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1 Introduction

An emergent behaviour of a system appears when a number of simple system
components interact with each other to create more complex behaviour as a
collective. Examples of emergent behaviour are found in stock market, language
evolution, flocking and swarming of animal species like birds and fish. Such
behaviour of a system is hard to predict. This is mostly due to the fact that the
number of interactions between components of a system increases exponentially
with the number of components.

A simple model for a flock of birds was proposed by Cucker and Smale [1]. A
population of birds moving in R? and influencing each other depending on the
distance between them was considered. The velocity of each bird was adjusted
by adding to it a weighted average of the differences to the velocities of other
birds. Moreover conditions on the initial state, namely positions and velocities
of birds, were established under which the flock converges to one in which all
birds have the same velocity. Additionaly, a similar model was provided which
describes language evolution in primitive societies.

The goal of this paper is to validate these models by performing computer
simulations. In Sections 2 and 3 we introduce mathematical models for the
evolution of a flock of birds in continuous and discrete time. Section 4 introduces
some preliminaries which are important for the analysis of convergence theorems
in continuous and discrete time described in Sections 5 and 6. Finally the
mathematical model and verification of the convergence theorem of the language
evolution is discussed in Section 7.

2 Continuous Modél

In the following we consider the population of birds in R?, where d € N is the
space dimension. Usually d is chosen to be 3. Each bird ¢ has a position and
a velocity at time ¢ given by z;(t) € R? and v;(t) € R%. The entire flock of k
birds is then described by the vector of positions x € (R?)* and the vector of
velocities v € (R)¥. Let a;; be a weight that quantifies the influence of the bird
1 on the bird j which is given by

aij = n(le: - ;)%), (2.1)

where 7 : Ry — R, is a monotonically decreasing function

K
S — 2:2
") = Gy gy (2.2
with fixed values for K € R, 0 € R, 0 > 0 and § € R, > 0. This function
describes the influence of bird i on bird j depending on the distance between
them, see Figure 1.
The change in velocity of bird i is modeled as a weighted sum of differences



to velocities of other birds, which can be formulated as

k .
1,)i(t) = — Z aij(vi(t) — v;(t))

II

k
Zaw v (t Z ai;v;{t)) (2.3)

= —[Dmv( i + [Aq ( )]
= —[Lzv(B)]:.

Here A, € R*¥** is a weighted adjacency matrix, D, € R*¥** a diagonal matrix
with the ith diagonal entry given by qu a;; and L, the Laplacian of the
matrix A,, given by

L,=D,—A,.

The multiplication of A, € R*** with v € (R%)* is a usual matrix-vector
multiplication whereas the elements of v are in R¢.

The model for & birds is given by a system of differential equations, which
describe the evolution of a swarm in contmuous time,

- Lo, (2.4)

It is known that L, satisfies the following conditions, see the Section 2 in [1].
a) Yug € R% and v = (vo, vp, ..., v) € (R4)*, Lov=0.

b) If Ay,..., \x are eigenvalues of of Ly, then 0 = A\ < Ay < ... < Ak =
L] -
c)
vo,u € (RY*,  (Lv,u) Z aij (Vi — vj, u; — uy) (2.5)
i,=1

Since we want to analyse the interaction between birds depending only on
their relative positions and not on the exact spatial positions, it is useful to
transform our system into a center of momentum frame. This can be done by
defining corresponding spaces as follows.

Let A be the diagonal in (R%),

A= {v = (vo,vg,...,v0) € (R vy € R%}
and Al the orthogonal complement of A,
k
L= {v e R (v,u) = 0Vu € A} = {v € (RY)*] > v =0eR%.
i=1

Then every point z € (R%)* can be uniquely decomposed as £ = z +2x, where
za €A and z) € AL, ~
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Figure 1: Neighborhood function 7(y) for different pararrieters o and (. In the
left figure 3 is varied. Large S-values decrease the distance of influence between
neighbors. In the right figure o is varied. o represents the minimal typical
distance between neighbors.

Proposition 2.1. Let z(t),v(t) be two functions Rt — (RY)*, which can be
decomposed as x(t) = za(t) + o (t) where za(t) € A and 1 (t) € AL. Simi-
larly v(t) is decomposed as v = va(t) + vy (t) where va(t) € A and vy (t) € AL,

(z,v) solves the system (2.4) is equivalent to (x1,v1) and (xa,va) solve the
restricted systems

TL=UL (2.6)
91 =—Lz, vy '
and
Ta =
s (2.7)
va = 0.

Proof. Consider v, ,z, to be a solution of (2.6) with initial conditions v, (0) €
AL,z (0) € AL. First check that z (),v. (t) € AL, as claimed.

- Using za,; = a,j, which follows from the definition of A, we see
o — 5]l = llwai +zri —za; —zil =ller: —2isl. (28)

Therefore a;; = n(||zi — z;]|°) = n(zL: — z1501°) = i1
= Ly =1L,

-0y = —Lg,v1 € At. From equation (2.5) it follows that (Lyv,u) = 0
for u € A. Therefore, L,y € AL for all z,v € (R%)*.

- As v, € At and v, (0) € At for all t, v; remains in AL.

. With the same argument, 2, remains in AL,
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Figure 2: domains for each point

For system (2.7), we observe that oo = 0 = —Lgva, which follows from (2.3)
since va € A. Therefore va () = va(0) = const and &a = va € A = za(t) €
A Vit

We define 9 := va +v1 and & := za + z, then (9, %) fulfills (2.4), because

d(za +z1)
dt
' =vA tvL =90

T = =ZA+T)

V=0a+0L =0— Lo, vy
= —Lyva —Lzvy = ~Lx(’UA -+ ’Ul)
=0
= —L,7.

"The solution of (2.4) is unique, therefore = &, v = 9. _ O

In order to obtain an intuition of the statement of Proposition 2.3 we present
a simple example.

Ezample 2.2 (1D Example). Let ¢ = (z1,72) € (R')? be a vector of two one-
dimensional birds represented by points. We can visualize them in a 2D plot, see
Figure (3), by setting the & axis to the domain where z; exists and the &y axis
to the domain where x5 exists, see Figures (2a),(2b) and (2c). The collection
of these points (e.g the swarm of two birds) is identified by a two-dimensional
vector z € R? Let A = {(u,v) € R%ju = v}. By projecting = onto AL, see
Figure (3), and decomposing z; in its components z 1,1 and 1 2 you can see in
(2d) that the distance between z 1,1 and = o remains the same as the distance
between z; and x3, see Figure (2¢).

This example shows the distances between individuals to be conserved by
projection onto orthogonal complement A+. This is also easy to see for general
d and k since (2.8).

3 Discrete Model

The evolution of (2.4) can also be considered in discrete time by applying explicit
Euler. We consider the approximate solutions 2™ ~ z(t,) and v™ = v(t,,) for
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Figure 3: Visualisation of both points in 2D space

tm = to +mA\t, where At is the step size and 0 < m < n, where n is number of
timesteps. The discrete model is obtained by discretizing the first derivatives
and solving for m + 1,

2™t = 2™ 4 Ato™

3.1
Um+1 = 'Um — Athm 'Um. ( )

The Laplacian matrix is the same as for the continuous model (2.4). Since
we are interested in relative differences between individuals only, the discrete
model as well as the continuous model can be transformed into the center of
momentum frame, which corresponds to the At space.

Proposition 3.1. Let (z,v) be a solution to system (3.1) and (zy,v.1) the

projection of (z,v) onto AL. Then (x1,v)) solves the system restricted to At
Pt = 2P + At (3.2)
’UT+1 = 'UT — AthT’UT ’

Proof. Each pair (z™,v™) can be uniquely decomposed into z™ = z}X + X
and v™ = v} + v}, . Therefore

gt gl = gl = B Ayt

€A eAtl
=z} + AtvR +aT + Aol
ea ezl
Due to the uniqueness of the decomposition, g™t = 2™ + Atv (and zRT =

21+ Atolt).
The same principle can be applied to the velocities:

VR T = o™ = ™ AtLmo™
——

€A eAl

= VR — AtLgmv} + 07T — AtLymoT .
—~ ——— ———
€A =0 eAat



Therefore UT'+1 =o7 — AtLIln o' with Lym = Lym.
: O

The discrete model (3.1) is the same model proposed by [1] for At = 1, given
by

'm“ =z + AtvT

m+1 —

m 7 m (3.3)
vy v — Lymul.

The model (3.1) can be transformed to (3.3) by scaling L™ in (3.1) such that
K = KA.

4 Some Preliminaries

Since we are interested in differences z; — z;,v; — vy, it is useful to define terms
for measuring these differences.
Let @ : (RY)* x (R%)* — R be defined as

k
Qu,v) = %Z(uz — Uj, Vi — Vj).

i?j

Q(u,v) is a symmetric bilinear form. If u,v are restricted to AL, then Q is
additionally positive deﬁnite and therefore defines a scalar product (-,-)g on
(RY)*. We define I := § S0 - ||a; — |2 = lzll3 and A := L 5°% - flo; — villg =
HvHQ. [(z) =T(z1) and A(v) = A(vy), since (2.8).

On a finite-dimensional vector space all norms are equivalent, therefore con-
stants v and 7 can be found such that, restricted to AL, it holds

vl < 115 < 7M. (4.1)

It was shown by Cucker et al. [1] that bounds for v and 7 are: v > 3 and
7 < 2k(k — 1) for d=3. We provide sharper bounds for v, 7 for arbitrary d.

Lemma 4.1. v =0 =k, i.e. ||-|[5 =k|-||? on AL.
Q 2

Proof. We give the proof for d = 1 in order to snnphfy the notation. The proof
for d € N,d > 1 is similar.

By rewriting (4.1) it follows v < ]:IL?I% = %”1’)’)’) In order to achieve a sharp

condition for v, the right term of the inequlity should be minimized:

_ Q)
V= mn .
veal (v,v)

(4.2)

For ai; =1Vi,j, Q(v,v) =(Lyv,v) in (2.5).
Finding the minimal eigenvalue of L, to the corresponding eigenvector v € AL
is equivalent to minimizing (4.2).

k 1 -1

Consider the matrix L, = D, — A, = -1 : .. : |, where




Ly, Ay, Dy € RF®F,
The matrix A, is symmetric and thus diagonalizable. k is the eigenvalue of A, to
1 1 -1 1 1

the eigenvector v € A,v = . |, since . =k

1 1 - 1 1 1

All other eigenvectors © are orthogonal to v, so Zle ¥; = 0. The equation
A, = M is only fulfilled if A = 0 V.
The eigenvalues of L, = k- Id —A, are 0 = k — k and k = k — 0. By restricting
ourselves to AL, we obtain that k is the minimal and the maximal eigenvalue
of L. Therefore v = min(A(L;)) = k and 7 = maz(A(Lg)) = k.

O

5 Convergence in Continuous Time

In order to simplify notation, we denote the solution (x,v,) of (2.6) at time
t € Rt as a(t),v(t) € Al. z(t) determines the adjacecy matrix Ay, the
Laplacian L, and I'(z(t)) at timepoint ¢, which we denote as A(t), L(t), ['(¢).
Likewise v(t) determines A(v(t)), which we will denote as A(t).

It is useful to introduce the Fiedler number ¢; as the second smallest eigenvalue
of L;(t).

Theorem 5.1. Let (z(t),v(t)) be a solution of (2.4) for d = 3. Assume that

2
ai; = n{llz: — z;°) (5.1)
where n: Ry — Ry is a monotonically decreasing function

K

n(y) = e

for some constants K,o > 0,3 > 0. Assume that one of the following initial
conditions holds.

i) B<3
i) B=1 and A0) < K
1 28 7\ 2 1
i) B> L and [(5)7 — ()7 11(Sy) 7 > 200).
Then

- A(t) = 0 when t — oo
- there exists & € At such that z(t) — & when t — oo

Theorem 5.1 was introduced as Theorem 2 by [1] and proved for d = 3.
Moreover, it was proven that

A(t) < A(0) e™ 2% (5.2)

for ®; = m{%n}cﬁr, Vt > 0, which shows exponential convergence of A(t).
7€(0,



We carried out several simulations in order to evaluate the model proposed
by F. Cucker et al. and to show the validity of Theorem 5.1.

The birds were uniformly distributed in a three dimensional space with a
chosen maximal distance from each other, see Figure 4. The same was done
for the velocity of birds. The different initial conditions were chosen by varying
the initial velocities. For the remainder of this section we will present testcases,
where the main modeling parameter 3 and the variance of the initial distribution
of velocities and positions are varied. The parameters were selected to be K =
0.0029,0 = 1, T¢,q = 1000.

postons alt=00 velootas al1 =00

postons all=00 veloctes al1=00
05 004 05 4
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(a) Variance in velocity 0.05 (b) Variance in velocity 6

Figure 4: Initial positions and velocities of birds in AL. The positions of birds
are centered around 0 with a variance of 1. The velocities of birds are chosen
to be different in both figures. The velocities are again centered around 0 with
the variance of 0.05 in the left figure and 6.0 in the right figure.

We first discuss the case 3 < 1/2, namely 8 = 0.1. After the simulation of
(2.4) the velocities in AL of all birds with the initial variance of 0.05 as well as 6.0
converged to 0, see Figures (8a),(8b). Figures (8c) and (8d) show the evolution
of A in time. For both initial conditions we observed exponential convergence
of A(t). It is easy to derive the convergence of [[v(t)||,, ||z(t+ 1) — z(t)||, and
l(t +1) — z(t)|| o, namely

@l = L o)l = /A2

1 s 1 1 s
S o(s)as], < JH Ios)dsly = i/ 2as,

et +1) 2@l = |
and

et +1) = 2(®)ll = “ff“v(s)dsHQ < [ /A(s)ds.

Figures (5a) and (5b) show exponential convergence of velocity and change of
positions in @Q-norm and in the Euclidean norm. In Figures (8¢) and (8f) the
evolution of the Fiedler number is presented. If the Fiedler number ¢t > 0is
bounded away from zero, then the convergence of A(t) is certain because (5.2)
holds.

The summary for the cases 8 = % and § > %, namely § = 1.2, is given in
Figures (9) and (10). For the variance in initial velocities of 0.05 similar results
as for the case 8 < % are obtained, in fact A(t) converges to 0 and the positions
of birds converge to a fixed value. However, in the case where the variance
of intial velocities is 6.0, convergence of A(t) is not observed. The birds flew
apart as can be seen in Figures (9b) and (10b). The lower bound for ¢; is not



o Evuicn of velorties mazsired inthe 2-porm & Exohation of posticns massred in the 2-rom , Evolon of velocties massured in the 2-norm , Evohgion of postions measured i tha 2-roem
30° 1 16° 10°

Ivit 3
3
[
3
e Il

[ E) 100 150 ° ) 100 150 o 0 0 0 0 o T a0 aw | w0
tme ma

. Excisonol pastens iniha Qmnom ,  Evohsonof posors intha Q-am

3
T = Xt
3

3,

P O ——| ) S ———

[ £ 100 =0 . [ 1 o a0 &0
(a) Evolution of e, and (b) Evolution of fle(t)ll, and
lz(t + 1) — z()ll, lzt+1) —2@®llg et +1) — 2@l +1) —2(@)lq
for variance = 0.05 in intitial velocity for variance = 6.0 in intitial velocity
Figure 5

identifiable in Figures (9¢) and (10e). In all discussed cases for # = % and 8 > %
the conditions of Theorem 5.1 are not fulfilled.

Furthermore, the model {2.4) with § = 0.7 was tested for convergence, even
though the conditions in Theorem 5.1 are not fulfilled. In Figure (6) we var-
ied the variance in initial conditions for velocities. In the upper figure the last
Fiedler number ¢, was plotted. Moreover, the Fiedler numbers ¢r,,, for
which the .constrains of Theorem 5.1 are violated are highlighted by pink cir-
cles. The center figure depicts the slope of the last Fiedler numbers ﬂ%%_é. If

51—11%%—93 > 0 the convergence of A(t) is assured, otherwise it is not clear whether
the Fiedler number is bounded or not. In the bottom figure, A(T.nq4) is pre-
sented and the A(Tenq) for which convegence is observed are highlighted by blue
circles. An identical procedure was carried out for the variation of initial dis-
tances between birds whereas the initial variation of velocity was set to a fixed
value 0.006, see Figure (7). We could observe the conditions in Theorem 5.1 to
be too pessimistic and model (2.4) to converge often even if the conditions of
the theorem were not fulfilled. Another observation is that the initial velocity
determines the behaviour of a swarm more critically than the initial distances
between birds. The model converges mostly for small variations in velocity and
the variations in distance do not have a pronounced effect on convergence. Even
for large differences in the initial positions, as in Figure (7), convergence can be
observed.
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Figure 6: Summary of results for the continuous model for the variation initial
variance in velocities denoted by vel.
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Figure 8: Summary of results for # = 0.1 for the continuous model. The left
figures present the results for the initial variance in velocity of 0.05. These
simulation results are compared to results when the initial variance in velocity
is 6.0. These are presented on the right. Both results are similar, convergence
is observed for both initial conditions.
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Figure 9: Summary of results for 3 = 0.5 for the continuous model. Like in
Figure (8) the simulations results for initial velocity variance of 0.05 and 6.0 are
compared. Convergence for the latter is not observed.
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(d) Evolution of A(t) for variance = 6.0 in
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The

simulation results are similar to these presented in Figure (9).
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6 Convergence in Discrete Time

The theorem and the proof for evolution in discrete time was provided by (1] as
Theorem 3.

Theorem 6.1. Let (x,,v,) be a solution of (2.4) for At = 1. Assume that

2
ai; = n(llz: — ;%)
where n: Ry — Ry is a monotonically decreasing function
W)= S
ey

for some constants K < ﬁ, o >0,8>0. Assume that one of the following

inetial conditions holds.

i) <3
i) B=1% and llvolly < —‘/—g—&
ii) B> 1 and

CORSON

Here, a = 283,V = ||v(0)||,,a = ”‘\/'—E“I‘(“/() and b= \/EHJ:(O)HZ + 0.

} >k <v02 + 2Vp((crm) ot — 02)—%) +b.

Then
- No@Em )| — 0 when m — oo
- there ezists & € AL such that z(t,,) — & when m — oo

The claim of this theorem is the same as in Theorem 5.1, but the conditions
for convergence are different. This theorem is true for At = 1, i.e. for the
system

:L.m+1 — pm + ,ﬁm

,D'm+1 =™ _ me,ﬁm,

which corresponds to the discrete model in [1] with At = 1.

In order to apply this theorem to the model in [1] for arbitrary At , this
system should be transformed in the following way: 9™ = v™At. This results
in the following system

g™ = g™ 4 Aty™

v = ™ [ ™,

In order to apply this theorem to system (3.1) the transformation K = AtK ,
in addition to the previous transformation, should be done.

The simulation results for discrete model (3.1) for At = 1 are presented in
Figures (13), (14) and (15). The results are very similar to the ones for the
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continuous model. A very small difference is visible for the case 8 = %, see
Figure (14). Still no convegence is observed, but the divergence of the birds’
positions is twice as slow.

We also tested when the conditions in Theorem 6.1 are fulfilled for different
initial conditions on the maximal distance and maximal velocities difference
between birds. The results are presented in Figures 11 and 12.

Last Fiedler number for the discrete model for different initial velocities and dist = 1

10 T T T = T T T
2107 | - e .
= Last Fiedler number °m,d . \\,*\k\‘
Fiedler number Oend with violated conditiory
10“0 T T I 1 1 1
10° 107 10° 107 10” 10° 10' 10°
vel
x 10~ Slope of the last Fiedler number for the discrete model for the initial velocities and dist =1 :
04 o e , ;
3 osf |
£
¥
g % g
15 | L | L Tttt
107 107 10° 102 10" 10° 10’ 10°
vel
10° . aa— . . T .
S A(tmd) after the simulation .
g o | o A(lend) < 1e-3 after the simulation| o |
<
G ——— o=
10*50 1 1 L 1 L 1 "
10° 107 107 107 10” 10° 10’ 10°

vel

Figure 11: Summary of results for the discrete model for the variation initial
variance in velocities denoted by vel.
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Last Fiedler number for the discrete model for different initial distances and vel = 6.00e-03

10 T T T T T T
4 3 3 % ——%—g
% 107 .
o 10" TastFiedler number $ona W T
Fiedler number - with violated conditiory
10‘4 T T I 1 1 1
107° 107 10° 102 107 10° 10' 10°

dist
Slopgof the last Fiedler number for discrete model for different initial distances and vel = 6.000000e-03
0 t 4

dlogPhi/dt

®

T T
———— A after the simulation -
© A & 1e-3after the simulatio

— —e—

107 107 107° 107 107 10° 10' 10
dist

Figure 12: Summary of results for the discrete model for the variation initial
variance in positions denoted by dist.
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(c) Evolution of A(ty,) for variance = 0.05 in
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(b) End positions and velocities for variance
= 6.0 in initial velocities. Velocities con-
verged to 1016,
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(d) Evolution of A(ty,) for variance = 6.0 in
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(f) Evolution of Fiedler Number ¢;,, for
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Figure 13:. Summary of results for § = 0.1 for the discrete model. The results

are similar to the ones in Figure (8).
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(d) Evolution of A(t,) for variance = 6.0 in
initial velocities. Exponential convergence
of A(tm) is not observed. Moreover, A(ty)
did not turn to 0.

Evaluton of the Fiedier Numbsr ¢,

< 107

200 30 400 500 600
tms

o 100 700 800 0 1000

(f) Evolution of Fiedler Number ¢, for
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Figure 14: Summary of results for 3 = 0.5 for the discrete model. The results

are similar to Figure (9).
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Figure 15: Summary of results for # = 1.2 for the discrete model. The results

are similar to Figure (10).
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7 Language Evolution

Another intriguing topic which can be simulated with a similar model is the
evolution of languages. We again consider the model proposed by F. Cucker et
al. [1]. The linguistic population consists of k agents in R%.

Let Z = {21, 22,...,2-} C R" be a set of objects, p, : Z — [0, c0] an impor-
tance function and Y = R™ the space of sounds, where y = (y1,¥2,...,¥n) €Y
are the frequences of a sound. A composition of sounds ¥ is the linguistic rep-
resentation of an object. The importance function p, assigns to each object the
corresponding weight. Then f: Z — Y is the language function, which assigns
to each object its linguistic representation. So we consider the language as an
element of the space H = {7 € (R™)"}.

For the evolution of languages we consider k agents speaking k different
languages evolving in time. At time ¢ the state of a population is given by
(z(t), F(t)) € (RY)* x (H)*. In contrast to the previos models described in
Sections 2 and 3, the functions z(t), F'(¢) do not belong to the same space.

The language model is given by

(7.1)

L, € Rrkxnrk ig again a Laplacian of a matrix A, given by as; = n.(||z; — z;]|°)
for a distance function 7, : Rt — R¥ defined as in (2.2). Similarly Lr €
Rék*dk s a Laplacian of the language adjacency matrix Ar given by ayj =
nu (|| F; — Fj|3) where ng : Rt — R* is a monotonically decreasing function,
again defined as in (2.2). The distance between two language functions f,g ¢ H
is defined by [2] as '

I = gllir = | D UFG) = g(a)l3 pa(22)

which corresponds to a weighted Eucledian norm.

The interpretation of the model is the following. Agents tend to move to-
wards other agents with similar languages in order to be able to communicate.
This is described by the first equlation of 7.1. The second equation describes
language evolution itself because of the influence from other agents’ languages.
Therefore, the linguistic distance diminishes.

Like in the simulation of flock formation of birds, we are only interested in
relative differences in agents’ positions and languages, therefore we transform

the model into a centér of momentum frame. A(z), A(F) can be similarly defined
as

k
1
Alz) = Q(z,z) := 5 Y & — a4l
2”,

where z; € R and

k
A(F) = QR F) i= 5 S IF: ~ By,
2]
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with F; € R"". The Fiedler numbers ¢, ¢ are the second smallest eigenvalues
of L, and Lp.

Theorem 7.1. Let 1, : Rt — R* and 5y : RY — Rt be monotonically
decreasing functions, then the state (x, F) tends to a fived point in (R? x H)*
for t — oo, such that A(z(t)) — 0 and A(F(t)) — 0.

Theorem 7.1 was inroduced and proved as Theorem 4 by [1]. As was shown
in Section 5, the convergence of A(x(t)) and A(F'(t)) turns out to be exponential
if the Fiedler numbers ¢, ¢ are bounded away from zero.

We simulated the system (7.1) for different parameters. We chose r =
10,p21 = pz2 = ... = py10 = 1 and d = 2 since we consider agents living in
a two dimensional space. For simplicity we chose the number of possible sounds
n to be 1,2 or 4 and varying number of agents k, namely k = 5,10,20. The
agents were placed randomly with a maximal distance of 50 from each other.
The language of each agent were also chosen randomly with a maximal differ-
ence between them set to 30, the simulation time was set to 75 and the model
parameters to K = 1,8 = 1,0 = 1. Therefore, both neighborhood functions
are identical. The simulation results for n = 1,k = 10 are presented in Figure
(16). In the upper left figure the convergence of 10 agents to a fixed point is
observed. The upper right figure demonstrates the convergence of the word
which represents one of the objects. The evolution of the two Fiedler numbers
¢z and ¢F is presented. The bottom figures show the evolution of A(z(t)) and
A(F(t)). After a certain time values of A(z(t)) and A(z(t)) approach zero. The
time for A(xz(t)) and A(F(t) to reach 10716 is the same as the time for both
Fiedler numbers to converge to a fixed value.

The figures for other parameter combinations of n and k look very similar
to Figure (16). The convergence of agents and their languages could always be
observed. The only difference was the time needed to converge to a fixed point,
see Figure 17. An increasing number of agents leads to a faster convergence.
There is no clear conclusion in the convergence for increasing values for n.

8 Conclusion

In the present work we studied the models for the flock formation and language
evolution proposed by [1] and [2]. We simulated continuous and discrete models
for flock formation and tested the convergence propositions of Theorems 5.1
and 6.1 for different values of 4. Simulations verified the theorems in case of
the fulfillment of these conditions. We discovered that the conditions for the
convergence of a flock are too pessimistic. Different cases were presented for the
convergence of the flock in case where conditions were not fulfilled. Additionaly
we could observe the convergence of a flock to depend on the differences in
initial conditions more critically than it does on the initial distances between
the birds.

We performed simulations for language evolution in primitive societies for
different number of agents, objects and sounds used to Tepresent these. The
convergence of different agents and languages was observed throughout.

The theorems proposed by [1] were successfully validated with computer sim-
ulations. As flock formation is an interesting research area which can be applied
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to different dynamic systems with emergent behaviour, further improvements
of the sharpness of the conditions are essential.
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