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2-weakly isotropic spherical random fields are defined and analyzed, especially 2-weakly
isotropic Gaussian spherical random fields. The connection between the angular power
spectrum, the path regularity and the integrability of these fields is in particular investi-
gated. Expansions of realizations of these fields into spherical harmonics are a key tool in
the analysis. One application of this is the discussion of the stochastic heat equation with
additive 2-weakly isotropic (Q-Wiener noise. Unique solvability and Hoélder regularity of
second order, elliptic partial differential equations on the sphere with log-normal, 2-weakly
isotropic coefficients will be discussed. Here, existence, uniqueness and integrability of the
random solution and Hoélder norms of its realizations with respect to the Gaussian measure
are established by tracking the constants through the Schauder estimates and employing
Fernique’s theorem. Here, the connection between the angular power spectrum and path
regularity of the solution will be seen.
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1. Introduction

In this project we introduce the notion of a 2-weakly isotropic spherical random field which
is in some sense invariant under the action of SO(3). We briefly summarize the spherical
harmonics, its real version and some useful properties of these as orthonormal basis of
L?(S?%,R) and as diagonalizing sequence of the spherical Laplace operator Agz, where S?
denotes the unit sphere as a subset of R3. The discussion of the spherical harmonics enables
us to establish a spherical expansion of 2-weakly isotropic spherical random fields which
exists in L%®dU(Q x 2 R) and in L% (€2, R) sense, where (2,4, P) is a probability space
and do denotes the Lebesgue measure on S2. This is the first main result.

Theorem 1.1. For a 2-weakly isotropic spherical random field T there exists an expansion
in the spherical harmonics (Y, : 1> 0,m = —1,...,1) in L%®dJ(Q x S% R) and in L% (), R)

l
T= Z Z al,myrl,m-

>0 m=—1

For a 2-weakly isotropic spherical random field the coefficients of the spherical expansion
(am 1 > 0,m = —I,...,1) are pairwise uncorrelated and define the positive sequence
(C;:1>0), which is called the angular power spectrum in the following way:

Cro1,00m,m: = Elagmay mr].

The notion of a 2-weakly isotropic spherical random field can be combined with the Gaussian
distribution on L%(S% R) to form a Q-Wiener process W = (W(t) : t > 0) with given
angular power spectrum. Then we can formulate the stochastic heat equation with 2-weakly
isotropic Q-Wiener noise W

X(t) :X(0)+/Ot Ag2 X (s)ds + W (t). (1.1)

The property that the noise is 2-weakly isotropic will be the key to a solution formula in
the discussion of this problem. An implementation with MATLAB of the obtained solution
to Equation (1.1) can be found in Appendix B.

With the first result Theorem 1.1 at hand, we develop further properties of 2-weakly
isotropic Gaussian spherical random fields. After a slight generalization of the Kolmogorov—
Centsov continuity theorem to random fields, we provide sufficient conditions for 2-weakly
isotropic Gaussian spherical random fields to have a Holder continuous modification. This
is the second main result.

Theorem 1.2. IfT is a 2-weakly isotropic Gaussian spherical random field, such that the
angular power spectrum fulfills that (Cj1'+° : 1 > 0) is summable for 6 € (0,2], then for all
v € (0, g) there exists a y-Holder continuous modification of T



Since a modification of a 2-weakly isotropic spherical random field is also 2-weakly isotropic,
Theorem 1.1 and Theorem 1.2 provide the existence of a continuous 2-weakly isotropic
Gaussian spherical random field. The first five chapter of this exposition were developed
in parallel to a recent paper by Lang and Schwab [20]. Up to this point these results can
also be found in this paper by Lang and Schwab. However the development of the results
in this exposition follows a different, independent and more elementary approach.

In the following we are interested in higher order regularity of a continuous 2-weakly
isotropic Gaussian spherical random field 7. In Chapter 6 we develop conditions on the
angular power spectrum of 1" such that 7" is P-a.s. a member of a Sobolev space, i.e. weak
partial derivatives of T up to ¢ order are P-a.s. in L?(S%,R) if the angular power spec-
trum satisfies that (C;I172* : [ > 0) is summable for an integer ¢ > 0. In the case of Hélder
continuity, we observe that 2-weakly isotropic spherical random fields are generally P-a.s.
in L2(S%,R) and the angular power spectrum satisfies that (Cl : [ > 0) is summable. When
this condition can be strengthen by adding § € (0,2] to the exponent of the weight, i.e.
(CyI™9 : 1 > 0) is summable, we achieve Holder continuity. This concept can be generalized
to weak derivatives as the next theorem shows.

Theorem 1.3. If T is a continuous 2-weakly isotropic Gaussian spherical random field,
such that the angular power spectrum satisfies that (C)I' T2+ . | > 0) is summable for
§ € (0,2] and some integer v > 0, then T € L%, (Q,C*7(S?)) for all p € (0,00) and all
v€(0,%).

We will give an elementary proof of this result and will find a second approach, which relies
on successive application of elliptic regularity.

In engineering and scientific applications log-normally distributed spherical random fields
are important and are introduced in Chapter 7. They are denoted by A and will be defined
through Gaussian spherical random fields, i.e. for a Gaussian spherical random field T" we
define A = exp(T). We are able to transfer the regularity results on Gaussian spherical
random fields to the log-normal case. The regularity of log-normally distributed spherical
random fields is the important ingredient to consider in Chapter 8 elliptic partial differential
equations on the sphere with a 2-weakly isotropic log-normally distributed coefficient, i.e.
we consider the problem to find u such that

—V52 . (AVSQU) == f (12)

for a given deterministic and sufficiently smooth right hand side f. We recapitulate the
Schauder theory and analyze the precise constants in the Schauder estimates. With these
estimates we will be able to deduce higher regularity of the random solution . The regular-
ity of u is governed by the regularity of the 2-weakly isotropic log-normal spherical random
field A, which is implied by the decay of the angular power spectrum of the underlying
continuous 2-weakly isotropic Gaussian spherical random field.

Theorem 1.4. Let A be a 2-weakly isotropic log-normal spherical random field, that results
from a continuous 2-weakly isotropic Gaussian spherical random field, whose angular power
spectrum. satisfies that (CHI'T240 = 1 > 0) is summable for some 6 € (0,2] and some
integer « > 0. For all v € (0, g) there exists a unique solution u € LE,(Q,C*T17(S?)) of
Equation (1.2) for all p € (0,00).

The appropriate setup and formulation of these four theorems will of course be made precise
in the following exposition.
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2. Review of Peter—Weyl theory on the
sphere

In this chapter we discuss some important tools from harmonic analysis. Before we get
started we introduce some notation. For k € N the Euclidean norm on R* is denoted by
| - |lgx and the inner product by (-,-)gr. In the case k = 3 the subscript index R?’ will be
omitted. For k € N the components of elements in R¥ will be denoted by subscript indices,
le.z = (x1,..., xk)T. The Kronecker delta for two integers [ and m is defined by d;,, = 1 if
I =m, d;,, = 0 else. For a complex number z, the complex conjugate of z is denoted by Z,
the real part is denoted by R(z) and the imaginary part by Z(z). The sphere as a subset
of R3 is denoted by S%? = {z € R3 : ||z|| = 1}. We will use the following convention of the
spherical coordinates on the sphere for (6, ¢) € [0, 7] x [0, 27)

x1 sin(6) cos(yp)
xo | = | sin(f)sin(p) |,
x3 cos(6)

for 6 € {0, 7} we set ¢ = 0. The metric d on S? induced by geodesics is given by

d(z,y) = arccos({z,y)),

for 2,y in S2. In our coordinates this reads
d(z,y) = arccos (sin(6) sin(fy) cos(¢z — @y) + cos(8:) cos(y)) . (2.1)

The Lebesgue measure on the sphere is denoted by do(x) = sin(f)dfde. The function
space of square integrable functions from S? to the complex or real numbers is denoted by
L% (S%,C) and L?_(S? R). The usual norms in these spaces are denoted by || - HLﬁ (52,0)
and || - || L2_(S%R)" In cases of other domains or measures the notation will be a(ifapted
accordingly. In the case of the Lebesgue measure do on the sphere the measure will be
omitted. Equality of functions is understood in the L? sense, if not otherwise stated. Finally
the special orthogonal group is given by SO(n) = {g € R™*" : g'g = I,,,det(g) = 1} for
n € N, where ¢ denotes the transpose of g in R™ ™ and I,, the identity matrix in R?*".
Basic knowledge of functional analysis and probability theory is assumed throughout the
whole text.

Lemma 2.1. For z,y, z,w € S? such that (x,y) = (z,w), there exists g € SO(3) such that

gr==z and gy=w.

Proof. The proof is done in two steps. First we consider only x and z. Proposition 2.12
of [21] with = ,G = SO(3) and X = S? directly says that there exists h € SO(3) such
that hx = z. We denote the image of y under the left action of h by § = hy.



The second step is to show that there exists § € SO(3), such that gy = w and gz = z, i.e.
g is in the stabilizer of z. This will give the claim of the lemma with g = gh.

To show the second step we may assume after rotation, that z = (l,O,O)T. Since action
by SO(3) preserves the inner product, the assumption about the inner product of the two
pairs gives

(z,y) = (hx, hy) = (2,9) = (z,w).

The evaluation of the inner products gives that the first components of 4 and w agree. This
implies that § and w lie on a circle with radius r = /1 — w% and are separated by some
angle 6. Since the stabilizer of z regarding the left group action under SO(3) is given by

we can take

1 0 0
g=10 cos(f) —sin(#)
0 sin(f) cos(9)
This gives the claim. O

The book of Marinucci and Peccati [21] contains a development of representation theory
for compact groups including the special case SO(3). They use the Peter—Weyl theorem
on SO(3) to deduce spherical Fourier expansions on the sphere S2. We will summarize the
needed material with a few definitions, lemmas and a theorem.

Definition 2.2. The associated Legendre polynomials Prln for integers 1 > 0, m = —I,...,1
and x € [—1,1] are defined by

—_1\ym m dl+m
) 5 (562

Pl(z) =

2 l
g =272 o (@7 = 1)

For the special case m = 0, the functions Pé for integers I > 0 are called Lengendre poly-
nomials. The spherical harmonics Y, for integers I > 0, m = —I,...,1 and (0,¢) in
[0, 7] % [0,27) are defined by

20+1 [(I—
Y (6 =4/ + m) > (cosf)e ime.
m+l

Theorem 2.3. For any T in L?*(S?,C) there exists the following Fourier expansion involv-
ing the spherical harmonics whzch converges in the L?(S%,C)-norm

!
T= Z Z al,m}/l,ma

>0 m=—1
%mzj'ﬂ>nm(Md>
S2
and for integers [,I' >0, m = —1,...,l and m' = —U,...,l" it holds that

/xwl Vi (@)d0 () = 810 -
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Proof. The first claim is stated as Proposition 3.29 in [21] and the second claim is stated
as Equation (3.39) in [21]. O

For real-valued functions, we wish to have a real version of this expansion. Moreover we
want to establish relations between the real and complex coefficients. We will first define
the real spherical harmonics and the corresponding real coefficients and then prove the
needed properties as a corollary of Theorem 2.3.

Definition 2.4. The real spherical harmonics Yl,m and the real coefficients ay y, for integers
1 >0, m=—I,...,1 are defined by

V2R(apm)  m >0, V2R(Y,m) m >0,
tm = § a1 m=0, and Vi, =AY m=0,
—V2Z(ay ) m <0, V2I(Y, ) m <O0.

Corollary 2.5. For any T € L?*(S? R) there exists the following real Fourier expansion,
which converges in the L*(S?,R)-norm,

l
T = Z Z &l,mﬁ,mv

>0 m=—1
apm = / T(:E)Y/l’m(x)da(a:),
S2
and for integers 1,I' >0, m = —I,....,l and m' = —U',...,l', it holds that
/S2 ﬁ,m(li)ﬁ/,m/(l’)dﬂ(l’) = 5l,l’5m,m’-

Proof. The first part of the proof will be to show that span{ffl,m >
is dense in L*(5%,R). Since L*(S?,R) C L*(S?,C) with || - [[12s2c) = | - |
real-valued functions, T' can be seen as an element of L?(S?,C). For any T in L%(S?,C)
Theorem 2.3 already yields the complex Fourier expansion

l
T = Z Z al,val,m'

>0 m=—1

This means it is sufficient to show that the real Fourier expansion converges against the
complex one, i.e.

L 1 2
0= lim (T — g Y
Jim Z Z atmYim
=0 m=-1 L2(52,0)
l L l 2
= li Yim — a;mY] . 2.2
Jin (S5 =3 Y i 22
>0 m=—1 =0 m=—1 L2(52,C)
We attempt this with looking at the sums over m = —I,...,[ for a fixed integer [ > 0

individually and show that the difference vanishes, i.e.

l l
Z al,mY},m = Z al,in,m- (23)

m=-—I m=—1

Lukas Herrmann 9 ©



To show this, we apply two properties of the spherical harmonics. The first one is
Y m = (=1)"Y] _p, which follows from the definition and the second is @, = (=1)"a;, .
We quickly calculate the latter where we use that T is real-valued

i = [ T Vim@do(a) = [ T@in(o)do(o)

:/ T(x)Y) m(x)do(z) :/ T(z)(=1)"Y); —p(x)do(z) = (=1)"as,—m. (2.4)
S2

SQ

We apply these two properties in the next two steps on the way to prove Equation (2.3),

l l
> amYim = aioYio+ Y (aim(R(Vim) +iZ(Yim)) + @t —m(R(Y—m) + iZ(Yi,—m))
m=1

m=-—I

[
= a,0Yi0+ > (UmRYim) + at,—m(—1)"R(Ym)

m=1

+ al,mi-’Z(YE,m) - al,fmi(_l)mz(yvl,m))
l
= a Yo+ Y ((arm + @m)R(Vim) + i(arm — Gim)Z(Vim))-

m=1

We remark that for z € C, it holds z + 7 = 2R(z) and x — 7T = 2iZ(x) and leads to

l l
Z al,in,m = al,OH,O + Z (\/ER(al,m)ﬁR(}/l,m) - \/iz(al,m)\/iz(yi,m))
m=1

m=—1

We can apply Equation (2.3) to Equation (2.2) and then use the Parseval identity. Since
we choose T' to be in L2(S?%,R), we know that the sequence of absolute values of Fourier
coeflicients is square summable, thus the limit vanishes, i.e.

l L l 2 l 2
lim > D wn¥in =D Y Gm¥im =Jim ) > D anYim
L—o0 = — ’ ’ = — ’ ’ L—o0 i~ — ’ ’
70 m=— =0 m=— LQ(SQ,(C) 7L+1 m=— L2(527C)
l
= lim Z Z lagm|? = 0.
L—oo ’
I>L+1m=—1

This shows that span{Y;,, : 1 > 0,m = —I,..,1} is dense in L?(S?R), since for real-valued
functions || - [|p2(s2,0) = I - [ 22(s2.R)-

The second part of the proof is to show that the real spherical harmonics }Nflm for integers
>0, m= —I,...,1 are orthonormal. We fix [,I’ > 0 and start with the case m,m’ > 0.
We insert the definition of the real spherical harmonics into the expression and expand the
brackets to obtain that

/ T () Vi (2)dr ()5 = / (Vi () + Vi (@) Vi (&) + Y e (@)l (2)
SQ S2

2
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-3 /s (Vi (@)Y + Vi (@)Y gt + Yin ()0 (@) + Vi (@) Yo s (1) dor ().

2

We apply the already used relation Y;,,, = (—=1)"Y; _,, in order to use the orthogonality
of the spherical harmonics, which is stated in Theorem 2.3, on all four combinations. The
fact m > —m’ then gives

~ ~ 1 ’
/S2 }/l,m(gc)}/l’,m’ (:U)da(:z) = 2(/32(_1)m (}/l,m(x)}/l’,—m’ (x) + 1/l,m(x)i/l’,—m’ (:c))da(a:)
+ 25l,l/6m,m’)
= (= 1)™ 8106 —mr + Ot Gt = O G-

The case for m,m’ < 0 is treated similarly. We proceed with m > 0,m’ < 0. The same
steps as we performed in the case m, m’ > 0 give the result here as well. We start with the
definition of the real spherical harmonics and expand the brackets to obtain that

[ Vi@V @ot@) = 55 | (@) + T @) 0 0) = T (@) ()
= 57 | (Ve (@) + Vi)Y, (@)

L ()Y () = Vi (2) Yir e (2))do ().

The relation Y} ,,, = (—1)™Y) _,,, and the orthogonality of the spherical harmonics are used
to obtain that

/ Vi (2) Vi e (2)dor () = = / (1) Vi@ Yt (2) — Vi (2) Vi —r (@) ()
S2 52

21
+ 51,!’5m,—m’ - 5!,1’5m,—m’)
1
= ?i((sl,l’(sfm,fm/ - 5l,l’57m,7m/) =0.

This gives the claim. In the case m = 0 the real and spherical harmonics agree, that implies
the normalization. The orthogonality is also clear by Definition 2.4 and Theorem 2.3. [

For a given expansion in the real spherical harmonics, it is easier to perform manipulations
on the corresponding expansion in the spherical harmonics than on the real ones. That is
why it is useful to know how the complex coefficients a; ,, are expressed in terms of the real
ones aj .

Lemma 2.6. For T in L*(S? R) the complex coefficients aiy, for integers | > 0, m =
—1,...,1 can be obtained from the real ones a;, in the following way

1 /~ i
ﬁ(al’m — 10y, —m) m > 0,
apm = § G0 m =0,

(=1)"™ 5 (@, —m + iGm) m <O0.

Proof. The proof is similar to the arguments before. We simply fix an integer [ > 0 and
look at the sums over m = —I, ..., [ individually. We start with the expansion in the real
spherical harmonics and insert their definition in terms of the spherical harmonics,

l
Z C~ll,val,m— Zalm\/»R Yim)‘i_alOYvZO_‘_ Z alm\/>I l|m|)

m=-—I m=-—I

Lukas Herrmann 11 ©



l -1
Zd }/Zm"i_}/lm)"i_alomﬂ"i'zalm

m=—I

1
V2i

After we eliminated all complex conjugates of spherical harmonics due to the relation
Yim = (—1)"Y) _p,, we reorder the terms and obtain the claim:

! !
> @n¥im =D

m=—I m=1

(Y jm| = Y jm))-

(Yz m 4+ (=1)"Y) ) + a0Yi0

xw

1 _
+ Z ﬁ(_l) (al,,m—i—ml,m)Yl,m. O

In the next chapter we introduce isotropy, which is in some sense invariance under the
action of SO(3). The next lemma provides a decent tool for the next chapter, it discusses
a group action of SO(3) on L?(S?,C), the so called left reqular representation.

m=—I

Lemma 2.7. For T € L?(S?,C) and g € SO(3), the left regular representation D of SO(3)
on L?(S?,C) is defined by

D(g)T =T(g~").

This representation D is unitary. Furthermore D can be characterized on finite dimensional
subspaces of L*(S?,C) spanned by the spherical harmonics Y, ,,, for some fized integers | > 0
and varying m = —1, ..., 1, i.e.

l
D(g)YLm: l,m(g_l'): Z Dﬁn,m(g)}ﬂm
m/=—1

D! denotes a unitary matriz on the vector space CH+1,

Proof. To get familiar with representations, we check that this definition of D is actually a
representation. For g1, g € SO(3) and T € L?(S?,C) we obtain

D(g192)T = T((9192) ") = T(g5 'g; ") = D(g1)T (g5 ") = D(g1)D(g2)T.

For the rest of the proof we fix T'in L?(S?,C) and g in SO(3). To finish the proof of the
first claim, we check that the condition for D to be unitary is satisfied

ID(@)T 17 2(52.0) = 1T (9™ ) 2(s2,0) = /32 T(g™"2)[*do(x).

The transformation formula from calculus yields the claim, since the determinant of g is
one, i.e. det(g) =1,

ID@TO ey = [, 7@ detl)ldo(@) = [ 17(@)Pdote) = ITIxsn 01

Lukas Herrmann 12 ©



Thus D is a unitary representation of SO(3) on L2(S2,C).
For the second claim of the lemma we reference an auxiliary result. For any fixed integer

> 0and m = —I, ..., [21] contains the following relation as equation (3.44) for a unitary
matrix D! € C2H+1)x(2+1)

Yim Z D Yim
m/=—1

The matrix D! is unitary due to proposition 3.6 in [21]. This formula gives the claim, since
for the same [ and m by definition of D, it holds that

D(9)Yim() = Yim(g™")- O
There is another important non-trivial relation about the spherical harmonics.

Lemma 2.8. For z,y € S? and an integer | > 0, it holds that

l
Z 2)Yim(y) ZYzm Yim(y).

— m=—1

Po(<90 Y))

In the special case x =y € S? this yields

20+1
Z Yim(2)Yim (2) = = —.
T
m=—I
Proof. The first claim is stated as equation (3.42) in [21] with a proof below. They use the
notation P;, which is equal to Pé in this manuscript. For the second claim, we have to check
that P}(1) = 1. We start with the definition of the Legendre polynomials and compute the

first two derivatives in the definition

1 d 1 4t
! !
Po(1) = oA dx l( -1) = 301 dpl— 12:Ul(m -1
x=1 =1
1 di? , L , ) .
= o ez 2@ = )T+ 2270 = 1)@ - 1))
=1

We can already see a certain pattern. When we compute the next [ — 2 derivatives, the first
term of the above expression with the exponent [ — 1 will decompose into a sum of terms,
but each term will have (22 — 1) as a factor. They vanish after we inserted z = 1. A similar
argument applies to the term with exponent [ — 2. After we computed the [ — 2 derivatives
the only term without (22 — 1) as a factor looks like

1
Pi1) = wzl 1 =1

=1

For the second equality in the first claim we apply Definition 2.4 and the relation Y}, =
(—=1)™Y},_p, to obtain that

l l
Z Y/E,m(w)f/l,m Z 2 R(Yl m( )) + I(}/l,m(x))z(yi,m(y))) + Yz,O(w)YYl,O(y)

m=—1 m=1

Lukas Herrmann 13 ©



Also we obtain that
l

Z lem 1/lm ): Z (R(}/l,m(l'))n(m,m(y)) +I(Y2,m($))z(yi,m(y))) (2'6)

m=—1 m=—1

We already proved that Zin: Yi.m(2)Yym(y) is real-valued and therefore

l
Y V(@) R(Yim(y)) = R(Yim(@)I(Yim(y))) = 0. (2.7)

m=—1

We combine Equalities (2.5), (2.6) and (2.7) and conclude that

> Vim@)Vim®) = D Yim(@)Yim(y). O

m=—I m=—I

We introduce the spherical Laplace operator, which is also known as the Laplace—Beltrami
operator, as an operator on C°°(S?) in terms of our coordinates represented by (6, ¢) €

[0, 7] x [0, 2m)
1 0 0 1 92
A = sin(6) 90 (sin(8 )%) TS0 sin?(0) 0?2’

Equation (3.51) in [21]| together with the proof of Proposition 3.33 also in [21] yield that
the spherical harmonics fulfill the following eigenvalue relation with the spherical Laplace
operator

ASQYvhm = —l(l + 1)Y2,m-

Since the introduced real spherical harmonics are in either case a linear combination of
the spherical harmonics, they fulfill the same eigenvalue relation with the spherical Laplace
operator

Ag Y = —1(1+ 1)V, .

We introduce the spherical gradient V g2, which is also known as the Beltrami operator, on
C*>(S?). In our coordinates it reads

Ve == + p—
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where 6 and ¢ form an orthonormal basis of the tangent space at each point x € S2
represented by (6, ). In our coordinates they are given by

) cos(0) cos(p) — sin(¢p)
6 = | cos(9)sin(p) and o= cos(p)
—sin(0) 0

Note that the spherical divergence is also denoted by Vg2. For a smooth vector field X, it
reads in our coordinates
1 0 1 0

Vg - X = Sin(0) a—(sin(Q)Xg) +

—X
sin(f) 0p~ ¥

S8

where Xy denotes the f-component and X, denotes the ¢-component. This finishes the
discussion about the real spherical harmonics.
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3. Isotropic random fields on the sphere

In this chapter, we introduce the notion of spherical random fields and 2-weakly isotropic
spherical random fields. We also establish results on spherical expansions. For our analysis,
we introduce the probability space (€2,.A4, P). For a random variable X on (2,4, P) the
expectation of X will be denoted by E[X], whenever this is well-defined.

Definition 3.1. A set of real-valued random wvariables {T(z) : = € S%} on (Q, A, P) is
called spherical random field if

T:0x8* 3R

is measurable with respect to the product o-algebra A ® B(S?), where B(S?) denotes the
Borel o-algebra of S?.

The index set of a spherical random field might be omitted whenever this is convenient and
we will simply say spherical random field 1" without explicitly referring to the probability
space (€2, A, P). In the case of a different index set than S? which is also a Borel set and
such that the measurability property in the definition of spherical random fields is satisfied,
we will say random field.

3.1. Expansions of spherical random fields in the spherical
harmonics

The property of a random field to be n-weakly isotropic will connect the random variables,
which form a spherical random field.

Definition 3.2. For n € N, a spherical random field T is called n-weakly isotropic if the
following two properties hold. First, for all positive k < n and for all x € S? it holds that
E[|T(x)|¥] < 0o, and second, that for all g € SO(3) and for all z1, ...,z € S? it holds that

E[T(gx1) - T(gwg)] = E[T(x1) - - T'(x)].-

We will consider the case n = 2. Our first aim is to prove one main result about 2-weakly
isotropic spherical random fields, which was mentioned in the introduction. To prepare
ourselves we need a few lemmas about 2-weakly isotropic spherical random fields.

Lemma 3.3. A 2-weakly isotropic spherical random field T is an element of L?(S? R)
P-a.s. and an element of L3, . p(Q x S* R), i.e.

E[ y \T(:p)|2da(:c)} < oo.
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Proof. Since T is 2-weakly isotropic, for a fixed xg € S? the following mapping from SO(3)
to R is constant

g+ B[T(gzo)[].

According to Lemma 2.1, for every y in S? we can find a g in SO(3) such that y = gzo.
This means that the following map is also constant:

y = Bl|T(y)).

Now we can simply fix zg arbitrarily in S2, and because |T| is a non-negative function we
can apply Tonelli’s theorem and the property that S? has finite measure under do:

2 = X 2 o\xr) = X 2 o\xr Q.
B[ r@Piow)| = [ BT = (TP [ dot) <

This shows the second statement of the lemma. To see the first statement, we look at
the random variable [q, |T(x)|*do(x). Assuming that this random variable is infinite with
positive probability, would imply that the expectation is also infinite, since this random
variable is non-negative. This is a contradiction to the second statement which we just
proved before. O

Remark 3.4. The previous lemma implies in particular that the following random variables
are P-a.s. well-defined for integers 1 > 0 and m = —1, ..., 1:

arm = /52 T ()Y m(x)do(x).

Lemma 3.5. For a 2-weakly isotropic spherical random field T' the random variables aj m,
are uncorrelated for alll > 0 and allm = —1,...,1, i.e.

E[al,mal’,m’] = Clél,l’ém,m’a
where (Cy : 1> 0) is a sequence of positive numbers.

Proof. The main part of the following argument can be found in Chapter 5.2 of [21]. The
key idea is to use that the Legendre polynomials (Pé :1 > 0) form an orthonormal basis of
L?([-1,1],R).

Since E[T(z)T'(y)] = E[T(gx)T(gy)] for all ¢ € SO(3), we have the motivation to define
the real-valued function I'((z,y)) = E[T(x)T(y)]. T depends only on the angle between x
and y. This is determined by the inner product (x,y) which lies in [—1,1]. To see that T’
is well-defined as a function from [—1,1] to R, we take the points z,y, z,w € S? and pair
them such that (z,y) = (z,w). We need to show that I'((z,y)) = I'((2,w)). Lemma 2.1
says that there exists g € SO(3) such that gr = z and gy = w. So we can manipulate
I'((z,y)) using the 2-weakly isotropy property of T to obtain that

I'((z,y)) = E[T(2)T(y)] = E[T(92)T(9y)] = E[T(2)T(w)] = T'({z,w)).
The next claim is that I' € L?([~1,1],R). We introduce a reparameterization h of the

interval [—1,1] as mapping from [0, 7] to [—1,1]. It is defined by h(#) = (z,y(0)), where
x = (0,0,—1) and y(6) = (sin(#), 0, cos(f)). Note that the derivative of his b’ = (z,y(0)) =
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sin(f). We insert this reparameterization h into I' and obtain with the Cauchy—Schwarz
inequality

1 T T
24t = 2p! = €T 2sin
/ P(t)dt = /O P (1(6))2H/(9)d0 = /0 I((z,(0)))* sin(0)d6

-1

= /OWE[T(:I:)T(y(H))] sin(0)dé < E[|T(x / E[|T(y(0))|*] sin(#)db. (3.1)

To exploit the 2-weakly isotropy, we introduce the following matrix which is in SO(3) and
has the real parameter ¢

cos(p) —sin(p) 0
9(p) = | sin(p)  cos(p) 0
0 0 1

Note that

sin(f) cos(p)
9(p)y(0) = | sin(6) sin(p)
cos(0)

We insert g(¢) into the second spherical random field which is inside the integral in the
right hand side of Equation (3.1) and integrate over the parameter ¢ to obtain that

[ raras eirwr [ [ Eimaeme) e i

-1

;EHT( 2)]’] [ E[T(y)]*do(y) < oo.

™ S2

The last quantity is finite due to the 2-weakly isotropy of 7" and Lemma 3.3.

Now it is save to apply the fact that the Legendre polynomials are an orthonormal basis of
L?*([-1,1],R). We can expand I in the usual way

1
) => aP({x,y)),  where = / D(t)Pl(t)dt.
1>0 -1

For positive integers [, we define C} = a; and rewrite the expansion of I' in this way

2l+1

P,y = 30 2L i),
1>0

This expansion is now in the right form to apply Lemma 2.8 and obtain that

>0 m=—1

Then we manipulate applying Fubini’s theorem to change the order of sums and integrals:

Elaymay ) = E [/52 T(x)Y)p(z)do(x) /52 T(y) Yy e (y)do(y)
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- /32 o BT @) T @)Y ()Y (y)do ()do (y)

- / / T (2, 5) Vi () Yo (9)dor(2)dr ()
52 Jg2

lo
LY Y i) ) Fin@¥e () )

lo=>0mo=—lo

lo
=Y Y G [ Yo @@ @) [ Vi w)do

lo=>0mo=—lo
lo
=Y > Ciybiy1mo.mBio,Omoms = Cil1,uGrm - O
lo=0mo=—lo

Definition 3.6. For a spherical random field T, the positive sequence (Cy : 1 > 0), which
we introduced in the previous lemma, is called the angular power spectrum of T'.

The previous lemma also shows that it is non-negative and well-defined through the follow-
ing relation, for [ > 0 and m = —I, ...,

Elaymay 7] = C101,00mm -

Lemma 3.7. For a 2-weakly isotropic spherical random field T, the following spherical
random fields

L l
TE = Z Z amYim — and T -TE
=0 m=-—1

are also 2-weakly isotropic.

Proof. The second moment of both random fields exists by the triangle inequality and
the Parseval identity. The first moment can be estimated with the second moment using
Holder’s inequality. So the following is left to show, that for any z,y in S? and any ¢ in
SO(3)

E[T*(x)T*(y)] = E[T"(g2)T"(gy)]
E[(T(z) — T*(2))(T(y) = T"(y))] = E(T(gz) — T*(92))(T(gy) — T"(gy))].

If we expand the second equation, we see, that to show the two equations above it suffices
to show

E[T"(z)T"(y)] = E[T"(92)T"(gy)], (3.2)
E[T(x)T*(y)] = E[(T(9z)T* (gy)]- (3.3)

We start with the proof of Equation (3.3) and expand it

E[T(x)T"(y)] =Y EIT(z) Y amYim(y)]
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So it suffices to show for integers [ > 0 that it holds that

Z aj m}/lm - gw Z aj m)/l m(gy)]

m=—| m=—1

In the proof of this claim, we apply our knowledge of the representations of SO(3), which
we introduced in the previous chapter. First we have to manipulate a little to put the
terms into the right shape. We start with inserting the definition of the coefficients of the
expansion in the spherical harmonics. In the second step we tacitly do an interchange of
the integral and the expectation due to Fubini’s theorem, to be able to apply the 2-weakly
isotropy property of 1" as stated in Definition 3.2 namely to put in g. In the third step we
do a coordinate change to obtain that

l
DS anYin)= Y ET() / T(2) Vi (2)0 ()] Yi (1)

m=—I m=—I

m=— 52
l R
=Y Blr(ge) / () Vi (912040 (2)]Yiom ()-
m=-—1 52

Now we can apply the announced result of Lemma 2.7. This is the first step of the second
part of the calculation. We remember that, D'(g) is the matrix of a unitary finite dimen-
sional representation, in particular the Hermitian is the inverse. This way, we can apply
Lemma 2.7 again in a second step to shift the left action of g to the spherical harmonic
outside the integral. The claim follows after putting in the definition of the coefficients,

l

> Er(go) [ TG il o))

m=—I

=33 B [ T3 Vo Gl

m=—Ilmi=-1
l
D> E[T(gm/ T i Mo 3 D™ im(
mi=—I 5% m=—1
l l
= 3 BlT(g0) || T o I i, (9) = BT (52) 3 Vi)
mi1=-—I m=-—I

Equation (3.2) is proven similarly using Equation (3.3). We expand the left hand side of
Equation (3.2) in the following way by directly inserting the definition of the coefficients and
interchange the integral and the expectation. In the second step we insert Equation (3.3)
to obtain

,
E[T*(x) Z Z T(2) Y v Yo ()] Vim (2)do (2) Yy ()
m/==U

LU>0m=—I
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Z Z T(g2) Z v Yo i (99)] Vi (2)d0 (2) Vi ()

Z Z |, Blam Z ar g Yo (99)Yim (92) = E[T*(92)T" (gy))-

LU>0m= m/=—1'

The last step of the above calculation is proven with a similar argument as we just did
to prove Equation (3.3), which would also rely on Lemma 2.7. We omit the details. This
finishes the proof of the lemma. O

Now we are in good shape to prove the first main result, which was already mentioned in
the introduction. We formulate Theorem 1.1 precisely.

Theorem 3.8. For a 2-weakly isotropic spherical random field T', it holds that the following
spherical expansion

l
7= 3 i = [ T@V o),
>0 m=-1

converges in Lo, (2 x S%,R) and in L3 (L, R), i.e

2

L l
lim E / T(x) =Y > amYim(x)| do(z)| =0 (3.4)
L—oo S2 =0 m——1
and for all x € S?
L 1 2
lim E ||T(z) — Y, =0. .
Jim. (z) lz_;mz_:_ amYim () 0 (3.5)

Proof. We already know from Remark 3.4, that the coefficients a;,, of T" are P-a.s. well-
defined complex random variables and Lemma 3.3 implies that the sequence of coefficients
converges P-a.s. Hence the expansion of T is well-defined and converges P-a.s. in L?(S?,R)
due to Theorem 2.3, i.e.

2
do(z) =0 P-as. (3.6)

-3 it

=0 m=-1

lim
L—oo

So it is left to show the convergence in L%D@do (2x S% R) and in L% (£, R). Let Q* C Q be of
full probability such that T'(w) € L?(S?%,R) for all w € Q*.The orthogonality of the spherical
harmonics gives a dominating function using the Parseval identity twice. Explicitly for any
w € Q*, it holds that

L !
/ T(w,2) =Y Y arm(w)Yim(z)| d / > Z atm(w)Yim(z)| do(z)
52 1=0 m=—1 I>L m=—1
l
Y S @ <Y fam) P = [ IT(w)Pdo(a)
I>L m=— >0 m=—1
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To make the setup explicit, where we want to apply the dominated convergence theorem,
we define the sequence of functions, ¢ = ||T — TLH%Q(SQ’R) and h = HT||%2(527R). These
functions are integrable mappings from €2 to R due to Lemma 3.3 and Lemma 3.7. Note
that we simply set them to zero on the complement of 2*. We know from Equation (3.6),
that ¢y converges to zero P-a.s. and we just showed that h is a dominating function of
the sequence of functions ¢y . This means by the dominated convergence theorem we can
interchange the following limit:

0= Ellim |7~ T332 ) = E[Jim 1] = lim Blps] = lim E[|T T 350 5]
Thus we proved the first assertion of the theorem.

To prove the second assertion we apply Lemma 3.7 and Definition 3.2 to see that for any
x € S? and for any g € SO(3)

g~ E[|T(gz) — T"(92)"] = E[|T(gx) Z Z amYim(97)[%]
=0 m=—1

is constant. We fix g arbitrarily in S2. Because of Lemma 2.1 for any y € S? there is
g € SO(3) such that gy = xo. Hence, for all z € S? the mapping

L l
= E[T(x) = T"(2)P) = BlIT(z) = ) Y amYim(@)]

=0 m=—1

is also constant. So we are in the pleasant position to integrate over the expectation and
to change the order of the integrals applying Tonelli’s theorem:

L l

BIT@) =3 3 a¥in(@)] = 3= [ BT )= S anYin@)lo(s)

=0 m=—1 =0 m=-—1

47TE /S T(z) —

The last expression converges to zero because Equation (3.4) has already been proven. This
finishes the proof of Equation (3.5). O

2

L l
Z Z armYim(x)| do(x)

=0 m=-1

3.2. An example given in the real spherical harmonics

Throughout our preceding analysis we were always working with expansions in the spherical
harmonics. In applications it will be relevant to analyze spherical random fields, which are
given in the real spherical harmonics. We would like to establish conditions on a spherical
random field such that it fulfills the 2-weakly isotropic property of Definition 3.2.

For a 2-weakly isotropic spherical random field T', we have shown in Lemma 3.5, that the
coefficients are uncorrelated. So it seems natural that the corresponding real coefficients
are also uncorrelated, which will be proven in the next lemma. Complex and real coefhi-
cients are related through Definition 2.4 and Lemma 2.6, the latter are also introduced in
Definition 2.4.
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Lemma 3.9. For a 2-weakly isotropic spherical random field T the corresponding real co-
efficients ay,, for integers | > 0 and m = —I,...,1 are uncorrelated. Moreover for integers
LU>0, m=—1,....,l andm' = —U,....,I" it holds that

E[al,m&l’,m’] = Cl(shl’(sm,m" (37)
The sequence (C) : 1 > 0) is the angular power spectrum of T

Proof. From Lemma 3.5 we already know that the complex coefficients are uncorrelated in
the sense, that for any [,I’ >0, m = —I,...,l and m’ = —0’, ..., I, it holds that

Elaymay 7] = C101,00mm - (3.8)

This means we can set [ = I’, because in Definition 2.4 the index [ of the real coefficients is
the same as the index for complex coefficients and Equation (3.8) yields that Equation (3.7)
vanishes for positive integers [ # 1. We can now fix the index [ and calculate the different
cases for integers m,m’ l, e L

We start with the case m,m’ > 0. We insert Definition 2.4 and manipulate with Equa-
tion (2.4) to be able to apply Equation (3.8) to conclude the claim in Equation (3.7):

. 1
E[almal,m/] = §E[(al,m + ale)(aLm/ + ahm/)]
1
- iE[al,mCLLm/ + ar,mai,m/ + A mam’ + aim al,m’]
1 /
= 5((_1)m E[al mOl,—m’ + Q| may, — m'] + 2Cl5m,m’) = Cl(sm,m’-

The case m,m’ < 0 is done in a similar way as well as the case m > 0,m’ < 0. For the
latter we write down the computation. It uses the same tools as the first case, which we
computed in detail. We obtain that

L 1
E[al,mal,m’] = ZE[(al,m + al,m)(al,m’ - al,m’)]

= fE[al,mal,m’ — Ay m A m! + Al mAlm’ — Alm al,m’]

21
1
= Z((_l)mE[al,—mal,m’ - al,—mal,m’] - Cl(sm,m’ + Clém,m’)
1
= ()" Ut — D) = 0. 0

In the case, that a real-valued sequence of possible coefficients is given, a similar conclusion
about the correlation is possible. It is of interest in this case, that a spherical random field
is given in an expansion in the real spherical harmonics.

Lemma 3.10. For a sequence (Bl,m 1> 0,m = —l,...,1) of uncorrelated real-valued
random variables, interpreted as real coefficients of an expansion in the real spherical har-
monics, the corresponding complex-valued random variables (B, : 1 > 0,m = —1,...,1) are
also uncorrelated in the sense that, if

EBrmbBr ] = Ci0110m,mrs
then

E[ﬁl,mﬁl’,m’] = Olél,l’(sm,m/-
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Proof. The proof of this lemma is very similar. It uses the relation between the real and
complex coefficients as introduced in Lemma 2.6. We omit the details. OJ

Now we give sufficient conditions for a spherical random field given in its expansion in the
real spherical harmonics to be 2-weakly isotropic.

Proposition 3.11. Let T be a spherical random field such that the first and second moment
exist for all x in S?. Let T have the expansion

l
T = Z Z Bl,m};},ma

>0 m=—1
for a sequence of real-valued random variables (ma 1 >0,m=—l,..,0). If for | >0 and
m = —1,...,1 Bi.m has mean zero and for all integers [,I' > 0, m = —1,...,L andm/ = =, ..., I

EBrmbBr ] = C16118m.mrs
then T is 2-weakly isotropic.

Proof. Since the existence of the first two moments belongs to the conditions of the proposi-
tion, the invariance under the action of SO(3) is left to show. The proof will be a calculation
using Lemma 2.7 as a main tool. For arbitrary g € SO(3) and x1,z2 € S? we look at the
following expression and switch to the complex expansion. We can interchange the expec-
tation and the infinite sums due to Fubini’s theorem, which is applicable, since the second
moment of T'(z) is finite for all 2 € S2, hence |T(gz1)T(gx2)| has finite expectation. First
we switch to the complex expansion using Lemma 2.6. In the second step we apply Lemma
3.10. This yields that the corresponding complex coefficients are also uncorrelated with the
same angular power spectrum. In addition we apply Lemma 2.7 to separate the g and the
spherical harmonics, that yields two extra finite sums over the unitary matrices D'(g1).
We obtain that

B[T(g21)T(gz2)] = > Z Z EBrm B an | Yim (921) Yo (g2)

LU>0m=—lm/==1

=2 Z Cil Z Dy (9™ Yimy (1) Z D97 ) ¥iima (2))
>0 m=—1 ml—fl mo=-—I

- ZCZ Z Z Z Dml,m _1 D£712 m( ))Yi,m1($1)}/l,m2(l'2)'
>0 mi=—Ilmo=—1 m=—I1

We apply the fact that the matrices D!(g~!) are unitary, which holds due to Lemma 2.7,
i.e., for all integers [ > 0, m1, ma2 = —I,...,l and g € SO(3) it holds that

Z Dm17 m = 5’”’11,7TL2'

This relation of the matrices D!(g~!) and the evaluation of the Kronecker delta will elim-
inate the g-dependence and afterwards we perform all manipulations backwards to obtain
that

> G Z Z Z DYy (gD () Vi, (1) Vi (22)

>0 mi=—Ilmo=—1 m=-I
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l l
=3"C Y S Gmama Yo (31)Vims (22)

>0 mi=—Ilmgo=-—1
l —_—
=30 Y Yim(@)Yim(@) = - = E[T(21)T(z2)].
>0 m=—I

It remains to check the invariance of the expectation under the action of an arbitrary
g € SO(3) for arbitrary o € S2. Since the first moment of T'(z) exists by assumption, we
can apply Fubini’s theorem to interchange expectation and the infinite sum similar to the
argument before. The assumption, that all coefficients but £y have mean zero, will give
the claim with the fact that Yo is constant:

Z Z [BLm)Yim (92) = E[Boo]Yo0(97) = E[Boo]Yoo(z) = E[T(z)]. O

>0 m=—1

In the following we want to discuss an example, which will lead us to the next chapter. We
define the spherical random field

l

>0 m=-1

where (Blm 21> 0,m = —l,..,1) is an ii.d. sequence of standard normally distributed
random variables and (Cj : [ > 0) is a positive sequence, such that (Cyl : [ > 0) is summable.

Proposition 3.12. The spherical random field T defined in Equation (3.9) is 2-weakly
1sotropic.

Proof. We check that the first two moments are finite first. In the first step, with Holder’s
inequality we can bound the first moment by the second moment and switch to the complex
expansion in the spherical harmonics using Lemma 2.6. In the second step we apply Fubini’s
theorem to interchange the expectation and the infinite sum. Due to Lemma 3.10 the
corresponding complex coefficients are also uncorrelated. So we obtain that

BIT@N < BIT@P = ISV S i@ = EIVE S SV

>0 m=—I >0 m=—I
Ll I
= Z V Ci V Cr Z E[ﬁl,mﬁl’,m’]n,m(l‘)ifl’,m’ (1:) = Z Ci Z le,m(x)yz,m(li)
LI'>0 m,m/=—1,l" >0 m=—I

In the last step we apply Lemma 2.8 and see that this infinite sum has a finite value by our
assumption on (Cj : 1 > 0). So we obtain that

241 _
ENT(z)]] < BT (x ZCz
>0

We just proved that the condition of Proposition 3.11 are satisfied, this proposition gives
the claim, that T" is 2-weakly isotropic. O
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3.3. Truncation error estimation

Another topic of interest is the error, which we make if we truncate the expansion of a 2-
weakly isotropic spherical random field 7T'. This is interesting, when we wish to implement
an approximate realization of T. We will do this analysis in the L?D®da(9 x S% R)-norm
and in the L% (2, R)-norm. We study the truncation error for a 2-weakly isotropic spherical
random field T. The truncation of T is denoted by T¥. We assume for the angular power
spectrum, that C; ~ 7%, i.e. that there exist constants ¢, C' > 0 and some « > 0 such that
cl™ < () < C 17 for all but finitely many integers [ > 0. The proof of Proposition 3.9
implies that a > 2, otherwise the second moment of T" would not be finite, which exists
due to the definition of a 2-weakly isotropic spherical random field.

Proposition 3.13. Let T be a 2-weakly isotropic spherical random field such that for the
angular power spectrum holds C; ~ [=% for a > 2. This condition implies, that the trunca-
tion error of T converges in the Lig . (2 x S, R)-norm and the truncation error of T(x)
converges in the L%(Q,R)—norm for all x € S?% with order C“sz in terms of L™' in both

cases, i.e.
L2 —1ya—2
1T =T ||L§3®da(QX527R) =0 ((L ) ) (3.10)

and

IT(2) = T*(@) 172 ) = O (L7H)72).. (3.11)

Proof. We fix L € N and start computing the error. In the first step, we apply Theorem 3.8
and the Parseval identity. In the second step we insert the assumption on the angular power
spectrum. We obtain that

!
L2 ~ Y
”T -T HL%@dJ(QXSzvR) =FE Z Z al,mYz,m

~E|S Y dh

I>Lm=—1,..1 L2(S2,R) I>L m=—1
l
=> > Ela,l=> C@+1)<C> 20+L) T+ (1+L)7).
I>L m=-1 I>L >0

The last expression is bounded with a simple calculation:

CY (20+1L) “+1+(Z+L)_O‘)§C/ 20+ L) 4 (z + L) ¥dx
1>0 0

2 —1\a—2 1 —1\ya—1 —1\ya—2
_C<a_2(L ) +H(L ) >_(9((L )77 . (3.12)
This gives the desired convergence rate in terms of L™' and proves the first claim. For the
second claim we again fix L € N and compute for an arbitrary € S? the error in the
L%,(Q, R)-norm. In the first step we apply Theorem 3.8 and the Parseval identity. In the
second step we interchange the expectation and the infinite sum and apply Lemma 3.5.
Then we apply Lemma 2.8 to lose the spherical harmonics and the dependence on x to
obtain that

2

Zalm}/lm

I>L

IT(2) = T*(@) 172 0 p) = EIT(2) = T (=
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YOS VWi = 02

I>L m=—1 I>L

Now we can insert the assumption on the angular power spectrum and the same calculation,
which we just did in Equation (3.12), yields the second claim of the proposition

202”1_4W2za2z+1 O ((L1)?). O

I>L

To finish the chapter we show two plots of realizations of the example Equation (3.9), which
is a 2-weakly isotropic spherical random field 7. The realizations are approximated with
truncations T for L = 70. The MATLAB code of the implementation can be found in
Appendix A.
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Figure 3.1.: realization of T* with C; = (1 +1)=2!

Figure 3.2.: realization of T* with C; = (1 +1)~*!
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4. Stochastic heat equation with isotropic
()-Wiener noise

In this chapter, we interpret the 2-weakly isotropic spherical random field T as a L?(S? R)-
valued random variable. In particular we choose T to be Gaussian with mean zero and
covariance operator (), which will later form the @-Wiener process W. Having this we
are able to formulate the stochastic heat equation on the sphere with additive 2-weakly
isotropic Q-Wiener noise W. For our analysis we introduce the filtered probability space
(Q, F, A, P) such that the filtration F is complete and right-continuous.

4.1. Hilbert space valued Gaussian random variables

We review some definitions and statements which we will apply here. The definitions are
taken from [8]. We define (H, (-,-)3) where H = L2(S% R) and (-, -) is the standard inner
product induced by the the Lebesgue measure on the sphere do.

Definition 4.1. An H-values random variable T is called Gaussian, if (¢, T)y is normally
distributed with mean my and variance 03) for all o € H.

This definition implies that

for some m € H and for the same m and any ¢1, ¢p2 € H

E[(¢1, T)2(b2, Tl — (b1, m)u (P2, m)yn = (Qd1, d2)n

defines the symmetric, bounded, positive operator Q.

Definition 4.2. For a random variable T, m is referred to as the mean and @) is called the
covariance operator.

This means for an H-valued Gaussian random variable T, it makes sense to introduce the
notation that 7" is N'(m, Q) distributed.

Proposition 4.3. For an H-valued Gaussian random variable, the covariance operator Q)
1s of trace class.

Proof. This is Proposition 2.15 in [8|. O

This means that @ is a trace class, symmetric, positive, bounded operator and therefore
the following diagonalization result holds.

Proposition 4.4. There is an orthonormal basis (e; : i € N) and a positive decreasing
sequence (\; 1 i € N) such that \; — 0 and Qe; = \je; for all i € N.
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Proof. The conditions imply the conditions in the standard diagonalization theorem for
self-adjoint compact operators. O

Proposition 4.5. (Karhunen-Loéve expansion) An H-valued random variable T with mean
m and trace class, symmetric, positive, bounded covariance operator (Q which is diagonalized
with orthonormal eigenbasis (e; : i € N) and decreasing positive eigenvalues (A; : i € N) is
Gaussian if and only if it has the expansion

T=m+ > VNiBei

1€EN

The infinite sum converges in L*(Q,H) and (B; : i € N) is an i.i.d. sequence of standard
normally distributed random variables.

Proof. For given mean m and covariance operator @), the existence of a Gaussian random
variable with such an expansion follows by Proposition 2.18 in [§8]. We omit the proof of
the other direction since the statement will only be applied in one direction. O

The so called Karhunen—Loéve expansion will be the right tool to combine the notion of
2-weakly isotropic spherical random fields with the notion of H-valued Gaussian random
variables. We already established in Theorem 3.8 and Lemma 3.9 that a 2-weakly isotropic
spherical random field has the expansion

l
T= Z \/a Z l;l,mf/l,mu (41)

>0 m=—1

where we introduce l;l’m = dl,m\/Cﬁfl for all I > 0 and m = —I,...,] with a;,, the usual
real coefficients appearing in Lemma 3.9. The random variables of the sequence (IN)lm :
[ >0,m = —1,...,1) are uncorrelated such that E[l;l’ml;lljm/] = 0110y for integers 1,1" > 0,
m=—1l,...,landm’ = —l',...;)I" and (C; : | > 0) is the angular power spectrum introduced in
Remark 3.6. Similar to the argument in the proof of Proposition 3.9 we see that (Cjl : [ > 0)
is summable. Theorem 3.8 also ensures that T can be interpreted as an H-valued random
variable. Now we wish that T has the extra property to be Gaussian distributed. Our
definition of Gaussian distribution and the expansion of T imply that (a;,, : [ > 0,m =
—1,...,1) has to be a sequence of standard normally distributed random variables. The fact
that this sequence also has to be uncorrelated implies that it is i.i.d. The mean of T is zero
and the covariance operator is given by

fol,m = C’l?l,m forl >0,m=—I,...,L

Note that @ is a well-defined bounded linear operator on H since (fﬁm A >0,m=—l,..,1)
is an orthonormal basis of H. It is also easy to see that @ is of trace class because (Cyl : [ > 0)
is summable. The other properties of ) are also easily verified. Proposition 4.5 says that
T is Gaussian with mean zero and covariance operator (. Thus we obtained the expansion
of a 2-weakly isotropic Gaussian spherical random field. Note that our notion of Gaussian
distribution differs from Gaussian distribution in [21] which is defined pointwise on S2.
The following lemma will give a statement about the distribution of a 2-weakly isotropic
Gaussian random field evaluated at some x € S2.
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Lemma 4.6. For a 2-weakly isotropic Gaussian spherical random field T with angular
power spectrum (Cy : 1 > 0), the random variable T'(x) is normally distributed, i.e. T'(x) ~
N(0,02) for all x € S%. The variance o2 of T(x) is independent of x € S? and is given by

20+1
U%:ZCI e
1>0

Proof. We fix x € S2. The strategy in this proof is to interpret T'(x) as a limit of nor-
mally distributed random variables and to argue via Lévy’s continuity theorem and the
characteristic functions that the limit is also normally distributed.

We look at the truncated spherical random field

L l
THw) =Y > VCiBimYim(@).

=0 m=-—1

Since T (x) is a finite sum of independent normally distributed random variables, T (x)
is also normally distributed. The fact that (5, : 1 > 0,m = —I,...,1) is an i.i.d. sequence
of standard normally distributed random variables and Lemma 2.8 imply that T%(z) ~
N(0, J%L), where the variance is given by

L

20+1
O'%L = ZC[ e .
=0

Note that the variance O'%L of T¥(z) is already independent of z € S?. For a normally
distributed random variable X ~ N(ux, 0% ) its characteristic function is given by

E [eiX’\] = exp <i)\uX — G§<)\2> .

2

Therefore the characteristic function ¢pr(,y of TE(z) is given by

2 12
_ iTE (@] _ orLA
gszL(x)()\) =F [e (@) } = exp ( 5 ) )

Now we are interested in the limit (L — oo) of the function ¢pr(,). Since the exponential
function is continuous we can bring the limit into the exponential function. Furthermore
we know that the sequence (Cyl : I > 0) is summable due to an argument in Proposition
3.9, which implies that limj_ oo O’%L = U% exists and defines a%. Therefore for all A € R
the limit (L — oo) of ¢pr(4)(A) exists and is given by

) limy, e O'%L A2 O'%)\2
Jim @) (A) = exp (—2 = exp <— 5 ) :

We set ¢(\) = exp(—2102A%). So the sequence of characteristic functions (pre(e : L >0)
converges pointwise for all A € R to a function ¢, which is continuous. From Theorem 3.8
we now that 77 (x) converges to T(x) in L%(Q,R) for L — oo, so T(z) converges also
in distribution to T'(x). Now all the conditions are satisfied to apply Lévy’s continuity
theorem, which says that ¢ is the characteristic function of 7'(x). This is the characteristic
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function of normally distributed random variable with mean zero and variance o2. Since
the characteristic function determines the distribution of its random variable, it holds that
T(x) is normally distributed, i.e. T(z) ~ N(0,0%). The implication of Lévy’s continuity
theorem which we used is proven in [13] as Theorem 15 in Chapter 14. O

The knowledge about the pointwise distribution of a 2-weakly isotropic Gaussian spherical
random field T, i.e. the distribution of T'(z) for some z € S?, gives raise to analyze the
distribution of random vectors (T'(z1),T(z2)) for some 1,79 € S? with the help of the
property that T is 2-weakly isotropic and Gaussian.

Lemma 4.7. Let T be a 2-weakly isotropic Gaussian spherical random field, then for all
x1,22 € S% and for all g € SO(3), it holds that (T(x1),T(x2)) and (T (g9x1),T(gx2)) have

the same law, i.e.
(T(a1), T(x2)) "2 (T(g21), T(g2)).

Proof. From Lemma 4.6 we know that 7'(z1) is normally distributed with mean zero. There-
fore the random vector (T'(z1),T(x2)) is multivariate normally distributed with mean 0 €
R? and covariance matrix ¥ € R?*2. In the same way the random vector (T'(gz1),T(gz2))
is multivariate normally distributed with mean 0 € R? and covariance matrix X, € R2%2
The 2-weakly isotropy of T" implies that > = ;. This implies the claim of the lemma, since
the distribution of a multivariate normally distributed random vector is determined by its
mean and covariance matrix. O

Remark 4.8. For a 2-weakly isotropic Gaussian spherical random field T and x1,xo € S?,
the random vector (T'(z1), T (x2)) is multivariate normally distributed, i.e. (T'(z1), T (x2)) ~
N(0,%), where the covariance matriz 3 is given by

z::( Sisp O leoclpg(@g,lx?))zgl)
>0 CiPs((w1, w2)) 2 S Cr2H

Proof. The proof of Lemma 4.7 says that the random vector is multivariate normally dis-
tributed. The covariance matrix can be calculated in the same way as we calculated the
variance of T'(z) for z € S? with Lemma 2.8 in the proof of Lemma 4.6. O

4.2. 2-weakly isotropic ()-Wiener process

The main aim of this chapter is to discuss the heat equation with additive (-Wiener noise.
Therefore we recall the Q-Wiener process.

Definition 4.9. For a trace class, symmetric, positive, bounded operator @, an H-valued
F-adapted process (W (t) : t € [0,T]) is called Q-Wiener process if
(i) W(0)=0 P-a.s.,
(1)) W has P-a.s. continuous trajectories,
(1i) W has independent increments,
(iv) W(t) —W(s) ~N(0,(t —s)Q) for0<s<t<T.

Remark 4.10. According to Proposition 4.1 (i) in [8] the Q-Wiener process W has the
following expansion

W(t)=> VNiBit)e; for all t € ]0,T],

i€EN
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where (B; : 1 € N) is a sequence of mutually independent real-valued Brownian motions. The
sequence of real numbers (N\; : i € N) consists of the eigenvalues of the covariance operator
Q with orthonormal eigenbasis (e; : i € N) such that Qe; = \je; for all i € N.

For the covariance operator @@ of a 2-weakly isotropic Gaussian spherical random field as
seen in the previous section, the @Q-Wiener process will have the following decomposition
for mutually independent Brownian motions (5, : 1 > 0,m = —I,...,1)

l
W) => VC > Bmt)¥im  forallte[0,T].

>0 m=—I

Note that for fixed ¢ € [0,7] the spherical random field W(¢) is Gaussian and 2-weakly
isotropic.

4.3. Stochastic heat equation with additive 2-weakly isotropic
()-Wiener noise
So now we are able to formally state the stochastic heat equation, Equation (1.1) which

was already mentioned in the introduction. This is of main interest in this chapter and is
given by

X(t) = X(0)+ /Ot Ag2 X (s)ds + W (t),

X(0)eH P-a.s.

Definition 4.11. A predictable stochastic process (X (t),t € [0,T1]) is called a weak solution
of Equation (1.1) if its trajectories are P-a.s. Bochner integrable and for all ¢ € D(Ag2) C
H it holds that

(X(1). 6)p = (X(0), by + / (X(s), Bgad)uds + (W(B), 6} P-as,

where Ag2 denotes the closure of the spherical Laplace operator Agz.

Note that the closure of a symmetric densely defined operator is self-adjoint, for example
Ag2 = Ag2 . We try to solve it formally and use the special form of the noise term W. We
attempt to expand the expression in its decomposition in spherical harmonics

l
X(t) = Z Z &l,m(t)ﬁ,M7 where al,m(t) = (X(1), ?l,m>7-[,
>0 m=—1

!
=D am(0)Yim -

t

l l
SN I+ Dam()Yimds + Y > A/ CiBm(t)Yim

1>0 m=—1 0 >0 m=—1 1>0 m=—1
l ¢ )
=> > <az,m<0> — / 11+ 1)dign(s)ds + \/Olﬁl,ma)) Yim.
1>0 m=—1 0

This leads to the infinite system of uncoupled 1-dimensional stochastic differential equations
(SDE) for I > 0 and m = —, ..,

1 (t) = a1.m(0) — /0 t 11+ 1)agm(s)ds + /CiBym(t).
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This is a general type of SDE, which is solved using It6’ s formula and the existence and
uniqueness theorem for SDE’s. We reformulate it for notational convenience, B is a 1-
dimensional Brownian motion,

t

Z(t)=Z(0) — 0/ Z(s)ds + oB(t)
0

Z(0) eR P-as.

The existence theorem for such SDE’s; which is Theorem 2.5 and Theorem 2.9 in Chapter
5 of [19], shows that Z exists and is unique. So we attempt to find a formula for Z
applying It6’s formula, also found in [19] as Theorem 3.6 in Chapter 3, to the function
f(t, Z(t)) = Z(t)e? in the first step and insert the solution of the SDE in the second step.
We manipulate further and obtain P-a.s.

Z(t)e = 2(0) — /D C0e% 2(s)ds + /0 " saz(s)
= 7(0) + /tanSZ( )ds+/ efd(— /92 )ds + o B(s))

/ 0% Z (s / e’0Z(s)ds + o /0 e?’*dB(s)
= Z(0)+a/0 e’*dB(s).

Thus the solution has the formula

Z(t)=e"Z(0)+ 0o / t e t=9)4B(s).
0

The solution is called the Ornstein—Uhlenbeck process. It can be applied to our situation
to obtain that

al,m(t) l(l+1 + \/7/ —I(l4+1)(t—s dﬁ ( )

and

zz( i, (0) + /G /Ote—l<l+1><t—s>dﬁl,m<s>) Vim  (42)

(>0 m=—1

This derivation was only formal. To finish the analysis we have to show that the infinite
sum in Equation (4.2) converges in L3, »([0,7] x ©Q,H) and that this expression is the
unique solution of Equation (1.1).

First we prove that the limit exists. We look at a truncation of the expression in Equa-
tion (4.2), which we denote with X (¢). We fix L1 < Ls € N and try to bound the difference
of two truncations in the L%(Q, H)-norm. In the first step we apply the Parseval identity
and the fact that the stochastic integral with respect to a square integrable martingale like
a Brownian motion has zero expectation. In the second step we use the Ito isometry. We
obtain that

B [|[x" (1) - X2 0)]3)
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_Z Z 2 g2 +Z Z CE

([ <mn)]

= L1 m——1 I= L1 —

_ Z Z 202 +Z Z Cz/ 21 (-3) 4
I=L1 m=—1 =Ly m=—I
Lo 1

< 22 Z Elag,, (0)] + Z Z Cl — e 2y
I=L1 m——1 I=L1 m——I l+1

If we take the limit (Ly — 00) the first infinite sum exists because P-a.s. X (0) € H, which
means that the sequence (E[a?, (0)]: 1> 0,m = —I,...,1) is summable. The second infinite
sum exists because the sequerice (Cil : 1 > 0) is summable. Similarly the just mentioned
summability also implies that for the limit (L; — oo) the whole expression converges to
zero. We observe that integrating the parameter ¢ over the compact interval [0,7] will
at most increase the expression by the factor 7. Hence the sequence X*(t) is Cauchy
in L§t® p([0,T] x ©,H). Similarly we could take the supremum over the compact interval
[0,77]. Since (1—e2(41) is bounded by one, the limit of the supremum also vanishes. The
Brownian motions in the sequence (8, : I > 0,m = —I,...,]) are P-a.s. continuous. This
implies that X’ is also P-a.s. continuous because it is a finite linear combination. Hence
there exists a modification X of the sequence X, which is Cauchy in C°([0, T], L% (2, H)).
Since L§t®P([0 T] x Q,H) and C°([0,T], L%(Q,H)) are both complete spaces, the sequence
XE(t) converges in L3, p([0,T] x Q,) to some X and the sequence XL converges in
C0([0,T], L%(Q,H)) to some X, which is a modification of X.

Now we know that X is a candidate to be a weak solution of Equation (1.1). We have to
check, that it fulfills the conditions of Definition 4.11. We fix ¢ € [0,T] and ¢ € D (Ag2)
and check the conditions directly. We take the expansion of X (¢) and insert the SDE which
the coefficients satisfy in the first and second step. In the third step we apply Fubini’ s
theorem to interchange the infinite sum and the inner product and apply the eigenvalue
relation of the spherical harmonics and the spherical Laplace operator Ag2 and obtain that

l
<X(t)7¢>?-l = <Z Z dl,m(t)i/l,ma ¢>7~[

>0 m=—1
LY S () - )= [ 1+ Dt (5)ds + V()i b
>0 m=—1
= (X H+ZZ / (I + 1)t (5)dsYim, &)a + (W (1), $)n
>0 m=—1
H+z§j/a,m )ds(A g2 Tims )30 + (W (1), ).
>0 m=—1

Now we put the adjoint of the closed Ag2 to ¢ which is possible due to the choice of ¢.
This enable us to interchange the infinite sum and inner product again by Fubini

wzz/alm )ds(A g2 Vims )3 + (W (1), )

>0 m=—1
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H+22/alm )ds(Vim, Ag2)p + (W (1), )

>0 m=—1
— (X(0), ) + /0 (X(5), Bgad)a)ds + (W (L), d).

The process X is predictable because it is P-a.s. continuous. The P-a.s. Bochner integrabil-
ity of the trajectories of X is clear since the trajectories are P-a.s. continuous and defined
on a compact interval [0,7]. Hence we showed that X is a weak solution of Equation (1.1).

If we assume that X and Y are both weak solutions of Equation (1.1). We wish to show
that they are equal. We take fixed integers | > 0 and m = —[,...,l, ¢ = Y}, and apply
Definition 4.11 to obtain that P-a.s.

(X(t) — Y (£), Vi) = /0 (X(5) — Y(5), Bga Vim)reds
- /0 (X(5) — Y(8), ~1(1 + 1) ¥ m)ds.

We also applied the fact Age fflm =A S21~/l,m and the eigenvalue relation of Ag2 with }N/l,m.
We take now the absolute value on both sides and obtain this inequality,

(X (8) = Y (1), Vi) < 1L+ 1) /r Y(s), Vimdulds  P-as.

Gronwall’s inequality implies that P-a.s. (X (t) — Y (¢),Y] ,m)#| = 0. Since this can be done
for all possible choices of I and m, X (t) — Y (t) € span{Yj,, : L > 0,m = —1,...,1}* P-as.
Thus X (t) = Y (t) P-a.s. for all t € [0, 7] and the solution is unique up to modlﬁcatlon and
has the formula stated in Equation (4.2)

Z Z ( I(I+1)t (0)+\/a/tel(l+1)(ts)dﬂl’m(s)> Ylm
0

>0 m=—1

It was not needed to introduce tools from stochastic calculus in infinite dimensions. The
specific form of the Q-Wiener process and the multidimensional It6 formula were sufficient
to solve Equation (1.1).

4.4. Truncation error estimation

As in the previous chapter we want to discuss the error of truncations of this expansions.
We do this in the L%(£2, H)-norm. For the error analysis of the solution of Equation (1.1)
we want to approximate with a truncation of the infinite sum in the solution formula
Equation (4.2)

L

= Z < DG, L (0) + \@/t e_l(l+1)(t_s)d/8l,m(s)> Yim
0

=0 m=-—1

The error in the LQP(Q,’H)—norm can be calculated in several steps. In the first step we
apply the Parseval identity to lose the dependence on the real spherical harmonics. In the
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second step we apply Tonelli’s theorem to interchange expectation and infinite sum to be
able to apply the It isometry in the third step. We obtain that

HX(t) _XL HL2®d (QxS2R)

ZZ( e +@/ 1= ag, ())2]

I>L m=—1

_ Z Z —21(I+1) tE +Z Z CF (/ _l(l+1)(t_8)dﬁl,m(s)>2]
I>L m=-—1 I>L m=—1

_ Z Z “AD g2 +Z Z C/ —2(1+1)(t=5) 4 5. (4.3)
I>L m=—I I>L m=—I

The integral inside the second sum is equal to Wlﬂ)(l — e~ DY) We simply bound this
by ﬁ and assume for the angular power spectrum that C} ~ [~% necessarily for some
o > 2, as we did in the previous chapter. We repeat a similar calculation as we did for
the spherical random field at the end of Chapter 3 to bound the second infinite sum in

Equation (4.3)

ZZC/ oA+ (t-5) 4 g <201212l1j_11 Zla1<ZZ+L

[>L m=-—I >0

> —a—1 _ -1\«
3/0 (x4 L)'z =0 ((L7H?).

This finishes our brief error analysis. Note that we did not take into account the first infinite
sum in Equation (4.3), which also encodes how well the initial value is approximated by
the real spherical harmonics. The truncation of the solution can be used in principle for
simulation purposes. MATLAB code for an implementation of the truncated solution can
be found in Appendix B.
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5. Continuity properties of isotropic
Gaussian spherical random fields

In this chapter we study the continuity properties of 2-weakly isotropic Gaussian spherical
random fields as mappings from the sphere to the real numbers. For our analysis we
introduce the probability space (2,4, P). We know from the previous chapter that for
a 2-weakly isotropic Gaussian spherical random field, we have an expansion in the real
spherical harmonics which we stated in the previous chapter as Equation (4.1):

l

>0 m=—1

The sequence (C; : 1 > 0) is the angular power spectrum, (Bl,m 20 >0,m=—1,.,]) is an
i.i.d. sequence of standard normally distributed random variables and (fflm L >0,m =
—lI,..,1) are the real spherical harmonics. We recall that the sequence (C;l : | > 0) has to
be summable such that the expansion converges in L3, (€ x S?,R) and in L} (Q,R), see
Theorem 3.8.

Our goal is now to establish conditions on the angular power spectrum such that the 2-
weakly isotropic Gaussian spherical random field 7" is -Hélder continuous for any v € (0, 1).
This is the content of Theorem 1.2, which was mentioned at the end of the introduction.

5.1. Preliminaries for the proof of Theorem 1.2

We start our investigation with the following lemma.

Lemma 5.1. For the real spherical harmonic function }N/},m, with fized I > 0 and m =
=1, ..,1, the following Lipschitz continuity relation holds for fized 6 = 5, ¢1,2 € R and for
some constant K > 0 independent of [, m, p1 and py:

5
) : Kl |1 — g if Im| =1,
Ym 9, _Ym 07 S m )
Yim (6, 01) = Yim (6, ¢2)] K2 Bl — ol if ] <1

(5.2)

Proof. We recall the representation of the real spherical harmonics, which are defined in
Definition 2.4. Their explicit expression is given by:

VTPl (cos(8)) cos(myp)  if m > 0,

Yim(0,0) = § \/ 2L P(cos(6)) if m=0, (5.3)

2l+1 (I=|m|)! o1
—V2 i Ll

(cos(0)) sin(myp) if m < 0.

First we evaluate the associated Legendre polynomial P! (cos(f)). Since cos(f) = 0, the
expression simplifies using the binomial identity for [ + m even to the following:
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PLo) = S et L @y

m 2ll| r= del—i—m =0
!
(=™ gitm L\ ok I—k
T dattm ;% k)7 Y .

The only term in the sum, which is non-zero after the taking the derivative (I + m)-times
is the term with k = l-&-Tm Hence the expression simplifies to

1 l
: 2

Note that the expression is zero in the case that [+m is odd. This combination of a facto~rial
and binomial coefficient can be dealt with using the constant in the above definition of Y} ,,
and applying the Stirling formula. We obtain that

204+ 1 (1 —m)!
(I 4+ m)!

1/ 1\ [2i+1 A+ 1 N+ m)!
%HQW>¢4WU_ = 7 JW?W&%R >4

and use the Stirling formula in this form:

|PL0)]

for all strictly positive n € N it holds that,v Irntze <n!< en™tie ™, (5.5)

Inequalities of this type are the objective of two journal articles. The first Inequality (5.5)

follows directly from the result of [23] because 1 < e+ for all n € N. The second
Inequality (5.5) is part of the result of [17]. We now apply the Stirling formula (5.5) and
manipulate Equation (5.4) further to obtain for |m| < [ and for some K; > 0 independent
of I and m that

20 + 1 /(I = m)!(l + m)!
21 AT U+m)ql m)|

2 1 2 1 2 1
< o\ = m) k) et = YR g VEEL
2 47 27 w4 (l2 _ m2)1 (l2 _ mZ)Z

The case |m| = [ has to be treated separately, but we get the result similarly also using the
Stirling formula (5.5)

20+ 1 /(I = m)!(l + m)!
21 47 (l+m)l(l Lmy)

l+
m+12 l_’{évmi{lgk&ﬁ
2W 2ir I3

2l—|—1

(20)!

2ll'

for some K5 > 0 independent of [. We combine these constants and thus have shown for
K = max(Kj, K3) > 0 that
1 .
2A+1(1—m) Kliz if |m| =1,
(Pm(e0s(0)) < § g VAT g ) < g,

(12-m2)1

(5.6)
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In the second part of the proof we have to examine the part of fflm which depends on .
First we apply a well known relation of trigonometric functions

Sin(msm) — Sin(ngQ) — 2¢0s <m801 ;— s02> sin <m¢1 ; ¢2>

—ogin [mPLT 2 L ZAWE $1L— 2
cos(m1) — cos(mpsy) = 2sin 5 sin | m—— .

To finish the proof, it is sufficient to state the following claim

: m
sm( L 5 902)’ < ‘2’|501 — | (5.7)

which is clear by a small argument. After evaluating the derivative of sin(z) at x = 0 we
obtain with Taylor that sin(z) < z for all « € [0,1]. The point symmetry of sine and the
fact that |sin(z)| < 1 for all z € R gives the claim. Now we can conclude the claim of the
lemma combining Equation (5.6) and Equation (5.7)

Yim (0 Yim (0 < KI5 e~ iml =1, 0
Lm (0, 01) = Yim (6, 02)| < K(lj?lt) oy — o] if [m| < L.

This lemma is used to verify a condition on the 2-weakly isotropic Gaussian spherical
random field 7" which will be needed in the proof of Theorem 1.2, the main theorem of this
chapter. We do this in the following lemma.

Lemma 5.2. Let T be a 2-weakly isotropic Gaussian spherical random field, given in Equa-
tion (5.1), such that for the angular power spectrum it holds that (CI**0 : 1 > 0) is summable
for § € [0,2], then for any k € N, z,y € S? and for an appropriate constant Kj > 0 de-
pending on k it holds that

k

E|[T() - T < & [ Yo' | d(a,y)™

1>0

Proof. First, we give the claim for k& = 1 then the argument will be generalized for an
arbitrary k € N. We can choose g € SO(3) such that 0,, = 0, = 5 due to Lemma 2.1,
just choose z,w € S? such that z3 = ws = 0 and (z,y) = (z,w) to find g € SO(3) by
the lemma. In the first step, we use the property that T is 2-weakly isotropic to insert g.
In the second step, we write T in its spherical expansion due to Theorem 3.8 and apply
Lemma 3.3 and the Parseval identity to obtain that

E[|T(x) = T(y)I*] = E[|T(92) — T(9y)]*] = E [IT(0g, ) — T(Ogy, 2gy)I?]
2

| [ VE 3 o (T (Gom) < (30)

>0
=2_G Z (Vi (5 000) —Vim (5. 0m)) " (5.8)
>0 m=—1I
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We are now in the setting to apply Lemma 5.1 to the last expression in the computation
just above in order to single out the desired Holder exponent §. This yields that

E[|T(z) - T(y)|?]
-1 9
<Ky ( S L (20 = i (Cew))

>0 m=—I+1 (12 =m?)4

o /e m - 2-6
+211° (Yi,l (57@%) - Y <§a¢gy>) ) |Pga — 9091/‘5-

We apply Inequality (5.6) to bound the remaining term of the real spherical harmonics with
the help of the triangle inequality and obtain that

)
EUT@)—T(y)F}SKQZcz( 3 il +2w+5)|sogx—sogyré.

>0 m*—l—l—l

The inner sum can be bounded with the following integral, when the inner sum is interpreted
as a Riemann sum, i.e.

dx < 10 — 1% arctan < = l‘Sz

Zm</l$5 /lldx x)
2B Jy VB2 0o VP —2? V=2

We apply the summability condition of the lemma on the angular power spectrum to con-
tinue the above calculation to obtain that

E [’T(fv) - T(y)‘g] <4K? chl1+6‘¢gx - Sogy’(s <Ky Z Cll1+6"Pgr - ‘ng|(S

0

1>0 1>0
=K1Y Cl'Md(gz, gy)° = K1Y _ Ci'd(x,y)°.
120 >0

We applied that 0y, = 04, = 5 and Equation (2.1) to obtain the metric d and the fact that
the action under SO(3) preserves the metric d. This gives the claim for £ = 1. Now we
treat the general case for all £ € N and insert the same g. In the first step, we apply that
all i)l,m have mean zero, are independent and the fact that all odd moments are equal to
zero. Also we interchange the infinite sum and the expectation by Tonelli’s theorem. In
the second and third step, we use that the 2k"™ moment of a standard normally distributed
random variable is equal to (L) which is increasing in k, to obtain that

okl
E[T(z) - ()\2’“]

- Z Z Z HCl ‘Yzwmj Yzj:mj | E[bll myp "’ blk,mk

I, g >0m1=—01 mp=—lj j=1

< Qkk;l Z Z Z HCZ ‘Ylwmj Y, m, (?J)‘Z

lyeslg20mi=—0 mi=—l j=1

k
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For a fixed integer [ > 0 we single out the sum over m = —I[, ..., . In the first step we switch
to the spherical harmonics. This can be verified with Definition 2.2 and Definition 2.4. In
the second step we apply Lemma 2.7 with the same g which we already used in the beginning
of this proof. In the third and fourth step we recognize that this sums correspond to the
squared Euclidean norm on C?*! denoted by || - ||c2i+1 of a unitary matrix D!(g~!) on CZ+!
times a vector Yi(%, ¢gs) — Yi(Z, @gy) € C*F1. We obtain that

l

l
> Fim @) = Fim @) = D ¥ (2) = Yim 0)P

m=—1 m=—1

-y

m=-—I

_ T
e ,M_n(g,%))\
T T 2
[vi (5 00e) =i (5 m)]
l
~ T ~ T 2
- Z ’}/l,m (57@9@‘) _Yi,m (579093;)‘ .
m=—I

We insert this equation into Equation (5.9) to obtain that

- T 2
i (5090) = Vi (5 m)

Note that we obtained the k" power of Equation (5.8). So we can insert, what we derived
for Equation (5.8) to obtain that

‘ 2

2

™ T
Z D (lem <§a80ga:) - Yi,m’ (579097;))

2

C2i+1

C2i+1

k

Bir@ -t < 22 (o s

>0 m=—

k k

2k
E[|T(x) — ()y%]_gkk)'f(l Sl d(a,y)* =K [ Y Gt | d(a,y)™. O
>0 >0

5.2. Kolmogorov—Centsov continuity theorem

Before we can apply the previous lemma, we prove a generalized version of the Kolmogorov—
Centsov continuity theorem which gives sufficient conditions for stochastic processes to be
almost surely locally Holder continuous. We will generalize this to index sets of cubes in
R?. The Kolmogorov-Centsov continuity theorem is stated in [19] as Theorem 2.8. We will
take the proof given in [19], elaborate some more details and adapt it to prove our more
general statement.

Theorem 5.3. Let T be a random field indexed by the cube D = [a,b]? ford € N and a < b
such that for o, 8, K > 0 it holds that

E(|T(z) - T(y)|"] < K|z - ylgs”.

Under this conditions for ally € (0, g) there exists K' > 0, a P-a.s. positive random variable
h* and a modification T of T such that T is almost surely locally ~v-Hdélder continuous,
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i.e. there exists a set of full probability Q" such that for all w € QF and x,y € D with
|z — yllge < h*(w) it holds that

T(z,w) —T(y,w)| <K'l — yl|L.-

Proof. Without loss of generality (w.l.o.g.) we assume that D = [0,1]¢. In this proof we
take the one norm on R? i.e. for € R? this norm is given by ||z|j; = Z?:l |z;|. This is
justified because all norms are equivalent on R% and the statements are only stated with
respect to constants. The main ingredients of this proof are the Borel-Cantelli lemma
and the Chebychev inequality. As a starting point we apply the Chebychev inequality and
exploit the resulting inequality in order to setup a discretization of the cube, where the
inequality holds. We obtain that

P(|T(z) — T(y)| > &] < e B[ T(z) - T(y)|*] < e °Kllz -y, (5.10)

We choose e = 277 for v € (0, g) and obtain for kq, ...,k € {0,1,...,2"} and 7, ...,n4 €
{0,1} from Equation (5.10) that

pllr(f F)_p(kom ko) oo <o prgentts
on’ " gn on on

— Kdo—md+B—a)

We can apply this idea to a finite number of points that are equally spread in the cube D
and obtain that

k k ki — kg —
P max T —1,...,—(1 I m,..., d —Tid > 27"
1<ky,...,kg<2m™ 2n 2n 2n 2n
Tlh---JidE{Ovl}

k k ky — kg —
=P U {weQ:‘T<w,22,...,2g>—T<w, 12 771,..., d2 nd)‘>27”}

1<ky ... kg<2m
7117-~~Jld€{0,1}

< Z Kdo—™Md+B—a) — frqodo—n(B—av)
1<ky,..., kqg<2m
7717~~-777d€{0:1}

Since by our choice 5 — ya > 0 the last expression is summable and so the Borel-Cantelli
lemma is applicable. Instead of quoting the lemma it is more practical to quote its proof
which is found in [11] on page 65 and apply it to our situation.

We set
B ) k1 kq k1 — m kg — 1d —yn
Ap=qwe: 1§k11??lz232" T | w, gn 7 2n> -T <w, on "0 om > 2 ,
771a~~)77d€{071}
N(w):Z]lAn(w) for w € Q.

n>1

We simply apply the summability which we found before and obtain that
E[N] =Y P[4, <) Kd2'270~7 < o0,

n>1 n>1
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This implies that N is P-a.s. finite, say on the set Q* € A, which then has full probability.
This implies that for each w € Q* the condition stated in the definition of A, is violated
only for finitely many n € N. So we can find n*(w) for all w € Q* such that

k k k1 — kq —
T( Lo d>—T(w, L-m. nd)’SZV” for n > n*(w).

max W, —
1<ky ... kg <27 Ton’ Y on on 77 9n
771:~~~777d€{0a1}

(5.11)

Having this inequality, we proceed with the next claim, which will provide the desired
continuity of a modification of T. We define for M € N

DM — {(k:l,...,k:d)T/QM ke {0,1,...,2M} i = 1,...,d}.

For n > n*(w) we claim that for all M > n € N it holds that

M
T(w,z) = T(w,y)| <2 Y 27V for all 2,y € DM such that ||z —y1 <27 (5.12)
j=n+1

The statement in Equation (5.12) is proven by induction. We start with the case M = n+1.
For z,y € D™ such that ||z —y|| < 27™ it holds that = and y only differ in one coordinate.
In particular in that coordinate the difference has to be less or equal than 2=(*1_ So
Equation (5.11) can be applied and gives the result Equation (5.12) for M = n + 1.

Now we try to conclude that if Equation (5.12) holds for m =n+1,..., M — 1, then it also
holds for M. For z,y € DM such that ||z — y|| < 27", w.l.o.g we assume that ; > y; for
i =1,...,d. This freedom is clear, since for y; > x; the argument could simply be done the
other way around, which is briefly explained below. We set 2*, y* € DM~ such that for all
i =1,...,d it holds that

zf = max{u € {0,1/2M71 1} 2 > u},
yr =min{u € {0,1/2M71 1} 2 <ul.

So it holds that y; < y7 < 27 < @; for i = 1,...,d and the induction hypotheses can be
applied to * and y*. So we obtain that

M-1
T (w,z*) — T(w,y")| <2 Z 27,
j=n+1

In the case y; > x;, 7 and y; would be defined the other way around and the inequalities
would be y; >y > 27 > x;. For x and 2™ we know that in every coordinates the difference
is at most 2. This means we can use Equation (5.11) as an upper bound

. k1 kq ki—m  ka—nd
T (w, ) — T(w,z%)| < max T (w, 2]\/[""721\/1) -T (w, SN ol

1<k, kg<2M
7717"'777116{071}

<2 M,
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For y and y* it is done exactly in the same way. Now the triangle inequality will finish the
induction argument

T(w,2) = T(w,y)| < |T(w, 2) = T(w,2")[ + [T(w,z") = T(w,y")| + |T(w,y") = T(w,y)]

M—-1 M
<92.277M 4 9 Z 27 — 9 Z 27,
j=n+1 Jj=n+1

From here on the proof given for Theorem 2.8 in [19] for stochastic processes instead of
random fields fits exactly our situation. Nevertheless, we give it to complete the argument
and for the convenience of the reader. To analyze the continuity we introduce the set
D = U,,50 D™ and the function h*(w) = 27" @) on Q*. We now show that the random
field T is almost surely locally 4-Holder continuous on the set D which is dense in the cube
[0,1]¢. For w € Q* and @,y € D such that ||z — y||; < h*(w) and = # y, we find n > n*(w)
such that 2=(*1) < ||z — y|; < 27". Using Equation (5.12) we find that

o0 oo
. o )
T (w,z) —T(w,y)| <2 E 2777 <2 E 27779~ < m”x —yl{-  (5.13)
j=n+1 7=0

On the set Q*¢, we define the random field T'(z) = 0 for all € [0,1]%. Forw € Qand z € D,
we define T(w, ) = T(w,z). For = € [0,1]4 N D¢ we choose a sequence (z, : n > 1) C D
such that x,, converges to x. Using Equation (5.13) we see below that T'(w, z,,) is a Cauchy
sequence, i.e.

T (w, ) — T(w, )| < K'||@m — 2|7 — 0 for m,n — co.

The limit of this sequence exists by completeness of the real numbers. The limit is inde-
pendent of the chosen sequence x,,, because if we take a second sequence (&, : n > 1) which
also converges to x we obtain that

IT(w, Zm) — T(w, Zm)| < K'|| 2 — :Enm — 0 for m — oo.

Therefore T'(w, ) = lim, ;00 T'(w, z,,) is well-defined and satisfies Equation (5.13). More-
over this implies that for any = € [0,1]? and some sequence (z,, : n > 1) C D which
converges to z that T'(x,) converges P-a.s. to T'(z). Also Equation (5.10) immediately
gives that T'(z,) converges to T'(z) in probability. This implies T'(x) = T'(z) P-a.s. O

5.3. Proof of Theorem 1.2

Now we are in a good position to prove the main theorem of this chapter. We formulate
Theorem 1.2 precisely.

Theorem 5.4. Let T be a 2-weakly isotropic Gaussian spherical random field, such that
the angular power spectrum satisfies that (Cj1'*° : 1 > 0) is summable for 6 € (0,2]. For
any v € (0, g) there exist a modification T of T, a P-a.s. positive random variable h* and
a constant K > 0 such that T* is almost sure locally v-Holder continuous, i.e. there exists
a set of full probability Q* such that for all w € Q* and x,y € S? with d(z,y) < h*(w) it
holds that

T"(z,w) = T"(y, w)| < Kd(z,y)".
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Proof. The idea of the proof is to divide T into spherical random subfields, which are only
indexed with parts of the sphere. These parts will overlap such that the global local Holder
continuity can be deduced. We will prove the assertion on these parts individually. For the
parts, we choose projections of a square which can be seen to lie underneath the specific
part of the sphere. The square D and the mapping from D to S? are given by

2 217
D=|-22 d:D— S5?
il -

2 2
(z1,22) — <:c1,$2, 1—a7 —$2> .

Then we define the random subfield 7' = T]q>( p)- Now the crucial thing to check is whether

distances in D and ®(D) are equivalent, i.e. there exist constants K,k > 0 such that for
all x,y € D it holds that

kllz = yllgz < d(®(2), ®(y)) < K|z — yl|ze. (5.14)

It is clear that k = 1 is sufficient, since distances on the sphere are larger than on an
underlying square. The interesting case is the second inequality. We bound d(.,.) from
above in two steps. First we bound it in the Euclidean norm of R? and then in the
Euclidean norm of R? restricted to the square D. As a start we want to remove the
inverse trigonometric function arccos. We claim that for all ¢t € [—1, 1] it holds that

arccos(t) < mv1 —t. (5.15)

For t € [—1,0] this is obvious since both functions are decreasing and the function 7/1 — -
attains the maximum 7 of the function arccos already at 0. For the other case t € [0,1] we

use that % arccos(t) = — \/f_ﬁ and the following inequality that is valid on at [0, 1]:

1 ™ 1
< — .
V1—s2 7 241-s

We write arccos in an integral form to obtain Inequality (5.15)

1
=-—7mvV1l—s =7nv1-—t.
t

arccos

0 /1 L <7 /1 L,
= ————ds < — ———ds
¢ V1i—s2 T 2 V1—s
Now we can show the first step that for z,y € R? it holds that

7T2

d(®(x), (y))* < T [|1P(x) — (y)[* (5.16)

Since both sides of Inequality (5.15) are positive, the inequality also holds squared. We
apply this inequality after we inserted the expression of the metric d(.,.) in terms of arccos.
Then a null addition, the definition of ® and some manipulations give

d(®(z), ®(y))* = arccos®((B(z), ®(y))) < 7°(1 — (@(2), 2 (y)))

=7’ <1 —T1Y1 — Loy — \/(1 — i —a3)(1 -y —y%)>

2
T
> (x%—%lyl+y%+x%—2x1y1+y%+1—$%—$§
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—2\/(1—56?—mg)(l—yf—yg)Jrl—yf—y%)

2 2
T
22<($1—y1)2+(:62—y2)2+(\/1—58%—96‘%—\/1—@/%—?;%) )

7T2
= 5 lle(@) - o (y)|*.

For the second step in the proof of the upper bound K in Inequality (5.14) we apply a fact
from real calculus: for a real-valued continuously differentiable function f on a convex open
subset O C R? it holds that

|f(z) = f(y)] < sup [|Df(2)lrellz — yllrz,
z€0

where D f denotes the Jacobian of f. This fact can be easily shown by an elementary calcu-
lation involving the fundamental theorem of calculus and the Cauchy—Schwarz inequality.
In our case f is the third component of @, i.e. f = ®3, which is extendable to an open
domain containing D such that the extension is continuously differentiable. It is readily
verified that sup,cp |D®3(2)||g2 = 2V/2, since the supremum is attained at each corner

of D and D®3(z) = (\/1:,:%—%’ \/1::%2_%). We apply what we just found and obtain for
z,y € D that

12(2) = 2(W)II* = |z — ylge + [P3(z) — P3(y)[* (5.17)
2
< llz =yl + (2v2) llo - yllge = 9llo — ylZe.
We combine Inequality (5.16) and Inequality (5.17) to obtain Inequality (5.14), which we
wanted to prove in the first place: for x,y € D it holds that

12() — B(u)]| < °X |z - yllge.

d(®(x), ®(y)) NG

<
=5
So we set K = 37

V2

The second ingredient of the proof of the theorem is Lemma 5.2. We fix v € (0, ) for the
rest of the proof. Then there is k¥ € N such that v € (0, 5’;—;2) According to Lemma 5.2
there exists Kj > 0 which depends on k such that

E[T(®(x)) = T(2(y) ] < Kid(®(x), 2(y))*".

We combine this with the equivalence of distances on D and ®(D) C S? which is expressed
in Inequality (5.14) and obtain that

E(|T(®(x)) — T(@(y))]*"] < KKz — ylIgh.

Theorem 5.3 implies that there exist a modification T of T, a P-a.s. positive random variable
h* and a constant K > 0 such that for all z,y € D that fulfill ||x — y||ge < A* P-a.s. it
holds that

T(®(x)) — T(@(y))| < Kllz — yllFs-
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Note that by Theorem 5.3 we actually obtained a modification of T o® on D. But since
® is a bijective, measurable mapping we tacitly pre-composed it with ® and interpreted it
as random field on ®(D) and as a modification of 7. This statement can be reformulated
using Equation (5.14) and the fact that ® is a bijective mapping. For all Z,3 € ®(D) that
fulfill d(z,y) < h* P-a.s. it holds that

IT(2) — T(9)| < Kd(#,9)". (5.18)
So we have shown that T is P-a.s. locally y-Holder continuous for all € (0, g)

This argument can be repeated with other choices of ®; for ¢ = 1,...,6 to cover the whole
sphere such that some of the ®;(D) overlap, i.e. ®;(D)N®;(D) # 0 for at least some j # i.
These choices of mappings are listed at the end of the proof. This gives us six random fields
(TZ :4=1,...,6), which are modifications of (T'|¢,(p) : i = 1,...,6) respectively. Also there
are measurable sets (27 : i = 1,...,6) of full probability such that T;(w) is locally v-Holder
continuous for all w € Q7. The interior of D is denoted by D°. The relatively open cover
(®;(D°) : i =1,...,6) fulfills the conditions of Theorem 1.11 in [26] for the existence of a
smooth partition of unity (¥; : i = 1, ..., 6) for this relatively open cover of S2. In particular
it holds that for all ¢, ¥; is compactly supported in ®;(D°). The support of a function ¥
is denoted by supp(¥). We can use it to define

6 = 6
T — {Z¢1 U, T; on ﬂi:l o

0 else.

We have to check that T™ is a modification of T" and that it is v-Holder continuous. Since
ﬂle 27 has full probability 7™ is a modification of T" by construction.

Note that there are also six different constants (K; : i = 1,...,6) and random variables
(hf :i=1,...,6) which belong to the (T} : i = 1,...,6). We choose the global constant K
and global h* in the following way taking into account the overlap of the domains:

pi,j = radius of maximal inscribed circle with respect to the metric d(., .)
in ®;(D) N ®;(D), whenever ®;(D) N ®;(D) # 0 and i,j =1, ..., 6,
K = K;
igll?i(fi{ it

h* = i h¥ .
i,j:@i(Dr)r%ng { i}

It is clear that mini’j@,i(mm@j(D#@{pm} > 0, therefore also h* is a P-a.s. strictly positive
random variable. Note that if 4,5 € {1,...,6} such that ®;(D) N ®;(D) # 0, then for
z € ®;(D)N®;(D) it holds that P-as. Tj(z) = Tlo, (D), (D) (T) = Tj(z). Furthermore,
because countable intersections of sets of full probability still have full probability it holds
that P-a.s. Tj(z) = Tj(z) for all x € ®;(D) N &;(D) N Q% Now we know that 7; and T}
are continuous, so they are already determined on a dense subset of their domain. Thls
implies that P-a.s. Tj(z) = Tj(z) for all z € ®;(D) N ®;(D). Therefore, we can introduce
the set of full probablhty Q such that for 4,5 € {1, .. 6} with ®;(D) N ®;(D) # 0 it holds
that T} o, (D) = =T; e, (D) on Q.

We check the local ’y-Holder continuity. For w € (ﬂ?zl Q)N Q we choose x +y € S? such
that d(x,y) < h*(w), then there is j € {1,...,6} such that z,y € ®;(D). In the first step
we insert the definition of 7. In the second step we use the property of the supports of
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the partition of unity. In the third step we apply that for € ®;(D) N ®;(D) it holds that
T;(z) = Tj(z) on Q. On the complement of Q we additionally set 7* = 0. So we obtain
using Inequality (5.18) and the property that the partition of unity sums up to one that

6
T (@, w) = T*(y,w)| = | Y il@) Ty, w) = Ui(y) Ti(y,w)
=1
= Z \IJZ(.%') ~Z‘(.%',(.L)) - Z \Ilz(y) ~i(y,W)
w:x€supp(¥;) iry€supp(¥;)
i:z€supp(¥;) iry€supp(¥;)

= |Tj(z,w) = Tj(y,w)| < Kd(x,y)".

Hence the local y-Holder continuity has been proven. Note that for the set of full probability
Q*, which was announced in the theorem, we can take Q* = (ﬂ?:l Q)N Q. To complete
the argument we state the other ®’s, note that in the proof ® = &y,

®:D — 52 ®y: D — 52

(x1,x2) — (x1,$2, 1 —x% —:c%) , (x1,22) — (ml,xg,— 1 —x% —x%) ,
®3:D — S? ®y: D — S?

(1, T2) (xl, 1— 23 —x%,m) , (x1,x2) (acl,—\/l — 22 —m%,m) ,
ds5: D — 52 Bg: D — S?

(x1,x2) = (\/1—33% —x%,xl,xg) , (x1,22) (—\/1 —x% —x%,azl,m) . O

Let ® = ®; be the function from the proof of the previous theorem. We observe that
®(R?) = S2\{(0,0,1)T}. Then Inequality (5.16) implies that for all ,9 € S?\{(0,0,1)"}
it holds that

(&, 9) < \foU—yH

Since S?\{(0,0,1)"} is dense in S2, the previous inequality holds for all &, ¢ € S2. There-
fore, we obtain that for all ,y € S? it holds that

12 =gl <d(z,9) < EH:% =9l (5.19)

Remark 5.5. Let (V;,; i € ) be a finite smooth atlas of S?. Let i € T be arbitrary.
There are constants k and K such that for all x Y €, L(V;) it holds that

ke =yl < d(ai(@), ai(y)) < Kz -yl z2 (5.20)

Proof. Without loss of generality we assume that for all i € Z, every two points in a; ' (V;)
and every two points in V; are connected by a continuously differentiable curve. Since «;
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is a diffeomorphism, a; and o 1 are both Lipschitz continuous, i.e. there exists constants
k and K such that for all z,y € o; '(V;) it holds that

ko —yllre < [la(z) — a(y)l] < K|z — yllpe.

Together with Inequality (5.19) we obtain the claim. O
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6. Differentiability of isotropic Gaussian
spherical random fields

In this chapter we want to analyze differentiability of 2-weakly isotropic Gaussian spherical
random fields. We remind that a 2-weakly isotropic Gaussian spherical random field T" has
the following expansion

l
T = Z Z \/@Bl,mi}l,my (61>

>0 m=—1

where the sequence (C; : I > 0) is the angular power spectrum of T, (Blm 21> 0,m =
—1,...,1) is an i.i.d. sequence of standard normally distributed random variables and ( Lm
[ > O,m = —l,...,1) are the real spherical harmonics. The reader is referred to Equa-
tion (4.1) and Equation (5.1).

In the previous chapter we showed that under certain conditions on the angular power
spectrum (Cj : [ > 0) of a 2-weakly isotropic Gaussian spherical random field T' there exists
a modification that is Holder continuous, i.e. Theorem 5.4 implies that if (CyI'*9 : 1 > 0)
is summable for some § > 0, then there exists a continuous modification Tof T. T is
also a 2-weakly isotropic random field with an expansion in the spherical harmonics due
to Theorem 3.8. We recall that Theorem 3.8 implies that for all 2 € S? the expansion of
T in Equation (6.1) evaluated at = converges to T'(z) in L%(£2, R) and the expansion of T
converges to T in L%(Q, L2(S%,R)). Since for all z € S? it holds that P-a.s. T'(z) = T(z),
we conclude that for all € S?

L l

lim B[|T(x Z Z VCiBmYim(@)P] = lim B[\T(x) = > v/CibimYim(x)

L—oo
=0 m=—1 =0 m=—1

=0.

We further exploit that for all z € S? it holds that P-a.s. T'(z) = T(z) and obtain with
Tonelli’s theorem that

lim E Z Z VC1BimYim(@)Pdo ()]

L—o0 52 =0 m——1
= Jim B[ ZZ VCiBimYi () do(@)] = 0.
=0 m=—I

We have shown that the expansion of T' also converges to T in L%(, L*(S%,R)) and for
all z € 52 the expansion of T evaluated at 2 € 2 converges to T'(z) in L%, R). In the

o1



following chapters we will always consider the continuous modification T instead of T and
denote the modification also by T'. This is justified, since we will always consider 2-weakly
isotropic Gaussian spherical random fields, whose angular power spectrum satisfies that
(CyI™9 1 1 > 0) is summable for some § > 0 such that Theorem 5.4 is applicable. We just
showed that we can still argue with the same expansion in the real spherical harmonics.

T can be interpreted as a mapping from Q to C°(S?). For all z € S? we observe that
T(x) is A — B(R) measurable, where B(R) is the Borel o-algebra of R. We introduce the
canonical coordinates (X, : z € S?) on CY(S?) as mappings from C%(S?) to R, i.e. for all
r € 5% and all w € C%(S?) we define

Xz (w) = w(x).

We use them to define the o-algebra F on C°(S?) that is induced by the canonical coordi-
nates (X, : € S?), i.e. we set

F=0(X,:xzecS5%.

Since for all z € S? it holds that X, o T is A — B(R) measurable, we observe that T is
A — F measurable.

Lemma 6.1. Let B(C°(S?)) be the Borel o-algebra of C°(S?). It holds that B(C°(S?)) = F.

Proof. This is analyzed in an abstract framework in the paper of Yan in [28]. Since C°(S?)
is a separable Banach space, it is also a Polish space. Therefore, we can directly apply
Theorem 3 in [28]. We set X = C%(S?), (fa :a €I) = (X, : 2 € S?) and Y, = R.
The mapping w — (w(z) : € Z) from C%(S?) to [] ez Ya is bijective to its image. This
property also holds if we take the index set J = Q2 N S? instead of Z. Note that J is a
countable subset of Z. With this setup Theorem 3 in [28] explicitly implies the claim. O

Therefore we conclude that P o T~!, which is the law of T, is a probability measure on
(C°(S?), B(CY(S?)). Also the mapping w + T(w) from Q to C°(S?) is A — B(C°(S?))

measurable.

For the subsequent analysis we introduce Bochner spaces. Let X be a separable Banach
space with norm || - ||x, for all p € (0,00) we define the Bochner space L%, (Q2, X) as all
strongly measurable, X-valued functions X on (2,.4) such that

1
X1 e 0.2) = B [IX[I5] 7 < oo,

For the definition of strong measurability we refer to Definition 1 and 2 in Section V.4 in
[29] and for the Bochner integral we refer to Section V.5 in [29]. In the following we will
mostly encounter the case that X is an X-valued function on Q such that X is A — B(X)
measurable, where B(X') denotes the Borel o-algebra of the separable Banach space X'. We
briefly argue that separability of X implies that X is strongly measurable. For all £ € X*
we observe that ¢(X) is A — B(R) measurable. Since the space X' is separable we obtain
with Pettis’ theorem, which is the main theorem in Section V.4 in [29], that X is strongly
measurable. Note that L%, (2, X) is a Banach space with norm || - HL’,’D(Q,X) in the case that

p € [1,00).
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We observe that in general the realizations of T are P-a.s. in L?(S% R) according to
Lemma 3.3 because any 2-weakly isotropic spherical random field satisfies that (Cjl : [ > 0)
is summable. Once we added 6 € (0,2] to the exponent, i.e. (CjI'*° : 1 > 0) has to be
summable, we observe that due to Theorem 5.4 there exists a Holder continuous modifica-
tion. Since we assume that the field T is continuous, it follows that realizations of T' are
P-a.s. Holder continuous. A similar approach can be used to show that weak derivatives of
T are Holder continuous. First we prove under which decay of the angular power spectrum
weak derivatives of realizations of T are P-a.s. in L?(S?,R). In the second step we add
d € (0,2] to the exponent and prove P-a.s. Holder continuity.

6.1. Sobolev and Holder spaces on the sphere

In this chapter we will use the interpretation of S? as a smooth manifold. An atlas of S? is
denoted by (V;, 5; : i € Z) such that

LJViZS2 and ﬂlﬁfl(vz)—)%’
€L

for all ¢ € Z. We will always consider smooth atlases in this exposition. For a mapping f
on S?, we introduce the notation that for all i € T

For basic properties of an atlas, chart domains and coordinate charts the reader is referred
to [26]. Let (Vi,B; : i € T) be an atlas of S, Since (V; : i € Z) is an open cover of 52,
Theorem 1.11 in [26] implies that there exists a partition of unity subordinate to (V; : i € 7).
Sometimes it is useful to be able to choose a partition of unity with additional properties.
The following lemma is motivated by Corollary 1.11 in [26].

Lemma 6.2. Let (V;,3;:i € Z) be an atlas of S*. If A CC V; is a relatively closed subset
of S? for some fized j € I, then there exists a partition of unity U subordinate to the open
cover (V; :i € I) such that W; =1 on A.

Proof. The proof is essentially the proof of Corollary 1.11 in [26]. Since A CC Vj is
relatively closed in S?, it holds that (V}, V;\A : i € Z\{j}) is an open cover of S?. We apply
Theorem 1.11 in [26] to the open cover (V;,V;\A : i € Z\{j}) and obtain the partition of
unity ¥ subordinate to (Vj, V;\A : i € Z\{j}). For all ¢ € Z\{j} it holds that supp(¥;) CC
Vi\A, which implies that ¥;(z) = 0 for all z € A. Since > ;.7 ¥; = 1 on S?, it must hold
that W;(x) =1 for all z € A. O

For the Sobolev spaces on the sphere we take Definition 3.23 from [3].

Definition 6.3. For s € R the Sobolev space H*(S?) is the completion of C°°(S?) with
respect to the following norm. For f € C*(S?) the H*(S?)-norm is defined by

£l = “ (-as+3)

L2(S2,R)
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Note that the operator (—Ag2 + %)% is formally evaluated on the real spherical harmonics
such that for [ > 0 and m € {—(,...,{} it holds that

1\2 - 1\* -

Another definition of Sobolev spaces on the sphere is taken from Wloka’s book [27]. There
it is Definition 4.4 and it applies to sufficiently smooth compact manifolds. It uses an atlas
of the manifold, which is the sphere in our case. Note that by shrinking the domain of
our coordinates, i.e. [0, 7] x [0,27), to a suitable open subset B, one can construct a finite
smooth atlas by rotating our coordinates with suitable elements g1, ...,g96 € SO(3), where
we set 1; = g;x and U; = n;(B) for ¢ = 1,...6, where = denotes the coordinates, which we
defined at the very beginning of Chapter 2. We obtain the atlas (U;,n; : i = 1,...,6). A
partition of unity ¥ = (¥; : ¢ = 1, ...,6) subordinate to the open cover (U; : i = 1,...,6) of
S? exists due to Theorem 1.11 in [26] as at the end of Chapter 5. We will refer to this atlas
as our standard or usual atlas on S2.

Definition 6.4. For k € N and p € [1,00) we say that f € L?(S? R) belongs to WHP(S?)
if the functions

(f )y, :m; ' (Ui) = R,

belong to the Sobolev spaces Wéf’p(nfl(Ui)) foralli e {1,..,6}. With Wég’p(O) we denote
the closure of C§°(O) with respect to the W*P(O)-norm for an open set O. The norm on
WHP(S?) is given by

[ fllwkes2) = (ZH LDy, )

WH2(S82) is a Hilbert space with an inner product. For f,g € W*2(S2) it is defined by

6

(fo 9k = D ((F¥)nis (90wt (1))

=1

For Sobolev spaces over bounded domains in Euclidean space we refer to the book of Adams
and Fournier [1] or of Triebel [25]. We did not include the atlas in our notation. This is
justified by Satz 4.2 of [27] for the case p = 2, which says that the norms for different atlases
are equivalent. The general case p € [1, 00) of this same statement is Theorem 48.19 in [10].
Situations may arise where one of the two definitions for Sobolev spaces on the sphere is
more useful. That is why we seek to prove that one is continuously embedded in the other
in the integer case.

Proposition 6.5. For k € N it holds with continuous embedding that H*(S?) Cc Wk2(S5?).

The proof of this proposition will be conducted at the end of this chapter. The following
notation is helpful to treat higher order derivatives. For a multi-index 3 € Njj we write for

the partial derivative
BlEl

= 3. 3
Oz ...0xh"

where |B] = >, ;. For two multi-indices o, 3 € Njj we introduce the partial order <
such that a < B if a; < §; for all i € {1,...,n}. Moreover for o, 8 € Njj satisfying o < 3

93
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n

we introduce the binomial coefficient (g ) =11, ( ) In the following greek letters in bold
font will refer to multi-indices of the respective dimension.

We introduce the Sobolev—Slobodeckij spaces on a bounded domain D C R"™ for some
n € N. For an integer £ > 0 and ¢ € (0, 1) that satisfy that s = k+¢ and p € [1,00), we
define for f € WkP(D)

9) 0 P z
|flwse(p) = Z (/DXD| b/ (@) |p€{£ y) dxdy) .

P le—y

Definition 6.6. Let s > 0 be not an integer and satisfies that s = k 4+t for an integer
k>0 andte (0,1) and let p € [1,00). For a bounded domain D C R™ for some n € N the
Sobolev-Slobodeckij space WP (D) is defined by

W#(D) = {f € WE(D) : | flsn(p) < o0}

and the norm on W*P(D) for f € W*P(D) is given by

1

1 lwesoy = (1 iy + 1 By

The dual space of W*P(D) is denoted by W= (D), where p satisfies that % + 1% =1.

We introduce general notation for the Hoélder norms and spaces on a bounded domain
D C R"™ for some n € N. By C¥(D) we denote the real-valued k-times differentiable
functions with domain D. Functions in C*(D) whose partial derivatives can be continuously
extended to the boundary 9D form the space C*(D)

Definition 6.7. If f € C*(D) and k is a positive integer, we define the semi-norm

|flk,p = sup 10af(z)],
|ﬁ| k

and the norm

Ifllx ) = sup £ @)] + Z |fljp-

If f € C¥(D) and k is a positive integer, we define for v € (0,1] the semi-norm

oy p 12870 0550
e x,yleﬁD, Ty Hl‘ - yH%n

9

and the norm

||f||ckw(5) = Hchk(B) +|f
For an integer k > 0 and v € (0, 1] we define the Holder space

C*(D) = {f € C*(D) : |Ifllgw(py < o0}

v,k,D-
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Note that vector-valued Holder functions and spaces are defined accordingly, i.e C*7 (D,0)
denotes the space of functions whose components are in C*7 (D) and whose range is included
in the closure of a domain O C R™ for some m € N. Also we introduce the notation
C*(D) = C*O(D). 1f D is a bounded Lipschitz domain Remark 16.3 (ii) in Section 16.1.1
in [7] implies that the following norms on C*(D) and C*7 (D) are equivalent: for f € C*(D)

1l = 1 Flleom) + 110 (6.2)

and for f € C*7(D)
1oy = |l + 1 Flrkn- (6.3)

The product and composition of two Holder functions result again a Holder function. If D
is a bounded Lipschitz domain, and g, h € C*%(D) for an integer k > 0 and « € (0, 1] then
Theorem 16.28 in Section 16.5.2 of |7] states that there exists a constant K > 0 depending
on k and D such that

l9hllcr.a @) < K (Hchha(ﬁ)”thO(ﬁ) + HQHCO(ﬁ)Hthk,a@)) : (6.4)

For the statement about the composition of two Holder functions let D C R™ and O C R™

be two bounded open Lipschitz domains, o, 3 € [0,1] and g € C**(D) for some integer

k > 0. The following two statements are due to Theorem 16.31 in Section 16.6.1 of [7]. If
=0and h € C*5(0, D), then

llg h”c&aﬁ(b) < ||9||co,a(ﬁ)”hHgo,ﬁ(aj) + ||9||00(E)- (6.5)

Ifk>1and h € Ck’o‘(é, D), then there exists a constant K > 0 depending on k, O and D
such that

g0 Allgra < K (Iglore IS 5 + 19ler @) 1Rl oxaop) + l9lcom)) - (6:6)

The Holder spaces on the sphere are defined similarly to the Sobolev spaces with respect
to an atlas.

Definition 6.8. For k € N, a € (0,1) and a finite, smooth atlas (V;, B; : i € T) of S? with
respective partition of unity ¥ the Holder space CE’Q(SQ) is defined as the set of functions
f € C*(S?) such that

Hf”c’g’a(sa) = I?GE‘:LZX H(f\Ijl)ﬁzHcka(W) < o0.

The following proposition justifies this choice of norm and shows that for different atlases
the same space results.

Proposition 6.9. For k € N, a € (0,1) and two finite atlases (V;, B : i € I) and (Wj, 7; :
j € J) the spaces Cg’a(52) and CF*(S2) are equal with equivalent norms.

Proof. Let ¥ and ® be partitions of unity subordinate to the open cover (V; : i € Z) and
(Wj :j € J). It is sufficient to prove that there exists a constant K > 0 such that for all
function f € C¥*(52) and for all i € T it holds that

150 g i) < I i
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We fix ¢ € Z. From the definition of a smooth atlas we obtain that the functions .- Lo g,
are smooth diffeomorphisms from 8;*(V; N W;) to T_l(Vi NW;j) forall j € J. In partlcular

these functions are in Ch*(3;1 (Vi N W;), 71(V N Wj)) for all I € N and their respective
norms can be bounded uniformly due to the ﬁnlte index set J with a constant K; > 0. Since
also (f¥;®;);, € C**(A) for some compact set A that satisfies that supp((®;)r,) C A C
Tj_l(Wj) we can apply Inequality (6.5) and Inequality (6.6) to obtain that for a constant
K > 0 depending on k£ and the domains it holds that

1(f@i®j) 0 7j0 (15" Bl g gy < K(KR 0k T DI E®)) o 7l craay

where we also used Inequality (6.3) to simplify the right hand side. We use this inequality
together with the basic property of the partition of unity to obtain that

||(f‘1’i)ﬁi’|ok,a(m) < Z ”(f\IJi(I)j)/BiHCk,a(W)

JjeT

= > I(Fwi®5) 0750 (77" © Bl v r i)
JET l

<Y KEN gy DIGYi@)) o a)
ies

We apply Inequality (6.4) and Inequality (6.3) to the product (f®;);, - (¥;),, and insert
the bound into the above expression to obtain that

15 e i) Z;Kr £l vy < Il sey
je

where we tacitly combined the former constants together with the respective norms of the
smooth functions (V;)., for i € Z and j € J to a new constant K. O

For these Hélder and Sobolev spaces on S? we want to prove a Sobolev embedding theorem.

Theorem 6.10. Let k,. € Ny, p € (1,00) and v € [0,1). Ifk:—]% > 147y, then WkP(S?)
C*7(S?) with continuous embedding. If v € (0,1), then the continuous embedding also holds
if k— % =1+7.

Proof. Since the norms of the Hélder and Sobolev spaces with respect to two different atlases
are equivalent, we can prove the claim with our usual finite atlas (U;,n; : ¢ = 1, ...,6) with
partition of unity ¥. For f € W*P(S?) we obtain that

6

f:Zf‘I’z’-

We fix i € {1,...,6} and observe that (f¥;),. € W*?(n.*(U;)). The Sobolev embedding

theorem for domains in Euclidean space, which is Theorem 4.6.1.(c) in [25] implies that

(f¥;),. has a continuous representative in C*7(n; *(U;)), which we also denote by (f¥;),,..
Also it implies that for a constant K, which is independent of f, it holds that

1l 75, < KNt < Kl ks,

where the last inequality is due to Definition 6.4. Since i € {1, ...,6} was arbitrarily chosen,
we obtain that

[ fllcemis2y < Kl fllwer(s2)- O
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Now the Hélder spaces on S? are well-defined. We finish this preliminary section with a
remark on the Borel o-algebras of the Holder spaces.

Remark 6.11. We can apply the proof of Lemma 6.1 in the case that we analyze the Holder
space C*7(S2) for an integer k > 0 and v € (0,1). We conclude that the Borel o-algebra of
C*7(S2) is equal to the o-algebra that is induced by the canonical coordinates (X, : x € S?),
i.e. B(C*7(S?)) = F. Therefore we obtain that B(C*7(S?)) = B(C°(S?)) for every integer
k>0 andy e (0,1).

6.2. First order derivatives of isotropic Gaussian spherical
random fields

For a 2-weakly isotropic Gaussian spherical random field the next lemma states how fast its
angular power spectrum has to decay such that its expansion converges in the L%;k (9, H*(S?))-
norm for all £ € N. The case k = 1 is the first part of the proof of Theorem 4.5 in [20].

Lemma 6.12. Let T be a 2-weakly isotropic Gaussian spherical random field such that its
angular power spectrum satisfies that (CjI'T2% : 1 > 0) is summable for some s > 0, then
T is an element of L% (2, H*(S%)) for all k € N and its expansion in the real spherical
harmonics converges in the respective norm and there exists a constant Ky, independently

of T and (Cy : 1 > 0) such that

1T || 2t oo (s2y) < Ko | D Gl 2
1>0

Proof. We denote with T the truncated expansion of T for L € Ny as we did in the
previous chapters. For L; > Ly € Ny we look at the difference of two truncations of T'.
With a similar argument as used to show Inequality (5.9) we obtain that

Ly l _ 1 2s F
17" =T ooy = B || 22 2. Cibfim <l+2>
l=Lao+1m=—1
k
Ly l 2s
(2k)! 1
<o | 2 2 Gllrsg
I=Lo+1m=—I
k
Ly 2s
(2k)! 1
= i > i+ 1) I+
I=Lo+1
L1 k
<K | > it (6.7)
I=La+1

Since the sequence (C;I'*2% : 1 > 0) is summable this calculation implies that (T'* : L > 0)
is a Cauchy sequence in the space L2¥(Q, H*(S?)). The completeness of this space implies
that T converges to T in L2¥(Q, H*(S?)) as L — oc.

The second claim of the lemma is proven in the same way as we proved Inequality (6.7). O
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An important ingredient of this discussion are partial derivatives of the real spherical har-
monics, which is the content of the following lemma.

Lemma 6.13. Forl > 0 and m € {—I,...,1} the components of the partial derivatives of
the real spherical harmonics have the following form:

8<p}~/l,m (33) = _mf/l,—m (x)

and

(20 +1)(21 4+ 3) sin(h)
N m\/ 12 —m? Y/l—l,m(ﬂf)

e <o T it

(204+1)(2L —1) sin(0)
{\/(l FmA D —m)Vim(z)  ifm>0,

V+Tm]+ 1)1 = [m)Yim-1(x) if m <O0.

Proof. The expression of the real spherical harmonics, i.e. Equation (5.3), implies the first
claim after a simple computation of the partial derivative with respect to (.

The second claim of the lemma is a bit more involved. We start to compute a(,ﬁ,m(x). The

part of fflm(a:) that depends on @ is equal to sinm(G)%(va — 1)l|x:COS(9). For the partial
derivative we obtain that

+m dl+m

Cm 2 l in"”! i l
0 sin™ (0) i (=7 = 1) la=cos(e) = msin™(0) cos(0) (=" = 17|
om—+1 dl+m+1 !
— sin (Q)W('x o 1) x:cos(@).

If we regard the full expression of the real spherical harmonics, that is Equation (5.3), we
obtain the partial derivative with respect to 0, i.e.

aeﬁ,m(w) _ mCOS(Q)l} (@) + {\/(l +m+1)(l — m)ﬁmﬂ(m) if m >0,

sin(g) " VU+m[+ D)0 = [m)Yim_1(z) if m <0.

Note that the ambiguity for the case |m| = [ is tacitly dealt with the factor \/I — |m|, that
becomes equal to zero in these cases. This is correct since the partial derivative vanishes.
Ambiguities of this kind will be tacitly dealt with in this manner throughout this proof.
The appendix of [21] in particular Chapter 13.1.3 in [21] contains the following recurrence

relation for the associated Legendre polynomials just below Equation (13.7) in [21]: for
[ >0and m e {—l,...,1} it holds that

(20 +1)2Pl, = (1 —m+ )P 4 (1 +m)PLL

This recurrence relation is our approach to simplify cos(G)f”Lm. We use Equation (5.3) and
manipulate the constants to obtain that

os(60)Vign

—|m! (= mSil’llml
:\/T 8+:m§:( 1)2l+1 (%—'ml+1>ﬂl$ﬁ<cos<0>>+<l+|m|>a’,;ﬁ<cos<e>>>
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2043 [+ 1—=|m)! [+ 1+ |m)({+1—|m]) el
_\/?\/(l—i—l—l—\m])!\/ (21 +1)(20 + 3) (=)™ sin™}(8) Py (cos(6)) + . .

_ Ut T+ mpU+1—m]) 1+ |m|) (1 — |m])
_\/ (20 +1)(20 +3) Yl“’m+¢ @+ @ 1) (6.8)

where we omitted the similar derivation of ffl_ljm. Equation (6.8) enables us to obtain the
expression of the partial derivative with respect to 6, that we were looking for. O

With the help of the previous lemma we arrive at the version of Lemma 5.2 for the first
order partial derivatives of a 2-weakly isotropic Gaussian spherical random field.

Lemma 6.14. Let T be a 2-weakly isotropic Gaussian spherical random field such that the
angular power spectrum (Cy : 1 > 0) satisfies that (Cy1' T2 . 1 > 0) is summable for some
6 €(0,2]. Forie{l,..,6} and z,y € U; and all k € N there exists a constant Ky, which
depends only on k, such that for B € {0, ¢} it holds that

k

B (10573, (02, 00) = 05Ty, (0 02) 2| < Ko | S 20| d(a, )™,
>0

Proof. We start with the case k = 1 and ¢ = 1, then 7; is equal to our usual coordinates
on the sphere. Therefore we apply the notation 71 (0, ;) = x and 171(6y,¢y) = y. We
are allowed to interchange the partial derivative and limit of the expansion of T'(z) and
T(y) because from Lemma 6.12 we know that 7' € L%(£2, H(S5?)) and then Proposition 6.5
implies that T' € L%(Q, W12(52)), i.e. the weak derivatives of T are well defined in the
L%—sense. This enables us to shift the discussion on how partial derivatives behave on the
real spherical harmonics, i.e. we obtain that it holds that

2

l
E(|05T(z) = 9sTW)P] = E | |D_ D VCiBim(9sYim(x) — 9Yim(y))

>0 m=—1
l ~ ~
=3 ) Cl0sYim(x) — IsVim(y))*. (6.9)
>0 m=-1

In the following we study the term (95Y] () —5Y1.m(y))?. We treat the two cases 8 = 0, ¢
separately and begin with 8 = . We apply Lemma 6.13 to obtain that
- . 2 - .
(0, Fim(@) = 0im(®)) = m* (T u(2) = Vi -m(0))?
< P(Yi-m(@) = Yi-m(y))*.

We sum this expression multiplied with the angular power spectrum (Cj : [ > 0) over [ and
m and obtain with Equation (6.9) that

l
E|0,T(x) = 0,TW)IP] <Y > ClPYim(2) = Yim(y))?

>0 m=-—1

= B ||T(x) - T(»)P] .
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where T is the 2-weakly isotropic Gaussian spherical random field that results from the
angular power spectrum (C; : [ > 0) = (Cjl?> : [ > 0). Note that by assumption the
sequence (G119 : [ > 0) is summable. Therefore Lemma 5.2 implies that there exists a

N

constant K > 0 such that

B [|0,T(x) - 0,T()) < B[|T(x) - Tw)] < K3 Gl 2d(a, ).
>0

The fact is noteworthy that for ai,...,aq, > 0 and h,q € N it holds that

q h q
(Da) <d (X ah). (6.10)
j=1 J=1
(I41)2—m?
(21+1)(2143) (2I+1)(2[—1)
which appear in Lemma 6.13 are bounded independently of [ and m, say they are both
bounded by Ko > 0. Also y/(I + |m| + 1)(I — [m]) can be bounded by a constant multiplied
by [, say the constant is K as well. According to Lemma 6.13 and Inequality (6.10) the
difference of the partial derivatives with respect to 6 squared can be bounded in this way:

For the discussion of the case 5 = 6 we note that the factors and

Yirim(z) f/m,m(y))Z (6.11)

(@ﬁm@g—@ﬁm@DQSMﬁm2<ﬁm%) sin(6,)

~ 2
+ 3K2m? (i;;(“gg) - ng;@;;)) (1= 61| (6.12)

(Y/Z,erl(fT) - }~/l,m+1(y))2 ifm >0,
(le,mfl(x) - Yz,mfl(y))Q if m <0.
(6.13)

+ 3KG1(1 = 6y m)) {

The Expression (6.13) is a difference of real spherical harmonics as in the case § = ¢ and
can be treated in the same way. Before we begin to bound the Expressions (6.11) and
(6.12) , we briefly discuss a needed inequality. Let f and g be two real-valued functions
and a,b > 0 two constants, then it holds that

a(f —g) = (fa—gb) + g(b—a) and b(f —g) = (fa—gb) + f(b—a).

the addition of these two equations and the triangle inequality yields that

2 1f +4
—g| < ———|fa — gb| + a—bl|. 6.14
f gl_a+b|!f gb| ‘a+b|| | (6.14)
This inequality will be needed to treat the factor m, that appears in the partial derivative

with respect to 6. Note that on 7y *(Uy) the function sin(f) > ¢ for some ¢ > 0. To ease
the notation we will seek to bound

l ~ - 2
9 }/l,m(x) . le,m(y)
Z C Z ! (sin(ex) Sin(ey))

>0 m=—1
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in terms of d(z, y)‘;. Since sine is Lipschitz continuous with Lipschitz constant equal to one,
we obtain with Inequalities (6.14) and (6.10) for an integer [ > 0 and m € {—,...,[} that

- - 2
a (gnnzé:)) N gﬁéﬁ) = lzé(ﬁ’m(x) — Vim(y))? (6.15)
- 2l21}l _m(x)t; Vi) 10, — 0, (6.16)

When we sum Expression (6.15) multiplied with the angular power spectrum over [ and m,
we obtain that

So s 25 (T @) ~ Vim)* = S5 EIT@) ~ ()]

>0 m=—1

T is again the 2-weakly isotropic Gaussian spherical random field that results from the
angular power spectrum (C; : [ > 0) = (Cji? : | > 0). Note that by assumption the
sequence (C’lll+5 :> 0) is summable. Therefore Lemma 5.2 implies that there exists a
constant K > 0 such that

4 - 4 .
e Z P (Vim(@) = Yim(®))* < 5K Y Ci'**d(z,y)°.

>0 m=—I >0

For Expression (6.16) we derive with Lemma 2.8 and Equation (2.1) that

l ~
Yim Yim 2A+1
ZCI Z 212 l ( ) + l ( ) ’9 ) |2 < ZCll2 ;_+ 0, 9y|2

2
>0 m=—I >0

3 14245 5
< 22 ; il d(xa Z/)

Therefore, when we sum the left hand side of Expression (6.15) multiplied with the angular
power spectrum over [ and m, we obtain that

~ 2
e Z 2 (gﬂm Zn”zéj)) ) < <;‘2K+ m2) SOOI A ). (617)

>0 m >0

We now apply Inequality (6.17) to bound the sum of Expressions (6.11) and (6.12) multiplied
by the angular power spectrum over [ and m and conclude that

l
Y Y 12 - 3 > 14246 5
l; C Zl (amm(:m - 69m7m<y>) <K} <52 K+ —5+ K> l; Gl Hd(x, y)°.

Therefore we can take K1 = K§(13 2K + 2+ K) and obtain that

2

z
S VCBm(05Yim(x) — 0Yim(®)| | <K1Y ClMTHd(w, ). (6.18)

>0 m=—1 >0
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To complete the first step kK = 1, we have to argue for the other charts as well, i.e. i # 1.
For i # 1 the chart n; satisfies n; = g;x = & for a non-trivial element g; € SO(3). In this
proof we had to estimate sums over m = —I, ..., 1 of (95Y} () — I5Yi.m(y))>. We observe
with the help of Lemma 2.7 that the expressions are equal in both coordinates, i.e.

l

> ((9/3};27,71(:2') - a/jffl,m(g))? = El: (%ﬁm(gix) - 8ﬁ?z,m(g¢y))2

m=—1 m=—1
2
= Z (Z Dl (077 (051 () — aﬁifl,mwy)))
m=—I
l
= (%ﬁmf(fﬁ)—@ﬁffz,mf(y))z. (6.19)
m/=—1

This means we can apply the same argument as we did before to the expression for the
other charts. This finishes the proof of the step k = 1.

The general case k € N will be proven in a similar manner as the case k£ € N was proven in
Lemma 5.2. We start with the respective expression and first interchange the weak partial
derivative and the limit of the expansion of T, that is justified since due to Lemma 6.12
and the assumption on the angular power spectrum 7' € L#(, H!(S?)). In the second
step we apply the same argument, which was used to prove Inequality (5.9) to obtain that

2k
E[|85T(x)—8gT( |2k} — ; Zl VC1Bm(05Yim(x) — 05Y1m (1))
2%)! l '
<SS G@sdinte) - 95710
T\ I>0 m=—1

We see that we derived the k' power of Equation (6.9), which we bounded in Inequality
(6.18). We conclude that

k
k
£ [j057 () - 057 ) ] < B0 st (S| e,
>0
k
Yottt d(a,y)*. O

>0

The previous lemma gives us the respective ingredient in the proof of Theorem 5.4 of the
spherical random field for first order partial derivatives. Therefore we expect a similar result
to hold for 93T, where T is a 2-weakly isotropic Gaussian spherical random field. However
the following extension of Lemma 6.12 will be needed additionally.

Lemma 6.15. Let T be a 2-weakly isotropic Gaussian spherical random field such that its
angular power spectrum satisfies that (Cj1'T2 : 1 > 0) is summable, then T is an element of
L2 (Q, W2k(52)) for all k € N and its expansion in the real spherical harmonics converges
in the respective norm.
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Proof. The norm on W12#(S2) is defined through the atlas (U;, 7; : i = 1,..,6) and partition
of unity W. We prove the assertion for the chart 7, the argument for the remaining charts
is exactly the same. By the product rule we obtain that Jy(TW1)y, = (0T, ) (Y1), +
T,09(V1)y, . Since ¥y is a smooth compactly supported function, it is sufficient to consider
the term (99T )y, (¥1)., . For L € Ny we denote the truncation of the expansion of T by T'L.
Note that on 7, *(Uy) the function sin(6) > e for some & > 0. We apply the formulas for
partial derivatives of the real spherical harmonics given in Lemma 6.13, Inequality (6.10)
and the same argument, which was used to prove Inequality (5.9) to obtain that for L; >
Ly € Ny it holds that

E

/1(U | (06T (0, 0) — DpToh2 (0, 0)) (Y1), (6, @)]de@del
1

< sup | ¥4 |*"E / \69TL1< )—39T77Lf(9,</>)|2kd<pd9]
Uy nfl
(2k)! L - '
< sup [ 2 2KV / B0V (0,2)) | dody
Ui 2k Tll_l(Ul) l%:-i—lmz;l
o 35 (20)! ok & e k
<K up 1| / CPY2,(6.0) | dipds,

where K is a constant, which is independent of [ and m. Due to the pre-factors of the
partial derivatives of the real spherical harmonics. We argued in the proof of Lemma 6.14
that these pre-factors can be bounded in this way. In the next step we apply Lemma 2.8
and summarize terms in a constant K > 0, which is independent of L, Lo, 0,1l and m. We
obtain that

B[ (0T 0.0) = L2000 (W) (0, )t
1
Li+1 k
(S5 ar
=Ly m=—1

Since the sequence (CyI**2 : [ > 0) is summable and due to the above remarks on the norms
in Sobolev spaces (TX¥),, is a Cauchy sequence in L2*(Q, W2F(n;1(U;)) and converges
to (TWy),, € L2*(Q,WhH2 (1 (U1))) in the respective norm.

This argument can be repeated in the same way for the other i € {2,...,6} due to Equa-
tion (6.19). Also the argument for the partial derivatives with respect to ¢ can be done
in the same way, it includes fewer terms. Since the norm on W12¥(S?) is defined as the
sum of the W12 (11 (U;))-norms of Ty, over i, it follows that T € L?#(Q, W'2*(5?)) as
claimed. O

Theorem 6.16. Let T be a continuous 2-weakly isotropic Gaussian spherical random field,
such that the angular power spectrum satisfies that (CiI'T210 . | > 0) is summable for
5 € (0,2]. For any v € (0, g) there exists an indistinguishable modification T* of T such
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that T* C C*(S?) and for all p € (0,00) there exists a constant K,, independently of T
and (Cy : 1 > 0) such that

NI

1Tl 15 0,010 (s2)) < Kp | D Cil' 270
>0

For a spherical random field X we introduce the notation that X ¢ C'7(S?). We mean by
this notation that the function X (w,-) € C*7(S?) for all w € Q. This notation is motivated
by interpreting X as a set of function with index set (2. We will apply this notation in the
case of other function spaces over the sphere without further mentioning it. For a spherical
random field X we say that a modification X* of X is indistinguishable of X, if there exists
a measurable set Q* of full probability such that X*1o« = X 1= as functions on S, where
1 is the indicator function.

Proof of Theorem 6.16. For this proof we consult a recent paper by Andreev and Lang [2],
which suits our situation nicely. Lemma 6.14 together with Remark 5.5 and Lemma 6.15
state the essential ingredients of Theorem 3.5 in [2]. We apply Theorem 3.5 in |2| with
d=1n=2and ¢ = kd — 2. To obtain the claimed regularity k¥ € N has to be chosen
such that it satisfies that 1 + v < 1 4+ min{ k‘;kQ, 2k— 252} This is the case for k > 25— 27 We
conclude with Theorem 3.5 in [2] that 7" has a modlﬁcatlon T* such that T* C C17(S?).
To prove the indistinguishability it is important that T is already continuous. Since T* is a
modification of T', there exists a measurable set of full probability Q* such that T'(w,x) =
T*(w, ) for all w € Q* and all x € Q3N S%. Moreover they are both continuous random
fields and the realizations are uniquely determined on a dense subset of S?. This implies
that T1g- = T*1g~ as functions on S2.

We fix i € {1,...,6} and an arbitrary p € (0,00). We increase k such that p < 2k. We
remind of our standard atlas (U;,n; : i = 1,...,6) on S? with partition of unity . In the
development of the proof of Theorem 3.5 in [2] in this particular paper Holder continuity
of the random field is proven With Sobolev spaces and a Sobolev embedding. We observe
that for a random field X on n; *(U;) that satisfies that 9o X € L gan (2 X 15 L(U:),R) for
all multi-indices a € N2 with || = d for some d € N, for ¢ € [1,00) and v € (0,1) the
LL(Q, WaHva(n=1(U;))-norm of X satisfies that

OaX () — 00X (y)4
@wiray = ElX Ifyarnq] = EIIXI5]+ Y El / | . )yqu( DI oy,
|o|=d

X q
1X11%,

(6.20)
where we tacitly omitted the domain 7, ! (U;) in the Sobolev and LP space. Also the integral
is taken over n; ' (U;) x n; }(U;). Note that in general the above expression may be infinite.
Adapted to our situation it is finite with the choice l/ € (’y, ). This follows because the
function || - H]R2 is integrable over n; (U;) x n; {(U) for all kK € (2,00). Also with
the choice v € (v, 2) the Sobolev embedding theorem, which is Theorem 4.6.1.(e) in [25],
Lemma 6.14 and Remark 5.5 imply that

k

) < CEUT ) Pan gy ) + K | G270 | (6.21)
>0

E[|[(T%3)y, |12

L (n ()

where the constant C is due to the Sobolev embedding and the constant Kj is due to
Lemma 6.14. Note that the contribution of the partition of unity does not cause problems.
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In the paper [2| the boundary of the domain has some regularity. Here we could ignore
this because (¥;),, is compactly supported in n;l(Ui). We have observed in the proof of
Lemma 6.15 that there exists a constant K, such that

k

BT P 52 ) < K | D Cl
>0

The Hélder inequality implies that with continuous embedding L#(Q2,R) C L(Q,R). We
conclude that there exists a constant K, such that

3=

E[|(TV;) <K, | cuttEte

wlens G
Co 1>0

Since i € {1, ...,6} was arbitrary the claim follows. O

Remark 6.17. If we assume that the angular power spectrum of a continuous 2-weakly
isotropic Gaussian spherical random field T only satisfies that (Cy1'T0 : 1> 0) is summable
for some 6 € (0,2], then the same proof of the previous theorem can be applied. We obtain
that for all v € (O,%) there exists an indistinguishable modification T* of T such that
T* C C%7(S?) and for all p € (0,00) there exists a constant K, independently of T and
(C;:1>0) such that

1T 2, ,c0v(s2)) < Kp E:C’IZH‘S
1>0

Note that the property of the modification to be indistinguishable is due to our decision, that
we made at the beginning of this chapter, to always consider the continuous modification
of a 2-weakly isotropic Gaussian spherical random field.

6.3. Higher order derivatives of isotropic Gaussian spherical
random fields

Now, we prove under which conditions on the angular power spectrum of a 2-weakly
isotropic Gaussian spherical random field higher order partial derivatives are P-a.s. Holder
continuous. Therefore we have to find a generalization of Lemma 6.14 for higher order
partial derivatives.

Lemma 6.18. Let T be a 2-weakly isotropic Gaussian spherical random field such that the
angular power spectrum (Cy : 1 > 0) satisfies that (CI' 249 . 1 > 0) is summable for some
§ € (0,2] and some + € N. For alli € {1,...,6} and all z,y € U;, all multi-indices o € N2
satisfying |ae| = ¢ and all k € N there exists a constant Ky, which only depends on k and ¢,
such that

k

E |8aT i(exa pr) - 8aTm(9y, @y)‘%} < Ky ZCZZH_QH_(; d(xvy)(sk'
>0
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Proof. We start with the case k = 1 and ¢ = 1, then 7; is equal to our usual coordinates
on the sphere. Therefore we apply the notation 71 (6., ¢,) = x and 91(0y,¢y) = y. We
are allowed to interchange the partial derivative and limit of the expansion of T'(z) and
T(y) because from Lemma 6.12 we know that T € L%(Q, H*(S?)), i.e. the weak partial
derivatives of T up to order ¢ are well defined in the L?D—sense. This enables us to shift the
discussion on how the partial derivatives behave on the real spherical harmonics, i.e. we
obtain that it holds that

2

E [|0aT(z) — 8aT(y BN Z VCiBim(0aYim(@) = 0aYim(y))

>0 m=—1
l ~ ~
= Z Z Cl(ﬁayvl,m(l’) - aayi,m(y))Q' (6'22)
1>0 m——1

The strategy of this proof is to apply the ideas of the proof of Lemma 6.14 and the result
of Lemma 6.13, i.e. the formula for the partial derivatives of the real spherical harmonics.
For | € Ny and m € {—I,...,l} we examine

aa}‘}hm = 839 (—1) I—QTLP-‘ ma¢ﬁ7(_1)a¢m

_ e T L+ 1)2 —m? Vg 1yem(®)

= (—1)[F Tmaegge! <m\/(2l +1)(20 + 3) sin(f) (6.23)
12 —m2 }7171,(71)%m(a:)

+m\/(2l +1)(20 - 1) sin(0) (6.24)

+{\/(l+m+1)(l— )Y/lm-u(ﬂ?) ifmZO)
VI+Iml+ D)1= m)Yim(z) ifm<0)
(6.25)

If we evaluate all remaining partial derivatives, we obtain finitely many linear combinations
of real spherical harmonics with the first index less or equal to | + ¢. We notice that
Expressions (6.23) and (6.24) carry the factor - (9), which leads to numerous terms because
of the product rules for derivatives. But the number of terms will at most double each time
the product rule is applied. Similarly to the proof of Lemma 6.14 it holds that sin(6) > e >0
on 7y 1(Uy). This implies that powers and derivatives of powers of s1n(9) are smooth and

therefore Lipschitz continuous, i.e. there exists a constant K such that for all positive
integers h,q < ¢ it holds that

ol b
Y sin"(8,) 0 sin”(6,,)

< K0, — 0,]. (6.26)

Also because these functions are smooth, there exists a constant, say also K, such that on
nl_l(Ul) for all positive integers h,q < ¢ it holds that

1
— | <K. 6.27
Sup Y sin”(0) ‘ - (6.27)

(0790)6771_1([]1)

Since we are only interested in absolute values of differences and we wish to simplify the
terms we bound the factors in Expression (6.23) and (6.24), i.e. for all I’ € N and m' €
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{=U,...,l'} it holds that

(I' +1)%2 —m' - "2 +20 +1
2U +1)(2I' +3) — 42 +8I'+3 — 7

l/2 _ m/2 ll2 l/2 _ 471 471 1 1
< = < -+ —=<1
QI —1) 471 4Pl @E-1°1 12
and
VT DT = ) = VP = P+ 7 = o] < VP47 < V2.

We evaluate the remaining partial derivatives and obtain with Inequality (6.10) that

6L
(OaYim(@) = 0a¥im(y))® < 6/ (L+0)* Y (aj(2) Yy, m, (x) = a;(9)Yiym,; (v)%  (6.28)
j=1
where the coefficients (a; : j = 1 ..,6%) are combinations of powers of /2 and of powers

and derivatives of powers of (0) Note that the coefficients are clearly functions. It is
possible that some of the coefﬁ(nents are equal to zero. Since every partial derivative of
a real spherical harmonic results in at most 3 terms and the product rule applied to the
coefficients doubles at most the number, we obtain at most 6 terms. Note that [; <1+
for all j € {1,...,6'} and m; € {—1;,...,[;}. This yields the upper bound (I +¢)* for powers
of different m;’s that result as factors while differentiating the real spherical harmonics.
The inequality for f,g,a,b € R:

laf = bg| < lallf = g| +|glla — ], (6.29)
together with Inequalities (6.26), (6.27) and (6.28) and Inequality (6.10) implies that

(8c\<i/lm( )_a ﬁm( ))2

22L6L 2Ll2L Z aJ Ylym] ) - Ejymj (y)>2 + Y~2j,mj (y)2|9$ - Gy‘Q]a (6'30)

where the coefficients (a; : j =1, ...,6") are now only powers of V2, with highest exponent
2t. We can apply the same argument that we used to show Inequality (6.17) in the proof
of Lemma 6.14 with the respective assumption on the angular power spectrum to conclude
that there exists a constant K such that for all j € {1,...,6'} it holds that

l
S ST G (T () — Vi, (0)) + Vi, (0)10 — 0, )

1>0 m=—1

l
<3S G (T (@) ~ Vi) + Vi )10 — 6,17 < K S GUHd (2, ).
>0 m=-1 >0
(6.31)

Note that the indices [; and m; are translations from the original indices [ and m by at most
t. The missing terms of the real spherical harmonics in the first sum in Inequality (6.31) will
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be added to obtain the second sum in the chain of inequalities. We combine Equation (6.22),
Inequality (6.30) and Inequality (6.31) to obtain that

B [|0aT(2) ~ 0aTW)?] < Kid(z,y)’. (6.32)

where we have set K; = 226426 K2K. This argument can be repeated in the same way
for the other i € {1,...,6} due to Equation (6.19).

The general case k € N is proven by copying line by line the argument for the general case
k € N in the proof of Lemma 6.14. Therefore there exist constants K} such that for all
k € N and all i € {1,...,6} it holds that

k

E|0aT0, (02, ¢x) — 0aTy, (by, ¢y)|2k} < Kj ZCllH_QH_(S d(may)ék- O
>0

The next lemma verifies the membership of weak higher order partial derivatives of a 2-
weakly isotropic Gaussian random field in LP-spaces, similarly to Lemma 6.15.

Lemma 6.19. Let T be a 2-weakly isotropic Gaussian spherical random field such that its
angular power spectrum satisfies that (C)l1T2 1 > 0) is summable for some . € N, then
T is an element of L%Dk(Q, W42k(S2)) for all k € N and its expansion in the real spherical
harmonics converges in the respective norm.

Proof. This proof will benefit from the proofs of Lemma 6.15 and Lemma 6.18. The norm
on W*42¥(S?) can be defined through the usual atlas (U;,7; : I = 1,...,6) and the partition
of unity . We start with ¢ = 1 and notice that for x € Uy, the argument that we used in
the proof of Lemma 6.18 to prove Inequality (6.28) also works to estimate squared partial
derivatives of a single real spherical harmonic. So we conclude that for an integer [ > 0,
m € {—1,...,1} and all multi-indices a € N2 satisfying || = ¢ it holds that

.
(OaYim(®)* < 6(L+0)* > (aj(x) Y, m; (2)),

j=1

where the coefficients (a; : j =1, ...,6") are combinations of powers of v/2 and of powers and
derivatives of powers of sm(@) Note that I; <+ forall j =1,...,6" and m; € {1}, ...,1;}.
We apply Inequality (6.27), which is also part of the proof of Lemma 6.18 to bound the
coeflicients in the above sum to obtain that for a constant K > 0 it holds that

(0aYim(x))? < 227164 2%%{21@2 (z). (6.33)
7=1

For Ly > Ly € N and a multi-index o € N2 that satisfies |a| = ¢ it holds that

2k
B[, (0T 0.0~ 0T 0 ) 0.6) " a0
1
L . ) 2k
< sup |0, / Ell S Y VOBnmdaYim®.0) | | dode
U1 ny H(U) I=Lo+1m=—1
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< sup | y%/ (2F)! i zl: CL(BaTi (0, )2 kd@d
= sup 1 Oa X m\V, Y @,
Ui ny H(Ur) 28k!

l=Lo+1m=-1

where the last step is justified by the same argument, which was used to prove Inequality
(5.9). We insert the bound in Inequality (6.33) to obtain that for a constant K > 0 it holds
that

2k
[ (0aTE 6.) - a6, (1), (6.0)) ™ g
n
k

Ly l
<K /n Y S aree | aa

1 (U1) \1=Ly+1m=—1

& 20+ ‘
<K'| Y cu el I (6.34)
I=Lo+1 &

where the last step is due to Lemma 2.8. The assumption in the lemma implies that the
sequence (Cjl'T2* : ] > 0) is summable, which yields that Expression (6.34) converges to
zero as Ly, Ly — oo. Since the norm on W4#(n;1(U)) is determined by the L**-norm of
the weak derivatives of highest order and the L?*-norm of the function and ¥y is a smooth,
compactly supported function, it is sufficient to consider the term (9o7)¥;. Since L% and
Sobolev spaces are complete, we obtain that TnL1 converges to T, € W*?*(n;1(U1) in the
respective norm.

This argument can be repeated in the same way for the other i € {1,...,6} due to Equa-
tion (6.19). Since the norm on W*2#(S?) is defined as the sum of the W2 (5! (U;))-norms
of (T'W;),, over i, it follows that T € L2¥(Q, W*2*(5?)) as claimed. O

Now we can generalize Theorem 6.16 for arbitrarily high order derivatives. This is the
precise version of Theorem 1.3 from the introduction.

Theorem 6.20. Let T be a continuous 2-weakly isotropic Gaussian spherical random field,
such that the angular power spectrum satisfies that (CZZHQL*‘s : 1 > 0) is summable for
0 €(0,2] and v € Ng. For any v € (0, g) there exists an indistinguishable modification T
of T such that T* C C%7(S?) and for all p € (0,00) there exists a constant K, independently
of T and (Cy : 1 > 0) such that

1Tl 2,00 (s2y) < Kp | Y CIM2H0
>0

Proof. The cases ¢« = 0,1 are implied by Remark 6.17 and Theorem 6.16. Therefore we
assume that ¢ > 2. The proof is very similar to the proof of Theorem 6.16 and consults
[2]. Lemma 6.18 and Lemma 6.19 state the needed assumptions in Theorem 3.5 in [2]. We
apply Theorem 3.5 in 2] with d = ¢,n = 2 and € = kd —2. To obtain the claimed regularity
k € N has to chosen such that it satisfies that ¢ + v < ¢ + min{ k‘;kQ, 2k 252} This is again
achieved for k& > ﬁ. We conclude with Theorem 3.5 in [2] that T has a modification T
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such that T* C C*7(S?). The modification is indistinguishable, because T' and T* are both
continuous random fields. The same argument as in the proof of Theorem 6.16 applies.

The proof of the bound of the L% (€2, C*7(5?))-norm of T follows with the same argument
as in the proof of Theorem 6.16. O

Remark 6.21. Let T be a continuous 2-weakly isotropic Gaussian spherical random field
that satisfies the assumptions of the previous theorem. For all L € No Theorem 6.20 implies
an approzimation result of T by the truncated random field T*, since T — T* is also a
continuous 2-weakly isotropic Gaussian spherical random field with angular power spectrum
equal to zero in the components from 0 to L. Theorem 6.20 implies that for all p € (0, 00)
there exists a constant K, indepedently of L, T, T and (Cy: 1> 0) such that

2
T — TLHLII,)(QCL,W(SQ)) <K, (Z clll+2b+5> .
I>L

6.4. A second approach to prove the differentiability results

In the previous sections we proved differentiability of a continuous 2-weakly isotropic Gaus-
sian spherical random field 7" by analyzing the behavior of higher order partial derivatives
of T. This was technically quite involved. We observe that the spherical Laplace operator
applied to T results again a 2-weakly isotropic spherical random field in the case of suf-
ficient decay of the angular power spectrum of 7. This is due to fact that the spherical
Laplace operator is diagonalized by the real spherical harmonics such that the respective
eigenvalues and the angular power spectrum of 1" are indexed in the same way. Therefore
the expansion of (—Ag2 + i)T only differs in the angular power spectrum.

The strategy in this section is to prove Holder continuity of (—Ag2 + i)éT for some even
integer + > 2 and then conclude Hélder continuity of the partial derivatives of T of order
v with regularity theory of second order elliptic operators. The case of higher odd order
partial derivatives will follow with interpolation theory. The same result from Section 6.3
on differentiability of continuous 2-weakly isotropic Gaussian spherical random fields, which
is Theorem 6.20, will be achieved.

We will require Holder regularity of solutions of specific higher order elliptic equations. The
following proposition discusses this issue for this particular class of operators.

Proposition 6.22. Let . > 2 be an even integer and let v € (0,1). If u € C°(S?) N H*(S?)
and f € C%V(S?) satisfy that

1\ 3
(—As2 + 4) u = f
with equality in L*(S2,R), then it follows that u € C*7(S?%) and there exists a constant K
independently of u and f such that

ullcer(s2y < K([|ull ges2y + 1 fllcors2y)-

Proof. Proposition 6.5 implies that u € W*2(S?). Since u is already continuous, the Sobolev
embedding theorem, which is Theorem 6.10, implies that u € C*~27(S?) and together with
Proposition 6.5 it follows that there exist constants K, K’ independently of u such that

Jull ci-2v(s2) < Kllullwez(s2y < K'[Jull ge(s2)- (6.35)

Lukas Herrmann 71 ©



We start with the case that ¢ = 2. Our usual atlas of S? is denoted by (U;,n; : i = 1,...,6)
and the partition of unity ¥ is subordinate to the open cover (U; : i = 1,...,6) of S2.
Hoélder continuity is a local property. Therefore, we multiply v with a cut-off function and
aim to pull the problem back to the chart domains and apply regularity theory for elliptic
equations in subdomains of Euclidean space. We fix i € {1,...,6} and observe with the
Leipniz rule that u¥; satisfies that

1 1
<—A52 + 4) (u\IfZ) =—Vg2 - ((Vszu)\lfi + uvsz\l’i) + Zqul

1
= —(Aszu)‘l/i —Vgu-Vg¥; — Vo - (uvsz\l’i) + ZU‘IIZ
= f\I’l — QVSz’LL . VSQ\IJZ- — uAgz\Ifi.

In the chart domain n; *(U;) the above equality reads:

L(U\I’i)m =G+ 0pFy + QOF@, (6.36)
where
2 o 1 cos(d), 1 el cos(d) , 1
L_89+8¢Sin2(9) + sin(0) Op 1 = O(a™'0)) + Sm(e)é) 1 (6.37)
_ . % (\Ijl)m
F= (2um89(\111)m, 25in(9) Oy sin(9) (6.38)
and

- . . - 2 ) B Unp, 2 (\I’Z)m
G = (f‘ljl)m + (UASQ \Ijl)ﬂi 2u77¢89 (\I”L)Th' 2S1H(9) a(p Sln(e) . (639)

In Equation (6.37) we employed the summation convention to be able to ease the notation
in the following, i.e. for two vectors z, y € R? we define z¥y;, = 22:1 ryg. The order of the
subscript and superscript indices may vary and this notation also applies to the product
of matrices. The matrix a is given by: a = diag(1,sin™2(¢)). The fact that (¥;),, is
compactly supported in ;" 1(U;) enables us to consider Equation (6.36) on a subdomain D
with smooth boundary that satisfies that supp((¥;),,) CC D cC n; *(U;). Hence, (u¥;),),
satisfies the following Dirichlet problem in D:

L)y, = G+ 0 FF,

(Wi, |, = 0. (6.40)

From Definition 6.4 we know that (u¥;),, € WOQ’2(D). Hence, the partial derivatives in
Equation (6.40) are weak derivatives and we observe that (u¥;),, satisfies Equation (6.40)
in the sense of distributions, i.e.

cos(6)
sin(0)
for all v € C}(D), where we used the notation (x1,22) = (6,%). Due to the density of
C3(D) in WOI’Q(D), we can argue for all v € WOI’2(D) with a sequence (v : [ > 0) C
C§°(D) converging to v in the VVO1 ’2(D)-norm and the Cauchy—Schwarz inequality that

1
4

Op(uWs)p,v +

/ a®t oy (uW;),, Opv — (wW;)yv do = / —Gu+ FFopv dz (6.41)
D D
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Equation (6.41) also holds for this v. Since v was arbitrarily chosen, Equation (6.41) holds
for all v € Wol’z(D). In this case we say that (u¥;),, is a weak solution of the Dirichlet
problem in Equation (6.40). The fact that sin~2() is bounded on D and the matrix a is
symmetric imply that there exist constants A, A > 0 such that

I€][Z2A > o™ (2)&& > |1€][E2N

for all £ € R? and all z € D. This property is called strict ellipticity. The fact that G
and the components of F are in C%7(D), that the coefficients of L are smooth on D, the
strict ellipticity of L and the negative sign in front of 41; in the operator L enable us to
apply Theorem 8.34 in [14]. It implies that the Dirichlet problem in Equation (6.40) has
a unique, weak solution in C17(D). Hence, we conclude that (u¥;),, € C17(D). We
apply Theorem 8.32 in [14] with the nested sets supp((¥;),,) and D to obtain a constant
K independently of (u¥;),,, G and F such that

1(@¥s)n; o1 supp((wi)n,)) < K@), l[comy + IGllLe (o) + 1 Foll covpy + 1Fell o))
(6.42)

Since n;(D) is relatively closed in S?, we can apply Lemma 6.2 and conclude that there
exists a partition of unity ¥ subordinate to the open cover (Uj : 5 =1,...,6) such that
(; )i = 1 on D. We apply this property, Inequality (6.4) and the deﬁnltlon of Holder
norms on S? to conclude that there exists a constant K independently of u and f such that

1Gllzoep,r) < K(I(f¥i)n:ll oy + Nlumill o))
= K(I(£ )Nl ooy + 1)yl o )
< K(|(f M%OﬂU+mwnmm—@W
< K([[fllcoa(s2y + llullcoa(sz)),
where the contributions of W; are included into the constant K. Similarly, there exists a
constant K independently of u such that
||F0”(10,~/(5)a ||F¢HCOW(*) < Kl|uy, [l o (D)

= K@), looe @) < KN @bl o oy, < Klullona o)

We insert the previous two estimates into Inequality (6.42) and obtain with the fact that
(u¥;),, is equal to zero outside of supp((¥;),,;) that there exists a constant K independently
of w and f such that

1wl s =y < K(llullcoqs2y + 1 llcoms))-
Ct(n; " (Uy))

This argument can be repeated for all other j € {1,...,6}\{¢}. Hence we conclude that
u € C17(S?) and there exists a constant K independently of u and f such that

[ullcraszy < K([Jullcon(s2) + [1fllcon(s2))- (6.43)

We further investigate the Dirichlet problem in Equation (6.40). We fix the same i €
{1, ...,6} as before and remind of the set D satisfying supp((¥;),,) CC D cC n; 1(U;) and
the partition of unity ¥ that satisfies that (¥;),, = 1 on D. Since u € CH7(S8?), it follows
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that the right hand side in Equation (6.40), i.e. G + 0, F*, is now in C%?(D) and we do not
need to consider F' in divergence form anymore. Theorem 6.14 in [14] is applicable and it
implies that the Dirichlet problem in Equation (6.40) has a unique solution @ € C*7(D).
This @ is also a weak solution of the Dirichlet problem in Equation (6.40). Since the weak
solution was uniquely determined to be (u¥;),,, we obtain that @ = (u¥;),, and therefore
(u¥;),, € C*7(D). We apply Corollary 6.3 of Theorem 6.2 in [14] with the nested sets
supp((¥;)n,) and D and obtain that there exists a constant K independently of (u¥;)y,
and f such that

1) o2 (supp(warn ) < K@) llcomy + 1G + 06F | con ) (6.44)
(D) (

We discuss the norm of the right hand side. We argue similarly as in the above discussion
and obtain that

IG + 3kF* | o py < 1Gll o (py + 1Foll vy + 1o llorvmy
< K(I(f¥o)n oy + 1t llcoqr @y + 1w llorn )
K([[(f¥ )chOw ) T H(“‘I’ )m”cow D)t H(U‘P Inill w(D))
K120l gor i, + 2 080l )
K (|| fllcon(s2) + 2|!UHCM(S2)),

where the constant K is independent of u and f. We insert this estimate into Inequal-
ity (6.44) and obtain with the fact (uV;),, is equal to zero outside of supp((¥;)y,) that
there exists a constant K independently of v and f such that

1)l oty < K lllorags2) + [ Fllcon(s2)-
c (Ui))

As in the case of first order differentiability, this argument can be repeated for all other j €
{1,...,6}\{i}. Therefore, we conclude that u € C?7(S5?) and together with Inequality (6.43)
we obtain that there exists a constant K independently of u and f such that

\|U||C2w(s2) < K(H“”cOw(s?) + HfHCOw(SZ))-

We insert Inequality (6.35) into the previous estimate and the claim of the proposition in
the case that + = 2 follows, i.e. there exists a constant K independently of v and f such
that

ulloz(s2) < K([Jullm2szy + | fllcons2y)-

For the proof of the general case that + > 4, we define for all k € {0,2,...,. — 2,1} the

functions "
1\ 2
ul® = <—A52 + 4> u.

In the case that x = ¢ it holds that u( = f. For all k € {0,2,...,c — 4,0 — 2} it holds that

<—A52 + i) u) = (" +2) (6.45)

with equality in L?(S?,R). Since u € C*~27(S52), as we showed at the beginning of this
proof, we conclude that u(®) € C*=#=27(§2) for all € {0,2,...,c — 4, — 2}. Tt follows that
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ul=2) € C97(S?) N H?(S?) as in the proof of the case that : = 2. We can apply this proof
and obtain that u(t=2) € C?7(S?) and there exists a constant K independently of u and f
such that

[0 |22y < K (072 || 22y + [ fllcon(s2y)
= K(|lull g (s2) + | fllcors2));

where we applied that ||U(L_2)”H2(S2) = ||ul g+ (52, which holds by definition of the norm
on Sobolev spaces that we introduced in Section 6.1. The strategy is to proof by induction
that for all k € {0,2,...,c — 4,1 — 2} it holds that u(*) € C*~%7(S?) and there exists a
constant K independently of v and f such that

N ema(s2) < K (lullros2y + 1 lcons2): (6.46)

where the constant K may depend on the index k. We have already shown this for Kk = ¢ —2
and now assume that it holds for some x € {2,4,...,c —4,:—2} and want to prove that this
implies the claim for  — 2, i.e. (=2 € C*~*+27(5?) and Inequality (6.46) holds for s — 2
instead of k.

As in the proof of the case ¢ = 2 we have to localize Equation (6.45) and pull it back to the
chart domains to be able to apply regularity theory on subdomains of Euclidean space and
interior estimates. Now we have higher regularity of the right hand side. We fix the same
i € {1,...,6} as in the proof of the case ¢« = 2 and remind of our usual atlas (Uj,n; : j =
1,...,6) with partition of unity ¥ subordinate to the open cover (U; : j =1, ...,6). From the
proof of the case ¢« = 2, we will also use the subdomain D with smooth boundary satisfying
supp((W;),,) CC D CC n; *(U;) and the partition of unity ¥ subordinate to the open cover
(U;j - j =1,...,6) that satisfies that (\ifz)m = 1 on D. Since Hélder continuity is a local
property, we are interested in the behavior of (u("‘*Q)\I/i)m in the chart domain 7, L.
The fact that k — 2 < ¢ — 4 implies that u(*~2) € C*~(=2=27(52) ¢ C?7(S?). Therefore,
we observe that (u("=2¥;), € C27(n;}(U;)) is a classical solution of the Dirichlet problem
in D, i.e.

L W;),, = (=2

(’{72) . =
(u Wi, oD 0.

The operator L is given in Equation (6.37), whereas the right hand side F(*~2) is given by

FO2) = (w0, + 200l 0p(W,)y, +

Dl D0 (Uy)y, + (WD Ago W),
(6.47)
We will prove a successive increase of the regularity of the right hand side. This could be
observed in the proof of the case ¢« = 2, where the right hand side was first given partly in
divergence form and was then improved to be Holder continuous. Note that by the induction
hypothesis it holds that (u(®W,),, € C*=*(n; (U;)). Since u*=2) ¢ C*=(v=2=27(82) we
obtain that F(*~2) € C*=*~1(n}(U;)). Since the operator L is the same as in the proof of
the case ¢ = 2, it satisfies the conditions to apply regularity theory, i.e. L is strictly elliptic
and the coefficients are smooth on D. Theorem 6.19 in [14] implies that (u(“_Q)\I/i)m €
C'—"+17(D), where we tacitly applied that (u(“_Q)\I!Z-)m is compactly supported in D. Now,

2
sin?(6)
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we apply the interior estimate for higher order derivatives with the nested sets supp((¥;)n,)
and D, which is Problem 6.1 in [14], which will be proven as a part of Theorem 8.10 in
Section 8.1.1, and obtain that there exists a constant K independently of uw such that

(2@ | crsra(supp(wayn ) < K@) 0o 0 HIFE 2l gin1(p))- (648)

Similarly as in the proof of the case ¢« = 2, we observe that there exists a constant K
independently of u such that

HFK 2) HCL K= 17( )) < K(H(u )mHCL K— 17 + HU(N 2) ”CL*N»W(E))
= K(||(u" i)mHCMfH— + || (u'® 2)‘i")ni!\cm,@))

S K(H(u( )TllHCL K— l-y(nfl( + ||( i)ni‘|CL7N”Y(7]-71(Ui)))

< K(u™ ] comn-r(g2y + lul™ ”CL—*”W(SQ))a

where the contributions of ¥; are included into the constant K due to Inequality (6.4).
Also, we applied the fact that (\T/Z)m =1 on D and the equivalence of Hélder norms with
respect to different partitions of unity, which is Proposition 6.9. We insert this estimate
into Inequality (6.48) and obtain with the fact that (u(*~2)¥;), is equal to zero outside of
supp((¥;)y;) that there exists a constant K independently of u such that

NG gl s s, < K s + 100 imemas2).
Cr=r ¥l (n, (U ))

This argument can be repeated for all other j € {1,...,6}\{i}. Therefore, we conclude that
ulF=2) € C*=**+17(S?) and that there exists a constant K independently of u such that

Dl imstinsay < K gomnagsn) + [0 oomagsy).  (6.49)

We keep the same i € {1, ...,6} fixed. Since we have shown that u(*=2) € C*—**+1.7(§2) it
follows that the right hand side F*~2) in Equation (6.47) is now in C*~*(n; (1)), which
is one order more than before. The same argument as before applies and we obtain that
ulF=2) € C*=++27(S2?) and there exists a constant K independently of u such that

||u(K/_2)Hob—)€+2,'\/(52) < K(HU(H_2)||CL—'“"+1”(S2) + ”u(H)HC“’“”(SQ))’

We insert Inequality (6.49) into the previous estimate and obtain that there exists a constant
K independently of u such that

||u(“_2)|fcb—n+2w(s2) < K(||u(“_2)HCL_n,7(52) + ‘|U(H)||C"—“»V(SQ))- (6.50)

We observe that u("=2) = (—Ag. —}—i)%u is a finite linear combination of partial derivatives
of u with order smaller or equal to kK —2. Therefore, there exists a constant K independently
of u such that

P guna(sy) < Klullo-2a(so)

We insert the previous estimate, Inequality (6.35) and the induction hypothesis into In-
equality (6.50) and obtain that there exists a constant K independently of u and f such
that

[0 otz 52y < K (||l mregszy + £ lcoa(s2)-

This finishes the induction argument and the proof of the proposition, since we can take
k = 2 and it holds that u(®) = w. O
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Corollary 6.23. For an even integer 1 > 2 and v € (0,1) and all v € C*7(S?)

1\ 2
”U||AS27CL,’Y(S2) = H <—A52 + 4) v
CO"Y(SQ)

defines a norm on CY(S?), which is equivalent to the usual norm on C*7(S?).

Proof. We arbitrarily fix v € C%7(5%). We observe that C“7(S?) C H*(S?). Since v €
C*7(S?), it holds that (—Ag2 + %)év € CO’VL(SQ). Therefore, we can apply the previous
proposition with right hand side (—Ag2 + %)Ev and obtain that there exists a constant K
independently of v such that
1\ 2
<—A52 + 4> v

We apply the definition of Sobolev spaces on S? to obtain that
1

3 1\ 2
HUHHL(SQ) = H (—A52 —+ 4) v <—A32 + 4> v

We conclude that there exists a constant K independently of v such that

[vllcuriszy < K| vl gesey +

C0:7($2)

< 2ym

L2(S%R)

€0 (52)

= K|[v[|a g, com(s2)-
C07(52)

1\ 2
HUHCL,’Y(SQ) < K H <—A52 + 4> v

Besides the estimate, this also implies the positivity of || - A, cev(s2), because || - [cu(s2)
is a norm. The other properties of a norm are clear for || - [|a, cuo(s2)-

For the proof of the other direction, we observe that (—Ag2 + i)év is a finite linear com-
bination of partial derivatives with order smaller or equal to ¢. Therefore, there exists a
constant K’ independently of v such that

1

é
1]l a5 () = H <—A52 v 4) v < K'||oll e s2y. O

00,7(52)

For our discussion of the regularity of continuous 2-weakly isotropic Gaussian spherical
random fields, we will discover that this proposition is in particular well-suited, because it
provides upper bounds of higher order Hélder norms in terms of powers of the spherical
Laplace operator. The effect of the spherical Laplace operator on 2-weakly isotropic spher-
ical random fields is sufficiently well understood, since the spherical Laplace operator is
diagonalized by the real spherical harmonics and we have proved that those random fields
can be expanded in the real spherical harmonics.

We begin to explore the Holder continuity of continuous 2-weakly isotropic Gaussian spher-
ical random fields. The following result follows with a version of the Kolmogorovféentsov
continuity theorem on manifolds from the paper [2] by Andreev and Lang. Additionally, we
will apply some related considerations to characterize the L%, integrability of Holder norms.
These considerations can be cited from Section 6.2.
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Theorem 6.24. Let T be a continuous 2-weakly isotropic Gaussian spherical random field
such that the angular power spectrum satisfies that (CjI'*0 : 1 > 0) is summable for some
5 €(0,2]. Forall~ € (0, %) there exists an indistinguishable modification T* of T such that
T* C C%7(S?) and for all p € (0,00) there exists a constant K, independently of T and
(Cyp:1>0) such that

1T (122, 0,000 (s2y) < Kp | D ™™
>0

Proof. We check that T € L%D%da(ﬁ x 82, R) for all k € N. This is clear for k = 1 by
Lemma 3.3. We conclude with the same argument that we used to prove Inequality (5.9)
and Lemma 2.8 that

2k
HTHL% (QXSQ]R / Z Z \ﬁﬂszim dU(l')
>0 m=-1
k
(k / ) Z CVim(z) | do(a)
>0 m=—1

k

(2k)! / 20+ 1
= ———— C d .
%kl Jo g "an o (@)

Since (Cjl : 1 > 0) is summable and the sphere has finite volume, 7' € LP®dU(Q x S2 R).
Lemma 5.2 provides the other needed condition that we can apply Theorem 3.5 in [2] with
n=2,d=0,e=0k—2 and we choose k > £7 then we conclude that there exists
a modification T* of T that is in C%7(S?). Since T is already continuous, T and T* are
indistinguishable. We can apply Equation (6.20) in the same way as we did in the proof of
Theorem 6.16 and obtain that for every p € (0, c0) there exists a constant K, independently
of T and (Cj : I > 0) such that

1
BT 0| < 1 | S04 | 0

>0

Remark 6.25. In the case that T is a 2-weakly isotropic Gaussian spherical random field
with the same summability condition on the angular power spectrum as in the previous
theorem, that is not mecessarily continuous, the previous theorem still holds. But the modi-
fication and the field are not indistinguishable and the bound of the L%, (2, C%7(S?%))-norm
1s still valid, but it holds for the modification and not for the field.

Since we understand Holder continuity, we can apply in the next theorem the deterministic
regularity result in Proposition 6.22 pathwise on a continuous 2-weakly isotropic Gaussian
spherical random field 7" to conclude Holder regularity of order ¢, where ¢ > 0 is an even
integer. It is convenient here, that the verification of the membership of realizations of T’
in H*(S?) is relatively unproblematic, due to the specific definition of the norm on H*(S?)
and the known specific expansion of T'.
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Proposition 6.26. Let T be a continuous 2-weakly isotropic Gaussian spherical random
field such that the angular power spectrum satisfies that (CylI'*2%9 11 > 0) is summable for
some § € (0,2] and some even integer ¢ > 0. For all v € (0,3) there exists an indistin-
guishable modification T* of T such that T* C C*7(S?) and for all p € (0,00) there exists
a constant K, independently of T and (Cy : 1 > 0) such that

HTHLP (Q,C7(52)) < K ZCZI—HH—&
>0

Proof. The case « = 0 is already proven in Theorem 6.24. Hence, we can assume that ¢+ > 2.
We define the 2-weakly isotropic Gaussian spherical random field 7"

. 1\ 2
T = <—A52 + ) T.
4
Note that 1:“ is not necessarily continuous. The angular power spectrum (C’l :1>0) of T is
given by (Cy:1>0) = (Cy(I+ 1)* : 1> 0). It is evident that (C;I**9 : | > 0) is summable.
Theorem 6.24 is applicable and together with Remark 6.25 we conclude that there exists

a continuous modification 7* of T" such that T* C 00’7(52) Moreover for all p’ € (0,00)
there exists a constant Ky independently of T* and (Cl :1 > 0) such that

2

HT*HL (@.007(E) 2 DN (6.51)
>0

The modification 7* is again a 2-weakly isotropic spherical random field and the expansion
of T in the real spherical harmonics also converges to 7* in the L% (€2, L*(S?,R))-norm as
already mentioned at the beginning of this chapter. Since the convergence is in L%, it is
also in probability. It6 and Nisio analyzed the convergence of sums of independent Banach
space valued random variables in [18]. Theorem 3.1 in [18] implies that the expansion in
the real spherical harmonics of T' converges P-a.s to T and to 7™ in L2(S2 R). Therefore,
there exists a measurable set Q* of full probability such that T'(w) = T™*(w) with equality
in L2(S?,R) for all w € Q.

From Lemma 6.12 we know that T' € L2¥(Q, H*(S?)) for all k € N and that the truncated
expansion T converges to 7' in the L#(, H*(S?))-norm as L — oo. Hence, the conver-
gence is also in probability. An application of Theorem 3.1 in the paper of Ité and Nisio,
i.e. [18], implies that P-a.s. T* converges to T as L — oo in the H*(S?)-norm. This implies
that there exists a measurable set of full probability Q** such that T'(w) € H*(S?) for all
w € Q. The intersection of Q* and Q** is still a measurable set with full probability,
which we also denote by 2* to limit the used notation. Moreover, Lemma 6.12 implies with
the continuous embedding L?D(WD(Q,R) C LI;;(Q,]R) that for all p’ € (0,00) there exists a
constant K, independently of 7" and (Cj : I > 0) such that

N

1T 2y < B | D€' (6.52)
>0

We obtain that for all w € Q* it holds that

<—As2+i> T(w) = T*(w)
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with equality in L2(S% R). Recall that T is continuous by assumption. We arbitrarily fix
w € . Since T(w) € CO(S?)NH*(S?) and T*(w) € C%7(52), Proposition 6.22 is applicable
and it implies that T(w) € C*7(S?) and that there exists a constant K independently of
T(w) and T*(w) such that

IT(@)llcea sz < KT @)y + 1T (@)llcons2)-

Since w € Q* was arbitrarily chosen and Q* is a measurable set with full probability, we
obtain with the last estimate, Inequalities (6.51) and (6.52) and the triangle inequality that
for all p € [1,00) there exists a constant K, independently of 7" and (Cj : I > 0) such that

1 1
Tlsg oty = B [1Tnqsn)” < 5 (B[] + 2 18] )

N|=

Z Cll1+2L+6 ’

1>0

where we tacitly used that »7,5, Gyt can be bounded with > 150 Cill' 240, The claim
for p € (0,1) follows with the embedding L%(Q,R) C L1(€Q,R), which is due to the Holder
inequality. The indistinguishable modification of 7" is given by T* = T'1q+. O

The statement of the previous proposition for an arbitrarily chosen ¢ € Ny will follow with
interpolation theory. For the discussion of the derivatives of odd integer order, we introduce
a new interpretation of a 2-weakly isotropic Gaussian spherical random field. We define
weighted sequence spaces.

Definition 6.27. For an integer k > 0 and o € (0,2] we introduce the normed sequence
space

E%,U(N) = (al > 1) € EQ(N) . Z a1211+2k+0 <

>1

For (a;:1>1) € Ezvg(N) the norm is given by

||( Sl > 1 ||£2 ) Za2l1+2k+a
>1

We can interpret a 2-weakly isotropic Gaussian spherical random field as a linear mapping
on these sequence spaces For all even integers ¢« > 0 and § € (0, 2] Proposition 6.26 implies
that for all v € (0, f) and p € (0,00) the following mapping:

T : £75(N) — L,(Q,C"7(5%)) (6.53)
that is defined by
l ~ ~
a:1=1) =Y afmYim, (6.54)
1>1 m=—1

is linear and bounded, since by Proposition 6.26 for every p € (0,00) the operator norm
of T is bounded by the constant K, from this proposition. Note that we tacitly used the
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same notation for this operator to emphasize the connection to 2-weakly isotropic Gaussian
spherical random fields. They are of course different mathematical objects. Also note
that as in previous chapters (Blm : 1> 1,m = —I,...,1) is an i.i.d. sequence of standard
normally distributed random variables and (f/lm :1>0,m = —1,...,1) are the real spherical
harmonics. We can now use our knowledge of interpolation theory to obtain the general
result.

Theorem 6.28. Let T be a continuous 2-weakly isotropic Gaussian spherical random field
such that the angular power spectrum satisfies that (C)I' T2+ . | > 0) is summable for
some § € (0,2] and some integer v > 0. For all vy € (0, g) there exists an indistinguishable
modification T* of T such that T* C C*7(S?) and for all p € (0,00) there exists a constant
K, independently of T and (Cj : 1 > 0) such that

HTHLZ;D(Qch,—y(Sz)) < Kp chll+2L+§
1>0

Proof. In the case that ¢ is even Proposition 6.26 implies the claim. Therefore we assume
that ¢ > 1 is odd. Proposition 6.26 implies that the claim is already established for ¢+ — 1
and ¢ + 1. We see that for all p € (0,00) the 2-weakly isotropic Gaussian spherical random
field T' can be interpreted as a bounded linear mapping from K?—Lé (N) to L% (92, C*=17(S5?))
and from E?H,(;(N) to L%(Q, C*T17(S?)). This notion was introduced in Equation (6.53)
and Equation (6.54).

We consult now Appendix C for a summary of relevant interpolation theory. Lemma C.3

implies that

T (615 (N) 624 5(N)) 1y = (E(Q,CTTH(8%)), L (2, C'F17(52))

,2

N|=

1

2

is also a linear bounded mapping. Lemma C.4 implies that with equivalent norms
(5?—1,5(N)7f?+1,5(N))%72 = 5?,5(N)-

For p € [2,00) Lemma C.5 implies that

(Lp(Q,C7H7(8%)), Lp (9, CF1(5%))) 1, © Lp(Q,C7(S7)).

[

Therefore we have established that for all p € [2,00) it holds that

1T Lr, (9,00 (52)) = HT(\@I 1> 1)‘

L, (@,047(5))

ngH(\@l:z>1)

Kp Z Cll1+2b+5

2
ZL,(S(N) >1

The statement follows for p € (0,2) with the embedding L% (2, R) C L5 (Q,R) due to
the Holder inequality. Note that we tacitly proved the case that Cy = 0. Since the term
\/Cib6~0,057070 is constant in S?, it does not cause difficulties and does not contribute, when
we consider derivatives.

Since the L%(£2, C“7(S?))-norm of T' is finite, it follows that there exists a measurable set Q*
of full probability such that || T'(w)| ¢~ (g2) is finite for all w € Q*. Hence, T'(w) € C(S?)
for all w € Q*. The indistinguishable modification of T" is given by T* = T'1q-. O
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6.5. Notes on Sobolev spaces on the sphere

In this section we will give the proof of Proposition 6.5. Since the norms of W¥*?(52) are
equivalent for all smooth atlases, we will perform the proof with our usual atlas (U;,n; :
i=1,...,6) of S? with partition of unity W.

Proof of Proposition 6.5. We use the notation, which we introduced at the beginning of
this chapter. For f € W*?2(S2) and i = 1, ..., p we define

Note that Zle fi = f, which holds by definition of a partition of unity. Also it holds
that f, f1,..., f¢ € L?(S?,R). Therefore they all obey an expansion in the real spherical
harmonics, i.e.

l 1
=% Vi and  £=3 Y &) Vi, fori=1,..6.

>0 m=—1 >0 m=—1

We know that for i =1, ...,6 the functions (f;),, € I/VéC 2(77Z L(Uy)). For an arbitrary multi-
index a € N2 with |a| = k we compute the L2(n; 1 (U;), R)-norm of the c-weak derivative
of the functionb (fi:i=1,...,6). We can 1nterchange the sum and the a-weak derivative
and evaluate the respective partial derivative of the real spherical harmonics.

/1 (8a(fi)m(y))2 dy:/ (Oafi(x))? do(x)
n; -~ (Ui) U;
2

/ > Z i da¥im(@) | do(a). (6.55)

>0 m=—1

Note that the image measure of dy under 7; and the measure do(x) are equivalent on Uj; for
i =1,...,6. In the proof of Lemma 6.18 we established that the partial derivatives of real
spherical harmonics results in finitely many linear combinations of real spherical harmonics
with coefficients of the following type: powers of m € {—l — k,...,l + k} with exponents
for h,q < k, which are smooth and therefore

at most equal to k£ and functions 83 sin% @
bounded. This argument led in Lemma 6.19 to Inequality (6.33), i.e

6k
(OaYim(x))? < 2P RPFPF RS CVE L (2), (6.56)
j=1

where I; < I+ k and m; € {-lj,...,1;} for all j = 1,..,6F. K is a constant, that is
independent of [ and m. With Inequalities (6.55) and (6.56) we conclude that

ERTAMNRES VM Y o 3 @00 1 1)

>0 m=—1

<Ky El: (@1,m)? <l + D%

>0 m=-1
= K[l (s2),
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where we applied the orthonormality of the real spherical harmonics and tacitly included
the other pre factors in Inequality (6.56) into the constant K apart from the dependency
on I. We also used that f = >F | f; and the property that the partition of unity takes
values between zero and one to obtain that for all 7 € {1,...,6} it holds that ||f||%2(s2 R) =

I fiHZLQ(U“R). The above inequality can be achieved for all i € {1,...,6} and all multi-indices

o € N2 that satisfy that || = k. It was sufficient to consider the highest weak derivative
and the L?-norm of the function due to Theorem 4.2.4 in [25]. O

We do not discuss whether or not the spaces H*(S?) and W*2(S?) are actually equal with
equivalent norms for £ € N, because this is not necessary in this project. The reader is
referred to a recent paper by Dai and Xu [9]. The two authors work with similar definitions
of Sobolev spaces on the sphere. In particular Lemma 3.9, Remark 3.1 and Equation 3.17
in [9] could lead to further results.

We close the chapter with a brief example. We wonder, under which decay of the angular
power spectrum would a continuous 2-weakly isotropic Gaussian spherical random field
be P-a.s. smooth. We mean that derivatives of arbitrary order must have a continuous
modification. Theorem 6.20 gives us a condition on the needed decay of the angular power
spectrum, i.e. (Cjl¥ : [ > 0) has to be summable for all £ € N. A class of angular power
spectra (C : [ > 0) that meets this condition would be that for & > 0 and all integers [ > 0
it holds that
Ci < exp(—1?).

To prove this, we introduce n € N such that % < a. The resulting infinite sum is bounded
by an integral, which we manipulate with a transformation and partial integration such
that for all £ € N it holds that

ZC’llk < Zexp(—lo‘)lk < Zexp(—l%)lk

1>0 1>0 1>0
oo o0
< / exp(—x%)xkdx ~ n/ exp(—y)y* "ty ~ n(k+n —1)!.
0 0

With the same Matlab code from Appendix A which we used for the two plots at the
end of Chapter 3 we produce plots of truncated expansions of 2-weakly isotropic Gaussian
spherical random fields with L = 200. For the angular power spectrum we take the one we
3

defined just above with a =1 and a = 4.
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Lukas Herrmann

Figure 6.2.: realization of T* with C) = exp(—I
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7. Log-normally distributed spherical
random fields

Random fields which are log-normally distributed play an important role in engineering
applications. Isotropic log-normal spherical random field were introduced in the paper [20]
of Lang and Schwab. Also they proved P-a.s. Holder continuity. We recapitulate their
statement, which is Corollary 6.2 in [20] in the first section and then investigate higher
regularity similar to isotropic Gaussian spherical random fields in the previous chapter.

7.1. Basic properties of log-normally distributed spherical
random fields

Definition 7.1. For a Gaussian spherical random field T we define the log-normal spherical
random field to be
A =exp(T).

A log-normal spherical random field is a well-defined spherical random field, since the
exponential function is measurable.

Lemma 7.2. The log-normal spherical random field A, which results from a 2-weakly
isotropic Gaussian spherical random field T, is also 2-weakly isotropic.

Proof. For x € S? Lemma 4.6 implies that T(x) is normally distributed with mean zero
and finite variance o%. Consequently A(z) is log-normally distributed with mean exp(30%)
and second moment exp(20%). Note that 02 is independent of .

We fix x1, 22 € S? and g € SO(3) to show the invariance under the action of SO(3) of the
covariance of (A(x1), A(x2)). Lemma 4.7 implies that (T'(z1),T(z2)) and (T (gz1), T (gz2))
have the same multivariate normal distribution. In particular their probability density
functions agree, which are denoted by fr(,)7(zs) a0d [7(ge1)T(gzs)- The invariance can
now be calculated. We obtain that

E[A(z1)A(z2)] = Elexp(T (x1)) exp(T (22))]

= / exp() exp(Y) f1(z1),17(2s) (T, y)dody
= / eXp eXp )fT(gzl),T(gxg)(x7y)dxdy
= B exp(T<9w1)) exp(T'(gx2))] = E[A(gz1)A(gz2)]-

In the same way, we obtain that for all z € S? and g € SO(3) it holds that E[A(z)] =
E[A(gx)]. O

88
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In Chapter 5 we developed sufficient conditions on a 2-weakly isotropic Gaussian spherical
random field such that it has a Holder continuous modification. Now we adapt the strategy
to obtain a similar result for a 2-weakly isotropic log-normal spherical random field.
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Lemma 7.3. Let T be a 2-weakly isotropic Gaussian spherical random field, such that for
its angular power it holds that (C)I'0 : 1 > 0) is summable for 6 € (0,2], then for any
kEeN, z,y € S% and a constant Kj, > 0 depending on k it holds that

k

E || exp(T(x)) = exp(T(y)) | < Ky | Y | d(ay)™.
>0

Proof. A small application of the fundamental theorem of calculus and the monotonicity of
the exponential function yield that for z,y € R it holds that

€T
le® — Y] = \/ e’ds| < (¥ + €e¥)|x — y|. (7.1)
y

This fact can be applied to the left hand side of the inequality in the claim of the lemma
to obtain with the help of the Cauchy—Schwarz inequality and Lemma 5.2 that

E [|exp(T(x)) — exp(T ()]

< B [|T(2) = T(y) P (exp(T () + exp(T(y)))*]
< E|IT(@) - TW)|*|* B [(exp(T(x)) + exp(T (1)) "]
k

< Ki [ Y CU | dw,y) B | (exp(T (@) + exp(T(y)) ]
>0

N

N

Note that the summability of the sequence (C;I'*9 : I > 0) was needed in order to apply
Lemma 5.2. If we show that E[(exp(T'(z)) + exp(T(y)))‘lk]% can be bounded independently
of x and y, then the claim of the lemma will be proven. We apply the fact that for all p > 1
and b,c > 0 it holds that

(b4 c)P < 22712 4 @), (7.2)

which follows from the convexity of the function (z +— zP) for x € R and obtain that

1
2

B [(exp(T(x)) + exp(T(y))*]* < 257 B | (exp(T(@))* + exp(T(y))*)?]

2k—1

<2 (B [len(r@)™]" + B [ewwm)*]*).
(7.3)

Lemma 4.6 implies that T(x) is normally distributed with mean zero and variance 02 =

leo Cl% for all z € S2. The moments of log-normally distributed random variables are
known. For a random variable X ~ N (ux,0%) the moments of exp(X) are given by

2 2

2

E [exp(X)"] = exp(npx +

)

for all n € N. Therefore the 4k™ moment of exp(7T'(z)) and exp(T'(y)) are given by

E |(exp(T(@))*] = B |(exp(T(y))*] = exp(8k%3).
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We insert the value of the 4k moment into Inequality (7.3) and obtain that

E [(exp(T(2)) + exp(T(y)))* } < 2"3" exp(4k?o}). (7.4)

This finishes the proof with the constant Kj = f(ﬁ% exp(4k%02.). O

The previous lemma has a very similar content as Lemma 5.2, i.e. the claim is the respective
inequality for a 2-weakly isotropic log-normal spherical random field. The difference lies in
the fact that Lemma 5.2 deals with a 2-weakly isotropic Gaussian spherical random field
T whereas Lemma 7.3 with the resulting 2-weakly isotropic log-normal spherical random
field A = exp(T'). Lemma 5.2 was the ingredient in the proof of Theorem 5.4 that relied on
the distribution of the spherical random field. Hence we expect Theorem 5.4 also to hold
for a 2-weakly isotropic log-normal spherical random field, which results from a 2-weakly
isotropic Gaussian spherical random field that satisfies the conditions of Lemma 7.3. This
is achieved with the following proposition.

Proposition 7.4. Let A be a 2-weakly isotropic log-normal spherical random field, which
results from the Z2-weakly isotropic Gaussian spherical random field T such that for its
angular power spectrum it holds that (CiI'*0 : 1 > 0) is summable for some § € (0,2]. For
all v € (0, g) there ezist a modification A* of A, a P-a.s. positive random variable h* and a
constant K > 0 such that A* is almost surely locally ~v-Holder continuous, i.e. there exists
a measurable set of full probability Q¥* such that for all w € Q* and all x,y € S? satisfying
d(z,y) < h*(w) it holds that

A" (2, w) — A%(y, w)| < Kd(x,y)".

Proof. The proof of Theorem 5.4 can be inserted line by line. At the moment, when
Lemma 5.2 is applied in the proof of Theorem 5.4, here we apply Lemma 7.3 instead. [

Note that in the next section, Theorem 7.7 will also partially imply this proposition, but
with different characteristics. This is due to the fact that we will use results from Chapter 6
that relied on the version of the Kolmogorovféentsov continuity theorem from the paper
of Andreev and Lang [2].

7.2. Differentiability of isotropic log-normal spherical random
fields

We also wish to transfer the differentiability results for 2-weakly isotropic Gaussian spherical
random fields to 2-weakly isotropic log-normal spherical random fields. As a preparation
we quote a generalization of the formula of Faa di Bruno for derivatives of compositions
of functions in the case of the exponential function from [16]: let n € N, for a n-times
differentiable function h : R®™ — R it holds that

o dIBIh(x)
_— h = E 7.5
0wy -+ 0xy exp(h(z)) = exp(h - Jgr [ljep 05’ (%)

where the sum is taken over all partitions 7 of the set {1,...,n}. The product is taken over
the blocks in each partition. This is Equation (4) in [16], which is due to Proposition 1 in
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[16]. In our case we would like to discuss partial derivatives that result from multi-indices
in N3. Due to Proposition 2 in [16] the variables x;’s in the partial derivative ﬁ
can be identical in the case that A : R™ — R with m < n. The partial derivative that

lex|
results from a multi-index a € NO would be written as #{n”’ where 21, ...,2q, = 0 and

Tay+1s - Tag+as = . This is also explained in Example 1 in [16]. The second ingredient
will be the discussion in the paper of Charrier [4], where the author shows the membership
of log-normal random fields in L% (2, C%) for p € (0,00). This is Proposition 2.3 and
Proposition 3.10 in [4]. We review the proofs, which rely on a theorem by Fernique, which
can be found in [8] as Theorem 2.6. We adapt these statements to our setup in the next
proposition.

Proposition 7.5. Let T be a continuous 2-weakly isotropic Gaussian spherical random field
such that its angular power spectrum satisfies that (CyI'+0 : 1 > 0) for some § € (0,2]. For
all p € (0,00)

E [exp(||T[|co(s2))?] < o0,

and there exists a constant K, dependent on p such that for all L € N it holds that
E [exp(| Tl co(s2))?] < Kp.

Remark 7.6. The assumptions of the previous proposition imply that the random variables
(mingcg2 T(z)) ™! and max,cg2 T'(x) are P-a.s well defined. And clearly P-a.s. also holds
that

(miny exp(T(2))) ! = exp(— min T(x)) < exp(|Tllco(s2)

zeS? zeS?
as well as P-a.s. max,eg2 exp(T(z)) < exp(||T'||co(s2)). The previous proposition implies
that for all p € (0,00) it holds that (min,¢c g2 exp(T ( ))) ! maxxesz exp(T'(z)) € L% (Q,R).
Furthermore the LE,(€2,R)-norm of (min,eg2 exp(T*(2))) ™ and max,cg2 exp(TX(z)) can
be bounded independently of L for all p € (0, 00).

Proof of Proposition 7.5. To be able to apply Fernique’s theorem we have to check that
PoT~!is a Gaussian measure on the Banach space C°(S?) in the sense of [8]. From the
beginning of Chapter 6 we know that the law of T, i.e. P oT~!, is a probability measure
on (C°(S?), B(C°(S?))).

We have to show that ¢(7T) is normally distributed for all £ € C°(S?)* in order to conclude
that P o T~! is a Gaussian measure on C%(5?). We arbitrarily fix £ € C°(S?)*. The dual
of CY(5?) is described by Example 6 in Section 4.9 in [29], i.e. for every linear functional
¢ € C°(S?)* there exists a real-valued signed finite measure y on the Borel sets B(S?) such
that £(f) = [qo fdu for all f € C°(S?). With Hahn’s decomposition, which is Theorem 3
in Section 1.3 in [29], we obtain the sets Bp, By € B(S?) such that for all B € B(S?) it
holds that

w(BNBp)>0, w(BNBy)<0 and BpUBy=S5%
We take these sets to define the density g and the finite measure |pul:
g=1p, —1py and  [u|(B)=pu(BNBp)— (BN By),

for all B € B(S?). We observe that du = gd|u|. We remind that for L € N the truncated
expansion in the real spherical harmonics, T% = ZZL:O an:—l VC1B81,mY1,m, of T' converges

Lukas Herrmann 88 ©



to T in L%(Q, L?(S%,R)) as L — oo. Therefore, the convergence is also in probability. Also
it is a sum of independent L?(S?, R)-valued random variables. Theorem 3.1 in [18] implies
that T converges P-a.s. to T in L%(S?,R). Therefore also in L'(S? R) and together with
our knowledge about C°(S?)* we obtain that P-a.s. limy o £(TF) = ¢(T). We consider
the characteristic function of ¢(T"). Since the absolute value of the function x — exp(ix)
on R is bounded by one, we obtain with the dominated convergence theorem that for all
A € R it holds that

L l
E[ei)‘Z(T)} = FE[ lim eiM(TL)] = lim E[ei’\é(TL)] = Llim exp (—;)\2 ZC’Z Z Z(}N/lym)2> .
—00

L—oo L—oo
=0 m=—I

We consider the sum over m in the above expression and apply the representation of ¢ in
order to obtain with the Cauchy—Schwarz inequality and Lemma 2.8 that

l

S (T = < /. ylmng) </, >, 2dlullgl3s oo

m=—I m=—I m=—I1

A+1, o iy
= SS9l 5oy

Since (Cyl : 1 > 0) is summable, we obtain with the above inequality that

20+ 1
O-K(T ZCZ Z £ lm < ZC 7|/L| )HgHi?llul(Sz’R) < 00,

>0 m=—I >0

where we defined U?(T) in the above equation. We conclude that

B D] = exp (=30 ).

which implies that ¢(T") ~ N (0, U?(T))' Therefore, PoT 1 is a symmetric Gaussian measure
on C°(S?) in the sense of Section 2.2.1 in [8]. Note that the same argument trivially also

applies to the truncated random field 7. Therefore Po(T)~! is also a symmetric Gaussian
measure on C%(S52).

We define the closed balls B,.(0) = {f € C°(S?) : || f||co(s2) < r}. From basic probability
theory we conclude that PoT~![B,(0)] = P{IT|cocs2y <7} — Lasr — oo. Equivalently,
for all € € (0,1) there is r € (0,00) such that P[{HT”CO g2y <1} > 1—e The strict
monotonicity of the logarithm implies that there exists gg € (0 1) such that log(=%-) < —2.
For this g9 we choose 79 € (0,00) such that P[{||T|| < ro}] > 1 —&¢ and we choose A>0
such that 32)\7’8 < 1. For these choices of A and rg we obtain that

1= PH{lITlcos2) < ro}] 5 £0
log + 32Ar5 < log <
( P{[[T]lcogs2) < 7o}] ° 1—¢g

) + 3208 < 1, (7.6)

which are the assumptions in Fernique’s theorem, which is Theorem 2.6 in [8]. The state-
ment of this theorem adapted to our framework is that

62

2
Elexp(N|T[|Zos2))] < e!oA0 21

(7.7)
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Furthermore 0 < (v Az — F) implies that pz < \z? + %. Together with Inequality (7.7)

we conclude that

[

p

Efexp(| Tllcois)"] = Elexp(plTlcos2))] < BlexpMT|2agse)] b

2tk P2

-1
The proof of the second claim of the theorem will be closely orlented on the proof of
Proposition 3.10 in [4]. The strategy for the proof of the second claim is to choose the
values A and ry independently of L such that Inequality (7.6) holds for T for all L € N.
Theorem 6.20 applied to the truncated random field 77 implies that there exists a constant

K such that we can bound the L2%(£2, C°(S?))-norm independently of L, i.e.

1

2

||TL||L%(9700(52)) <K ZOZZH_(S < 0.
>0

< elﬁATO+4)\ +

We define K = K(leo Clll‘“s)%. Note that K is finite due to the assumption on the
angular power spectrum of T'. The Chebychev inequality implies that for » > 0 and for all
L € N it holds that

L HTL”L2 (2.09(5%) _ K?
PHIT oo > r}] < —— 2D K0
There exists o € (0,1) such that log(l_ﬂ) < —2. We choose 9 = \/1157 When we also
choose A > 0 sufficiently small such that 32Ar3 < 1, then we obtain for all L € N that
— PI{IT"||co(s2) < 70}] 2 <1 — T9 )
lo + 32X\r5 < lo +32)\r2 < —1.
g ( P{IT cogse) < ro)] 0=\ o 0=

So we established Inequality (7.6) with choices for A and 7y that do not depend on L.
Therefore the argument can be completed in the same way as for the first claim. We then
2

take K, = 16)‘T0+4A + £5—. Note that our choices for A and ry in the proof of the first
and second claim are in general different. O

Theorem 7.7. Let A be a 2-weakly isotropic log-normal spherical random field that results
from a continuous 2-weakly isotropic Gaussian spherical random field T such that the an-
gular power spectrum of T satisfies that (CI'2%9 . [ > 0) is summable for some § € (0,2]
and some mteger ¢ > 0.
For all v € (0 ,2) there exists an indistinguishable modification A* of A such that A* C
Cv7(S?) and for all p € (0,00) it holds that A € LE, (2, C*7(5?)).
For all p € (0,00) and all L € Ny the L’I’D(Q,C“V(Sz))—norm of AL = exp(T*) is bounded
independently of L, i.e. for all p € (0,00) there exists a constant K, independently of L
such that

1A% o @.com(s2)) < Ko

For all p € (0,00) the sequence (AY : L € Ny) converges to A = exp(T) in L%,(Q,C+7(S?)),
i.e. for all p € (0,00) there exists a constant K, independently of L such that

1
2
1A = A .0 (s2)) < Ko (Z ClleH) :

I>L
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Proof. We start with the case that + = 0. We know from Theorem 6.20 that there exists
an indistinguishable modification T* C C%7(S2?) of T that results in an indistinguishable
modification A* of A. We remind of our standard atlas (U;,n; : j = 1,...,6) with smooth
partition of unity ¥ of S%2. We fix i € {1,...,6} and remind of our usual notation that for
x € U; weset n; H(x) = (0, ). Since supp(¥;) is relatively closed in S?, Lemma 6.2 implies
that there exists a partition of unity ¥ subordinate to the open cover (U; : j = 1,...,6)
such that U; = 1 on supp(¥;). Let U be another partition of unity subordinate to the atlas
(Ui,mi + i =1,...,6), such that for all i € {1,...,6} on supp(¥;) it holds that ¥; = 1. For
x,y € U; we obtain with Inequality (7.1) that

A% (z) = A(y)| < (A" (2) + A"(y)| T (z) = T*(y)];

which implies with the bound of a product of Hélder functions, which is Inequality (6.4),
that

A"l o iy < 1l iy (145 o toumm(m) + 145 by.summicvn,))
< KA o, (14 20T o 7, )

where we assume that ||(¥ < K and applied that (A*¥;),, is equal to zero

)m HCO 7 ( _I(U ))
outside of supp((¥;),,). Since the last inequality also holds for all other j € {1,...,6}\{i}
we obtain with the definition of the Holder norms on S? that

| A [ cos2) < KAl cogszy (1 + 2[1T* ]| co(s2)) -

We can now apply Proposition 7.5 and Theorem 6.20 to obtain with the Cauchy—Schwarz
inequality that for all p € (0, 00) there exists a constant K, such that

1 1 1
B [1A4120nsn)) " < KE [l AN o2)) ¥ B [(14+ 20T loon(sn) "] ¥ < Ky (78)

Since the modification T and A* are equal to T" and A on measurable set with full proba-
bility we can always consider 1" and A when taking the expectation instead of T and A*.
We will do this in the future without mentioning it. The partition of unity ¥ contributed
with the factor K. In the future we might tacitly ignore W at some occasions to ease the
notation in the proof.

Note that for L € N this argument can be repeated for the truncated random field T
and AY = exp(T*) with the same result. Moreover Proposition 7.5 and Theorem 6.20 will
ensure that the constant K, in Inequality (7.8) will not depend on L.

The proof of the second claim, which is the discussion of the L% (€, R)-norm of ||A* —
AL*Hco,v( 52y for L € N and the desired convergence is computationally more involved. We
will mostly apply Inequality (7.1) in a particular way. We look at the difference of the
function A* — AL at z,y € supp(¥;) CC U; for the same fixed i € {1,...,6} and obtain
with Inequality (6.29) that

A% (x) = A¥(2) — (A*(y) — A% ()|
(T @) (T =TE) @) 1y (T W) (T =T)w) _ 1))

< (TH @) (T =TE) @) _ (T =TE)0)| 1T =TE)0) _ 1| T @) _ T (7.9)
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We apply Inequality (7.1) to the two differences and the second factor in the last inequality
to obtain that

T =TE) (@) _ (T =T )

< (T T 4 oI (10 T () — (1% - TH) (),

€777 @) T W) < (7@ 4 IO TE (1) — T (y)|

and
T =T 1) < T =T |75 (y) — TV (3).

We insert the last two inequality into Inequality (7.9), divide by [|(6z, ¢z) — (6y, ¢y) || 2 and
take the supremum over all z,y € supp(¥;) to obtain that

‘A* AL*"}/O
< AL oo (1 + 1AL 120) 1T, — Ty 0+ ™™ ol | T, — TE ol T |y0- (7.10)

Note that we will sometimes drop the dependence of the domain in the norms and semi-
norms for notational convenience as we did above. The previous argument of course holds
for all i € {1,...,6}. With the plain application of Inequality (7.1) we obtain that

14" = A% || cogs2y < (IA% |co(s2)y + 1A | cos2))IT* = T || cogs2). (7.11)
We combine the Inequalities (7.10) and (7.11) to obtain that
1A* = A% g0 (52) < 1A o (1 + [|AY[Z0) T = T 50
e * * * * *
+ (e oo T 0 + 1AM lco + A o) I T* = T [|co
* * s« __rL* *
< (llA lloo (1 + A% [Z0) + e lloo [T |0

HIA® [l + HA*Hco) 1T = T o

We can repeatedly apply the Cauchy—Schwarz inequality, Proposition 7.5 and Remark 6.21
on Theorem 6.20 as above to obtain that for all p € (0,00) there exists a constant K,
independently of L such that

1
2
EA- ALHQM 52 ] < Ky (Z Cll1+5> :

I>L

Now we prove the general case ¢+ > 1. According to Theorem 6.20 there exists an indis-
tinguishable modification T* C C*“7(S?) of T, then A* = exp(T*) is an indistinguishable
modification of A. Again we fix ¢ € {1,...,6}. To satisfy the definition of the Hélder norms
on S? we need to analyze partial derivatives of the term (A4*¥;),,. With the multivariate
Leipniz rule we obtain that for 8 € N3 such that |3| < ¢ it holds that

(A )y = <Z>aaA;iaﬂa(\I/,~)m. (7.12)

a<p

Since (¥;)y, is smooth and ¥; is compactly supported, we can assume that for all m < ¢+1
the C™(n; }(U;))-norm of (¥;),, is bounded independently of m and i by a constant K.
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The interesting term is where A* is involved. We apply Equation (7.5) to A* to obtain
that for a € N2 with || < ¢ it holds that

BT
Ol =AY ] HaBT (7.13)

n Ben 11j€B

where the sum is taken over all partitions 7 of the set {1, ..., ||} and the product is taken
over all blocks of the respective partition. Note that x1,...,24, = 0 and T4, 41, ..., o = ¥
as described after we introduced Equation (7.5). For the sake of a convenient notation, we

define (Bl
a—<ZHH8 S )Oﬁ{l'

T Bem ]EB

For z,y € U; and B € Ng satisfying |3| = ¢ we look at the difference of partial derivatives
and obtain with Equation (7.12), Equation (7.13) and Inequality (6.29) that

9p(A" W) () — Op(A™ W) (y)] < K ) ( |00 A™(2) = 0aA™(y)]

-x Y (2 )rA* A () Taly)|
a<lp
<5 ¥ ()10 @liTate) - Tato) (714
a<lp
FTa@A@) - A @), (1.15)

Note that to ease the notation we just made a slight abuse of notation: with dg(A*¥;)(x)
we mean 9g(A*¥;),. (n; *(x)). We will use this notation at some occasions in the remaining
part of the proof without mentioning it again.

We will treat the Expressions (7.14) and (7.15) separately and we will start with the first
of those. The term 7 consist of finite sums and products of partial derivatives of T, of
order at most . We need a more general version of Inequality (6.29). For real numbers
A1y -eey Apy b1, ..., by € R we iteratively apply Inequality (6.29) to obtain that

n n n—1 n—1 n—1
\Hai — Hbi| < |an|| H a; — H bi| + H |bi||an — Do
=1 =1 =1 ni;—l ni;—l - .
|an|lan—1]| Hai - H bil + |an] H Ibillan—1 — bo—a| + [ 1billan — ba
; ; ; pale
<. <Z|az b|H|by H |aj. (7.16)

j=i+1

IN

For the difference quotient we obtain with the triangle inequality that

o8 |T (Gac,ﬁﬂm 8IB‘T (Gvay)

Tal@) - Tal)|  _ =~ Hlser Tmisom— — Hser oo
(O, ) — (93/7902;)”%2 N (0, ) — (9y790y)HR2 '

™
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Together with Inequality (7.16) and Equation (6.3) we obtain that for a constant K > 0
dependent on the domain n; ' (U;) and ¢ it holds that

| Ta(z) — Ta(y)]
H(eﬂiv 9033) - (Hya (py)H%2

< KQ(IT|lcerv(s2)); (7.17)

where 0 # Q is a polynomial in P()(R) with degree smaller or equal than ¢, i.e. for Q(X) =
Z;Zl qj X7 such that ¢; > 0 for j € {2,...,.} and ¢; > 0. We tacitly applied the fact that

C™(n; H(Uy)) € C'(n; 1 (Uh)) for all integers 0 < m < ¢. With a similar argument we
obtain that

Ta(2)] < KQUIT lcr(s2))- (7.18)

The difference quotient that results from Expression (7.15) can be estimated with Inequal-
ity (7.1), i.e.

A" (z) — A*(y)]
(02, z) — (0y, QDy)H%Q

[T (z) — T"(y)]
(02, 02) — (0y, ‘Py)”%g'
(7.19)
We combine Inequalities (7.17), (7.18) and (7.19) to obtain an estimate for the difference
quotient of Jg(A*¥;), i.e.

|Ta(y)] <2KQ([T lcer s2)) 1A cogs2) I

|0(A™ W) (x) — Op(A" W) (y)|
H(ema (Pr) - (an (Py)H%Q

< KN ([4%llcos2)QUIT v (s2))

+2[| A% || co(s2) QUIT | (s2)) 1T | 0. (52))
= KN A" cos2y QUIT || cerv(52)) (1 + 2/ T || co.v(s2) )

where N = Zagﬁ ('6) We take the supremum over all z,y € supp(¥;) and obtain with

(07

the definition of the Holder norms on S? and Equation (6.3) that

[A* | cm(s2) < C ([A | cogszy + KN Al cos2y QUIT™ || cers2)) (1 + 2T [ o (s2y)) »
(7.20)
where the constant C' results from the equivalence of the Holder norms in Equation (6.3).
The right hand side of Inequality (7.20) is in L% (Q,R) for all p € (0,00) due to the
Cauchy—Schwarz inequality, Theorem 6.20 and Proposition 7.5. Therefore the first claim of
the theorem is proven.

For the proof of the second claim of the theorem we can use the same argument as we used
to proof Inequality (7.14)/(7.15) to obtain that

* * 16 * *
06 (A™ W)y, — Op(A* W)y, | o1y S K Y <a [(A*Ta)n: = (AT )0 ,0,5upp((w0),)

a<p

B .
< K Z <a> (’Aé (7:1 - 7:1L)77i"y,0,supp((\lli)ni)
a<p

(7.21)

+[(Te)n; (A" = AL*)m’%O,Supp((‘I’i)ni)) :
(7.22)
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We will discuss the summands individually. For notational convenience we will sometimes
drop the dependence of the domain in the norms or semi-norms. We fix a < 3 and obtain
for Expression (7.21) with Inequalities (7.17) and (7.18) that
|AL*(T TL)m’%O < ||A oo (T ) T (7;%)771 70 + ||(Ta)m- - (7;L)m||CO|AL*|%0
< K[|A™ [l cos2yQUT = Tl cun(s2))-

For Expression (7.22) we obtain with Inequality (7.18) that

|(Ta)n (A" =AMy L0 < (Ta)nlloo A5, — AL lyo + 145, = A7 lleol(Ta)m, .0

< KQIT* || (s2)) |A* = A% || cosr(s2)-

We combine the last two inequalities and obtain with the definition of Hélder norms on S2
and Equation (6.3) that

|A* = A% || cums2) < C (|A* = A%l co(s2y + KN (|| A% com(s2)QUIT™ = T || gen(s52))
+QUIT* |l cerns2)) IA* = A% || com(s2y))

where the constant C results from the equivalence relation in Equation (6.3). It remains
to show that ||A* — A%*[|u (g2) converges in L, (2, R) in the desired way. We will discuss
the summands in Inequality (7.23) individually and will begin with the first one. The
polynomial @ is dominated by the first order term g;« for small arguments > 0. Therefore
it is sufficient to consider how |7 — T'%* | (s2) converges. Powers of this term due to the
polynomial @ will result in powers of the bound of ||T* — T%*||cu.» (g2) in Lf-sense, which
converges to zero faster due to Remark 6.21 on Theorem 6.20. We obtain with the Cauchy—
Schwarz inequality and the already proven case ¢ = 0 that for a constant K, independent
of L it holds that

B [J|AM 0, g2y IT — T

1
W] < E[147 " BT = T )|

s

< K,E [||T T SQJ 2”.

With Remark 6.21 on Theorem 6.20 we obtain that there exists a Kp independently of L
such that

1
2
E ||AL||Co»Y 52) ”T TLHCL’Y 52] < Kpr (E Cll1+2L+6> ]

I>L

Since the second claim of the theorem has already been proven for ¢« = 0, we obtain for
the first and third summand in Inequality (7.23) with a similar argument relying on Theo-
rem 6.20 that

1 1 2
EIA= A 20"y B |QUT cus2) A~ Mumy]<&<2qw>,
I>L

where we tacitly included the constants K, C' and N into K, in a suitable way. Therefore,
the second claim in the case that ¢ > 1 is also proven with a threefold application of the
triangle inequality. O
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7.3. Notes on the proof of the differentiability results

The proof of the differentiability of 2-weakly isotropic log-normal spherical random fields
relied on the fact that under our assumptions A € L1, (€, CY(8?)) for all p € (0,00). This
was Proposition 7.5 in the previous section, with Fernique’s theorem as the main ingredient.
In this section we prove a proposition that will imply Proposition 7.5 and will potentially
ease the proof of Theorem 7.7 due to its stronger statement.

In the previous chapter we proved the respective result of Theorem 7.7 for 2-weakly isotropic
Gaussian spherical random fields, i.e. Theorem 6.20 and Remark 6.21, and used Lemma 5.2
as a main ingredient. The respective result for the log-normal case is Lemma 7.3. Therefore
we expect to obtain Theorem 7.7 in a similar way as in the Gaussian case for Holder
continuity, i.e. ¢ = 0.

Proposition 7.8. Let A be a 2-weakly isotropic log-normal spherical random field, which
results from a continuous 2-weakly isotropic Gaussian spherical random field T such that
its angular power spectrum satisfies that (C)1'*9 = 1 > 0) is summable for § € (0,2]. For
all v € (0, g) there exists an indistinguishable modification A* C C%7(S?) of A and A €
LR, C%7(52)) for all p € (0,0).

For all p € (0,00) the sequence (AY : L € Ng) = (exp(T') : L € Ny) converges to
A = exp(T) in the L}, (2, C%7(52%))-norm, i.e. for all p € (0,00) there exists a constant K,
independently of L such that

2
|A — ALHL,I,)(QCON(SQ)) <K, (Z Cll1+5> )
I>L

Proof. The proof will be very similar to the proof of Theorem 6.16 and Remark 6.17. As in
many proofs before we remind of our usual atlas (U, n; : i = 1,...,6) of S? with partition
of unity W. Since T'(x) ~ N(0,02) for all z € S? by Lemma 4.6, we obtain with Tonelli’s
theorem that for all k e N A € L%%da(Q x S2 R), i.e. it holds that

2] /S A o) ] = /S E[A@)*] do(a)
= /52 exp(2k%02)do(x) = 4w exp(2k202).

Lemma 7.3 enables us to apply Theorem 3.5 from [2] with d = 0, n = 2 and € = kJ — 2.
We choose k > ﬁ. It follows that there exists a modification A* of A such that A* C
C%7(S?). The modification A* and A are indistinguishable, because both random fields
are continuous. The respectively limit argument was given in the proof of Theorem 6.16.
Note that Inequality (6.21) can also be established for the 2-weakly isotropic log-normal
spherical random field A with Lemma 7.3 instead of Lemma 6.14, i.e.

k

]gCE [\|Am|% }+Kk o)L (129

E |[[(AT;),, |12 L2k (0, (U;),R)
‘ >0

€O (n; H(U:))

where the constants K} is due to Lemma 7.3 and the constant C' comes from a Sobolev
embedding as in development of Inequality (6.21). Note that Inequality (7.24) and the the

embedding LQPLP +1J(Q,]R) C L%(L,R) for all p € (0,00) already implies the first claim of
the proposition.
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For the second claim we have to examine the right hand side of Inequality (7.24) and replace
A with A — A", For the first summand we apply Tonelli’s theorem, the Cauchy-Schwarz
inequality and the triangle inequality as well as Inequalities (7.1) and (7.4) to obtain that

E [ /S (Al) - AL(a;))dea(a:)}

B /S (Alx) + AM@)PHT () — TH) o () |

IN

N

< [ Bl + 4@ 5 @ - )] ao
52

k
2k)! 20+ 1
< 4m 2% exp(4k:2a%)( ) <Z C i ) ,

2k k| A7
I>L

where the second factor is achieved with Inequality (5.9) and Lemma 2.8. For the second
summand in Inequality (7.24) we have to prove Lemma 7.3 for A — A*. Note that in the
case of a 2-weakly isotropic Gaussian spherical random field, as in Theorem 6.26, this was
immediate since the expansion of T'— T'* in the real spherical harmonics was known. In
our case we have to apply Inequality (7.1) and use a similar argument as in the proof of
Theorem 7.7. With Inequality (7.2) we obtain that for k, L € N it holds that

B [|(4 = A" (@) — (A= AN )] = B ||AH @) - (rrhw)
+(TTI0) — 1)(A(z) — A% (y))[*]
< 92k-1 (E [(AL(x))2k|€(T_TL)(x) — €(T—TL)(y)|2k]
(7.25)
T+ |(TTTI0 — 1) 4k (@) — AL(y) ] ).
(7.26)

We will examine the two summands in the above inequality individually. For Expres-
sion (7.25) we obtain with Inequality (7.1) and the Cauchy-Schwarz inequality that

E |:(AL(1,))2IC|6(T7TL)($) o 6(TfTL)(ac)|2k]
< B [(A% (@) (e 4 (T=TIW)2h (7 - T8 (@) — (T = T) ()]
< B[(AM@)*]" B [T 1 T B[(7 - Thy@) - (7 - TV )]

Since A (z) and eT-TH@) are log-normally distributed with mean and variance indepen-
dent of x and moments of finite order exists we obtain with Lemma 5.2 that for every k € N
there exists a constant K, such that

k
E [(AL(x))Qk‘e(TfTL)(x) _ e(TfTL)(x)‘Qk:| < K (Z Clll+5) d(l‘,y)ék.
I>L

Expression (7.26) can be treated in a similar way. With Inequality (7.1) and the Cauchy—
Schwarz inequality we obtain that

> [(e(T—TL)(y) —1)%* AL (z) — AL(y)|2k]
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< B[O 1 14T (2) - TH (@) ] A% (2) - AR (y) ]

1 1 1
< B[N0 1 )% B ||T(@) - TH@)[*) " B [|Ak (@) - AR@)*]7.
Now we apply that for exp((T — T7)(y)) and A (z) all moments of finite order exists and
do not depend on x or y. With the usual argument we bound E[|T(z) — T*(x)[®*] and
obtain that

k

B 20+ 1
E |[(eT=TMW) _ 1)k AL (5) — AL(?/)\%} < Ky, (Z & A ) d(z,y)°".
I>L

We combine the estimates for Expressions (7.25) and (7.26) and obtain the statement of
Lemma 7.3 for A — A%, i.e. there exists a constant K}, independently of z, y and L such
that

k
B [|(A = AB)() - (A - AR (y)*] < Ky (ZZE az”é) (e, y)™.

We conclude a respective version of Inequality (7.24), i.e. for all ¢ € {1, ...,6} there exists a
constant Ky, independently of L such that

k
Ly, \ 112k 146
[ e (Z i ) .

I>L

. 2|p+1] P . . .
The embedding L (2,R) C L(2,R) for all p € (0, 00) implies the second claim of the
proposition. O

We see that the previous proposition does not only include the statement of Proposition 7.5,
furthermore it also includes the statement of Theorem 7.7 in the case that ¢+ = 0 without
the use of Fernique’s theorem.

Lukas Herrmann 98 ©



8. Elliptic partial differential equations on
the sphere

In this chapter we want to discuss elliptic partial differential equations on the sphere.
The definitions of the differential operators on the sphere will be according to the theory
on Riemannian manifolds with respect to a chosen coordinate system and also due to an
intrinsic definition valid on the sphere. The latter is discussed in the book of Atkinson and
Han [3]. We will consider the following type of equation on S:

—Vg2 - (AVg2u) = f, (8.1)

for given functions A and f. This formal problem will be made precise afterwards. The
spherical gradient and the spherical Laplace operator can be also described intrinsically.
According to Equation (3.4) in [3] for a function v € C%(S?) it holds that

A’U(Q?) = ASQU(GCE’SDJJ)a

llzll=1

where A is the usual Laplace operator on three dimensional domains of Euclidean space and
0 denotes the function: z +— U(Hj’;—”) Similarly, Equation (3.7) in [3] states for v € C*(S5?)
that

V()| | = Vot pn)

where V is the usual gradient on three dimensional domains of Euclidean space. Note that
in [3] these Equations are stated for a general atlas of the sphere. Therefore the value of
the spherical gradient and the spherical Laplace operator are independent of the atlas and
the respective coordinate system.

The following lemma is the divergence theorem on the sphere. It is a slight modification of
Proposition 3.3 in [3].

Lemma 8.1. For v, A € C1(S?) and w € C?(S?) it holds that

VSQ'U . (AVSzw)dO' = —/ ’UVSz . (AVSTU))dO'.

5‘2 S2

Proof. This follows directly from Equation (2.4.185) in [22]. O
For the analysis of Equation (8.1) we are interested in the Poincaré inequality for a subspace
of H(S?).

Definition 8.2. Let the equivalence relation ~ be given by: v ~ w for v,w € H'(S?)
if and only if there exists ¢ € R such that v = w + ¢. We define the quotient space
H'(S%)/~ = H'(S?)/R.

If a certain expression is equal for all representatives of an equivalence class in H'(S?)/R
it will sometimes be useful to consider the representative v that satisfies that [, g2 vdo = 0.
We will see this technique after the following lemma, which is a Poincaré inequality.
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Lemma 8.3. For allveV ={we H'(5?): [¢owdo =0} it holds that

|V 520|252y

HUHB(SZ f‘

Proof. Since V is a closed linear subspace of H'(S?), it holds that C°°(S?) NV is dense in
V. Therefore it suffices to prove the claimed inequality for functions ¢ € C°°(S?) NV, i.e.
¢ € C>(5?) that satisfies that [g, ¢pdo = 0. Since C*(5?) C L?*(S? R) there exists an
expansion of ¢ in the real spherical harmonics. The real spherical harmonic function 170,0
is constant, therefore the coefficient ¢g o = f g2 gbf/o,gda = 0. We obtain the expansion

l
Qb = Z Z le,mi/z,m
1>1 m=-—I

with equality in L?(S?,R). Now we consider the Rayleigh quotient and obtain with
Lemma 8.1 and the orthonormality of the real spherical harmonics that

o ”VSQ¢H%2(S27R) B ; —fsg PAg2pdo
PpEC>(52)NV Hqﬁ”%z(sz,R) PpEC>(S2)NV H¢||%2(52’R)
B f D> S e U+ 1)é7 _
0A4{b1,m}i>1,m=—1,...1 lel an:—l ¢l2,m
Note that the infimum will be attained for the sequences that satisfy that ¢;,, = 0 for
1>2. O]

For v € H'(5%)/R the expression ||Vg2v|12(s2 r) is independent of the representative of
the equivalence class v. In the case that v # 0 in H'(S?)/R, we choose the representative
0 in v that satisfies that |, g2 0do = 0. Note that we just disregarded the common notation
to denote equivalence classes with [-]. The Poincaré inequality implies that

IVs20l 1252y = IVs20| 252 k) = V2/1 12(52,R) > O
Therefore, for all v € H'(S?)/R we define
vl (s2) /R = Vis2vll 2252 R),

which is a well-defined norm on H'(S?)/R, since it is independent of the representative
of the respective equivalence class. Moreover H'(S?)/R becomes a Hilbert space with the
inner product

('U,’UJ)Hl(sq)/]R = / V52U'V52’Ujd0'.
S2

We will consider the variational formulation of the problem in Equation (8.1) for a strictly
positive continuous function A on S?: to find a unique v € H*(S?)/R such that

b(u,v) = . AV g2u - Vgevdo = /52 fvdo = £¢(v) (8.2)

for all v € H'(S?)/R.
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Lemma 8.4. The bilinear form b in Equation (8.2) on H'(S?)/Rx H'(S?)/R is symmetric.
Moreover b is also continuous and coercive, i.e. for all v,w € H'(S?)/R it holds that

b(w, v)| < HAHCO(SZ’)||wHHl(S?)/R||U||H1(S2)/R
and for all w € H'(S?)/R it holds that
b(w, w) = (;Iéfsg A(@)) [wllF (s2) e
Proof. The continuity of b follows with the Cauchy—Schwarz inequality. Symmetry and
coercivity are clear. 0

We state the Lax—Milgram lemma as the next theorem. We take the version from Yosida’s
book [29]. There it is the main theorem in Section 7 in Part 3 of |29].

Theorem 8.5. Let H be a Hilbert space with inner product (-,-) and induced norm |- | and
let b be a real-valued bilinear functional on the product Hilbert space H X H which satisfies:

boundedness, i.e. there exists a constant Ky such that for all x,y € H

b, y)| < Kallz] - llyll,

and coercivity, i.e. there exists a constant Ko such that for all x € H
bz, x) > Kol|z|%.

Then there exists a uniquely determined linear bounded operator S with a bounded linear
inverse S~1 such that

(2,9) = b, Sy)
whenever z,y € H, and |S|| < Ky', IS~ < K.

Proof. This is explicitly the main theorem in Section 7 in Part 3 of [29] in the case of a
real-valued bilinear functional b. O

Since H'(S?)/R is a Hilbert space the Lax-Milgram lemma, Theorem 8.5, is applicable.
First the Riesz representation theorem, which is the main theorem in Section 6 in Part 3 of
[29] yields that for every ¢ € (H'(S?)/R)* there exists a unique u, € H'(S?)/R such that
for all v € H'(S?)/R it holds that

(e, v)rgeye = £(v)  and  luel greseym = 1€l (s2ymy»-

Now Theorem 8.5 implies that there exists a uniquely determined bounded linear operator
S on H'(S%)/R such that

b(Sug,v) = (up, v) g1 g2y = £(v)

for all v € H'(S?)/R. We set u = Su, and v is the unique solution to the problem in
Equation (8.2) if we take ¢ € (H'(S?)/R)* as right hand side. Theorem 8.5 and Lemma 8.4
yield the estimate

luellmrszym Nl a2y my-

= < = .
ellzrszy e = ISuel s < SEr=o"207 = minges: At)
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In our discussion we want to take a function in L?(S? R) as right hand side of Equa-
tion (8.2). If a function f € L?(S% R) additionally satisfies that fsg fdo = 0, then
ly = (v = [g fvdo) € (H'(S?*)/R)*. Therefore we make this assumption on f. For
this choice of right hand side ¢; € (H'(5?%)/R)* we obtain a unique solution u € H'(S?%)/R
to the problem in Equation (8.2) with the above argument. The above estimate, Lemma 8.3
and the Cauchy—Schwarz inequality yield the estimate

Hef”(Hl §2)/R)* 1 fll2(s2,m) vl 22 (52 R) 1 I fllz2(s2,m)
lullgr(s2ym < ———7+ < : < - AR
mingeg2 A(T) 7 pepr(s2)r Minges2 A@)|v]ms2yr — V2 mingeg: A(z)
(8.3)

where we tacitly always selected the representative v that satisfies that |, g2 vdo = 0.

A second continuous function A on $2 such that min, ¢ g2 fl(x) > 0 induces the bilinear
form b and we can consider the respective problem in Equation (8.2) with b instead of b
and with the same right hand side f. We observe that this problem has a unique solution
@ € H*(S?%)/R that also satisfies Inequality (8.3), i.e.

il sy < 1 I fllz2(s2,m)
HS“—Jm%@mm

With the same argument that is used to prove the first Strang lemma, in Section 4.1 in
[6], we will obtain that the mapping A +— u from C°(S?) N {4 : mingcg2 A(x) > 0} to
H'(S?)/R is continuous.

Proposition 8.6. The unique solution u of Equation (8.2) depends continuously on the
coefficient A.

Let A, A € CO(S?) N {A : mingege A(z) > 0} be two coefficients that induce bilinear forms
b and b. For the respective solutions u with respect to A and 4 with respect to A of Equa-

tion (8.2) with the same right hand side f € L*(S*,R) N {f : Js2 fdo = 0} it holds that

1 1 £l z2(s2 )
— g2y < —= —
lu — il g1 (52 f(mmA( ))(minA(:c))”

reS?

A= A gogsz).- (8.4)

Proof. We start with the proof of the second claim We adapt the argument in [6] as an-
nounced. We introduce the notation ¥V = H!(S?)/R. We can apply manipulations using
that 4 and u solve the respective equations to obtain with the coercivity of the bilinear
form that

min Ax)||t —ul3y < b(i — uy @ —u) = 1p(t — u) — b(u, & — u) = b(u, & — u) — b(u, & — u).
xre

We continue this computation and obtain that

min A(z)||@ — ully < [b(u, @ — lf) —b(u, 4 — u)| < sup |b(u, w) — b(u, w)]
rest 1@ —ully wey [[wlly

We obtain with the Cauchy—Schwarz inequality that

. 1 b(u, w) — b(u, w 1 .

- uly < —— sup L) VN o 14— 4 o)
min A(z) wev [wlly min A(z)
resS? €S2
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We apply Inequality (8.3) and obtain that

1 £l z2(s2 )

— < — i
lu — 0l g (s2)/m < V2 (min A(z))(min A(z))
z€S? z€S?

14— Allgo(s2)-

To show the first claim, we choose a sequence (A, : n > 0) € C%(S?)N{A : min,cq2 A(z) >
0} that converges to A in CY(S?), ie. ||A — Anllco(s2y = en — 0 asn — oo. For alln € N
the solution of Equation (8.2) with respect to A,, is denoted by u,,. We observe that for all
y € S%and n € N it holds that A, (y) > mingcg2 A(z) — &,. There exists N € N such that
for all integer n > N it holds that €, < 2 min,cg2 A(z) and we obtain that

1 2
<

T
g Anl) T g AL)

Therefore for all n € N (mingcg2 A, (x))~! can be bounded independently of n and with
Inequality (8.4) we conclude that u, converges to u in H'(S?)/R. This implies that the
mapping A — u is a continuous mapping from C°(S?) N {4 : min, ¢ g2 A(z) > 0} to
H'(S?)/R and the first claim is proven. O

In the following we want to impose higher regularity on the right hand side f and on the
coefficient A that we used to define the bilinear form 5. The next section discusses how
higher order Hoélder regularity on the right hand side and on the coefficients of elliptic
operators affects the regularity of the solution in bounded domains of Euclidean space.

8.1. The Schauder interior estimates

Gilbarg and Trudinger elaborate in their book [14] the Schauder estimates of solutions of
elliptic partial differential equations of second order in domains of Euclidean space. They
present estimates of the Holder norms of higher order partial derivatives of the solution in
terms of the right hand side and the supremum norm of the solution. However, in [14] the
dependence on the coeflicients of the respective differential operator in the estimates is not
emphasized. In this project we are interested in the precise dependence of the constants
in the estimates on the coeflicients of the respective differential operator. Therefore we
will take a close look at the proofs to distinguish the contribution of the coefficients to the
constants.

For the discussion of the proof of the Schauder estimates we introduce a set of semi-norms.
We fix the bounded domain D C R™ for some n € N with diameter diam(D) = r. Even
though we will be interested in the case n = 2, we will discuss the Schauder estimates for
an arbitrary dimension n € N, because the proof will be the same and the concentration
on n = 2 will not lead to simplifications. For x,y € D we define

dy = dist(z,0D) and dy,y = min{dy, dy}.
Let k € N. For f € C¥(D), v € (0,1] and o € R we define the semi-norms

[f1i.p = sup d5|9af (x),
zeD
|B8|=Fk
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T p = mp(ww%ﬂ> 9p.f ()|
YK,

:Jc,y|€l|),ac7éy H‘T - yH’yn

1) = sup d7 10 f(z),

)

Iﬁl k
o - 0 0
[f]»(yJ?;,D — sup d +k+'y‘ 5f( )_ ﬁf( )‘7
z,y€D,x#y |2 QJHR"
|B|=k

for f € CY(D) we define
1100 = LD + 1% -

For two functions f,g € C%7(D), Inequality (6.11) in [14] states that for the product of f
and g and ¢ + 7 > 0 it holds that

o+T
fg |(70D <|f‘70D‘9‘70D (85)

The following lemma states some interpolation inequalities with explicit constants, which
hold for these semi-norms. It is Lemma 6.32 in [14]. We will review its proof to discover
the precise constants.

Lemma 8.7. Fory € (0,1), f € C?*7(D), B € (0,1) and ¢ > 0 it holds that

flip <512 €7 fll o) +elfl 2. (8.6)
and .

(15,0 < 64227 77 || fl o + €lf15.2,0- (8.7)
Moreover for a constant K that depends on [ and v it holds that for all € € (0,1]

500 <K & 5| fllcogm) + Al 2. (8.8)
and .

15,0 < K & | fllcopy +&lf152,0- (8.9)

For v € (0,1), f € CY7(D), B € (0,1) and ¢ > 0 it holds that

11 .
flip <24y e ||f||00(5) +elfl51.p (8.10)

and for a constant K that depends on [3 and v it holds that for all e € (0,1]

1 "
(flpop <Ke 17 ||U||Co(b) +elf151,- (8.11)

Proof. In this proof we quote some inequalities from the original proof of this lemma given
in [14], which can be combined to obtain the constants depending on . We state Inequal-
ity (6.83) in [14], which says that for &’ > 0 it holds that

Mo < HfHCO(D +e'[fl5p (8.12)

and Inequality (6.85) in [14], which says that for & > 0 it holds that

fap <16 7[5 p+ €[] ap- (8.13)
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We combine Inequality (8.12) and (8.13) with e1,£2 > 0 to obtain that

1

% 4 * 4 Ty * *
[flip < a||f||00(5) +e1lflap < a”f”com) + 16e1ey " [f]1,p + €182[f15 2,0

_1
We want to achieve that § = €162 and 16e1e, 7 = % This is obtained with the choice

_y 1 1 . . )
€1 = 32 12 vH+lgr+l and g9 = ﬁ We insert our choices of €1 and €9 and obtain what
is claimed in the lemma, i.e.

1 .
[flip <512¢e Hf”cO(b) +elf15 2.0 (8.14)

Now we combine Inequalities (8.12) and (8.13) with 1,2 > 0 in the other order to obtain
that

1 1

_1 _1 1
o0 <16 & " [flip +erlfly 20 <64 &5 I fllcogp) + 16226, " [fl5,0 + 21lf152.p-

We want to achieve that % =¢1 and 16e9e, 7 = % Therefore we choose g9 = 3%2 vev and

obtain that ) ,
(15,0 <6427 7| fllcop) +lf13 2.0 (8.15)
We state Inequality (6.88) in [14], which says that for & > 0 it holds that

B

__B N
[fl50p <2277 17 1l com) +€'[F15.p- (8.16)

From the comments just under Inequality (6.88) in [14] it is evident that for & > 0 it holds

that
8

* T3 _i k *
(flgap <2277 g TP 1o +€'lf5p- (8.17)
We combine Inequalities (8.16) and (8.14) with £1,e2 > 0 to obtain that

. 8 B . 29275 512, .
(o0 <227 Pe; "V llfllcom) +e1lflip < —— + —— | Ifllcom) +€12[f152,p-
1-8 y+1
€1 €2

1

1
We want to achieve that € = e169 and e; = ;"'. With the choices g9 = i and g1 = e7+2
we obtain that

B8 ___ B "
[f]Z,O,D S <2 21755 (1=8)(v+2) + 512) Hf”co(ﬁ) + E[f]’Y,Q,D'

The fact that € € (0, 1] implies that
— 8 _ 1
e U=h0+2) Jg 1-8,

which implies the third claim of the lemma. For the fourth claim of the lemma we combine
Inequalities (8.17), (8.14) and (8.15) with £1,e9,£3 > 0 to obtain that

. [ »
(flsap <227Fe, "P[fli p+ealflsp
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2917 512 64220 2975 .
= - ta——= | Iflcom) + ——¢e2+eies | [f152p
61175 527 1 Eg 61176
i £ 2 2
We want to achieve that e = 2 (2e71)T-7

+e1e3 and €1 = €5 . The choices g1 = (271¢) 27,
1 2+(1-B)y
g9 =2 T-F(271g)@M0-5 and e3 = (2~ )2+7 satisfy that

= =+ 248 26(147)+7(1-p)+2
Pl = 2T TR g G5

Then we obtain the estimate
. 13 28(14+v)+~v(1-B)+ 9 N
[fl51p < | 21-Pe  CPIEO- 5 + 64227 1 llcom) +€lf15.2,p-

The fact that ¢ € (0, 1] implies that

2804+ (1-B)+2 a4
e EMITINa-p < g TP,

which finishes the proof of the fourth claim of the lemma. The fifth inequality in the
lemma is stated in Gilbarg and Trudinger [14] as Inequality (6.86). The constant 2 Ares
is obtained from the proof of Inequality (8.85) in [14].

For the last inequality we combine Inequalities (8.16) and (8.10) with 1,2 > 0 and obtain
that

£ 1% *
[flop <227-Pe 1BHcho*‘i‘El[f]lD
B
<221-F¢  °F HfHCO(D) +2 4”5152 HfHCO(D +e1e2[f51,p-

m

L 1 s

We want to achieve that ¢ = €169 and €1 = ). We choose €1 = ¢1+7, ¢9 = ¢1+v and obtain
2 ’

that

[f]Z,O,D S (21 [‘38 (1— /3)(1"1‘"/) +2 v ) HfHCO [f]:,l,D

The fact that ¢ € (0, 1] implies the sixth claim of the lemma, because

_ 8 _ 1
e -0+ < g 1-8, O

8.1.1. The Schauder interior estimates for classical solutions

For sets of real-valued, continuous functions on D (a;; : a;; = aji, 4,5 = 1,...,n), (b : i =
1,...,n) and ¢ we introduce the differential operator

L= ai’j&@j + bZ& +c (8.18)

where we used the usual summation convention to ease the notation, i.e. for two vectors
v,w € R" we define Y7 | vyw; = v'w;. We require additionally that for all z € D and
& € R" it holds that

A@)[€lIfn = ™ ()€&; 2 N@)||€]Rn,

for two strictly positive functions A and A on D. If inf,ep A(z) > 0 we call the operator L
in Equation (8.18) strictly elliptic. Without loss of generality we assume that the functions
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A and )\ are continuous on D and that min, 5 A(z) > 0. This notion of strict ellipticity
agrees with [14], which is our main reference for Section 8.1.1 and Section 8.1.2. Schauder
developed a theory to estimate the Holder norms of solutions and derivatives of solutions
u to the problem Lu = f in terms of the right hand side f and the supremum norm of the
solution. The problem, i.e. Lu = f, is only stated formally at this point. It will be made
precise afterwards.

The next lemma is Lemma 6.1 in [14] and is a preliminary result for the general statement.
In this lemma the coefficients (a;; : i,j = 1,...,n) of the operator L are taken to be
constant over D and the other coefficients are set to zero. We review its proof to work out
the respective constant in the estimate precisely.

Lemma 8.8. Let A € R™™ be a constant symmetric matriz such that for two constants
A A >0 and all £ € R™ it holds that

M€l < AW €5 < All€Rn-

Ifu € C*(D) and f € C®V(D) for v € (0,1) satisfy A% 0;0;u = f in D, then there exists
a constant C > 0 depending only on n and 7 such that

% Y, _ Y12 2
(W00 < CAZENTE (Jull oy + A+ AENTR AP ) (8.19)

Proof. The idea of the proof is to use a suitable coordinate transformation to be able to
apply known results for the case of the Poisson equation. For an invertible matrix R € R™*"
the transformation x — Rz = y results in u — % = u o R~! and transforms the operator
Abd 0;0; as well, i.e. we evaluate the partial derivatives to obtain that

Ai’jai(‘)ju(a:) = Ai’j@ajﬂ(Rx)

= > AiyORe 00

R
i k=1 *

= Y AijR0Ry ;0

igdd=1
= (RAR"*o,0u(y) = AMopoa(y).

Rx

Since the matrix A is symmetric and positive definite, we know from linear algebra that

it can be diagonalized with an orthogonal matrix and has strictly positive eigenvalues

(A1, ... An). Let R be this orthogonal matrix. Let J be the diagonal matrix that results from
1 1

the inverted square roots of the eigenvalues, i.e. J = diag(\; 2, ..., \p ). If we transform the
matrix A with Q = JR, then A becomes the identity matrix and the transformed problem
becomes the Poisson equation, i.e. Au = f for f = foQ !and & = uoQ !, where we
redefined 1.

The next step is to relate the norms of a function v and respectively & = v o Q7! to
cach other. We define the domain D = Q(D). Since R is an orthogonal matrix and the
eigenvalues of A satisfy that A < A1, ..., Ay, < A, which form the other matrix J we obtain
that for all £ € R”, it holds that

ATHENRn < QIR < ATHIENR. (8.20)
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For v € C*k (D) and some integer k& > 0, we examine the semi-norm of ¥. We compute
the partial derivative of ¢ as above and obtain together with Inequality (8.20) that for
jeA{l,..,n} and y € D it holds that

y)l = |Zau 2)Qil < [QVo(@)zn < A2 sup [9(x)],

7j=1,..,n

where z = Q 'y and V = (91, ...,0,)" is the usual gradient on subdomains of Euclidean
space. This gives the estimate

~ _1
9,5 < A72nfvf1p.

For higher order derivatives the above argument can be iterated in order to obtain for a
multi-index B € Nf satisfying |3| = k that

10a8(y)| < A~k sp |Dev ()],

where = Q~'y. We obtain the estimate
34,5 < A~ 2ol .

The whole argument also works similarly the other way around, where we bound the semi-
norm of v with the one of 7, i.e.

E ki~
[v]k,p < A2nk\vlk7D.
Together we obtain that
_k - _k
A2 ol p <18l 5 < A7 20" ol p. (8:21)

Note that the argument also applies similarly to the Holder semi-norms | - | p, i.e. for
v € C*Y(D) it holds that

< AZA"5nF|u], b, (8.22)

Y.k _ ~
MA™En Mol gp < [0], 45 <

Note that with Inequality (8.20) we obtain that for z € D and & = Qx it holds that

A2d, < d; < X"2d,, (8.23)
where dz = dist(Z,0D). This inequality enables us to relate the semi-norms | - ](7] for
some positive integer j and [']? | , to each other with the help of Inequalities (8.20), (8.22)
and (8.23), i.e

919 = sup i)+ sup  dpty B =00
R ieD #geDity 1Z — §llgn
SAEGp AT ) p < AT E ATl (824)
and
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Theorem 4.8 in [14] states that there exists a constant C' > 0 that depends only on n and
~ such that the following estimate holds for the function ,

o _ 712
al? 5 < C (lll oz, + 1A% 5) - (8.26)
We combine this estimate with the Estimates (8.24) and (8.25) to obtain that

X X~
[u]j;’27D S A2+2 77/2)\ ’ [U}j‘;vQ’ﬁ

< CAXIp2)\3 (Ilﬁl\co@) + ’f|(72,2),f7)
< N (Julgogpy + O+ ADTHE) ) .

The Schauder theory interprets the functions (a;; : 4,5 = 1,...,n) as small perturbations
from a frozen at a point x¢g € D. This point zy will be varied after an upper bound of a
difference quotient of the solution is established independently of this point xzg. The next
theorem illustrates this point of view in its proof. It is Theorem 6.2 in [14]. Again we review
its proof to emphasize the dependencies of the respective constants on the coefficients of
the differential operator.

Theorem 8.9. Let u € C%7(D) and f € C%V(D) for some v € (0,1) satisfy Lu = f. Let
D’ CC D be a closed subset such that dist(D',0D) = d for some d > 0. If the coefficients
of L are all Hélder continuous, i.e. (a;j :i,j =1,...,n), (b :i=1,..,n),{c} c C®7(D),
then the following estimate holds:

@ ulyo,00 < K (el ooy + 1 loonp)) -

The constant KC depends implicitly on v and r through a constant K, i.e.

K=K (L + [[All o)) >
min, 5 A(2)1+7

(I+a+b+e)T7

where

n
a= Y la

1,j=1

n
+,0,D; b= Z 1bill cov (5 and ¢ = ¢l gonp)-
=1

Proof. We fix two interior points xg,yo € D. We use zg and the equation Lu = f to define
the function F, i.e.

a™(20)0i0ju = (a™ (z0) — a™?)0;0;u — b'Ou — cu + f = F. (8.27)

For 1 < § we set Bd,, = Bud,,(r0) C D. We interpret Equation (8.27) as an equation
in Byg,, and apply the estimate of the previous lemma to obtain in the case that yy €
B ua., (x0) and o € Nj with |a| = 2 it holds that

=z

(Nd:m,yo>2—|ﬂY [0au(70) — Oat(yo)|
2 |20 — yollgn

< OA(w0)* 3 M 20) " (Jlull ooy + Mao) ™ + Alao) EAw0) " HIFIR 5, ) -
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In the case that ||zo — yo||lrr > “d% with the same multi-index a it holds that

24y |Oau(zo) — dauu(yo)| 2 o 2 4
0,90 2o — yoH%n < I (dmo‘aau(:vo)\ + dyo|8au(y0)|) < o

[ul3,p-

The combination of these two estimates yields that for all zg,yo € D° it holds that
24 |aau(m0) - aau(y0)|
x0,Y0 ||3UO _ yOH%n

2247 A(o)* 2 n? +A@0)? | (@) 4. 0
M2+’Y )\(550)5 HUHCO(D) - )\($0)1+% ’F|%O:Bud10 + E[U]ZD‘

(8.28)

To ease the notation, we set B = B4, . The next step is to estimate |F' |EY2% p- For this
reason we will establish the below estimate, which will be Inequality (8.29), for functions

g € CY(D) first. For y € B it holds that d, = dist(y,0D) > (1 — pu)dz,. We use this

property to bound | g\ 50D = [9]82])3 + [g]fy% p from below. We simply apply the definition

and obtain that

9160 = sup dzlg(@)] 2 (1= )*dz, suplg(a)] = (1 = w)’ds, lgllco )

x€D
and
2) 24+ 19(z) — g(y)|
9% = sup @2 ST II
70,0 z,y€D x#y oY ||:C - y”R”

2 2 lg(z) — g(y)| 2 2
2 (L= )"y sup St = (L= )" gl o5
z,y€B,x#y H.CU yHR"

In the following chain of inequalities we apply first the fact that for x € B it holds that
dist(x,0B) < pdg,, then we use the two estimates, which we just established, and at last
that p < % to obtain that

|9|7()B < pd3 HQHCO(E) +u

2 2+
I (2) 1% (2)
< =7 =
P (1 _ M)Q [g]O,D + (1 — 'U/)2+7 [9]77O7D
< 429l + 81> (91 %) - (8.29)

Now we begin to bound ]F|,(Y2()] p and obtain with the triangle inequality that we can analyze
the components of F' individually:

2
FI?) 5 < Z (a1 5(20) — a*9)i07ul" OB+Z\b8u| 5+ leul? 5+ 1A 5.

i,7=1 =1

We will indeed estimate these components individually and start with those that involve
(aij:i,j=1,...,n). Wefixi,j € {1,...,n} and apply Inequality (8.5) and Inequality (8.29)
to obtain that

2
(a3 (w0) — ai,1) 005l 5 < laij(z0) — ai gy l0i05ul®) g
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< laij(z0) — ai % s (@2 [0:0;u] ) + 81> 10,047 )

7,0,
0 * *
< laij(wo) — ai gl 5 (A2 [ul p + 8>V ul? 5 ).

Furthermore we apply that for € B it holds that dy > (1 — pu)dy, > d%, because u < %,
and that d, ,(B) = min{dist(z,0B), dist(y,0B)} < pdy, to obtain that

0 o) o
Jas5(w0) — as ;1) = suplasj(w0) — as ()] + sup dipy(B)?1 %D~ s(0)
v zeB z,yeB H.’L‘ - yHRn

|ai j(z0) — a; ()] Jlaij(z) —a;j(y)]

< sup pdz,)” 4+ sup (pd

W oG, ) S T T,

< ,u’yzfy[ai,j]:oD +Fﬂ sup de’;y‘ai,j(x) - a’zy,](y)‘ < 4N’y[ai,j]f{0D‘
w z,yEB ’ |z — yllgn w7

We combine the last two computations and conclude using Inequality (8.7) from Lemma 8.7
with e = p” that

n n
2 * * *
> l(aij(zo) — ai,j)&@ju\i,éﬁ <At Y aiglh o p(4Puls p + 86> [l o p)
i,j=1 i,j=1

24y - * 6422% Y *
<320 aigliop THUHCO(E)JFN (320 | -
ij—1

(8.30)

For the components that involve (b; : i = 1,...,n) we fix i € {1,...,n} and apply Inequal-
ity (8.5) and Inequality (8.29) to obtain that

2 2 1 1 1 * *
1b:0ul %) 5 < 8200l Py 1) < 8210l pldrul'’) < 8 1bil ) p([ulf p + [ul? 1 p)-

In the next step we apply Inequality (8.6) and Inequality (8.9) from Lemma 8.7 with
e = 271427 in each case and obtain a constant K dependent on v such that

= 5 = 1 1024 K .
Z |bi5iu|(%()),3 < 8u” Z |bi|g,()),D [( - + 87) ||u||00(5) + ,u27[u]%2,D]
i=1 i=1

Qo wi=v
n
1 1024 + K .
<8 > bl <1sv|u||cow> +u27[u]7,2,D> . (8.31)
i=1 ur=

The component that involves the function ¢ is estimated in a similar way. We apply
Inequality (8.29) and Inequality (8.5) to obtain that

2 2 2 *
leul®) 5 < 8uleul®) < 8p21el®) p(llull o) + [l o,p)-

In the next step we apply Inequality (8.8) from Lemma 8.7 with ¢ = p?7 and obtain a
constant K dependent on -y such that

2 2 K N
leul®) < 82l %) ( el o) + u%[um,D) . (8.32)
=
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Furthermore Inequality (8.29) yields that

2 2
111505 < 8611155, - (8.33)

Finally we apply Inequality (8.7) from Lemma 8.7 with e = 4?7 to [u]} ;, and obtain that

. 64225 .
[ul5,p < TIIUIICo + 12 [ul} 5 - (8.34)

We combine the contributions to |F|£Yz())B stated in Inequalities (8.30), (8.31), (8.32) and
(8.33) and obtain that for a constant K, which only dependent on -, it holds that

n
2 » K .
B D (lﬂnuncow) n Muugp)
ij—=1

n . K .
+ K2 [l b ( lull o) + muJ%Q,D)
7]

i=1 1=

2 K . 2
+Kplel®) ( o + mu]%z,p) +Ku? £ 5
P

2+2y(, 1% 2
= K22l p + Kz (lull o) + 111500 -
where 1 and K9 are constants that depend on the coefficients of the operator L and . Note

that only Ko depends additionally on . We insert the last estimate into Inequality (8.28)
and obtain with Inequality (8.34) that

— 247 A(zg) 2t 2 n? Mzo)? + A(zg)?
ot~y 10au(x0) — Oau(yo)| 2 (z0)""2n B (20)2 + A(zo)
g0 20 — ol S Clu2+»y Az )% ”UHCO(D) + )\(xo)1+2 |F|%0 B)
4 *
+ ﬁ[u]Q,D

< ]Clﬂ’y[u]:,zD + Ky (HUHCO + myo D)

where the constants 161 and ]62 will be discussed later in the proof. We emphasize that /@1
is independent of u. We take the supremum over xg,yo € D and obtain that

* % * " 2
(50,0 < Ka [l 0.0+ K (lillo) + 1150, -

If we choose the parameter p small enough such that p satisfies that I@l,u'y < %, then we
obtain that

w20 <2 Ks (lulleom) + 1£150) (8.35)

It remains to investigate how the constant Ko depends on the coefficients of the operator
L and on . We observe that

n

n
1 2
Ki=K | Y lailion+ > 0% 5 +1e® o
ij=1 i=1
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and that

Ko =K KZam,ow i Z!b! 0D+
ij=1 M =1 =

’C|70D+1 )

where we applied that g < % For a new constant K we obtain that

2+3 2+

[N [P N2, + A2

% (D) Cco(D) Cco(D)

Ki=K|1 1+ K
1 T iA@' )
and that
i
- AN o Plengp) + Alen K
i mlnxeﬁ)‘( )% mlnxGD )‘( )H_% ’ ’U'4+’Y.

If we set p = (2K;)~ + and insert i into Ko, we obtain that

(1+ 1Al o) 2

mingep A(z) 7

Ko < K ( ) (1—|—a+b+c)& ,

where we tacitly applied that 1+ % < %. To obtain the exponents % and % in the

last inequality, it was important that ; > 1. We insert the last estimate as the redefined
constant /s into K9 and obtain for a new constant K that

- 1+ [All o)) * o
Ko=K , CO(D)l (I+a+b+c)t | =K.
min, 5 A(x)+7
Here we could leave the exponent —, because 4 + v < 1= Agaln it was important that

here Iy > 1.
Note that we were able to bound the appearing semi-norms | - ]% D
f € C%(D) in the following way:

for 7 > 0 of a function

|f(z) — f(y)
1) < suprT|f(@)] +  sup A
70,0 zeD z,yED,x#y H:L‘ - yH’Yn

<07+ llono

The factors consisting of combinations of r were tacitly included in the respective constant
K. A similar relation holds for the case [a;;]* , p for i,j € {1,...,n}. Also for the inner
domain D’ it holds that

M uly 2,00 < [ul} o p- O

The main goal of this section is to achieve higher order regularity of functions w satisfying
Lu = f depending on the regularity of the coefficients of the operator L and on the right
hand side f. This is achieved in the next theorem. It is Theorem 6.17 in [14|. Again we
review its proof to distinguish the dependence of the respective constants on the coefficients
of the differential operator L.
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Theorem 8.10. Let u € C*(D) and f € C*Y(D) for some v € (0,1) and k € Ny satisfy
Lu=f. Let D' CC D be a closed subset such that dist(D',0D) = d for some d > 0. If the
coefficients of L are in C*Y(D), then u € C**27(D’) and for k > 1 the following estimate
holds:

K £\
|uly k2,00 < <1 T o A2+ (1 + d2+7>> (I+a+b+ C)% (HU”CO(B) + ||f||ckw(5)) )

where K is the constant in the statement of Theorem 8.9 and

a= ) llaijllorrmy, 0= lbillcknmy  and e =|cllorq -
(D) 2 (D) (D)

i,j=1
Note that for £ = 0 an estimate for |u|, 2 pr is already given in Theorem 8.9.

Proof of Theorem 8.10. For k = 0 Lemma 6.16 in [14] implies that u € C?7(D’). Therefore,
we assume in the following that £ > 1. We will prove the claim with the help of Theorem 8.9.
For a function g on R", a real number h > 0 and a unit coordinate vector ¢; for I € {1,...,n}
the difference quotient at x € R™ in the x;-direction is defined as

9(x + her) — g(x)
W .

The idea behind the following argument is to apply the Schauder interior estimate in The-
orem 8.9 to the problem L(A?u) = F" and eventually obtain the desired regularity of u.
We expand L(A?u) and add terms that sum to zero to meet Lu = f repeatedly to obtain
that

Alg(z) =

1 1 .. )
L(AM) = E(Lﬂ — Lu) = E(awaiaja + V"0 + cu — f)
1 .. . _
= 3 (a"0,0;u+ b0 + cu — f) + Ahf
= —(A}a™)0;05u — (A}V)0iu — (Afc)u+ Al f = F,
where we introduced for a function ¢ the notation g(x) = g(z+he;). We fix two subdomains
B',B of D that satisfy D’ cCc B’ cC B cC D and dist(D',0B') = dist(B',0B) =
dist(B,0D) = %. Lemma 6.16 in [14] implies that v € C%7(B). Since we assume that

f € CY7(D) we can manipulate Afl f according to the fundamental theorem of calculus to
obtain that for x € B’ and h < % it holds that

1

1 1 1
Alf(z) == / if(x + the))dt = 1 / Df heidt = / O f (x + they)dt.
h Jy dt h Jo 0

z+the;

This equality also implies that for every 0 < h < g it holds that Alf € C%(B’) and
in particular it provides bounds of the C%Y(B’)-norm of Alh f independently of h, i.e.
||Alhf||co(§) < ”8lf”(10(§) and |Alf|. 0 5 < |01f|y.0,5- Note that the same estimates also
apply to the coefficients of the operator L, that are by assumption in C7(D) as well and
they apply to the function u and its first derivative, since u € C*7(B) due to Lemma 6.16
in [14] as mentioned earlier. To be able to apply the Schauder interior estimate in The-
orem 8.9 we have to discuss the Hélder-norm of the function F*. Inequality (4.7) in [14]
with a, 8 = 7 says that for functions g1, go € C%7(D) it holds that

191921l co )y < 191l oy 921l o (- (8.36)
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This enables us to obtain the following bound independently of A

n
HFtho,w(ﬁ) < Halchow(E) + Z [Ouai;
ij=1

7 (B) ||aiaj“”co,w(§)

+ Z 10ubi [l co. ) 105wl cov ) + 100l o () 1l o () (8.37)
i=1

which implies that F* € C%7(B’). Now we can apply the interior estimate in Theorem 8.9 to
the problem L(Alu) = F" with the nested domains D' CC B’ and obtain for 4, j € {1,...,n}
that

P00, Ml 0.0 < KA W oy + 1F o) (5.39)

where we tacitly included the factor 3277 into the constant . Note that K is the constant,
that is stated in Theorem 8.9, which depends on the coefficients of the operator L. As
pointed out above the right hand side is bounded independently of h. Since the left hand side
is a Holder semi-norm it follows that the set of functions (9;0;Alu : h < %) is equicontinuous
in D' fori,j € {1,...,n}. The Arzela—Ascoli theorem, which is Theorem 4.44 in [12], implies
that a subsequence of (9;0;AMu : h < %) converges to a continuous function. Since this
sequence is a differential quotient, this is sufficient to conclude that 8i8jA;1u converges
uniformly on compact subsets of D’ to 0;0;0;u as h — 0 and 0;0;0;u is continuous. The
fact that the convergence is only on compact subsets of D’ can be safely disregarded in the
following, since D’ is compact itself. Since the Holder semi-norm of @-OJ-A{‘u is bounded
independently of h for all 7,5 € {1,...,n} and [ € {1,...,n} was chosen arbitrarily, it follows
that u € C37(D’). To finish the proof of the case k = 1 we have to compute the bound of
the Holder semi-norm of third order partial derivatives of u. We combine Inequality (8.38)

and Equation (6.3) to obtain that
2 S 2 h : h h
d**710,0;01ul.0.pr = }lll_r%d 0,0, A uly 0,00 < }llll)%lC(HAl ull oy + 1F | o m7))
: o h
< }L%KK(HuHcO(ﬁ) + |uly2p + || HCON(F))?
where the constant K is due to the equivalence of Holder norms given in Equation (6.3).
We continue the estimation and apply Inequality (8.37) and bound the appearing norms of

first and second order partial derivatives of u with Equation (6.3) and the Schauder interior
estimate in Theorem 8.9 applied to Lu = f with the nested sets B CC D. We obtain that

IC IC n n
thao < g (14 5 ) (14 2 lasllons ) + X 10l @) + lellennc
=1

ij=1
(Nallooy + £l ) (8:39)
where we tacitly included the constant K that depends on the domain D into K.

For the general case k > 1 we proceed by induction with respect to the order of differentia-
tion. We assume that there are subdomains D/ = D, CC Dj_; CC ... CC Dy CC Dy = D
such that dist(D;,dD;_1) = & for all | € {1,...,k}. We apply the proof of the case k = 1
with the nested sets D7y CC D and obtain that

K K
v < s (14 o ) @ at040) (lullengy + Wlens )

|u
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where we tacitly included the factor k27 into K and we used the following notation:
n n
a= Z ||ai,j||ck,v(5)a b= Z ||bi||ckw(5) and €= ||C‘|ckw(5)-
ij=1 i=1
We want to prove that for all [ € {1,...,k} it holds that u € C"*27(D;) and it holds that

K £\
haan < (14 g (14 505 ) ) @b as 0402 (oo + Iflonnpy) - (5.0

This is already established for [ = 1. Now, we assume this claim for [ € {1,...,k — 1} and
want to prove that this implies the claim for [ 4 1, i.e. that v € C**37(D;;;) and that
Inequality (8.40) holds for [ + 1.

This means that v € C'*27(D;) and f and the coefficients of the operator L are in C*7 (D).
For a multi-index 8 € Ny such that |3] = [, we differentiate the equation Lu = f for [
times and obtain that for & = dgu it holds that

Lu = L(@gu) = 6ﬁf — Z <Z> 6aai’j85_a6i8ju
0#a<B

- > (g > Db’ 03 Oiu

0#£a<p

— Z <ﬂ>8acagau:fﬁ.
«

0#a<p

The idea of the induction argument is to apply the proof of the case k = 1. From the above
equation we see that the right hand side fg € C'(D;) and then we can apply the proof of
the case £ = 1 with the nested sets D11 CC D; to obtain that dgu € C37(Dy11) and that
the following estimate holds:

Opthys.00 < K (108ullcon) + 1 allorn )

where K is the constant from the proof of the case k = 1, i.e.

~ K K
K:dﬂvoﬂlpw>“+a+b+@‘
Since B is an arbitrary multi-index referring to a partial derivative of order [, it follows that
u € C37(Dyy1). We now seek to develop an estimate of the C'*37 (D, 1) semi-norm of
u in terms of |lu||co(py and norms of the coefficients of the operator L and the function f.
We apply Equation (6.2) and tacitly include the appearing constant into K and obtain that

|uly 3,010 <K <HuHco(Dl) + |uli,p, + m|a=}§ Hfﬁ”clwpw) : (8.41)

1B

To estimate maxg|—; HfBHCM(E)’ we bound HfBHCW(E) for an arbitrary multi-index 3

that satisfies that | 3 | =1 and try to find a bound, which does not depend on 3. Therefore
we analyze the norm of f,é. We apply that the product of two Holder functions can be

Lukas Herrmann 116 ©



bounded with the product of the individual Holder ‘norms, that is Inequality (6.4), to
obtain the following estimate for the Holder norm of fé:

n

; B
||f[3”olw(ﬁl) < HfHCHLw(E) + K Z <a Z ||ai,j”0‘a\+1ﬁ(ﬁl)HUHC‘B*a\Jr&'y(E)
0£a<p i.j=1

n
+> 10ll e+ o 1l pia- a2 (57

im1
Fllellgraryopllvlgia-aiiy @y | -

where the constant K is due to the estimate in Inequality (6.4). In the above sum for the
multi-indices e and B it holds that 0 < || <l and |3 —a| < [—1, since a # 0. Therefore,
we can bound the components of the above sum with Equation (6.3) in this way:

||ai7j||0|a\+1»7(ﬁl)HUHC\E*QH&“/(E) < CG(HUHCO(E) + [ulyi42,0,),
HbiHcla\H,w(E)||UHC\[370¢|+2,7(E) < Cb(HUHcO(E) + |ulyi42.0,),
lellgrassrom el raatin g < Celllulnn + [ulyszn,)-

The constant C' is due to the equivalence of Holder norms, which is Equation (6.3). We
insert these three estimates in the previous one and obtain that

1alcra@y < Ifllciay + KN+ b+ e)(lulloosy + e

’le+2le ) ?

where N = 3, La<p3 (g) and the constant C' is tacitly included into K. Since there are
only finitely many multi-indices 8 € N{ that satisfy that |B] = I, N can be bounded
independently of 8. We simply redefine N' = maxg— >0 La<p (g ) Hence, the previous
estimate is also valid for max)g Hfﬁ”clﬁ(ﬁl)' We insert this estimate into Inequality (8.41)
and obtain with another application of the equivalent Holder norms in Equation (6.3) that

Juby 3,041 < K (Illonony + 0l + (@ + b+ &) (lullgopn + [ulis2.00) + 1 i o)

<K +a+b+c) (luloy + bz + o)

where we tacitly included the constants K and N into K in the above computation as-
suming KN > 1. Now we apply the induction hypothesis and insert the estimate in
Inequality (8.40) for [ into the above inequality and obtain with a few manipulations that

D < KA+ a+b+0) (lulloon + Kallulloom) + 1 lcimy) + 1l
<K +a+b+)Ki(|[ullcoy + 1 flgrr1a)s

|u

where we introduced the notation K; = (1 + Kd=277(1 + Kd=2"") (1 +a + b+ c)*. We

observe that
K s 20+2
14+ (I+a+b+c) ,

d2+'y

I€(1+a+b+c)l€,§<1+ o

which finishes the induction argument and the proof of the theorem, because we can take
I =k — 1 and conclude the desired result for [ = k. O
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8.1.2. The Schauder interior estimates for weak solutions
Another interesting case is when the operator L is given in divergence form, i.e.
L =0;(a™0; +b") + c'0; +e.
We are interested in the problem
Lu = 0;(a™ 0ju + b'u) + c'Ou + eu = g + O f*. (8.42)

We will then consider the variational formulation, i.e. u satisfies that
/ (a™19; 4+ b )udiv — ' duv — euv dx = / —gv + o du, (8.43)
D D

for all v € C}(D) and g € LP(D) and (f; :i = 1,...,n) C C%7(D) for some p € [1,00) and

€ (0,1). In this case we will say that u € W1’2(D) satisfies Equation (8.42) in the sense
of distributions. This setup is also discussed in Gilbarg and Trudinger [14] in Chapter 8.
For the subsequent discussion we have to introduce another semi-norm. For g € LP(D) and
7 € R we define

’9’(7) Hgdz.)HLP(D)
for p € [1,00). The first step is to find an analogue of Lemma 8.8.

Lemma 8.11. Let A € R™ ™ be a constant symmetric matrix such that for two constants
A A >0 and all £ € R™ it holds that

M€l < A &L < AJIE]In-
If u € CY(D), g € LP(D) and (f; : i = 1,...,n) € C™(D) for v = 1 — o satisfy
Ai7j81-8ju = g+ O0;f" in the sense of distributions, then for a constant C' it holds that

(1 +7
. ALt g ‘ )\2 +A2
[u]fy,l,D < C )\% HUHCO(B) + )\1;7 )\1+’v Z |fz 70 D

Proof. The proof of this lemma is very similar to the proof of Lemma 8.8. We apply the
same change of coordinates, i.e. @ € R™ "™ as in the proof of Lemma 8.8 to be able to
transfer results about solutions to the Poisson equation to our elliptic equation here. Note
that 0, f* transforms under Q as:

| o) dr= | FupopmedeQ ) a.
where fi = f;0 Q7! and & = vo Q™. We observe that @ satisfies Au = g + 9 f in the
sense of distributions, where i =uo0Q ', §=¢go Q' and f; = (fjo Q™ Hi,
In Gilbarg and Trudinger [14], the same proof for Theorem 4.8 in [14] can be applied to

Estimate (4.45) in [14]. Together with the remark about Estimate (4.45) in [14] at the very
end of Chapter 4 in [14], we obtain that for a constant C' it holds that

~ 1 1
@, 5<C (nuHCO(D) + 13150 + Z rflrgg,ﬁ) -
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We apply a similar argument as in the proof of Lemma 8.8 with Inequalities (8.23), (8.24)
and (8.25) and obtain that

* ~71% ~ (1+7)
[u]5 1,0 < )\7%”[“]%17ﬁ < )\7%0 (HUHCO(D + \9|Lp (D) + Z |fz >

1+v)
A3 1911 )\2+A2
<=5 | los) + =57 + =7 Z’fu,w :

where we tacitly used tlhat () can be seen as a bounded bilinear form on R™ x R™ with norm
smaller or equal to A\™2 due to Inequality (8.20), which appears as an additional factor in

the coefficient of > 7" | \f2|(71()) D O

The following result corresponds to Theorem 8.32 in [14| and states an estimate for the
Holder semi-norm of the solution. We provide the proof in order to track the dependence
of the constants on the coefficients of L in the resulting bound.

Theorem 8.12. Let u € CY(D), g € LP(D) and (f; : i = 1,..,n) C C%'(D) for
some v € (0,1) such that p = % satisfy the variational problem in Equation (8.43). Let
D’ CcC D be a closed subset such that dist(D',0D) = d for some d > 0.

If the coefficients of L are Hélder continuous, i.e. (a;j :4,j =1,...,n),(bj :i=1,...,n) C
CY(D) and (¢; : i =1,...,n),{e} C LP(D), then the following estimate holds:

n
& uly 1,00 < K (ruucow) gy + 3 ||fi||co,w(D)) .
=1
The constant KC depends implicitly on r and v through a constant K, i.e.

K=K ((1 +Allco))*

2
i @) ) (I+a+b+c+e)i-,

zeﬁ
where
n n n

a= S Nailoamy b= Wilonamy c= leilmw) and e= el
ij=1 i=1 i=1

Proof. The proof is similar to the proof of Theorem 8.9. We will therefore often refer to the
development of the proof of this theorem, when arguments can be applied to our setup here.
However we will not repeat the whole argument, but rather state the respective inequality
in the respective step.

We fix again two interior points zg,yo € D and rewrite the equation Lu = g + 0;f%, i.e
a™ (20)9i0ju = 0;[(a" (v0) — a7 )Oju — b'u] — c'Ou — eu + g + O f*, = G + O; F"

Where . . . . . . . .
G=—-cOu—eu+tg and F' = (a"(zg) — a"?)0ju — b'u + f*
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for i =1,...,n. We interpret this equation in B = Byq,, (x9) C D for some pu < % and apply
the estimate in Lemma 8.11. With a similar argument as in the proof of Theorem 8.9 we
obtain that for all zg,yo € D and ¢ € {1,...,n} it holds that

gl 19iu(zo) — diulyo)|

Z0,Y0 ||$0 — yOH%n
(1+7) W T n
4 A(xO)H% | L?(B) )\(xo )2 4
—= = | llullom + + § : FY |+ =

The next step is to estimate |G|}, 1+7) and »_ ", \F\ 0.5+ In the proof of Theorem 8.9 we

relied on Inequality (8.29) for functlons h € CO"Y(D). With the same argument we can
show that for h € C%7(D) it holds that

(B3 5 < 20, + 4R b (8.44)

First we consider the contributions in ) ;" |F} ] 0.5 1€

n n

1
SR s < Z ai,j(wo) — ai ;)0 urWOB+Zrbu|WB+Z|fZ N 5
=1 :

=1 =1

With the same argument that we applied to obtain Inequality (8.30) that relied on Inequal-
ity (8.29) and Inequality (8.7) from Lemma 8.7, we obtain in our case with Inequality (8.44)
and Inequality (8.10) from Lemma 8.7 that for a constant K, which is independent of p, it
holds that

n n
1 . K »
S [ (wo) — asg)0yul® 5 < Kpt* 3 [0 (Nruucow) n mm%w) .

i,j=1 i,j=1

Similarly to the development of Inequality (8.32), we obtain with Inequality (8.44) and
Inequality (8.11) from Lemma 8.7 that for a constant independent of y, say also K, it holds
that

1 1
Sl < K SO0l o (K 077 + Dl oo, + 12 ull10) -
=1 =1

Inequality (8.44) also implies that

Z|f1703—4MZ|f170D

=1

(1+7)

Now we estimate the contributions in |G|, (B 1-¢-

147) 1+7) 1+ 1+
(G5B < [0l T2 + leul (o) + 1915 )
With a similar argument as we used to proof Inequality (8.29) in the proof of Theorem 8.9

we obtain that

1+ (14+)
\h| ” ) <4 1+V|h\Lp(Z) (8.45)
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With Inequality (8.45) and Inequality (8.10) from Lemma 8.7 we obtain that

‘Cza ul(h 1+'y) < 4M1+'y‘cz8 ) 1+'y < 4M1+WZ|CZ‘LP [ H,D
i=1

”’YZ\ cilShi) ( [ull go () + 17 [u ]7,1,D>-

For the other two terms we obtain with Inequality (8.45) that

(1 (1 (1 (1
leul ) < 4 el D lull oy, and gl < 4u gl
Similar as in the proof of Theorem 8.9 we obtain with the derived estimates for |G| Ll;r;)
and Y |FZ|%O7B that
n
[uly1.p < Kap[ul’q p + Ko (HUHCO(D) + [lgll e (D) + Z |fiHco,v(D)> .
i=1
When we achieve that i < % we obtain that
n
[uly1p <2 K2 <||UHCO(D) + llglle(py + Z ||fi\|co,w(p)> .
i=1
The constants IC; and Ko are given by
1+ Al o))
K=K . C(D)H (1+a+b+c)
min, 5 A(x) 17
and
(L + Al gogmy) 2+ 2
Ko=K _ CO(D)I (1+a+b+c+e)13w. O
min, 5 A(x) 7

8.2. Regularity of solutions of elliptic partial differential
equations on the sphere

In this section we return to the elliptic problem in Equation (8.1) and the respective weak
form in Equation (8.2). The respective elliptic operator was induced by a coefficient A €
CY(S?%) such that mingcg2 A(z) > 0. We recall the problem in Equation (8.2). In the
beginning of Chapter 8, we already proved that there exists a unique u € H'(S?)/R such
that
b(u,v) = AV g2u - Vgevdo = fvdo = £¢(v)
52 52

for all v € H'(S?)/R, where f € L?*(S% R) satisfies that [, fdo = 0. In this section
we impose higher regularity on the coefficient A and on the right hand side f and aim to
prove which regularity the solution u will have. Also we are interested in estimates of the
solution in terms of the right hand side and the coefficient A. In particular we emphasize the
dependence on the coefficient A, which is not always explicitly analyzed in the literature.
This is, where the analysis of the Schauder interior estimates from Section 8.1 will be
applied.
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8.2.1. LP? estimates of solutions of elliptic partial differential equations on
the sphere

We start with the situation, that the coefficient A is Holder continuous. The solution
to the problem in Equation (8.2) is in H'(S?)/R and therefore an equivalence class of
functions in H!(S?), we will consider the representative u of the solution that satisfies that
f g2 udo = 0. Charrier, Scheichl and Teckentrup have analyzed such situation in bounded
domains in Euclidean space in [5]. In particular Proposition 3.1 in [5] yields the membership
of the weak solution u in a Sobolev space with more than one weak derivative, which leads
to stronger integrability of the first weak derivative in terms of its LP-norm. Their argument
is essentially the development of the proof of Theorem 9.1.16 by Hackbusch in [15].

Proposition 8.13. Let u € H'(S?) be the representative of the solution in H'(S?)/R to
the problem in Equation (8.2) that satisfies that sz u do = 0.

If A € C%(S?) for somet € (0,1), then for all v € (0,t) it holds that u € W1P(S?), where
p= % Furthermore, there exists a constant K independently of A, f and the solution u
such that u satisfies the estimate:

(14 [|Allco(s2))?
5 1 fll2(s2 R)-

<K
Ielwt st = B i, o Ala)
Let Aj, Ay € CO(S?) N {A : mingeg2 A(z) > 0} be two coefficients that induce bilinear
forms.  For the respective solutions uy with respect to A1 and ug with respect to Ag with
the same right hand side f € L*(S?2,R) N {f : Jg2 fdo = 0} that satisfy for k = 1,2 that
f52 uy, do = 0 it holds that

1A 1]l go.r(s2) (1+\|A2Hco’f<52))2||f|! 252|141 — Az|lco(s2)
in A;(x))2 in Ag(x))? PSR e
(min A1) (min Ay())

Jur — uzllwrecsey < K

where K 1is a constant that is independent of Ay, Ao, f and the solutions ui,us. More-

over the solution u depends continuously on the coefficient A, i.e. the mapping A — u is
continuous from C%*(S?) N {A : mingcg A(z) > 0} to WHP(S?),

Proof. We will consider the variational problem in Equation (8.2) with respect to this A.
Since the mentioned result of Charrier, Scheichl and Teckentrup in [5] or respectively of
Hackbusch in [15] is for bounded domains in Euclidean space, we will pull the bilinear
form b in Equation (8.2) back to the chart domains. We will in general follow the proof
of Lemma A .4 in [5], which is part of the proof of the mentioned result Proposition 3.1 in
[5]. We remind of our usual atlas (U;,n; : i = 1,...,6) and partition of unity ¥. Due to
the definition of the Sobolev norms on S? we are interested in the behavior of (u%¥;),, for
all i € {1,...,6}. Since u¥; is compactly supported, the statement of Lemma A.4 in [5] is
sufficient for our purposes. We fix i € {1, ...,6} and obtain with the Leibniz rule that u¥;
satisfies that

—VSQ . (AVSQU\I’l) == f\l’l - Avszu . VSQ\I’i - VSQ . (A’UJVSQ\I’Z) == Fz

Since V¥, is compactly supported in U;, we obtain the variational formulation for u¥;, i.e.

/ AV g2 (u¥;) - Vv do = / (fU; — AVgeu-VgV)v + AuV g2V, - Vgevdo
U; S2
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for all v € H'(S?)/R. We pull the problem back to the chart domain and obtain that

1 .
/77 o™ <8g(u‘1/i)m(99v 4 Ma@(u\pi)ma@o Sin(0)dz = (), snoy(v),  (8:46)

for all v € T/VO1 ’2(771-_ L(Uy)), where we tacitly used Proposition 6.5. The functional £ )y, sin(0)
is given by

. ) Ay,
K(Fi)ni Sin(9)(v) = /1 (fY:)y; sin(0)v — Ay, sin(0)Opun, g (V;)p,v — -iasoumap(q/i)mv

sl sin(0)
+ (Au),, sin(0)0p(V; )y, Opv + (A“)"ia (), Opvd.
i i sm(@) ® =P
for all v € Wol’2(17;1(Ui)). It holds formally that
A

(Fi)m sin(f) = (qul)m sin(f) — Ay, Sin(g)aé?um69(‘1/i)m - ﬁ&(’uma@(q’i)m

- on((Auy sin@)00(1:),) - 0, (500, w0,

We will abuse notation for the rest of the proof of this proposition and write the dual
pairing of £(r,), sin(p) and v € W12 (1)) as

(), sin(0) (V) = /  (Fi)y sin(0)vda.
n; - (Us)
This notation is more convenient, because we want to exploit that the components of
(Fy)p, sin(f) are compactly supported and change the domain of integration, which is
n; '(U;) at the moment. The subtlety here is that we cannot give a meaning to (F}),,.
It would be a product of a function and a distribution, i.e. since A4, is only Hélder contin-
uous

Oy ((Au)m sin(&)ag(\I/i)m>

has to be understood as a distribution and the product of the latter with ﬁ has no clear
meaning. In the following we will disregard the notation {(g,), sin(s) and use (F3)r, sin(0)
instead, also when we mean the functional. Clearly (F}),, sin(6) € W~12(n; 1 (U;)). More-
over, we claim that (F}),, sin(§) € WY~42(n-1(U;)). This will be verified at a later point
in the proof.

Let D be a subdomain of n; *(U;) with smooth boundary such that supp((¥;),,) CC D CC
n; L(U;). Since 7;(D) is relatively closed in S?, Lemma 6.2 implies that there exists a

partition of unity ¥ subordinate to the open cover (U;j : j = 1,...,6) such that on D it
holds that (¥;),, = 1. We wish to extend A,, to all of R?, i.e. we choose y € C*(R?,[0,1])
such that x = 0 on supp((¥;),,) and x = 1 on the complement of D and define

5 _ ) Ag(@) A = Xx(@)) + min,ep Ay, (y)x (@) ifzeD
B min, 75 Ay, (y)X else .

The pulled back problem in Equation (8.46) implies that

/ Ay, (89(11\1'1-),]1091} + _;aw(ullli)ma@v) sin(f)dx = / (F)p; sin(@)vdx,  (8.47)
R2 sin”(0) R2
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for all v € C§°(R?), where we tacitly used the fact that (F}),, sin(f) and (u¥;),, are
compactly supported in 7, 1(UZ-) and can therefore be extended with zero in the rest of R2.
Now we are able to apply Lemma 3.2 in [5]| with the matrix diag(sin(8)A,,, ﬁAm) and
obtain that (u®;),, € W!T2(R?). Furthermore for a constant K, which is independent of

(u¥;)y,s Ay, and (F;),, sin(f), it holds that

1 _
(W), w2 ey < K A, () (I An o @) 1 (@), lw .2 m2)

ming g2 Ay,
+ | (Fo)n, sin(0)llw—1.2@2)) + | (@), w2 ee).

Since Zm is constant outside of D and x is smooth, there exists a constant independently
of A, such that

Ay lcoeme) < KllAullcom) = KAVl co. )

< K||(A¥ < K[[Allcot 52y,

i)m Hco,t(m)

where we applied that (¥;),, = 1 on D. Since (u¥;),, and (F}),, sin(d) are compactly
supported in D, we obtain with the last two estimates that

1
i 7 A llens ) | o

L

+ [[(F2)y; sin(6 )va—lyz(p)) + 1 @®a)yllwr2p)- (8.48)

Note that 8,0, are linear and continuous mappings from W72 (D) to W7~ L2(D). We
apply our knowledge about 0y, 0, as operators and then we use U; to meet the definition
of the Sobolev and Hoélder norms on S?, i.e. we obtain that

||(F2)m Sin(g)HWV*L?(D) <K (H(f‘l’z’)mHWV*l’?(D) + ||(A¢’i)m||00(E)||(U‘i’i)m||W%2(D)
1 (A5l o ) 1 (0B )
K (1%l 0
20 (AL, o o 1@ E D s gy ) - (849)
<K (If1lr2(s2r) + QHAHCOvt(SQ)HUHWL?(S?)) ,

where we included the contributions of ¥; into the constant K. Also we tacitly applied
the continuous embedding L?(D,R) c W7~ %2(D), which is due to Theorem 4.6.1.(c)
in [25]. Since (Fj)y, sin(f) is compactly supported in D, we showed that (F}),, sin(f) €
WY=L2(n"1(U;)). With Proposition 6.5, Proposition 8.3 and Inequality (8.3) we obtain
that for a constant K it holds that

K Ifllezs2m)
<K S e
lllwrzgsz) < Kllulla sz m < V2 min,¢ g2 A(ff)

Theorem 4.6.1.(c) in [25] implies that W'+72(D) c WHP(D) for p = . Therefore, for a
constant K it holds that

H(U\I’i)m||wl,p(n;1(Ui)) = [ (W), lwrepy < Kl[(u¥i)y, [wi++.2(p),
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where we also applied that (uV;),, is compactly supported in D. We combine the last four
inequalities and consider the definition of the Holder norms on S? to obtain that for a new
constant K’ it holds that

(1 + [ Allco.e(s2))?
51 fllL2(s2,r)-

(8.50)
This argument applies to all other j € {1,...,6}\{i}. Hence, the estimate in Inequal-
ity (8.50) holds for all i € {1,...,6}. Since (u¥;),, is compactly supported in ni_l(Ui)
for all i € {1,...,6}, it holds that (u¥;),, € Wol’p(ni_l(UZ-)). Therefore, we conclude that
u € WP(S?%) and the first claim of the proposition is proven.

H(qui)”iHWl’p(n[l(Ui)) < K”(“\I/i)m||W1+v,2(ni_1(Ui)) = (minxeSZ A(x))

For the second claim, we look at two coefficients A1, Ay € CO*(S?)N{A : mingcg2 A(x) > 0}
with respective bilinear forms b1 and by. Let uq,uo € H 1(52) be the respective solutions
to the problem in Equation (8.2) with respect to b; and by and the same right hand side f
that satisfy that fSQ updo = 0 for k = 1,2. We are interested in the problem that u; — us
satisfies. We obtain that weakly

—Vg2 - (Alvsz (U1 — ’LLQ)) =f+ Vg2 - (A1V52’LL2)
=f—f—Vg - (A2Vgus)+ Vg2 - (A1Vgaus)
== VSQ . ((A1 - AQ)VSQUQ) =F.

We fix i € {1,...,6} and observe that (u; — u2)¥; satisfies that

—Vg2 - (A1Vg((u1 — u2)¥;)) = F¥; — AyVg2(ug —ug) - Vg2 U
— Vg2 - (Ar(ur — u2) Vg2 ;)
= (Vsz - ((A1 — A2)Vsou2)) ¥,
— A1V (u) —ug) - Vg2
— Vg - (A1 (ug — ug) Vg Uy) = F2.

Since (F'¥;),, sin(d) € W7~12(D), we obtain that (Fil’Q)m sin(f) € WY=12(D). Therefore

the argument in the proof of the first claim of this proposition is applicable. Especially

with Inequality (8.48) we conclude that (u1W;)y,, (u2V;)y,, ((u1 — u2)¥;),, € WIt2(D).

Also Inequality (8.48) implies an estimate for the W72(D)-norm of ((u; — u2)¥;),,, i.e.
1

it (A1), (@)

+(E ), Sin(9)va71,2> F (w1 —u2) i)y, [lw2, (8.51)

(w1 = u2) i)y, [lwiere < K (H(Al)choth((m — ug) W), Iy

where we excluded the domain D, respectively D, in the above inequality for notational
convenience. We remind that D was chosen in the proof of the first claim and satisfies that
supp(¥;),, CC D CC n; ' (U;). As in the proof of the first claim we have to estimate the
norm of the right hand side (Fil’z)m sin(#). With Inequality (8.49) we obtain that

1B, sin@)llw-120) < K (IEC), 50(8) 1200010

L2 (A E Dl o gy 1 = w2l

Lukas Herrmann 125 ©



where ¥ is the partition of unity subordinate to the open cover (U; : j =1, ...,6), that was
chosen in the proof of the first claim. We remind that on D it holds that (‘ifz)m = 1. Since
dp, 0, are continuous linear operators from W7~12(D) to W7%(D) and due to the fact that
(F'0,;),, sin(0) is compactly supported in D, we can estimate the W7~12 (5,1 (U;))-norm of
(F'Y;),, sin(0), i.e.

1), SO 2,10y = [ (F L)y 500 212

(Visz - (A1 = A2)Vig2ua)) Wi)y, sin(0) [l w-1.2(p)

(H(A1 = A2), Op(u2)llw2 () + 1(A1 = A2)y, 0 (u2)n, w2 ()
(s = Az)yill o (H@e(Uz)nAlww(D) + 1185 (u2)n: w2 (p))
< K'[[((Ar — Ag) W i)m'”cot (n; “(Uy)) [ (up W i)mHWH%?(ni‘l(Ui))

(1+ | Az2llco.t(s2))?
<K'|A - A
> || 1= 2||COt(SQ) ( N,cq A2( ))2 ”f”L2 S2R)»

where we tacitly included the contributions of ¥; into the constant K and applied Inequal-
ity (8.50) in the last step. Note that the estimate in Inequality (8.50) was applicable, since
its development also applies with U, instead of ;. We insert the last two estimates and
the estimate in Proposition 8.6, which is Inequality (8.4), into Inequality (8.51) to obtain
that

[ ((u1 — u2)Wy)y, ”W1+m2(n;1(Ui))

HAlHCO,t(SQ) ||(F\IJZ)772 Sin(G)HW“ﬁl;Q(n._l(U-))
<K' | /=2y — (U
=K min A (z) = uallwrzsz) + min A;(x)
€S2 2
| A1l cots2 (1+ [|A2llcoe(s2)® 1 fll 22 (s2 )
< RO ST) e : _
= min A (z) HU1 sl g1 (s2)/r + (min As(z))?  min A;(x) 41 = Asllcoecs)
z€S? z€S5? z€S5?

[A1llgorszy (14 [|Azllco(sz))?

< K" m Il fll2(s2 )l A1 — Aal|co(s2y.
in A 2 min As (S%R) C0:t(S2)
(CEGIS% 1( )) (xeg% ( ))

We remind that Theorem 4.6.1.(c) in [25] implies that W'+72(n 1 (U;)) € W2 (n 1 (Th))

for p = % This implies that there exists a constant K independently of ui,us and W,
such that

[l ((u1 — U2)‘Pi)mHW1,p(n;1(Ui)) < K| ((u1 — “2)\I/i)mHW1+7,2(U;1(U1-))-

We combine the last two inequality and since the whole argument applies for alli € {1,...,6}
we obtain the second claim of the proposition, i.e. there exists a constant K independently
of Ay, Ao, f, uy and us such that

[A1l[coeiszy (1+ [[Azllcor(s2
||fHL2(szR)HAl Az||co.e(s2).-
Ay ()2 A
(min Ay(2))*  (min Ay(z ))

Jur — uzllwrecsey < K

(8.52)

For the proof of the third claim let (A4, : n € N),{A} € C%(5?)N{A : mingcg2 A(z) > 0}
be such that A, — A in the C%*(5?)-norm as n — oo, i.e. |4, — Allcos(g2y = en — 0 as
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n — oo. For all n € N let u,u, € WHP(S?) be the solutions with respect to the bilinear
forms induced by A and A,, to the problem in Equation (8.2) that satisfy that fSQ udo =0
and | g2 Un do = 0. We already established in the proof of Proposition 8.6 that there exists
N € N such that for integers n > N it holds that

1 2

. An _— . A .
g An) T g A

There exists an integer, say also N, such that [[A, — A co.t(s2) < [|Allcos(s2) for every
integer n > N. With the triangle inequality we obtain that for every n > N it holds that

[Anllcoris2) < [An — Allcors2y + [[Allcoriszy < 2[|Allcors2)-

Therefore, (mingcg2 A, (z))~2 and [Anl|co.t(s2) can be bounded independently of n € N
and we conclude with Inequality (8.52) that u, — u in the WP(S?)-norm as n — oo.
Therefore, the mapping A +— u from C%*(5?) N {A : min,cg2 A(x) > 0} to WHP(5?) is
continuous. O

Corollary 8.14. Lett, v, p, u, A, ui, us, A1, As and f be as in Proposition 8.13. There
exist continuous representatives i, w1, s € C%7(S?) of u and of u1, uz respectively such
that the two estimates in Proposition 8.13 hold for the C%Y(S?)-norm of @ and @y — o
respectively with an unchanged right hand side of the estimates.

Moreover, @ depends continuously on the coefficient A, i.e. the mapping A — @ is continuous

from COt(S?) N {A : min,cg2 A(z) > 0} to CO7(S?).

Proof. Due to Proposition 8.13, it holds that u, uy, us € W1P(52). The Sobolev embedding
theorem on S2, which is Theorem 6.10, implies that WP(S?) C C%7(S?) with continuous
embedding, i.e. there exists a constant K such that for all v € W1'P(S?) it holds that
[0l cov(s2y < K|[v]lwrp(s2), where the continuous representative of v is denoted by @. This
implies the existence of @, @1, ip € C%7(S?) and the two estimates.

The proof of the third claim is almost identical to the proof of third claim of Proposi-
tion 8.13. Let (A, : n € N) € C%(S?) N {A : mingeg2 A(z) > 0} be such that A, — A
in the C%(S?)-norm as n — oo. For all n € N let @, € C%7(S?) be the continuous so-
lution with respect to the bilinear forms induced by A, to the problem in Equation (8.2)
that satisfy |, g2 Up, do = 0. Since we already established in the proof of the third claim of
Proposition 8.13 that (mingcg2 Ap(7))~2 and [ An||co.t(s2) can be bounded independently
of n € N, the second claim of this corollary implies the claim, i.e. there exists a constant K
independently of n, i, ,, A, A, and f such that

[Allcoe(szy (1+[[Anllcor(s2))?
(min A($>)2 (mll’l An(x))2 ”fHLZ(SQ,R)HA - AnHCOYt(SZ)‘ O
€S2 zes?

[ — tinllcoq(s2) < K

Note that in Proposition 8.13 we were generous with our right hand side f € L?(S?%,R).
The proof of the previous proposition relied on Lemma 3.2 in [5]. In Lemma 3.2 in [5],
which is for certain elliptic problems in domains of Euclidean space, it was needed that
f € W12 to obtain that the solution will be in W!+72. If one would discuss Sobolev
spaces on S? of fractional order, then the assumption on the right hand side f could be
sharpened accordingly. We preferred to have have f € L?(S? R) to avoid Sobolev spaces
of fractional order on S? in this discussion. In the following subsection we aim at higher
regularity of the solution to Equation (8.2). Then we will need at least that f € LP(S2,R)
for p > 2. Since the results of the next subsection are our main aim, the discussion with
f € L%(S% R) was not too restrictive.

Lukas Herrmann 127 ©



8.2.2. Schauder estimates on the sphere

In this section we develop Schauder estimates for elliptic equations of second order on
the sphere. We return to the problem equation, which we introduced in the beginning of
Chapter 8 as Equation (8.1). However, for the estimate of first order partial derivatives,
we consider the problem:

—Vgs2 - (AVgeu) +cu=g+ Vg - f. (8.53)

The right hand side g and the coefficient ¢ are at least in LP(S%,R) for p > 2 and the
coefficient A is a Holder continuous, strictly positive function on S2?. The part of the right
hand side f, that is in divergence form, is a Holder continuous vector field on S?. In
our usual coordinates a vector field X on S? has a é—component denoted by Xy and a
@-component that is denoted by X.,. If u € H'(S?) satisfies that

AV g2u - Vg2v + cuv daz/ gv — f-Vgv do (8.54)
52 52

for all v € H'(S?), we call u a weak solution of Equation (8.53). We want to develop
estimates of the solution u on S? analogue to the Schauder interior estimates on domains
of Euclidean space. Since Holder continuity is a local property we analyze the solution u
multiplied with a bumb function and pull this product back to the chart domains. On the
chart domains the function will be compactly supported and the Schauder interior estimates
can be applied.

Theorem 8.15. For some v € (0,1) let u € C(S?) N WP(S2) be a weak solution of
Equation (8.53) for p = % If g,c € LP(S%R), ¢ > 0 and A, fo, fo € CY7(S?), then
u € CY(S?) and u satisfies the estimate that

(1+ |Allcon(s2y + llell Los2,r))?
ming g2 A(x)H+7

) (Wallwrgsz) + gl zose z

+ 7 Ifslloonis):

BE{0,0}

ullcrs2y) < K (

where K is a constant that is independent of the solution u and A, ¢, g and f.

Proof. Since Holder continuity is a local property, we multiply the solution with a cut-off
function and pull this product back to the chart domains, where we are able to apply the
Schauder interior estimate from Section 8.1.2. We remind of our usual atlas (U, n; : i =
1,...,6) with partition of unity ¥ subordinate to the open cover (U; : i = 1,...,6). We fix
i€{l,..,6} and set D' = supp((¥;),,) and let D be a subdomain of n; (U;) with smooth
boundary such that D' cC D cC n; '(U;). Since n;(D) is relatively closed in S2, we can
apply Lemma 6.2 and conclude that there exists a partition of unity U subordinate to the
open cover (Uj : j = 1,...,6) such that (\i/z)m =1 on D. We observe that uW; satisfies
weakly that

—Vs2 - (AVg2(u¥;)) + cu¥; = F,
where Fj; is given by
F;, = g\IJi + (VSQ . f)\I/z — Avszu . VSQ\Ifi — Vsz . (AUVSQ\IQ)
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=gV, + Ve (f¥;)— [ VgV, — AVgu- VgV, — Vg2 - (AuV g ¥;).

Since W, is compactly supported in U;, uW; satisfies that

/ AV g2 (u¥;) - Vgav + c(u¥;)v do = / (g¥)v — (f¥;) - Vgev — (f - Vg2 ;v
Uz' 7

- AVSQU . VSQ‘IJi + A’LLVSQ\I’i . VS2U do
for all v € H'(S?). We pull the problem back to the chart domains and obtain that in our
local coordinates u¥; satisfies that

/ Ay, <89(u\112-)m89v + .;Bw(ullli)mawv> sin(8) + ¢, sin(6) (u¥;)p,v da
D sin“(0)

= [ s @) = (o) sin0)20(V)y, + (o) DB )0
= (foWi)y, sin(0)9pv — (fpWi)n, Opv

1 .
- Am (a9unia9(\1’i)m + Sian)aﬁﬂumaﬁ(\I}i)m) Sln(e)’u

T (Au),, sin(0)3p(T;),, Fpo + (Au)msin1<9)

for all v € W(} ’Z(D). We divide the right hand side into the part that is given in divergence
form and the part that is not. We define:

G = —(gW:)y, sin(6) + (fo)u, sin(0)0p (L), + (fo), 0 (Vi)

1 .
+ Ay, <69um(99(\11i)m + SiHQw)&pumago(\pi)m> sin(0)

O0p (W), 0pv de,

and

NONT
F= (_(fellfi)m sin(0) + (Au)y, sin(0)9g(Vi)y,, —(foWi)n, + (Aw)y, Oy g%) '

Moreover we define the coefficient matrix of the above elliptic operator as

a = diag <A sin(), 51?(7;)> .

We obtain that uW; is a weak solution of the following equation in our local coordinates:

A (a* oy (w®,),,) — ¢y, sin(0) (u¥;),, = G + O F (8.55)

(U\Pi)m =0

oD

We have to analyze the regularity of the coefﬁcients of the operator and the right hand side.
Since (0) is smooth on the closure of 7, L(U;), Inequality (6.4) implies that the components

of a are in C%7(D). The Sobolev embedding theorem, which is Theorem 4.6.1.(e) in [25],
implies that (u¥;),, € C%Y(n; *(U;)) and for a constant K it holds that

| (u; )mHCoa, W) < K| (u¥; )muwl P(n; (UL (8.56)
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Since (foW:)y:s (foWi)ns, W)y € CO7(n; 1(UZ)) and A,, € C%(D), Inequality (6.4) im-
plies that the components of F are in COV D), where we tacitly used that ¥; is smooth
and compactly supported. Also G € LP(n; 1 (U;),R). Therefore the theory in Gilbarg and
Trudinger [14] becomes applicable.

Since the operator in Equation (8.55) is strictly elliptic in the sense of Section 8.1.1 and
—c¢ < 0, Theorem 8.34 in [14] together with the remark at the very end of Section 8.11
in [14] imply that the Dirichlet problem in Equation (8.55) has a unique weak solution in
O (D). This implies that (u¥;),, € C*7(n; 1 (U;)), because (¥;),, is compactly supported
in D. Since i € {1,...,6} was arbitrarily fixed, we conclude that u € C17(S?).

For the proof of the second claim we fix the same ¢ € {1,...,6} and consult the Schauder
interior estimate for weak solutions in Section 8.1.2. Since G, F' and (u¥,;),, are compactly
supported in D and (\I}Z)m =1on D, we can add U, as a factor to the right hand side and
the solution. Now we can apply Theorem 8.12 with the nested sets D’ CC D and we obtain
that

(@)l < K (1)l o) + 1GER lo(o.2)
+ 1 Eo(8)n |l con ) + HFA@%)MMO,@))

< KK (1)l 0y + 1GED)g (o )

+ IlFe(‘l'2)chM + || Fp (T )mllco,@)) (8.57)
We analyze the right hand side of the above inequality and obtain that
1GE) o8 < K (9 oy + 2o 1F8%Dnlgon o,
BE{0.¢}
 1CAF Dl o, e @ E Dt )
K (19l o522 + Z ||fﬁ||coﬁ(sz> + [ All o sz lullwrase) ).
Be{0.¢}
(8.58)

Since a product of two Holder functions results again a Holder function, which is shown in
Inequality (6.4), and due to Inequality (8.56) we obtain that

1Eo (8l con ) < K (100l o,
HI(AD;)y, I con | (wd)y, HWL”(nZl(Ui)))
< K (I follconsz) + 1Allcon (s lullwrasz) (8:59)

where the same estimate also holds for the C%Y(D)-norm of F,(¥?),,. Note that the
contributions from sin(f) and ¥; are included in the constant K. This causes no problem
because sin(f) and ¥; are smooth and V; is in addition compactly supported.

The next step is to analyze the constant K. Since ﬁ is a smooth function on supp((\i/i)m),
for the coefficients in the matrix a and a constant K it holds that
2

Z ||al k||co (D) < KH(A‘I’ )m”cfw < KHA”CM S52)-
k=1
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The functions A and X from Section 8.1 that satisfy that A[|{]|3. < [Jag][2s < A[[€]|32 for all
¢ € R? are bounded from above and below in this way:

min_sin(d) min A(z) <A< A< max A(xr) max - .
(0.0)€D ven; (D) wen;(D) (0,)eD sin(0)

(8.60)

The constant K can be bounded with Theorem 8.12 and the last two inequalities, i.e.

1 A 24y
e < g (0 Wlloss)
ming g2 A(z)HY

E
) (14 [ Allcon(s2y + el r(s2r) T

where K is a constant independent of the coefficients A and ¢ and the solution u. We
combine the last inequality with the Inequalities (8.57), (8.58) and (8.59) and apply the
fact that (u¥;)y, is equal to zero outside of D’ to obtain that

((1 + [|Allco(s2))*

mingc g2 A(x)+7

+1

2
=y 2
“(u\yi)ﬂi”c1,—y(nf1(Ui)) = ) (1 + HAHCO"Y(SQ) + HCHLP(S2,R)) =

(lilwrsgsz) + lallozmy + D2 Msllcors)
Beff,¢}

2
i (14 [[Allcon(szy + el oszr)* \ 7
- ming g2 A(x)HY

(lullwros + lgllzesemy + > Iallconss)-
Be{0.0}

This argument applies to all other j € {1,...,6}\{:¢}. Hence the second claim of the theorem
is also proven. O

A similar localization procedure on the chart domains can be applied when the right hand
side and the coefficient satisfy higher order Holder regularity. We will obtain a form of
Schauder estimates for higher order Holder regularity on the sphere. For estimates of
higher order partial derivatives, we consider the problem:

—Vg2 - (AVg2u) + cu = f, (8.61)
where first order partial derivatives of the coefficient A and the right hand side f are at
least Holder continuous. If w € H'(S?) satisfies that

/ AV g2u - Vg2v + cuvdo = fvdo
52 52

for all v € H'(S?), then we call u a weak solution of Equation (8.61)

Theorem 8.16. For some~y € (0,1) let u € C*7(S?%) be a weak solution of Equation (8.61).
If f,c € C17(S?%), ¢ > 0 and A € CY(S?) for some positive integer 1 > 1, then u €
C**17(8?) and u satisfies the estimate that

18,2

1—v
) ([[ullorvszy + I fllo-1(s2y) 5

(14| Allgen(szy + llellgi-1a(s2))®
min,cg2 A(x)+7

[ullcerraszy < K <

where K is a constant that is independent of the solution u and A, ¢ and f.
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Proof. The proof of this theorem will follow an iterative argument. For x € {1,...,¢} we
assume that we already proved that u € C*7(S?) and we want to show that this implies
that u € C*T17(5%) and we want to establish an estimate of the C*™17(52)-norm of u in
terms of the coefficients A and c, the right hand side f and the C*7(S?)-norm of u.

We remind of our usual atlas (U;,n; : i = 1, ...,6) with partition of unity ¥ subordinate to
the open cover (U; : i =1,...,6). We fix i € {1,...,6} and set D’ = supp((¥;),,) and let D
be a subdomain of n;l(Ui) with smooth boundary such that D' CC D CC n;l(Ui). Since
ni(D) is relatively closed in S, we can apply Lemma 6.2 and conclude that there exists a
partition of unity ¥ subordinate to the open cover (Uj : j =1,...,6) such that (\ill)m =1
on D. Since u is a weak solution of Equation (8.54) we observe that uW; satisfies weakly
that

—VSQ . (AVSQ (’LL\I/Z)) —+ C(quz) = E
where Fj; is given by
Fi - f\I]z - AVSQU . VS2\I]7; — VSQ . (AUVSz\IJZ)

From the proof of the previous theorem we recall that uW; satisfies the Dirichlet problem
in Equation (8.55) in our local coordinates in the sense of distributions:

(a0 (wWi)y,) — ey, sin(0) (uly)y, = (F;)y, sin(0) (8.62)

(U‘I/z)m oD =0,
where a = diag(A,, sin(0), A, sin~'(0)). Moreover (u¥;),, is the unique solution of the
above Dirichlet problem. This was due to Theorem 8.34 in [14]. Note that (F;),, € C%Y(D)
and is compactly supported in D. In our case the coefficients of the differential operator are
continuously differentiable, therefore we are not in the situation of an operator in divergence
form as we were in the proof of the previous theorem. Therefore, we consider the following
Dirichlet problem:

a"* o0 + V' oyt — ¢, sin(0)a = (F),, sin(0) (8.63)

The coefficients of the operator in Equation (8.63) are given by:

, . Ay,
a = diag <Am sin(#), sin?ﬁ))

and

-
b= (9a"?, 8" = (sin(H)c%Am + cos(0) Ay, &psii?(n@)> .

Every function @ € C2?(D) that satisfies the Dirichlet problem in Equation (8.63) also
satisfies the Dirichlet problem in Equation (8.62) weakly and is by uniqueness equal to
(u¥;)y,. The uniqueness was established in the proof of the previous theorem and is due
to Theorem 8.34 in [14].

As in the previous proof we have to analyze the regularity of the coefficients and the right
hand side. Since m is a smooth function on D, we observe that the components of a
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are in C*7(D) and similarly the components of b are in C*~17(D). Since the operator in
Equation (8.63) is strictly elliptic in the sense of Section 8.1.1 and —c < 0, Theorem 6.14
in [14] implies that there exists a unique solution @ € C%7(D) to the respective Dirichlet
problem in Equation (8.63). The uniqueness implies that @ = (uV;),, € C*7(D) and that
(u¥,;),, satisfies Equation (8.63) in D.

We assumed that u € C*7(S?), this implies that (F}),, € C*~17(D). Therefore, we can
apply Theorem 8.10 with the nested domains D’ CC D to the problem in Equation (8.63).
It implies that (uV;),, € C*T17(D’). Due to the fact that supp((¥;),,) = D', it holds
that (u¥;),, € C*7(n 1 (U;)). Since i € {1,...,6} was arbitrarily fixed, it follows that
u € CFt17(82). Note that in the case that k = 1, we made the assumption u € C17(5?)
in this theorem. Therefore, we have proven that u € C**17(52).

Now we have to prove the estimate of the C**7(S2)-norm of the solution u. Theorem 8.10
also yields an estimate for the C**17(D’)-semi-norm of (u¥;),,, i.e.

(W) ero < K (1@l + 1 Fnllonrp)) - (8.64)

The Hélder norm of the right hand side (F;),, can be bounded in terms of f, A and u, i.e.
there exists a constant K independently of A, f and w such that

1 EDnllow1a@) < K (Ifloxraes2) + 1 Al oo @) lunloma )
< K (1 low-rasn) + 1A¥Dn] o, i 1@ E Dl s o))
< K ([[fllen-1s2) + ||A||cw(s2)||U|10m(32)) :

We insert the estimate in the previous inequality of the right hand side (F3),, into Inequal-
ity (8.64) and obtain with Inequality (6.3) that

[T | P o) = (1+K) (Jlulleogszy + 1 fllon—r(s2) + N Allomor sz lullomas2)) »

where we tacitly included the constant K into K and applied the fact that (u¥;),, is equal
to zero outside of D’. Since the argument also applies to all other j € {1,...,6}\{i}, we
obtain with the definition of Hélder norms on S? that

ullgrtroviszy < (14 K) (llulloogszy + 1 llon-1v(s2) + |Allgras2y lullorr(s2y) - (8.65)

The next step is to analyze the constant K. We remind of the proof of Theorem 7.7, where
we estimated the Holder norm of the product of a Hélder and a smooth function on a
bounded domain with the Faa di Bruno formula. We obtained that the Hélder norm of
the product can be bounded by the Hoélder norm of the Holder function multiplied with

a constant that depends on the smooth function. Since sinl(e) and cos(f) are a smooth

functions on the closure of 7; *(U;), for the coefficients a and b and a constant K it holds
that

>

1k=1

2
Z [bill gr-10B) < KN Al (s2)-
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The constant K in Inequality (8.64) is bounded with Theorem 8.9 and Theorem 8.10. We
additionally apply the last inequality and Inequality (8.60) to obtain that for a constant
K, which is independent of A, ¢, f and u, it holds that

1 A 24y
e < g (0 Wlloss)
min,cg2 A(x)H+7

185 | o
) (1+ HAHC“W S2) + HC”C“ 1,y 52)) - n7

Note that all factors in the above estimate of IC are greater than 1. We insert the estimate
of the constant K into Inequality (8.65) and obtain that

(1+ [ 4]l go(s2))* ™
ming g2 A(x)HY

- 18k
18 1o
> (1 + HAHC'{”"Y(SZ) + ||C”C~—1w(52)) T—y TR

ullrriv(szy < K <

- (lullcogszy + 11 llon-1a(s2) + 1Al omo sy llullomo(s2))

< K (1+[|Allco(gz)) >
- min,cg2 A(x)+7

) 18k
) (14 1Al gmags) + elloms se) 25727

(lullgraszy + 1 fllon—1(s2))

< 5 (14 [[Allgra(szy + llellon—1(s2))®
- min, g2 A(x)+7

18k
1—v
) ([l omr(s2y + 11 fllom-1(s2)) -

Therefore, we have obtained an iterative formula for the bound of the C**17(52)-norm of
u. We expand this recursion and conclude that

18,2

1—v
) ([[ullcrvszy + 1 fllo-ra(s2y) -
]

(1 + [ Allcea(szy + llellge-1a(s2))°
ming g2 A(x)H+7

[ull gerrv(sey < K (

8.3. Random elliptic partial differential equations on the
sphere

In this section we want to further discuss the problem in Equation (8.1) and in Equa-
tion (8.2). In particular we want to take the function A to be a 2-weakly isotropic log-normal
spherical random field such that the angular power spectrum of the respective continuous
2-weakly isotropic Gaussian spherical random field T satisfies that (C;I'T2+9 . [ > 0) is
summable for sorne 5 € (0,2] and an integer ¢ > 0.

We fix v € (0, ) for this section. Theorem 7.7 implies that there exists an indistingin-
guishable modlﬁcatlon A* of A such that A* C C*7(S?). This means that there exists a
measurable set of full probability Q* such that A*1g+ = Alg+ On the compliment of 2* we
set A =1 and can therefore disregard the indistinguishable modification A* in the follow-
ing. Also Theorem 7.7 implies that A € LE,(Q,C%7(S5?)) and that ALY = exp(T*) converges
to A in the L (2, C?7(S?))-norm as L — oo for all j € {0,1,...,.} and all p € (0,00), i.e.
for all p € (0,00) there exists a constant K, independently of L and (Cj : [ > 0) such that

2
14 = A" 12 @,com(s2y) = E |14 - ALHCHSQ} < K, (Zczl“w) ., (866)
I>L
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for all j € {0,1,...,¢}. The Holder regularity of A is therefore dependent on ¢ and ~.

Now we return to the problem in Equation (8.2). Since T is continuous and therefore
bounded on S? it holds that A = exp(T) is continuous and min, g2 A(z) is strictly positive.
Therefore, due to the discussion at the beginning of this chapter, for all w € 2 the problem
to find u(w) € H'(S?)/R such that

b (u(w), v) = /S A)Vseulw) - Vv do = /S fodo = £5(0) (8.67)

for all v € H'(S?)/R, admits a unique solution u(w) such that Inequality (8.3) holds, i.e.

1 N fllzeser
< - bl
Hu(w)HHl(SQ)/R ~ V2 mingcge A(w, x) 7

(8.68)

where {; = (v [q» fvdo) for f € L?(S? R) such that Jg2 fdo = 0 as in the beginning of
this chapter. We remind that at the beginning of Chapter 6, we established that the map-
ping w — T(w) is A — B(CY(5?)) measurable. Therefore also w +— A(w) = exp(T(w)) is.
Proposition 8.6 implies that the mapping A +— u is continuous from C°(S?) to H'(S?)/R.
Hence it is also B(C?(S?)) — B(H'(S?)/R) measurable, where B(H'(S?)/R) is the Borel
o-algebra of H!(5?)/R. The mapping w — u(w) from 2 to H'(S?)/R can be seen as a com-
position of these mappings and is consequently A — B(H'(5?)/R) measurable. Remark 7.6
on Proposition 7.5 implies that (min,cg2 A(z))~! € L% (€, R) for all p € (0,00). Hence, for
all p € (0,00) we obtain the estimate

5 1 b %HfHL2(s2,R)
Il sy = B (Il gone]” < 2 [(minggem A(x)> ] i o

(8.69)
We conclude that u € LF(Q, H*(S?)/R) for all p € (0, 00).

8.3.1. Basic properties and approximation

For all L € Ny let b” be the bilinear form that results from AX = exp(TF), where T* is the
truncated expansion of T'. Since T' is also continuous, A% is continuous and min,¢ g2 A" ()
is strictly positive.

By the same argument as before we obtain that for all w € Q and all L € Ny we can find a
unique u’(w) € H'(S?)/R such that

b5 (u"(w),v) = I5(v), (8.70)

for all v € H'(S?)/R. As in the discussion about the solution u to the problem in Equa-
tion (8.67), for all L € Ny it holds that u” is A — B(H'(S?)/R) measurable and it holds

that
s o < T E2s2R)
DR =5 mingega AL (x)

Due to Remark 7.6 on Proposition 7.5, for all p € (0, 00) there exists a constant K, which
is independent of L, such that

1

||ULHL§;(Q,H1(52)/R) =F ||UL||Z1(52)/R " < Kpll fllpzes r)-
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Therefore ul € L, (Q, H*(S?)/R) for all L € Ny and all p € (0,00) and the norm can be
bounded independently of L. The following proposition discusses the convergence of u” to
u in the L5 (2, H'(S?)/R)-norm as L — oo for all p € (0, 00).

Proposition 8.17. For L € Ny and p € (0,00) let u,u” € L%(Q,H'(S?)/R) be the
solutions to Equation (8.67) and Equation (8.70), then for all § > ¢ > 0 there exists a
constant K, . independently of L such that

[NIES

lu = u"l 2 @, (s2) %) < Epell fll2s2m) (Z Cll1+6>
I>L

We indicate € in the constant in the above proposition to emphasize that the constant may
become very large for borderline values of ¢.

Proof. Proposition 8.6 implies an estimate of the H'(S?)/R-norm of u — u’, i.e.

1 | £l z2(s2 )
L < ) _ AL )
Il = e s/m < 75 iy g A()) mingege AR@)) 14~ 4 oo

Remark 7.6 implies that the L’; (2, R)-norm of (mingcg2 A¥(2))~! can be bounded inde-
pendently of L for all p’ € (0,00). With a twofold application of the Cauchy-Schwarz
inequality we obtain with Remark 7.6 that there exists a constant K independently of L
such that

B =

;1 Il L2(s2,R)
E |||u — u"|]? P< | A— AL
[l =t s < 75 [((minzGSQA(x))(minxesm%))) 4= A lgogse)

K 1
< Tl flxsem 2 14 - A% s |

The second factor in the above inequality is treated with Theorem 7.7 for v = § and 0 = .
We conclude that there exists a constant K, . independently of L such that

1
: < Kp,a

L
||’LL —u "%1(52)/]1&

1
2
fllzz(s2 ) (Z CleE) . O

I>L

Note that in the preceding discussion in this section, we could have also taken an arbitrary
0 e (HY(S?)/R)*.

We remind that by our assumptions at the beginning of this section the 2-weakly isotropic
log-normal spherical random field A results from a continuous 2-weakly isotropic Gaussian
spherical random field, whose angular power spectrum satisfies that (CyI'*2%9 : [ > 0) is
summable for some § € (0,2] and an integer ¢« > 0. In the case that « = 0, it was a sufficient
condition that § > 0 such that there exists a continuous 2-weakly isotropic lognormal
spherical random field, which is also Holder continuous. It seems that we cannot lower the
assumptions on the angular power spectrum in order to only obtain P-a.s. the membership
of the realizations of A in C°(S?) or even in L>°(S?), because if we set § = 0 we only obtain
that A is P-a.s. in L?(S? R) by Lemma 3.3 or more precisely in LP®d (2 x S2,R) for all
k € N, where the norm depends on k.
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But we are able to exploit this Holder continuity of A and obtain higher regularity of
the solution u of Equation (8.67) with Proposition 8.13. In the following we want to fix
a particular representative of the solution u. For all w €  we will always consider the
representative u(w) € H(S?) in [u(w)] € H(S?)/R that satisfies that [, u(w)do = 0. We
used the parentheses [-] to distinguish between the equivalence class and the representatives.
Due to Lemma 8.3 [v] € H'(S?)/R is mapped continuously to the representative v € [v]
that satisfies that [y, vdo = 0. Therefore, we observe that the mapping w — u(w) is
A — B(H*(5?%)) measurable.

Proposition 8.18. Let u be the representative of the unique weak solution of Equation (8.67)
that satisfies that fSQ udo = 0 with right hand side f € L?>(S?,R) such that fsg fdo =10
and let ul be the respective representative of the unique weak solution of Equation (8.70)
for L € Ny with the same right hand side.

The mapping w +— u(w) from Q to W4(S?) is A — B(WH4(S?)) measurable. For q =
% it holds that u € LY (Q, W14(S?)) for all p € (0,00) and there exists a constant K,

I
independently of f and u such that

lull L2 @ wra(s2)) < Kpllfllrz(s2r)-

For all L € Ny, ul is also in LE,(Q, WH9(S52)) for all p € (0,00) and there exists a constant
K, independently of L, f and ul such that

lu" |l 2 @ wrags2y) < Kpll Fll2(s2.m)-

Moreover for all p € (0,00) there exists a constant K, independently of L, f, u and ul
such that

2
lu = w2 @ a2 < Kpllfllz2s2my (Z Cleé) :
I>L

Proof. We apply Theorem 7.7 with ¢ = 274—+5 and obtain that on a measurable set of full
probability, say also Q* as in the beginning of Section 8.3, Alg+ C C%*(S?). As before we set

A =1 on the compliment of Q*. Also Theorem 7.7 implies that A, A" € L%(Q, C%4(S8?)) for

all p’ € (0,00) and all L € Ny. Moreover the LZI’DI (9, C%(S?))-norm of A* can be bounded
independently of L.

Now we apply Proposition 8.13 that u C W149(S?). It also implies that the mapping A — u
from C%*(S%) N {A : mingeg2 A(z) > 0} to W9(5?) is continuous. Therefore it is also
B(C%!(S?))—B(W14(S?)) measurable. Remark 6.11 implies that B(C%*(S?)) = B(C°(S?)).
We can interpret the mapping w +— u(w) as a composition of measurable mappings and
conclude that w — u(w) is A — B(W14(S?)) measurable.

Proposition 8.13 also implies that u satisfies the estimate that

(1+[|Allco.e(s2))?
51 fll 22 (52 r)s

<
Iilwtas) = K Gt A(2)

where the constant K is independent of A, f and the solution u. Remark 7.6 implies that
(mingeg2 A(x)) "1 is in L (Q,R) for all p’ € (0, 00). Therefore a twofold application of the
Cauchy—Schwarz inequality implies the second claim.
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Remark 7.6 also implies that the LZ;;(Q,R)—norm of (mingeg2 A¥(x))~! can be bounded
independently of L € Ny for all p’ € (0,00). We apply Proposition 8.13 to u” and obtain
the third claim in the same way.

For the proof of the fourth claim we consult the second estimate in Proposition 8.13, i.e.
there exists a constant K independently of u, u”, A, A and the right hand side f such that

[Allcorszy (1+[[A%]|cor(s2))?
; A— AL oo
I AL £l z2(s2,m) 0t (52)
(min A(z))? (gelgg (z))?

xeS?

Ju — u|lyras2y < K

We recall that Theorem 7.7 and Remark 7.6 imply that || Al co.(g2), (mingeg2 A(z))™2 €
LI;D/(Q,R) for all p’ € (0,00). Moreover Theorem 7.7 and Remark 7.6 also imply that
||AL||CO,t(52), (mingcg2 AX(2))72 € LI;D/(Q,R) and their Lg(Q,R)—norm can be bounded
independently of L for all p’ € (0,00). Now a fourfold application of the Cauchy—Schwarz

inequality implies that for all p € (0,00) there exist constants K, K, independently of f
such that

1
B [l = By ]” < Kl Flasnn 2 14— A5 0]

1

2
< K|l fllr2es2 ry (Z C'llHa) 7

I>L

where we applied Theorem 7.7 another time to obtain the estimate for the L?;p(Q, CY(5?%))-
norm of A — AL, O

In the following proposition we prove the existence of continuous solutions. Note that the
measurability will be implied by the fact that the solution depends continuously on the
coefficient A, which is measurable.

Proposition 8.19. There exists a unique, continuous weak solution @ C C%7V(S?) to the
problem in Equation (8.67) that satisfies that [, ido = 0 with right hand side f € L*(S?, R)
such that fSQ fdo = 0 and for all L € Ny there exists a unique, continuous weak solution
@t c C%(S?) to the problem in Equation (8.70) that satisfies that [, 4“do = 0 with the
same right hand side f € L?(S? R) such that Jg2 fdo = 0.

The mappings w + t(w) and w — 42 (w) from Q to C*7(S?) are A—B(C°(S?)) measurable
for all L € Ny.

27+5 and obtain

Proof. As in the proof of Proposition 8.18, we apply Theorem 7.7 with ¢t =
that on a measurable set of full probability, say also Q* as in the beginning of Section 8.3,
Alg: € C%(S?). As before we set A = 1 on the compliment of Q*. Due to Corollary 8.14,
for all w € € there exists @(w) such that 4(w) is a solution of the problem in Equation (8.67).
We interpret the mapping w — 4(w) as a composition of the mappings w — A(w) and
A+ 4. The first of the two mappings is A — B(C°(S?)) measurable. Corollary 8.14
implies that the mapping A — 4 is continuous from C%*(S%) N {A : min,cg A(z) > 0}
to C%7(S?%). Since Remark 6.11 implies that B(C%*(S?)) = B(C%7(S?)) = B(C°(S?)),
we conclude that the mapping w +— 4(w) is a composition of measurable mappings and is
therefore A — B(C?(S?)) measurable.

The uniqueness of the solution was already established pathwise in H(S?)N{% : |, g2 udo =
0}. If we assume that for some w € €2 there exist two continuous weak solution in H'(S%)N
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{i : [gado = 0}, then they have to agree on a dense subset of S?. Since they are
continuous, they agree everywhere in S2.

The proof of the second claim about the existence and uniqueness of a continuous weak
solution 7% to the problem in Equation (8.70) for all L € Ny is completely analogous. [

Remark 8.20. Let u, (ﬂL : L € Ny) be as in the previous proposition. Proposition 8.18
implies with the Sobolev embedding theorem on S2%, which is Theorem 6.10, that @,a" €
LE(2,C%7(S2)) for all p € (0,00) and all L € Ny. It also implies that for all p € (0,00)
there exists a constant K, independently of L and f such that

1@\ £ .00 (52)) < Kpllfllz2(s2,m)-

Moreover for all p € (0,00) there exists a constant K, independently of L , f, 4 and al
such that

2
|15 — @ || o .00 (s2)) < KpllFll2(s2.m) (Z CﬂHé) :
I>L

Proposition 8.18 of course also applies to the continuous weak solution « that exists due
to Propsition 8.19, i.e. & € Li(Q, Wh4(S5?)) for all p € (0,00) and the respective estimates
in Proposition 8.18 hold, where ¢ = % as in Proposition 8.18. The analogous statement
applies to @” for all L € Ny, where (" : L € Ny) is as in Propsition 8.19.

In the following we will always consider the continuous solutions to the problems in Equa-
tion (8.67) and in Equation (8.70). We will denote them with u instead of @ and u! instead
of @” for all L € Ny respectively.

8.3.2. Higher order regularity of solutions

The Schauder regularity theory from the previous section can be applied to obtain higher
regularity of the solution of the random partial differential equation. We are interested in
the solution of the following problem: to find w such that

Ve (AVeu) =f  with / wdo =0, (8.71)
5’2

where |, g2 fdo = 0. We have solved this in the variational formulation, i.e. Equation (8.67),
and obtained a weak solution with realizations in C%7(S%) N W14(S?) for ¢ = % The
first step in this subsection will be to impose higher regularity on the right hand side f to
obtain with the Schauder estimates that first order partial derivatives of the realizations of
the solution are Holder continuous. In the second step, higher regularity of the coefficient
A and on the right hand side f will lead to higher regularity of the solution in terms of
Holder continuity of its higher order partial derivatives. The next theorem is the first part
of the precise version of Theorem 1.4 from the introduction.

Theorem 8.21. Let u be the unique, continuous weak solution of the problem in Equa-
tion (8.67) that satisfies that [gudo = 0 with right hand side f € LI(S* R) such that
sz fdo =0 for q = % and for all L € Ny let u” be the respective unique, continuous
weak solution of the problem in Equation (8.70) with the same right hand side that satisfies
that f52 uldo = 0.
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We obtain that u € L%(Q,CY7(S?%)) for all p € (0,00) and there exists a constant K,
independently of f and u such that

lull L2 .01 (s2)) < EpllfllLa(s2,r)-

For all L € Ny, ul" is also in LL,(2, C17(S?)) for all p € (0,00) and there exists a constant
K, independently of L, f and ul such that

lu"ll 2 . (s2y) < Kpll fllLagse -

Proof. Note that A ¢ C%7(S2). Proposition 8.18 implies that u c W14(S?). Therefore,
u C C°(8?) N W14(S?) and we can apply Theorem 8.15 and obtain that u C C*7(S2).
Moreover it implies that there exists a constant K, which is independent of A, f and w,
such that

(1+ [ Al gorgszy)* \ 7
||u||Cl"Y(S2) <K <(minm652 A(l‘))l"'_'y (HUHWI’Q(SQ) + ||f||Lq(S2,]R)) )

where we tacitly applied that for o > 0 it holds that mingesexp(z)® = (mingesexp(z))®
for I € R. Remark 7.6 implies that (minycge A(z))~! € L% (9, R) for all p’ € (0,00). This
also holds for [|Al[co~(s2) due to Theorem 7.7. Proposition 8.18 implies this property for
[[w[lw1.a¢s2) and that for all p’ € (0, 00) there exists a constant Ky independently of f such
that

1

B [[ullfyragsn]” < Kl fllzas m).

Since LI(S%,R) C L?(S? R) with continuous embedding, a threefold application of the
Cauchy—Schwarz inequality implies the first claim.

The proof of the second claim is very similar. For all L € Ny we can establish the respective
estimate of the C17(S%)-norm of u’ in terms of A” and the W14(S?)-norm of u’. We
note that the L’;(Q,R)—norm of (mingcge A (x))71, ||AL||Co,w(Sz) and HULHWI,q(SQ) can be
bounded independently of L € Ny for all p’ € (0,00) due to Remark 7.6, Theorem 7.7 and
Proposition 8.18. Also Proposition 8.18 implies that that for all p’ € (0, 00) there exists a
constant Ky independently of L and f such that

1
7

B [Ile a5y | " < Kol llzase p)- =

Corollary 8.22. Letq = %, u, u” and f be as in the previous theorem. For allp € (0, 00)

there exists a constant K, independently of L, f, u and ul such that

-

2
lu = w22 @,cr(s2)) < BpllfllLogs ) <Z Cll1+5) :
I>L

Proof. We give a brief proof of this corollary. We observe that v — u! satisfies weakly that

—V52 . (AVS2 (’LL — UL)) - f + VSQ . (AVSZUL)
= f — f — VS2 . (ALVSQUL) + VSQ . (AVSQUL)

Lukas Herrmann 140 ©



= Vg - ((A— ANV gub).

Since A, A¥ ¢ C%7(S?) and ul c C17(S?), it holds that the components of the vector
field (A — AL)Vgu® are in C%7(S?). Therefore we can apply the Schauder estimate in
Theorem 8.15 and obtain that

2
1+ HAH 0, (G2 )4 1=
I ( 0 (52) L
= wloven < X ((minxew Az))H+r (Hu ~wllwras2) (8.72)

+ Y A= AN (Vsub)glloon sy )-
Beff,v}

We observe that for = 6, ¢ and a constant K, which is independent of A, AY and u”, it
holds that

I(A = A")(Vgou")gllcon(s2) < KA = A% o s2)llu” [l cro(s2).-

Proposition 8.18 implies that for all p’ € (0,00) there exists a constant K, independently
of L and f such that

1 2
E|u— ULH];VLq(Sz)] "< Kp/HfHL?(S?,R) (Z Clll+5> .
I>L

The previous theorem implies that the Lg(Q, C17(8?%))-norm of u” can be bounded inde-
pendently of L for all p’ € (0,00). Note that Theorem 7.7 implies that for all p’ € (0, 00)
there exists a constant K, independently of L such that

=

1
2
E |]A—AL||%M(S2)]” < K (chzl+5> .

I>L

For p € (0, 00) we consider the L, (€2, R)-norm of Inequality (8.72). With these estimates the
claim of the corollary follows with a fourfold application of the Cauchy—Schwarz inequality
in the same way as in the proof of the previous theorem. O

We remind that at the beginning of Section 8.3 we considered a particular 2-weakly isotropic
lognormal spherical random field A = exp(T') that resulted from a continuous 2-weakly
isotropic Gaussian spherical random field T', whose angular power spectrum satisfies that
(C{M+249 1 > 0) is summable for an integer ¢ > 0 and some § € (0,2]. We fixed v € (0, 3)
and established that after a modification on a measurable set of zero probability it holds that
A C C+7(S?%). This was an implication of Theorem 7.7. In other words, the summability of
the angular power spectrum of T in terms of ¢ and ¢ gives sufficient conditions for higher
order Holder continuity of A. Up to this point, all results are true for « > 0 and we obtained
that with a suitable right hand side the first order partial derivatives of the solution u are
P-a.s. Holder continuous. Now we want to exploit the higher order Holder regularity of the
coefficient A and focus on the case ¢ > 1. We observe that higher order Holder regularity
of the coefficient of the operator —Vg2 - (AVg2) and of the right hand side transfers to
the solution through the Schauder estimates. This was the content of Section 8.2.2. We
want to show that the summability of the angular power spectrum of 7" in terms of ¢+ and
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0 also gives sufficient conditions for P-a.s. higher order Hélder continuity of the solution
u. The parameter ¢ influence through v € (0, %), that we already fixed at the beginning
of Section 8.3. The next theorem is the second part of the precise version of Theorem 1.4
from the introduction.

Theorem 8.23. Let u be the unique, continuous weak solution of the problem in Equa-
tion (8.67) that satisfies that [ udo = 0 with right hand side f € C™(S?) that satisfies
that fSQ fdo =0 for an integer m > 0 and o € (0,1). For all L € Ny let u” be the respec-
tive unique, continuous weak solution of the problem in Equation (8.70) with the same right
hand side that satisfies that [g utdo = 0.

If v > 1, then we obtain that u € L% (Q, C*F(S?)) with k = min{t + 1,m + 2} and 8 =
min{vy, a} for all p € (0,00) and that there exists a constant K, independently of f and u
such that

lull L2 ,ck8(52)) < Kpllfllor—2.8(52)-

Moreover if 1 > 1, then for all L € Ny, ul is also in LE,(2, C*P(S?)) for all p € (0,00) and
there exists a constant K, independently of L and f and ul such that

[u" | o o,0mm(s2)) < Kpll Fllcr—2(s2)-

Proof. The proof is similar to the proof of the previous theorem. Theorem 8.21 implies
that u C C17(S8?). Note that A ¢ C*¥15(S2) and f € C*¥2P(S2), because C*7(S?) C
Ck=18(8%) and C™<(S?) ¢ C*=28(8?) both with continuous embeddings. Therefore, we
can apply Theorem 8.16 and obtain that v C C®P(S2). Moreover it implies that there
exists a constant K independently of A, f and u such that

1+ [[Allcer(s2)® \ 77
lullors(s2) < K <(minx652 A(;))l)ﬂ (HUHCM(S2) + Hf”ck—w(s2)> :

Remark 7.6 implies that (min,cg2 A(x))7! € L’I);/,(Q, R) for all p’ € (0, 00), which also holds
for [|ul[¢1+(g2) due to Theorem 8.21 as well as for || A/~ (g2) due to Theorem 7.7. Moreover

Theorem 8.21 implies that for all p’ € (0,00) there exists a constant K, independently of
f such that

1
7

B [l 5| < Ky llfll (s

where ¢ = % Since C*=2(52) ¢ L9(S% R) with continuous embedding, a threefold
application of the Cauchy—Schwarz inequality implies the first claim.

The proof of the second claim is very similar. For all L € Ny we can establish the respective
estimate of the C*#(S%)-norm of u” in terms of A* and the C'7(S%)-norm of u”. We
note that the Lg(Q,R)—norm of (mingege AY(x))71, ||AL||CO,'y(S2) and HuL||W1,q(52) can be
bounded independently of L € N for all p’ € (0,00) due to Remark 7.6, Theorem 7.7 and
Theorem 8.21. Also Theorem 8.21 implies that for all p’ € (0,00) there exists a constant
K,y independently of L and f such that

1

7

B [ 25| < Kl fllzacse 2,

where ¢ = % The second claim is then obtained in the same way as the first claim, which
we already proved. O
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Corollary 8.24. Let ¢+ > 1, k = min{s + 1,m + 2}, B = min{vy,a}, u, u” and f be as in
the previous theorem. For all p € (0,00) there exists a constant K, independently of L, f,
w and u” such that

2
lu = u"|| 2 @,cm8(52)) < Kpllfllon—2.5(s2) <Z CﬂHQ(k_l)M) :
I>L

Proof. We outline the proof of this corollary briefly. We observe that u —u” satisfies weakly
that
—Vg2 - (AVg(u—ul)) = Vg - (A — ANV gul).

Since u, u ¢ C*#(S8?) and A, A¥ ¢ CF1P(S?), we observe that the realizations of the
right hand side, i.e. Vg - (A — AL)Vgeul), are in C*~258(5%). Moreover we observe that
there exists a constant K independently of A, A" and u! such that

IVs2 - (A = AY)Vs2u) [ or-2(s2) < KNIA = A gror(s2) [ lona s2).

Therefore we can apply Theorem 8.16 and obtain that exists a constant K independently
of A, A w, u” and f such that

[ — u || onos 52y

(L4 [ Allger(s2y)® \ 7
((minxem A(;())l)ﬂ (H“ —ulorase) + 114 - AL”Ck*LB(S%H“LHC’“’”(SQO '

18.2

The previous theorem implies that the LII’;’.(Q, ckB (8?))-norm of u* can be bounded in-
dependently of L for all p’ € (0,00). For p € (0,00) we consider the L% (€, R)-norm the
above inequality. The claim of this corollary follows with a fourfold application of the
Cauchy—Schwarz inequality and Corollary 8.22 and Theorem 7.7. O

In the case that ¢ > 1 Theorem 8.23 implies that the solution u(w) to Equation (8.67) is
twice continuously differentiable for all w € Q*, where 2* is suitable measurable set of full
probability. For all test functions v € C'(S?) we can partially integrate in Equation (8.67)
with Lemma 8.1 to obtain that

— | Vg (Aw)Vsu(w))v do = / fv do
S2 52

for all w € Q* and all v € C1(S5?). One could localize this equation as we did in Section 8.2
and argue with the de Bois Reymond lemma on the chart domains that u(w) satisfies
Equation (8.71) classically for all w € Q*.
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9. Conclusions

After we introduced 2-weakly spherical random fields, we developed an expansion with
respect to the spherical harmonics of 2-weakly isotropic spherical random fields, where we
made use of the representation theory of SO(3).

The combination of 2-weakly isotropy and Gaussian distribution gave us an expansion with
respect to the real spherical harmonics, which only depends on the angular power spectrum
of the spherical random field. Therefore, 2-weakly isotropic Gaussian spherical random
fields are characterized with their angular power spectrum. The angular power spectrum
induces a symmetric nuclear operator (), which is interpreted as a covariance operator of
a Gaussian measure on L?(S?,R). The discussion of the Q-Wiener process with respect to
this covariance operator () as an additive noise term in the heat equation showed that for
the heat equation this noise is a very suitable choice, since the problem can be reduced to
a decoupled system of stochastic ordinary differential equations.

In Chapter 5 we proved sufficient conditions on the angular power spectrum of a 2-weakly
isotropic Gaussian spherical random field such that there exists a Hélder continuous modifi-
cation. Since the modification is again a 2-weakly isotropic spherical random field with the
same expansion, this result can be interpreted as an existence result for continuous 2-weakly
isotropic Gaussian spherical random fields. In Chapter 6, we saw that this is part of a deeper
principal. We could generalize these conditions such that a continuous 2-weakly isotropic
Gaussian spherical random field T" has P-a.s. Holder continuous higher order partial deriva-
tives, where the order and the Holder coefficient depend on the subscribed condition on T'.
Moreover we obtained LP bounds in the stochastic sense of the respective Holder norms of T
as well as convergence of the truncated expansion of T to T in the L% (9, C*7(S?))-norm,
where the convergence is controlled with the angular power spectrum. For algebraically
bounded angular power spectra, one would obtain a convergence rate, which is independent
of p provided that p is finite, but potentially unbounded.

It is also noteworthy that the regularity results do not provide P-a.s. Lipschitz continuity for
a continuous 2-weakly isotropic Gaussian spherical random field T" or its partial derivatives.
Our results readily imply differentiability of one order higher with Hélder continuous partial
derivatives, i.e. assuming that for an integer ¢ > 0 we are interested in the needed decay
of the angular power spectrum of T" such that P-a.s. realizations of T are in C*'(S?), then
we have to demand the decay that implies P-a.s. the membership in C**1¢(S?) for an
arbitrarily small € > 0 and employ the embedding C**¢(5?) ¢ C*1(S?). An explanation
for this gap can be seen in the fact that we can provide a sufficient condition on the decay
of the angular power spectrum to obtain that P-a.s. realizations of T" are in W“4(S?) for all
q € [1,00). Since the respective W44(S5?)-norms are not uniformly bounded with respect to
q, it seems that it is not possible to conclude the membership in W**(S?) with the given
decay of the angular power spectrum. The reason behind the unboundedness with respect
to g of this norm is that higher order moments of the normal distribution are not bounded
independently of the order.

Since the regularity can be transferred to log-normally distributed 2-weakly isotropic spher-
ical random fields, we were able to discuss random elliptic partial differential equations on
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the sphere, where we considered the elliptic operator —V g2+ (AV g2) for a 2-weakly isotropic
log-normal spherical random field A. The Schauder theory turned out to be very suitable
to discuss the regularity of the solution. We developed that with a sufficiently smooth right
hand side the decay of the angular power spectrum of the continuous 2-weakly Gaussian
spherical random field 7" that defined the log-normal coefficient A = exp(T") in the elliptic
operator precisely implies the path regularity of the random solution with one order more
of differentiability than the coefficient, i.e. if the decay of the angular power spectrum im-
plies that P-a.s. the realizations of A are in C“7(S?) for an integer ¢ > 0 then P-a.s. the
realization of the solution u are in C**17(S2). For all integers L > 0 this analysis also
applies to solutions u” with respect to the coefficient A” that results from the truncated
expansion of the respective continuous 2-weakly isotropic Gaussian spherical random field.
Since we provided a detailed convergence analysis of u” converging to u for L — oo in
Section 8.3.1 and Section 8.3.2 and bounds for u” independently of L, the way for further
numerical analysis in terms of finite element and Monte Carlo methods is smoothed.

The regularity theory in Section 8.2 could be carried out similarly on closed compact man-
ifolds. Also the discussion of random elliptic partial differential equation similarly applies
on closed compact manifolds, provided that the log-normal coefficient is given and satisfies
the conditions to form an elliptic operator and obeys the same regularity.

Another future aspect might be to investigate questions like, under which conditions a
spherical random field or a 2-weakly isotropic spherical random field lies P-a.s. in some
function space over the sphere. In this project we found conditions such that a continuous
2-weakly isotropic Gaussian spherical random field has P-a.s. Holder continuous higher
order partial derivatives and that it lies in the space of square integrable functions, the
latter came without much work from the definition of 2-weakly isotropy. To investigate the
membership of a 2-weakly isotropic spherical random field in other function spaces, it might
be interesting to use a different definition, which does not rely on pointwise evaluation of
the spherical random field, i.e. for all z € S2, T'(x) satisfies the 2-weakly isotropic property
in Definition 3.2. Because not in all function spaces the pointwise evaluation of functions
is well-defined.

If we have a similar setup as in this project, i.e. (€2, A, P) denotes a probability space and B
is some function space over the sphere, we could take as definition: a spherical random field
T, which takes values in some function space B and is in L%(Q, B) is 2-weakly isotropic if
it satisfies that for all n € B* and for all g € SO(3)

Elp+(n,T)s] = E[p-(n, D(9)T) 8], (9.1)
and for all n,v9 € B* and for all g € SO(3)
Elp<(n,T)p 5+ (¥, T)B] = E[p-(n, D(9)T) 5 B*(1), D(9)T) 5], (9-2)

where B* denotes the dual space of B, p+(.,.)p denotes the dual pairing of the function
space B and D(g) is the left regular representation, which was introduced in Chapter 2.
Since we demanded that T' € L%(, B) the conditions in Equation (9.1) and Equation (9.2)
are well-defined. The definition is motivated because in some function spaces the pointwise
evaluation, which is commonly denoted by §, for some x € S?, is continuous and therefore
an element of B*. In these cases this new definition is a bit more restrictive than the
definition in this project for 2-weakly isotropy, because for n = ¢, and 9 = J, it reduces to
the definition in this project.
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Of course this suggestion as the definition for 2-weakly isotropy raises some non-trivial ques-
tion for example the existence of such a spherical random field depending on the function
space B or if there are also expansions in some basis, which could be helpful for simulation
purposes. The proof of the latter, the expansion of a 2-weakly isotropic spherical random
field, relied on the property of 2-weakly isotropy being defined pointwise. So similar results
for this new definition could involve quite some effort. But this definition puts the discus-
sion more in the framework of function spaces and if one could overcome some difficulties
other questions could become more accessible since these function spaces often also provide
useful technology.
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A. MATLAB code for the 2-weakly
isotropic Gaussian spherical random

field

This is an implementation of the real spherical harmonics:

function Y=Y_1m_full(1l,N)
%$this function evaluates the real spherical harmonics for fixed 1 and
gm=—1,...,1. N is connected to the resolution.

=W NN =

theta = linspace (0,pi,N);
phi = linspace(0,2%pi, 2xN)"';
Y = zeros (2«N,N,2x1+1);

© 0 N o »

10 %evaluate the normed associated legendre polynomials
11 L = sqgrt(1/(2xpi))«legendre (1, cos (theta), 'norm');

12

13 for m=—1:1

14 if (m>0)

15 Y(:,:,14m+1l) = sqgrt(2)«cos (phixm) L (m+1,:);
16 elseif (m<O0)

17 Y(:,:,14m+1l) = sqgrt(2)*sin(phi*m)*L(—m+1l,:);
18 else

19 Y(:,:,1+m+1l) = ones (2N, 1)*L(1,:);

20 end

21 end

22

23 end

This is an implementation of the truncated 2-weakly isotropic Gaussian random field:

function [x,vy,z,T]=RandomField(alpha,N,L)

$this function realizes a 2—weakly isotropic spherical random field
%alpha cotrolls the decay of the angular power C_1l=(1+1l)"(—alpha)
%L is the truncation

%N is the space discretization

$the function 'Y_1Im_full' is needed

T = zeros (2xN,N) ;
theta = linspace(0,pi,N);
phi = linspace(0,2*pi, 2xN)"';

© 00 N 3 O W N

== e
N o= O

T = randn(1,1)*1/2xsqrt (1/pi) *T;

_
oW

$simulate T up to order L
C = (1l:L+1) .~ (—alpha);
for 1=0:L

= =
[N
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17 beta=randn (1,2*1+1);

18 Y = Y_1lm full(l,N);

19 for m=—1:1

20 T =T + sqgqrt (C(1l+1)) xbeta(l,l+m+1)*xY(:, :,1l+m+1);
21 end

22 end

23
24 %set the coordinates

25 x = (cos(phi)=xsin(theta));

26 Y (sin (phi) xsin (theta));
27z (ones (2%N, 1) xcos (theta)) ;
28

29 Splot the truncated T

30 surf(x,y,z,T)
31 shading flat
32 colorbar

33

34 end
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B. MATLAB code for the stochastic heat

equation with 2-weakly isotropic
)-Wiener noise

This function computes the coefficients of the expansion in the real spherical harmonics for

a function f in L%(S% R):

© 0 N O Ok W N

e e
=W N = O

15
16
17
18
19

function A=coeff (f,1,N)

%$this function computes the coefficients of a real L"2(S"2) function for
$fixed 1 and space discretization N

$the function 'Y_1m_full' is needed.

A = zeros (2%1+1,1);
theta = linspace(0,pi,N);

)

%phi = linspace (0, 2xpi,2%N)"';

Y=Y 1m_full(l,N);
for m=—1:1
$using trapezoidal rule
I = f.xY(:,:,1+m+1) .+ (ones (2xN, 1) *sin (theta));

A(l+1+m) = sum(sum(I))* (2xpi”2)/ (2+xN"2);
end
end

This is an implementation of the truncated solution of the stochastic heat equation with
2-weakly isotropic Q-Wiener noise Equation (1.1):

© 00 9 O g s W N =

e e e e e
o ks W N = O

17

function [V,x,v,z,W]=st_heat_eq

this is an implementation of the stochastic heat equation on the sphere,
as initial condition we take the for L=20 truncated expansion of an
indicator function f.

M is time discretization

N is the space discretization

T is the time horizon

to run this function, the functions 'Y_1m_full' and 'coeff' are needed.
W is the solution with respect to the coordinates 'x,y,z' in the time
horizon [0, T]

V is a video generated with the single plots of W

N o o O o O o° o° o o° o

clear all
close all

alpha = 3;
T = 3;
M = 100;
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19 N = 200;
20 L = 50;
21 h = T/M;
22

23 theta = linspace (0,pi,N);

24 phi = linspace(0,2*pi,2xN)"';
25

26 %allocate memory

27 W = zeros (2%N,N,M+1);

28

29

30 %set the initial condition

31 £ = zeros(2xN,N);

32 £(N/2:3xN/2,N/4:3xN/4) = 1;

33

34 %set the angular power spectrum

35, C = (1:L+1)."(—alpha);

36

37

38 for 1=0:L

39 A = coeff (f,1,N);

40 beta = randn (M+1,2x1+1);

41 Y = Y_1lm full(l,N);

42 for m=—1:1

43 for 3=0:M

44 W(:,:,3+1) = W(:,:,J+1) +
Y(:,:,14m+1l) » (A(l+m+l) xexp(—1x (1+1) xhx7j) +...

45 sqrt (C(1+1)) »sgrt (h) *exp(—1x (1+1) %« (hxj —
hx (0:3))) *beta(1: (J+1),1+m+l));

46 end

47 end

48 end

49

50 %$define the coordinates

51 X (cos (phi) xsin (theta));
52y = (sin(phi)xsin(theta));

53 z = (ones (2+xN,1)*cos (theta));
54

55 %$create the video
56 for j=1:(M+1)

57 surf(x,y,z,W(:,:,73));
58 shading flat

59 V(j)= getframe;

60 end

61

62 end
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C. Interpolation theory

In the following we will summarize the needed material from interpolation theory. We
will very briefly define the main objects and state the needed results. We will follow the
exposition of Tartar in [24] and will cite some specific results from the book of Triebel [25].
This short exposition however requires some prior knowledge of the reader.

Let (Eo, || - |Ey)s (Ev, || - [|,) be two normed vector spaces which are both continuously
imbedded in another topological vector space £. Elements in Ey will be denoted by ag and
elements in F; will be denoted by a;. We obtain the spaces

EoN E;  equipped with the norm  ||a||g,ne, = max{||a|| g, [|all &, }

Eo+ E; equipped with the norm ||a||g,+5, = ir&ﬁ-al{HaO”EO + |Ja1|| g, }-

Ey, E1 is called an interpolation couple. We will follow the so called K-method and define
for a € Ey + E1 and t > 0 the so called K-functional

K(t,a, B, Er) = _inf {laollp, +tllarlls, }-
=ap+a1

a

The dependency on the spaces in the K-functional will be disregarded, whenever they are
clear. We define the interpolation spaces of Ey and Ej.

Definition C.1. For 6 € (0,1) and p € [1,00) we define the space

* o dt
(Eo,E1)gp=<a€ Ey+ Ey : P K (¢, a)zv7 < o0
0
and for p = oo we define

(Eo, E1)g,00 = {a € By + Eq : supt_eK(t, a) < oo} )
t>0

For a € (Ey, E1)s, the respective norms are given by

00 e\ »
— p —
lall(Ey,E1)5,, = (/0 t GpK(t:a)pt> and  |lall(gy,E1)p. = i;lgt YK (t,a).

The interpolation spaces and the K-functional have many interesting properties, we however
focus on what is necessary.

Lemma C.2. For € (0,1) and 1 < p < q < oo it holds that (Eo, E1)gp, C (Eo, E1)g,q with
continuous embedding.

Proof. This is Lemma 22.2 in [24]. O

If we consider a second interpolation couple Fjy, F; we can interpolate linear bounded op-
erators.

151



Lemma C.3. Let A be a linear mapping that maps from Eg+ E1 to Fo+ Fy. If A maps Ey
into Fy such that || Axo||r, < Mol||zollz, for all zog € Ey and if A maps Ey into Fy such that

Az < Mi||zi||E, for all z1 € Eq, then A is a linear bounded mapping from (Eo, E1)e,p

to (Fo, F1)gp for all 0 € (0,1) and p € [1,00]. Moreover we obtain a bound on the operator
norm of A, i.e. for all x € (Ey, E1)g,p it holds that

1AZll £y, 1), < Mo~ M7 |12l (8o, 4)., -
Proof. This is Lemma 22.3 in [24]. O

With this general setup we are interested in the interpolation spaces that result from the
sequence space £ ;(N) for integers k > 0 and § € (0,2] and from L% (Q,C*7(S?)) for
integers ¢ > 0, p € (0,00) and v € (0,1), where (92,4, P) is a probability space. Note that
these spaces were introduced in Chapter 6.

Lemma C.4. For an integer k > 0 and 6 € (0,2] it holds with equivalent norms that
(E%MN), €i+2,6(N)) %72 = £i+1,5(N)~

Proof. Since the sequence spaces can be interpreted as a LP-space with the counting mea-
sure, we can cite a result from Triebel [25] for LP-spaces with weights. In the notation of
[25] we have that £} 5(N) = Ly 2 (N) and G s(N) = Ly 2 (N), where wo(z) = x(1+2k+0)/2
and wy (z) = 0 H2(+2)+9)/2 Theorem 1.18.5 in [25] implies that with equivalent norms it
holds that
(Gs(N), 67y 5(N))

3 = (Loug ), Lop (), = Loy (N) = 6, (),

1
27 ,2

D=

where w?(z) = wo(x)w (x) = ! H2EFD+0, 0

Lemma C.5. For an integer t > 0, p € [2,00) and v € (0,1) it holds with continuous
embedding that

(LE(2, C¥7(S?)), LE(Q, C*T37(52))) 1 , € LE(Q,CTH7(52)).

2

[

Proof. In this proof we also cite some tools from Triebel [25]. Since C**27(S2) C C*7(S?)
these two Holder spaces are an interpolation couple. With Lemma C.2 we obtain that with
continuous embedding it holds that

(L5 (9, C7(S%)), L (Q, CF27(5%))) 1, € (LA(Q,CH7(S?)), L, (Q, CHT27(S%)))

P’

N[

)

N[

Theorem 1.18.4 in [25] is applicable and implies that with equivalent norms it holds that
(Lp(Q,C™7($%), Lp(Q, C127(S%)) s, = Lp (Q, (C(5%),C27(5%)) %,p) :

If B C R? is a bounded domain with smooth boundary Theorem 4.5.1 in [25] implies that
with equivalent norms

(C*(B),C*7(B))y o, = C"T7(B).

)

D=
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In particular, there exists a constant K such that for all f € (C*7(B),C"*27(B))
holds that

1
27

HfHCH‘l,’Y(E) < KHJ?H(cL,v(E),cwrM(E))1 : (C.1)

2,

In Section 6.1 we defined the Holder spaces on S? with respect to an atlas. Let (V},53;:7 €
J) be a finite, smooth atlas of S? such that the boundary of B; 1(V}) is smooth for all j € J
and let ¥ be a partition of unity subordinate to the open cover (V; : j € J) of S?. We arbi-
trarily fix f € (C*7(S?), C’H'Q’V(Sz))%pO and j € J and apply the mentioned interpolation
result of Holder spaces on subdomains of Euclidean space, in particular Inequality (C.1),
to obtain that

£l (¢ (s2),00+27(52))

5,00

( Alftllcunsn + l fallcns 52)}>

> supt ( IR o+ 1088 5 )

t>0

1
> supt”? inf t
= 2<<m>ﬁ;nﬁ,j+f2,j{“fw”m @ sk |

=198l n (B;1(V)).C 2 (8, 1(V;)
> KH|(fY5)]

Lo

5

O (B1(V;))

where the infimum is taken over the respective functions such that f; € C“7(S?), f2 €

C27(S?), f15 € C’L’V(,Bj_l(‘/})) and fo; € CL+2’7(B;1(1/j)) is maintained. This argument

can be repeated for all j € J. Since the atlas is finite, we conclude that f € C**17(S?)

and that there exists a constant K such that for all f € (C*7(S?), C*T27(5?)). _ it holds
2,

that
| fllcetia(s2y < Kl fll(ceris2y,corzv(s2)) ,

2,

Hence, it holds with continuous embedding that
(CW(SZ),CLJFQ"Y(S2))%7Oo c Ch(S8P).
We apply Lemma C.2 and obtain that
2, (Q (C(S2), CHQW(S?))%JD) C I (9, CH(52)),

which implies the claim together with the first two inequalities. O
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