n

)
(x1, . . . , xn)

∣∣∣∣∣∣ ≤ δ∏̃. (2.36)

The depth of
∏̃n

is of the order O(log(n) log(n/δ∏̃)), whereas its size and the number of
non-zero coefficients are of the order O(n log(n/δ∏̃)).

Proof. This proof mainly follows [75, pp. 12–13]. For convenience, we extend the input
such that the number of input values is a power of 2: let ñ ..= min{2k : k ∈ N, 2k ≥ n}
and define ∀n < j ≤ ñ : xj ..= 1. Note that ñ < 2n.

The rest of this proof is divided into three steps. First, for m ∈ N, we construct the network∏̃n

m as a binary tree-structured network of ×̃m-subnetworks from Proposition 2.12. In Step
2, it will be shown that for each ×̃m-subnetwork absolute accuracy δ = δ∏̃/ñ suffices. In
addition, a corresponding value of m will be given. Finally, Step 3 in Appendix B.3 gives
bounds on the depth, the size and the number of non-zero coefficients of the network in
terms of n and δ∏̃. In addition, Appendix B.3 contains Remark B.2, which describes two
ways to implement the auxiliary input values xj : n < j ≤ ñ.

Step 1. We approximate the product of multiple real numbers of absolute value at most 1
by a binary tree-structured network

∏̃n

m consisting of ×̃m-networks from Proposition 2.12
for m ∈ N to be determined later. The binary tree contains ñ − 1 ×̃m-subnetworks and
log2(ñ) layers of such subnetworks, e.g. for n = ñ = 4 we have

Rσ

(∏̃n

m

)
(x1, x2, x3, x4) = Rσ(×̃m)

(
Rσ(×̃m)(x1, x2), Rσ(×̃m)(x3, x4)

)
, x ∈ [−1, 1]4,

(2.37)
as depicted in Figure 2.2.

x1 x2 x3 x4

×̃m ×̃m

×̃m

Rσ

(∏̃4

m

)
(x1, . . . , x4)

Figure 2.2: Structure of
∏̃4

m: a binary tree-structured network of ×̃m-subnetworks.

26



For m ∈ N and k ∈ {1, . . . , log2(ñ)}, we define

L
k
m

..= Parallel
(
×̃m, . . . , ×̃m

)
, (2.38)∏̃n

m
..=L1

m � . . .� L
log2 ñ
m , (2.39)

where Lkm is the parallelisation of 2k−1 ×̃m-subnetworks and has 2k inputs. Because we are
only interested in inputs in [−1, 1], it suffices to take maximum input value M = 1 for each
×̃m-subnetwork: Proposition 2.12 shows that ∀(a, b) ∈ [−1, 1]2 : Rσ(×̃m)(a, b) ∈ [−1, 1],
which inductively shows that for all ×̃m-subnetworks in the binary tree the input and the

output are contained in [−1, 1]. In particular, Rσ

(∏̃n

m

)
([−1, 1]n) ⊂ [−1, 1]. Moreover,

for each ×̃m-subnetwork, we take absolute accuracy δ ..= δ∏̃/ñ in the sense of Equation
(2.19). In Step 2 below, we will show that with this choice Equation (2.36) holds.

It follows from Equations (2.38) and (A.23) that for (b1, . . . , b2k) ∈ [−1, 1]2
k

Rσ(Lkm)(b1, . . . , b2k) =
(
Rσ(×̃m)(b1, b2), . . . , Rσ(×̃m)(b2k−1, b2k)

)
, (2.40)

which together with Equation (2.39) and Remark A.3 determines the realisation of
∏̃n

m.

Step 2. We now show that Equation (2.36) holds if Equation (2.19) is satisfied for each
×̃m-subnetwork with absolute accuracy δ = δ∏̃/ñ. If ñ = 2 this is trivially true, if ñ > 2
we use the following claim.

Claim.

∀k ∈ N, (b1, . . . , b2k) ∈ [−1, 1]2
k

:

∣∣∣∣∣∣
2k∏
j=1

bj −Rσ
(∏̃2k

m

)
(b1, . . . , b2k)

∣∣∣∣∣∣ ≤ (2k − 1)δ.

Using the claim for k = log2(ñ), we find∣∣∣∣∣∣
n∏
j=1

xj −Rσ
(∏̃n

m

)
(x1, . . . , xn)

∣∣∣∣∣∣ def
=

∣∣∣∣∣∣
ñ∏
j=1

xj −Rσ
(∏̃ñ

m

)
(x1, . . . , xñ)

∣∣∣∣∣∣
≤ (ñ− 1)δ ≤ ñ−1

ñ δ∏̃ < δ∏̃,
as desired.

We now prove the claim by induction over k. For k = 1 we have |Rσ(×̃m)(b1, b2)− b1b2| ≤
δ = (21 − 1)δ. For the induction step, we use that

Rσ

(∏̃2k

m

)
(b1, . . . , b2k)

=Rσ(×̃m)

(
Rσ

(∏̃2k−1

m

)(
b1, . . . , b2k−1), Rσ

(∏̃2k−1

m

)
(b2k−1+1, . . . , b2k)

)

27



and find ∣∣∣∣∣∣
2k∏
j=1

bj −Rσ
(∏̃2k

m

)
(b1, . . . , b2k)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
2k−1∏
j=1

bj

∣∣∣∣∣∣
∣∣∣∣∣∣

2k∏
j′=2k−1+1

bj′ −Rσ
(∏̃2k−1

m

)
(b2k−1+1, . . . , b2k)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
2k−1∏
j=1

bj −Rσ
(∏̃2k−1

m

)
(b1, . . . , b2k−1)

∣∣∣∣∣∣
∣∣∣∣Rσ (∏̃2k−1

m

)
(b2k−1+1, . . . , b2k)

∣∣∣∣
+

∣∣∣∣∣Rσ
(∏̃2k−1

m

)
(b1, . . . , b2k−1) ·Rσ

(∏̃2k−1

m

)
(b2k−1+1, . . . , b2k)

−Rσ(×̃m)

(
Rσ

(∏̃2k−1

m

)
(b1, . . . , b2k−1), Rσ

(∏̃2k−1

m

)
(b2k−1+1, . . . , b2k)

) ∣∣∣∣∣
≤ (2k−1 − 1)δ + (2k−1 − 1)δ + δ = (2k − 1)δ,

where the first and the second of the three terms have been estimated using the induction

hypothesis for k − 1 and using
∣∣∣∏2k−1

j=1 bj

∣∣∣ ≤ 1 resp.∣∣∣∣Rσ (∏̃2k−1

m

)
(b2k−1+1, . . . , b2k)

∣∣∣∣ ≤ 1,

and where the third of the three terms has been estimated using Equation (2.19). This
finishes the proof of the claim and thereby the proof of Equation (2.36).

Because the ×̃m-subnetworks do not need to satisfy Equation (2.20), we may choose a
smaller value for the parameter m than in Equation (2.35). More precisely, for M = 1 and
δ = δ∏̃/ñ, according to Equation (2.32), m = d1

2 log(ñ/δ∏̃) + 1
2e implies Equation (2.19)

with δ = δ∏̃/ñ. As shown in the beginning of Step 2 of this proof, Equation (2.36) holds

for
∏̃n

m if the maximum input value of each ×̃m-subnetwork equals M = 1 and if Equation
(2.19) holds with δ = δ∏̃/ñ for each ×̃m-subnetwork. Therefore,∏̃n

..=
∏̃n⌈

1
2 log(ñ/δ∏̃)+

1
2

⌉ (2.41)

satisfies the properties stated in the proposition. This finishes Step 2 of the proof.

Step 3 is given in Appendix B.3.

Remark 2.15. By Remark 2.13, for δ∏̃ ≥ 1, the statements of the proposition hold for∏̃n
..=
((

0 · · · 0
)
,
(

0
))

, n ∈ N.

Remark 2.16 (Cf. [75, Remarks 3.4 and 3.5 p. 13]). In Proposition 2.14, products
were approximated by ×̃m-subnetworks from Proposition 2.12 organised in a binary tree.
Instead, products of multiple factors could be approximated by the consecutive composition

28



of ×̃m-subnetworks, cf. [89, Equation (14) p. 107]. For all n ∈ N≥2 and δ∏̂ ∈ (0, 1), let

m = d1
2 log(n/δ∏̂) + 1

2e. Then, we can recursively define
∏̂2

..= ×̃m and for n > 2

∏̂n
..= ×̃m • Parallel(

∏̂n−1
,ΦId

1,1).

Note that in the parallelisation the subnetwork ΦId
1,1 gets extended. It holds that for all

y1, . . . , yn ∈ [−1, 1]

Rσ

(∏̂n
)

(y1, . . . , yn) = Rσ(×̃m)
(
Rσ

(∏̂n−1
)

(y1, . . . , yn−1), yn

)
.

By inductively applying Equation (2.19), it can be shown that the analogy of Equation

(2.36) holds for
∏̂n

if the ×̃m-networks have pointwise accuracy δ = δ∏̂/n.

This approximation of products is advantageous for the approximation of polynomials in
one variable. If y1 = . . . = yn =.. y ∈ [−1, 1], then the approximation of yn as

∏̂n
(y, . . . , y)

obtains all powers {yj}j∈{1,...,n} as partial results, which allows the approximation of poly-

nomials in one variable y ∈ [−1, 1] by a simple extension of the
∏̂n

-network.

For identical inputs y, the
∏̂n

-networks defined above are not efficient in terms of size. The
stacked parallelisations include extensions of the input. Because all the inputs equal y, there
are multiple parallel identity networks that all compute y. Using a construction similar to

that in Remark A.5, Rσ

(∏̃n
)

(y, . . . , y) can be implemented by smaller networks, having

depth, size and number of non-zero coefficients of the order O(n log(n/δ∏̂)). Extensions of
such networks implementing polynomials in one variable y ∈ [−1, 1] have the same order
of depth, size and number of non-zero coefficients, while their absolute error is bounded
from above by δ∏̂ times the sum of the coefficients of the approximated polynomial.

These ideas can be used more generally for the approximation of polynomials of one variable
y ∈ [−M,M ] and polynomials of multiple such variables, which in turn can be used for the
efficient approximation of smooth functions. This approach is followed in [89, Theorem 1
p. 106] for the ReLU approximation of {f ∈ Wn,∞((0, 1)d) : ‖f‖Wn,∞((0,1)d) ≤ 1} for
n, d ∈ N. Similar results for networks with ReLUs and BSUs are [48, Theorems 4 p. 5
and 9 p. 7 and Corollary 10 p. 7–8].

Let F be as defined in Section 1.4.2. Given for each n ∈ N a finite index set Λn ⊂ F of
size |Λn| = n, the following lemma describes ReLU networks {fν}ν∈Λn that approximate
the monomials yν : y ∈ [−1, 1]N,ν ∈ Λn. The networks are defined such that a weighted
sum of their errors is small.

Lemma 2.17 ([75, Lemma 3.8 p. 14]). Given 0 < pb < 1 and a sequence (bν)ν∈F ⊂ R>0

satisfying (bν)ν∈F ∈ `pb(F), as well as for each n ∈ N a downward closed index set Λn ⊂ F
satisfying |Λn| = n, supν∈Λn |ν|1 = O(log n) and

⋃
ν∈Λn

suppν ⊂ {1, . . . , n}.

Then, with U ..= [−1, 1]N as in Section 1.4.3, for each n ∈ N, there exist ReLU networks
{fν}ν∈Λn having inputs y1, . . . , yn ∈ [−1, 1] such that for all ν ∈ Λn the realisation Rσ(fν)

29



is constant in {yj : j ∈ {1, . . . , n}\ suppν} and such that {fν}ν∈Λn satisfy

sup
y∈U

∑
ν∈Λn

bν |yν −Rσ(fν)(y1, . . . , yn)| ≤ n−1/pb+1, (2.42)

sup
ν∈Λn

sup
y∈U
|Rσ(fν)(y1, . . . , yn)| ≤ 1. (2.43)

In addition,

max
ν∈Λn

depth(fν) = O(log(n) log log(n)), (2.44)∑
ν∈Λn

size(fν) = O(n log(n) log log(n)), (2.45)

∑
ν∈Λn

M(fν) = O(n log(n) log log(n)). (2.46)

Proof. This proof follows [75, p. 15] and consists of three steps. In the first step, for all
n ∈ N, we define the networks {fν}ν∈Λn . In Step 2, we prove Equations (2.42)–(2.43),
while Equations (2.44)–(2.46) are proved in Step 3.

Step 1. Let n ∈ N. For all ν ∈ Λn, it holds that yν is the product of |ν|1 numbers. For such
ν, by assumption, it holds that |ν|1 ≤ supν′∈Λn |ν

′|1 = O(log n). We will approximate
{yν}ν∈Λn with networks from Proposition 2.14. Note that in this lemma n = |Λn|, which
differs from n as used in Proposition 2.14. There, n denotes the number of factors. In this
lemma, for ν ∈ Λn, the number of factors in the product yν equals |ν|1.

For ν ∈ Λn satisfying |ν|1 ∈ N≥2 and for i ∈ {1, . . . , |ν|1}, we define ji;ν ∈ {1, . . . , n}
such that for all y ∈ U it holds that yν =

∏|ν|1
i=1 yji;ν . For such ν, we define the matrix

prn;ν ∈ R|ν|1×n and the network fν ∈ R as

(prn;ν)i,j ..=

{
1 i ≤ |ν|1, j = ji;ν ,

0 else,

fν ..=
∏̃|ν|1 • (prn;ν ,0), (2.47)

Rσ(fν)(y1, . . . , yn) =Rσ

(∏̃|ν|1)
(yj1;ν , . . . , yj|ν|1;ν ), (2.48)

with
∏̃|ν|1

as constructed in Proposition 2.14 and where Equation (2.48) follows from
Equation (2.47) and Lemma 2.8. For each ν ∈ Λn, we define δν ..= min{1, b−1

ν n−1/pb}. For

ν ∈ Λn satisfying |ν|1 ≥ 2, we take δ∏̃ = δν as accuracy of
∏̃|ν|1

in the sense of Equation
(2.36). Note that fν hence explicitly depends on n. In addition, for ν = 0, we define

f0 ..=
((

0 · · · 0
)
,1
)
,

which has constant output 1. For j ∈ {1, . . . , n}, we define

fej
..=
((

0 · · · 0 1 0 · · · 0
)
,0
)
,

which implements (y1, . . . , yn) 7→ yj . For ν ∈ Λn satisfying |ν|1 ∈ {0, 1}, it holds that
∀y ∈ U : yν = Rσ(fν)(y1, . . . , yn), hence those fν do not contribute to Equation (2.42)
and they satisfy Equation (2.43).

30



It can be seen from Equation (2.48) that for n ∈ N and ν ∈ Λn the realisation Rσ(fν) is
constant in {yj : j ∈ {1, . . . , n}\ suppν}.

Step 2. By Equation (2.36), for all n ∈ N, it holds that

sup
y∈U

∑
ν∈Λn

bν |yν −Rσ(fν)(y1, . . . , yn)|
(2.36)

≤ sup
y∈U

∑
ν∈Λn

bν min{1, b−1
ν n−1/pb}

≤
∑
ν∈Λn

bνb
−1
ν n−1/pb = n−1/pb+1,

which shows Equation (2.42). Equation (2.43) directly follows from Proposition 2.14. This
finishes Step 2 of the proof.

Step 3. Let n ∈ N. We now show Equations (2.44)–(2.46), giving bounds on the maximum
depth and the sum of the sizes of {fν}ν∈Λn , as well as on the total number of non-zero
coefficients.

First of all, depth(f0) = 1, size(f0) = 0 and M(f0) = 1. Similarly, for j ∈ {1, . . . , n}, it
holds that depth(fej ) = 1, size(fej ) = 0 and M(fej ) = 1.

By Equations (2.47), (A.1), (A.2) and (A.3), it follows that for ν ∈ Λn satisfying |ν|1 ≥ 2 it

holds that depth(fν) = depth
(∏̃|ν|1)

, size(fν) = size
(∏̃|ν|1)

and M(fν) =M
(∏̃|ν|1)

.

Using (bν)ν∈F ∈ `pb(F) ↪→ `∞(F), we find maxν∈Λn 1/δν = maxν∈Λn max{1, bνn1/pb} =
O(n1/pb). This fact and the assumption that maxν∈Λn |ν|1 = O(log n) show Equation
(2.44), because Proposition 2.14 implies that depth(fν) = O(log(|ν|1) log(|ν|1/δν)).

By Proposition 2.14, we have ∀ν ∈ Λn : size(fν) ≤ C(1 + |ν|1 log(|ν|1/δν)). Hence, we
find (at (*) using that for x ≥ 1 it holds that log(x) ≤ x− 1)∑
ν∈Λn

size(fν) ≤
∑
ν∈Λn

C(1 + |ν|1 log(|ν|1/δν))

≤ C
∑
ν∈Λn

(1 + log(n) log log(n)) + C
∑
ν∈Λn

(1 + log(n) log(max{1, bνn1/pb}))

≤ C(1 + n log(n) log log(n)) + C log(n)
∑
ν∈Λn

p−1
b log(max{1, bpbν n})

(∗)
≤ C(1 + n log(n) log log(n)) + C log(n)

∑
ν∈Λn

p−1
b bpbν n

≤ C(1 + n log(n) log log(n)) + Cn log(n)p−1
b ‖bν‖

pb
`pb (F)

= O(n log(n) log log(n)),

which shows Equation (2.45). Equation (2.46) follows by the same argument. This finishes
the proof of Lemma 2.17.

31



3 ReLU DNN approximation in H2 ∩H1
0((0, 1)2)

In this section, for D = (0, 1)2, we discuss the approximation of functions in H2∩H1
0 (D) by

ReLU networks. This approximation is done in two steps: First, functions in H2 ∩H1
0 (D)

are approximated by continuous, piecewise bilinear interpolants. Then, the interpolants
are approximated by ReLU networks.

We use an approach similar to that in [54]. There, more regular functions were approxi-
mated, namely functions in the Korobov space

X2,p
0 (D) = {v ∈ Lp(D) : v|∂D = 0 and Dαv ∈ Lp, |α|∞ ≤ 2}

for any p ∈ [2,∞] ([54, Equation (2.10) p. 6], we use a subscript 0 to denote the choice of
boundary conditions). In [54], the regularity of functions from Korobov spaces allows to
use of sparse grid approximations as defined in [12, Section 3.2 pp. 162–182, in particular
Equation (3.61) p. 172], using the error estimate from [12, Theorem 3.8 p. 176] for functions
in X2,p

0 (D). Because we want to approximate functions in H2∩H1
0 (D), we cannot use that

error estimate. Therefore, we use a full grid approximation, i.e. we use the approximation

spaces {V (∞)
n }n∈N defined in Equation (3.4) below.

The main result of this section is that for N ∈ N large enough and for any function in
H2 ∩H1

0 (D) there exists a ReLU network with size at most N , having depth of the order
O(logN) and approximating the function with H1-error of the order O(N−1/2(logN)1/2)
(Proposition 3.5).

3.1 Continuous, piecewise bilinear interpolation in H2 ∩H1
0((0, 1)2)

We start by introducing the continuous, piecewise bilinear functions we will use as in-
terpolants and the corresponding notation. A more general introduction to the used
interpolants can be found in [26, Sections 1.2–1.5 pp. 19–67].

In this section, we use the equispaced rectangular partition T 1,2
2n,2n of D into squares of

size 2−n × 2−n. It can be constructed from two equispaced one-dimensional partitions
T 1

2n and T 2
2n , which both divide the interval (0, 1) into 2n disjoint intervals of length

2−n. The grid T 1
2n has grid points {x1

k1
..= k12−n : k1 ∈ {0, . . . , 2n}} and the grid T 2

2n

has grid points {x2
k2

..= k22−n : k2 ∈ {0, . . . , 2n}}. The partition T 1,2
2n,2n has grid points

{x1,2
k

..= (x1
k1
, x2

k2
) : k = (k1, k2) ∈ (N0)2

≤2n} and grid lines {{x ∈ [0, 1]2 : xi = xiki} : i ∈
{1, 2}, ki ∈ {0, . . . , 2n}}.

For the interpolation of functions in H2∩H1
0 (D), we will use continuous, piecewise bilinear

functions defined on T 1,2
2n,2n . Because functions in H2 ∩H1

0 (D) vanish at the boundary, we
restrict ourselves to continuous, piecewise bilinear interpolants that vanish at the bound-

ary. The vector space of such functions will be denoted by V
(∞)
n (D), it will be defined

below.

Basis functions for V
(∞)
n (D) are constructed as tensor products of univariate continuous,

piecewise linear functions, namely so-called hat functions on T 1
2n and T 2

2n . For i ∈ {1, 2}

32



and ki ∈ {1, . . . , 2n − 1}, they are defined as

ϕiki(xi)
..=


2n(xi − xiki−1) xiki−1 ≤ xi ≤ xiki ,
2n(xiki+1 − xi) xiki < xi ≤ xiki+1,

0 xi < xiki−1 and xi > xiki+1

(3.1)

= σ
(
1− 2nσ(xiki − xi)− 2nσ(xi − xiki)

)
, xi ∈ R. (3.2)

We note that ∀i ∈ {1, 2}, ki ∈ {1, . . . , 2n−1} : ϕiki ∈ H
1
0 (D) (cf. [11, Section 8.2 Examples

pp. 202–203]).

1

0 x1x1
0 x1

1 x1
2 x1

3 x1
4 x1

5 x1
6 x1

7 x1
8

ϕ1
2 ϕ1

5 ϕ1
6 ϕ1

7

Figure 3.1: Examples of univariate hat functions.

For k ∈ N2
≤2n−1, we define

ϕ1,2
k (x) ..= ϕ1

k1(x1) · ϕ2
k2(x2), x ∈ D, (3.3)

S1,2
k

..= suppϕ1,2
k ,

V (∞)
n (D) ..= span{ϕ1,2

k : k ∈ N2
≤2n−1}. (3.4)

The functions {ϕ1,2
k }k∈N2

≤2n−1
are continuous, piecewise bilinear hat functions. Note that

V
(∞)
n (D) ⊂ H1

0 (D), cf. [12, pp. 157–158 between Equations (3.15) and (3.17)].

Note that for k,k′ ∈ N2
≤2n−1

ϕ1,2
k (x1,2

k′ ) =

{
1 k = k′,

0 else,
(3.5)

hence {ϕ1,2
k }k∈N2

≤2n−1
form a basis of V

(∞)
n (D) and dimV

(∞)
n (D) = (2n − 1)2 = O(22n).

In what follows, we will often omit D in notation and simply write V
(∞)
n .

For u ∈ H2∩H1
0 (D), using H2(D) ↪→ C0(D), we define the following continuous, piecewise

bilinear interpolant of u:

V (∞)
n 3 I2nu : x 7→

∑
k∈N2

≤2n−1

u(x1,2
k )ϕ1,2

k (x), x ∈ D. (3.6)

This interpolant is a nodal interpolant, because the weights of ϕ1,2
k are simply the function

values of u in the nodes x1,2
k . It follows from Equation (3.6) that on each element T of

the partition T 1,2
2n,2n I2nu bilinearly interpolates the function values of u in the vertices of

T , which are nodes of the partition. Hence, it holds that

‖I2nu‖L∞(D) ≤ ‖u‖L∞(D) ≤ C|u|H2(D), (3.7)

33



where |u|H2(D)
..= ‖∇2u‖L2(D) denotes the H2-seminorm. In addition, we have the follow-

ing approximation result:

Proposition 3.1 ([26, Corollaries 1.110 pp. 61–62 and 1.109 p. 61]). There exists a
C > 0 such that for all n ∈ N and all u ∈ H2 ∩H1

0 (D)

‖u− I2nu‖Hj(D) ≤ C2−n(2−j)|u|H2(D), j ∈ {0, 1}. (3.8)

3.2 ReLU DNN approximation of continuous, piecewise bilinear func-
tions on (0, 1)2

We fix n ∈ N and w ∈ V (∞)
n for V

(∞)
n as defined in Equation (3.4) and approximate w by

a ReLU network w̃. Throughout this section and the next, we use Assumption 2.1 and
Notation 2.2 for all discussed ReLU networks.

Based on Equation (3.2), for i ∈ {1, 2} and ki ∈ {1, . . . , 2n−1}, we define the network ϕ̃iki
as

ϕ̃iki
..=

(((
−1

1

)
,

(
xiki
−xiki

))
,
((
−2n −2n

)
,1
)
, (IdR,0)

)
, (3.9)

it exactly implements ϕiki . This network is analogous to Φ2 in Equation (2.12) from

Example 2.6. Alternatively, univariate hat functions can be implemented analogous to Φ1

from the same example (Equation (2.11)).

For k ∈ N2
≤2n−1, we use the ReLU network ×̃ of Proposition 2.12 to approximate ϕ1,2

k :

ϕ̃1,2
k

..= ×̃ • Parallel(ϕ̃1
k1 , ϕ̃

2
k2), (3.10)

Rσ(ϕ̃1,2
k )(x) =Rσ(×̃)

(
ϕ1
k1(x1), ϕ2

k2(x2)
)
, x ∈ D. (3.11)

Because ∀i ∈ {1, 2}, ki ∈ {1, . . . , 2n − 1} : ‖ϕiki‖L∞((0,1)) = 1, we can take M = 1 as

maximum input value of ×̃ for all k ∈ N2
≤2n−1. Similarly, we take the same pointwise

accuracy δ ∈ (0, 1) of ×̃ for all k ∈ N2
≤2n−1, in the sense of Equations (2.19)–(2.20). As a

result, all ×̃-subnetworks are identical.

We use the following notation:

Ṽ (∞)
n (D) ..= span{Rσ(ϕ̃1,2

k ) : k ∈ N2
≤2n−1}. (3.12)

Based on Equation (3.5), we now construct a network w̃ such that

Rσ(w̃) =
∑

k∈N2
≤2n−1

w(x1,2
k )Rσ(ϕ̃1,2

k ) ∈ Ṽ (∞)
n . (3.13)

We first construct the parallel implementation of univariate hat functions:

P ..= Parallel(Shared-Parallel(ϕ̃1
1, . . . , ϕ̃

1
2n−1),Shared-Parallel(ϕ̃2

1, . . . , ϕ̃
2
2n−1)), (3.14)

Rσ(P )(x)
(2.16),(2.18)

=
(
ϕ1

1(x1), . . . , ϕ1
2n−1(x1), ϕ2

1(x2), . . . , ϕ2
2n−1(x2)

)
, x ∈ D. (3.15)

34



In order to define the parallel ReLU approximation of bivariate hat functions, we now
define the matrix pr ∈ R2(2n−1)2×2(2n−1) to connect the outputs of P to the inputs of the
following ×̃-networks:

(pr)i,j ..=


1 1 ≤ j ≤ 2n − 1, i ∈ 2Z + 1, (j − 1)(2n − 1) < i+1

2 ≤ j(2
n − 1),

1 2n ≤ j ≤ 2(2n − 1), i ∈ 2(2n − 1)Z + 2(j − (2n − 1)),

0 else.

(3.16)

It holds that

Rσ((pr,0) • P ) = (ϕ1
1(x1), ϕ2

1(x2), ϕ1
1(x1), ϕ2

2(x2), . . . ,

ϕ1
2n−1(x1), ϕ2

2n−2(x2), ϕ1
2n−1(x1), ϕ2

2n−1(x2)). (3.17)

Now, we define the matrix W ∈ R1×(2n−1)2 and the network w̃ as

∀k ∈ N2
≤2n−1 : W1,(k1−1)(2n−1)+k2

..= w(x1,2
k ),

w̃ ..= (W,0) • Parallel(×̃, . . . , ×̃) • (pr,0) • P, (3.18)

where Parallel(×̃, . . . , ×̃) is the parallelisation of the (2n − 1)2 ×̃-subnetworks of
{ϕ̃1,2
k }k∈N2

≤2n−1
, which all have maximum input value M = 1 and the same pointwise

accuracy δ ∈ (0, 1). Equation (3.13) follows from Equation (3.18), Lemma 2.8 and Equa-
tions (3.17) and (A.23).

The structure of w̃ is depicted in Figure 3.2 below.

x1 x2

ϕ̃1
1 ϕ̃1

2 ϕ̃1
3 ϕ̃2

1 ϕ̃2
2 ϕ̃2

3

Rσ(w̃)(x1, x2)

×̃ ×̃ ×̃ ×̃ ×̃ ×̃ ×̃ ×̃ ×̃

Figure 3.2: ReLU approximation w̃ of w ∈ V (∞)
2 .

Lemma 3.2. For each δ ∈ (0, 1), each n ∈ N and each w ∈ V (∞)
n , the network w̃ defined in

Equation (3.18) satisfies depth(w̃) = O(log(1/δ)), size(w̃) = O(22n log(1/δ)) andM(w̃) =
O(22n log(1/δ)). Moreover, the constants implied in these bounds are independent of w.

The proof of the lemma is given in Appendix B.4.

The following lemma bounds the L2- and L∞-error of the approximation.

35



Lemma 3.3. For each δ ∈ (0, 1), each n ∈ N and each w ∈ V (∞)
n , there exists a ReLU

network w̃ with depth of the order O(log(1/δ)) and size and number of non-zero coefficients
of the order O(22n log(1/δ)), with implied constants independent of w, satisfying

‖w −Rσ(w̃)‖L2(D) ≤ ‖w −Rσ(w̃)‖L∞(D) ≤ 4δ‖w‖L∞(D) (3.19)

and hence
δ ≤ ε/4 ⇒ ‖w −Rσ(w̃)‖L2(D) ≤ ε‖w‖L∞(D). (3.20)

Proof. We take w̃ as defined in Equation (3.18) and we use Lemma 3.2. It remains to
show Equation (3.19), from which Equation (3.20) directly follows.

We note that at each x ∈ D at most four functions of the form ϕ1,2
k do not vanish, because

for at most two values of k1 ∈ {1, . . . , 2n−1} it holds that ϕ1
k1

(x1) 6= 0 and for at most two
values of k2 ∈ {1, . . . , 2n − 1} it holds that ϕ2

k2
(x2) 6= 0. It follows from the zero-in-zero-

out property of ×̃ that at most four functions of the form Rσ(ϕ̃1,2
k ) do not vanish at x.

Combined with Equations (3.13) and (2.19), this shows the second inequality in Equation
(3.19). The first inequality is true for all functions in L∞((0, 1)2).

We next estimate the H1-error of the approximation.

Lemma 3.4. For each δ ∈ (0, 1), each n ∈ N and each w ∈ V (∞)
n , there exists a ReLU

network w̃ with depth of the order O(log(1/δ)) and size and number of non-zero coefficients
of the order O(22n log(1/δ)), with implied constants independent of w, satisfying Equations
(3.19)–(3.20) and

δ ≤ ε2−n−3 ⇒ ‖w −Rσ(w̃)‖H1(D) ≤ ε‖w‖L∞(D). (3.21)

Proof. By Lemma 3.3, it only remains to show Equation (3.21).

At first, we fix k ∈ N2
≤2n−1 and T ∈ T 1,2

2n,2n such that T ⊂ S1,2
k . Using the chain rule and

Equation (2.20), we find∥∥∥∥ d

dx1
ϕ1,2
k −

d

dx1
Rσ(ϕ̃1,2

k )

∥∥∥∥
L∞(T )

=

∥∥∥∥ d

dx1

(
ϕ1
k1(x1)ϕ2

k2(x2)
)
− d

dx1

(
Rσ(×̃)(ϕ1

k1(x1), ϕ2
k2(x2))

)∥∥∥∥
L∞(T )

=

∥∥∥∥∥∥ϕ2
k2(x2)

d

dx1

(
ϕ1
k1(x1)

)
− d

da

∣∣∣∣
a=ϕ1

k1
(x1)

(
Rσ(×̃)(a, ϕ2

k2(x2))
) d

dx1

(
ϕ1
k1(x1)

)∥∥∥∥∥∥
L∞(T )

(2.20)

≤ δ

∥∥∥∥ d

dx1
ϕ1
k1

∥∥∥∥
L∞(T )

= δ2n,

where all derivatives are weak derivatives. Hence,∥∥∥∥ d

dx1
ϕ1,2
k −

d

dx1
Rσ(ϕ̃1,2

k )

∥∥∥∥2

L2(T )

≤ δ222n2−2n = δ2.

36



Combined with the analogous statement for d
dx2

, we have∥∥∥∇ϕ1,2
k −∇Rσ(ϕ̃1,2

k )
∥∥∥2

L2(T )
≤ 2δ2.

Using the general fact ∀m ∈ N : ‖
∑m

j=1 fj‖2 ≤ m
∑m

j=1 ‖fj‖2 and the fact that at each

x ∈ D at most four functions of the form Rσ(ϕ̃1,2
k ) do not vanish, we get

‖∇w −∇Rσ(w̃)‖2L2(D) ≤‖w‖
2
L∞(D)

∑
T∈T 1,2

2n,2n

∥∥∥∥∥∥∥
∑

k:S1,2
k ∩T̊ 6=∅

∇ϕ1,2
k −

∑
k:S1,2

k ∩T̊ 6=∅

∇Rσ(ϕ̃1,2
k )

∥∥∥∥∥∥∥
2

L2(T )

≤‖w‖2L∞(D)

∑
T∈T 1,2

2n,2n

4
∑

k:S1,2
k ∩T̊ 6=∅

∥∥∥∇ϕ1,2
k −∇Rσ(ϕ̃1,2

k )
∥∥∥2

L2(T )

≤‖w‖2L∞(D)2
2n422δ2,

where T̊ denotes the interior of T . Combining this with the L2-error estimate in Equation
(3.19), we get

‖w −Rσ(w̃)‖2H1(D) ≤ 42δ2‖w‖2L∞(D)(2
2n+1 + 1) ≤ 22n+6δ2‖w‖2L∞(D)

and hence
δ ≤ ε2−n−3 ⇒ ‖w −Rσ(w̃)‖H1(D) ≤ ε‖w‖L∞(D).

3.3 Convergence rate of a family of ReLU DNN approximations of func-
tions in H2 ∩H1

0((0, 1)2) in terms of the network size

We now combine the results of Sections 3.1 and 3.2. As in the previous section, all
considered ReLU networks satisfy Assumption 2.1 and we use Notation 2.2.

Equation (3.8) from Proposition 3.1 shows that there exists a C > 0 such that for each
n ∈ N and each u ∈ H2 ∩H1

0 (D)

‖u− I2nu‖Hj(D) ≤ C2−n(2−j)|u|H2(D), j ∈ {0, 1}.

For each n ∈ N, we now approximate I2nu by a ReLU network Ĩ2nu as in Lemma 3.4, for
δ ∈ (0, 1) to be determined next. Taking εL2

..= 2−2n in Equation (3.20) and εH1
..= 2−n

in Equation (3.21), together with Equations (3.7) and (3.8), we find that for j ∈ {0, 1} it
holds that

‖u−Rσ
(
Ĩ2nu

)
‖Hj(D) ≤‖u− I2nu‖Hj(D) + ‖I2nu−Rσ

(
Ĩ2nu

)
‖Hj(D)

(3.8),(3.20),(3.21)

≤ C2−n(2−j)|u|H2(D) + 2−n(2−j)‖I2nu‖L∞(D)

(3.7)

≤ C2−n(2−j)|u|H2(D).

37



The choices for εL2 and εH1 require δ to satisfy δ ≤ 2−2n/4 and δ ≤ 2−n2−n−3, i.e. δ =

2−2n−3 = O(2−2n) suffices. For that choice of δ, Ĩ2nu has depth of the order O(log(1/δ)) =
O(n) and size and number of non-zero coefficients of the order O(22n log(1/δ)) = O(22nn).

For all n ∈ N, denoting size
(
Ĩ2nu

)
=.. N , we have for j ∈ {0, 1} and C > 0 independent of

u and N
‖u−Rσ

(
Ĩ2nu

)
‖Hj(D) ≤ CN−(1−j/2)(logN)1−j/2|u|H2(D).

In Lemma 3.4, the size of w̃ is bounded in terms of n and δ, but independent of w ∈
V

(∞)
n . As a result, size(Ĩ2nu) is bounded from above by a function of n, independent of
u ∈ H2 ∩H1

0 (D) (however, the error of the approximation does depend on u). Hence, we
can define m0 ∈ N>1 to be that upper bound for n = 1.

For general N ∈ N≥m0 and n = max{n∗ : size(Ĩ2n∗u) ≤ N}, we define ĨNu ..= Ĩ2nu
satisfying Rσ

(
Ĩ2nu

)
∈ Ṽ (∞)

n . For the same N and n, we define INu ..= I2nu ∈ V (∞)
n .

Note that ∀n ∈ N : δ = 2−2n−3 ≤ 1/4. Hence, by Equation (3.19),

‖INu−Rσ(ĨNu)‖L∞(D) ≤ ‖INu‖L∞(D).

The results of this section are summarised by the following proposition:

Proposition 3.5. There exists a C > 0 such that for each N ∈ N≥m0 and each u ∈
H2 ∩H1

0 (D) there exists a ReLU network ĨNu of size at most N satisfying

‖u−Rσ(ĨNu)‖Hj(D) ≤CN−(1−j/2)(logN)1−j/2|u|H2(D), (3.22)

‖INu−Rσ(ĨNu)‖L∞(D) ≤‖INu‖L∞(D). (3.23)

Moreover, depth(ĨNu) = O(logN) and M(ĨNu) = O(N). For these two bounds the
implied constants are independent of u.

38



4 Properties of the Taylor gpc approximation of the solution
map of a parametric diffusion equation

In this section, we discuss properties of the solutions of a class of parametric elliptic PDEs.
More precisely, we study the elliptic diffusion equation

− div(a(y)∇u) = f, u|∂D = 0 (4.1)

on the domain D = (0, 1)2 for given f ∈ H−1(D), arbitrary parameters y ∈ U = [−1, 1]N

(see Section 1.4.3), given parameter-dependent scalar diffusion coefficient a(y) ∈ L∞(D)
(see Section 1.4.4) and unknown u. We consider the case in which all functions are real
valued.

We will often use the following weak form of Equation (4.1). For V ..= H1
0 (D) and for

V ′ = H−1(D) denoting the dual of V , it reads

Ay(u, v) = 〈f, v〉V ′,V , ∀v ∈ V, (4.2)

where

Ay(u, v) ..=

∫
D
a(y)∇u · ∇v, u, v ∈ V (4.3)

and where 〈·, ·〉V ′,V is the duality pairing. The boundary conditions are imposed by the

choice V = H1
0 (D).

Section 4.1 discusses Equation (4.2) for fixed y ∈ U . Section 4.2 discusses properties of
the parametric diffusion equation and the corresponding solution map u : U → V . It
introduces the Taylor gpc expansion of the solution map with Taylor gpc coefficients in V .
It proposes n-term truncations of the Taylor gpc expansion as Taylor gpc approximations.
For F as defined in Section 1.4.2, it shows that the weighted `2(F)-summability of the
V -norms of the Taylor gpc coefficients leads to `p(F)-summability of the V -norms for
some 0 < p < 1 and to an upper bound on the approximation error of the Taylor gpc
approximations in V -norm. Section 4.3 gives sufficient conditions for the required weighted
`2(F)-summability of the V -norms of the Taylor gpc coefficients. For more regular data,
which imply u : U → H2 ∩ H1

0 (D), Section 4.4 shows a similar summability result for
the H2-norms of the Taylor gpc coefficients, from which the `p(F)-summability of the
H2-norms of the Taylor gpc coefficients follows for some 0 < p < 1 that is in general larger
than the p for the summability of the V -norms.

4.1 Properties of the non-parametric diffusion equation

In this section, we study Equation (4.2) for fixed y ∈ U . We simply write a for the
diffusion coefficient a(y) and A for the bilinear form Ay.

We recall the following result stating the well-posedness of Equation (4.2). It is a specific
case of the Lax-Milgram lemma.

Lemma 4.1 (Special case of [26, Lemma 2.2 p. 83], cf. [26, Sections A.2.3 and A.2.4
pp. 472–474] and [74, Theorem C.20 p. 450]). Consider∫

D
a∇u · ∇v = 〈f, v〉V ′,V , ∀v ∈ V (4.4)

39



for given a ∈ L∞(D) and f ∈ V ′. Assume that there exists a constant amin > 0 such that

0 < amin ≤ ess inf
x∈D

a(x). (4.5)

Then, there exists a unique solution u ∈ V of Equation (4.4) that satisfies

‖u‖V ≤ 1
amin
‖f‖V ′ . (4.6)

Moreover, if in addition ∃amax <∞ such that

ess sup
x∈D

a(x) ≤ amax <∞, (4.7)

then the bounded linear operator A ∈ L(V, V ′) defined by

∀u, v ∈ V : 〈Au, v〉V ′,V = A(u, v) =

∫
D
a∇u · ∇v (4.8)

is boundedly invertible.

In the parametric context, for y ∈ U , we will denote A by Ay.

In applications, the following variational formulation of the PDE in Equation (4.4) is very
useful.

Proposition 4.2 (Special case of [26, Proposition 2.4 p. 84], see also [26, Remark 2.5
p. 84]). Under the assumptions of Lemma 4.1, the solution u ∈ V of Equation (4.4) is
uniquely determined by

u = arg min
v∈V

J(v), J(v) ..= 1
2A(v, v)− 〈f, v〉V ′,V , v ∈ V. (4.9)

4.2 Properties of the parametric diffusion equation

We now consider the parametric problem, i.e. Equation (4.2) with parametric scalar
diffusion coefficient a : U 3 y 7→ a(y) ∈ L∞(D). In order for Lemma 4.1 to hold for all
y ∈ U , we assume a(y) to satisfy the following uniform ellipticity condition: There exist
real numbers 0 < amin ≤ amax <∞ such that

∀y ∈ U : amin ≤ ess inf
x∈D

a(x,y) ≤ ess sup
x∈D

a(x,y) ≤ amax. (4.10)

Under this assumption, for each y ∈ U , there exists a unique solution u ∈ V of Equation
(4.2), which we denote by u(y) ∈ V . Note that it satisfies Equation (4.6) for amin inde-
pendent of y ∈ U . The map u : U → V : y 7→ u(y) is the solution map of the parametric
PDE in Equation (4.2) (see Section 1.1.2).

40



In the rest of Section 4, we discuss several results stated in [3], which give properties of the
solution map under the assumption that the diffusion coefficient is affinely parametrised,
i.e.

a : U → L∞(D) : y 7→ ā+
∑
j∈N

yjψj (4.11)

for ā ∈ L∞(D) and ∀j ∈ N : ψj ∈ L∞(D).

For this parametrisation of a, the uniform ellipticity condition is satisfied if∑
j∈N
|ψj(x)| ≤ ā(x)− amin for a.e. x ∈ D (4.12)

or, equivalently, if
0 < ess inf

x∈D
ā(x) =.. āmin (4.13)

and

θ ..=

∥∥∥∥
∑

j∈N |ψj |
ā

∥∥∥∥
L∞(D)

< 1. (4.14)

The fact that Equation (4.12) implies Equation (4.14) can be seen from∥∥∥∥
∑

j∈N |ψj |
ā

∥∥∥∥
L∞(D)

≤
∥∥∥∥ ā− amin

ā

∥∥∥∥
L∞(D)

≤ 1− amin

‖ā‖L∞(D)
< 1

(e.g. [4, Equation (2.1) p. 325]). The other implication is similar to [17, Equations (2.2)–
(2.4) p. 621]:∑

j∈N
|ψj(x)| =

∑
j∈N |ψj(x)|
ā(x)

ā(x) ≤ θā(x)

≤ ā(x)− (1− θ)āmin =.. ā(x)− amin, for a.e. x ∈ D.

For F the index set defined in Section 1.4.2, by [17, Theorem 4.2 p. 625], for all ν ∈ F ,
the partial derivative ∂νu(y) ∈ V exists at all y ∈ U . In general, the assumptions on
{ψj}j∈N made in [17] are stronger than ours. However, those assumptions are not used in
the proof of [17, Theorem 4.2], we may hence use that result.

In order to approximate the solution map, we note that it has the following Taylor gpc
expansion (see Section 1.1.2):

∀y ∈ U : u(y) =
∑
ν∈F

tνy
ν , tν ..= 1

ν!∂
νu|y=0 ∈ V. (4.15)

The functions tν ∈ V are the Taylor gpc coefficients of the solution map. The unconditional
convergence of this sum directly follows from ∀y ∈ U,ν ∈ F : |yν | ≤ 1 and the `1(F)-
summability of (‖tν‖V )ν∈F , implied by the `p(F)-summability of that sequence for some
0 < p < 1, which we will show in Lemma 4.3 below under the assumptions made there.

Given for each n ∈ N an index set Λn ⊂ F satisfying |Λn| = n, we can approximate u by

un : U → V : y 7→
∑
ν∈Λn

yνtν , (4.16)

41



which is an n-term truncation of the Taylor gpc expansion, a Taylor gpc approximation (see
[21, especially Section 2 pp. 56–60] for a general introduction to n-term approximations).
The approximation error is bounded from above by

‖u− un‖L∞(U,V )
..= sup

y∈U
‖u(y)− un(y)‖V ≤

∑
ν∈Λcn

‖tν‖V . (4.17)

This bound is minimised, when for each n ∈ N the index set Λn ⊂ F contains n elements
ν ∈ F for which ‖tν‖V are largest. Note that such sets Λn need not be unique. Approxi-
mations of u using this choice of index sets {Λn}n∈N are called best n-term approximations
of u. In general, (‖tν‖V )ν∈F are unknown, hence the best n-term approximation cannot be
implemented directly. Instead, we construct {Λn}n∈N in Lemma 4.3 below, for bν = ‖tν‖V .
The construction in the lemma is based on the weighted `2(F)-summability of (‖tν‖V )ν∈F
and gives an upper bound on

∑
ν∈Λcn

‖tν‖V for {Λn}n∈N as constructed there. Indepen-

dent of the choice of {Λn}n∈N, it is shown that the assumed weighted `2(F)-summability
implies (‖tν‖V )ν∈F ∈ `p(F) for some 0 < p < 1.

Lemma 4.3 (Special case of [75, Lemma 2.8 p. 7], see also [4, Corollary 2.3 p. 328]).
For 0 < p < 1 and a decreasing sequence β = (βj)j∈N ⊂ (0, 1) satisfying β ∈ `q(N) for
q = 2p

2−p , assume that for some non-negative sequence (bν)ν∈F

(β−νbν)ν∈F ∈ `2(F). (4.18)

Then, (bν)ν∈F ∈ `p(F) and for each n ∈ N there exists a downward closed index set
Λn ⊂ F of size |Λn| = n such that ∑

ν∈Λcn

bν ≤ Cn−1/p+1 (4.19)

and
max
ν∈Λn

|ν|1 = O(log n) (4.20)

and such that for each j ∈ N: ej ∈ Λn implies ei ∈ Λn for i ≤ j.

The proof of Lemma 4.3 is given in Appendix B.5.

When its requirements are satisfied for bν = ‖tν‖V , the lemma first of all shows that
(‖tν‖V )ν∈F ∈ `p(F) ↪→ `1(F), i.e. the Taylor gpc expansion in Equation (4.15) converges
unconditionally. In addition, we get the following bound on the V -error of un defined in
Equation (4.16):

‖u− un‖L∞(U,V ) ≤
∑
ν∈Λcn

‖tν‖V ≤ Cn−1/p+1. (4.21)

Hence, for fast convergence of un, it suffices to show `2-summability of (β−ν‖tν‖V )ν∈F
for any β ∈ `q(N) satisfying the requirements of the lemma for small q. The next section
shows sufficient conditions for that summability to hold.

42



4.3 Weighted summability of the H1-norms of the Taylor gpc coeffi-
cients of the solution map

The desired summability is shown in [4, Section 2 pp. 325–329], we now recall the results
obtained there and their proofs.

Proposition 4.4 ([4, Theorem 2.2 p. 327]). Let f ∈ V ′ and a : U → L∞(D) be given
such that a satisfies Equation (4.11) with ā ∈ L∞(D) satisfying Equation (4.13) and
with ∀j ∈ N : ψj ∈ L∞(D). Let {tν}ν∈F be as in Equation (4.15). Assume that for
β = (βj)j∈N ⊂ R>0 we have the weighted uniform ellipticity condition

θ ..=

∥∥∥∥∥
∑

j∈N β
−1
j |ψj |
ā

∥∥∥∥∥
L∞(D)

< 1. (4.22)

Then, (β−ν‖tν‖V )ν∈F ∈ `2(F).

Remark 4.5 ([4, Theorem 2.2 p. 327]). For β ⊂ R>0, Equations (4.11), (4.15) and
(4.22) are equivalent to those equations for ỹj ..= βjyj instead of yj, ψ̃j ..= β−1

j ψj instead

of ψj, t̃ν ..= β−νtν instead of tν and β̃j ..= 1 instead of βj. This means that we can assume
β = 1 without loss of generality. The parameter set Ũ = ×j∈N[−βj , βj ] from which ỹ are
taken is compact as well, see Section 1.4.3.

Proof of Proposition 4.4. We follow [4, Section 2 pp. 325–329] and [3, pp. 2163–2164]. By
Remark 4.5, we may without loss of generality assume that β = 1.

For ν ∈ F , we define

dν ..=

∫
D
ā|∇tν |2, dν,j ..=

∫
D
|ψj ||∇tν |2 (4.23)

and note that, by Poincaré’s inequality, for some C > 0 independent of tν

C‖tν‖2V ≤ dν ≤ ‖ā‖L∞(D)‖tν‖2V . (4.24)

Equation (4.22) with β = 1 implies that for all ν ∈ F∑
j∈N

dν,j ≤ θdν . (4.25)

Differentiation of Equation (4.2) for u = u(y) by applying 1
ν!∂

ν |y=0 gives∫
D
ā∇tν · ∇v = −

∑
j∈suppν

∫
D
ψj∇tν−ej · ∇v, ∀v ∈ V. (4.26)

Using v = tν ∈ V as test function and using Young’s inequality, we get

dν =

∫
D
ā|∇tν |2 ≤

∑
j∈suppν

∫
D
|ψj ||∇tν−ej ||∇tν |

≤
∑

j∈suppν

∫
D
|ψj |(1

2 |∇tν−ej |
2 + 1

2 |∇tν |
2)

=
∑

j∈suppν

1
2(dν−ej ,j + dν,j) (4.27)

43



and, by using Equation (4.25) twice, for all k ∈ N

(1− θ
2)dν

(4.25) and (4.27)

≤ 1
2

∑
j∈suppν

dν−ej ,j ,

(1− θ
2)
∑
|ν|1=k

dν ≤ 1
2

∑
|ν|1=k

∑
j∈suppν

dν−ej ,j = 1
2

∑
|ν|1=k−1

∑
j∈N

dν,j
(4.25)

≤ 1
2

∑
|ν|1=k−1

θdν ,∑
|ν|1=k

dν ≤ θ
2−θ

∑
|ν|1=k−1

dν . (4.28)

Writing κ ..= θ
2−θ , it follows from Equation (4.28) that∑

ν∈F
dν ≤ 1

1−κd0 <∞. (4.29)

It now follows from Equation (4.24) that∑
ν∈F
‖tν‖2V <∞. (4.30)

This finishes the proof.

4.4 Weighted summability of the H2-norms of the Taylor gpc coeffi-
cients of the solution map

Under the assumption of more regular data, we show that the H2-norms of the Taylor gpc
coefficients of the solution map are weighted `2(F)-summable, from which by Lemma 4.3
`p(F)-summability follows for some 0 < p < 1.

More precisely, let f ∈ L2(D) and assume that a : U → W 1,∞(D) satisfies Equation
(4.11) with ā ∈ W 1,∞(D) satisfying Equation (4.13) and with ∀j ∈ N : ψj ∈ W 1,∞(D).
By [33, Theorem 3.2.1.2 p. 147], the solution of Equation (4.2) is a strong solution of
Equation (4.1), i.e. u ∈ H2(D). In [18, Section 5.1 pp. 39–40] the same is shown, as well
as ∀ν ∈ F : tν ∈ H2(D). For this situation, we have [3, Theorem 4.1 p. 2162], which is
similar to Proposition 4.4. We now recall the theorem and its proof.

Proposition 4.6 ([3, Theorem 4.1 p. 2162]). Let f ∈ L2(D) and a : U → W 1,∞(D) be
given such that a satisfies Equation (4.11) with ā ∈ W 1,∞(D) satisfying Equation (4.13)
and with ∀j ∈ N : ψj ∈W 1,∞(D). Let {tν}ν∈F be as in Equation (4.15). Assume that for
β = (βj)j∈N ⊂ R>0

θ ..=

∥∥∥∥∥
∑

j∈N β
−1
j |ψj |
ā

∥∥∥∥∥
L∞(D)

< 1,

∥∥∥∥∥∥
∑
j∈N

β−1
j |∇ψj |

∥∥∥∥∥∥
L∞(D)

<∞. (4.31)

Then, (β−ν‖tν‖H2)ν∈F ∈ `2(F).

Remark 4.7 ([3, Proof Theorem 4.1 p. 2163], cf. [4, Theorem 2.2 p. 327]). Analogous
to Remark 4.5, for β ⊂ R>0, Equations (4.11), (4.15) and (4.31) are equivalent to those

44



equations for ỹj ..= βjyj instead of yj, ψ̃j ..= β−1
j ψj instead of ψj, t̃ν ..= β−νtν instead of

tν and β̃j ..= 1 instead of βj, i.e. we can again assume β = 1 without loss of generality.
As before, the parameter set Ũ = ×j∈N[−βj , βj ] from which ỹ are taken is compact.

Proof of Proposition 4.6. We follow [3, pp. 2163–2165]. By Remark 4.7, we may without
loss of generality assume that β = 1.

For ν ∈ F and n ∈ N0, we define

cν ..=

∫
D
ā|∆tν |2, Cn ..=

∑
|ν|1=n

cν , Dn
..=

∑
|ν|1=n

dν (4.32)

and note that for some C > 0 independent of tν

C‖tν‖2H2 ≤ cν ≤ ‖ā‖L∞(D)‖tν‖2H2 (4.33)

(cf. [33, Theorem 3.1.3.1 p. 142 and the proof of Theorem 3.2.1.2 pp. 147–149]).

Differentiating Equation (4.1) for u = u(y) by applying 1
ν!∂

ν |y=0, we find

− ā∆tν = ∇ā · ∇tν +
∑

j∈suppν

(ψj∆tν−ej +∇ψj · ∇tν−ej ), (4.34)

which again shows that ∀ν ∈ F : ∆tν ∈ L2(D). We can integrate Equation (4.34) against
∆tν and find, using Young’s inequality for arbitrary ε > 0,

cν =

∫
D
ā|∆tν |2 ≤ ε

∫
D
|∇ā||∆tν |2 + 1

4ε

∫
D
|∇ā||∇tν |2

+ 1
2

∑
j∈suppν

∫
D
|ψj ||∆tν |2 + 1

2

∑
j∈suppν

∫
D
|ψj ||∆tν−ej |2

+ ε
∑

j∈suppν

∫
D
|∇ψj ||∆tν |2 + 1

4ε

∑
j∈suppν

∫
D
|∇ψj ||∇tν−ej |2. (4.35)

The sum of the first, the third and the fifth term is bounded by

ε
āmin

∥∥∥∥∥∥|∇ā|+
∑

j∈suppν

|∇ψj |

∥∥∥∥∥∥
L∞(D)

cν + θ
2cν ≤ ( θ2 +Bε)cν ,

where B ..= 1
āmin

∥∥∥|∇ā|+∑j∈N |∇ψj |
∥∥∥
L∞(D)

< ∞. Regarding the second and the sixth

term in Equation (4.35),

∑
|ν|1=n

 1
4ε

∫
D
|∇ā||∇tν |2 + 1

4ε

∑
j∈suppν

∫
D
|∇ψj ||∇tν−ej |2


≤B

4εDn + 1
4ε

∑
|ν|1=n−1

∑
j∈N

∫
D
|∇ψj ||∇tν |2 ≤ B

4ε(Dn +Dn−1).

Regarding the fourth term in Equation (4.35),∑
|ν|1=n

1
2

∑
j∈suppν

∫
D
|ψj ||∆tν−ej |2 ≤ θ

2Cn−1.

45



Summing over {ν ∈ F : |ν|1 = n} in Equation (4.35), we get

Cn ≤ ( θ2 + εB)Cn + θ
2Cn−1 + B

4ε(Dn +Dn−1).

For ε > 0 such that θ
2 + εB < 1

2 , we have

τ ..=
θ

2− θ − 2εB
< 1, A ..=

B

2ε(2− θ − 2εB)
, Cn ≤ τCn−1 +A(Dn +Dn−1). (4.36)

We recall from the proof of Proposition 4.4 that ∀n ∈ N : Dn ≤ κDn−1 with κ = θ
2−θ .

Taking δ such that κ ≤ τ < δ < 1, it follows from Equation (4.36) that

Cn
(4.36)

≤ AD0(1 + κ−1)κn + τCn−1

(4.36)

≤ AD0(1 + κ−1)(κn + τκn−1) + τ2Cn−2

(4.36)

≤ AD0(1 + κ−1)

 n∑
j=1

(κ/τ)j

 τn + τnC0

≤
[
AD0(1 + κ−1)(1− κ/δ)−1 + C0

]
δn.

Summing over n ∈ N0, we find∑
ν∈F

cν =
∑
n∈N0

Cn ≤
[
AD0(1 + κ−1)(1− κ/δ)−1 + C0

]
(1− δ)−1 <∞.

Together with Equation (4.33), this finishes the proof.

Remark 4.8. Note that Propositions 4.3 and 4.6 show that (‖tν‖H2(D))ν∈F ∈ `p(F),
independent of any choice of index sets {Λn}n∈N.

Remark 4.9 ([3, Remark 2.2 p. 2156]). We note that in Lemma 4.3 the required summa-
bility (β−νbν)ν∈F ∈ `2(F) poses stronger restrictions on β when bν = ‖tν‖H2 than when
bν ..= ‖tν‖V . Hence, the best possible value of q for the summability of the H2-norms will
be at least as large as the best possible value of q for the summability of the V -norms. This
implies that the same holds for the values of p, i.e. the summability of the V -norms is at
least as good as the summability of the H2-norms, as expected.

Remark 4.10. In the derivation of Equation (4.21), we never explicitly used that the
norms of u − un and tν were calculated with respect to the V -norm. That is, by exactly
the same arguments as used there, we find that under the conditions of Proposition 4.6

‖u− un‖L∞(U,H2(D)) ≤
∑
ν∈Λcn

‖tν‖H2(D) ≤ Cn−1/p+1. (4.37)

By Remark 4.9, p for the summability of the V -norms is at least as small as p for the
summability of the H2-norms, i.e. the convergence rate in Equation (4.21) is at least as
good as the convergence rate in Equation (4.37).

Note that the index sets {Λn}n∈N constructed in Lemma 4.3 for ∀ν ∈ F : bν = ‖tν‖H2

may differ from those constructed in Lemma 4.3 for ∀ν ∈ F : bν = ‖tν‖V . In Section 5,
we will choose {Λn}n∈N based on the weighted `2(F)-summability of (‖tν‖V )ν∈F . Hence,
in Section 5, Equation (4.37) does not necessarily hold.

46



5 ReLU DNN approximation of the solution map of a para-
metric diffusion equation

We now use the obtained results to show Theorem 5.1 below concerning the approximation
of the solution map y 7→ u(y) of Equation (4.1) under the assumptions made in Section
4.4. It is a generalisation of [75, Theorem 4.8 p. 22] stated in Section 1.3, for D =
(0, 1)2 instead of D = (0, 1) used in [75]. The main difference is that on D = (0, 1)
the continuous, piecewise linear interpolants of {tν}ν∈F could be implemented exactly
by ReLU networks, cf. [75, Lemma 4.5 p. 20]. For the continuous, piecewise bilinear
interpolants introduced in Section 3.1 that is not possible, as ReLU networks can only
implement continuous, piecewise linear functions, see [55, Proposition 4 p. 6], Lemma
2.3 and Remark B.1. Instead, we use the ReLU approximations of continuous, piecewise
bilinear interpolants discussed in Sections 3.2 and 3.3.

Throughout this section, we will write D = (0, 1)2, V = H1
0 (D) and

X ..= H2 ∩H1
0 (D). (5.1)

Theorem 5.1 (Generalisation of [75, Theorem 4.8 p. 22]). We consider Equation (4.1)
for given f ∈ L2(D) and a : U →W 1,∞(D) satisfying Equation (4.11) with ā ∈W 1,∞(D)
satisfying Equation (4.13) and ∀j ∈ N : ψj ∈W 1,∞(D). We assume that Equation (4.22)
holds with a decreasing sequence βV ∈ (0, 1)N satisfying βV ∈ `qV (N) for qV = ( 1

pV
− 1

2)−1

for some 0 < pV < 1 and that Equation (4.31) holds with a decreasing sequence βX ∈
(0, 1)N satisfying βX ∈ `qX (N) for qX = ( 1

pX
− 1

2)−1 for some 0 < pV ≤ pX < 1.

Then, for each n ∈ N, there exists a ReLU network ũn ∈ R of size N ∗n ≥ n approximating
the solution map u : U → X : y 7→ u(y) of the parametric PDE in Equation (4.1), having
n+ 2 inputs, denoted by x1, x2, y1, . . . , yn, such that ũn satisfies

sup
y∈U
‖u(·, ·,y)−Rσ(ũn)(·, ·, y1, . . . , yn)‖V = O

(
(N ∗n)−r

∗
)

(5.2)

for any r∗ that satisfies, for arbitrary 0 < γ < 1
2 ,

0 < r∗ < r ..= γmin

{
1,

1/pV − 1

γ + 1/pV − 1/pX

}
. (5.3)

In addition,
depth(ũn) = O(log(N ∗n) log log(N ∗n))

and the number of non-zero coefficients is of the order O(N ∗n).

In what follows, we will often suppress the inputs x1 and x2 of ũn in notation and write
Rσ(ũn)(y1, . . . , yn) ∈ V .

Remark 5.2 (Cf. [3, p. 2160]). Note that the convergence rate r∗ holds for parametric
PDEs with countably many parameters, i.e. in that sense {ũn}n∈N do not suffer from the
curse of dimensionality.

47



In addition, note that r ≤ γ < 1
2 and that r = γ if 1/pX − γ ≥ 1, which is equivalent

to pX ≤ (1 + γ)−1 and to 1/pX − 1 ≥ γ. As we will see in the proof, in this case, the
rate r = γ is determined by the convergence rate of the spatial ReLU approximations
of (tν)ν∈F . Conversely, we have r < γ if 1/pX − 1 < γ. In addition, in Remark 4.9
it is argued that the assumption pV ≤ pX poses no loss of generality. The assumption
implies that r ≤ 1/pV − 1. The value 1/pV − 1 is the convergence rate of the best n-term
approximation of u, see Equation (4.17) and Remark B.3. That is, r is bounded from
above by γ and 1/pV − 1, which are the convergence rate of the ReLU approximations of
the Taylor gpc coefficients and the best n-term convergence rate of un.

If the requirements of the theorem hold for some pX ∈ (0, 1), we can always take pV
equal to pX (see Remark 4.9). Interestingly, if pV < pX we get a better lower bound on the

convergence rate than if pV = pX : If 1/pX−1 < γ, then it holds that 0 < 1/pV −1
γ+1/pV −1/pX

< 1,

hence 0 < (1/pV − 1/pX) < min{1/pV − 1, γ + 1/pV − 1/pX} implies that

γ
1/pV − 1

γ + 1/pV − 1/pX
> γ

1/pV − 1− (1/pV − 1/pX)

γ + 1/pV − 1/pX − (1/pV − 1/pX)
= 1/pX − 1,

where 1/pX − 1 is the lower bound on the convergence rate if we take pV = pX .

For the proof of the theorem, we recall from Sections 4.2, 4.3 and 4.4 that
(β−νV ‖tν‖V )ν∈F , (β

−ν
X ‖tν‖X)ν∈F ∈ `2(F), that (‖tν‖V )ν∈F ∈ `pV (F) and that

(‖tν‖X)ν∈F ∈ `pX (F). In addition, Equation (4.31) and βX ∈ (0, 1)N imply that
supy∈U ‖a(y)‖W 1,∞(D) <∞.

We need the following lemma, which is adapted from [75, Lemma 4.7 p. 21].

Lemma 5.3 ([75, Lemma 4.7 p. 21]). Let m0 be as defined in Section 3.3, assume the
conditions of Theorem 5.1 and let {Λn}n∈N be as in Lemma 4.3 with ∀ν ∈ F : bν = ‖tν‖V .

Then, there exists a C > 0 such that for all n ∈ N there exists a sequence (mn;ν)ν∈Λn ∈
NΛn
≥m0

such that with Nn ..=
∑
ν∈Λn

mn;ν ≥ n we have∑
ν∈Λn

‖tν‖Xm−γn;ν +
∑
ν∈Λcn

‖tν‖V ≤ Cn−1/pV +1 ≤ CN−rn (5.4)

for r as defined in Equation (5.3) for arbitrary 0 < γ < 1
2 .

The proof of this lemma is given in Appendix B.6. The main difference with respect to
[75, Lemma 4.7 p. 21] is that we explicitly choose mn;ν ≥ m0 for all n ∈ N and ν ∈ Λn.

Proof of Theorem 5.1. We closely follow [75, pp. 22–25]. Let n ∈ N. Throughout this
proof, let the index set Λn be as in Lemma 4.3 with ∀ν ∈ F : bν = ‖tν‖V .

The proof consists of five steps. In the first step, we estimate the errors of ReLU approx-
imations of {tν}ν∈Λn and {y 7→ yν}ν∈Λn . In the second step, we define the network ũn,
which is an approximation of un as defined in Equation (4.16). In the third step, its error
is estimated. In the fourth step, which is stated in Appendix B.7, bounds on the depth,
the size and the number of non-zero coefficients are calculated. In the fifth step, stated in

48



this section, a lower bound on the convergence rate of ũn in terms of the network size is
given.

Step 1. Let m0 be as defined in Section 3.3 and let {mn;ν}ν∈Λn be as given by Lemma
5.3. Using that ∀ν ∈ Λn : mn;ν ≥ m0, we get from Proposition 3.5 that for any γ < 1

2 it

holds that ∀ν ∈ Λn : ‖tν −Rσ(Ĩmn;ν tν)‖V ≤ C‖tν‖Xm−γn;ν , where C > 0 is independent of
tν , ν and n. Hence, by Lemma 5.3,∑

ν∈Λn

‖tν −Rσ(Ĩmn;ν tν)‖V
(3.21)

≤ C
∑
ν∈Λn

‖tν‖Xm−γn;ν

(5.4)

≤ Cn−1/pV +1. (5.5)

Moreover, by Lemma 4.3, we have
⋃
ν∈Λn

{yj : j ∈ suppν} ⊂ {y1, . . . , yn}. This allows us
to use Lemma 2.17 with ∀ν ∈ F : bν = ‖tν‖V and pb = pV , which shows that there exist
ReLU networks {fν}ν∈Λn , all having inputs y1, . . . , yn, such that

sup
y∈U

∥∥∥∥∥∑
ν∈Λn

tνy
ν −

∑
ν∈Λn

tνRσ(fν)(y1, . . . , yn)

∥∥∥∥∥
V

≤ sup
y∈U

∑
ν∈Λn

‖tν‖V |yν −Rσ(fν)(y1, . . . , yn)|
(2.42)

≤ n−1/pV +1 (5.6)

and such that Equations (2.43)–(2.46) hold.

Step 2. With X as defined in Equation (5.1), we use boundedness of the embedding
X ↪→ L∞(D) and define

M ..= max

{
1, 2 sup

ν∈F
‖tν‖L∞(D)

}
≤max

{
1, 2 sup

ν∈F
C‖tν‖X

}
(*)

≤ max

1, 2C

(∑
ν∈F

(β−νX ‖tν‖X)2

)1/2
 Proposition 4.6

< ∞,

where at (*) we used ∀ν ∈ F : β−νX ≥ 1. By Equation (2.43), we have
supy∈U,ν∈Λn |Rσ(fν)((yj)j∈suppν)| ≤M . Using Equations (3.7) and (3.23), we find

‖Rσ(Ĩmn;ν tν)‖L∞(D) ≤‖Imn;ν tν‖L∞(D) + ‖Imn;ν tν −Rσ(Ĩmn;ν tν)‖L∞(D)

(3.23)

≤ 2‖Imn;ν tν‖L∞(D)

(3.7)

≤ 2‖tν‖L∞(D)

≤M.

We will now define ũn ∈ R such that

Rσ(ũn)(x1, x2, y1, . . . , yn) =
∑
ν∈Λn

Rσ(×̃)
(
Rσ(Ĩmn;ν tν)(x), Rσ(fν)(y1, . . . , yn)

)
,

x ∈ D,y ∈ U. (5.7)

49



We first define the matrix prũn ∈ R2n×2n to connect the output of {Ĩmn;ν tν}ν∈Λn ∪
{fν}ν∈Λn to the input of the ×̃-networks.

(prũn)i,j ..=


1 1 ≤ j ≤ n, i = 2j − 1,

1 n+ 1 ≤ j ≤ 2n, i = 2(j − n),

0 else.

For a bijection π : {1, . . . , n} → Λn and for Simul-Shared-Parallel as constructed in Remark
A.5, we define

Pũn
..= Parallel

(
Simul-Shared-Parallel(Ĩmn;π(1)tπ(1), . . . , Ĩmn;π(n)tπ(n)),

Simul-Shared-Parallel(fπ(1), . . . , fπ(n))
)
,

ũn ..=
((

1 · · · 1
)
,0
)
• Parallel(×̃, . . . , ×̃) • (prũn ,0)� Pũn , (5.8)

where the ×̃-subnetworks are as in Proposition 2.12 with maximum input size M and
accuracy δn ..= n−1/pV in the sense of Equations (2.19)–(2.20), i.e. all those ×̃-subnetworks
are identical. It follows from the estimates in the beginning of Step 2 of this proof that
maximum input size M suffices.

The structure of the network is depicted in Figure 5.1.

Simul-Shared-Parallel Simul-Shared-Parallel

x1 x2

ΦId
2,L

Ĩmn;π(1)tπ(1) Ĩmn;π(2)tπ(2) Ĩmn;π(3)tπ(3)

y1 y2 y3

ΦId
3,L′

fπ(1) fπ(2) fπ(3)

×̃ ×̃ ×̃

Rσ(ũn)(x1, x2, y1, y2, y3)

Figure 5.1: Structure of ũ3; the sizes of the subnetworks {Ĩmn;ν tν}ν∈Λ3 ∪ {fν}ν∈Λ3 ∪
{ΦId

2,L,Φ
Id
3,L′} depend on the approximated function u, this figure depicts a possible situa-

tion. By construction of Simul-Shared-Parallel in Remark A.5, there is only one identity
network per Simul-Shared-Parallel-subnetwork. Moreover, some networks take the output
of a hidden layer of one of the identity networks as input.

Equation (5.7) follows from Equation (5.8), Remark A.3, Lemma 2.8 and Equations (A.23)
and (A.15) (see Remark A.5 for the fact that Simul-Shared-Parallel also satisfies Equation
(A.15)).

50



For ν ∈ Λn, according to Lemma 2.17, the realisation Rσ(fν) is constant in {yj : j ∈
{1, . . . , n}\ suppν}. Hence, Rσ(ũn) is constant in {yj : j ∈ {1, . . . , n}\

⋃
ν∈Λn

suppν}, i.e.
those inputs could be left out.

Step 3. We begin the error estimate by estimating the H1-error made by the ×̃-
subnetworks appearing in Equation (5.8).

By Lemma 2.3, the functions Rσ(Ĩmn;ν tν) and Rσ(ũn) are continuous and piecewise linear
on a finite partition of their domain. Combined with Proposition 2.12, it shows that for
all y ∈ U and n ∈ N at almost all x ∈ D those functions are strongly differentiable w.r.t.
x1 and x2, hence so is the expression∑
ν∈Λn

Rσ(Ĩmn;ν tν)(x)Rσ(fν)(y1, . . . , yn)−
∑
ν∈Λn

Rσ(×̃)
(
Rσ(Ĩmn;ν tν)(x), Rσ(fν)(y1, . . . , yn)

)
.

As a result, Equation (2.20) leads to the following estimate. For y ∈ U and ν ∈ F , with
d
dx1

denoting weak derivatives that are strong at almost every x ∈ D, it holds that∣∣∣∣ ddx1

(
Rσ(Ĩmn;ν tν)(x)Rσ(fν)(y1, . . . , yn)

)
− d

dx1

(
Rσ(×̃)

(
Rσ(Ĩmn;ν tν)(x), Rσ(fν)(y1, . . . , yn)

)) ∣∣∣∣
≤
∣∣∣∣Rσ(fν)(y1, . . . , yn)

d

dx1

(
Rσ(Ĩmn;ν tν)(x)

)
− d

da

∣∣∣
a=Rσ(Ĩmn;ν tν)(x)

(
Rσ(×̃)

(
a,Rσ(fν)(y1, . . . , yn)

)) d

dx1

(
Rσ(Ĩmn;ν tν)(x)

)∣∣∣∣
(2.20)

≤ δn

∣∣∣∣ ddx1
Rσ(Ĩmn;ν tν)(x)

∣∣∣∣ , x ∈ D,

∥∥∥∥ d

dx1

(
Rσ(Ĩmn;ν tν)(x)Rσ(fν)(y1, . . . , yn)

)
− d

dx1

(
Rσ(×̃)

(
Rσ(Ĩmn;ν tν)(x), Rσ(fν)(y1, . . . , yn)

)) ∥∥∥∥
L2(D)

≤ δn
∥∥∥∥ d

dx1
Rσ(Ĩmn;ν tν)(x)

∥∥∥∥
L2(D)

.

Using the analogous statement for d
dx2

and Equation (2.19), it follows that∥∥∥Rσ(Ĩmn;ν tν)Rσ(fν)(y1, . . . , yn)−Rσ(×̃)
(
Rσ(Ĩmn;ν tν), Rσ(fν)(y1, . . . , yn)

)∥∥∥
V

(2.19)

≤ δn(1 + ‖Rσ(Ĩmn;ν tν)‖V ),

51



sup
y∈U

∥∥∥∥∥∑
ν∈Λn

Rσ(Ĩmn;ν tν)Rσ(fν)(y1, . . . , yn)

−
∑
ν∈Λn

Rσ(×̃)
(
Rσ(Ĩmn;ν tν), Rσ(fν)(y1, . . . , yn)

)∥∥∥∥∥
V

≤ sup
y∈U

∑
ν∈Λn

∥∥∥Rσ(Ĩmn;ν tν)Rσ(fν)(y1, . . . , yn)

−Rσ(×̃)
(
Rσ(Ĩmn;ν tν), Rσ(fν)(y1, . . . , yn)

)∥∥∥
V

≤ sup
y∈U
|Λn|δn(1 + sup

ν∈F
‖Rσ(Ĩmn;ν tν)‖V )

(∗)
≤ Cnδn = Cn−1/pV +1. (5.9)

At (*) we have used that Equation (5.5) implies the following uniform bound for all n ∈ N
and ν ∈ Λn:

‖Rσ(Ĩmn;ν tν)‖V ≤‖tν‖V + ‖tν −Rσ(Ĩmn;ν tν)‖V
(5.5)

≤ ‖(‖tν‖V )ν∈F‖`2(F) + Cn−1/pV +1 ≤ ‖(‖tν‖V )ν∈F‖`2(F) + C <∞.

All together, we have the following bound on the H1-error:

‖u−Rσ(ũn)‖L∞(U,V ) = sup
y∈U
‖u(y)−Rσ(ũn)(y1, . . . , yn)‖V

≤ sup
y∈U

∥∥∥∥∥∑
ν∈F

tνy
ν −

∑
ν∈Λn

tνy
ν

∥∥∥∥∥
V

+ sup
y∈U

∥∥∥∥∥∑
ν∈Λn

tνy
ν −

∑
ν∈Λn

tνRσ(fν)(y1, . . . , yn)

∥∥∥∥∥
V

+ sup
y∈U

∥∥∥∥∥∑
ν∈Λn

tνRσ(fν)(y1, . . . , yn)

−
∑
ν∈Λn

Rσ(Ĩmn;ν tν)Rσ(fν)(y1, . . . , yn)

∥∥∥∥∥
V

+ sup
y∈U

∥∥∥∥∥∑
ν∈Λn

Rσ(Ĩmn;ν tν)Rσ(fν)(y1, . . . , yn)

−
∑
ν∈Λn

Rσ(×̃)
(
Rσ(Ĩmn;ν tν), Rσ(fν)(y1, . . . , yn)

)∥∥∥∥∥
V

≤Cn−1/pV +1 + n−1/pV +1 + Cn−1/pV +1 + Cn−1/pV +1

(5.4)
= O(N−rn ). (5.10)

The first of four terms has been estimated using Equations (4.17) and (5.4), the second
using Equation (5.6), the third using and Equations (2.43) and (5.5) and the fourth using
Equation (5.9). The last step follows from Equation (5.4). This finishes Step 3 of this
proof.

52



Step 4 is given in Appendix B.7 and gives bounds on the depth, the size and the number
of non-zero coefficients of the network.

Step 5. In total, the network has depth of the order O(log(Nn) log log(Nn)) and size
and number of non-zero coefficients of the order O(Nn log(Nn) log log(Nn)). Denoting the
network size by N ∗n and comparing N ∗n with Equation (5.10), we find that the proposed
network ũn achieves

sup
y∈U
‖u(y)−Rσ(ũn)(y1, . . . , yn)‖V = O

(
(N ∗n)−r

∗
)

for any r∗ < r.

Remark 5.4. The last of four terms in Equation (5.10) is of the order O(nδn). Tak-
ing δ̂n ..= N−r−1

n instead of δn = n−1/pV , as in [75], the resulting network is slightly
smaller, but we cannot improve the current bound, namely that the size is of the order
O(Nn + n log(n) log log(n)). For δ̂n, the error bound in Equation (5.10) is still of the
order O(N−rn ), hence taking δ̂n instead of δn does not affect the convergence rate in terms
of the network size.

For δ̂n instead of δn, the depth and the number of non-zero coefficients are also of the
same order as before.

53



6 Discussion and directions for further research

We first discuss Theorem 5.1 in Section 6.1. We then discuss possible generalisations of the
theorem. Section 6.2 contains two alternatives for the ReLU approximation of gpc coeffi-
cients discussed in Section 3. The first alternative is a more efficient ReLU approximation
of the full grid interpolants introduced in Section 3.1, the second alternative involves the
ReLU approximation of functions with corner singularities. Section 6.3 discusses the gen-
eralisation of the spatial domain to hypercubes and general two-dimensional polygons.
Section 6.4 discusses alternatives for the parametric PDE theory in Section 4, especially
an alternative that allows PDE data with corner singularities.

6.1 Discussion of Theorem 5.1

Theorem 5.1 shows a lower bound on the convergence rate of the family of ReLU networks
{ũn}n∈N defined in Equation (5.8) in terms of the network size. The lower bound has been
discussed in Remark 5.2. As the number of non-zero coefficients is of the same order as
the network size, the same bound holds for the convergence rate in terms of the number
of non-zero coefficients. The bound should be seen as a benchmark for the performance of
training algorithms, i.e. it describes how the upper bound on the error decreases with an
increase in network size. However, it does not bound the amount of computational work
needed to reach a certain accuracy through training or how this amount of work depends
on the required accuracy.

We note that in [75] and in this thesis the H1-error is estimated, whereas most other ReLU
DNN approximation results are w.r.t the L∞-norm (e.g. the results in [89, 48, 54, 24]).
Denoting D = (0, 1)2, we expect that our results also hold w.r.t. the L∞(D)-norm instead
of the H1(D)-norm. Instead of Proposition 4.4 for H1

0 (D) =.. V , we can use Proposition 4.6
for H2 ∩ H1

0 (D) =.. X and use boundedness of the embedding X ↪→ L∞(D). Then, the
summability exponent pL∞ ∈ (0, 1) replacing pV equals pX , which means that, if the
statement analogous to Theorem 5.1 holds, the lower bound on the convergence rate w.r.t.
the L∞(D)-norm equals min{γ, 1/pX − 1} (see Remark 5.2).

In addition, we note that the proof of the convergence rate bound is mostly constructive:
the architecture is constructed explicitly, assuming that the Taylor gpc coefficients {tν}ν∈F
are known. For DNN training, it is not very important that {tν}ν∈F are in general
unknown, as the coefficients resulting from training are not expected to approximate those
of ũn constructed in this thesis.

Even if {tν}ν∈F are unknown, it would be interesting to see whether an architecture
similar to that of the networks {ũn}n∈N performs well. In addition, it remains to be
studied whether the coefficients of {ũn}n∈N that are independent of {tν}ν∈F can used to
improve the results of training, e.g. by using some of them as initial values for the training
process.

54



6.2 Alternatives for the ReLU DNN approximation of Taylor gpc coef-
ficients

6.2.1 More efficient ReLU DNN approximation of the full grid continuous,
piecewise bilinear interpolants introduced in Section 3.1

We note that the full grid approximation of functions in H2 ∩H1
0 (D) for D = (0, 1)2 used

in Section 3.1 has a sum-product structure similar to that of the networks studied in [19].
Inspired by the hierarchical network structure used there, we could approximate the full
grid interpolants given by Proposition 3.1 more hierarchically, namely by a network w̃hier

satisfying

Rσ(w̃hier)(x) =
2n−1∑
k1=1

Rσ(×̃)

ϕ1
k1(x1),

2n−1∑
k2=1

w(x1,2
k )ϕ2

k2(x2)

 , x ∈ D.

We can define the matrix prhier ∈ R2(2n−1)×2(2n−1) and the network w̃hier as

(prhier)i,j
..=


1 1 ≤ j ≤ 2n − 1, i = 2j − 1,

w
(
x1,2

(i/2,j−(2n−1))

)
2n ≤ j ≤ 2(2n − 1), i ∈ 2Z,

0 else,

w̃hier ..=
((

1 · · · 1
)
,0
)
• Parallel(×̃, . . . , ×̃) • (prhier,0) • P,

where P is as defined in Equation (3.14) and where Parallel(×̃, . . . , ×̃) is the parallelisation
of 2n − 1 = O(2n) ×̃-subnetworks, instead of (2n − 1)2 = O(22n) subnetworks in Section
3.2. If we take the maximum input value M ≥ 1 and the accuracy 0 < δ < M ≤ M2

equal for all those ×̃-subnetworks, then it can be shown that depth(w̃hier) = O(log(M/δ)),
size(w̃hier) = O(2n log(M/δ)) and M(w̃hier) = O(22n + 2n log(M/δ)).

Note that the network size is much smaller than before. In fact, it is of smaller order than
the the number of degrees of freedom of the full grid approximation it approximates. That
number equals (2n−1)2, because the full grid approximation is determined by the function
values {w(x1,2

k )}k∈N2
≤2n−1

. The network size can be smaller than the number of degrees

of freedom, because there can be many non-zero coefficients associated to a single ReLU.
For that reason, in general, the convergence rate of a family of ReLU approximations in
terms of the network size can be better than the convergence rate of traditional numerical
methods in terms of the number of degrees of freedom, even if the ReLU approximations
simply implement such a traditional numerical method. However, it is unknown whether
training algorithms can profit from this advantage. Moreover, the advantage cannot be
arbitrarily large, as the number of coefficients of a network Φ satisfying Assumption 2.1
(including vanishing coefficients) equals

depth(Φ)∑
l=1

(Nl−1 + 1)Nl ≤ depth(Φ)
(
N0 + size(Φ) +Ndepth(Φ)

)2
.

Because the function values {w(x1,2
k )}k∈N2

≤2n−1
appear as coefficients, the number of non-

zero coefficients of w̃hier is bounded from below by (2n−1)2, hence the number of non-zero

55



coefficients is nearly of the same order as in Lemma 3.2. This shows that in this situation
the number of non-zero coefficients is a better measure for the number of degrees of freedom
than the number of ReLUs.

The H1-error of w̃hier is expected to be of the same order as that of w̃, except for an
increase in error if M > 1, which does not affect the asymptotic behaviour for δ ↓ 0. This
implies that the convergence rate with respect to the H1-norm in terms of the network
size is at least γ for any γ < 1, which is considerably better than for w̃. It also follows that
the lower bound on the convergence rate in terms of the number of non-zero coefficients
is γ/2 for any γ < 1.

Moreover, it is expected that the increased convergence rate of the ReLU approximations
of functions in H2 ∩H1

0 ((0, 1)2) directly translates into an increased convergence rate in
Theorem 5.1, i.e. that Equations (5.2) and (5.3) hold for arbitrary γ < 1. In terms of the
number of non-zero coefficients, it is expected that those equations hold with γ replaced
by γ/2 for any γ < 1.

6.2.2 Anisotropic sparse grid-based ReLU DNN approximation

For D = (0, 1)2, one of the drawbacks of using full grid approximations proposed in
Section 3.1 for the approximation of Taylor gpc coefficients is that it requires Taylor gpc
coefficients to be in H2(D) to get the convergence rates of Proposition 3.1.

More generally, the approximation of functions that may have corner singularities, which
functions in H2(D) do not have, is studied in [56]. It studies the approximation of such
functions by tensor products of univariate continuous, piecewise linear wavelets. Such
wavelets can be implemented efficiently by ReLU networks using a construction analogous
to that in Sections 3.2–3.3.

We now shortly discuss how we expect that special cases of results shown in [56] can be
used for the generalisation of the results in Section 3. The results from [56] mentioned
here hold in much more generality, see [56, especially Section 1 pp. 63–65].

For s ∈ N0, ζ ∈ R and rD a smooth, positive, real-valued function on D that close to each
vertex of D equals the distance to that vertex, the Kondratiev space Ksζ(D) is defined by

‖u‖2Ksζ(D)
..=

∑
|α|1≤s

‖r|α|1−ζD ∂αu‖2L2(D),

Ksζ(D) ..= {u : D → C measurable and ‖u‖Ksζ(D) <∞}

([13, Equation (2) p. 2] and [90, Equation (4.4) p. 28]). We expect that for 1 < ζ small
enough it can be shown that functions in K4

ζ(D) can be approximated by an anisotropic
sparse grid of tensor products of univariate continuous, piecewise linear wavelets, namely
using [56, Theorem 1 p. 74], [56, Equation (13) p. 71] and [90, Equation (4.20) p. 33] for
p = 1 and 3

4 < γ < 1. Denoting by Nw the number of such bivariate continuous, piecewise
bilinear wavelets, we expect that the H1-error of the approximation can be shown to be of
the order O(N−1

w (logNw)2). We expect that these continuous, piecewise bilinear wavelets
can be implemented efficiently by ReLU networks, i.e. that the H1-error of the resulting
ReLU approximations of functions in K4

ζ(D) is of the order O(N−1(logN)k) for some

56



k ∈ R>0 and where N denotes the network size. Note that this is better than the rate
O(N−1/2(logN)1/2) achieved by the full grid approximation in Proposition 3.5.

In Example 6.1 below, we will use the ReLU approximation of functions in K4
ζ(D) discussed

here to propose a generalisation of Theorem 5.1 that allows the data of the parametric
PDE to have corner singularities.

6.3 Generalisations of the choice of domain

6.3.1 Generalisation of Theorem 5.1 to (0, 1)d for d > 2

We can consider the extension of Theorem 5.1 to a domain (0, 1)d of dimension d > 2.
The results of Section 3.1 directly generalise to piecewise multilinear interpolation on such
domains for any d ∈ N, but the required number of d-variate continuous, piecewise d-linear
hat functions grows exponentially in the dimension d: it is of the order O((2n)d) when
the domain is partitioned according to a tensor product of partitions, one for each spatial
coordinate, each consisting of 2n elements. This is called the curse of dimensionality.

Another issue is that for d ≥ 4 the space H2((0, 1)d) does not embed into L∞((0, 1)d),
hence some of the currently used error bounds do not generalise to d ≥ 4. In addition,
for d ≥ 3, we need error estimates on the derivatives of ReLU approximations of products
of d numbers. They are needed to generalise the results of Section 3.2. All in all, the
extension to (0, 1)3 is expected to hold. For extensions to (0, 1)d more issues arise for
d > 3. Independent of that, the curse of dimensionality means that such extensions are
not of practical importance for d much larger than 3.

6.3.2 Generalisation of Theorem 5.1 to general polygonal domains

Another way to generalise the domain is to consider the elliptic diffusion equation on a
general two-dimensional polygon D. We discuss two approaches.

We first assume that a family of gpc approximations of the solution map is given and that
we have shown a lower bound on its convergence rate. For parameters y ∈ [−1, 1]N = U
we denote the solution map by u : U → H1

0 (D) : y 7→ u(y). We note that D can be
partitioned into a finite number of triangles ([26, Section 7.3.3 pp. 349–354]) and that
each triangle can be divided into three quadrilaterals, e.g. along the line segments that
connect the midpoints of its edges with its barycentre. For each such quadrilateral K, there
exists a bilinear (hence smooth) transformation FK that maps K̂ ..= (0, 1)2 to K. Using
FK , the spatially restricted solution map u|K(y) can be pulled back to K̂. We expect that
the obtained results on ReLU approximations can be applied to the map u|K(y) ◦ FK on
K̂, resulting in ReLU approximations of that map that each take x ∈ K̂ and finitely many
of the parameters y ∈ U as input. We can now pull back by a ReLU approximation of the
map F−1

K , which gives ReLU approximations of the solution map u|K(y) on K. In this
procedure, we exploit the fact that the rational map F−1

K can efficiently be approximated
by ReLU networks ([78, Theorem 1.1 p. 1]) and that the composition of realisations of
ReLU networks can simply be implemented by the concatenation of the networks.

This can be done for each such quadrilateral K. It then needs to be shown that the

57



resulting approximations of u are continuous across the edges of the quadrilaterals and
that they can each be implemented globally by one ReLU network. In addition, for each K,
the error bounds on the ReLU approximations of u|K(y)◦FK on K̂ have to be transferred
to error bounds on the ReLU approximations of u|K(y) on K. Finally, the error bounds
achieved for all quadrilaterals K have to be combined into a global error estimate for the
approximations of u(y) on all of D.

Another approach is to show that u|K(y) ◦ FK satisfies a parametric elliptic PDE on
K̂ = (0, 1)2. If we can generalise the results of Section 4 to that PDE on K̂ and if
we can generalise Theorem 5.1 to that setting as well, then for each quadrilateral K
we can pull back the resulting ReLU approximations of the solution map to K by a
ReLU approximation of F−1

K and proceed as in the other approach, i.e. by combining the
ReLU approximations on quadrilaterals into networks that approximate u globally and by
combining the error estimates on the quadrilaterals into a global error estimate.

The advantage of the second approach is that it suffices to show the sparsity of gpc
expansions on (0, 1)2, whereas in the first approach we need to show it on D. On the
other hand, the parametric PDE that the pull-back of u|K(y) ◦ FK satisfies could be of a
different type than that on D: the pull-back of a diffusion equation with a scalar diffusion
coefficient need not be a diffusion equation with a scalar diffusion coefficient.

6.4 Generalisation of the parametric PDE theory in Section 4

The parametric PDE theory discussed in Section 4 can be generalised in several ways. We
could consider more general elliptic PDEs in the current L2-based Hilbert space setting,
but could also, even more generally, use Lq-based theory for 1 < q < 2. For any generali-
sation, it has to be shown that the equation is well-posed uniformly w.r.t. the parameters
and that the solution has a sparse gpc expansion.

For well-posedness, we need to generalise Lemma 4.1. It is a special case of the Lax-
Milgram lemma, which only gives sufficient conditions for well-posedness of the PDE and
which is restricted to Hilbert spaces. Instead, we could use the more general Banach-
Nečas-Babuška theorem (BNB theorem, [26, Theorem 2.6 p. 85]), which gives conditions
that are both necessary and sufficient for well-posedness. Moreover, it is not restricted
to Hilbert spaces. It holds in the more general context of reflexive Banach spaces, which
includes Lq-based settings for 1 < q < 2.

It then remains a point of further investigation whether Propositions 4.4 and 4.6 can be
extended, based on the isomorphism property that holds under the assumptions of the
BNB-theorem, i.e. that the differential operator in the PDE is boundedly invertible. The
reason why the proofs given in Section 4 do not generalise directly is that in Equations
(4.27) and (4.35) tν was used as a test function, which is not possible in the Lq-based
setting with 1 < q < 2.

Examples of more general parametric PDEs that have a sparse gpc expansion were given in
[14]. Sparsity was shown for solution maps of a class of linear elliptic PDEs, a class of linear
parabolic PDEs, a nonlinear elliptic PDE and a PDE with parameter-dependent domain.
These four cases were covered by showing that the solution maps are (b, ε)-holomorphic
(see e.g. [14, Definition 2.1 p. 407] and [75, Definition 2.1 p. 4]), which implies sparsity of

58



the gpc expansions. We note that ReLU approximations of (b, ε)-holomorphic maps are
studied in [75, especially Theorem 2.7 p. 6].

The choice for an affine parametrisation of the diffusion coefficient (Equation (4.11)) and
a Taylor gpc expansion (Equation (4.15)) are not restrictive. Results similar to those
discussed in Section 4 for different expansions have been shown in e.g. [3, Sections 5 and
6 pp. 2169–2176].

Based on [13], we now discuss a generalisation of the parametric PDE theory that allows
PDE data with corner singularities of the type discussed in Section 6.2.2. We propose a
generalisation of Theorem 5.1 that combines the ideas discussed in Section 6.2.2 for the
ReLU approximation of gpc coefficients with the parametric PDE theory introduced in
this section.

Example 6.1 (Generalisation of the parametric PDE theory that allows PDE data with
corner singularities). The generalisation of the parametric PDE theory is based on [13,
Theorem 1.1 p. 3], which studies a class of non-parametric elliptic PDEs that includes
Equation (4.1) with non-parametric diffusion coefficient, i.e.

−div(a∇u) = f, u|∂D = 0. (6.1)

The results in [13] hold for general curvilinear polygonal domains, for simplicity we here
take D = (0, 1)2. In addition, the results in [13] hold for more general elliptic PDEs and
more general boundary conditions.

For s ∈ N0 and for rD as in Section 6.2.2, let the space Ws,∞(D) be defined by

‖a‖Ws,∞(D)
..= sup
|α|1≤s

‖r|α|1D Dαu‖L∞(D),

Ws,∞(D) ..= {a : D → C measurable and r
|α|1
D Dαa ∈ L∞(D), |α|1 ≤ s}

([13, Equation (5) p. 3] and [90, Equation (4.5) p. 28]). For ζ > 1 small enough, by [13,
Theorem 1.1 p. 3], a ∈ W3,∞(D) and f ∈ K2

ζ−2(D) imply that the solution u of Equation

(6.1) is contained in K4
ζ(D), where K2

ζ−2(D) and K4
ζ(D) are Kondratiev spaces defined in

Section 6.2.2. In particular, the solution may also have corner singularities. We note that
ζ and ζ − 2 in our notation correspond to a+ 1 and a− 1 in [13].

In [13, Theorem 1.1 p. 3], it is also shown that Equation (6.1) is well posed and that the
solution u depends analytically on the data a and f . Stronger still, for uniformly elliptic
parametric data, these results hold uniformly in the parameters.

For uniformly elliptic affinely parametrised data, the parameter-to-data map is analytic.
We could use that to show analyticity of the solution map of Equation (4.1). In [18],
analyticity of the solution map of Equation (4.1) with respect to the V -norm ([18, Section 2
pp. 20–26]) was used to show sparsity of the Taylor gpc expansion of the solution map ([18,
Theorem 1.2 p. 17]). That theorem shows the `p(F)-summability of the V -norms of the
Taylor gpc coefficients for some 0 < p < 1, which is also shown in Lemma 4.3 and
Proposition 4.4. For ∀ν ∈ F : bν ..= ‖tν‖V , Lemma 4.3 shows more than the result of
[18, Theorem 1.2 p. 17]. We expect that [75, Theorem 2.7 p. 6] can be used to show the
analogy of Lemma 4.3 for that case.

59



We expect that similar arguments can be used to show sparsity of the Taylor gpc expansion
with respect to the K4

ζ(D)-norm, which generalises Remark 4.8. That is, we have proposed
generalisations for the main results in Section 4. We expect that they can be used to
generalise Theorem 5.1, using the ReLU approximation of functions in K4

ζ(D) proposed in
Section 6.2.2 for the approximation of the Taylor gpc coefficients.

60



A Properties of concatenations and parallelisations

Remark A.1 (Cf. [62, Definition 2.2 p. 6]). For Φ1 and Φ2 as in Definition 2.7, it follows
from Equation (2.13) that

depth(Φ1 • Φ2) = depth(Φ1) + depth(Φ2)− 1, (A.1)

size(Φ1 • Φ2) = size(Φ1) + size(Φ2), (A.2)

M(Φ1 • Φ2) =M(Φ1) +M(Φ2)− ‖A2
L2‖`0 − ‖A1

1‖`0 + ‖A1
1A

2
L2‖`0

− ‖b2
L2‖`0 − ‖b1

1‖`0 + ‖A1
1b

2
L2 + b1

1‖`0 (A.3)

≤
L1∑
l=2

‖A1
l ‖`0 +

L2−1∑
l=1

‖A2
l ‖`0 + ‖A1

1‖`0‖A2
L2‖`0 +N1

1 . (A.4)

Remark A.2 (Extensions, cf. [24, Setting 5.2 pp. 17–18]). For arbitrary L ∈ N,
N0, N1, . . . , NL ∈ N and

Φ = ((A1, b1), . . . , (AL, bL)) ∈ NN0,N1,...,NL
L ,

it follows from Lemma 2.8 and Remarks A.1 and 2.5 that for L′ ∈ N

Rσ(ΦId
NL,L′

• Φ) =Rσ(Φ) = Rσ(Φ • ΦId
N0,L′), (A.5)

depth(ΦId
NL,L′

• Φ) =L+ L′ − 1 = depth(Φ • ΦId
N0,L′), (A.6)

size(ΦId
NL,L′

• Φ) = size(Φ) + 2(L′ − 1)NL, (A.7)

size(Φ • ΦId
N0,L′) = size(Φ) + 2(L′ − 1)N0, (A.8)

M(ΦId
NL,L′

• Φ)
(A.3)
= 2L′NL +M(Φ)− ‖AL‖`0 − 2NL + (1 + 1[L′ > 1])‖AL‖`0
− ‖bL‖`0 − 0 + (1 + 1[L′ > 1])‖bL‖`0

=M(Φ) + 2(L′ − 1)NL + 1[L′ > 1](‖AL‖`0 + ‖bL‖`0), (A.9)

M(Φ • ΦId
N0,L′)

(A.3)
= M(Φ) + 2L′N0 − 2N0 − ‖A1‖`0 + (1 + 1[L′ > 1])‖A1‖`0
− 0− ‖b1‖`0 + ‖b1‖`0

=M(Φ) + 2(L′ − 1)N0 + 1[L′ > 1]‖A1‖`0 . (A.10)

In particular, we note that ΦId
NL,1
• Φ = Φ = Φ • ΦId

N0,1
.

Remark A.3 (Cf. [24, Lemma 5.3 p. 18] and [62, Remark 2.6 p. 7]). For Φ1 and Φ2 as
in Definition 2.9, it follows from Equation (2.14) that

Φ1 � Φ2 =

(
(A2

1, b
2
1), . . . , (A2

L2−1, b
2
L2−1),

((
A2
L2

−A2
L2

)
,

(
b2
L2

−b2
L2

))
,

((
A1

1 −A1
1

)
, b1

1

)
, (A1

2, b
1
2), . . . , (A1

L1 , b
1
L1)

)
, (A.11)

from which it follows that

depth(Φ1 � Φ2) = depth(Φ1) + depth(Φ2), (A.12)

size(Φ1 � Φ2) = size(Φ1) + 2N2
L2 + size(Φ2), (A.13)

M(Φ1 � Φ2) =M(Φ1) +M(Φ2) + ‖A2
L2‖`0 + ‖b2

L2‖`0 + ‖A1
1‖`0 . (A.14)

61



It follows from Lemma 2.8 and Remark 2.5 that Rσ(Φ1 � Φ2) = Rσ(Φ1) ◦Rσ(Φ2).

Remark A.4 (Cf. [62, p. 7 below Definition 2.7, including Remark 2.8] and [24, Lemma
5.4 p. 19]). We consider the situation of Definition 2.10. By Equation (A.5), we find

Rσ(Shared-Parallel(Φ1, . . . ,ΦN )) : RN0 → RÑ
tot
Lmax :

x 7→ ((Rσ(Φ1)(x))>, . . . , (Rσ(ΦN )(x))>)>. (A.15)

In addition, using Remark A.2, we find

depth(Shared-Parallel(Φ1, . . . ,ΦN )) =Lmax = max
i∈{1,...,N}

Li, (A.16)

∀i ∈ {1, . . . , N} : Ñ i
l =

{
2N0 l ∈ {1, . . . , Lmax − Li},
N i
−(Lmax−Li)+l l ∈ {Lmax − Li + 1, . . . , Lmax},

(A.17)

size(Shared-Parallel(Φ1, . . . ,ΦN ))
(A.8)
=

N∑
i=1

(
size(Φi) + 2N0(Lmax − Li)

)
=

N∑
i=1

size(Φi) + 2N0

(
NLmax −

N∑
i=1

Li

)
, (A.18)

M(Shared-Parallel(Φ1, . . . ,ΦN ))
(A.10)

=
N∑
i=1

(
M(Φi) + 2N0(Lmax − Li)

+ 1[Lmax > Li]‖Ai1‖`0
)

=

N∑
i=1

M(Φi) + 2N0

(
NLmax −

N∑
i=1

Li

)

+
N∑
i=1

1[Lmax > Li]‖Ai1‖`0 . (A.19)

Remark A.5. Note that for all l ∈ {1, . . . , Lmax} the weight matrices {Ãil}i:Lmax−Li>l−1

coincide and equal IdR2N0 and that the bias vectors {b̃il}i:Lmax−Li>l−1 vanish. This fact
can be used to construct the parallelisation for shared inputs with simultaneous im-
plementation of the identity operator Simul-Shared-Parallel(Φ1, . . . ,ΦN ), which satis-
fies Equation (A.15), but has smaller size and number of non-zero coefficients than
Shared-Parallel(Φ1, . . . ,ΦN ).

Without loss of generality, we may assume that L1 = mini∈{1,...,N} L
i, which allows us to

62



define

Pre-Simul-Shared-Parallel(Φ1, . . . ,ΦN ) ..=



Ã1
1

1[Lmax − L2 = 0]Ã2
1

...

1[Lmax − LN = 0]ÃN1

 ,


b̃1

1

1[Lmax − L2 = 0]b̃2
1

...

1[Lmax − LN = 0]b̃N1


 ,




Ã1
2

1[Lmax − L2 = 1]Ã2
2 1[Lmax − L2 < 1]Ã2

2
...

. . .

1[Lmax − LN = 1]ÃN2 1[Lmax − LN < 1]ÃN2

 ,


b̃1

2

1[Lmax − L2 ≤ 1]b̃2
2

...

1[Lmax − LN ≤ 1]b̃N2


 ,




Ã1
3

1[Lmax − L2 = 2]Ã2
3 1[Lmax − L2 < 2]Ã2

3
...

. . .

1[Lmax − LN = 2]ÃN3 1[Lmax − LN < 2]ÃN3

 ,


b̃1

3

1[Lmax − L2 ≤ 2]b̃2
3

...

1[Lmax − LN ≤ 2]b̃N3


 , . . . ,




Ã1
Lmax

Ã2
Lmax

. . .

ÃNLmax

 ,


b̃1
Lmax

b̃2
Lmax

...

b̃NLmax



 ,

(A.20)

which satisfies Equations (A.15)–(A.16) and

M(Pre-Simul-Shared-Parallel(Φ1, . . . ,ΦN )) =
N∑
i=1

M(Φi) +
N∑
i=1

1[Lmax > Li]‖Ai1‖`0

+ 2N0

(
Lmax − min

i∈{1,...,N}
Li
)
. (A.21)

Let {Al}l∈{1,...,Lmax}, {bl}l∈{1,...,Lmax} be such that Pre-Simul-Shared-Parallel(Φ1, . . . ,ΦN ) =
((A1,b1), . . . , (ALmax ,bLmax)). For i ∈ {2, . . . , N} and l ∈ {1, . . . , Lmax} that satisfy
Lmax − Li > l − 1, the i’th “row” of Al, the i’th “row” of bl and the i + 1’st “column”
of Al+1 vanish identically. For such i and l, changing the sizes of Al, bl and Al+1

by removing “row” i from Al and bl and “column” i + 1 from Al+1 gives a network
Simul-Shared-Parallel(Φ1, . . . ,ΦN ) that satisfies Equations (A.15), (A.16), (A.21) and

size(Simul-Shared-Parallel(Φ1, . . . ,ΦN )) =

N∑
i=1

size(Φi) + 2N0

(
Lmax − min

i∈{1,...,N}
Li
)
.

(A.22)

63



Remark A.6 (Cf. [24, Lemma 5.4 p. 19] and [62, p. 7 below Definition 2.7, including
Remark 2.8]). Analogous to Remark A.4, assuming the situation of Definition 2.11, it
holds that

Rσ(Parallel(Φ1, . . . ,ΦN )) : RÑ
tot
0 → RÑ

tot
Lmax :

x 7→ ((Rσ(Φ1)((x1, . . . , xÑ1
0
)))>, . . . , (Rσ(ΦN )((xÑtot

0 −ÑN
0 +1, . . . , xÑtot

0
)))>)>. (A.23)

In addition, using Remark A.2, we find

depth(Parallel(Φ1, . . . ,ΦN )) =Lmax = max
i∈{1,...,N}

Li, (A.24)

∀i ∈ {1, . . . , N} : Ñ i
l =

{
2N i

0 l ∈ {1, . . . , Lmax − Li},
N i
−(Lmax−Li)+l l ∈ {Lmax − Li + 1, . . . , Lmax},

(A.25)

size(Parallel(Φ1, . . . ,ΦN ))
(A.8)
=

N∑
i=1

(
size(Φi) + 2N i

0(Lmax − Li)
)
, (A.26)

M(Parallel(Φ1, . . . ,ΦN ))
(A.10)

=
N∑
i=1

(
M(Φi) + 2N i

0(Lmax − Li)

+ 1[Lmax > Li]‖Ai1‖`0
)
. (A.27)

64



B Proofs

B.1 Proof of Lemma 2.3

Proof. The idea of this proof is that of [60, Lemma 1 pp. 3–4]. The lemma follows from
Equation (2.6) and the following two observations:

First observation. Let g : RN0 → R be a linear combination of K ∈ N continuous,
piecewise linear functions {gi}i∈{1,...,K} : RN0 → R that have the property of the lemma
for families of sets {Ti}i∈{1,...,K} satisfying ∀i ∈ {1, . . . ,K} : Ti = {Ti;ji}ji∈{1,...,Ji}. Then,
g has the property of the lemma.

Proof of the first observation. Let

∀(j1, . . . , jK) ∈
K

×
i=1

{1, . . . , Ji} : T(j1,...,jK)
..=

K⋂
i=1

Ti;ji ,

T ..=
{
T(j1,...,jK)

}
(j1,...,jK)∈×Ki=1{1,...,Ji}

and observe that T is a finite family of subsets of RN0 . Let J ∈ N be such that there
exists a bijection B : {1, . . . , J} → ×Ki=1{1, . . . , Ji}. For j ∈ {1, . . . , J}, let Tj ∈ T be
defined by Tj ..= TB(j) ∈ T . T satisfies RN0 =

⋃
j∈{1,...,J} Tj and all elements of T are

finite intersections of open convex sets, hence open and convex. Note that, by construction
of T , the functions {gi}i∈{1,...,K} : RN0 → R are linear on each element T ∈ T , hence g is
linear on each element T ∈ T . In addition, as a finite sum of continuous functions, g is
continuous. This finishes the proof of the first observation.

Second observation. For a continuous, piecewise linear function g : RN0 → R that has
the property of the lemma for a family of sets T , σ ◦ g also has the property of the lemma.

Proof of the second observation. On each element T of T , the function g is linear. If
g does not vanish identically on T , T+

..= {g > 0} ∩ T and T− ..= {g < 0} ∩ T are
open, convex subsets of RN0 satisfying T ⊂ T+ ∪ T−. The function σ ◦ g is linear on
T+ and T−. If g vanishes identically on T , then T+

..= T and T− ..= ∅ are open, convex
subsets of RN0 satisfying T ⊂ T+ ∪ T−, such that σ ◦ g is linear on T+ and T−. We have
RN0 =

⋃
T∈T (T+ ∪ T−). In addition, σ ◦ g is the composition of two continuous functions,

hence continuous. This finishes the proof of the second observation.

The lemma follows from the two observations, Equation (2.6) and the fact that ∀i ∈
{1, . . . , N0} : RN0 3 x 7→ xi trivially has the property of the lemma for T = {RN0}. To
show the lemma, we consider a network Φ that implements f . We use the same notation
as in Notation 2.2. Assuming that for some l ∈ {1, . . . , L − 1} for all k ∈ {1, . . . , Nl−1}
the map RN0 3 x 7→ zl−1

k has the property of the lemma, the first observation shows

that for all j ∈ {1, . . . , Nl} the function RN0 3 x 7→
∑Nl−1

k=1 Al;j,kz
l−1
k + bl;j has the

property as well. The second observation now shows that the same holds for RN0 3 x 7→
σ
(∑Nl−1

k=1 Al;j,kz
l−1
k + bl;j

)
= zlj for all j ∈ {1, . . . , Nl}. For L = 1, for all k ∈ {1, . . . , N0},

the map x 7→ xk = z0
k has the property of the lemma. By induction it follows that for all

k ∈ {1, . . . , NL−1} the map RN0 3 x 7→ zL−1
k also has the property. The first observation

65



now shows that the same holds for RN0 3 x 7→
∑NL−1

k=1 AL;1,kz
L−1
k + bL;1 = f(x), which

finishes the proof of the lemma.

Remark B.1 ([55, Proposition 4 p. 6], cf. [60, Lemma 1 pp. 3–4]). Note that the statement
of the lemma also holds for N0, N ∈ N and functions f : RN0 → RN that can be imple-
mented by ReLU networks as described in Assumption 2.1 and Notation 2.2. Each compo-
nent of the output of f can be implemented by a ReLU network of the desired type: Assume
that Φ ∈ R is such that Rσ(Φ) = f . For all i ∈ {1, . . . , N}, we define Φi ..= ((ei)

>,0)),
where we interpret ei as an N × 1-matrix. Then, ∀i ∈ {1, . . . , N} : Rσ(Φi •Φ) : RN0 → R
implements the i’th component of f and satisfies the requirements of the lemma. The
claim now follows from [60, Lemma 1 pp. 3–4], which is based on an argument similar to
that used to prove the first observation in the proof of Lemma 2.3.

B.2 Proof of Proposition 2.12, Steps 3–5

Step 3. For arbitrary m ∈ N, we construct a ReLU network Fm satisfying Rσ(Fm)
∣∣
[0,1]

=

fm by implementing Equations (2.25)–(2.27) for x ∈ [0, 1], a construction that was first
given in [89, Proposition 2 and its proof pp. 105–106]. The network is depicted in Figure
B.1.

x1 ∈ [0, 1]

z1
1 z1

2 z1
3

z2
1 z2

2 z2
3

z3
1 z3

2 z3
3

z4
1 z4

2 z4
3

f4(x1)

Figure B.1: Structure of F4.

66



We define

Al ..=

 2 −4 0

2 −4 0

−2−2(l−1)+1 2−2(l−1)+2 1

 , l ∈ {2, . . . ,m}, b ..=

 0

−1
2

0

 , (B.1)

Am+1
..=
(
−2−2m+1 2−2m+2 1

)
, (B.2)

Fm ..=



 1

1

1

 ,

 0

−1
2

0


 , (A2, b), (A3, b), . . . , (Am, b), (Am+1,0)

 . (B.3)

For l ∈ {1, . . . ,m} and x1 ∈ [0, 1], we define zl ..=
(
Rσ,l(Fm) ◦ · · · ◦Rσ,1(Fm)

)
(x1) ∈ R3. It

holds that

z1 =
(
σ(x1), σ(x1 − 1

2), f0(x1)
)
, (B.4)

zl =
(
σ(gl−1(x1)), σ(gl−1(x1)− 1

2), fl−1(x1)
)
, l ∈ {2, . . . ,m}, (B.5)

Rσ(Fm)(x1) = − 2−2mgm(x1) + fm−1(x1) = fm(x1). (B.6)

Note that z1
1 = z1

3 .

Step 4. We bound the depth, the size and the number of non-zero coefficients of ×̃ in terms
of m = dlog2(2M) + log(1/δ)e (Equation (2.34)). Before we do so, we calculate the second
and the last weight matrix of ×̃. As a result of the concatenations and the parallelisation
in Equation (2.29), they are defined as products of weight matrices of subnetworks. By
Equations (2.29), (2.30), (2.18) and (B.3) we find that the second weight matrix of ×̃
equals

1
2M



1

1

1

1

1

1

1

1

1



 1 1

1 1

1 1

 = 1
2M



1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1


, (B.7)

the second bias vector of ×̃ equals (0,−1
2 , 0, 0,−

1
2 , 0, 0,−

1
2 , 0)>. By Equations (2.29),

(2.18) and (B.2) we find that the last weight matrix equals

2M2
(
−1 −1 1

) Am+1

Am+1

Am+1

 = 2M2
(
−Am+1 −Am+1 Am+1

)
,

(B.8)

whereas the last bias vector vanishes.

In order to calculate depth(×̃), we note that depth(Fm) = m + 1. Hence, by Equations
(2.29), (A.1), (2.30) and (A.24), we find that depth(×̃) = m+ 2.

67



From Equations (B.1)–(B.3), we see that for N0 = Nm+1 = 1 and N1 = . . . = Nm = 3 it
holds that

Fm ∈ NN0,N1,...,Nm+1

m+1 .

Hence, by Equations (2.29), (2.30), (B.7), (A.25) and (B.8), we find

×̃ ∈ NN ′0,N
′
1,...,N

′
m+2

m+2

for N ′0 = 2, N ′1 = 6, N ′2 = . . . = N ′m+1 = 9 and N ′m+2 = 1. It follows that size(×̃) = 9m+6.

It follows from Equations (2.29), (2.30), (B.7), (A.27), (B.1) and (B.8) that M(×̃) =
8 + 21 + (m− 1)24 + 9 = 24m+ 14.

Substituting m as in Equation (2.34), we find that depth(×̃), size(×̃) and M(×̃) are of
the order O(log(M) + log(1/δ)).

Step 5. The aim of this step is to prove the claim that ∀(a, b) ∈ [−M,M ]2 : |Rσ(×̃)(a, b)| ≤
M2. Throughout this step, m is as in Equation (2.34).

All properties of fm used here and in Section 2.2 directly follow the following explicit
expression for fm:

∀k ∈ {1, . . . , 2m}, x ∈ [x1
k−1, x

1
k] : fm(x) = (x1

k−1)2 + (x− x1
k−1)

(x1
k)

2 − (x1
k−1)2

x1
k − x1

k−1

= 2−m(2k − 1)x− k(k − 1)2−2m.

To prove the claim, we study the function Em : [0, 1] → R : x 7→ fm(x) − x2. For
k ∈ {1, . . . , 2m}, on [x1

k−1, x
1
k], Em is given by Em(x) = (x− x1

k−1)(x1
k − x), it vanishes in

x1
k−1 and x1

k, it satisfies Em(
x1k−1+x1k

2 ) = 2−2m−2 and on [x1
k−1, x

1
k] it is symmetric around

x1k−1+x1k
2 . Note that Em is 2−m-periodic, hence also symmetric around {x1

k}k∈{1,...,2m−1}.

We start by showing that ∀(a, b) ∈ [0,M ]2 : Rσ(×̃)(a, b) ≤ ab ≤ M2. To that end, we
use that Em ≥ 0, which implies that it suffices to show ∀(a, b) ∈ [0,M ]2 : Em(a+b

2M ) ≤
Em( a

2M ) + Em( b
2M ). We define x′ ..= a

2M and y′ ..= b
2M . The 2−m-periodicity of Em

implies that it suffices to show the result for x′, y′ ∈ [0, 2−m]. Let us first look at the case
in which x′+ y′ ≤ 2−m and assume by contradiction that Em(x′+ y′) > Em(x′) +Em(y′).
That implies

Em(x′ + y′)− Em(y′)

x′
>
Em(x′)

x′
,

which contradicts the strict concavity of Em|[0,2−m]. For x′ + y′ > 2−m we can use the
symmetry of Em in the point 2−m and apply the same argument, but now for x′′ ..= 2−m−x′
and y′′ ..= 2−m−y′, using Em(x′′) = Em(x′), Em(y′′) = Em(y′), Em(x′′+y′′) = Em(x′+y′)
and 0 ≤ x′′ + y′′ < 2−m. This finishes the proof of ∀(a, b) ∈ [0,M ]2 : Rσ(×̃)(a, b) ≤ ab ≤
M2.

For (a, b) ∈ [0,M ]2, Equation (2.19) together with δ < M2 shows that Rσ(×̃)(a, b) ≥ −M2.

Note that the case (a, b) ∈ [−M, 0]2 is completely analogous to (a, b) ∈ [0,M ]2, as Rσ(×̃)
only depends on a, b through |a|, |b| and |a + b|, see Equation (2.28). This shows that
|Rσ(×̃)(a, b)| ≤M2 for (a, b) ∈ [−M, 0]2 ∪ [0,M ]2.

68



The fact that Rσ(×̃)(a, b) ≤ M2 for (a, b) ∈ [−M,M ]2 with ab < 0 follows from
Equation (2.19) and δ < M2. Lastly, for (a, b) ∈ [−M,M ]2 with ab < 0, the fact
that Rσ(×̃)(a, b) ≥ −M2 directly follows from Equation (2.28): the first term is non-

negative and for the two other terms we know that fm( |a|2M ), fm( |b|2M ) ∈ [0, 1
4 ], because

fm is strictly increasing, |a|
2M ,

|b|
2M ≤ 1

2 and fm(1
2) = 1

4 . This finishes the proof that
∀(a, b) ∈ [−M,M ]2 : |Rσ(×̃)(a, b)| ≤M2 and thereby the proof of Proposition 2.12.

B.3 Proof of Proposition 2.14, Step 3

Step 3. We now give bounds on the depth, the size and the number of non-zero coefficients
in the network. As shown in Step 4 of the proof of Proposition 2.12 in Appendix 2.12, for
m = d1

2 log(ñ/δ∏̃) + 1
2e, each ×̃m-subnetwork has depth m+ 2, size 9m+ 6 and not more

than 24m+ 14 non-zero coefficients. By Remarks A.3 and A.6, we have

depth
(∏̃n

) (A.12),(A.24)

≤ log2(ñ)(m+ 2) =O(log(n) log(n/δ∏̃)),

size
(∏̃n

) (A.13),(A.26)

≤ ñ(9m+ 6) + 2ñ =O(n log(n/δ∏̃)),

M
(∏̃n

) (A.14),(A.27),(2.30),(B.8)

≤ ñ(24m+ 14) + (9 + 8)ñ =O(n log(n/δ∏̃)).

This finishes the proof of Proposition 2.14.

Remark B.2 (Cf. [24, Proof Proposition 6.3 pp. 20–23], especially [24, Equation (112)
p. 21]). Note that we can implement the auxiliary input values xj , n < j ≤ ñ by biases in
the first computational layer, keeping the rest of the network as it would be for n = ñ, in
particular not affecting the number of non-zero coefficients.

Note that ∀x ∈ [−M,M ] : Rσ(×̃m)(x, 1) = Rσ(×̃m)(1, x) = x when log2(2M) ∈ (N0)≤m.
As a result, the auxiliary input values do not introduce errors. To show this, we use
properties of the function Em(y) = fm(y)− y2 on [0, 1] that are discussed in Step 5 of the
proof of Proposition 2.12 in Appendix B.2.

For x ∈ [0,M ], it follows from the exactness of fm in the nodes of T 1
2m and the 2−m-

periodicity of Em on [0, 1] that

|x−Rσ(×̃m)(1, x)| = Em( |1+x|
2M )−Em( 1

2M )−Em( |x|2M ) = Em( |x|2M + 1
2M )−0−Em( |x|2M ) = 0.

For x ∈ [−M, 0], there are two cases: when x < −1, we have by the same arguments as
before that

|x−Rσ(×̃m)(1, x)| = Em( |1+x|
2M )−Em( 1

2M )−Em( |x|2M ) = Em( |x|2M −
1

2M )−0−Em( |x|2M ) = 0.

When −1 ≤ x < 0, then the exactness of fm in the nodes of T 1
2m and the symmetry of Em

around x = 1
4M imply

|x−Rσ(×̃m)(1, x)| = Em( |1+x|
2M )−Em( 1

2M )−Em( |x|2M ) = Em( 1
2M −

|x|
2M )−0−Em( |x|2M ) = 0.

Instead, we could leave out all ×̃m-subnetworks that do not depend on the actual input
values xj , 1 ≤ j ≤ n and replace ×̃m-subnetworks that depend on actual input values
through one of their inputs by identity networks as defined in Definition 2.4.

69



B.4 Proof of Lemma 3.2

Proof. It follows from Equations (3.14), (A.26), (A.18) and (3.9) that the number of
ReLUs in the first two hidden layers is 2(2n − 1)(2 + 1) = O(2n) and from Equations
(3.14), (A.27), (A.19) and (3.9) that the number of non-zero coefficients in those layers is
2(2n − 1)(4 + 3) = O(2n).

By Equations (3.18), (3.14) and (3.9), the rest of w̃ equals

(W,0) • Parallel(×̃, . . . , ×̃) • (pr,0) • (IdR2(2n−1) ,0), (B.9)

which includes (2n − 1)2 parallel ×̃-subnetworks. It follows from Equations (A.1), (A.24)
and Proposition 2.12 that the depth is of the order O(log(1/δ)). Equations (A.2),
(A.26) and Proposition 2.12 show that the number of ReLUs equals (2n − 1)2 size(×̃) =
O(22n log(1/δ)).

In order to bound the number of non-zero coefficients of these layers, we first compute the
third and the last weight matrix of w̃. For

A ..=



1

−1

1

−1

1 1

−1 −1


, A ..=


A

. . .

A

 ,

by Equations (B.9), (2.13), (2.18) and (2.30), the third weight matrix of w̃ equals
A pr IdR2(2n−1) , which has at most 8(2n−1)2 non-zero components. 8(2n−1)2 also bounds
the number of non-zero coefficients in the first computational layer of Parallel(×̃, . . . , ×̃),
having weight matrix A. For

B ..=


B

. . .

B

 ∈ R1×9(2n−1)2 , B ..= 2M2
(
−Am+1 −Am+1 Am+1

)
,

it follows from Equations (B.9), (2.13), (2.18) and (B.8) that the last weight matrix of
w̃ equals WB, which has at most 9(2n − 1)2 non-zero components. This number also
bounds the number of non-zero coefficients in the last layer of Parallel(×̃, . . . , ×̃), which
has weight matrix B. As a result, we find that the number of non-zero coefficients of the
network in Equation (B.9) is at most (2n − 1)2M(×̃), which by Proposition 2.12 is of the
order O(22n log(1/δ)).

The lemma now follows by adding up the depth, the size and the number of non-zero
coefficients of the first two computational layers and those quantities for the rest of the
network.

The independence of the implied constants of w follows from the fact that all the bounds
are explicit functions of n, δ, depth(×̃), size(×̃) and M(×̃). By Proposition 2.12, the
latter three are bounded in terms of δ.

70



B.5 Proof of Lemma 4.3

Proof. This proof follows [75, pp. 7–8], see also [4, p. 328].

Hölder’s inequality with 1 = p
2 + 2−p

2 gives

∑
ν∈F

bpν =
∑
ν∈F

(bνβ
−ν)p(βν)p ≤

(∑
ν∈F

β−2νb2ν

)p/2(∑
ν∈F

βqν

)(2−p)/2

.

In addition, using β ∈ (0, 1)N, we find

∑
ν∈F

βqν =
∏
j∈N

∑
k∈N0

βqkj

 =
∏
j∈N

(1− βqj )
−1,

which converges because β ∈ `q(N), i.e. we have shown (βν)ν∈F ∈ `q(F) and (bν)ν∈F ∈
`p(F).

Next, we fix some 0 < q• < q and define for all ν ∈ F

αν ..=

{
j−1/q• ν = ej ,

0 else,
ζν ..= max{βν , αν}

and note that ζ ∈ `q(F) ↪→ `2(F), because q < 2. In addition, we note that∑
ν∈F

(ζ−1
ν bν)2 ≤

∑
ν∈F

(β−νbν)2 <∞. (B.10)

Because (αν)ν∈F and (βν)ν∈F are decreasing with respect to the ordering on F , (ζν)ν∈F
is decreasing as well, hence we can define a bijection π : N → F such that (ζπ(j))j∈N
is decreasing and such that Λn ..= π(N≤n) is downward closed for all n ∈ N. Because
(αej )j∈N and β are decreasing, so is (βej )j∈N and hence (ζej )j∈N, i.e. ζei ≥ ζej for i ≤ j,
hence π can be chosen such that for all n ∈ N and for each j ∈ N: ej ∈ Λn implies ei ∈ Λn
for all i ≤ j.

We next show Equation (4.19). From Hölder’s inequality, we get∑
ν∈Λcn

bν ≤ ‖(ζν)ν∈Λcn‖`2(Λcn)‖(ζ−1
ν bν)ν∈Λcn‖`2(Λcn) <∞. (B.11)

By [91, Lemma 2.9 p. 10], ζ ∈ `q(F) implies that there exists a C > 0 such that ∀j ∈ N :
ζπ(j) ≤ Cj−1/q. We find

‖(ζν)ν∈Λcn‖`2(Λcn) ≤

C∑
j>n

j−2/q

1/2

≤ C(n1−2/q)1/2 ≤ Cn−1/p+1 (B.12)

(cf. [21, proof of Equation (2.18) pp. 59–60]), which together with Equations (B.10) and
(B.11) shows Equation (4.19).

71



It remains to show Equation (4.20). By definition of (ζν)ν∈F , we have

min{ζν : ν ∈ Λn} ≥ ζen ≥ n−1/q• . (B.13)

Using β1 = maxj∈N βj < 1, we have

sup{ζν : ν ∈ F , |ν|1 = d} d>1
= sup{βν : ν ∈ F , |ν|1 = d} = (β1)d. (B.14)

For all n ∈ N, let dn ∈ N≥2 be such that n−1/q• > (β1)dn . We then find

max
ν∈Λn

|ν|1 < dn (B.15)

by Equations (B.13) and (B.14). Hence, using that x 7→ log(x)/ log(β1) is the inverse of
d 7→ (β1)d, it follows from Equation (B.15) that

max
ν∈Λn

|ν|1 ≤ log(n−1/q•)/ log(β1) = O(log n).

This finishes the proof of Lemma 4.3.

Remark B.3. Note that, a fortiori, Equation (4.19) holds if we define {Λn}n∈N based on
(βν)ν∈F instead of (ζν)ν∈F .

The sequence (ζν)ν∈F was used instead of (βν)ν∈F , because it allowed us to construct
{Λn}n∈N such that Equation (4.20) holds and such that for all n ∈ N and for each j ∈ N:
ej ∈ Λn implies ei ∈ Λn for i ≤ j. As Equation (4.18) is the only information we have
about the size of {bν}ν∈F , using (ζν)ν∈F instead of (βν)ν∈F for the definition of {Λn}n∈N
in general increases

∑
ν∈Λcn

bν .

However, by the argument in [21, proof of Equation (2.18) pp. 59–60], it follows that for
a bijection π : N→ F for which (bπ(j))j∈N is decreasing∑

j>n

bπ(j)
def
= ‖(bπ(j))j∈N>n‖`1(N>n) ≤ Cn1−1/p (B.16)

is equivalent to
∀j ∈ N : bπ(j) ≤ Cj−1/p (B.17)

(one of the implications is similar to Equation (B.12), but for `1(Λcn) instead of `2(Λcn)).
Equation (B.17) follows from (bν)ν∈F ∈ `p(F) by [91, Lemma 2.9 p. 10] (conversely,
Equation (B.17) implies (bν)ν∈F ∈ `p

′
(F) for all p′ > p). That is, 1/p − 1 is the best

n-term convergence rate of the sequence (bν)ν∈F ∈ `p(F) (for the discussion of best n-
term approximations in comparison to linear approximations, we refer to [21, especially
Section 2 pp. 56–60]). Note that we achieved the best n-term convergence rate with Λn
constructed in terms of (ζν)ν∈F . Hence, we find that the use of (ζν)ν∈F instead of (βν)ν∈F
does not decrease the bound on the convergence rate.

B.6 Proof of Lemma 5.3

Proof. This proof mainly follows [75, pp. 21–22], which contains results similar to those
derived in [3, Section 3] and [31, Section 2].

72



From Lemma 4.3, we know that ∑
ν∈Λcn

‖tν‖V ≤ Cn−1/pV +1. (B.18)

Next, we aim to choose (mn;ν)ν∈Λn such that Nn =
∑
ν∈Λn

mn;ν is minimal, under the
constraint that ∑

ν∈Λn

‖tν‖Xm−γn;ν ≤ n−1/pV +1. (B.19)

We solve this optimisation problem as a continuous optimisation problem, i.e. we cal-
culate (m̃n;ν)ν∈Λn ⊂ R>0 using the Lagrange multiplier λ. For F ((m̃n;ν)ν∈Λn , λ) ..=∑
ν∈Λn

m̃n;ν + λ(
∑
ν∈Λn

‖tν‖Xm̃−γn;ν − n−1/pV +1), setting ∇F = 0 gives

m̃n;ν = n(1/pV −1)/γ‖tν‖1/(1+γ)
X

(∑
ν∈Λn

‖tν‖1/(1+γ)
X

)1/γ

, (B.20)

n−1/pV +1 =
∑
ν∈Λn

‖tν‖Xm̃−γn;ν . (B.21)

Therefore, we define
mn;ν

..= max {dm̃n;νe ,m0} . (B.22)

Note that Equations (B.21) and (B.22) imply Equation (B.19), which together with Equa-
tion (B.18) shows the first inequality in Equation (5.4).

It remains to show the second inequality in Equation (5.4), i.e. that for some C > 0 for
all n ∈ N

n−1/pV +1 ≤ CN−rn .

By Equation (B.22),

Nn =
∑
ν∈Λn

mn;ν ≤ nm0 + n(1/pV −1)/γ

(∑
ν∈Λn

‖tν‖1/(1+γ)
X

)(1+γ)/γ

.

Let us first assume that 1/pX − 1 ≥ γ. Then, we have

Nn ≤ nm0 + n(1/pV −1)/γ‖(‖tν‖X)ν∈F‖1/γ`pX (F)

≤ n(1/pV −1)/γ
(
m0 + ‖(‖tν‖X)ν∈F‖1/γ`pX (F)

)
=.. n(1/pV −1)/γC1/γ ,

⇒ n−1/pV +1 ≤ CN−rn ,

where we have used 1/pV − 1 ≥ 1/pX − 1 ≥ γ in the second step and r = γ in the last
step.

73



For 1/pX − 1 < γ, which is equivalent to pX(1 + γ) > 1, we use Hölder’s inequality to get

Nn ≤ nm0 + n(1/pV −1)/γ

(∑
ν∈Λn

‖tν‖pXX

)1/(pX(1+γ))

n1−1/(pX(1+γ))

(1+γ)/γ

≤ nm0 + n(γ+1/pV −1/pX)/γ‖(‖tν‖X)ν∈F‖1/γ`pX (F)

≤ n(γ+1/pV −1/pX)/γ
(
m0 + ‖(‖tν‖X)ν∈F‖1/γ`pX (F)

)
=.. n(γ+1/pV −1/pX)/γC(γ+1/pV −1/pX)/(γ(1/pV −1)),

⇒ n−1/pV +1 ≤ CN−rn ,

where we have used (γ + 1/pV − 1/pX)/γ ≥ 1 in the third step. This finishes the proof of
Equation (5.4).

Finally, note that ∀ν ∈ Λn : mn;ν ≥ m0 implies Nn ≥ m0n ≥ n, which finishes the proof
of Lemma 5.3.

B.7 Proof of Proposition 5.1, Step 4

Step 4. In this step, we bound the depth, the size and the number of non-zero coefficients
of ũn. Before we do so, we note that Equation (5.4) implies that logNn = O(log n).

It holds that
∑
ν∈Λn

size(Ĩmn;ν tν) ≤
∑
ν∈Λn

mn;ν = Nn by definition of {Ĩmn;ν tν}ν∈Λn in

Proposition 3.5. By Proposition 3.5, we also find maxν∈Λn depth(Ĩmn;ν tν) = O(logNn) =

O(log n) and
∑
ν∈Λn

M(Ĩmn;ν tν) = O(Nn).

According to Lemma 2.17, we have

max
ν∈Λn

depth(fν) =O(log(n) log log(n)),∑
ν∈Λn

size(fν) =O(n log(n) log log(n)),

∑
ν∈Λn

M(fν) =O(n log(n) log log(n)).

By Remarks A.6 and A.5, the latter of which in particular showing that Equations (A.16)

74



and (A.21) hold for Simul-Shared-Parallel, it holds that

depth(Pũn)
(A.24),(A.16)

= O(log(n) log log(n)),

size(Pũn)
(A.26),(A.22)

≤
∑
ν∈Λn

size(Ĩmn;ν tν) + 2 · 2 depth(Pũn)

+
∑
ν∈Λn

size(fν) + 2n depth(Pũn)

=Nn +O(n log(n) log log(n)),

M(Pũn)
(A.27),(A.21)

≤
∑
ν∈Λn

M(Ĩmn;ν tν) +
∑
ν∈Λn

M(Ĩmn;ν tν)

+ 2 · 2 depth(Pũn) +
∑
ν∈Λn

M(fν)

+
∑
ν∈Λn

M(fν) + 2n depth(Pũn)

=O(Nn + n log(n) log log(n)),

where in the second to last step the second and the fifth term bound the second term in
Equation (A.21) for {Ĩmn;ν tν}ν∈Λn resp. {fν}ν∈Λn .

Equation (A.14) implies that

M(ũn) ≤ 2M
(((

1 · · · 1
)
,0
)
• Parallel(×̃, . . . , ×̃) • (prũn ,0)

)
+ 2M(Pũn) (B.23)

([62, Remark 2.6 p. 7], see also [24, Lemma 5.3.(iii) p. 18]). In addition, for

A ..=



1

−1

1

−1

1 1

−1 −1


, A ..=


A

. . .

A

 ,

by Equations (2.13), (2.18) and (2.30), the first weight matrix of((
1 · · · 1

)
,0
)
• Parallel(×̃, . . . , ×̃) • (prũn ,0) (B.24)

equalsAprũn . Because, by construction, multiplication by prũn only permutes the columns
of A, the number of non-zero components of Aprũn equals that of A. Besides that, by
Equations (2.13), (2.18), (B.8) and (B.2), the last weight matrix of the network in Equation
(B.24) is a 1× 9n matrix, it has at most 9n non-zero components.

By Proposition 2.12, the ×̃-subnetworks appearing in Equation (5.8) all have depth, size
and number of non-zero coefficients of the order O(log(M)+ log(1/δn)) = O(log n). Using

75



Equation (5.8) and Remarks A.1 and A.6, we find

depth(ũn)
(A.12),(A.1),(A.24)

= O(log(n) log log(n)) +O(log(1/δn))

=O(log(n) log log(n)) = O(log(Nn) log log(Nn)),

size(ũn)
(A.13),(A.2),(A.26)

≤ Nn +O(n log(n) log log(n)) + 2(2n) +O(n log(1/δn))

=Nn +O(n log(n) log log(n)) = O(Nn log(Nn) log log(Nn)),

M(ũn)
(B.23),(A.27)

≤ 2O(Nn + n log(n) log log(n)) + 2O(n log(1/δn)) + 9n

=O(Nn + n log(n) log log(n)) = O(Nn log(Nn) log log(Nn)).

This finishes Step 4 of the proof of Theorem 5.1. Step 5 in Section 5 gives the convergence
rate of ũn in terms of the network size.

Remark B.4. Note that
∑
ν∈Λn

size(Ĩmn;ν tν) is the only term in the upper bound on
size(ũn) that need not be of the order O(n log(n) log log(n)).

We can reduce the number of ReLUs needed for the implementation of these subnetworks
by simultaneously approximating {tν}ν∈Λn. Hat functions only need to be evaluated once,
namely the hat functions on the finest grid, used to implement Ĩmn;ν′ tν′ for ν ′ that satisfies

mn;ν′ = maxν∈Λnmn;ν . The functions {tν}ν∈Λn can be approximated by {Ĩmn;ν′ tν}ν∈Λn,
which are all linear combinations of the same hat functions. Note that this involves at
most maxν∈Λnmn;ν ReLUs, implying that the corresponding size of ũn is of the order
O(maxν∈Λnmn;ν + n log(n) log log(n)).

The order of the depth is unaffected, while the number of non-zero coefficients is of the
order O(nmaxν∈Λnmn;ν + n log(n) log log(n)), which is larger than for the case without
simultaneous approximation of {tν}ν∈Λn. This increase in the number of non-zero coeffi-
cients can be overcome by using a hierarchical basis of hat functions.

76



References

[1] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic
partial differential equations with random input data. SIAM Journal on Numerical
Analysis, 45(3):1005–1034, 2007. https://doi.org/10.1137/050645142.

[2] I. Babuška, R. Tempone, and G. E. Zouraris. Galerkin finite element approxima-
tions of stochastic elliptic partial differential equations. SIAM Journal on Numerical
Analysis, 42(2):800–825, 2004. https://doi.org/10.1137/S0036142902418680.

[3] M. Bachmayr, A. Cohen, D. Dũng, and C. Schwab. Fully discrete approximation
of parametric and stochastic elliptic PDEs. SIAM Journal on Numerical Analysis,
55(5):2151–2186, 2017. https://doi.org/10.1137/17M111626X.

[4] M. Bachmayr, A. Cohen, and G. Migliorati. Sparse polynomial approximation of para-
metric elliptic PDEs. Part I: affine coefficients. ESIAM: Mathematical Modelling and
Numerical Analysis, 51:321–339, 2017. https://doi.org/10.1051/m2an/2016045.

[5] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39(3):930–945, 1993. https:

//doi.org/10.1109/18.256500.

[6] A. R. Barron. Approximation and estimation bounds for artificial neural networks.
Machine Learning, 14(1):115–133, 1994. https://doi.org/10.1007/BF00993164.

[7] C. Beck, W. E, and A. Jentzen. Machine learning approximation algorithms for high-
dimensional fully nonlinear partial differential equations and second-order backward
stochastic differential equations. pages 1–56, 2017. https://arxiv.org/abs/1709.

05963v1.

[8] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-
wise training of deep networks. Advances in Neural Information Pro-
cessing Systems, 19:153–160, 2007. https://papers.nips.cc/paper/

3048-greedy-layer-wise-training-of-deep-networks.

[9] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. Memory-optimal neural network
approximation. In Wavelets and Sparsity MMXVII, volume 10394 of Proceedings of
SPIE, pages 1–12, 2017. https://doi.org/10.1117/12.2272490.

[10] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. Optimal approximation with
sparsely connected deep neural networks. pages 1–36, 2017. Revised 2018. http:

//arxiv.org/abs/1705.01714v4.

[11] H. Brezis. Functional analysis, Sobolev spaces and partial differential equa-
tions. Universitext. Springer, New York, NY, 2011. https://doi.org/10.1007/

978-0-387-70914-7.

[12] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

77

https://doi.org/10.1137/050645142
https://doi.org/10.1137/S0036142902418680
https://doi.org/10.1137/17M111626X
https://doi.org/10.1051/m2an/2016045
https://doi.org/10.1109/18.256500
https://doi.org/10.1109/18.256500
https://doi.org/10.1007/BF00993164
https://arxiv.org/abs/1709.05963v1
https://arxiv.org/abs/1709.05963v1
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks
https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks
https://doi.org/10.1117/12.2272490
http://arxiv.org/abs/1705.01714v4
http://arxiv.org/abs/1705.01714v4
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.1007/978-0-387-70914-7


https://doi.org/10.1017/S0962492904000182.

[13] C. Bǎcuţǎ, H. Li, and V. Nistor. Differential operators on domains with conical
points: precise uniform regularity estimates. pages 1–22, 2016. https://arxiv.org/
abs/1605.07907v1.

[14] A. Chkifa, A. Cohen, and C. Schwab. Breaking the curse of dimensionality in sparse
polynomial approximation of parametric PDEs. Journal des Mathématiques Pures et
Appliquées, 103(2):400–428, 2015. https://doi.org/10.1016/j.matpur.2014.04.

009.

[15] C.-K. Chui, X. Li, and H. N. Mhaskar. Neural networks for localized approxima-
tion. Mathematics of Computation, 63:607–623, 1994. https://doi.org/10.1090/

S0025-5718-1994-1240656-2.

[16] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network
learning by exponential linear units (ELUs). In International Conference on Learning
Representations 2016, pages 1–14, 2016. https://arxiv.org/abs/1511.07289v5.

[17] A. Cohen, R. Devore, and C. Schwab. Convergence rates of best N -term Galerkin
approximations for a class of elliptic sPDEs. Foundations of Computational Mathe-
matics, 10(6):615–646, 2010. https://doi.org/10.1007/s10208-010-9072-2.

[18] A. Cohen, R. DeVore, and C. Schwab. Analytic regularity and polynomial approxima-
tion of parametric and stochastic elliptic PDE’s. Analysis and Applications, 9(1):11–
47, 2011. https://doi.org/10.1142/S0219530511001728.

[19] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: a
tensor analysis. In 29th Annual Conference on Learning Theory, volume 49 of Pro-
ceedings of Machine Learning Research, pages 698–728, 2016. http://proceedings.
mlr.press/v49/cohen16.html.

[20] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2(4):303–314, 1989. https://doi.org/10.1007/

BF02551274.

[21] R. A. DeVore. Nonlinear approximation. Acta Numerica, 7:51–150, 1998. https:

//doi.org/10.1017/S0962492900002816.

[22] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differen-
tial equations. Communications in Mathematics and Statistics, 5(4):349–380, 2017.
https://doi.org/10.1007/s40304-017-0117-6.

[23] W. E and B. Yu. The Deep Ritz Method: A deep learning-based numerical algorithm
for solving variational problems. Communications in Mathematics and Statistics,
6(1):1–12, 2018. https://doi.org/10.1007/S40304-018-0127-Z.

[24] D. Elbrächter, P. Grohs, A. Jentzen, and C. Schwab. DNN expression rate analysis

78

https://doi.org/10.1017/S0962492904000182
https://arxiv.org/abs/1605.07907v1
https://arxiv.org/abs/1605.07907v1
https://doi.org/10.1016/j.matpur.2014.04.009
https://doi.org/10.1016/j.matpur.2014.04.009
https://doi.org/10.1090/S0025-5718-1994-1240656-2
https://doi.org/10.1090/S0025-5718-1994-1240656-2
https://arxiv.org/abs/1511.07289v5
https://doi.org/10.1007/s10208-010-9072-2
https://doi.org/10.1142/S0219530511001728
http://proceedings.mlr.press/v49/cohen16.html
http://proceedings.mlr.press/v49/cohen16.html
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1017/S0962492900002816
https://doi.org/10.1017/S0962492900002816
https://doi.org/10.1007/s40304-017-0117-6
https://doi.org/10.1007/S40304-018-0127-Z


of high-dimensional PDEs: application to option pricing. Technical report, 2018.
Technical report, version 27 August 2018.

[25] H. B. Enderton. Elements of set theory. Academic Press, 1977. https://doi.org/

10.1016/C2009-0-22079-4.

[26] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159 of
Applied Mathematical Sciences. Springer, New York, NY, 2004. https://doi.org/

10.1007/978-1-4757-4355-5.

[27] M. Fujii, A. Takahashi, and M. Takahashi. Asymptotic expansion as prior knowledge
in deep learning method for high dimensional BSDEs. 2017. https://arxiv.org/

abs/1710.07030v2.

[28] K.-I. Funahashi. On the approximate realization of continuous mappings by neu-
ral networks. Neural Networks, 2(3):183–192, 1989. https://doi.org/10.1016/

0893-6080(89)90003-8.

[29] R. G. Ghanem and P. D. Spanos. Spectral techniques for stochastic finite elements.
Archives of Computational Methods in Engineering, 4(1):63–100, 1997. https://

doi.org/10.1007/BF02818931.

[30] C. J. Gittelson. An adaptive stochastic galerkin method for random elliptic operators.
Mathematics of Computation, 82(283):1515–1541, 2013. https://doi.org/10.1090/
S0025-5718-2013-02654-3.

[31] C. J. Gittelson. Convergence rates of multilevel and sparse tensor approximations
for a random elliptic PDE. SIAM Journal on Numerical Analysis, 51(4):2426–2447,
2013. https://doi.org/10.1137/110826539.

[32] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning, volume 1. MIT Press,
2016. http://www.deeplearningbook.org.

[33] P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and
studies in mathematics. Pitman Publishing Inc., Marshfield, Massachusetts, 1985.

[34] W. Hackbusch. Tensor spaces and numerical tensor calculus, volume 42 of Springer
Series in Computational Mathematics. Springer, Berlin, Heidelberg, 2012. https:

//doi.org/10.1007/978-3-642-28027-6.

[35] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. Journal
of Fourier Analysis and Applications, 15(5):706–722, 2009. https://doi.org/10.

1007/s00041-009-9094-9.

[36] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equa-
tions using deep learning. Proceedings of the National Academy of Sciences of the
United States of America, 115(34):8505–8510, 2018. https://doi.org/10.1073/

pnas.1718942115.

79

https://doi.org/10.1016/C2009-0-22079-4
https://doi.org/10.1016/C2009-0-22079-4
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1007/978-1-4757-4355-5
https://arxiv.org/abs/1710.07030v2
https://arxiv.org/abs/1710.07030v2
https://doi.org/10.1016/0893-6080(89)90003-8
https://doi.org/10.1016/0893-6080(89)90003-8
https://doi.org/10.1007/BF02818931
https://doi.org/10.1007/BF02818931
https://doi.org/10.1090/S0025-5718-2013-02654-3
https://doi.org/10.1090/S0025-5718-2013-02654-3
https://doi.org/10.1137/110826539
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-642-28027-6
https://doi.org/10.1007/978-3-642-28027-6
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1073/pnas.1718942115


[37] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep be-
lief nets. Neural Computation, 18(7):1527–1554, 2006. https://doi.org/10.1162/

neco.2006.18.7.1527.

[38] G. E. Hinton and T. Shallice. Lesioning an attractor network: Investigations of
acquired dyslexia. Psychological Review, 98(1):74–95, 1991. https://doi.org/10.

1037//0033-295X.98.1.74.

[39] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989. https://doi.org/

10.1016/0893-6080(89)90020-8.

[40] Y. Khoo, J. Lu, and L. Ying. Solving parametric PDE problems with artificial neural
networks. pages 1–17, 2017. Revised 2018. https://arxiv.org/abs/1707.03351v3.

[41] V. Khrulkov, A. Novikov, and I. Oseledets. Expressive power of recurrent neural
networks. In International Conference on Learning Representations 2018, pages 1–
12, 2018. https://openreview.net/forum?id=S1WRibb0Z.

[42] D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In In-
ternational Conference on Learning Representations 2015, pages 1–15, 2015. Revised
2017. https://arxiv.org/abs/1412.6980v9.

[43] I. E. Lagaris, A. C. Likas, and D. I. Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE Transactions on Neural Networks,
9(5):987–1000, 1998. https://doi.org/10.1109/72.712178.

[44] I. E. Lagaris, A. C. Likas, and D. G. Papageorgiou. Neural-network methods for
boundary value problems with irregular boundaries. IEEE Transactions on Neural
Networks, 11(5):1041–1049, 2000. https://doi.org/10.1109/72.870037.

[45] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,
2015. https://doi.org/10.1038/nature14539.

[46] H. Lee and I. S. Kang. Neural algorithm for solving differential equations. Jour-
nal of Computational Physics, 91(1):110–131, 1990. https://doi.org/10.1016/

0021-9991(90)90007-N.

[47] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural Net-
works, 6(6):861–867, 1993. https://doi.org/10.1016/S0893-6080(05)80131-5.

[48] S. Liang and R. Srikant. Why deep neural networks for function approximation?
In International Conference on Learning Representations 2017, pages 1–17, 2017.
https://openreview.net/forum?id=SkpSlKIel.

[49] A. Malek and R. Shekari Beidokhti. Numerical solution for high order differential
equations using a hybrid neural network-optimization method. Applied Mathematics
and Computation, 183(1):260–271, 2006. https://doi.org/10.1016/j.amc.2006.

80

https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1037//0033-295X.98.1.74
https://doi.org/10.1037//0033-295X.98.1.74
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://arxiv.org/abs/1707.03351v3
https://openreview.net/forum?id=S1WRibb0Z
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.870037
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/0021-9991(90)90007-N
https://doi.org/10.1016/0021-9991(90)90007-N
https://doi.org/10.1016/S0893-6080(05)80131-5
https://openreview.net/forum?id=SkpSlKIel
https://doi.org/10.1016/j.amc.2006.05.068
https://doi.org/10.1016/j.amc.2006.05.068
https://doi.org/10.1016/j.amc.2006.05.068


05.068.

[50] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5(4):115–133, 1943. https://doi.

org/10.1007/BF02478259.

[51] H. Mhaskar, Q. Liao, and T. Poggio. Learning functions: When is deep better than
shallow. pages 1–12, 2016. https://arxiv.org/abs/1603.00988v4.

[52] H. N. Mhaskar. Neural networks for optimal approximation of smooth and analytic
functions. Neural Computation, 8(1):164–177, 1996. https://doi.org/10.1162/

neco.1996.8.1.164.

[53] H. N. Mhaskar and T. Poggio. Deep vs. shallow networks: An approximation theory
perspective. Analysis and Applications, 14(6):829–848, 2016. https://doi.org/10.
1142/S0219530516400042.

[54] H. Montanelli and Q. Du. Deep ReLU networks lessen the curse of dimensionality.
pages 1–15, 2017. Revised 2018. https://arxiv.org/abs/1712.08688v3.

[55] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the num-
ber of linear regions of deep neural networks. Advances in Neural Informa-
tion Processing Systems, 27:2924–2932, 2014. http://papers.nips.cc/paper/

5422-on-the-number-of-linear-regions-of-deep-neural-networks.html.

[56] P.-A. Nitsche. Sparse approximation of singularity functions. Constructive Approxi-
mation, 21(1):63–81, 2004. https://doi.org/10.1007/s00365-004-0559-4.

[57] F. Nobile, R. Tempone, and C. G. Webster. An anisotropic sparse grid stochastic
collocation method for partial differential equations with random input data. SIAM
Journal on Numerical Analysis, 46(5):2411–2442, 2008. https://doi.org/10.1137/
070680540.

[58] F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation
method for partial differential equations with random input data. SIAM Journal on
Numerical Analysis, 46(5):2309–2345, 2008. https://doi.org/10.1137/060663660.

[59] I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011. https://doi.org/10.1137/090752286.

[60] R. Pascanu, G. Montúfar, and Y. Bengio. On the number of response regions of deep
feedforward networks with piecewise linear activations. pages 1–17, 2013. Revised
2014. https://arxiv.org/abs/1312.6098v5.

[61] D. Perekrestenko, P. Grohs, D. Elbrächter, and H. Bölcskei. The universal ap-
proximation power of finite-width deep ReLU networks. pages 1–16, 2018. In
review, 32nd Conference on Neural Information Processing Systems (NIPS 2018).
https://arxiv.org/abs/1806.01528v1.

81

https://doi.org/10.1016/j.amc.2006.05.068
https://doi.org/10.1016/j.amc.2006.05.068
https://doi.org/10.1016/j.amc.2006.05.068
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://arxiv.org/abs/1603.00988v4
https://doi.org/10.1162/neco.1996.8.1.164
https://doi.org/10.1162/neco.1996.8.1.164
https://doi.org/10.1142/S0219530516400042
https://doi.org/10.1142/S0219530516400042
https://arxiv.org/abs/1712.08688v3
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.html
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.html
https://doi.org/10.1007/s00365-004-0559-4
https://doi.org/10.1137/070680540
https://doi.org/10.1137/070680540
https://doi.org/10.1137/060663660
https://doi.org/10.1137/090752286
https://arxiv.org/abs/1312.6098v5
https://arxiv.org/abs/1806.01528v1


[62] P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth
functions using deep ReLU neural networks. pages 1–54, 2017. Revised 2018.
https://arxiv.org/abs/1709.05289v4.

[63] A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Nu-
merica, 8:143–195, 1999. https://doi.org/10.1017/S0962492900002919.

[64] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. When can deep—but
not shallow—networks avoid the curse of dimensionality: A review. International
Journal of Automation and Computing, 14(5):503–519, 2017. https://doi.org/10.
1007/s11633-017-1054-2.

[65] M. Ranzato, C. Poultney, S. Chopra, and Y. L. LeCun. Efficient learning of
sparse representations with an energy-based model. Advances in Neural Informa-
tion Processing Systems, 19:1137–1144, 2007. https://papers.nips.cc/paper/

3112-efficient-learning-of-sparse-representations-with-an-energy-based-model.

[66] S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond.
In International Conference on Learning Representations 2018, pages 1–23, 2018.
https://openreview.net/forum?id=ryQu7f-RZ.

[67] D. Rolnick and M. Tegmark. The power of deeper networks for expressing natural
functions. In International Conference on Learning Representations 2018, pages 1–14,
2018. https://openreview.net/forum?id=SyProzZAW.

[68] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958. https://doi.
org/10.1037/h0042519.

[69] K. Rudd. Solving partial differential equations using artificial neural networks.
PhD thesis, Duke University, 2013. https://lisc.mae.cornell.edu/PastThesis/

KeithRuddPhD.pdf.

[70] S. Ruder. An overview of gradient descent optimization algorithms. pages 1–14, 2016.
Revised 2017. https://arxiv.org/abs/1609.04747v2.

[71] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986. https://doi.org/10.

1038/323533a0.

[72] V. Runde. A taste of topology. Universitext. Springer, New York, NY, 2008. https:
//doi.org/10.1007/0-387-28387-0.

[73] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015. http://dx.doi.org/10.1016/j.neunet.2014.09.003.

[74] C. Schwab and C. J. Gittelson. Sparse tensor discretizations of high-dimensional
parametric and stochastic PDEs. Acta Numerica, 20:291–467, 2011. https://doi.

org/10.1017/S0962492911000055.

82

https://arxiv.org/abs/1709.05289v4
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1007/s11633-017-1054-2
https://doi.org/10.1007/s11633-017-1054-2
https://papers.nips.cc/paper/3112-efficient-learning-of-sparse-representations-with-an-energy-based-model
https://papers.nips.cc/paper/3112-efficient-learning-of-sparse-representations-with-an-energy-based-model
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=SyProzZAW
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://lisc.mae.cornell.edu/PastThesis/KeithRuddPhD.pdf
https://lisc.mae.cornell.edu/PastThesis/KeithRuddPhD.pdf
https://arxiv.org/abs/1609.04747v2
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/0-387-28387-0
https://doi.org/10.1007/0-387-28387-0
http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1017/S0962492911000055
https://doi.org/10.1017/S0962492911000055


[75] C. Schwab and J. Zech. Deep learning in high dimension: neural network expression
rates for generalized polynomial chaos expansions in UQ. Technical Report 2017-57,
Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2017. Revised 2018.
To appear in Analysis and Applications (Singapore) (2018). http://www.sam.math.
ethz.ch/sam_reports/reports_final/reports2017/2017-57_rev2.pdf.

[76] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. pages 1–31, 2017. Revised 2018. https://arxiv.org/abs/

1708.07469v4.

[77] M. Telgarsky. Representation benefits of deep feedforward networks. pages 1–5, 2015.
https://arxiv.org/abs/1509.08101v2.

[78] M. Telgarsky. Neural networks and rational functions. In 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 3387–3393, 2017. http://proceedings.mlr.press/v70/telgarsky17a.html.

[79] R. A. Todor and C. Schwab. Convergence rates for sparse chaos approximations of
elliptic problems with stochastic coefficients. IMA Journal of Numerical Analysis,
27(2):232–261, 2007. https://doi.org/10.1093/imanum/drl025.

[80] A. Tychonoff. Über die topologische Erweiterung von Räumen. Mathematische An-
nalen, 102(1):544–561, 1930. https://doi.org/10.1007/BF01782364.

[81] P. Urysohn. Zum Metrisationsproblem. Mathematische Annalen, 94(1):309–315, 1925.
https://doi.org/10.1007/BF01208661.

[82] B. Widrow. An adaptive “Adaline” neuron using chemical “memistors”. Tech-
nical Report 1553-2, 1960. http://www-isl.stanford.edu/~widrow/papers/

t1960anadaptive.pdf.

[83] B. Widrow. Adaptive sampled-data systems. In IFAC Moscow Congress
Record, pages 1–6, 1960. http://www-isl.stanford.edu/~widrow/papers/

c1960adaptivesampled.pdf.

[84] B. Widrow and M. E. Hoff. Adaptive switching circuits. In Wescon Convention
Record, number 4, pages 96–104, 1960. http://www-isl.stanford.edu/~widrow/

papers/c1960adaptiveswitching.pdf.

[85] N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–
936, 1938. https://doi.org/10.2307/2371268.

[86] N. Wiener. Cybernetics: Or control and communication in the animal and the ma-
chine. Hermann, Paris, first edition, 1948.

[87] D. Xiu. Numerical methods for stochastic computations: a spectral method ap-
proach. Princeton University Press, Princeton, N.J., 2010. https://ebookcentral.

proquest.com/lib/ethz/detail.action?docID=557164.

83

http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2017/2017-57_rev2.pdf
http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2017/2017-57_rev2.pdf
https://arxiv.org/abs/1708.07469v4
https://arxiv.org/abs/1708.07469v4
https://arxiv.org/abs/1509.08101v2
http://proceedings.mlr.press/v70/telgarsky17a.html
https://doi.org/10.1093/imanum/drl025
https://doi.org/10.1007/BF01782364
https://doi.org/10.1007/BF01208661
http://www-isl.stanford.edu/~widrow/papers/t1960anadaptive.pdf
http://www-isl.stanford.edu/~widrow/papers/t1960anadaptive.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptivesampled.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptivesampled.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
https://doi.org/10.2307/2371268
https://ebookcentral.proquest.com/lib/ethz/detail.action?docID=557164
https://ebookcentral.proquest.com/lib/ethz/detail.action?docID=557164


[88] D. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic
differential equations. SIAM Journal on Scientific Computing, 24(2):619–644, 2002.
https://doi.org/10.1137/S1064827501387826.

[89] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural
Networks, 94:103–114, 2017. https://doi.org/10.1016/j.neunet.2017.07.002.

[90] J. Zech, D. Dũng, and C. Schwab. Multilevel approximation of parametric and
stochastic PDEs. Technical Report 2018-05, Seminar for Applied Mathematics, ETH
Zürich, Switzerland, 2018. http://www.sam.math.ethz.ch/sam_reports/reports_
final/reports2018/2018-05_fp.pdf.

[91] J. Zech and C. Schwab. Convergence rates of high dimensional Smolyak quadra-
ture. Technical Report 2017-27, Seminar for Applied Mathematics, ETH Zürich,
Switzerland, 2017. http://www.sam.math.ethz.ch/sam_reports/reports_final/

reports2017/2017-27_fp.pdf.

84

https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1016/j.neunet.2017.07.002
http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2018/2018-05_fp.pdf
http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2018/2018-05_fp.pdf
http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2017/2017-27_fp.pdf
http://www.sam.math.ethz.ch/sam_reports/reports_final/reports2017/2017-27_fp.pdf


 
 
Declaration of originality 
 

respective electronic versions. 
 
Lecturers may also require a declaration of originality for other written papers compiled for their 
courses. 
__________________________________________________________________________ 
 
I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it 
in my own words. Parts excepted are corrections of form and content by the supervisor. 
 
Title of work (in block letters): 

 

 
 
Authored by (in block letters): 
For papers written by groups the names of all authors are required. 
 
Name(s): First name(s): 
   

   

   

   

   

 
With my signature I confirm that 

 I Citation etiquette
sheet. 

 I have documented all methods, data and processes truthfully. 
 I have not manipulated any data. 
 I have mentioned all persons who were significant facilitators of the work. 

 
I am aware that the work may be screened electronically for plagiarism. 
 
Place, date Signature(s) 

   

   

   

   

   

  
 For papers written by groups the names of all authors are 

required. Their signatures collectively guarantee the entire 
content of the written paper. 


	Introduction
	Uncertainty quantification
	Monte Carlo simulation
	Deterministic methods

	Deep learning
	Neural networks
	Non-residual feedforward neural networks
	Training
	Deep learning literature on approximation theory and on solving PDEs numerically

	Theorem 4.8 from SZ123
	Notation
	General notation
	Index set F
	Parameter space U
	Parametric functions

	Outline

	ReLU neural network calculus
	Formal description of non-residual feedforward ReLU neural networks
	Assumptions on the architecture and notation for networks with such architecture
	Construction of networks from subnetworks

	ReLU DNN approximation of products
	ReLU DNN approximation of products of multiple factors

	ReLU DNN approximation in H2H10((0,1)2)
	Continuous, piecewise bilinear interpolation in H2H10((0,1)2)
	ReLU DNN approximation of continuous, piecewise bilinear functions on (0,1)2
	Convergence rate of a family of ReLU DNN approximations of functions in H2H10((0,1)2) in terms of the network size

	Properties of the Taylor gpc approximation of the solution map of a parametric diffusion equation
	Properties of the non-parametric diffusion equation
	Properties of the parametric diffusion equation
	Weighted summability of the H1-norms of the Taylor gpc coefficients of the solution map
	Weighted summability of the H2-norms of the Taylor gpc coefficients of the solution map

	ReLU DNN approximation of the solution map of a parametric diffusion equation
	Discussion and directions for further research
	Discussion of Theorem 5.1
	Alternatives for the ReLU DNN approximation of Taylor gpc coefficients
	More efficient ReLU DNN approximation of the full grid continuous, piecewise bilinear interpolants introduced in Section 3.1
	Anisotropic sparse grid-based ReLU DNN approximation

	Generalisations of the choice of domain
	Generalisation of Theorem 5.1 to (0,1)d for d>2
	Generalisation of Theorem 5.1 to general polygonal domains

	Generalisation of the parametric PDE theory in Section 4

	Properties of concatenations and parallelisations
	Proofs
	Proof of Lemma 2.3
	Proof of Proposition 2.12, Steps 3–5
	Proof of Proposition 2.14, Step 3
	Proof of Lemma 3.2
	Proof of Lemma 4.3
	Proof of Lemma 5.3
	Proof of Proposition 5.1, Step 4


