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2-weakly isotropic spherical random fields are defined and analyzed, especially 2-weakly
isotropic Gaussian spherical random fields. The connection between the angular power
spectrum, the path regularity and the integrability of these fields is in particular investi-
gated. Expansions of realizations of these fields into spherical harmonics are a key tool in
the analysis. One application of this is the discussion of the stochastic heat equation with
additive 2-weakly isotropic Q-Wiener noise. Unique solvability and Hölder regularity of
second order, elliptic partial differential equations on the sphere with log-normal, 2-weakly
isotropic coefficients will be discussed. Here, existence, uniqueness and integrability of the
random solution and Hölder norms of its realizations with respect to the Gaussian measure
are established by tracking the constants through the Schauder estimates and employing
Fernique’s theorem. Here, the connection between the angular power spectrum and path
regularity of the solution will be seen.
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1. Introduction

In this project we introduce the notion of a 2-weakly isotropic spherical random field which
is in some sense invariant under the action of SO(3). We briefly summarize the spherical
harmonics, its real version and some useful properties of these as orthonormal basis of
L2(S2,R) and as diagonalizing sequence of the spherical Laplace operator ∆S2 , where S2

denotes the unit sphere as a subset of R3. The discussion of the spherical harmonics enables
us to establish a spherical expansion of 2-weakly isotropic spherical random fields which
exists in L2

P⊗dσ(Ω × S2,R) and in L2
P (Ω,R) sense, where (Ω,A, P ) is a probability space

and dσ denotes the Lebesgue measure on S2. This is the first main result.

Theorem 1.1. For a 2-weakly isotropic spherical random field T there exists an expansion
in the spherical harmonics (Yl,m : l ≥ 0,m = −l, ..., l) in L2

P⊗dσ(Ω×S2,R) and in L2
P (Ω,R)

T =
∑
l≥0

l∑
m=−l

al,mYl,m.

For a 2-weakly isotropic spherical random field the coefficients of the spherical expansion
(al,m : l ≥ 0,m = −l, ..., l) are pairwise uncorrelated and define the positive sequence
(Cl : l ≥ 0), which is called the angular power spectrum in the following way:

Clδl,l′δm,m′ = E[al,mal′,m′ ].

The notion of a 2-weakly isotropic spherical random field can be combined with the Gaussian
distribution on L2(S2,R) to form a Q-Wiener process W = (W (t) : t ≥ 0) with given
angular power spectrum. Then we can formulate the stochastic heat equation with 2-weakly
isotropic Q-Wiener noise W

X(t) = X(0) +

∫ t

0
∆S2X(s)ds+W (t). (1.1)

The property that the noise is 2-weakly isotropic will be the key to a solution formula in
the discussion of this problem. An implementation with MATLAB of the obtained solution
to Equation (1.1) can be found in Appendix B.
With the first result Theorem 1.1 at hand, we develop further properties of 2-weakly
isotropic Gaussian spherical random fields. After a slight generalization of the Kolmogorov–
Čentsov continuity theorem to random fields, we provide sufficient conditions for 2-weakly
isotropic Gaussian spherical random fields to have a Hölder continuous modification. This
is the second main result.

Theorem 1.2. If T is a 2-weakly isotropic Gaussian spherical random field, such that the
angular power spectrum fulfills that (Cll

1+δ : l ≥ 0) is summable for δ ∈ (0, 2], then for all
γ ∈ (0, δ2) there exists a γ-Hölder continuous modification of T .
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Since a modification of a 2-weakly isotropic spherical random field is also 2-weakly isotropic,
Theorem 1.1 and Theorem 1.2 provide the existence of a continuous 2-weakly isotropic
Gaussian spherical random field. The first five chapter of this exposition were developed
in parallel to a recent paper by Lang and Schwab [20]. Up to this point these results can
also be found in this paper by Lang and Schwab. However the development of the results
in this exposition follows a different, independent and more elementary approach.

In the following we are interested in higher order regularity of a continuous 2-weakly
isotropic Gaussian spherical random field T . In Chapter 6 we develop conditions on the
angular power spectrum of T such that T is P -a.s. a member of a Sobolev space, i.e. weak
partial derivatives of T up to ιth order are P -a.s. in L2(S2,R) if the angular power spec-
trum satisfies that (Cll

1+2ι : l ≥ 0) is summable for an integer ι ≥ 0. In the case of Hölder
continuity, we observe that 2-weakly isotropic spherical random fields are generally P -a.s.
in L2(S2,R) and the angular power spectrum satisfies that (Cll : l ≥ 0) is summable. When
this condition can be strengthen by adding δ ∈ (0, 2] to the exponent of the weight, i.e.
(Cll

1+δ : l ≥ 0) is summable, we achieve Hölder continuity. This concept can be generalized
to weak derivatives as the next theorem shows.

Theorem 1.3. If T is a continuous 2-weakly isotropic Gaussian spherical random field,
such that the angular power spectrum satisfies that (Cll

1+2ι+δ : l ≥ 0) is summable for
δ ∈ (0, 2] and some integer ι ≥ 0, then T ∈ LpP (Ω, Cι,γ(S2)) for all p ∈ (0,∞) and all
γ ∈ (0, δ2).

We will give an elementary proof of this result and will find a second approach, which relies
on successive application of elliptic regularity.
In engineering and scientific applications log-normally distributed spherical random fields
are important and are introduced in Chapter 7. They are denoted by A and will be defined
through Gaussian spherical random fields, i.e. for a Gaussian spherical random field T we
define A = exp(T ). We are able to transfer the regularity results on Gaussian spherical
random fields to the log-normal case. The regularity of log-normally distributed spherical
random fields is the important ingredient to consider in Chapter 8 elliptic partial differential
equations on the sphere with a 2-weakly isotropic log-normally distributed coefficient, i.e.
we consider the problem to find u such that

−∇S2 · (A∇S2u) = f (1.2)

for a given deterministic and sufficiently smooth right hand side f . We recapitulate the
Schauder theory and analyze the precise constants in the Schauder estimates. With these
estimates we will be able to deduce higher regularity of the random solution u. The regular-
ity of u is governed by the regularity of the 2-weakly isotropic log-normal spherical random
field A, which is implied by the decay of the angular power spectrum of the underlying
continuous 2-weakly isotropic Gaussian spherical random field.

Theorem 1.4. Let A be a 2-weakly isotropic log-normal spherical random field, that results
from a continuous 2-weakly isotropic Gaussian spherical random field, whose angular power
spectrum satisfies that (Cll

1+2ι+δ : l ≥ 0) is summable for some δ ∈ (0, 2] and some
integer ι ≥ 0. For all γ ∈ (0, δ2) there exists a unique solution u ∈ LpP (Ω, Cι+1,γ(S2)) of
Equation (1.2) for all p ∈ (0,∞).

The appropriate setup and formulation of these four theorems will of course be made precise
in the following exposition.
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2. Review of Peter–Weyl theory on the
sphere

In this chapter we discuss some important tools from harmonic analysis. Before we get
started we introduce some notation. For k ∈ N the Euclidean norm on Rk is denoted by
‖ · ‖Rk and the inner product by 〈·, ·〉Rk . In the case k = 3 the subscript index ’R3’ will be
omitted. For k ∈ N the components of elements in Rk will be denoted by subscript indices,
i.e. x = (x1, ..., xk)

>. The Kronecker delta for two integers l and m is defined by δl,m = 1 if
l = m, δl,m = 0 else. For a complex number z, the complex conjugate of z is denoted by z,
the real part is denoted by R(z) and the imaginary part by I(z). The sphere as a subset
of R3 is denoted by S2 = {x ∈ R3 : ‖x‖ = 1}. We will use the following convention of the
spherical coordinates on the sphere for (θ, ϕ) ∈ [0, π]× [0, 2π)x1

x2

x3

 =

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 ,

for θ ∈ {0, π} we set ϕ = 0. The metric d on S2 induced by geodesics is given by

d(x, y) = arccos(〈x, y〉),

for x, y in S2. In our coordinates this reads

d(x, y) = arccos (sin(θx) sin(θy) cos(ϕx − ϕy) + cos(θx) cos(θy)) . (2.1)

The Lebesgue measure on the sphere is denoted by dσ(x) = sin(θ)dθdϕ. The function
space of square integrable functions from S2 to the complex or real numbers is denoted by
L2

dσ(S2,C) and L2
dσ(S2,R). The usual norms in these spaces are denoted by ‖ · ‖L2

dσ(S2,C)

and ‖ · ‖L2
dσ(S2,R). In cases of other domains or measures the notation will be adapted

accordingly. In the case of the Lebesgue measure dσ on the sphere the measure will be
omitted. Equality of functions is understood in the L2 sense, if not otherwise stated. Finally
the special orthogonal group is given by SO(n) = {g ∈ Rn×n : g>g = In,det(g) = 1} for
n ∈ N, where g> denotes the transpose of g in Rn×n and In the identity matrix in Rn×n.
Basic knowledge of functional analysis and probability theory is assumed throughout the
whole text.

Lemma 2.1. For x, y, z, w ∈ S2 such that 〈x, y〉 = 〈z, w〉, there exists g ∈ SO(3) such that

gx = z and gy = w.

Proof. The proof is done in two steps. First we consider only x and z. Proposition 2.12
of [21] with x = x,G = SO(3) and X = S2 directly says that there exists h ∈ SO(3) such
that hx = z. We denote the image of y under the left action of h by ỹ = hy.
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The second step is to show that there exists ĝ ∈ SO(3), such that ĝỹ = w and ĝz = z, i.e.
ĝ is in the stabilizer of z. This will give the claim of the lemma with g = ĝh.
To show the second step we may assume after rotation, that z = (1, 0, 0)>. Since action
by SO(3) preserves the inner product, the assumption about the inner product of the two
pairs gives

〈x, y〉 = 〈hx, hy〉 = 〈z, ỹ〉 = 〈z, w〉.

The evaluation of the inner products gives that the first components of ỹ and w agree. This
implies that ỹ and w lie on a circle with radius r =

√
1− w2

1 and are separated by some
angle θ. Since the stabilizer of z regarding the left group action under SO(3) is given by{(

1 0
0 g

)
: g ∈ SO(2)

}
,

we can take

ĝ =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 .

This gives the claim.

The book of Marinucci and Peccati [21] contains a development of representation theory
for compact groups including the special case SO(3). They use the Peter–Weyl theorem
on SO(3) to deduce spherical Fourier expansions on the sphere S2. We will summarize the
needed material with a few definitions, lemmas and a theorem.

Definition 2.2. The associated Legendre polynomials P lm for integers l ≥ 0, m = −l, ..., l
and x ∈ [−1, 1] are defined by

P lm(x) =
(−1)m

2ll!
(1− x2)

m
2

dl+m

dxl+m
(x2 − 1)l.

For the special case m = 0, the functions P l0 for integers l ≥ 0 are called Lengendre poly-
nomials. The spherical harmonics Yl,m for integers l ≥ 0, m = −l, ..., l and (θ, ϕ) in
[0, π]× [0, 2π) are defined by

Yl,m(θ, ϕ) =

√
2l + 1

4π

√
(l −m)!

(m+ l)!
P lm(cos θ)eimϕ.

Theorem 2.3. For any T in L2(S2,C) there exists the following Fourier expansion involv-
ing the spherical harmonics which converges in the L2(S2,C)-norm

T =
∑
l≥0

l∑
m=−l

al,mYl,m,

al,m =

∫
S2

T (x)Yl,m(x)dσ(x),

and for integers l, l′ ≥ 0, m = −l, ..., l and m′ = −l′, ..., l′ it holds that∫
S2

Yl,m(x)Yl′,m′(x)dσ(x) = δl,l′δm,m′ .

Lukas Herrmann 8 ©



Proof. The first claim is stated as Proposition 3.29 in [21] and the second claim is stated
as Equation (3.39) in [21].

For real-valued functions, we wish to have a real version of this expansion. Moreover we
want to establish relations between the real and complex coefficients. We will first define
the real spherical harmonics and the corresponding real coefficients and then prove the
needed properties as a corollary of Theorem 2.3.

Definition 2.4. The real spherical harmonics Ỹl,m and the real coefficients ãl,m for integers
l ≥ 0, m = −l, ..., l are defined by

ãl,m =


√

2R(al,m) m > 0,

al,0 m = 0,

−
√

2I(al,|m|) m < 0,

and Ỹl,m =


√

2R(Yl,m) m > 0,

Yl,0 m = 0,√
2I(Yl,|m|) m < 0.

Corollary 2.5. For any T ∈ L2(S2,R) there exists the following real Fourier expansion,
which converges in the L2(S2,R)-norm,

T =
∑
l≥0

l∑
m=−l

ãl,mỸl,m,

ãl,m =

∫
S2

T (x)Ỹl,m(x)dσ(x),

and for integers l, l′ ≥ 0, m = −l, ..., l and m′ = −l′, ..., l′, it holds that∫
S2

Ỹl,m(x)Ỹl′,m′(x)dσ(x) = δl,l′δm,m′ .

Proof. The first part of the proof will be to show that span{Ỹl,m : l ≥ 0,m = −l, .., l}
is dense in L2(S2,R). Since L2(S2,R) ⊂ L2(S2,C) with ‖ · ‖L2(S2,C) = ‖ · ‖L2(S2,R) for
real-valued functions, T can be seen as an element of L2(S2,C). For any T in L2(S2,C)
Theorem 2.3 already yields the complex Fourier expansion

T =
∑
l≥0

l∑
m=−l

al,mYl,m.

This means it is sufficient to show that the real Fourier expansion converges against the
complex one, i.e.

0 = lim
L→∞

∥∥∥∥∥T −
L∑
l=0

l∑
m=−l

ãl,mỸl,m

∥∥∥∥∥
2

L2(S2,C)

= lim
L→∞

∥∥∥∥∥∥
∑
l≥0

l∑
m=−l

al,mYl,m −
L∑
l=0

l∑
m=−l

ãl,mỸl,m

∥∥∥∥∥∥
2

L2(S2,C)

. (2.2)

We attempt this with looking at the sums over m = −l, ..., l for a fixed integer l ≥ 0
individually and show that the difference vanishes, i.e.

l∑
m=−l

al,mYl,m =

l∑
m=−l

ãl,mỸl,m. (2.3)

Lukas Herrmann 9 ©



To show this, we apply two properties of the spherical harmonics. The first one is
Yl,m = (−1)mYl,−m, which follows from the definition and the second is al,m = (−1)mal,−m.
We quickly calculate the latter where we use that T is real-valued

al,m =

∫
S2

T (x)Yl,m(x)dσ(x) =

∫
S2

T (x)Yl,m(x)dσ(x)

=

∫
S2

T (x)Yl,m(x)dσ(x) =

∫
S2

T (x)(−1)mYl,−m(x)dσ(x) = (−1)mal,−m. (2.4)

We apply these two properties in the next two steps on the way to prove Equation (2.3),

l∑
m=−l

al,mYl,m = al,0Yl,0 +

l∑
m=1

(al,m(R(Yl,m) + iI(Yl,m)) + al,−m(R(Yl,−m) + iI(Yl,−m))

= al,0Yl,0 +
l∑

m=1

(al,mR(Yl,m) + al,−m(−1)mR(Yl,m)

+ al,miI(Yl,m)− al,−mi(−1)mI(Yl,m))

= al,0Yl,0 +

l∑
m=1

((al,m + al,m)R(Yl,m) + i(al,m − al,m)I(Yl,m)).

We remark that for x ∈ C, it holds x+ x = 2R(x) and x− x = 2iI(x) and leads to

l∑
m=−l

al,mYl,m = al,0Yl,0 +

l∑
m=1

(
√

2R(al,m)
√

2R(Yl,m)−
√

2I(al,m)
√

2I(Yl,m))

=
l∑

m=−l
ãm,lỸl,m.

We can apply Equation (2.3) to Equation (2.2) and then use the Parseval identity. Since
we choose T to be in L2(S2,R), we know that the sequence of absolute values of Fourier
coefficients is square summable, thus the limit vanishes, i.e.

lim
L→∞

∥∥∥∥∥∥
∑
l≥0

l∑
m=−l

al,mYl,m −
L∑
l=0

l∑
m=−l

ãl,mỸl,m

∥∥∥∥∥∥
2

L2(S2,C)

= lim
L→∞

∥∥∥∥∥∥
∑
l≥L+1

l∑
m=−l

al,mYl,m

∥∥∥∥∥∥
2

L2(S2,C)

= lim
L→∞

∑
l≥L+1

l∑
m=−l

|al,m|2 = 0.

This shows that span{Ỹl,m : l ≥ 0,m = −l, .., l} is dense in L2(S2,R), since for real-valued
functions ‖ · ‖L2(S2,C) = ‖ · ‖L2(S2,R).
The second part of the proof is to show that the real spherical harmonics Ỹl,m for integers
l ≥ 0, m = −l, ..., l are orthonormal. We fix l, l′ ≥ 0 and start with the case m,m′ > 0.
We insert the definition of the real spherical harmonics into the expression and expand the
brackets to obtain that∫

S2

Ỹl,m(x)Ỹl′,m′(x)dσ(x)s =
1

2

∫
S2

(Yl,m(x) + Yl,m(x))(Yl′,m′(x) + Yl′,m′(x))dσ(x)

Lukas Herrmann 10 ©



=
1

2

∫
S2

(Yl,m(x)Yl′,m′ + Yl,m(x)Yl′,m′ + Yl,m(x)Yl′,m′(x) + Yl,m(x) Yl′,m′(x))dσ(x).

We apply the already used relation Yl,m = (−1)mYl,−m in order to use the orthogonality
of the spherical harmonics, which is stated in Theorem 2.3, on all four combinations. The
fact m > −m′ then gives∫

S2

Ỹl,m(x)Ỹl′,m′(x)dσ(x) =
1

2
(

∫
S2

(−1)m
′
(Yl,m(x)Yl′,−m′(x) + Yl,m(x)Yl′,−m′(x))dσ(x)

+ 2δl,l′δm,m′)

= (−1)m
′
δl,l′δm,−m′ + δl,l′δm,m′ = δl,l′δm,m′ .

The case for m,m′ < 0 is treated similarly. We proceed with m > 0,m′ < 0. The same
steps as we performed in the case m,m′ > 0 give the result here as well. We start with the
definition of the real spherical harmonics and expand the brackets to obtain that∫

S2

Ỹl,m(x)Ỹl′,m′(x)dσ(x) =
1

2i

∫
S2

(Yl,m(x) + Yl,m(x))(Yl′,|m′|(x)− Yl′,|m′|(x))dσ(x)

=
1

2i

∫
S2

(Yl,m(x)Yl′,−m′(x) + Yl,m(x)Yl′,−m′(x)

− Yl,m(x)Yl′,−m′(x)− Yl,m(x) Yl′,−m′(x))dσ(x).

The relation Yl,m = (−1)mYl,−m and the orthogonality of the spherical harmonics are used
to obtain that∫

S2

Ỹl,m(x)Ỹl′,m′(x)dσ(x) =
1

2i
(

∫
S2

(−1)m(Yl,−m(x)Yl,−m′(x)− Yl,−m(x)Yl′,−m′(x))dσ(x)

+ δl,l′δm,−m′ − δl,l′δm,−m′)

=
1

2i
(δl,l′δ−m,−m′ − δl,l′δ−m,−m′) = 0.

This gives the claim. In the case m = 0 the real and spherical harmonics agree, that implies
the normalization. The orthogonality is also clear by Definition 2.4 and Theorem 2.3.

For a given expansion in the real spherical harmonics, it is easier to perform manipulations
on the corresponding expansion in the spherical harmonics than on the real ones. That is
why it is useful to know how the complex coefficients al,m are expressed in terms of the real
ones ãl,m.

Lemma 2.6. For T in L2(S2,R) the complex coefficients al,m for integers l ≥ 0, m =
−l, ..., l can be obtained from the real ones ãl,m in the following way

al,m =


1√
2
(ãl,m − iãl,−m) m > 0,

ãl,0 m = 0,

(−1)m 1√
2
(ãl,−m + iãl,m) m < 0.

Proof. The proof is similar to the arguments before. We simply fix an integer l ≥ 0 and
look at the sums over m = −l, ..., l individually. We start with the expansion in the real
spherical harmonics and insert their definition in terms of the spherical harmonics,

l∑
m=−l

ãl,mỸl,m =

l∑
m=1

ãl,m
√

2R(Yl,m) + ãl,0Yl,0 +

−1∑
m=−l

ãl,m
√

2I(Yl,|m|)
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=
l∑

m=1

ãl,m
1√
2

(Yl,m + Yl,m) + ãl,0Yl,0 +
−1∑

m=−l
ãl,m

1√
2i

(Yl,|m| − Yl,|m|).

After we eliminated all complex conjugates of spherical harmonics due to the relation
Yl,m = (−1)mYl,−m, we reorder the terms and obtain the claim:

l∑
m=−l

ãl,mỸl,m =
l∑

m=1

ãl,m
1√
2

(Yl,m + (−1)mYl,−m) + ãl,0Yl,0

+
−1∑

m=−l
ãl,m

1√
2i

(Yl,|m| − (−1)mYl,m)

=

l∑
m=1

1√
2

(ãl,m − iãl,−m)Yl,m + ãl,0Yl,0

+
−1∑

m=−l

1√
2

(−1)m(ãl,−m + iãl,m)Yl,m.

In the next chapter we introduce isotropy, which is in some sense invariance under the
action of SO(3). The next lemma provides a decent tool for the next chapter, it discusses
a group action of SO(3) on L2(S2,C), the so called left regular representation.

Lemma 2.7. For T ∈ L2(S2,C) and g ∈ SO(3), the left regular representation D of SO(3)
on L2(S2,C) is defined by

D(g)T = T (g−1·).

This representation D is unitary. Furthermore D can be characterized on finite dimensional
subspaces of L2(S2,C) spanned by the spherical harmonics Yl,m for some fixed integers l ≥ 0
and varying m = −l, ..., l, i.e.

D(g)Yl,m = Yl,m(g−1·) =
l∑

m′=−l
Dl
m′,m(g)Yl,m′ .

Dl denotes a unitary matrix on the vector space C2l+1.

Proof. To get familiar with representations, we check that this definition of D is actually a
representation. For g1, g2 ∈ SO(3) and T ∈ L2(S2,C) we obtain

D(g1g2)T = T ((g1g2)−1·) = T (g−1
2 g−1

1 ·) = D(g1)T (g−1
2 ·) = D(g1)D(g2)T.

For the rest of the proof we fix T in L2(S2,C) and g in SO(3). To finish the proof of the
first claim, we check that the condition for D to be unitary is satisfied

‖D(g)T‖2L2(S2,C) = ‖T (g−1·)‖2L2(S2,C) =

∫
S2

|T (g−1x)|2dσ(x).

The transformation formula from calculus yields the claim, since the determinant of g is
one, i.e. det(g) = 1,

‖D(g)T (·)‖2L2(S2,C) =

∫
S2

|T (x)|2|det(g)|dσ(x) =

∫
S2

|T (x)|2dσ(x) = ‖T‖2L2(S2,C).
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Thus D is a unitary representation of SO(3) on L2(S2,C).
For the second claim of the lemma we reference an auxiliary result. For any fixed integer
l ≥ 0 and m = −l, ..., l, [21] contains the following relation as equation (3.44) for a unitary
matrix Dl ∈ C(2l+1)×(2l+1)

Yl,m(g−1·) =

l∑
m′=−l

Dl
m′,m(g)Yl,m′ .

The matrix Dl is unitary due to proposition 3.6 in [21]. This formula gives the claim, since
for the same l and m by definition of D, it holds that

D(g)Yl,m(·) = Yl,m(g−1·).

There is another important non-trivial relation about the spherical harmonics.

Lemma 2.8. For x, y ∈ S2 and an integer l ≥ 0, it holds that

P l0(〈x, y〉) =
4π

2l + 1

l∑
m=−l

Yl,m(x)Yl,m(y) =
l∑

m=−l
Ỹl,m(x)Ỹl,m(y).

In the special case x = y ∈ S2 this yields

l∑
m=−l

Yl,m(x)Yl,m(x) =
2l + 1

4π
.

Proof. The first claim is stated as equation (3.42) in [21] with a proof below. They use the
notation Pl, which is equal to P l0 in this manuscript. For the second claim, we have to check
that P l0(1) = 1. We start with the definition of the Legendre polynomials and compute the
first two derivatives in the definition

P l0(1) =
1

2ll!

dl

dxl
(x2 − 1)l

∣∣∣∣∣
x=1

=
1

2ll!

dl−1

dxl−1
2xl(x2 − 1)l−1

∣∣∣∣∣
x=1

=
1

2ll!

dl−2

dxl−2
2(l(x2 − 1)l−1 + 2x2l(l − 1)(x2 − 1)l−2)

∣∣∣∣∣
x=1

.

We can already see a certain pattern. When we compute the next l−2 derivatives, the first
term of the above expression with the exponent l − 1 will decompose into a sum of terms,
but each term will have (x2−1) as a factor. They vanish after we inserted x = 1. A similar
argument applies to the term with exponent l− 2. After we computed the l− 2 derivatives
the only term without (x2 − 1) as a factor looks like

P l0(1) =
1

2ll!
2lxll!

∣∣∣∣∣
x=1

= 1.

For the second equality in the first claim we apply Definition 2.4 and the relation Yl,m =
(−1)mYl,−m to obtain that

l∑
m=−l

Ỹl,m(x)Ỹl,m(y) =

l∑
m=1

2(R(Yl,m(x))R(Yl,m(y)) + I(Yl,m(x))I(Yl,m(y))) + Yl,0(x)Yl,0(y)
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=
l∑

m=1

(R(Yl,m(x))R(Yl,m(y)) + I(Yl,m(x))I(Yl,m(y))) + Yl,0(x)Yl,0(y)

+
−1∑

m=−l
((−1)mR(Yl,m(x))(−1)mR(Yl,m(y))

+ (−1)m+1I(Yl,m(x))(−1)m+1I(Yl,m(y)))

=
l∑

m=−l
(R(Yl,m(x))R(Yl,m(y)) + I(Yl,m(x))I(Yl,m(y))). (2.5)

Also we obtain that
l∑

m=−l
Yl,m(x)Yl,m(y) =

l∑
m=−l

(R(Yl,m(x))R(Yl,m(y)) + I(Yl,m(x))I(Yl,m(y))) (2.6)

+ i
l∑

m=−l
(I(Yl,m(x))R(Yl,m(y))−R(Yl,m(x))I(Yl,m(y))).

We already proved that
∑l

m=−l Yl,m(x)Yl,m(y) is real-valued and therefore

l∑
m=−l

(I(Yl,m(x))R(Yl,m(y))−R(Yl,m(x))I(Yl,m(y))) = 0. (2.7)

We combine Equalities (2.5), (2.6) and (2.7) and conclude that

l∑
m=−l

Yl,m(x)Yl,m(y) =
l∑

m=−l
Ỹl,m(x)Ỹl,m(y).

We introduce the spherical Laplace operator, which is also known as the Laplace–Beltrami
operator, as an operator on C∞(S2) in terms of our coordinates represented by (θ, ϕ) ∈
[0, π]× [0, 2π)

∆S2 =
1

sin(θ)

∂

∂θ
(sin(θ)

∂

∂θ
) +

1

sin2(θ)

∂2

∂ϕ2
.

Equation (3.51) in [21] together with the proof of Proposition 3.33 also in [21] yield that
the spherical harmonics fulfill the following eigenvalue relation with the spherical Laplace
operator

∆S2Yl,m = −l(l + 1)Yl,m.

Since the introduced real spherical harmonics are in either case a linear combination of
the spherical harmonics, they fulfill the same eigenvalue relation with the spherical Laplace
operator

∆S2 Ỹl,m = −l(l + 1)Ỹl,m.

We introduce the spherical gradient ∇S2 , which is also known as the Beltrami operator, on
C∞(S2). In our coordinates it reads

∇S2 = θ̂
∂

∂θ
+ ϕ̂

1

sin(θ)

∂

∂ϕ
,
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where θ̂ and ϕ̂ form an orthonormal basis of the tangent space at each point x ∈ S2

represented by (θ, ϕ). In our coordinates they are given by

θ̂ =

cos(θ) cos(ϕ)
cos(θ) sin(ϕ)
− sin(θ)

 and ϕ̂ =

− sin(ϕ)
cos(ϕ)

0


Note that the spherical divergence is also denoted by ∇S2 . For a smooth vector field X, it
reads in our coordinates

∇S2 ·X =
1

sin(θ)

∂

∂θ
(sin(θ)Xθ) +

1

sin(θ)

∂

∂ϕ
Xϕ,

where Xθ denotes the θ̂-component and Xϕ denotes the ϕ̂-component. This finishes the
discussion about the real spherical harmonics.
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3. Isotropic random fields on the sphere

In this chapter, we introduce the notion of spherical random fields and 2-weakly isotropic
spherical random fields. We also establish results on spherical expansions. For our analysis,
we introduce the probability space (Ω,A, P ). For a random variable X on (Ω,A, P ) the
expectation of X will be denoted by E[X], whenever this is well-defined.

Definition 3.1. A set of real-valued random variables {T (x) : x ∈ S2} on (Ω,A, P ) is
called spherical random field if

T : Ω× S2 → R

is measurable with respect to the product σ-algebra A ⊗ B(S2), where B(S2) denotes the
Borel σ-algebra of S2.

The index set of a spherical random field might be omitted whenever this is convenient and
we will simply say spherical random field T without explicitly referring to the probability
space (Ω,A, P ). In the case of a different index set than S2 which is also a Borel set and
such that the measurability property in the definition of spherical random fields is satisfied,
we will say random field.

3.1. Expansions of spherical random fields in the spherical
harmonics

The property of a random field to be n-weakly isotropic will connect the random variables,
which form a spherical random field.

Definition 3.2. For n ∈ N, a spherical random field T is called n-weakly isotropic if the
following two properties hold. First, for all positive k ≤ n and for all x ∈ S2 it holds that
E[|T (x)|k] <∞, and second, that for all g ∈ SO(3) and for all x1, ..., xk ∈ S2 it holds that

E[T (gx1) · · ·T (gxk)] = E[T (x1) · · ·T (xk)].

We will consider the case n = 2. Our first aim is to prove one main result about 2-weakly
isotropic spherical random fields, which was mentioned in the introduction. To prepare
ourselves we need a few lemmas about 2-weakly isotropic spherical random fields.

Lemma 3.3. A 2-weakly isotropic spherical random field T is an element of L2(S2,R)
P -a.s. and an element of L2

dσ⊗P (Ω× S2,R), i.e.

E

[∫
S2

|T (x)|2dσ(x)

]
<∞.
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Proof. Since T is 2-weakly isotropic, for a fixed x0 ∈ S2 the following mapping from SO(3)
to R is constant

g 7→ E[|T (gx0)|2].

According to Lemma 2.1, for every y in S2 we can find a g in SO(3) such that y = gx0.
This means that the following map is also constant:

y 7→ E[|T (y)|2].

Now we can simply fix x0 arbitrarily in S2, and because |T | is a non-negative function we
can apply Tonelli’s theorem and the property that S2 has finite measure under dσ:

E

[∫
S2

|T (x)|2dσ(x)

]
=

∫
S2

E[|T (x)|2]dσ(x) = E[|T (x0)|2]

∫
S2

dσ(x) <∞.

This shows the second statement of the lemma. To see the first statement, we look at
the random variable

∫
S2 |T (x)|2dσ(x). Assuming that this random variable is infinite with

positive probability, would imply that the expectation is also infinite, since this random
variable is non-negative. This is a contradiction to the second statement which we just
proved before.

Remark 3.4. The previous lemma implies in particular that the following random variables
are P -a.s. well-defined for integers l ≥ 0 and m = −l, ..., l:

al,m =

∫
S2

T (x)Yl,m(x)dσ(x).

Lemma 3.5. For a 2-weakly isotropic spherical random field T the random variables al,m
are uncorrelated for all l ≥ 0 and all m = −l, ..., l, i.e.

E[al,mal′,m′ ] = Clδl,l′δm,m′ ,

where (Cl : l ≥ 0) is a sequence of positive numbers.

Proof. The main part of the following argument can be found in Chapter 5.2 of [21]. The
key idea is to use that the Legendre polynomials (P l0 : l ≥ 0) form an orthonormal basis of
L2([−1, 1],R).
Since E[T (x)T (y)] = E[T (gx)T (gy)] for all g ∈ SO(3), we have the motivation to define
the real-valued function Γ(〈x, y〉) = E[T (x)T (y)]. Γ depends only on the angle between x
and y. This is determined by the inner product 〈x, y〉 which lies in [−1, 1]. To see that Γ
is well-defined as a function from [−1, 1] to R, we take the points x, y, z, w ∈ S2 and pair
them such that 〈x, y〉 = 〈z, w〉. We need to show that Γ(〈x, y〉) = Γ(〈z, w〉). Lemma 2.1
says that there exists g ∈ SO(3) such that gx = z and gy = w. So we can manipulate
Γ(〈x, y〉) using the 2-weakly isotropy property of T to obtain that

Γ(〈x, y〉) = E[T (x)T (y)] = E[T (gx)T (gy)] = E[T (z)T (w)] = Γ(〈z, w〉).

The next claim is that Γ ∈ L2([−1, 1],R). We introduce a reparameterization h of the
interval [−1, 1] as mapping from [0, π] to [−1, 1]. It is defined by h(θ) = 〈x, y(θ)〉, where
x = (0, 0,−1) and y(θ) = (sin(θ), 0, cos(θ)). Note that the derivative of h is h′ = 〈x, y(θ)〉′ =
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sin(θ). We insert this reparameterization h into Γ and obtain with the Cauchy–Schwarz
inequality∫ 1

−1
Γ(t)2dt =

∫ π

0
Γ(h(θ))2h′(θ)dθ =

∫ π

0
Γ(〈x, y(θ)〉)2 sin(θ)dθ

=

∫ π

0
E[T (x)T (y(θ))]2 sin(θ)dθ ≤ E[|T (x)|2]

∫ π

0
E[|T (y(θ))|2] sin(θ)dθ. (3.1)

To exploit the 2-weakly isotropy, we introduce the following matrix which is in SO(3) and
has the real parameter ϕ

g(ϕ) =

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 .

Note that

g(ϕ)y(θ) =

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 .

We insert g(ϕ) into the second spherical random field which is inside the integral in the
right hand side of Equation (3.1) and integrate over the parameter ϕ to obtain that∫ 1

−1
Γ(t)2dt ≤ 1

2π
E[|T (x)|2]

∫ 2π

0

∫ π

0
E[|T (g(ϕ)y(θ))|2] sin(θ)dθ dϕ

=
1

2π
E[|T (x)|2]

∫
S2

E[|T (y)|2]dσ(y) <∞.

The last quantity is finite due to the 2-weakly isotropy of T and Lemma 3.3.
Now it is save to apply the fact that the Legendre polynomials are an orthonormal basis of
L2([−1, 1],R). We can expand Γ in the usual way

Γ(〈x, y〉) =
∑
l≥0

alP
l
0(〈x, y〉), where al =

∫ 1

−1
Γ(t)P l0(t)dt.

For positive integers l, we define Cl = 4π
2l+1al and rewrite the expansion of Γ in this way

Γ(〈x, y〉) =
∑
l≥0

2l + 1

4π
ClP

l
0(〈x, y〉).

This expansion is now in the right form to apply Lemma 2.8 and obtain that

Γ(〈x, y〉) =
∑
l≥0

l∑
m=−l

ClYl,m(x)Yl,m(y).

Then we manipulate applying Fubini’s theorem to change the order of sums and integrals:

E[al,mal′,m′ ] = E

[∫
S2

T (x)Yl,m(x)dσ(x)

∫
S2

T (y)Yl′,m′(y)dσ(y)

]
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=

∫
S2

∫
S2

E[T (x)T (y)]Yl,m(x)Yl′,m′(y)dσ(x)dσ(y)

=

∫
S2

∫
S2

Γ(〈x, y〉)Yl,m(x)Yl′,m′(y)dσ(x)dσ(y)

=

∫
S2

∫
S2

∑
l0≥0

l0∑
m0=−l0

Cl0Yl0,m0(x)Yl0,m0(y) Yl,m(x)Yl′,m′(y)dσ(x)dσ(y)

=
∑
l0≥0

l0∑
m0=−l0

Cl0

∫
S2

Yl0,m0(x)Yl,m(x)dσ(x)

∫
S2

Yl0,m0(y)Yl′,m′(y)dσ(y)

=
∑
l0≥0

l0∑
m0=−l0

Cl0δl0,lδm0,mδl0,l′δm0,m′ = Clδl,l′δm,m′ .

Definition 3.6. For a spherical random field T , the positive sequence (Cl : l ≥ 0), which
we introduced in the previous lemma, is called the angular power spectrum of T .

The previous lemma also shows that it is non-negative and well-defined through the follow-
ing relation, for l ≥ 0 and m = −l, ..., l

E[al,mal′,m′ ] = Clδl,l′δm,m′ .

Lemma 3.7. For a 2-weakly isotropic spherical random field T , the following spherical
random fields

TL =

L∑
l=0

l∑
m=−l

al,mYl,m and T − TL

are also 2-weakly isotropic.

Proof. The second moment of both random fields exists by the triangle inequality and
the Parseval identity. The first moment can be estimated with the second moment using
Hölder’s inequality. So the following is left to show, that for any x, y in S2 and any g in
SO(3)

E[TL(x)TL(y)] = E[TL(gx)TL(gy)]

E[(T (x)− TL(x))(T (y)− TL(y))] = E[(T (gx)− TL(gx))(T (gy)− TL(gy))].

If we expand the second equation, we see, that to show the two equations above it suffices
to show

E[TL(x)TL(y)] = E[TL(gx)TL(gy)], (3.2)

E[T (x)TL(y)] = E[(T (gx)TL(gy)]. (3.3)

We start with the proof of Equation (3.3) and expand it

E[T (x)TL(y)] =

L∑
l=0

E[T (x)

l∑
m=−l

al,mYl,m(y)].

Lukas Herrmann 19 ©



So it suffices to show for integers l ≥ 0 that it holds that

E[T (x)

l∑
m=−l

al,mYl,m(y)] = E[T (gx)

l∑
m=−l

al,mYl,m(gy)].

In the proof of this claim, we apply our knowledge of the representations of SO(3), which
we introduced in the previous chapter. First we have to manipulate a little to put the
terms into the right shape. We start with inserting the definition of the coefficients of the
expansion in the spherical harmonics. In the second step we tacitly do an interchange of
the integral and the expectation due to Fubini’s theorem, to be able to apply the 2-weakly
isotropy property of T as stated in Definition 3.2 namely to put in g. In the third step we
do a coordinate change to obtain that

E[T (x)
l∑

m=−l
al,mYl,m(y)] =

l∑
m=−l

E[T (x)

∫
S2

T (z)Yl,m(z)dσ(z)]Yl,m(y)

=

l∑
m=−l

E[T (gx)

∫
S2

T (gz)Yl,m(z)dσ(z)]Yl,m(y)

=
l∑

m=−l
E[T (gx)

∫
S2

T (z)Yl,m(g−1z)dσ(z)]Yl,m(y).

Now we can apply the announced result of Lemma 2.7. This is the first step of the second
part of the calculation. We remember that, Dl(g) is the matrix of a unitary finite dimen-
sional representation, in particular the Hermitian is the inverse. This way, we can apply
Lemma 2.7 again in a second step to shift the left action of g to the spherical harmonic
outside the integral. The claim follows after putting in the definition of the coefficients,

l∑
m=−l

E[T (gx)

∫
S2

T (z)Yl,m(g−1z)dσ(z)]Yl,m(y)

=

l∑
m=−l

l∑
m1=−l

E[T (gx)

∫
S2

T (z)Dl
m1,m(g) Yl,m1(z)dσ(z)]Yl,m(y)

=

l∑
m1=−l

E[T (gx)

∫
S2

T (z)Yl,m1(z)dσ(z)]
l∑

m=−l
Dl
m,m1

(g−1)Yl,m(y)

=

l∑
m1=−l

E[T (gx)

∫
S2

T (z)Yl,m1(z)dσ(z)]Yl,m1(gy) = E[T (gx)
l∑

m=−l
al,mYl,m(gy)].

Equation (3.2) is proven similarly using Equation (3.3). We expand the left hand side of
Equation (3.2) in the following way by directly inserting the definition of the coefficients and
interchange the integral and the expectation. In the second step we insert Equation (3.3)
to obtain

E[TL(x)TL(y)] =

L∑
l,l′≥0

l∑
m=−l

∫
S2

E[T (z)

l′∑
m′=−l′

al′,m′Yl′,m′(y)]Yl,m(z)dσ(z)Yl,m(x)
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=
L∑

l,l′≥0

l∑
m=−l

∫
S2

E[T (gz)
l′∑

m′=−l′
al′,m′Yl′,m′(gy)]Yl,m(z)dσ(z)Yl,m(x)

=
L∑

l,l′≥0

l∑
m=−l

∫
S2

E[al,m

l′∑
m′=−l′

al′,m′Yl′,m′(gy)]Yl,m(gx) = E[TL(gx)TL(gy)].

The last step of the above calculation is proven with a similar argument as we just did
to prove Equation (3.3), which would also rely on Lemma 2.7. We omit the details. This
finishes the proof of the lemma.

Now we are in good shape to prove the first main result, which was already mentioned in
the introduction. We formulate Theorem 1.1 precisely.

Theorem 3.8. For a 2-weakly isotropic spherical random field T , it holds that the following
spherical expansion

T =
∑
l≥0

l∑
m=−l

al,mYl,m, al,m =

∫
S2

T (x)Yl,m(x)dσ(x),

converges in L2
P⊗dσ(Ω× S2,R) and in L2

P (Ω,R), i.e.

lim
L→∞

E

∫
S2

∣∣∣∣∣T (x)−
L∑
l=0

l∑
m=−l

al,mYl,m(x)

∣∣∣∣∣
2

dσ(x)

 = 0 (3.4)

and for all x ∈ S2

lim
L→∞

E

∣∣∣∣∣T (x)−
L∑
l=0

l∑
m=−l

al,mYl,m(x)

∣∣∣∣∣
2
 = 0. (3.5)

Proof. We already know from Remark 3.4, that the coefficients al,m of T are P -a.s. well-
defined complex random variables and Lemma 3.3 implies that the sequence of coefficients
converges P -a.s. Hence the expansion of T is well-defined and converges P -a.s. in L2(S2,R)
due to Theorem 2.3, i.e.

lim
L→∞

∫
S2

∣∣∣∣∣T (x)−
L∑
l=0

l∑
m=−l

al,mYl,m(x)

∣∣∣∣∣
2

dσ(x) = 0 P -a.s. (3.6)

So it is left to show the convergence in L2
P⊗dσ(Ω×S2,R) and in L2

P (Ω,R). Let Ω∗ ⊂ Ω be of
full probability such that T (ω) ∈ L2(S2,R) for all ω ∈ Ω∗.The orthogonality of the spherical
harmonics gives a dominating function using the Parseval identity twice. Explicitly for any
ω ∈ Ω∗, it holds that

∫
S2

∣∣∣∣∣T (ω, x)−
L∑
l=0

l∑
m=−l

al,m(ω)Yl,m(x)

∣∣∣∣∣
2

dσ(x) =

∫
S2

∣∣∣∣∣∑
l>L

l∑
m=−l

al,m(ω)Yl,m(x)

∣∣∣∣∣
2

dσ(x)

=
∑
l>L

l∑
m=−l

|al,m(ω)|2 ≤
∑
l≥0

l∑
m=−l

|al,m(ω)|2 =

∫
S2

|T (ω, x)|2dσ(x).
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To make the setup explicit, where we want to apply the dominated convergence theorem,
we define the sequence of functions, ϕL = ‖T − TL‖2L2(S2,R) and h = ‖T‖2L2(S2,R). These
functions are integrable mappings from Ω to R due to Lemma 3.3 and Lemma 3.7. Note
that we simply set them to zero on the complement of Ω∗. We know from Equation (3.6),
that ϕL converges to zero P -a.s. and we just showed that h is a dominating function of
the sequence of functions ϕL. This means by the dominated convergence theorem we can
interchange the following limit:

0 = E[ lim
L→∞

‖T − TL‖2L2(S2,R)] = E[ lim
L→∞

ϕL] = lim
L→∞

E[ϕL] = lim
L→∞

E[‖T − TL‖2L2(S2,R)].

Thus we proved the first assertion of the theorem.

To prove the second assertion we apply Lemma 3.7 and Definition 3.2 to see that for any
x ∈ S2 and for any g ∈ SO(3)

g 7→ E[|T (gx)− TL(gx)|2] = E[|T (gx)−
L∑
l=0

l∑
m=−l

al,mYl,m(gx)|2]

is constant. We fix x0 arbitrarily in S2. Because of Lemma 2.1 for any y ∈ S2 there is
g ∈ SO(3) such that gy = x0. Hence, for all x ∈ S2 the mapping

x 7→ E[|T (x)− TL(x)|2] = E[|T (x)−
L∑
l=0

l∑
m=−l

al,mYl,m(x)|2]

is also constant. So we are in the pleasant position to integrate over the expectation and
to change the order of the integrals applying Tonelli’s theorem:

E[|T (x)−
L∑
l=0

l∑
m=−l

al,mYl,m(x)|2] =
1

4π

∫
S2

E[|T (x)−
L∑
l=0

l∑
m=−l

al,mYl,m(x)|2]dσ(x)

=
1

4π
E

∫
S2

∣∣∣∣∣T (x)−
L∑
l=0

l∑
m=−l

al,mYl,m(x)

∣∣∣∣∣
2

dσ(x)

 .
The last expression converges to zero because Equation (3.4) has already been proven. This
finishes the proof of Equation (3.5).

3.2. An example given in the real spherical harmonics

Throughout our preceding analysis we were always working with expansions in the spherical
harmonics. In applications it will be relevant to analyze spherical random fields, which are
given in the real spherical harmonics. We would like to establish conditions on a spherical
random field such that it fulfills the 2-weakly isotropic property of Definition 3.2.
For a 2-weakly isotropic spherical random field T , we have shown in Lemma 3.5, that the
coefficients are uncorrelated. So it seems natural that the corresponding real coefficients
are also uncorrelated, which will be proven in the next lemma. Complex and real coeffi-
cients are related through Definition 2.4 and Lemma 2.6, the latter are also introduced in
Definition 2.4.
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Lemma 3.9. For a 2-weakly isotropic spherical random field T the corresponding real co-
efficients ãl,m for integers l ≥ 0 and m = −l, ..., l are uncorrelated. Moreover for integers
l, l′ ≥ 0, m = −l, ..., l and m′ = −l′, ..., l′ it holds that

E[ãl,mãl′,m′ ] = Clδl,l′δm,m′ . (3.7)

The sequence (Cl : l ≥ 0) is the angular power spectrum of T .

Proof. From Lemma 3.5 we already know that the complex coefficients are uncorrelated in
the sense, that for any l, l′ ≥ 0, m = −l, ..., l and m′ = −l′, ..., l′, it holds that

E[al,mal′,m′ ] = Clδl,l′δm,m′ . (3.8)

This means we can set l = l′, because in Definition 2.4 the index l of the real coefficients is
the same as the index for complex coefficients and Equation (3.8) yields that Equation (3.7)
vanishes for positive integers l 6= l′. We can now fix the index l and calculate the different
cases for integers m,m′ = −l, ..., l.
We start with the case m,m′ > 0. We insert Definition 2.4 and manipulate with Equa-
tion (2.4) to be able to apply Equation (3.8) to conclude the claim in Equation (3.7):

E[ãl,mãl,m′ ] =
1

2
E[(al,m + al,m)(al,m′ + al,m′)]

=
1

2
E[al,mal,m′ + al,mal,m′ + al,mal,m′ + al,m al,m′ ]

=
1

2
((−1)m

′
E[al,mal,−m′ + al,mal,−m′ ] + 2Clδm,m′) = Clδm,m′ .

The case m,m′ < 0 is done in a similar way as well as the case m > 0,m′ < 0. For the
latter we write down the computation. It uses the same tools as the first case, which we
computed in detail. We obtain that

E[ãl,mãl,m′ ] =
1

2i
E[(al,m + al,m)(al,m′ − al,m′)]

=
1

2i
E[al,mal,m′ − al,mal,m′ + al,mal,m′ − al,m al,m′ ]

=
1

2i
((−1)mE[al,−mal,m′ − al,−mal,m′ ]− Clδm,m′ + Clδm,m′)

=
1

2i
((−1)mCl(δ−m,m′ − δ−m,m′) = 0.

In the case, that a real-valued sequence of possible coefficients is given, a similar conclusion
about the correlation is possible. It is of interest in this case, that a spherical random field
is given in an expansion in the real spherical harmonics.

Lemma 3.10. For a sequence (β̃l,m : l ≥ 0,m = −l, ..., l) of uncorrelated real-valued
random variables, interpreted as real coefficients of an expansion in the real spherical har-
monics, the corresponding complex-valued random variables (βl,m : l ≥ 0,m = −l, ..., l) are
also uncorrelated in the sense that, if

E[β̃l,mβ̃l′,m′ ] = Clδl,l′δm,m′ ,

then

E[βl,mβl′,m′ ] = Clδl,l′δm,m′ .
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Proof. The proof of this lemma is very similar. It uses the relation between the real and
complex coefficients as introduced in Lemma 2.6. We omit the details.

Now we give sufficient conditions for a spherical random field given in its expansion in the
real spherical harmonics to be 2-weakly isotropic.

Proposition 3.11. Let T be a spherical random field such that the first and second moment
exist for all x in S2. Let T have the expansion

T =
∑
l≥0

l∑
m=−l

β̃l,mỸl,m,

for a sequence of real-valued random variables (β̃l,m : l ≥ 0,m = −l, ..., l). If for l ≥ 0 and
m = −l, ..., l β̃l,m has mean zero and for all integers l, l′ ≥ 0, m = −l, ..., l andm′ = −l′, ..., l′

E[β̃l,mβ̃l′,m′ ] = Clδl,l′δm,m′ ,

then T is 2-weakly isotropic.

Proof. Since the existence of the first two moments belongs to the conditions of the proposi-
tion, the invariance under the action of SO(3) is left to show. The proof will be a calculation
using Lemma 2.7 as a main tool. For arbitrary g ∈ SO(3) and x1, x2 ∈ S2 we look at the
following expression and switch to the complex expansion. We can interchange the expec-
tation and the infinite sums due to Fubini’s theorem, which is applicable, since the second
moment of T (x) is finite for all x ∈ S2, hence |T (gx1)T (gx2)| has finite expectation. First
we switch to the complex expansion using Lemma 2.6. In the second step we apply Lemma
3.10. This yields that the corresponding complex coefficients are also uncorrelated with the
same angular power spectrum. In addition we apply Lemma 2.7 to separate the g and the
spherical harmonics, that yields two extra finite sums over the unitary matrices Dl(g−1).
We obtain that

E[T (gx1)T (gx2)] =
∑
l,l′≥0

l∑
m=−l

l′∑
m′=−l′

E[βl,mβl′,m′ ]Yl,m(gx1)Yl′,m′(gx2)

=
∑
l≥0

l∑
m=−l

Cl(

l∑
m1=−l

Dl
m1,m(g−1)Yl,m1(x1))(

l∑
m2=−l

Dl
m2,m(g−1)Yl,m2(x2))

=
∑
l≥0

Cl

l∑
m1=−l

l∑
m2=−l

(
l∑

m=−l
Dl
m1,m(g−1)Dl

m2,m(g−1))Yl,m1(x1)Yl,m2(x2).

We apply the fact that the matrices Dl(g−1) are unitary, which holds due to Lemma 2.7,
i.e., for all integers l ≥ 0,m1,m2 = −l, ..., l and g ∈ SO(3) it holds that

l∑
m′=−l

Dl
m1,m(g)Dl

m2,m(g) = δm1,m2 .

This relation of the matrices Dl(g−1) and the evaluation of the Kronecker delta will elim-
inate the g-dependence and afterwards we perform all manipulations backwards to obtain
that ∑

l≥0

Cl

l∑
m1=−l

l∑
m2=−l

(
l∑

m=−l
Dl
m1,m(g−1)Dl

m2,m(g−1))Yl,m1(x1)Yl,m2(x2)
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=
∑
l≥0

Cl

l∑
m1=−l

l∑
m2=−l

δm1,m2Yl,m1(x1)Yl,m2(x2)

=
∑
l≥0

Cl

l∑
m=−l

Yl,m(x1)Yl,m(x2) = · · · = E[T (x1)T (x2)].

It remains to check the invariance of the expectation under the action of an arbitrary
g ∈ SO(3) for arbitrary x ∈ S2. Since the first moment of T (x) exists by assumption, we
can apply Fubini’s theorem to interchange expectation and the infinite sum similar to the
argument before. The assumption, that all coefficients but β0,0 have mean zero, will give
the claim with the fact that Y0,0 is constant:

E[T (gx)] =
∑
l≥0

l∑
m=−l

E[β̃l,m]Ỹl,m(gx) = E[β̃0,0]Ỹ0,0(gx) = E[β̃0,0]Ỹ0,0(x) = E[T (x)].

In the following we want to discuss an example, which will lead us to the next chapter. We
define the spherical random field

T =
∑
l≥0

l∑
m=−l

√
Clβ̃l,mỸl,m (3.9)

where (β̃l,m : l ≥ 0,m = −l, ..., l) is an i.i.d. sequence of standard normally distributed
random variables and (Cl : l ≥ 0) is a positive sequence, such that (Cll : l ≥ 0) is summable.

Proposition 3.12. The spherical random field T defined in Equation (3.9) is 2-weakly
isotropic.

Proof. We check that the first two moments are finite first. In the first step, with Hölder’s
inequality we can bound the first moment by the second moment and switch to the complex
expansion in the spherical harmonics using Lemma 2.6. In the second step we apply Fubini’s
theorem to interchange the expectation and the infinite sum. Due to Lemma 3.10 the
corresponding complex coefficients are also uncorrelated. So we obtain that

E[|T (x)|] ≤ E[|T (x)|2] = E[|
∑
l≥0

√
Cl

l∑
m=−l

β̃l,mỸl,m(x)|2] = E[|
∑
l≥0

√
Cl

l∑
m=−l

βl,mYl,m(x)|2]

=
∑
l,l′≥0

√
Cl
√
Cl′

l,l′∑
m,m′=−l,l′

E[βl,mβl′,m′ ]Yl,m(x)Yl′,m′(x) =
∑
l≥0

Cl

l∑
m=−l

Yl,m(x)Yl,m(x).

In the last step we apply Lemma 2.8 and see that this infinite sum has a finite value by our
assumption on (Cl : l ≥ 0). So we obtain that

E[|T (x)|] ≤ E[|T (x)|2] =
∑
l≥0

Cl
2l + 1

4π
<∞.

We just proved that the condition of Proposition 3.11 are satisfied, this proposition gives
the claim, that T is 2-weakly isotropic.
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3.3. Truncation error estimation

Another topic of interest is the error, which we make if we truncate the expansion of a 2-
weakly isotropic spherical random field T . This is interesting, when we wish to implement
an approximate realization of T . We will do this analysis in the L2

P⊗dσ(Ω × S2,R)-norm
and in the L2

P (Ω,R)-norm. We study the truncation error for a 2-weakly isotropic spherical
random field T . The truncation of T is denoted by TL. We assume for the angular power
spectrum, that Cl ' l−α, i.e. that there exist constants c, C > 0 and some α > 0 such that
c l−α ≤ Cl ≤ C l−α for all but finitely many integers l ≥ 0. The proof of Proposition 3.9
implies that α > 2, otherwise the second moment of T would not be finite, which exists
due to the definition of a 2-weakly isotropic spherical random field.

Proposition 3.13. Let T be a 2-weakly isotropic spherical random field such that for the
angular power spectrum holds Cl ' l−α for α > 2. This condition implies, that the trunca-
tion error of T converges in the L2

P⊗dσ(Ω× S2,R)-norm and the truncation error of T (x)

converges in the L2
P (Ω,R)-norm for all x ∈ S2 with order α−2

2 in terms of L−1 in both
cases, i.e.

‖T − TL‖2L2
P⊗dσ(Ω×S2,R) = O

(
(L−1)α−2

)
(3.10)

and
‖T (x)− TL(x)‖2L2

P (Ω,R) = O
(
(L−1)α−2

)
. (3.11)

Proof. We fix L ∈ N and start computing the error. In the first step, we apply Theorem 3.8
and the Parseval identity. In the second step we insert the assumption on the angular power
spectrum. We obtain that

‖T − TL‖2L2
P⊗dσ(Ω×S2,R) = E


∥∥∥∥∥∥
∑
l>L

l∑
m=−l,...,l

ãl,mỸl,m

∥∥∥∥∥∥
2

L2(S2,R)

 = E

[∑
l>L

l∑
m=−l

ã2
l,m

]

=
∑
l>L

l∑
m=−l

E[ã2
l,m] =

∑
l>L

Cl(2l + 1) ≤ C
∑
l>0

(
2(l + L)−α+1 + (l + L)−α

)
.

The last expression is bounded with a simple calculation:

C
∑
l>0

(
2(l + L)−α+1 + (l + L)−α

)
≤ C

∫ ∞
0

2(x+ L)−α+1 + (x+ L)−αdx

= C

(
2

α− 2
(L−1)α−2 +

1

α− 1
(L−1)α−1

)
= O

(
(L−1)α−2

)
. (3.12)

This gives the desired convergence rate in terms of L−1 and proves the first claim. For the
second claim we again fix L ∈ N and compute for an arbitrary x ∈ S2 the error in the
L2
P (Ω,R)-norm. In the first step we apply Theorem 3.8 and the Parseval identity. In the

second step we interchange the expectation and the infinite sum and apply Lemma 3.5.
Then we apply Lemma 2.8 to lose the spherical harmonics and the dependence on x to
obtain that

‖T (x)− TL(x)‖2L2
P (Ω,R) = E[|T (x)− TL(x)|2] = E

∣∣∣∣∣∑
l>L

al,mYl,m(x)

∣∣∣∣∣
2
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=
∑
l>L

Cl

l∑
m=−l

Yl,m(x)Yl,m(x) =
∑
l>L

Cl
2l + 1

4π
.

Now we can insert the assumption on the angular power spectrum and the same calculation,
which we just did in Equation (3.12), yields the second claim of the proposition∑

l>L

Cl
2l + 1

4π
≤ C

4π

∑
l<L

l−α(2l + 1) = O
(
(L−1)α−2

)
.

To finish the chapter we show two plots of realizations of the example Equation (3.9), which
is a 2-weakly isotropic spherical random field T . The realizations are approximated with
truncations TL for L = 70. The MATLAB code of the implementation can be found in
Appendix A.
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Figure 3.1.: realization of TL with Cl = (1 + l)−2.1

Figure 3.2.: realization of TL with Cl = (1 + l)−4.1
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4. Stochastic heat equation with isotropic
Q-Wiener noise

In this chapter, we interpret the 2-weakly isotropic spherical random field T as a L2(S2,R)-
valued random variable. In particular we choose T to be Gaussian with mean zero and
covariance operator Q, which will later form the Q-Wiener process W . Having this we
are able to formulate the stochastic heat equation on the sphere with additive 2-weakly
isotropic Q-Wiener noise W . For our analysis we introduce the filtered probability space
(Ω,F ,A, P ) such that the filtration F is complete and right-continuous.

4.1. Hilbert space valued Gaussian random variables

We review some definitions and statements which we will apply here. The definitions are
taken from [8]. We define (H, 〈·, ·〉H) where H = L2(S2,R) and 〈·, ·〉H is the standard inner
product induced by the the Lebesgue measure on the sphere dσ.

Definition 4.1. An H-values random variable T is called Gaussian, if 〈φ, T 〉H is normally
distributed with mean mφ and variance σ2

φ for all φ ∈ H.

This definition implies that

E[〈φ, T 〉H] = 〈φ,m〉H

for some m ∈ H and for the same m and any φ1, φ2 ∈ H

E[〈φ1, T 〉H〈φ2, T 〉H]− 〈φ1,m〉H〈φ2,m〉H = 〈Qφ1, φ2〉H

defines the symmetric, bounded, positive operator Q.

Definition 4.2. For a random variable T , m is referred to as the mean and Q is called the
covariance operator.

This means for an H-valued Gaussian random variable T , it makes sense to introduce the
notation that T is N (m,Q) distributed.

Proposition 4.3. For an H-valued Gaussian random variable, the covariance operator Q
is of trace class.

Proof. This is Proposition 2.15 in [8].

This means that Q is a trace class, symmetric, positive, bounded operator and therefore
the following diagonalization result holds.

Proposition 4.4. There is an orthonormal basis (ei : i ∈ N) and a positive decreasing
sequence (λi : i ∈ N) such that λi → 0 and Qei = λiei for all i ∈ N.
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Proof. The conditions imply the conditions in the standard diagonalization theorem for
self-adjoint compact operators.

Proposition 4.5. (Karhunen–Loève expansion) An H-valued random variable T with mean
m and trace class, symmetric, positive, bounded covariance operator Q which is diagonalized
with orthonormal eigenbasis (ei : i ∈ N) and decreasing positive eigenvalues (λi : i ∈ N) is
Gaussian if and only if it has the expansion

T = m+
∑
i∈N

√
λiβiei.

The infinite sum converges in L2(Ω,H) and (βi : i ∈ N) is an i.i.d. sequence of standard
normally distributed random variables.

Proof. For given mean m and covariance operator Q, the existence of a Gaussian random
variable with such an expansion follows by Proposition 2.18 in [8]. We omit the proof of
the other direction since the statement will only be applied in one direction.

The so called Karhunen–Loève expansion will be the right tool to combine the notion of
2-weakly isotropic spherical random fields with the notion of H-valued Gaussian random
variables. We already established in Theorem 3.8 and Lemma 3.9 that a 2-weakly isotropic
spherical random field has the expansion

T =
∑
l≥0

√
Cl

l∑
m=−l

b̃l,mỸl,m, (4.1)

where we introduce b̃l,m = ãl,m
√
Cl
−1 for all l ≥ 0 and m = −l, ..., l with ãl,m the usual

real coefficients appearing in Lemma 3.9. The random variables of the sequence (b̃l,m :
l ≥ 0,m = −l, ..., l) are uncorrelated such that E[b̃l,mb̃l′,m′ ] = δll′δmm′ for integers l, l′ ≥ 0,
m = −l, ..., l andm′ = −l′, ..., l′ and (Cl : l ≥ 0) is the angular power spectrum introduced in
Remark 3.6. Similar to the argument in the proof of Proposition 3.9 we see that (Cll : l ≥ 0)
is summable. Theorem 3.8 also ensures that T can be interpreted as an H-valued random
variable. Now we wish that T has the extra property to be Gaussian distributed. Our
definition of Gaussian distribution and the expansion of T imply that (ãl,m : l ≥ 0,m =
−l, ..., l) has to be a sequence of standard normally distributed random variables. The fact
that this sequence also has to be uncorrelated implies that it is i.i.d. The mean of T is zero
and the covariance operator is given by

QỸl,m = ClỸl,m for l ≥ 0,m = −l, ..., l.

Note that Q is a well-defined bounded linear operator on H since (Ỹl,m : l ≥ 0,m = −l, ..., l)
is an orthonormal basis ofH. It is also easy to see thatQ is of trace class because (Cll : l ≥ 0)
is summable. The other properties of Q are also easily verified. Proposition 4.5 says that
T is Gaussian with mean zero and covariance operator Q. Thus we obtained the expansion
of a 2-weakly isotropic Gaussian spherical random field. Note that our notion of Gaussian
distribution differs from Gaussian distribution in [21] which is defined pointwise on S2.
The following lemma will give a statement about the distribution of a 2-weakly isotropic
Gaussian random field evaluated at some x ∈ S2.
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Lemma 4.6. For a 2-weakly isotropic Gaussian spherical random field T with angular
power spectrum (Cl : l ≥ 0), the random variable T (x) is normally distributed, i.e. T (x) ∼
N (0, σ2

T ) for all x ∈ S2. The variance σ2
T of T (x) is independent of x ∈ S2 and is given by

σ2
T =

∑
l≥0

Cl
2l + 1

4π
.

Proof. We fix x ∈ S2. The strategy in this proof is to interpret T (x) as a limit of nor-
mally distributed random variables and to argue via Lévy’s continuity theorem and the
characteristic functions that the limit is also normally distributed.
We look at the truncated spherical random field

TL(x) =

L∑
l=0

l∑
m=−l

√
Clβl,mỸl,m(x).

Since TL(x) is a finite sum of independent normally distributed random variables, TL(x)
is also normally distributed. The fact that (βl,m : l ≥ 0,m = −l, ..., l) is an i.i.d. sequence
of standard normally distributed random variables and Lemma 2.8 imply that TL(x) ∼
N (0, σ2

TL
), where the variance is given by

σ2
TL =

L∑
l=0

Cl
2l + 1

4π
.

Note that the variance σ2
TL

of TL(x) is already independent of x ∈ S2. For a normally
distributed random variable X ∼ N (µX , σ

2
X) its characteristic function is given by

E
[
eiXλ

]
= exp

(
iλµX −

σ2
Xλ

2

2

)
.

Therefore the characteristic function φTL(x) of TL(x) is given by

φTL(x)(λ) = E
[
eiT

L(x)λ
]

= exp

(
−
σ2
TL
λ2

2

)
.

Now we are interested in the limit (L→∞) of the function φTL(x). Since the exponential
function is continuous we can bring the limit into the exponential function. Furthermore
we know that the sequence (Cll : l ≥ 0) is summable due to an argument in Proposition
3.9, which implies that limL→∞ σ

2
TL

= σ2
T exists and defines σ2

T . Therefore for all λ ∈ R
the limit (L→∞) of φTL(x)(λ) exists and is given by

lim
L→∞

φTL(x)(λ) = exp

(
−

limL→∞ σ
2
TL
λ2

2

)
= exp

(
−
σ2
Tλ

2

2

)
.

We set φ(λ) = exp(−1
2σ

2
Tλ

2). So the sequence of characteristic functions (φTL(x) : L ≥ 0)
converges pointwise for all λ ∈ R to a function φ, which is continuous. From Theorem 3.8
we now that TL(x) converges to T (x) in L2

P (Ω,R) for L → ∞, so TL(x) converges also
in distribution to T (x). Now all the conditions are satisfied to apply Lévy’s continuity
theorem, which says that φ is the characteristic function of T (x). This is the characteristic

Lukas Herrmann 31 ©



function of normally distributed random variable with mean zero and variance σ2
T . Since

the characteristic function determines the distribution of its random variable, it holds that
T (x) is normally distributed, i.e. T (x) ∼ N (0, σ2

T ). The implication of Lévy’s continuity
theorem which we used is proven in [13] as Theorem 15 in Chapter 14.

The knowledge about the pointwise distribution of a 2-weakly isotropic Gaussian spherical
random field T , i.e. the distribution of T (x) for some x ∈ S2, gives raise to analyze the
distribution of random vectors (T (x1), T (x2)) for some x1, x2 ∈ S2 with the help of the
property that T is 2-weakly isotropic and Gaussian.

Lemma 4.7. Let T be a 2-weakly isotropic Gaussian spherical random field, then for all
x1, x2 ∈ S2 and for all g ∈ SO(3), it holds that (T (x1), T (x2)) and (T (gx1), T (gx2)) have
the same law, i.e.

(T (x1), T (x2))
law
= (T (gx1), T (gx2)).

Proof. From Lemma 4.6 we know that T (x1) is normally distributed with mean zero. There-
fore the random vector (T (x1), T (x2)) is multivariate normally distributed with mean 0 ∈
R2 and covariance matrix Σ ∈ R2×2. In the same way the random vector (T (gx1), T (gx2))
is multivariate normally distributed with mean 0 ∈ R2 and covariance matrix Σg ∈ R2×2.
The 2-weakly isotropy of T implies that Σ = Σg. This implies the claim of the lemma, since
the distribution of a multivariate normally distributed random vector is determined by its
mean and covariance matrix.

Remark 4.8. For a 2-weakly isotropic Gaussian spherical random field T and x1, x2 ∈ S2,
the random vector (T (x1), T (x2)) is multivariate normally distributed, i.e. (T (x1), T (x2)) ∼
N (0,Σ), where the covariance matrix Σ is given by

Σ =

( ∑
l≥0Cl

2l+1
4π

∑
l≥0ClP

l
0(〈x1, x2〉)2l+1

4π∑
l≥0ClP

l
0(〈x1, x2〉)2l+1

4π

∑
l≥0Cl

2l+1
4π

)
.

Proof. The proof of Lemma 4.7 says that the random vector is multivariate normally dis-
tributed. The covariance matrix can be calculated in the same way as we calculated the
variance of T (x) for x ∈ S2 with Lemma 2.8 in the proof of Lemma 4.6.

4.2. 2-weakly isotropic Q-Wiener process

The main aim of this chapter is to discuss the heat equation with additive Q-Wiener noise.
Therefore we recall the Q-Wiener process.

Definition 4.9. For a trace class, symmetric, positive, bounded operator Q, an H-valued
F-adapted process (W (t) : t ∈ [0, T ]) is called Q-Wiener process if
(i) W (0) = 0 P -a.s.,
(ii) W has P -a.s. continuous trajectories,
(iii) W has independent increments,
(iv) W (t)−W (s) ∼ N (0, (t− s)Q) for 0 ≤ s < t ≤ T .

Remark 4.10. According to Proposition 4.1 (ii) in [8] the Q-Wiener process W has the
following expansion

W (t) =
∑
i∈N

√
λiβi(t)ei for all t ∈ [0, T ],
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where (βi : i ∈ N) is a sequence of mutually independent real-valued Brownian motions. The
sequence of real numbers (λi : i ∈ N) consists of the eigenvalues of the covariance operator
Q with orthonormal eigenbasis (ei : i ∈ N) such that Qei = λiei for all i ∈ N.

For the covariance operator Q of a 2-weakly isotropic Gaussian spherical random field as
seen in the previous section, the Q-Wiener process will have the following decomposition
for mutually independent Brownian motions (βl,m : l ≥ 0,m = −l, ..., l)

W (t) =
∑
l≥0

√
Cl

l∑
m=−l

βl,m(t)Ỹl,m for all t ∈ [0, T ].

Note that for fixed t ∈ [0, T ] the spherical random field W (t) is Gaussian and 2-weakly
isotropic.

4.3. Stochastic heat equation with additive 2-weakly isotropic
Q-Wiener noise

So now we are able to formally state the stochastic heat equation, Equation (1.1) which
was already mentioned in the introduction. This is of main interest in this chapter and is
given by

X(t) = X(0) +

∫ t

0
∆S2X(s)ds+W (t),

X(0) ∈ H P -a.s.

Definition 4.11. A predictable stochastic process (X(t), t ∈ [0, T ]) is called a weak solution
of Equation (1.1) if its trajectories are P -a.s. Bochner integrable and for all φ ∈ D(∆S2) ⊂
H it holds that

〈X(t), φ〉H = 〈X(0), φ〉H +

∫ t

0
〈X(s),∆S2φ〉Hds+ 〈W (t), φ〉H P -a.s.,

where ∆S2 denotes the closure of the spherical Laplace operator ∆S2.

Note that the closure of a symmetric densely defined operator is self-adjoint, for example
∆S2 = ∆S2

∗. We try to solve it formally and use the special form of the noise term W . We
attempt to expand the expression in its decomposition in spherical harmonics

X(t) =
∑
l≥0

l∑
m=−l

ãl,m(t)Ỹl,m, where ãl,m(t) = 〈X(t), Ỹl,m〉H,

=
∑
l≥0

l∑
m=−l

ãl,m(0)Ỹl,m −
∫ t

0

∑
l≥0

l∑
m=−l

l(l + 1)ãl,m(s)Ỹl,mds+
∑
l≥0

l∑
m=−l

√
Clβl,m(t)Ỹl,m

=
∑
l≥0

l∑
m=−l

(
ãl,m(0)−

∫ t

0
l(l + 1)ãl,m(s)ds+

√
Clβl,m(t)

)
Ỹl,m.

This leads to the infinite system of uncoupled 1-dimensional stochastic differential equations
(SDE) for l ≥ 0 and m = −l, .., l

ãl,m(t) = ãl,m(0)−
∫ t

0
l(l + 1)ãl,m(s)ds+

√
Clβl,m(t).
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This is a general type of SDE, which is solved using Itô’ s formula and the existence and
uniqueness theorem for SDE’s. We reformulate it for notational convenience, B is a 1-
dimensional Brownian motion,

Z(t) = Z(0)− θ
∫ t

0
Z(s)ds+ σB(t)

Z(0) ∈ R P -a.s.

The existence theorem for such SDE’s, which is Theorem 2.5 and Theorem 2.9 in Chapter
5 of [19], shows that Z exists and is unique. So we attempt to find a formula for Z
applying Itô’s formula, also found in [19] as Theorem 3.6 in Chapter 3, to the function
f(t, Z(t)) = Z(t)eθt in the first step and insert the solution of the SDE in the second step.
We manipulate further and obtain P -a.s.

Z(t)eθt = Z(0)−
∫ t

0
θeθsZ(s)ds+

∫ t

0
eθsdZ(s)

= Z(0) +

∫ t

0
θeθsZ(s)ds+

∫ t

0
eθsd(−

∫ s

0
θZ(ŝ)dŝ+ σB(s))

= Z(0) +

∫ t

0
θeθsZ(s)ds−

∫ t

0
eθsθZ(s)ds+ σ

∫ t

0
eθsdB(s)

= Z(0) + σ

∫ t

0
eθsdB(s).

Thus the solution has the formula

Z(t) = e−θtZ(0) + σ

∫ t

0
e−θ(t−s)dB(s).

The solution is called the Ornstein–Uhlenbeck process. It can be applied to our situation
to obtain that

ãl,m(t) = e−l(l+1)tãl,m(0) +
√
Cl

∫ t

0
e−l(l+1)(t−s)dβl,m(s)

and

X(t) =
∑
l≥0

l∑
m=−l

(
e−l(l+1)tãl,m(0) +

√
Cl

∫ t

0
e−l(l+1)(t−s)dβl,m(s)

)
Ỹl,m. (4.2)

This derivation was only formal. To finish the analysis we have to show that the infinite
sum in Equation (4.2) converges in L2

dt⊗P ([0, T ] × Ω,H) and that this expression is the
unique solution of Equation (1.1).
First we prove that the limit exists. We look at a truncation of the expression in Equa-
tion (4.2), which we denote withXL(t). We fix L1 < L2 ∈ N and try to bound the difference
of two truncations in the L2

P (Ω,H)-norm. In the first step we apply the Parseval identity
and the fact that the stochastic integral with respect to a square integrable martingale like
a Brownian motion has zero expectation. In the second step we use the Itô isometry. We
obtain that

E
[∥∥XL1(t)−XL2(t)

∥∥2

H

]
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=

L2∑
l=L1

l∑
m=−l

e−2l(l+1)tE[ã2
l,m(0)] +

L2∑
l=L1

l∑
m=−l

ClE

[(∫ t

0
e−l(l+1)(t−s)dβl,m(s)

)2
]

=

L2∑
l=L1

l∑
m=−l

e−2l(l+1)tE[ã2
l,m(0)] +

L2∑
l=L1

l∑
m=−l

Cl

∫ t

0
e−2l(l+1)(t−s)ds

≤
L2∑
l=L1

l∑
m=−l

E[ã2
l,m(0)] +

L2∑
l=L1

l∑
m=−l

Cl
1

2l(l + 1)
(1− e−2l(l+1)t).

If we take the limit (L2 →∞) the first infinite sum exists because P -a.s. X(0) ∈ H, which
means that the sequence (E[ã2

l,m(0)] : l ≥ 0,m = −l, ..., l) is summable. The second infinite
sum exists because the sequence (Cll : l ≥ 0) is summable. Similarly the just mentioned
summability also implies that for the limit (L1 → ∞) the whole expression converges to
zero. We observe that integrating the parameter t over the compact interval [0, T ] will
at most increase the expression by the factor T . Hence the sequence XL(t) is Cauchy
in L2

dt⊗P ([0, T ] × Ω,H). Similarly we could take the supremum over the compact interval
[0, T ]. Since (1−e−2l(l+1)t) is bounded by one, the limit of the supremum also vanishes. The
Brownian motions in the sequence (βl,m : l ≥ 0,m = −l, ..., l) are P -a.s. continuous. This
implies that XL is also P -a.s. continuous because it is a finite linear combination. Hence
there exists a modification X̃L of the sequenceXL, which is Cauchy in C0([0, T ], L2

P (Ω,H)).
Since L2

dt⊗P ([0, T ]×Ω,H) and C0([0, T ], L2
P (Ω,H)) are both complete spaces, the sequence

XL(t) converges in L2
dt⊗P ([0, T ] × Ω,H) to some X and the sequence X̃L converges in

C0([0, T ], L2
P (Ω,H)) to some X̃, which is a modification of X.

Now we know that X is a candidate to be a weak solution of Equation (1.1). We have to
check, that it fulfills the conditions of Definition 4.11. We fix t ∈ [0, T ] and φ ∈ D

(
∆S2

)
and check the conditions directly. We take the expansion of X(t) and insert the SDE which
the coefficients satisfy in the first and second step. In the third step we apply Fubini’ s
theorem to interchange the infinite sum and the inner product and apply the eigenvalue
relation of the spherical harmonics and the spherical Laplace operator ∆S2 and obtain that

〈X(t), φ〉H = 〈
∑
l≥0

l∑
m=−l

ãl,m(t)Ỹl,m, φ〉H

= 〈
∑
l≥0

l∑
m=−l

(ãl,m(0)−
∫ t

0
l(l + 1)ãl,m(s)ds+

√
Clβl,m(t))Ỹl,m, φ〉H

= 〈X(0), φ〉H + 〈
∑
l≥0

l∑
m=−l

−
∫ t

0
l(l + 1)ãl,m(s)dsỸl,m, φ〉H + 〈W (t), φ〉H

= 〈X(0), φ〉H +
∑
l≥0

l∑
m=−l

∫ t

0
ãl,m(s)ds〈∆S2 Ỹl,m, φ〉H + 〈W (t), φ〉H.

Now we put the adjoint of the closed ∆S2 to φ which is possible due to the choice of φ.
This enable us to interchange the infinite sum and inner product again by Fubini

〈X(0), φ〉H +
∑
l≥0

l∑
m=−l

∫ t

0
ãl,m(s)ds〈∆S2 Ỹl,m, φ〉H + 〈W (t), φ〉H
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= 〈X(0), φ〉H +
∑
l≥0

l∑
m=−l

∫ t

0
ãl,m(s)ds〈Ỹl,m,∆S2φ〉H + 〈W (t), φ〉H

= 〈X(0), φ〉H +

∫ t

0
〈X(s),∆S2φ〉H)ds+ 〈W (t), φ〉H.

The process X is predictable because it is P -a.s. continuous. The P -a.s. Bochner integrabil-
ity of the trajectories of X is clear since the trajectories are P -a.s. continuous and defined
on a compact interval [0, T ]. Hence we showed that X is a weak solution of Equation (1.1).

If we assume that X and Y are both weak solutions of Equation (1.1). We wish to show
that they are equal. We take fixed integers l ≥ 0 and m = −l, ..., l, φ = Ỹl,m and apply
Definition 4.11 to obtain that P -a.s.

〈X(t)− Y (t), Ỹl,m〉H =

∫ t

0
〈X(s)− Y (s),∆S2 Ỹl,m〉Hds

=

∫ t

0
〈X(s)− Y (s),−l(l + 1)Ỹl,m〉Hds.

We also applied the fact ∆S2 Ỹl,m = ∆S2 Ỹl,m and the eigenvalue relation of ∆S2 with Ỹl,m.
We take now the absolute value on both sides and obtain this inequality,

|〈X(t)− Y (t), Ỹl,m〉H| ≤ l(l + 1)

∫ t

0
|〈X(s)− Y (s), Ỹl,m〉H|ds P -a.s.

Gronwall’s inequality implies that P -a.s. |〈X(t)−Y (t), Ỹl,m〉H| = 0. Since this can be done
for all possible choices of l and m, X(t) − Y (t) ∈ span{Ỹl,m : l ≥ 0,m = −l, ..., l}⊥ P -a.s.
Thus X(t) = Y (t) P -a.s. for all t ∈ [0, T ] and the solution is unique up to modification and
has the formula stated in Equation (4.2)

X(t) =
∑
l≥0

l∑
m=−l

(
e−l(l+1)tãl,m(0) +

√
Cl

∫ t

0
e−l(l+1)(t−s)dβl,m(s)

)
Ỹl,m.

It was not needed to introduce tools from stochastic calculus in infinite dimensions. The
specific form of the Q-Wiener process and the multidimensional Itô formula were sufficient
to solve Equation (1.1).

4.4. Truncation error estimation

As in the previous chapter we want to discuss the error of truncations of this expansions.
We do this in the L2

P (Ω,H)-norm. For the error analysis of the solution of Equation (1.1)
we want to approximate with a truncation of the infinite sum in the solution formula
Equation (4.2)

XL(t) =

L∑
l=0

l∑
m=−l

(
e−l(l+1)tãl,m(0) +

√
Cl

∫ t

0
e−l(l+1)(t−s)dβl,m(s)

)
Ỹl,m.

The error in the L2
P (Ω,H)-norm can be calculated in several steps. In the first step we

apply the Parseval identity to lose the dependence on the real spherical harmonics. In the
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second step we apply Tonelli’s theorem to interchange expectation and infinite sum to be
able to apply the Itô isometry in the third step. We obtain that∥∥X(t)−XL(t)

∥∥2

L2
P⊗dσ(Ω×S2,R)

= E

[∑
l>L

l∑
m=−l

(
e−l(l+1)tãl,m(0) +

√
Cl

∫ t

0
e−l(l+1)(t−s)dβl,m(s)

)2
]

=
∑
l>L

l∑
m=−l

e−2l(l+1)tE[ã2
l,m(0)] +

∑
l>L

l∑
m=−l

ClE

[(∫ t

0
e−l(l+1)(t−s)dβl,m(s)

)2
]

=
∑
l>L

l∑
m=−l

e−2l(l+1)tE[ã2
l,m(0)] +

∑
l>L

l∑
m=−l

Cl

∫ t

0
e−2l(l+1)(t−s)ds. (4.3)

The integral inside the second sum is equal to 1
2l(l+1)(1− e−l(l+1)t). We simply bound this

by 1
2l(l+1) and assume for the angular power spectrum that Cl ' l−α necessarily for some

α > 2, as we did in the previous chapter. We repeat a similar calculation as we did for
the spherical random field at the end of Chapter 3 to bound the second infinite sum in
Equation (4.3)

∑
l>L

l∑
m=−l

Cl

∫ t

0
e−2l(l+1)(t−s)ds ≤

∑
l>L

Cl
2l + 1

2l(l + 1)
≤
∑
l>L

l−α−1 ≤
∑
l>0

(l + L)−α−1

≤
∫ ∞

0
(x+ L)−α−1dx = O

(
(L−1)α

)
.

This finishes our brief error analysis. Note that we did not take into account the first infinite
sum in Equation (4.3), which also encodes how well the initial value is approximated by
the real spherical harmonics. The truncation of the solution can be used in principle for
simulation purposes. MATLAB code for an implementation of the truncated solution can
be found in Appendix B.
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5. Continuity properties of isotropic
Gaussian spherical random fields

In this chapter we study the continuity properties of 2-weakly isotropic Gaussian spherical
random fields as mappings from the sphere to the real numbers. For our analysis we
introduce the probability space (Ω,A, P ). We know from the previous chapter that for
a 2-weakly isotropic Gaussian spherical random field, we have an expansion in the real
spherical harmonics which we stated in the previous chapter as Equation (4.1):

T =
∑
l≥0

√
Cl

l∑
m=−l

b̃l,mỸl,m. (5.1)

The sequence (Cl : l ≥ 0) is the angular power spectrum, (b̃l,m : l ≥ 0,m = −l, .., l) is an
i.i.d. sequence of standard normally distributed random variables and (Ỹl,m : l ≥ 0,m =
−l, .., l) are the real spherical harmonics. We recall that the sequence (Cll : l ≥ 0) has to
be summable such that the expansion converges in L2

P⊗dσ(Ω× S2,R) and in L2
P (Ω,R), see

Theorem 3.8.
Our goal is now to establish conditions on the angular power spectrum such that the 2-
weakly isotropic Gaussian spherical random field T is γ-Hölder continuous for any γ ∈ (0, 1).
This is the content of Theorem 1.2, which was mentioned at the end of the introduction.

5.1. Preliminaries for the proof of Theorem 1.2

We start our investigation with the following lemma.

Lemma 5.1. For the real spherical harmonic function Ỹl,m, with fixed l ≥ 0 and m =
−l, .., l, the following Lipschitz continuity relation holds for fixed θ = π

2 , ϕ1, ϕ2 ∈ R and for
some constant K > 0 independent of l,m, ϕ1 and ϕ2:

|Ỹl,m(θ, ϕ1)− Ỹl,m(θ, ϕ2)| ≤

Kl
5
4 |ϕ1 − ϕ2| if |m| = l,

K
√

2l+1

(l2−m2)
1
4

|m|
2 |ϕ1 − ϕ2| if |m| < l.

(5.2)

Proof. We recall the representation of the real spherical harmonics, which are defined in
Definition 2.4. Their explicit expression is given by:

Ỹl,m(θ, ϕ) =


√

2
√

2l+1
4π

(l−m)!
(l+m)!P

l
m(cos(θ)) cos(mϕ) if m > 0,√

2l+1
4π P l0(cos(θ)) if m = 0,

−
√

2
√

2l+1
4π

(l−|m|)!
(l+|m|)!P

l
|m|(cos(θ)) sin(mϕ) if m < 0.

(5.3)

First we evaluate the associated Legendre polynomial P lm(cos(θ)). Since cos(θ) = 0, the
expression simplifies using the binomial identity for l +m even to the following:
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P lm(0) =
(−1)m

2ll!
(1− x2)

m
2

∣∣
x=0

dl+m

dxl+m
(x2 − 1)l

∣∣
x=0

=
(−1)m

2ll!

dl+m

dxl+m

(
l∑

k=0

(
l

k

)
x2k(−1)l−k

)∣∣∣∣∣
x=0

.

The only term in the sum, which is non-zero after the taking the derivative (l + m)-times
is the term with k = l+m

2 . Hence the expression simplifies to∣∣∣P lm(0)
∣∣∣ =

1

2ll!

(
l

l+m
2

)
(l +m)! .

Note that the expression is zero in the case that l+m is odd. This combination of a factorial
and binomial coefficient can be dealt with using the constant in the above definition of Ỹl,m
and applying the Stirling formula. We obtain that∣∣∣P lm(0)

∣∣∣√2l + 1

4π

(l −m)!

(l +m)!

=
1

2ll!

(
l

l+m
2

)√
2l + 1

4π
(l −m)!(l +m)! =

1

2l

√
2l + 1

4π

√
(l −m)!(l +m)!

( l+m2 )!( l−m2 )!
(5.4)

and use the Stirling formula in this form:

for all strictly positive n ∈ N it holds that,
√

2πnn+ 1
2 e−n ≤ n! ≤ enn+ 1

2 e−n. (5.5)

Inequalities of this type are the objective of two journal articles. The first Inequality (5.5)
follows directly from the result of [23] because 1 ≤ e

1
12n+1 for all n ∈ N. The second

Inequality (5.5) is part of the result of [17]. We now apply the Stirling formula (5.5) and
manipulate Equation (5.4) further to obtain for |m| < l and for some K1 > 0 independent
of l and m that

1

2l

√
2l + 1

4π

√
(l −m)!(l +m)!

( l+m2 )!( l−m2 )!

≤ 1

2l

√
2l + 1

4π

e

2π
(l −m)−

1
4 (l +m)−

1
4 2l+1 =

e

π
√

4π

√
2l + 1

(l2 −m2)
1
4

= K1

√
2l + 1

(l2 −m2)
1
4

.

The case |m| = l has to be treated separately, but we get the result similarly also using the
Stirling formula (5.5)

1

2l

√
2l + 1

4π

√
(l −m)!(l +m)!

( l+m2 )!( l−m2 )!

=
1

2ll!

√
2l + 1

4π

√
(2l)! ≤

√
e

2π

√
2l + 1

4π

2l+
1
4

2l
l−

1
4 =

√
e

2
5
4π

√
2l + 1

l
1
4

≤ K2l
1
4

for some K2 > 0 independent of l. We combine these constants and thus have shown for
K = max(K1,K2) > 0 that√

2l + 1

4π

(l −m)!

(l +m)!
P lm(cos(θ)) ≤

Kl
1
4 if |m| = l,

K
√

2l+1

(l2−m2)
1
4

if |m| < l.
(5.6)
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In the second part of the proof we have to examine the part of Ỹl,m which depends on ϕ.
First we apply a well known relation of trigonometric functions

sin(mϕ1)− sin(mϕ2) = 2 cos

(
m
ϕ1 + ϕ2

2

)
sin

(
m
ϕ1 − ϕ2

2

)
cos(mϕ1)− cos(mϕ2) = 2 sin

(
m
ϕ1 + ϕ2

2

)
sin

(
m
ϕ1 − ϕ2

2

)
.

To finish the proof, it is sufficient to state the following claim∣∣∣∣sin(mϕ1 − ϕ2

2

)∣∣∣∣ ≤ |m|2
|ϕ1 − ϕ2| (5.7)

which is clear by a small argument. After evaluating the derivative of sin(x) at x = 0 we
obtain with Taylor that sin(x) ≤ x for all x ∈ [0, 1]. The point symmetry of sine and the
fact that | sin(x)| ≤ 1 for all x ∈ R gives the claim. Now we can conclude the claim of the
lemma combining Equation (5.6) and Equation (5.7)

∣∣∣Ỹl,m(θ, ϕ1)− Ỹl,m(θ, ϕ2)
∣∣∣ ≤

Kl
1
4
|m|
2 |ϕ1 − ϕ2| if |m| = l,

K
√

2l+1

(l2−m2)
1
4

|m|
2 |ϕ1 − ϕ2| if |m| < l.

This lemma is used to verify a condition on the 2-weakly isotropic Gaussian spherical
random field T which will be needed in the proof of Theorem 1.2, the main theorem of this
chapter. We do this in the following lemma.

Lemma 5.2. Let T be a 2-weakly isotropic Gaussian spherical random field, given in Equa-
tion (5.1), such that for the angular power spectrum it holds that (Cll

1+δ : l ≥ 0) is summable
for δ ∈ [0, 2], then for any k ∈ N, x, y ∈ S2 and for an appropriate constant Kk > 0 de-
pending on k it holds that

E
[
|T (x)− T (y)|2k

]
≤ Kk

∑
l≥0

Cll
1+δ

k

d(x, y)δk.

Proof. First, we give the claim for k = 1 then the argument will be generalized for an
arbitrary k ∈ N. We can choose g ∈ SO(3) such that θgx = θgy = π

2 due to Lemma 2.1,
just choose z, w ∈ S2 such that z3 = w3 = 0 and 〈x, y〉 = 〈z, w〉 to find g ∈ SO(3) by
the lemma. In the first step, we use the property that T is 2-weakly isotropic to insert g.
In the second step, we write T in its spherical expansion due to Theorem 3.8 and apply
Lemma 3.3 and the Parseval identity to obtain that

E
[
|T (x)− T (y)|2

]
= E

[
|T (gx)− T (gy)|2

]
= E

[
|T (θgx, ϕgx)− T (θgy, ϕgy)|2

]
= E

∣∣∣∣∣∣
∑
l≥0

√
Cl

l∑
m=−l

b̃l,m

(
Ỹl,m

(π
2
, ϕgx

)
− Ỹl,m

(π
2
, ϕgy

))∣∣∣∣∣∣
2

=
∑
l≥0

Cl

l∑
m=−l

(
Ỹl,m

(π
2
, ϕgx

)
− Ỹl,m

(π
2
, ϕgy

))2
. (5.8)
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We are now in the setting to apply Lemma 5.1 to the last expression in the computation
just above in order to single out the desired Hölder exponent δ. This yields that

E
[
|T (x)− T (y)|2

]
≤ K

∑
l≥0

Cl

(
l−1∑

m=−l+1

√
2l + 1

δ|m|δ

(l2 −m2)
δ
4

(
Ỹl,m

(π
2
, ϕgx

)
− Ỹl,m

(π
2
, ϕgy

))2−δ

+2l
5
4
δ
(
Ỹl,l

(π
2
, ϕgx

)
− Ỹl,l

(π
2
, ϕgy

))2−δ
)
|ϕgx − ϕgy|δ.

We apply Inequality (5.6) to bound the remaining term of the real spherical harmonics with
the help of the triangle inequality and obtain that

E
[
|T (x)− T (y)|2

]
≤ K2

∑
l≥0

Cl

(
l

l−1∑
m=−l+1

|m|δ√
l2 −m2

+ 2l
1
2

+δ

)
|ϕgx − ϕgy|δ.

The inner sum can be bounded with the following integral, when the inner sum is interpreted
as a Riemann sum, i.e.

l−1∑
m=1

mδ

√
l2 −m2

≤
∫ l

0

xδ√
l2 − x2

dx ≤ lδ
∫ l

0

1√
l2 − x2

dx = lδ arctan

(
x√

l2 − x2

) ∣∣∣∣∣
l

0

= lδ
π

2
.

We apply the summability condition of the lemma on the angular power spectrum to con-
tinue the above calculation to obtain that

E
[
|T (x)− T (y)|2

]
≤ 4K2

∑
l≥0

Cll
1+δ|ϕgx − ϕgy|δ ≤ K1

∑
l≥0

Cll
1+δ|ϕgx − ϕgy|δ

= K1

∑
l≥0

Cll
1+δd(gx, gy)δ = K1

∑
l≥0

Cll
1+δd(x, y)δ.

We applied that θgx = θgy = π
2 and Equation (2.1) to obtain the metric d and the fact that

the action under SO(3) preserves the metric d. This gives the claim for k = 1. Now we
treat the general case for all k ∈ N and insert the same g. In the first step, we apply that
all b̃l,m have mean zero, are independent and the fact that all odd moments are equal to
zero. Also we interchange the infinite sum and the expectation by Tonelli’s theorem. In
the second and third step, we use that the 2kth moment of a standard normally distributed
random variable is equal to (2k)!

2kk!
, which is increasing in k, to obtain that

E[|T (x)− T (y)|2k]

=
∑

l1,...,lk≥0

l1∑
m1=−l1

· · ·
lk∑

mk=−lk

k∏
j=1

Clj
∣∣Ylj ,mj (x)− Ylj ,mj (y)

∣∣2E [b̃2l1,m1
· · · b̃2lk,mk

]

≤ (2k)!

2kk!

∑
l1,...,lk≥0

l1∑
m1=−l1

· · ·
lk∑

mk=−lk

k∏
j=1

Clj
∣∣Ylj ,mj (x)− Ylj ,mj (y)

∣∣2
=

(2k)!

2kk!

∑
l≥0

Cl

l∑
m=−l

∣∣∣Ỹl,m (x)− Ỹl,m (y)
∣∣∣2
k

. (5.9)
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For a fixed integer l ≥ 0 we single out the sum over m = −l, ..., l. In the first step we switch
to the spherical harmonics. This can be verified with Definition 2.2 and Definition 2.4. In
the second step we apply Lemma 2.7 with the same g which we already used in the beginning
of this proof. In the third and fourth step we recognize that this sums correspond to the
squared Euclidean norm on C2l+1 denoted by ‖·‖C2l+1 of a unitary matrix Dl(g−1) on C2l+1

times a vector Yl(π2 , ϕgx)− Yl(π2 , ϕgy) ∈ C2l+1. We obtain that

l∑
m=−l

∣∣∣Ỹl,m (x)− Ỹl,m (y)
∣∣∣2 =

l∑
m=−l

|Yl,m (x)− Yl,m (y)|2

=
l∑

m=−l

∣∣∣∣∣
l∑

m′=−l
Dl
m′,m(g−1)

(
Yl,m′

(π
2
, ϕgx

)
− Yl,m′

(π
2
, ϕgy

))∣∣∣∣∣
2

=
∥∥∥Dl(g−1)>

(
Yl

(π
2
, ϕgx

)
− Yl

(π
2
, ϕgy

))∥∥∥2

C2l+1

=
∥∥∥Yl (π

2
, ϕgx

)
− Yl

(π
2
, ϕgy

)∥∥∥2

C2l+1

=
l∑

m=−l

∣∣∣Ỹl,m (π
2
, ϕgx

)
− Ỹl,m

(π
2
, ϕgy

)∣∣∣2 .
We insert this equation into Equation (5.9) to obtain that

E[|T (x)− T (y)|2k] ≤ (2k)!

2kk!

∑
l≥0

Cl

l∑
m=−l

∣∣∣Ỹl,m (π
2
, ϕgx

)
− Ỹl,m

(π
2
, ϕgy

)∣∣∣2
k

.

Note that we obtained the kth power of Equation (5.8). So we can insert, what we derived
for Equation (5.8) to obtain that

E[|T (x)− T (y)|2k] ≤ (2k)!

2kk!
Kk

1

∑
l≥0

Cll
1+δ

k

d(x, y)δk = Kk

∑
l≥0

Cll
1+δ

k

d(x, y)δk.

5.2. Kolmogorov–Čentsov continuity theorem

Before we can apply the previous lemma, we prove a generalized version of the Kolmogorov–
Čentsov continuity theorem which gives sufficient conditions for stochastic processes to be
almost surely locally Hölder continuous. We will generalize this to index sets of cubes in
Rd. The Kolmogorov–Čentsov continuity theorem is stated in [19] as Theorem 2.8. We will
take the proof given in [19], elaborate some more details and adapt it to prove our more
general statement.

Theorem 5.3. Let T be a random field indexed by the cube D = [a, b]d for d ∈ N and a < b
such that for α, β,K > 0 it holds that

E [|T (x)− T (y)|α] ≤ K‖x− y‖d+β
Rd .

Under this conditions for all γ ∈ (0, βα) there exists K ′ > 0, a P -a.s. positive random variable
h∗ and a modification T̃ of T such that T̃ is almost surely locally γ-Hölder continuous,
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i.e. there exists a set of full probability Ω∗ such that for all ω ∈ Ω∗ and x, y ∈ D with
‖x− y‖Rd < h∗(ω) it holds that∣∣∣T̃ (x, ω)− T̃ (y, ω)

∣∣∣ ≤ K ′‖x− y‖γRd .
Proof. Without loss of generality (w.l.o.g.) we assume that D = [0, 1]d. In this proof we
take the one norm on Rd, i.e. for x ∈ Rd this norm is given by ‖x‖1 =

∑d
i=1 |xi|. This is

justified because all norms are equivalent on Rd and the statements are only stated with
respect to constants. The main ingredients of this proof are the Borel–Cantelli lemma
and the Chebychev inequality. As a starting point we apply the Chebychev inequality and
exploit the resulting inequality in order to setup a discretization of the cube, where the
inequality holds. We obtain that

P [|T (x)− T (y)| > ε] ≤ ε−αE [|T (x)− T (y)|α] ≤ ε−αK‖x− y‖d+β
1 . (5.10)

We choose ε = 2−γn for γ ∈ (0, βα) and obtain for k1, ..., kd ∈ {0, 1, ..., 2n} and η1, ..., ηd ∈
{0, 1} from Equation (5.10) that

P

[∣∣∣∣T (k1

2n
, ...,

kd
2n

)
− T

(
k1 − η1

2n
, ...,

kd − ηd
2n

)∣∣∣∣ > 2−γn
]
≤ 2(−γn)−αKd2−n

d+β

= Kd2−n(d+β−γα).

We can apply this idea to a finite number of points that are equally spread in the cube D
and obtain that

P

 max
1≤k1,...,kd≤2n

η1,...,ηd∈{0,1}

∣∣∣∣T (k1

2n
, ...,

kd
2n

)
− T

(
k1 − η1

2n
, ...,

kd − ηd
2n

)∣∣∣∣ > 2−γn



= P

 ⋃
1≤k1,...,kd≤2n

η1,...,ηd∈{0,1}

{
ω ∈ Ω :

∣∣∣∣T (ω, k1

2n
, ...,

kd
2n

)
− T

(
ω,
k1 − η1

2n
, ...,

kd − ηd
2n

)∣∣∣∣ > 2−γn
}

≤
∑

1≤k1,...,kd≤2n

η1,...,ηd∈{0,1}

Kd2−n(d+β−γα) = Kd2d2−n(β−αγ).

Since by our choice β − γα > 0 the last expression is summable and so the Borel–Cantelli
lemma is applicable. Instead of quoting the lemma it is more practical to quote its proof
which is found in [11] on page 65 and apply it to our situation.
We set

An =

ω ∈ Ω : max
1≤k1,...,kd≤2n

η1,...,ηd∈{0,1}

∣∣∣∣T (ω, k1

2n
, ...,

kd
2n

)
− T

(
ω,
k1 − η1

2n
, ...,

kd − ηd
2n

)∣∣∣∣ > 2−γn

 ,

N(ω) =
∑
n≥1

1An(ω) for ω ∈ Ω.

We simply apply the summability which we found before and obtain that

E [N ] =
∑
n≥1

P [An] ≤
∑
n≥1

Kd2d2−n(β−αγ) <∞.
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This implies that N is P -a.s. finite, say on the set Ω∗ ∈ A, which then has full probability.
This implies that for each ω ∈ Ω∗ the condition stated in the definition of An is violated
only for finitely many n ∈ N. So we can find n∗(ω) for all ω ∈ Ω∗ such that

max
1≤k1,...,kd≤2n

η1,...,ηd∈{0,1}

∣∣∣∣T (ω, k1

2n
, ...,

kd
2n

)
− T

(
ω,
k1 − η1

2n
, ...,

kd − ηd
2n

)∣∣∣∣ ≤ 2−γn for n ≥ n∗(ω).

(5.11)

Having this inequality, we proceed with the next claim, which will provide the desired
continuity of a modification of T . We define for M ∈ N

DM =
{

(k1, ..., kd)
>/2M : ki ∈

{
0, 1, ..., 2M

}
; i = 1, ..., d

}
.

For n ≥ n∗(ω) we claim that for all M > n ∈ N it holds that

|T (ω, x)− T (ω, y)| ≤ 2
M∑

j=n+1

2−γj for all x, y ∈ DM such that ‖x− y‖1 < 2−n. (5.12)

The statement in Equation (5.12) is proven by induction. We start with the caseM = n+1.
For x, y ∈ Dn+1 such that ‖x−y‖ < 2−n it holds that x and y only differ in one coordinate.
In particular in that coordinate the difference has to be less or equal than 2−(n+1). So
Equation (5.11) can be applied and gives the result Equation (5.12) for M = n+ 1.
Now we try to conclude that if Equation (5.12) holds for m = n+ 1, ...,M − 1, then it also
holds for M . For x, y ∈ DM such that ‖x − y‖ < 2−n, w.l.o.g we assume that xi ≥ yi for
i = 1, ..., d. This freedom is clear, since for yi > xi the argument could simply be done the
other way around, which is briefly explained below. We set x∗, y∗ ∈ DM−1 such that for all
i = 1, ..., d it holds that

x∗i = max{u ∈ {0, 1/2M−1, ..., 1} : xi ≥ u},
y∗i = min{u ∈ {0, 1/2M−1, ..., 1} : xi ≤ u}.

So it holds that yi ≤ y∗i ≤ x∗i ≤ xi for i = 1, ..., d and the induction hypotheses can be
applied to x∗ and y∗. So we obtain that

|T (ω, x∗)− T (ω, y∗)| < 2

M−1∑
j=n+1

2−γj .

In the case yi > xi, x∗i and y∗i would be defined the other way around and the inequalities
would be yi ≥ y∗i > x∗i ≥ xi. For x and x∗ we know that in every coordinates the difference
is at most 2−M . This means we can use Equation (5.11) as an upper bound

|T (ω, x)− T (ω, x∗)| ≤ max
1≤k1,...,kd≤2M

η1,...,ηd∈{0,1}

∣∣∣∣T (ω, k1

2M
, ...,

kd
2M

)
− T

(
ω,
k1 − η1

2M
, ...,

kd − ηd
2M

)∣∣∣∣
≤ 2−γM .
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For y and y∗ it is done exactly in the same way. Now the triangle inequality will finish the
induction argument

|T (ω, x)− T (ω, y)| ≤ |T (ω, x)− T (ω, x∗)|+ |T (ω, x∗)− T (ω, y∗)|+ |T (ω, y∗)− T (ω, y)|

≤ 2 · 2−γM + 2
M−1∑
j=n+1

2−γj = 2
M∑

j=n+1

2−γj .

From here on the proof given for Theorem 2.8 in [19] for stochastic processes instead of
random fields fits exactly our situation. Nevertheless, we give it to complete the argument
and for the convenience of the reader. To analyze the continuity we introduce the set
D =

⋃
m≥0D

m and the function h∗(ω) = 2−n
∗(ω) on Ω∗. We now show that the random

field T is almost surely locally γ-Hölder continuous on the set D which is dense in the cube
[0, 1]d. For ω ∈ Ω∗ and x, y ∈ D such that ‖x− y‖1 < h∗(ω) and x 6= y, we find n ≥ n∗(ω)
such that 2−(n+1) ≤ ‖x− y‖1 < 2−n. Using Equation (5.12) we find that

|T (ω, x)− T (ω, y)| ≤ 2

∞∑
j=n+1

2−γj ≤ 2

∞∑
j=0

2−γj2−(n+1)γ ≤ 2

1− 2−γ
‖x− y‖γ1 . (5.13)

On the set Ω∗c, we define the random field T̃ (x) = 0 for all x ∈ [0, 1]d. For ω ∈ Ω and x ∈ D,
we define T̃ (ω, x) = T (ω, x). For x ∈ [0, 1]d ∩Dc we choose a sequence (xn : n ≥ 1) ⊂ D
such that xn converges to x. Using Equation (5.13) we see below that T (ω, xn) is a Cauchy
sequence, i.e.

|T (ω, xm)− T (ω, xn)| ≤ K ′‖xm − xn‖γ1 −→ 0 for m,n→∞.

The limit of this sequence exists by completeness of the real numbers. The limit is inde-
pendent of the chosen sequence xn, because if we take a second sequence (x̂n : n ≥ 1) which
also converges to x we obtain that

|T (ω, xm)− T (ω, x̂m)| ≤ K ′‖xm − x̂n‖γ1 −→ 0 for m→∞.

Therefore T̃ (ω, x) = limn→∞ T (ω, xn) is well-defined and satisfies Equation (5.13). More-
over this implies that for any x ∈ [0, 1]d and some sequence (xn : n ≥ 1) ⊂ D which
converges to x that T (xn) converges P -a.s. to T̃ (x). Also Equation (5.10) immediately
gives that T (xn) converges to T (x) in probability. This implies T̃ (x) = T (x) P -a.s.

5.3. Proof of Theorem 1.2

Now we are in a good position to prove the main theorem of this chapter. We formulate
Theorem 1.2 precisely.

Theorem 5.4. Let T be a 2-weakly isotropic Gaussian spherical random field, such that
the angular power spectrum satisfies that (Cll

1+δ : l ≥ 0) is summable for δ ∈ (0, 2]. For
any γ ∈ (0, δ2) there exist a modification T ∗ of T , a P -a.s. positive random variable h∗ and
a constant K > 0 such that T ∗ is almost sure locally γ-Hölder continuous, i.e. there exists
a set of full probability Ω∗ such that for all ω ∈ Ω∗ and x, y ∈ S2 with d(x, y) < h∗(ω) it
holds that

|T ∗(x, ω)− T ∗(y, ω)| ≤ Kd(x, y)γ .
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Proof. The idea of the proof is to divide T into spherical random subfields, which are only
indexed with parts of the sphere. These parts will overlap such that the global local Hölder
continuity can be deduced. We will prove the assertion on these parts individually. For the
parts, we choose projections of a square which can be seen to lie underneath the specific
part of the sphere. The square D and the mapping from D to S2 are given by

D =

[
−2

3
,
2

3

]2

, Φ : D → S2

(x1, x2) 7→
(
x1, x2,

√
1− x2

1 − x2
2

)
.

Then we define the random subfield T̂ = T |Φ(D). Now the crucial thing to check is whether
distances in D and Φ(D) are equivalent, i.e. there exist constants K̂, k̂ > 0 such that for
all x, y ∈ D it holds that

k̂‖x− y‖R2 ≤ d(Φ(x),Φ(y)) ≤ K̂‖x− y‖R2 . (5.14)

It is clear that k̂ = 1 is sufficient, since distances on the sphere are larger than on an
underlying square. The interesting case is the second inequality. We bound d(., .) from
above in two steps. First we bound it in the Euclidean norm of R3 and then in the
Euclidean norm of R2 restricted to the square D. As a start we want to remove the
inverse trigonometric function arccos. We claim that for all t ∈ [−1, 1] it holds that

arccos(t) ≤ π
√

1− t. (5.15)

For t ∈ [−1, 0] this is obvious since both functions are decreasing and the function π
√

1− ·
attains the maximum π of the function arccos already at 0. For the other case t ∈ [0, 1] we
use that d

dt arccos(t) = − 1√
1−t2 and the following inequality that is valid on at [0, 1]:

1√
1− s2

≤ π

2

1√
1− s

.

We write arccos in an integral form to obtain Inequality (5.15)

arccos(t) =

∫ 1

t

1√
1− s2

ds ≤ π

2

∫ 1

t

1√
1− s

ds = −π
√

1− s
∣∣∣1
t

= π
√

1− t.

Now we can show the first step that for x, y ∈ R2 it holds that

d(Φ(x),Φ(y))2 ≤ π2

2
‖Φ(x)− Φ(y)‖2. (5.16)

Since both sides of Inequality (5.15) are positive, the inequality also holds squared. We
apply this inequality after we inserted the expression of the metric d(., .) in terms of arccos.
Then a null addition, the definition of Φ and some manipulations give

d(Φ(x),Φ(y))2 = arccos2(〈Φ(x),Φ(y)〉) ≤ π2(1− 〈Φ(x),Φ(y)〉)

= π2

(
1− x1y1 − x2y2 −

√
(1− x2

1 − x2
2)(1− y2

1 − y2
2)

)
=
π2

2

(
x2

1 − 2x1y1 + y2
1 + x2

1 − 2x1y1 + y2
1 + 1− x2

1 − x2
2
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−2
√

(1− x2
1 − x2

2)(1− y2
1 − y2

2) + 1− y2
1 − y2

2

)
=
π2

2

(
(x1 − y1)2 + (x2 − y2)2 +

(√
1− x2

1 − x2
2 −

√
1− y2

1 − y2
2

)2
)

=
π2

2
‖Φ(x)− Φ(y)‖2.

For the second step in the proof of the upper bound K̂ in Inequality (5.14) we apply a fact
from real calculus: for a real-valued continuously differentiable function f on a convex open
subset O ⊂ R2 it holds that

|f(x)− f(y)| ≤ sup
z∈O
‖Df(z)‖R2‖x− y‖R2 ,

where Df denotes the Jacobian of f . This fact can be easily shown by an elementary calcu-
lation involving the fundamental theorem of calculus and the Cauchy–Schwarz inequality.
In our case f is the third component of Φ, i.e. f = Φ3, which is extendable to an open
domain containing D such that the extension is continuously differentiable. It is readily
verified that supz∈D ‖DΦ3(z)‖R2 = 2

√
2, since the supremum is attained at each corner

of D and DΦ3(z) = ( −z1√
1−z21−z22

, −z2√
1−z21−z22

). We apply what we just found and obtain for

x, y ∈ D that

‖Φ(x)− Φ(y)‖2 = ‖x− y‖2R2 + |Φ3(x)− Φ3(y)|2 (5.17)

≤ ‖x− y‖2R2 +
(

2
√

2
)2
‖x− y‖2R2 = 9‖x− y‖2R2 .

We combine Inequality (5.16) and Inequality (5.17) to obtain Inequality (5.14), which we
wanted to prove in the first place: for x, y ∈ D it holds that

d(Φ(x),Φ(y)) ≤ π√
2
‖Φ(x)− Φ(y)‖ ≤ 3π√

2
‖x− y‖R2 .

So we set K̂ = 3π√
2
.

The second ingredient of the proof of the theorem is Lemma 5.2. We fix γ ∈ (0, δ2) for the
rest of the proof. Then there is k ∈ N such that γ ∈ (0, δk−2

2k ). According to Lemma 5.2
there exists Kk > 0 which depends on k such that

E[|T̂ (Φ(x))− T̂ (Φ(y))|2k] ≤ Kkd(Φ(x),Φ(y))δk.

We combine this with the equivalence of distances on D and Φ(D) ⊂ S2 which is expressed
in Inequality (5.14) and obtain that

E[|T̂ (Φ(x))− T̂ (Φ(y))|2k] ≤ K̂Kk‖x− y‖δkR2 .

Theorem 5.3 implies that there exist a modification T̃ of T̂ , a P -a.s. positive random variable
h∗ and a constant K̃ > 0 such that for all x, y ∈ D that fulfill ‖x − y‖R2 < h∗ P -a.s. it
holds that

|T̃ (Φ(x))− T̃ (Φ(y))| ≤ K̃‖x− y‖γR2 .
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Note that by Theorem 5.3 we actually obtained a modification of T̂ ◦ Φ on D. But since
Φ is a bijective, measurable mapping we tacitly pre-composed it with Φ and interpreted it
as random field on Φ(D) and as a modification of T̂ . This statement can be reformulated
using Equation (5.14) and the fact that Φ is a bijective mapping. For all x̂, ŷ ∈ Φ(D) that
fulfill d(x̂, ŷ) < h∗ P -a.s. it holds that

|T̃ (x̂)− T̃ (ŷ)| ≤ K̃d(x̂, ŷ)γ . (5.18)

So we have shown that T̂ is P -a.s. locally γ-Hölder continuous for all γ ∈ (0, δ2).

This argument can be repeated with other choices of Φi for i = 1, ..., 6 to cover the whole
sphere such that some of the Φi(D) overlap, i.e. Φi(D)∩Φj(D) 6= ∅ for at least some j 6= i.
These choices of mappings are listed at the end of the proof. This gives us six random fields
(T̃i : i = 1, ..., 6), which are modifications of (T |Φi(D) : i = 1, ..., 6) respectively. Also there
are measurable sets (Ω∗i : i = 1, ..., 6) of full probability such that T̃i(ω) is locally γ-Hölder
continuous for all ω ∈ Ω∗i . The interior of D is denoted by D◦. The relatively open cover
(Φi(D

◦) : i = 1, ..., 6) fulfills the conditions of Theorem 1.11 in [26] for the existence of a
smooth partition of unity (Ψi : i = 1, ..., 6) for this relatively open cover of S2. In particular
it holds that for all i, Ψi is compactly supported in Φi(D

◦). The support of a function Ψ
is denoted by supp(Ψ). We can use it to define

T ∗ =

{∑6
i=1 ΨiT̃i on

⋂6
i=1 Ω∗i ,

0 else.

We have to check that T ∗ is a modification of T and that it is γ-Hölder continuous. Since⋂6
i=1 Ω∗i has full probability T ∗ is a modification of T by construction.

Note that there are also six different constants (K̃i : i = 1, ..., 6) and random variables
(h∗i : i = 1, ..., 6) which belong to the (T̃i : i = 1, ..., 6). We choose the global constant K
and global h∗ in the following way taking into account the overlap of the domains:

ρi,j = radius of maximal inscribed circle with respect to the metric d(., .)

in Φi(D) ∩ Φj(D), whenever Φi(D) ∩ Φj(D) 6= ∅ and i, j = 1, ..., 6,

K = max
i=1,..,6

{K̃i},

h∗ = min
i,j:Φi(D)∩Φj(D) 6=∅

{h∗i , ρi,j}.

It is clear that mini,j:Φi(D)∩Φj(D) 6=∅{ρi,j} > 0, therefore also h∗ is a P -a.s. strictly positive
random variable. Note that if i, j ∈ {1, ..., 6} such that Φi(D) ∩ Φj(D) 6= ∅, then for
x ∈ Φi(D) ∩ Φj(D) it holds that P -a.s. T̃i(x) = T |Φi(D)∩Φj(D)(x) = T̃j(x). Furthermore,
because countable intersections of sets of full probability still have full probability it holds
that P -a.s. T̃i(x) = T̃j(x) for all x ∈ Φi(D) ∩ Φj(D) ∩ Q3. Now we know that T̃i and T̃j
are continuous, so they are already determined on a dense subset of their domain. This
implies that P -a.s. T̃i(x) = T̃j(x) for all x ∈ Φi(D) ∩ Φj(D). Therefore, we can introduce
the set of full probability Ω̃ such that for i, j ∈ {1, ..., 6} with Φi(D) ∩ Φj(D) 6= ∅ it holds
that T̃i|Φj(D) = T̃j |Φi(D) on Ω̃.
We check the local γ-Hölder continuity. For ω ∈ (

⋂6
i=1 Ω∗i ) ∩ Ω̃ we choose x 6= y ∈ S2 such

that d(x, y) < h∗(ω), then there is j ∈ {1, ..., 6} such that x, y ∈ Φj(D). In the first step
we insert the definition of T ∗. In the second step we use the property of the supports of
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the partition of unity. In the third step we apply that for x ∈ Φi(D) ∩Φj(D) it holds that
T̃i(x) = T̃j(x) on Ω̃. On the complement of Ω̃ we additionally set T ∗ = 0. So we obtain
using Inequality (5.18) and the property that the partition of unity sums up to one that

|T ∗(x, ω)− T ∗(y, ω)| =

∣∣∣∣∣
6∑
i=1

Ψi(x)T̃i(x, ω)−Ψi(y)T̃i(y, ω)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i:x∈supp(Ψi)

Ψi(x)T̃i(x, ω)−
∑

i:y∈supp(Ψi)

Ψi(y)T̃i(y, ω)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i:x∈supp(Ψi)

Ψi(x)T̃j(x, ω)−
∑

i:y∈supp(Ψi)

Ψi(y)T̃j(y, ω)

∣∣∣∣∣∣
= |T̃j(x, ω)− T̃j(y, ω)| ≤ Kd(x, y)γ .

Hence the local γ-Hölder continuity has been proven. Note that for the set of full probability
Ω∗, which was announced in the theorem, we can take Ω∗ = (

⋂6
i=1 Ω∗i ) ∩ Ω̃. To complete

the argument we state the other Φ’s, note that in the proof Φ = Φ1,

Φ1 : D → S2 Φ2 : D → S2

(x1, x2) 7→
(
x1, x2,

√
1− x2

1 − x2
2

)
, (x1, x2) 7→

(
x1, x2,−

√
1− x2

1 − x2
2

)
,

Φ3 : D → S2 Φ4 : D → S2

(x1, x2) 7→
(
x1,
√

1− x2
1 − x2

2, x2

)
, (x1, x2) 7→

(
x1,−

√
1− x2

1 − x2
2, x2

)
,

Φ5 : D → S2 Φ6 : D → S2

(x1, x2) 7→
(√

1− x2
1 − x2

2, x1, x2

)
, (x1, x2) 7→

(
−
√

1− x2
1 − x2

2, x1, x2

)
.

Let Φ = Φ1 be the function from the proof of the previous theorem. We observe that
Φ(R2) = S2\{(0, 0, 1)>}. Then Inequality (5.16) implies that for all x̂, ŷ ∈ S2\{(0, 0, 1)>}
it holds that

d(x̂, ŷ) ≤ π√
2
‖x̂− ŷ‖.

Since S2\{(0, 0, 1)>} is dense in S2, the previous inequality holds for all x̂, ŷ ∈ S2. There-
fore, we obtain that for all x, y ∈ S2 it holds that

‖x̂− ŷ‖ ≤ d(x̂, ŷ) ≤ π√
2
‖x̂− ŷ‖. (5.19)

Remark 5.5. Let (Vi, αi : i ∈ I) be a finite smooth atlas of S2. Let i ∈ I be arbitrary.
There are constants k̂ and K̂ such that for all x, y ∈ α−1

i (Vi) it holds that

k̂‖x− y‖R2 ≤ d(αi(x), αi(y)) ≤ K̂‖x− y‖R2 (5.20)

Proof. Without loss of generality we assume that for all i ∈ I, every two points in α−1
i (Vi)

and every two points in Vi are connected by a continuously differentiable curve. Since αi
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is a diffeomorphism, αi and α−1
i are both Lipschitz continuous, i.e. there exists constants

k and K such that for all x, y ∈ α−1
i (Vi) it holds that

k‖x− y‖R2 ≤ ‖α(x)− α(y)‖ ≤ K‖x− y‖R2 .

Together with Inequality (5.19) we obtain the claim.
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6. Differentiability of isotropic Gaussian
spherical random fields

In this chapter we want to analyze differentiability of 2-weakly isotropic Gaussian spherical
random fields. We remind that a 2-weakly isotropic Gaussian spherical random field T has
the following expansion

T =
∑
l≥0

l∑
m=−l

√
Clβ̃l,mỸl,m, (6.1)

where the sequence (Cl : l ≥ 0) is the angular power spectrum of T , (β̃l,m : l ≥ 0,m =
−l, ..., l) is an i.i.d. sequence of standard normally distributed random variables and (Ỹl,m :
l ≥ 0,m = −l, ..., l) are the real spherical harmonics. The reader is referred to Equa-
tion (4.1) and Equation (5.1).

In the previous chapter we showed that under certain conditions on the angular power
spectrum (Cl : l ≥ 0) of a 2-weakly isotropic Gaussian spherical random field T there exists
a modification that is Hölder continuous, i.e. Theorem 5.4 implies that if (Cll

1+δ : l ≥ 0)
is summable for some δ > 0, then there exists a continuous modification T̂ of T . T̂ is
also a 2-weakly isotropic random field with an expansion in the spherical harmonics due
to Theorem 3.8. We recall that Theorem 3.8 implies that for all x ∈ S2 the expansion of
T in Equation (6.1) evaluated at x converges to T (x) in L2

P (Ω,R) and the expansion of T
converges to T in L2

P (Ω, L2(S2,R)). Since for all x ∈ S2 it holds that P -a.s. T̂ (x) = T (x),
we conclude that for all x ∈ S2

lim
L→∞

E[|T̂ (x)−
L∑
l=0

l∑
m=−l

√
Clβ̃l,mỸl,m(x)|2] = lim

L→∞
E[|T (x)−

L∑
l=0

l∑
m=−l

√
Clβ̃l,mỸl,m(x)|2]

= 0.

We further exploit that for all x ∈ S2 it holds that P -a.s. T̂ (x) = T (x) and obtain with
Tonelli’s theorem that

lim
L→∞

E[

∫
S2

|T̂ (x)−
L∑
l=0

l∑
m=−l

√
Clβ̃l,mỸl,m(x)|2dσ(x)]

= lim
L→∞

∫
S2

E[|T (x)−
L∑
l=0

l∑
m=−l

√
Clβ̃l,mỸl,m(x)|2]dσ(x)

= lim
L→∞

E[

∫
S2

|T (x)−
L∑
l=0

l∑
m=−l

√
Clβ̃l,mỸl,m(x)|2dσ(x)] = 0.

We have shown that the expansion of T also converges to T̂ in L2
P (Ω, L2(S2,R)) and for

all x ∈ S2 the expansion of T evaluated at x ∈ S2 converges to T̂ (x) in L2
P (Ω,R). In the
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following chapters we will always consider the continuous modification T̂ instead of T and
denote the modification also by T . This is justified, since we will always consider 2-weakly
isotropic Gaussian spherical random fields, whose angular power spectrum satisfies that
(Cll

1+δ : l ≥ 0) is summable for some δ > 0 such that Theorem 5.4 is applicable. We just
showed that we can still argue with the same expansion in the real spherical harmonics.

T can be interpreted as a mapping from Ω to C0(S2). For all x ∈ S2 we observe that
T (x) is A − B(R) measurable, where B(R) is the Borel σ-algebra of R. We introduce the
canonical coordinates (Xx : x ∈ S2) on C0(S2) as mappings from C0(S2) to R, i.e. for all
x ∈ S2 and all w ∈ C0(S2) we define

Xx(w) = w(x).

We use them to define the σ-algebra F on C0(S2) that is induced by the canonical coordi-
nates (Xx : x ∈ S2), i.e. we set

F = σ(Xx : x ∈ S2).

Since for all x ∈ S2 it holds that Xx ◦ T is A − B(R) measurable, we observe that T is
A−F measurable.

Lemma 6.1. Let B(C0(S2)) be the Borel σ-algebra of C0(S2). It holds that B(C0(S2)) = F .

Proof. This is analyzed in an abstract framework in the paper of Yan in [28]. Since C0(S2)
is a separable Banach space, it is also a Polish space. Therefore, we can directly apply
Theorem 3 in [28]. We set X = C0(S2), (fα : α ∈ I) = (Xx : x ∈ S2) and Yα = R.
The mapping w 7→ (w(x) : x ∈ I) from C0(S2) to

∏
α∈I Yα is bijective to its image. This

property also holds if we take the index set J = Q3 ∩ S2 instead of I. Note that J is a
countable subset of I. With this setup Theorem 3 in [28] explicitly implies the claim.

Therefore we conclude that P ◦ T−1, which is the law of T , is a probability measure on
(C0(S2),B(C0(S2)). Also the mapping ω 7→ T (ω) from Ω to C0(S2) is A − B(C0(S2))
measurable.

For the subsequent analysis we introduce Bochner spaces. Let X be a separable Banach
space with norm ‖ · ‖X , for all p ∈ (0,∞) we define the Bochner space LpP (Ω,X ) as all
strongly measurable, X -valued functions X on (Ω,A) such that

‖X‖LpP (Ω,X ) = E
[
‖X‖pX

] 1
p <∞.

For the definition of strong measurability we refer to Definition 1 and 2 in Section V.4 in
[29] and for the Bochner integral we refer to Section V.5 in [29]. In the following we will
mostly encounter the case that X is an X -valued function on Ω such that X is A− B(X )
measurable, where B(X ) denotes the Borel σ-algebra of the separable Banach space X . We
briefly argue that separability of X implies that X is strongly measurable. For all ` ∈ X ∗
we observe that `(X) is A − B(R) measurable. Since the space X is separable we obtain
with Pettis’ theorem, which is the main theorem in Section V.4 in [29], that X is strongly
measurable. Note that LpP (Ω,X ) is a Banach space with norm ‖ · ‖LpP (Ω,X ) in the case that
p ∈ [1,∞).
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We observe that in general the realizations of T are P -a.s. in L2(S2,R) according to
Lemma 3.3 because any 2-weakly isotropic spherical random field satisfies that (Cll : l ≥ 0)
is summable. Once we added δ ∈ (0, 2] to the exponent, i.e. (Cll

1+δ : l ≥ 0) has to be
summable, we observe that due to Theorem 5.4 there exists a Hölder continuous modifica-
tion. Since we assume that the field T is continuous, it follows that realizations of T are
P -a.s. Hölder continuous. A similar approach can be used to show that weak derivatives of
T are Hölder continuous. First we prove under which decay of the angular power spectrum
weak derivatives of realizations of T are P -a.s. in L2(S2,R). In the second step we add
δ ∈ (0, 2] to the exponent and prove P -a.s. Hölder continuity.

6.1. Sobolev and Hölder spaces on the sphere

In this chapter we will use the interpretation of S2 as a smooth manifold. An atlas of S2 is
denoted by (Vi, βi : i ∈ I) such that⋃

i∈I
Vi = S2 and βi : β−1

i (Vi)→ Vi,

for all i ∈ I. We will always consider smooth atlases in this exposition. For a mapping f
on S2, we introduce the notation that for all i ∈ I

fβi = f ◦ βi.

For basic properties of an atlas, chart domains and coordinate charts the reader is referred
to [26]. Let (Vi, βi : i ∈ I) be an atlas of S2. Since (Vi : i ∈ I) is an open cover of S2,
Theorem 1.11 in [26] implies that there exists a partition of unity subordinate to (Vi : i ∈ I).
Sometimes it is useful to be able to choose a partition of unity with additional properties.
The following lemma is motivated by Corollary 1.11 in [26].

Lemma 6.2. Let (Vi, βi : i ∈ I) be an atlas of S2. If A ⊂⊂ Vj is a relatively closed subset
of S2 for some fixed j ∈ I, then there exists a partition of unity Ψ subordinate to the open
cover (Vi : i ∈ I) such that Ψj = 1 on A.

Proof. The proof is essentially the proof of Corollary 1.11 in [26]. Since A ⊂⊂ Vj is
relatively closed in S2, it holds that (Vj , Vi\A : i ∈ I\{j}) is an open cover of S2. We apply
Theorem 1.11 in [26] to the open cover (Vj , Vi\A : i ∈ I\{j}) and obtain the partition of
unity Ψ subordinate to (Vj , Vi\A : i ∈ I\{j}). For all i ∈ I\{j} it holds that supp(Ψi) ⊂⊂
Vi\A, which implies that Ψi(x) = 0 for all x ∈ A. Since

∑
i∈I Ψi = 1 on S2, it must hold

that Ψj(x) = 1 for all x ∈ A.

For the Sobolev spaces on the sphere we take Definition 3.23 from [3].

Definition 6.3. For s ∈ R the Sobolev space Hs(S2) is the completion of C∞(S2) with
respect to the following norm. For f ∈ C∞(S2) the Hs(S2)-norm is defined by

‖f‖Hs(S2) =

∥∥∥∥∥
(
−∆S2 +

1

4

) s
2

f

∥∥∥∥∥
L2(S2,R)

.
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Note that the operator (−∆S2 + 1
4)

s
2 is formally evaluated on the real spherical harmonics

such that for l ≥ 0 and m ∈ {−l, ..., l} it holds that(
−∆S2 +

1

4

) s
2

Ỹl,m =

(
l +

1

2

)s
Ỹl,m.

Another definition of Sobolev spaces on the sphere is taken from Wloka’s book [27]. There
it is Definition 4.4 and it applies to sufficiently smooth compact manifolds. It uses an atlas
of the manifold, which is the sphere in our case. Note that by shrinking the domain of
our coordinates, i.e. [0, π]× [0, 2π), to a suitable open subset B, one can construct a finite
smooth atlas by rotating our coordinates with suitable elements g1, ..., g6 ∈ SO(3), where
we set ηi = gix and Ui = ηi(B) for i = 1, ...6, where x denotes the coordinates, which we
defined at the very beginning of Chapter 2. We obtain the atlas (Ui, ηi : i = 1, ..., 6). A
partition of unity Ψ = (Ψi : i = 1, ..., 6) subordinate to the open cover (Ui : i = 1, ..., 6) of
S2 exists due to Theorem 1.11 in [26] as at the end of Chapter 5. We will refer to this atlas
as our standard or usual atlas on S2.

Definition 6.4. For k ∈ N and p ∈ [1,∞) we say that f ∈ L2(S2,R) belongs to W k,p(S2)
if the functions

(fΨi)ηi : η−1
i (Ui)→ R,

belong to the Sobolev spaces W k,p
0 (η−1

i (Ui)) for all i ∈ {1, .., 6}. With W k,p
0 (O) we denote

the closure of C∞0 (O) with respect to the W k,p(O)-norm for an open set O. The norm on
W k,p(S2) is given by

‖f‖Wk,p(S2) =

(
6∑
i=1

‖(fΨi)ηi‖
p

Wk,p(η−1
i (Ui))

) 1
p

.

W k,2(S2) is a Hilbert space with an inner product. For f, g ∈W k,2(S2) it is defined by

(f, g)k =
6∑
i=1

((fΨi)ηi , (gΨi)ηi)Wk,2(η−1
i (Ui))

.

For Sobolev spaces over bounded domains in Euclidean space we refer to the book of Adams
and Fournier [1] or of Triebel [25]. We did not include the atlas in our notation. This is
justified by Satz 4.2 of [27] for the case p = 2, which says that the norms for different atlases
are equivalent. The general case p ∈ [1,∞) of this same statement is Theorem 48.19 in [10].
Situations may arise where one of the two definitions for Sobolev spaces on the sphere is
more useful. That is why we seek to prove that one is continuously embedded in the other
in the integer case.

Proposition 6.5. For k ∈ N it holds with continuous embedding that Hk(S2) ⊂W k,2(S2).

The proof of this proposition will be conducted at the end of this chapter. The following
notation is helpful to treat higher order derivatives. For a multi-index β ∈ Nn0 we write for
the partial derivative

∂β =
∂|β|

∂xβ11 ...∂x
βn
n

,

where |β| =
∑n

i=1 βi. For two multi-indices α,β ∈ Nn0 we introduce the partial order ≤
such that α ≤ β if αi ≤ βi for all i ∈ {1, ..., n}. Moreover for α,β ∈ Nn0 satisfying α ≤ β
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we introduce the binomial coefficient
(
β
α

)
=
∏n
i=1

(
βi
αi

)
. In the following greek letters in bold

font will refer to multi-indices of the respective dimension.
We introduce the Sobolev–Slobodeckij spaces on a bounded domain D ⊂ Rn for some
n ∈ N. For an integer k ≥ 0 and t ∈ (0, 1) that satisfy that s = k + t and p ∈ [1,∞), we
define for f ∈W k,p(D)

|f |W s,p(D) =
∑
|β|=k

(∫
D×D

|∂βf(x)− ∂βf(y)|p

‖x− y‖pt+nRn
dxdy

) 1
p

.

Definition 6.6. Let s > 0 be not an integer and satisfies that s = k + t for an integer
k ≥ 0 and t ∈ (0, 1) and let p ∈ [1,∞). For a bounded domain D ⊂ Rn for some n ∈ N the
Sobolev–Slobodeckij space W s,p(D) is defined by

W s,p(D) =
{
f ∈W k,p(D) : |f |W s,p(D) <∞

}
and the norm on W s,p(D) for f ∈W s,p(D) is given by

‖f‖W s,p(D) =
(
‖f‖p

Wk,p(D)
+ |f |pW s,p(D)

) 1
p
.

The dual space of W s,p(D) is denoted by W−s,p′(D), where p′ satisfies that 1
p + 1

p′ = 1.

We introduce general notation for the Hölder norms and spaces on a bounded domain
D ⊂ Rn for some n ∈ N. By Ck(D) we denote the real-valued k-times differentiable
functions with domainD. Functions in Ck(D) whose partial derivatives can be continuously
extended to the boundary ∂D form the space Ck(D)

Definition 6.7. If f ∈ Ck(D) and k is a positive integer, we define the semi-norm

|f |k,D = sup
x∈D
|β|=k

|∂βf(x)|,

and the norm

‖f‖Ck(D) = sup
x∈D
|f(x)|+

k∑
j=1

|f |j,D.

If f ∈ Ck(D) and k is a positive integer, we define for γ ∈ (0, 1] the semi-norm

|f |γ,k,D = sup
x,y∈D, x6=y
|β|=k

|∂βf(x)− ∂βf(y)|
‖x− y‖γRn

,

and the norm
‖f‖Ck,γ(D) = ‖f‖Ck(D) + |f |γ,k,D.

For an integer k ≥ 0 and γ ∈ (0, 1] we define the Hölder space

Ck,γ(D) = {f ∈ Ck(D) : ‖f‖Ck,γ(D) <∞}.
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Note that vector-valued Hölder functions and spaces are defined accordingly, i.e Ck,γ(D,O)
denotes the space of functions whose components are in Ck,γ(D) and whose range is included
in the closure of a domain O ⊂ Rm for some m ∈ N. Also we introduce the notation
Ck(D) = Ck,0(D). If D is a bounded Lipschitz domain Remark 16.3 (ii) in Section 16.1.1
in [7] implies that the following norms on Ck(D) and Ck,γ(D) are equivalent: for f ∈ Ck(D)

‖f‖Ck(D) ' ‖f‖C0(D) + |f |k,D (6.2)

and for f ∈ Ck,γ(D)
‖f‖Ck,γ(D) ' ‖f‖C0(D) + |f |γ,k,D. (6.3)

The product and composition of two Hölder functions result again a Hölder function. If D
is a bounded Lipschitz domain, and g, h ∈ Ck,α(D) for an integer k ≥ 0 and α ∈ (0, 1] then
Theorem 16.28 in Section 16.5.2 of [7] states that there exists a constant K > 0 depending
on k and D such that

‖gh‖Ck,α(D) ≤ K
(
‖g‖Ck,α(D)‖h‖C0(D) + ‖g‖C0(D)‖h‖Ck,α(D)

)
. (6.4)

For the statement about the composition of two Hölder functions let D ⊂ Rn and O ⊂ Rm
be two bounded open Lipschitz domains, α, β ∈ [0, 1] and g ∈ Ck,α(D) for some integer
k ≥ 0. The following two statements are due to Theorem 16.31 in Section 16.6.1 of [7]. If
k = 0 and h ∈ Ck,β(O,D), then

‖g ◦ h‖C0,αβ(O) ≤ ‖g‖C0,α(D)‖h‖
α
C0,β(O,D)

+ ‖g‖C0(D). (6.5)

If k ≥ 1 and h ∈ Ck,α(O,D), then there exists a constant K > 0 depending on k, O and D
such that

‖g ◦ h‖Ck,α(O) ≤ K
(
‖g‖Ck,α(D)‖h‖

k+α
C1,β(O,D)

+ ‖g‖C1(D)‖h‖Ck+α(O,D) + ‖g‖C0(D)

)
. (6.6)

The Hölder spaces on the sphere are defined similarly to the Sobolev spaces with respect
to an atlas.

Definition 6.8. For k ∈ N, α ∈ (0, 1) and a finite, smooth atlas (Vi, βi : i ∈ I) of S2 with
respective partition of unity Ψ the Hölder space Ck,αβ (S2) is defined as the set of functions
f ∈ Ck(S2) such that

‖f‖
Ck,αβ (S2)

= max
i∈I
‖(fΨi)βi‖Ck,α(β−1

i (Vi))
<∞.

The following proposition justifies this choice of norm and shows that for different atlases
the same space results.

Proposition 6.9. For k ∈ N, α ∈ (0, 1) and two finite atlases (Vi, βi : i ∈ I) and (Wj , τj :

j ∈ J ) the spaces Ck,αβ (S2) and Ck,ατ (S2) are equal with equivalent norms.

Proof. Let Ψ and Φ be partitions of unity subordinate to the open cover (Vi : i ∈ I) and
(Wj : j ∈ J ). It is sufficient to prove that there exists a constant K > 0 such that for all
function f ∈ Ck,ατ (S2) and for all i ∈ I it holds that

‖(fΨi)βi‖Ck,α(β−1
i (Vi))

≤ K‖f‖
Ck,ατ (S2)

.
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We fix i ∈ I. From the definition of a smooth atlas we obtain that the functions τ−1
j ◦ βi

are smooth diffeomorphisms from β−1
i (Vi∩Wj) to τ−1

j (Vi∩Wj) for all j ∈ J . In particular
these functions are in C l,α(β−1

i (Vi ∩Wj), τ
−1
j (Vi ∩Wj)) for all l ∈ N and their respective

norms can be bounded uniformly due to the finite index set J with a constantKl > 0. Since
also (fΨiΦj)τj ∈ Ck,α(A) for some compact set A that satisfies that supp((Φj)τj ) ⊂ A ⊂
τ−1
j (Wj) we can apply Inequality (6.5) and Inequality (6.6) to obtain that for a constant
K̃ > 0 depending on k and the domains it holds that

‖(fΨiΦj) ◦ τj ◦ (τ−1
j ◦ βi)‖Ck,α(β−1

i (Vi∩Wj))
≤ K̃(Kk+1

max{1,k} + 1)‖(fΨiΦj) ◦ τj‖Ck,α(A),

where we also used Inequality (6.3) to simplify the right hand side. We use this inequality
together with the basic property of the partition of unity to obtain that

‖(fΨi)βi‖Ck,α(β−1
i (Vi))

≤
∑
j∈J
‖(fΨiΦj)βi‖Ck,α(β−1

i (Vi∩Wj))

=
∑
j∈J
‖(fΨiΦj) ◦ τj ◦ (τ−1

j ◦ βi)‖Ck,α(β−1
i (Vi∩Wj))

≤
∑
j∈J

K̃(Kk+1
max{1,k} + 1)‖(fΨiΦj)τj‖Ck,α(A).

We apply Inequality (6.4) and Inequality (6.3) to the product (fΦj)τj · (Ψi)τj and insert
the bound into the above expression to obtain that

‖(fΨi)βi‖Ck,α(β−1
i (Ui))

≤
∑
j∈J

K‖(fΦj)τj‖Ck,α(τ−1
j (Wj))

≤ |J |K‖f‖
Ck,ατ (S2)

,

where we tacitly combined the former constants together with the respective norms of the
smooth functions (Ψi)τj for i ∈ I and j ∈ J to a new constant K.

For these Hölder and Sobolev spaces on S2 we want to prove a Sobolev embedding theorem.

Theorem 6.10. Let k, ι ∈ N0, p ∈ (1,∞) and γ ∈ [0, 1). If k− 2
p > ι+γ, then W k,p(S2) ⊂

Cι,γ(S2) with continuous embedding. If γ ∈ (0, 1), then the continuous embedding also holds
if k − 2

p = ι+ γ.

Proof. Since the norms of the Hölder and Sobolev spaces with respect to two different atlases
are equivalent, we can prove the claim with our usual finite atlas (Ui, ηi : i = 1, ..., 6) with
partition of unity Ψ. For f ∈W k,p(S2) we obtain that

f =
6∑
i=1

fΨi.

We fix i ∈ {1, ..., 6} and observe that (fΨi)ηi ∈ W k,p(η−1
i (Ui)). The Sobolev embedding

theorem for domains in Euclidean space, which is Theorem 4.6.1.(c) in [25] implies that
(fΨi)ηi has a continuous representative in Cι,γ(η−1

i (Ui)), which we also denote by (fΨi)ηi .
Also it implies that for a constant K, which is independent of f , it holds that

‖(fΨi)ηi‖Cι,γ(η−1
i (Ui))

≤ K‖(fΨi)ηi‖Wk,p(η−1
i (Ui))

≤ K‖f‖Wk,p(S2),

where the last inequality is due to Definition 6.4. Since i ∈ {1, ..., 6} was arbitrarily chosen,
we obtain that

‖f‖Cι,γ(S2) ≤ K‖f‖Wk,p(S2).
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Now the Hölder spaces on S2 are well-defined. We finish this preliminary section with a
remark on the Borel σ-algebras of the Hölder spaces.

Remark 6.11. We can apply the proof of Lemma 6.1 in the case that we analyze the Hölder
space Ck,γ(S2) for an integer k ≥ 0 and γ ∈ (0, 1). We conclude that the Borel σ-algebra of
Ck,γ(S2) is equal to the σ-algebra that is induced by the canonical coordinates (Xx : x ∈ S2),
i.e. B(Ck,γ(S2)) = F . Therefore we obtain that B(Ck,γ(S2)) = B(C0(S2)) for every integer
k ≥ 0 and γ ∈ (0, 1).

6.2. First order derivatives of isotropic Gaussian spherical
random fields

For a 2-weakly isotropic Gaussian spherical random field the next lemma states how fast its
angular power spectrum has to decay such that its expansion converges in the L2k

P (Ω, Hs(S2))-
norm for all k ∈ N. The case k = 1 is the first part of the proof of Theorem 4.5 in [20].

Lemma 6.12. Let T be a 2-weakly isotropic Gaussian spherical random field such that its
angular power spectrum satisfies that (Cll

1+2s : l ≥ 0) is summable for some s > 0, then
T is an element of L2k

P (Ω, Hs(S2)) for all k ∈ N and its expansion in the real spherical
harmonics converges in the respective norm and there exists a constant Kk independently
of T and (Cl : l ≥ 0) such that

‖T‖L2k
P (Ω,Hs(S2)) ≤ Kk

∑
l≥0

Cll
1+2s

 1
2

.

Proof. We denote with TL the truncated expansion of T for L ∈ N0 as we did in the
previous chapters. For L1 > L2 ∈ N0 we look at the difference of two truncations of T .
With a similar argument as used to show Inequality (5.9) we obtain that

‖TL1 − TL2‖2k
L2k
P (Ω,Hs(S2))

= E


 L1∑
l=L2+1

l∑
m=−l

Clβ̃
2
l,m

(
l +

1

2

)2s
k


≤ (2k)!

2kk!

 L1∑
l=L2+1

l∑
m=−l

Cl

(
l +

1

2

)2s
k

=
(2k)!

2kk!

 L1∑
l=L2+1

Cl(2l + 1)

(
l +

1

2

)2s
k

≤ Kk

 L1∑
l=L2+1

Cll
1+2s

k

. (6.7)

Since the sequence (Cll
1+2s : l ≥ 0) is summable this calculation implies that (TL : L ≥ 0)

is a Cauchy sequence in the space L2k
P (Ω, Hs(S2)). The completeness of this space implies

that TL converges to T in L2k
P (Ω, Hs(S2)) as L→∞.

The second claim of the lemma is proven in the same way as we proved Inequality (6.7).
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An important ingredient of this discussion are partial derivatives of the real spherical har-
monics, which is the content of the following lemma.

Lemma 6.13. For l ≥ 0 and m ∈ {−l, ..., l} the components of the partial derivatives of
the real spherical harmonics have the following form:

∂ϕỸl,m(x) = −mỸl,−m(x)

and

∂θỸl,m(x) = m

√
(l + 1)2 −m2

(2l + 1)(2l + 3)

Ỹl+1,m(x)

sin(θ)

+m

√
l2 −m2

(2l + 1)(2l − 1)

Ỹl−1,m(x)

sin(θ)

+

{√
(l +m+ 1)(l −m)Ỹl,m+1(x) if m ≥ 0,√
(l + |m|+ 1)(l − |m|)Ỹl,m−1(x) if m < 0.

Proof. The expression of the real spherical harmonics, i.e. Equation (5.3), implies the first
claim after a simple computation of the partial derivative with respect to ϕ.
The second claim of the lemma is a bit more involved. We start to compute ∂θỸl,m(x). The
part of Ỹl,m(x) that depends on θ is equal to sinm(θ) dl+m

dxl+m
(x2− 1)l|x=cos(θ). For the partial

derivative we obtain that

∂θ sinm(θ)
dl+m

dxl+m
(x2 − 1)l|x=cos(θ) = m sinm−1(θ) cos(θ)

dl+m

dxl+m
(x2 − 1)l

∣∣∣
x=cos(θ)

− sinm+1(θ)
dl+m+1

dxl+m+1
(x2 − 1)l

∣∣∣
x=cos(θ)

.

If we regard the full expression of the real spherical harmonics, that is Equation (5.3), we
obtain the partial derivative with respect to θ, i.e.

∂θỸl,m(x) = m
cos(θ)

sin(θ)
Ỹl,m(x) +

{√
(l +m+ 1)(l −m)Ỹl,m+1(x) if m ≥ 0,√
(l + |m|+ 1)(l − |m|)Ỹl,m−1(x) if m < 0.

Note that the ambiguity for the case |m| = l is tacitly dealt with the factor
√
l − |m|, that

becomes equal to zero in these cases. This is correct since the partial derivative vanishes.
Ambiguities of this kind will be tacitly dealt with in this manner throughout this proof.
The appendix of [21] in particular Chapter 13.1.3 in [21] contains the following recurrence
relation for the associated Legendre polynomials just below Equation (13.7) in [21]: for
l ≥ 0 and m ∈ {−l, ..., l} it holds that

(2l + 1)xP lm = (l −m+ 1)P l+1
m + (l +m)P l−1

m .

This recurrence relation is our approach to simplify cos(θ)Ỹl,m. We use Equation (5.3) and
manipulate the constants to obtain that

cos(θ)Ỹl,m

=

√
2l + 1

4π

√
(l − |m|)!
(l + |m|)!

(−1)m sin|m|(θ)

2l + 1
((l − |m|+ 1)P l+1

|m| (cos(θ)) + (l + |m|)P l−1
|m| (cos(θ)))
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=

√
2l + 3

4π

√
(l + 1− |m|)!
(l + 1 + |m|)!

√
(l + 1 + |m|)(l + 1− |m|)

(2l + 1)(2l + 3)
(−1)m sin|m|(θ)P l+1

m (cos(θ)) + . . .

=

√
(l + 1 + |m|)(l + 1− |m|)

(2l + 1)(2l + 3)
Ỹl+1,m +

√
(l + |m|)(l − |m|)
(2l + 1)(2l − 1)

Ỹl−1,m, (6.8)

where we omitted the similar derivation of Ỹl−1,m. Equation (6.8) enables us to obtain the
expression of the partial derivative with respect to θ, that we were looking for.

With the help of the previous lemma we arrive at the version of Lemma 5.2 for the first
order partial derivatives of a 2-weakly isotropic Gaussian spherical random field.

Lemma 6.14. Let T be a 2-weakly isotropic Gaussian spherical random field such that the
angular power spectrum (Cl : l ≥ 0) satisfies that (Cll

1+2+δ : l ≥ 0) is summable for some
δ ∈ (0, 2]. For i ∈ {1, ..., 6} and x, y ∈ Ui and all k ∈ N there exists a constant Kk, which
depends only on k, such that for β ∈ {θ, ϕ} it holds that

E
[
|∂βTηi(θx, ϕx)− ∂βTηi(θx, ϕx)|2k

]
≤ Kk

∑
l≥0

Cll
1+2+δ

k

d(x, y)δk.

Proof. We start with the case k = 1 and i = 1, then η1 is equal to our usual coordinates
on the sphere. Therefore we apply the notation η1(θx, ϕx) = x and η1(θy, ϕy) = y. We
are allowed to interchange the partial derivative and limit of the expansion of T (x) and
T (y) because from Lemma 6.12 we know that T ∈ L2

P (Ω, H1(S2)) and then Proposition 6.5
implies that T ∈ L2

P (Ω,W 1,2(S2)), i.e. the weak derivatives of T are well defined in the
L2
P -sense. This enables us to shift the discussion on how partial derivatives behave on the

real spherical harmonics, i.e. we obtain that it holds that

E
[
|∂βT (x)− ∂βT (y)|2

]
= E

∣∣∣∣∣∣
∑
l≥0

l∑
m=−l

√
Clβ̃l,m(∂βỸl,m(x)− ∂βỸl,m(y))

∣∣∣∣∣∣
2

=
∑
l≥0

l∑
m=−l

Cl(∂βỸl,m(x)− ∂βỸl,m(y))2. (6.9)

In the following we study the term (∂βỸl,m(x)−∂βỸl,m(y))2. We treat the two cases β = θ, ϕ
separately and begin with β = ϕ. We apply Lemma 6.13 to obtain that(

∂ϕỸl,m(x)− ∂ϕỸl,m(y)
)2

= m2(Ỹl,−m(x)− Ỹl,−m(y))2

≤ l2(Ỹl,−m(x)− Ỹl,−m(y))2.

We sum this expression multiplied with the angular power spectrum (Cl : l ≥ 0) over l and
m and obtain with Equation (6.9) that

E
[
|∂ϕT (x)− ∂ϕT (y)|2

]
≤
∑
l≥0

l∑
m=−l

Cll
2(Ỹl,m(x)− Ỹl,m(y))2

= E
[
|T̂ (x)− T̂ (y)|2

]
,
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where T̂ is the 2-weakly isotropic Gaussian spherical random field that results from the
angular power spectrum (Ĉl : l ≥ 0) = (Cll

2 : l ≥ 0). Note that by assumption the
sequence (Ĉll

1+δ : l ≥ 0) is summable. Therefore Lemma 5.2 implies that there exists a
constant K̂ > 0 such that

E
[
|∂ϕT (x)− ∂ϕT (y)|2

]
≤ E

[
|T̂ (x)− T̂ (y)|2

]
≤ K̂

∑
l≥0

Cll
1+2+δd(x, y)δ.

The fact is noteworthy that for a1, ..., aq ≥ 0 and h, q ∈ N it holds that

( q∑
j=1

aj

)h
≤ qh−1

( q∑
j=1

ahj

)
. (6.10)

For the discussion of the case β = θ we note that the factors
√

(l+1)2−m2

(2l+1)(2l+3) and
√

l2−m2

(2l+1)(2l−1)

which appear in Lemma 6.13 are bounded independently of l and m, say they are both
bounded by K0 > 0. Also

√
(l + |m|+ 1)(l − |m|) can be bounded by a constant multiplied

by l, say the constant is K0 as well. According to Lemma 6.13 and Inequality (6.10) the
difference of the partial derivatives with respect to θ squared can be bounded in this way:

(
∂θỸl,m(x)− ∂θỸl,m(y)

)2
≤ 3K2

0m
2

(
Ỹl+1,m(x)

sin(θx)
−
Ỹl+1,m(y)

sin(θy)

)2

(6.11)

+ 3K2
0m

2

(
Ỹl−1,m(x)

sin(θx)
−
Ỹl−1,m(y)

sin(θy)

)2

(1− δl,|m|) (6.12)

+ 3K2
0 l

2(1− δl,|m|)

{
(Ỹl,m+1(x)− Ỹl,m+1(y))2 if m ≥ 0,

(Ỹl,m−1(x)− Ỹl,m−1(y))2 if m < 0.

(6.13)

The Expression (6.13) is a difference of real spherical harmonics as in the case β = ϕ and
can be treated in the same way. Before we begin to bound the Expressions (6.11) and
(6.12) , we briefly discuss a needed inequality. Let f and g be two real-valued functions
and a, b > 0 two constants, then it holds that

a(f − g) = (fa− gb) + g(b− a) and b(f − g) = (fa− gb) + f(b− a).

the addition of these two equations and the triangle inequality yields that

|f − g| ≤ 2

|a+ b|
|fa− gb|+ |f + g|

|a+ b|
|a− b|. (6.14)

This inequality will be needed to treat the factor 1
sin(θ) , that appears in the partial derivative

with respect to θ. Note that on η−1
1 (U1) the function sin(θ) ≥ ε for some ε > 0. To ease

the notation we will seek to bound

∑
l≥0

Cl

l∑
m=−l

l2

(
Ỹl,m(x)

sin(θx)
−
Ỹl,m(y)

sin(θy)

)2
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in terms of d(x, y)δ. Since sine is Lipschitz continuous with Lipschitz constant equal to one,
we obtain with Inequalities (6.14) and (6.10) for an integer l ≥ 0 and m ∈ {−l, ..., l} that

l2

(
Ỹl,m(x)

sin(θx)
−
Ỹl,m(y)

sin(θy)

)2

≤ l2 4

ε2
(Ỹl,m(x)− Ỹl,m(y))2 (6.15)

+ 2l2
Ỹl,−m(x)2 + Ỹl,−m(y)2

ε2
|θx − θy|2. (6.16)

When we sum Expression (6.15) multiplied with the angular power spectrum over l and m,
we obtain that

∑
l≥0

Cl

l∑
m=−l

l2
4

ε2
(Ỹl,m(x)− Ỹl,m(y))2 =

4

ε2
E[|T̂ (x)− T̂ (y)|2].

T̂ is again the 2-weakly isotropic Gaussian spherical random field that results from the
angular power spectrum (Ĉl : l ≥ 0) = (Cll

2 : l ≥ 0). Note that by assumption the
sequence (Ĉll

1+δ :≥ 0) is summable. Therefore Lemma 5.2 implies that there exists a
constant K̂ > 0 such that

∑
l≥0

Cl

l∑
m=−l

l2
4

ε2
(Ỹl,m(x)− Ỹl,m(y))2 ≤ 4

ε2
K̂
∑
l≥0

Cll
1+2+δd(x, y)δ.

For Expression (6.16) we derive with Lemma 2.8 and Equation (2.1) that

∑
l≥0

Cl

l∑
m=−l

2l2
Ỹl,m(x)2 + Ỹl,m(y)2

ε2
|θx − θy|2 ≤

∑
l≥0

Cll
2 2l + 1

πε2
|θx − θy|2

≤ 3

πε2

∑
l≥0

Cll
1+2+δd(x, y)δ

Therefore, when we sum the left hand side of Expression (6.15) multiplied with the angular
power spectrum over l and m, we obtain that

∑
l≥0

Cl

l∑
m=−l

l2

(
Ỹl,m(x)

sin(θx)
−
Ỹl,m(y)

sin(θy)

)2

≤
(

4

ε2
K̂ +

3

πε2

)∑
l≥0

Cll
1+2+δd(x, y)δ. (6.17)

We now apply Inequality (6.17) to bound the sum of Expressions (6.11) and (6.12) multiplied
by the angular power spectrum over l and m and conclude that

∑
l≥0

Cl

l∑
m=−l

(
∂θỸl,m(x)− ∂θỸl,m(y)

)2
≤ K2

0

(
12

ε2
K̂ +

3

πε2
+ K̂

)∑
l≥0

Cll
1+2+δd(x, y)δ.

Therefore we can take K1 = K2
0 (12

ε2
K̂ + 9

πε2
+ K̂) and obtain that

E

∣∣∣∣∣∣
∑
l≥0

l∑
m=−l

√
Clβ̃l,m(∂βỸl,m(x)− ∂βỸl,m(y))

∣∣∣∣∣∣
2 ≤ K1

∑
l≥0

Cll
1+2+δd(x, y)δ. (6.18)
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To complete the first step k = 1, we have to argue for the other charts as well, i.e. i 6= 1.
For i 6= 1 the chart ηi satisfies ηi = gix = x̃ for a non-trivial element gi ∈ SO(3). In this
proof we had to estimate sums over m = −l, ..., l of (∂βỸl,m(x)− ∂βỸl,m(y))2. We observe
with the help of Lemma 2.7 that the expressions are equal in both coordinates, i.e.

l∑
m=−l

(
∂βỸl,m(x̃)− ∂βỸl,m(ỹ)

)2
=

l∑
m=−l

(
∂βỸl,m(gix)− ∂βỸl,m(giy)

)2

=
l∑

m=−l

(
l∑

m′=−l
Dl
m′,m(g−1

i )(∂βỸl,m′(x)− ∂βỸl,m′(y))

)2

=
l∑

m′=−l

(
∂βỸl,m′(x)− ∂βỸl,m′(y)

)2
. (6.19)

This means we can apply the same argument as we did before to the expression for the
other charts. This finishes the proof of the step k = 1.

The general case k ∈ N will be proven in a similar manner as the case k ∈ N was proven in
Lemma 5.2. We start with the respective expression and first interchange the weak partial
derivative and the limit of the expansion of T , that is justified since due to Lemma 6.12
and the assumption on the angular power spectrum T ∈ L2k

P (Ω, H1(S2)). In the second
step we apply the same argument, which was used to prove Inequality (5.9) to obtain that

E
[
|∂βT (x)− ∂βT (y)|2k

]
= E


∣∣∣∣∣∣
∑
l≥0

l∑
m=−l

√
Clβ̃l,m(∂βỸl,m(x)− ∂βỸl,m(y))

∣∣∣∣∣∣
2k


≤ (2k)!

2kk!

∑
l≥0

l∑
m=−l

Cl(∂βỸl,m(x)− ∂βỸl,m(y))2

k

.

We see that we derived the kth power of Equation (6.9), which we bounded in Inequality
(6.18). We conclude that

E
[
|∂βT (x)− ∂βT (y)|2k

]
≤ (2k)!

2kk!
Kk

1

∑
l≥0

Cll
1+2+δ

k

d(x, y)δk

= Kk

∑
l≥0

Cll
1+2+δ

k

d(x, y)δk.

The previous lemma gives us the respective ingredient in the proof of Theorem 5.4 of the
spherical random field for first order partial derivatives. Therefore we expect a similar result
to hold for ∂βT , where T is a 2-weakly isotropic Gaussian spherical random field. However
the following extension of Lemma 6.12 will be needed additionally.

Lemma 6.15. Let T be a 2-weakly isotropic Gaussian spherical random field such that its
angular power spectrum satisfies that (Cll

1+2 : l ≥ 0) is summable, then T is an element of
L2k
P (Ω,W 1,2k(S2)) for all k ∈ N and its expansion in the real spherical harmonics converges

in the respective norm.
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Proof. The norm onW 1,2k(S2) is defined through the atlas (Ui, ηi : i = 1, .., 6) and partition
of unity Ψ. We prove the assertion for the chart η1, the argument for the remaining charts
is exactly the same. By the product rule we obtain that ∂θ(TΨ1)η1 = (∂θTη1)(Ψ1)η1 +
Tη1∂θ(Ψ1)η1 . Since Ψ1 is a smooth compactly supported function, it is sufficient to consider
the term (∂θT )η1(Ψ1)η1 . For L ∈ N0 we denote the truncation of the expansion of T by TL.
Note that on η−1

1 (U1) the function sin(θ) ≥ ε for some ε > 0. We apply the formulas for
partial derivatives of the real spherical harmonics given in Lemma 6.13, Inequality (6.10)
and the same argument, which was used to prove Inequality (5.9) to obtain that for L1 ≥
L2 ∈ N0 it holds that

E

[∫
η−1
1 (U1)

|(∂θTL1
η1 (θ, ϕ)− ∂θTL2

η1 (θ, ϕ))(Ψ1)η1(θ, ϕ)|2kdϕdθ

]

≤ sup
U1

|Ψ1|2kE

[∫
η−1
1 (U1)

|∂θTL1
η1 (θ, ϕ)− ∂θTL2

η1 (θ, ϕ)|2kdϕdθ

]

≤ sup
U1

|Ψ1|2k
(2k)!

2kk!

∫
η−1
1 (U1)

 L1∑
l=L2+1

l∑
m=−l

Cl(∂θỸl,m(θ, ϕ))2

k

dθdϕ

≤ K2k 3k

ε2k

(2k)!

2kk!
sup
U1

|Ψ1|2k
∫
η−1
1 (U1)

L1+1∑
l=L2

l∑
m=−l

Cll
2Ỹ 2
l,m(θ, ϕ)

k

dϕdθ,

where K is a constant, which is independent of l and m. Due to the pre-factors of the
partial derivatives of the real spherical harmonics. We argued in the proof of Lemma 6.14
that these pre-factors can be bounded in this way. In the next step we apply Lemma 2.8
and summarize terms in a constant K > 0, which is independent of L1, L2, θ, l and m. We
obtain that

E

[∫
η−1
1 (U1)

|(∂θTL1
η1 (θ, ϕ)− ∂θTL2

η1 (θ, ϕ))(Ψ1)η1(θ, ϕ)|2kdϕdθ

]

≤ K

L1+1∑
l=L2

l∑
m=−l

Cll
1+2

k

.

Since the sequence (Cll
1+2 : l ≥ 0) is summable and due to the above remarks on the norms

in Sobolev spaces (TLΨ1)η1 is a Cauchy sequence in L2k(Ω,W 1,2k(η−1
1 (U1)) and converges

to (TΨ1)η1 ∈ L2k(Ω,W 1,2k(η−1
1 (U1))) in the respective norm.

This argument can be repeated in the same way for the other i ∈ {2, ..., 6} due to Equa-
tion (6.19). Also the argument for the partial derivatives with respect to ϕ can be done
in the same way, it includes fewer terms. Since the norm on W 1,2k(S2) is defined as the
sum of the W 1,2k(η−1

i (Ui))-norms of Tηi over i, it follows that T ∈ L2k(Ω,W 1,2k(S2)) as
claimed.

Theorem 6.16. Let T be a continuous 2-weakly isotropic Gaussian spherical random field,
such that the angular power spectrum satisfies that (Cll

1+2+δ : l ≥ 0) is summable for
δ ∈ (0, 2]. For any γ ∈ (0, δ2) there exists an indistinguishable modification T ∗ of T such
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that T ∗ ⊂ C1,γ(S2) and for all p ∈ (0,∞) there exists a constant Kp independently of T
and (Cl : l ≥ 0) such that

‖T‖LpP (Ω,C1,γ(S2)) ≤ Kp

∑
l≥0

Cll
1+2+δ

 1
2

.

For a spherical random field X we introduce the notation that X ⊂ C1,γ(S2). We mean by
this notation that the function X(ω, ·) ∈ C1,γ(S2) for all ω ∈ Ω. This notation is motivated
by interpreting X as a set of function with index set Ω. We will apply this notation in the
case of other function spaces over the sphere without further mentioning it. For a spherical
random field X we say that a modification X∗ of X is indistinguishable of X, if there exists
a measurable set Ω∗ of full probability such that X∗1Ω∗ = X1Ω∗ as functions on S2, where
1 is the indicator function.

Proof of Theorem 6.16. For this proof we consult a recent paper by Andreev and Lang [2],
which suits our situation nicely. Lemma 6.14 together with Remark 5.5 and Lemma 6.15
state the essential ingredients of Theorem 3.5 in [2]. We apply Theorem 3.5 in [2] with
d = 1, n = 2 and ε = kδ − 2. To obtain the claimed regularity k ∈ N has to be chosen
such that it satisfies that 1 + γ < 1 + min{kδ−2

2k , 2k−2
2k }. This is the case for k > 2

δ−2γ . We
conclude with Theorem 3.5 in [2] that T has a modification T ∗ such that T ∗ ⊂ C1,γ(S2).
To prove the indistinguishability it is important that T is already continuous. Since T ∗ is a
modification of T , there exists a measurable set of full probability Ω∗ such that T (ω, x) =
T ∗(ω, x) for all ω ∈ Ω∗ and all x ∈ Q3 ∩ S2. Moreover they are both continuous random
fields and the realizations are uniquely determined on a dense subset of S2. This implies
that T1Ω∗ = T ∗1Ω∗ as functions on S2.
We fix i ∈ {1, ..., 6} and an arbitrary p ∈ (0,∞). We increase k such that p ≤ 2k. We
remind of our standard atlas (Ui, ηi : i = 1, ..., 6) on S2 with partition of unity Ψ. In the
development of the proof of Theorem 3.5 in [2] in this particular paper Hölder continuity
of the random field is proven with Sobolev spaces and a Sobolev embedding. We observe
that for a random field X on η−1

i (Ui) that satisfies that ∂αX ∈ LpP⊗dx(Ω× η−1
i (Ui),R) for

all multi-indices α ∈ N2
0 with |α| = d for some d ∈ N, for q ∈ [1,∞) and ν ∈ (0, 1) the

LqP (Ω,W d+ν,q(η−1
i (Ui))-norm of X satisfies that

‖X‖q
LqP (Ω,W d+ν,q)

= E[‖X‖q
W d+ν,q ] ' E[‖X‖qLq ] +

∑
|α|=d

E[

∫
|∂αX(x)− ∂αX(y)|q

‖x− y‖2+νq
R2

dxdy],

(6.20)
where we tacitly omitted the domain η−1

i (Ui) in the Sobolev and Lp space. Also the integral
is taken over η−1

i (Ui)× η−1
i (Ui). Note that in general the above expression may be infinite.

Adapted to our situation it is finite with the choice ν ∈ (γ, δ2). This follows because the
function ‖ · − · ‖−κR2 is integrable over η−1

i (Ui) × η−1
i (Ui) for all κ ∈ (2,∞). Also with

the choice ν ∈ (γ, δ2) the Sobolev embedding theorem, which is Theorem 4.6.1.(e) in [25],
Lemma 6.14 and Remark 5.5 imply that

E[‖(TΨi)ηi‖2kC1,γ(η−1
i (Ui))

] ≤ CE[‖Tηi‖2kL2k(η−1
i (Ui),R)

] +Kk

∑
l≥0

Cll
1+2+δ

k

, (6.21)

where the constant C is due to the Sobolev embedding and the constant Kk is due to
Lemma 6.14. Note that the contribution of the partition of unity does not cause problems.
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In the paper [2] the boundary of the domain has some regularity. Here we could ignore
this because (Ψi)ηi is compactly supported in η−1

i (Ui). We have observed in the proof of
Lemma 6.15 that there exists a constant Kk such that

E[‖T‖2kL2k(S2,R)] ≤ Kk

∑
l≥0

Cll

k

.

The Hölder inequality implies that with continuous embedding L2k
P (Ω,R) ⊂ LpP (Ω,R). We

conclude that there exists a constant Kp such that

E[‖(TΨi)ηi‖
p

C1,γ(η−1
i (Ui))

]
1
p ≤ Kp

∑
l≥0

Cll
1+2+δ

 1
2

.

Since i ∈ {1, ..., 6} was arbitrary the claim follows.

Remark 6.17. If we assume that the angular power spectrum of a continuous 2-weakly
isotropic Gaussian spherical random field T only satisfies that (Cll

1+δ : l ≥ 0) is summable
for some δ ∈ (0, 2], then the same proof of the previous theorem can be applied. We obtain
that for all γ ∈ (0, δ2) there exists an indistinguishable modification T ∗ of T such that
T ∗ ⊂ C0,γ(S2) and for all p ∈ (0,∞) there exists a constant Kp independently of T and
(Cl : l ≥ 0) such that

‖T‖LpP (Ω,C0,γ(S2)) ≤ Kp

∑
l≥0

Cll
1+δ

 1
2

Note that the property of the modification to be indistinguishable is due to our decision, that
we made at the beginning of this chapter, to always consider the continuous modification
of a 2-weakly isotropic Gaussian spherical random field.

6.3. Higher order derivatives of isotropic Gaussian spherical
random fields

Now, we prove under which conditions on the angular power spectrum of a 2-weakly
isotropic Gaussian spherical random field higher order partial derivatives are P -a.s. Hölder
continuous. Therefore we have to find a generalization of Lemma 6.14 for higher order
partial derivatives.

Lemma 6.18. Let T be a 2-weakly isotropic Gaussian spherical random field such that the
angular power spectrum (Cl : l ≥ 0) satisfies that (Cll

1+2ι+δ : l ≥ 0) is summable for some
δ ∈ (0, 2] and some ι ∈ N. For all i ∈ {1, ..., 6} and all x, y ∈ Ui, all multi-indices α ∈ N2

0

satisfying |α| = ι and all k ∈ N there exists a constant Kk, which only depends on k and ι,
such that

E
[
|∂αTηi(θx, ϕx)− ∂αTηi(θy, ϕy)|2k

]
≤ Kk

∑
l≥0

Cll
1+2ι+δ

k

d(x, y)δk.
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Proof. We start with the case k = 1 and i = 1, then η1 is equal to our usual coordinates
on the sphere. Therefore we apply the notation η1(θx, ϕx) = x and η1(θy, ϕy) = y. We
are allowed to interchange the partial derivative and limit of the expansion of T (x) and
T (y) because from Lemma 6.12 we know that T ∈ L2

P (Ω, Hι(S2)), i.e. the weak partial
derivatives of T up to order ι are well defined in the L2

P -sense. This enables us to shift the
discussion on how the partial derivatives behave on the real spherical harmonics, i.e. we
obtain that it holds that

E
[
|∂αT (x)− ∂αT (y)|2

]
= E

∣∣∣∣∣∣
∑
l≥0

l∑
m=−l

√
Clβ̃l,m(∂αỸl,m(x)− ∂αỸl,m(y))

∣∣∣∣∣∣
2

=
∑
l≥0

l∑
m=−l

Cl(∂αỸl,m(x)− ∂αỸl,m(y))2. (6.22)

The strategy of this proof is to apply the ideas of the proof of Lemma 6.14 and the result
of Lemma 6.13, i.e. the formula for the partial derivatives of the real spherical harmonics.
For l ∈ N0 and m ∈ {−l, ..., l} we examine

∂αỸl,m = ∂αθθ (−1)d
αϕ
2
emαϕ Ỹl,(−1)αϕm

= (−1)d
αϕ
2
emαϕ∂αθ−1

θ

(
m

√
(l + 1)2 −m2

(2l + 1)(2l + 3)

Ỹl+1,(−1)αϕm(x)

sin(θ)
(6.23)

+m

√
l2 −m2

(2l + 1)(2l − 1)

Ỹl−1,(−1)αϕm(x)

sin(θ)
(6.24)

+

{√
(l +m+ 1)(l −m)Ỹl,m+1(x) if m ≥ 0√
(l + |m|+ 1)(l − |m|)Ỹl,m−1(x) if m < 0

)
.

(6.25)

If we evaluate all remaining partial derivatives, we obtain finitely many linear combinations
of real spherical harmonics with the first index less or equal to l + ι. We notice that
Expressions (6.23) and (6.24) carry the factor 1

sin(θ) , which leads to numerous terms because
of the product rules for derivatives. But the number of terms will at most double each time
the product rule is applied. Similarly to the proof of Lemma 6.14 it holds that sin(θ) ≥ ε > 0
on η−1

1 (U1). This implies that powers and derivatives of powers of 1
sin(θ) are smooth and

therefore Lipschitz continuous, i.e. there exists a constant K such that for all positive
integers h, q ≤ ι it holds that∣∣∣∣∂qθ 1

sinh(θx)
− ∂qθ

1

sinh(θy)

∣∣∣∣ ≤ K|θx − θy|. (6.26)

Also because these functions are smooth, there exists a constant, say also K, such that on
η−1

1 (U1) for all positive integers h, q ≤ ι it holds that

sup
(θ,ϕ)∈η−1

1 (U1)

∣∣∣∣∂qθ 1

sinh(θ)

∣∣∣∣ ≤ K. (6.27)

Since we are only interested in absolute values of differences and we wish to simplify the
terms we bound the factors in Expression (6.23) and (6.24), i.e. for all l′ ∈ N and m′ ∈
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{−l′, ..., l′} it holds that

(l′ + 1)2 −m′2

(2l′ + 1)(2l′ + 3)
≤ l′2 + 2l′ + 1

4l′2 + 8l′ + 3
≤ 1,

l′2 −m′2

(2l′ + 1)(2l′ − 1)
≤ l′2

4l′2 − 1
=
l′2 − 4−1

4l′2 − 1
+

4−1

4l′2 − 1
≤ 1

4
+

1

12
≤ 1

and √
(l′ + |m′|+ 1)(l′ − |m′|) =

√
l′2 − |m′|2 + l′ − |m′| ≤

√
(l′2 + l′ ≤

√
2l′.

We evaluate the remaining partial derivatives and obtain with Inequality (6.10) that

(∂αỸl,m(x)− ∂αỸl,m(y))2 ≤ 6ι(l + ι)2ι
6ι∑
j=1

(aj(x)Ỹlj ,mj (x)− aj(y)Ỹlj ,mj (y))2, (6.28)

where the coefficients (aj : j = 1, ..., 6ι) are combinations of powers of
√

2 and of powers
and derivatives of powers of 1

sin(θ) . Note that the coefficients are clearly functions. It is
possible that some of the coefficients are equal to zero. Since every partial derivative of
a real spherical harmonic results in at most 3 terms and the product rule applied to the
coefficients doubles at most the number, we obtain at most 6ι terms. Note that lj ≤ l + ι
for all j ∈ {1, ..., 6ι} and mj ∈ {−lj , ..., lj}. This yields the upper bound (l+ ι)ι for powers
of different mj ’s that result as factors while differentiating the real spherical harmonics.
The inequality for f, g, a, b ∈ R:

|af − bg| ≤ |a||f − g|+ |g||a− b|, (6.29)

together with Inequalities (6.26), (6.27) and (6.28) and Inequality (6.10) implies that

(∂αỸl,m(x)− ∂αỸl,m(y))2

≤ 22ι6ιι2ιl2ι
6ι∑
j=1

âjK
2[(Ỹlj ,mj (x)− Ỹlj ,mj (y))2 + Ỹlj ,mj (y)2|θx − θy|2], (6.30)

where the coefficients (âj : j = 1, ..., 6ι) are now only powers of
√

2, with highest exponent
2ι. We can apply the same argument that we used to show Inequality (6.17) in the proof
of Lemma 6.14 with the respective assumption on the angular power spectrum to conclude
that there exists a constant K̂ such that for all j ∈ {1, ..., 6ι} it holds that

∑
l≥0

l∑
m=−l

Cll
2ι[(Ỹlj ,mj (x)− Ỹlj ,mj (y))2 + Ỹlj ,mj (y)2|θx − θy|2]

≤
∑
l≥0

l∑
m=−l

Cll
2ι[(Ỹl,m(x)− Ỹl,m(y))2 + Ỹl,m(y)2|θx − θy|2] ≤ K̂

∑
l≥0

Cll
1+2ι+δd(x, y)δ.

(6.31)

Note that the indices lj andmj are translations from the original indices l andm by at most
ι. The missing terms of the real spherical harmonics in the first sum in Inequality (6.31) will
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be added to obtain the second sum in the chain of inequalities. We combine Equation (6.22),
Inequality (6.30) and Inequality (6.31) to obtain that

E
[
|∂αT (x)− ∂αT (y)|2

]
≤ K1d(x, y)δ, (6.32)

where we have set K1 = 22ι6ιι2ι6ιK2K̂. This argument can be repeated in the same way
for the other i ∈ {1, ..., 6} due to Equation (6.19).

The general case k ∈ N is proven by copying line by line the argument for the general case
k ∈ N in the proof of Lemma 6.14. Therefore there exist constants Kk such that for all
k ∈ N and all i ∈ {1, ..., 6} it holds that

E
[
|∂αTηi(θx, ϕx)− ∂αTηi(θy, ϕy)|2k

]
≤ Kk

∑
l≥0

Cll
1+2ι+δ

k

d(x, y)δk.

The next lemma verifies the membership of weak higher order partial derivatives of a 2-
weakly isotropic Gaussian random field in Lp-spaces, similarly to Lemma 6.15.

Lemma 6.19. Let T be a 2-weakly isotropic Gaussian spherical random field such that its
angular power spectrum satisfies that (Cll

1+2ι : l ≥ 0) is summable for some ι ∈ N, then
T is an element of L2k

P (Ω,W ι,2k(S2)) for all k ∈ N and its expansion in the real spherical
harmonics converges in the respective norm.

Proof. This proof will benefit from the proofs of Lemma 6.15 and Lemma 6.18. The norm
on W ι,2k(S2) can be defined through the usual atlas (Ui, ηi : I = 1, ..., 6) and the partition
of unity Ψ. We start with i = 1 and notice that for x ∈ U1, the argument that we used in
the proof of Lemma 6.18 to prove Inequality (6.28) also works to estimate squared partial
derivatives of a single real spherical harmonic. So we conclude that for an integer l ≥ 0,
m ∈ {−l, ..., l} and all multi-indices α ∈ N2

0 satisfying |α| = ι it holds that

(∂αỸl,m(x))2 ≤ 6ι(l + ι)2ι
6ι∑
j=1

(aj(x)Ỹlj ,mj (x))2,

where the coefficients (aj : j = 1, ..., 6ι) are combinations of powers of
√

2 and of powers and
derivatives of powers of 1

sin(θ) . Note that lj ≤ l+ ι for all j = 1, ..., 6ι and mj ∈ {−lj , ..., lj}.
We apply Inequality (6.27), which is also part of the proof of Lemma 6.18 to bound the
coefficients in the above sum to obtain that for a constant K > 0 it holds that

(∂αỸl,m(x))2 ≤ 22ι−16ιι2ιl2ιK

6ι∑
j=1

Ỹ 2
lj ,mj

(x). (6.33)

For L1 ≥ L2 ∈ N and a multi-index α ∈ N2
0 that satisfies |α| = ι it holds that

E

[∫
η−1
1 (U1)

(
∂αT

L1
η1 (θ, ϕ)− ∂αTL2

η1 (θ, ϕ)(Ψ1)η1(θ, ϕ)
)2k

dθdϕ

]

≤ sup
U1

|Ψ1|2k
∫
η−1
1 (U1)

E


 L1∑
l=L2+1

l∑
m=−l

√
Clβl,m∂αỸl,m(θ, ϕ)

2k
dθdϕ
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≤ sup
U1

|Ψ1|2k
∫
η−1
1 (U1)

(2k)!

2kk!

 L1∑
l=L2+1

l∑
m=−l

Cl(∂αỸl,m(θ, ϕ))2

k

dθdϕ,

where the last step is justified by the same argument, which was used to prove Inequality
(5.9). We insert the bound in Inequality (6.33) to obtain that for a constant K̃ > 0 it holds
that

E

[∫
η−1
1 (U1)

(
∂αT

L1
η1 (θ, ϕ)− ∂αTL2

η1 (θ, ϕ)(Ψ1)η1(θ, ϕ)
)2k

dθdϕ

]

≤ K̃
∫
η−1
1 (U1)

 L1∑
l=L2+1

l∑
m=−l

Cll
2ιỸ 2

l,m(θ, ϕ)

k

dθdϕ

≤ K̃ ′
 L1∑
l=L2+1

Cll
2ι 2l + 1

4π

k

, (6.34)

where the last step is due to Lemma 2.8. The assumption in the lemma implies that the
sequence (Cll

1+2ι : l ≥ 0) is summable, which yields that Expression (6.34) converges to
zero as L1, L2 →∞. Since the norm on W ι,2k(η−1

1 (U1)) is determined by the L2k-norm of
the weak derivatives of highest order and the L2k-norm of the function and Ψ1 is a smooth,
compactly supported function, it is sufficient to consider the term (∂αT )Ψ1. Since L2k

P and
Sobolev spaces are complete, we obtain that TLη1 converges to Tη1 ∈ W ι,2k(η−1

1 (U1) in the
respective norm.

This argument can be repeated in the same way for the other i ∈ {1, ..., 6} due to Equa-
tion (6.19). Since the norm onW ι,2k(S2) is defined as the sum of theW ι,2k(η−1

i (Ui))-norms
of (TΨi)ηi over i, it follows that T ∈ L2k

P (Ω,W ι,2k(S2)) as claimed.

Now we can generalize Theorem 6.16 for arbitrarily high order derivatives. This is the
precise version of Theorem 1.3 from the introduction.

Theorem 6.20. Let T be a continuous 2-weakly isotropic Gaussian spherical random field,
such that the angular power spectrum satisfies that (Cll

1+2ι+δ : l ≥ 0) is summable for
δ ∈ (0, 2] and ι ∈ N0. For any γ ∈ (0, δ2) there exists an indistinguishable modification T ∗

of T such that T ∗ ⊂ Cι,γ(S2) and for all p ∈ (0,∞) there exists a constant Kp independently
of T and (Cl : l ≥ 0) such that

‖T‖LpP (Ω,Cι,γ(S2)) ≤ Kp

∑
l≥0

Cll
1+2ι+δ

 1
2

.

Proof. The cases ι = 0, 1 are implied by Remark 6.17 and Theorem 6.16. Therefore we
assume that ι ≥ 2. The proof is very similar to the proof of Theorem 6.16 and consults
[2]. Lemma 6.18 and Lemma 6.19 state the needed assumptions in Theorem 3.5 in [2]. We
apply Theorem 3.5 in [2] with d = ι, n = 2 and ε = kδ−2. To obtain the claimed regularity
k ∈ N has to chosen such that it satisfies that ι + γ < ι + min{kδ−2

2k , 2k−2
2k }. This is again

achieved for k > 2
δ−2γ . We conclude with Theorem 3.5 in [2] that T has a modification T ∗
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such that T ∗ ⊂ Cι,γ(S2). The modification is indistinguishable, because T and T ∗ are both
continuous random fields. The same argument as in the proof of Theorem 6.16 applies.
The proof of the bound of the LpP (Ω, Cι,γ(S2))-norm of T follows with the same argument
as in the proof of Theorem 6.16.

Remark 6.21. Let T be a continuous 2-weakly isotropic Gaussian spherical random field
that satisfies the assumptions of the previous theorem. For all L ∈ N0 Theorem 6.20 implies
an approximation result of T by the truncated random field TL, since T − TL is also a
continuous 2-weakly isotropic Gaussian spherical random field with angular power spectrum
equal to zero in the components from 0 to L. Theorem 6.20 implies that for all p ∈ (0,∞)
there exists a constant Kp indepedently of L, T , TL and (Cl : l ≥ 0) such that

‖T − TL‖LpP (Ω,Cι,γ(S2)) ≤ Kp

(∑
l>L

Cll
1+2ι+δ

) 1
2

.

6.4. A second approach to prove the differentiability results

In the previous sections we proved differentiability of a continuous 2-weakly isotropic Gaus-
sian spherical random field T by analyzing the behavior of higher order partial derivatives
of T . This was technically quite involved. We observe that the spherical Laplace operator
applied to T results again a 2-weakly isotropic spherical random field in the case of suf-
ficient decay of the angular power spectrum of T . This is due to fact that the spherical
Laplace operator is diagonalized by the real spherical harmonics such that the respective
eigenvalues and the angular power spectrum of T are indexed in the same way. Therefore
the expansion of (−∆S2 + 1

4)T only differs in the angular power spectrum.
The strategy in this section is to prove Hölder continuity of (−∆S2 + 1

4)
ι
2T for some even

integer ι ≥ 2 and then conclude Hölder continuity of the partial derivatives of T of order
ι with regularity theory of second order elliptic operators. The case of higher odd order
partial derivatives will follow with interpolation theory. The same result from Section 6.3
on differentiability of continuous 2-weakly isotropic Gaussian spherical random fields, which
is Theorem 6.20, will be achieved.

We will require Hölder regularity of solutions of specific higher order elliptic equations. The
following proposition discusses this issue for this particular class of operators.

Proposition 6.22. Let ι ≥ 2 be an even integer and let γ ∈ (0, 1). If u ∈ C0(S2)∩Hι(S2)
and f ∈ C0,γ(S2) satisfy that (

−∆S2 +
1

4

) ι
2

u = f

with equality in L2(S2,R), then it follows that u ∈ Cι,γ(S2) and there exists a constant K
independently of u and f such that

‖u‖Cι,γ(S2) ≤ K(‖u‖Hι(S2) + ‖f‖C0,γ(S2)).

Proof. Proposition 6.5 implies that u ∈W ι,2(S2). Since u is already continuous, the Sobolev
embedding theorem, which is Theorem 6.10, implies that u ∈ Cι−2,γ(S2) and together with
Proposition 6.5 it follows that there exist constants K,K ′ independently of u such that

‖u‖Cι−2,γ(S2) ≤ K‖u‖W ι,2(S2) ≤ K ′‖u‖Hι(S2). (6.35)
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We start with the case that ι = 2. Our usual atlas of S2 is denoted by (Ui, ηi : i = 1, ..., 6)
and the partition of unity Ψ is subordinate to the open cover (Ui : i = 1, ..., 6) of S2.
Hölder continuity is a local property. Therefore, we multiply u with a cut-off function and
aim to pull the problem back to the chart domains and apply regularity theory for elliptic
equations in subdomains of Euclidean space. We fix i ∈ {1, ..., 6} and observe with the
Leipniz rule that uΨi satisfies that(

−∆S2 +
1

4

)
(uΨi) = −∇S2 · ((∇S2u)Ψi + u∇S2Ψi) +

1

4
uΨi

= −(∆S2u)Ψi −∇S2u · ∇S2Ψi −∇S2 · (u∇S2Ψi) +
1

4
uΨi

= fΨi − 2∇S2u · ∇S2Ψi − u∆S2Ψi.

In the chart domain η−1
i (Ui) the above equality reads:

L(uΨi)ηi = G+ ∂θFθ + ∂ϕFϕ, (6.36)

where

L = ∂2
θ + ∂2

ϕ

1

sin2(θ)
+

cos(θ)

sin(θ)
∂θ −

1

4
= ∂k(a

k,l∂l) +
cos(θ)

sin(θ)
∂θ −

1

4
, (6.37)

F =

(
2uηi∂θ(Ψi)ηi , 2

uηi
sin(θ)

∂ϕ
(Ψi)ηi
sin(θ)

)
(6.38)

and

G = −(fΨi)ηi + (u∆S2Ψi)ηi − 2uηi∂
2
θ (Ψi)ηi − 2

uηi
sin(θ)

∂2
ϕ

(Ψi)ηi
sin(θ)

. (6.39)

In Equation (6.37) we employed the summation convention to be able to ease the notation
in the following, i.e. for two vectors x, y ∈ R2 we define xkyk =

∑2
k=1 xkyk. The order of the

subscript and superscript indices may vary and this notation also applies to the product
of matrices. The matrix a is given by: a = diag(1, sin−2(θ)). The fact that (Ψi)ηi is
compactly supported in η−1

i (Ui) enables us to consider Equation (6.36) on a subdomain D
with smooth boundary that satisfies that supp((Ψi)ηi) ⊂⊂ D ⊂⊂ η−1

i (Ui). Hence, (uΨi)ηi
satisfies the following Dirichlet problem in D:

L(uΨi)ηi = G+ ∂kF
k,

(uΨi)ηi

∣∣∣
∂D

= 0. (6.40)

From Definition 6.4 we know that (uΨi)ηi ∈ W 2,2
0 (D). Hence, the partial derivatives in

Equation (6.40) are weak derivatives and we observe that (uΨi)ηi satisfies Equation (6.40)
in the sense of distributions, i.e.∫

D
ak,l∂l(uΨi)ηi∂kv −

cos(θ)

sin(θ)
∂θ(uΨi)ηiv +

1

4
(uΨi)ηiv dx =

∫
D
−Gv + F k∂kv dx (6.41)

for all v ∈ C1
0 (D), where we used the notation (x1, x2) = (θ, ϕ). Due to the density of

C∞0 (D) in W 1,2
0 (D), we can argue for all v ∈ W 1,2

0 (D) with a sequence (vl : l ≥ 0) ⊂
C∞0 (D) converging to v in the W 1,2

0 (D)-norm and the Cauchy–Schwarz inequality that
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Equation (6.41) also holds for this v. Since v was arbitrarily chosen, Equation (6.41) holds
for all v ∈ W 1,2

0 (D). In this case we say that (uΨi)ηi is a weak solution of the Dirichlet
problem in Equation (6.40). The fact that sin−2(θ) is bounded on D and the matrix a is
symmetric imply that there exist constants Λ, λ > 0 such that

‖ξ‖2R2Λ ≥ ak,l(x)ξkξl ≥ ‖ξ‖2R2λ

for all ξ ∈ R2 and all x ∈ D. This property is called strict ellipticity. The fact that G
and the components of F are in C0,γ(D), that the coefficients of L are smooth on D, the
strict ellipticity of L and the negative sign in front of 1

4 in the operator L enable us to
apply Theorem 8.34 in [14]. It implies that the Dirichlet problem in Equation (6.40) has
a unique, weak solution in C1,γ(D). Hence, we conclude that (uΨi)ηi ∈ C1,γ(D). We
apply Theorem 8.32 in [14] with the nested sets supp((Ψi)ηi) and D to obtain a constant
K independently of (uΨi)ηi , G and F such that

‖(uΨi)ηi‖C1,γ(supp((Ψi)ηi ))
≤ K(‖(uΨi)ηi‖C0(D) + ‖G‖L∞(D,R) + ‖Fθ‖C0,γ(D) + ‖Fϕ‖C0,γ(D))

(6.42)

Since ηi(D) is relatively closed in S2, we can apply Lemma 6.2 and conclude that there
exists a partition of unity Ψ̂ subordinate to the open cover (Uj : j = 1, ..., 6) such that
(Ψ̂i)ηi = 1 on D. We apply this property, Inequality (6.4) and the definition of Hölder
norms on S2 to conclude that there exists a constant K independently of u and f such that

‖G‖L∞(D,R) ≤ K(‖(fΨi)ηi‖C0(D) + ‖uηi‖C0,γ(D))

= K(‖(fΨi)ηi‖C0(D) + ‖(uΨ̂i)ηi‖C0,γ(D))

≤ K(‖(fΨi)ηi‖C0(η−1
i (Ui))

+ ‖(uΨ̂i)ηi‖C0,γ(η−1
i (Ui))

)

≤ K(‖f‖C0,γ(S2) + ‖u‖C0,γ(S2)),

where the contributions of Ψi are included into the constant K. Similarly, there exists a
constant K independently of u such that

‖Fθ‖C0,γ(D), ‖Fϕ‖C0,γ(D) ≤ K‖uηi‖C0,γ(D)

= K‖(uΨ̂i)ηi‖C0,γ(D) ≤ K‖(uΨ̂i)ηi‖C0,γ(η−1
i (Ui))

≤ K‖u‖C0,γ(S2).

We insert the previous two estimates into Inequality (6.42) and obtain with the fact that
(uΨi)ηi is equal to zero outside of supp((Ψi)ηi) that there exists a constantK independently
of u and f such that

‖(uΨi)ηi‖C1,γ(η−1
i (Ui))

≤ K(‖u‖C0,γ(S2) + ‖f‖C0,γ(S2)).

This argument can be repeated for all other j ∈ {1, ..., 6}\{i}. Hence we conclude that
u ∈ C1,γ(S2) and there exists a constant K independently of u and f such that

‖u‖C1,γ(S2) ≤ K(‖u‖C0,γ(S2) + ‖f‖C0,γ(S2)). (6.43)

We further investigate the Dirichlet problem in Equation (6.40). We fix the same i ∈
{1, ..., 6} as before and remind of the set D satisfying supp((Ψi)ηi) ⊂⊂ D ⊂⊂ η−1

i (Ui) and
the partition of unity Ψ̂ that satisfies that (Ψ̂i)ηi = 1 on D. Since u ∈ C1,γ(S2), it follows
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that the right hand side in Equation (6.40), i.e. G+∂kF
k, is now in C0,γ(D) and we do not

need to consider F in divergence form anymore. Theorem 6.14 in [14] is applicable and it
implies that the Dirichlet problem in Equation (6.40) has a unique solution ũ ∈ C2,γ(D).
This ũ is also a weak solution of the Dirichlet problem in Equation (6.40). Since the weak
solution was uniquely determined to be (uΨi)ηi , we obtain that ũ = (uΨi)ηi and therefore
(uΨi)ηi ∈ C2,γ(D). We apply Corollary 6.3 of Theorem 6.2 in [14] with the nested sets
supp((Ψi)ηi) and D and obtain that there exists a constant K independently of (uΨi)ηi
and f such that

‖(uΨi)ηi‖C2,γ(supp((Ψi)ηi ))
≤ K(‖(uΨi)ηi‖C0(D) + ‖G+ ∂kF

k‖C0,γ(D)). (6.44)

We discuss the norm of the right hand side. We argue similarly as in the above discussion
and obtain that

‖G+ ∂kF
k‖C0,γ(D) ≤ ‖G‖C0,γ(D) + ‖Fθ‖C1,γ(D) + ‖Fϕ‖C1,γ(D)

≤ K(‖(fΨi)ηi‖C0,γ(D) + ‖uηi‖C0,γ(D) + ‖uηi‖C1,γ(D))

= K(‖(fΨi)ηi‖C0,γ(D) + ‖(uΨ̂i)ηi‖C0,γ(D) + ‖(uΨ̂i)ηi‖C1,γ(D))

≤ K(‖(fΨi)ηi‖C0,γ(η−1
i (Ui))

+ 2‖(uΨ̂i)ηi‖C1,γ(η−1
i (Ui))

)

≤ K(‖f‖C0,γ(S2) + 2‖u‖C1,γ(S2)),

where the constant K is independent of u and f . We insert this estimate into Inequal-
ity (6.44) and obtain with the fact (uΨi)ηi is equal to zero outside of supp((Ψi)ηi) that
there exists a constant K independently of u and f such that

‖(uΨi)ηi‖C2,γ(η−1
i (Ui))

≤ K(‖u‖C1,γ(S2) + ‖f‖C0,γ(S2)).

As in the case of first order differentiability, this argument can be repeated for all other j ∈
{1, ..., 6}\{i}. Therefore, we conclude that u ∈ C2,γ(S2) and together with Inequality (6.43)
we obtain that there exists a constant K independently of u and f such that

‖u‖C2,γ(S2) ≤ K(‖u‖C0,γ(S2) + ‖f‖C0,γ(S2)).

We insert Inequality (6.35) into the previous estimate and the claim of the proposition in
the case that ι = 2 follows, i.e. there exists a constant K independently of u and f such
that

‖u‖C2,γ(S2) ≤ K(‖u‖H2(S2) + ‖f‖C0,γ(S2)).

For the proof of the general case that ι ≥ 4, we define for all κ ∈ {0, 2, ..., ι − 2, ι} the
functions

u(κ) =

(
−∆S2 +

1

4

)κ
2

u.

In the case that κ = ι it holds that u(ι) = f . For all κ ∈ {0, 2, ..., ι− 4, ι− 2} it holds that(
−∆S2 +

1

4

)
u(κ) = u(κ+2) (6.45)

with equality in L2(S2,R). Since u ∈ Cι−2,γ(S2), as we showed at the beginning of this
proof, we conclude that u(κ) ∈ Cι−κ−2,γ(S2) for all κ ∈ {0, 2, ..., ι− 4, ι− 2}. It follows that
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u(ι−2) ∈ C0,γ(S2) ∩H2(S2) as in the proof of the case that ι = 2. We can apply this proof
and obtain that u(ι−2) ∈ C2,γ(S2) and there exists a constant K independently of u and f
such that

‖u(ι−2)‖C2,γ(S2) ≤ K(‖u(ι−2)‖H2(S2) + ‖f‖C0,γ(S2))

= K(‖u‖Hι(S2) + ‖f‖C0,γ(S2)),

where we applied that ‖u(ι−2)‖H2(S2) = ‖u‖Hι(S2), which holds by definition of the norm
on Sobolev spaces that we introduced in Section 6.1. The strategy is to proof by induction
that for all κ ∈ {0, 2, ..., ι − 4, ι − 2} it holds that u(κ) ∈ Cι−κ,γ(S2) and there exists a
constant K independently of u and f such that

‖u(κ)‖Cι−κ,γ(S2) ≤ K(‖u‖Hι(S2) + ‖f‖C0,γ(S2)), (6.46)

where the constant K may depend on the index κ. We have already shown this for κ = ι−2
and now assume that it holds for some κ ∈ {2, 4, ..., ι−4, ι−2} and want to prove that this
implies the claim for κ− 2, i.e. u(κ−2) ∈ Cι−κ+2,γ(S2) and Inequality (6.46) holds for κ− 2
instead of κ.

As in the proof of the case ι = 2 we have to localize Equation (6.45) and pull it back to the
chart domains to be able to apply regularity theory on subdomains of Euclidean space and
interior estimates. Now we have higher regularity of the right hand side. We fix the same
i ∈ {1, ..., 6} as in the proof of the case ι = 2 and remind of our usual atlas (Uj , ηj : j =
1, ..., 6) with partition of unity Ψ subordinate to the open cover (Uj : j = 1, ..., 6). From the
proof of the case ι = 2, we will also use the subdomain D with smooth boundary satisfying
supp((Ψi)ηi) ⊂⊂ D ⊂⊂ η−1

i (Ui) and the partition of unity Ψ̂ subordinate to the open cover
(Uj : j = 1, ..., 6) that satisfies that (Ψ̂i)ηi = 1 on D. Since Hölder continuity is a local
property, we are interested in the behavior of (u(κ−2)Ψi)ηi in the chart domain η−1

i (Ui).
The fact that κ− 2 ≤ ι− 4 implies that u(κ−2) ∈ Cι−(κ−2)−2,γ(S2) ⊂ C2,γ(S2). Therefore,
we observe that (u(κ−2)Ψi)ηi ∈ C2,γ(η−1

i (Ui)) is a classical solution of the Dirichlet problem
in D, i.e.

L(u(κ−2)Ψi)ηi = F (κ−2)

(u(κ−2)Ψi)ηi

∣∣∣
∂D

= 0.

The operator L is given in Equation (6.37), whereas the right hand side F (κ−2) is given by

F (κ−2) = −(u(κ)Ψi)ηi + 2∂θu
(κ−2)
ηi ∂θ(Ψi)ηi +

2

sin2(θ)
∂ϕu

(κ−2)
ηi ∂ϕ(Ψi)ηi + (u(κ−2)∆S2Ψi)ηi .

(6.47)
We will prove a successive increase of the regularity of the right hand side. This could be
observed in the proof of the case ι = 2, where the right hand side was first given partly in
divergence form and was then improved to be Hölder continuous. Note that by the induction
hypothesis it holds that (u(κ)Ψi)ηi ∈ Cι−κ(η−1

i (Ui)). Since u(κ−2) ∈ Cι−(κ−2)−2,γ(S2), we
obtain that F (κ−2) ∈ Cι−κ−1(η−1

i (Ui)). Since the operator L is the same as in the proof of
the case ι = 2, it satisfies the conditions to apply regularity theory, i.e. L is strictly elliptic
and the coefficients are smooth on D. Theorem 6.19 in [14] implies that (u(κ−2)Ψi)ηi ∈
Cι−κ+1,γ(D), where we tacitly applied that (u(κ−2)Ψi)ηi is compactly supported in D. Now,
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we apply the interior estimate for higher order derivatives with the nested sets supp((Ψi)ηi)
and D, which is Problem 6.1 in [14], which will be proven as a part of Theorem 8.10 in
Section 8.1.1, and obtain that there exists a constant K independently of u such that

‖(u(κ−2)Ψi)ηi‖Cι−κ+1,γ(supp((Ψi)ηi ))
≤ K(‖(u(κ−2)Ψi)ηi‖C0(D)+‖F

(κ−2)‖Cι−κ−1,γ(D)). (6.48)

Similarly as in the proof of the case ι = 2, we observe that there exists a constant K
independently of u such that

‖F (κ−2)‖Cι−κ−1,γ(D)) ≤ K(‖(u(κ)Ψi)ηi‖Cι−κ−1,γ(D) + ‖u(κ−2)
ηi ‖Cι−κ,γ(D))

= K(‖(u(κ)Ψi)ηi‖Cι−κ−1,γ(D) + ‖(u(κ−2)Ψ̂i)ηi‖Cι−κ,γ(D))

≤ K(‖(u(κ)Ψi)ηi‖Cι−κ−1,γ(η−1
i (Ui))

+ ‖(u(κ−2)Ψ̂i)ηi‖Cι−κ,γ(η−1
i (Ui))

)

≤ K(‖u(κ)‖Cι−κ−1,γ(S2) + ‖u(κ−2)‖Cι−κ,γ(S2)),

where the contributions of Ψi are included into the constant K due to Inequality (6.4).
Also, we applied the fact that (Ψ̂i)ηi = 1 on D and the equivalence of Hölder norms with
respect to different partitions of unity, which is Proposition 6.9. We insert this estimate
into Inequality (6.48) and obtain with the fact that (u(κ−2)Ψi)ηi is equal to zero outside of
supp((Ψi)ηi) that there exists a constant K independently of u such that

‖(u(κ−2)Ψi)ηi‖Cι−κ+1,γ(η−1
i (Ui))

≤ K(‖u(κ−2)‖Cι−κ,γ(S2) + ‖u(κ)‖Cι−κ−1,γ(S2)).

This argument can be repeated for all other j ∈ {1, ..., 6}\{i}. Therefore, we conclude that
u(κ−2) ∈ Cι−κ+1,γ(S2) and that there exists a constant K independently of u such that

‖u(κ−2)‖Cι−κ+1,γ(S2) ≤ K(‖u(κ−2)‖Cι−κ,γ(S2) + ‖u(κ)‖Cι−κ−1,γ(S2)). (6.49)

We keep the same i ∈ {1, ..., 6} fixed. Since we have shown that u(κ−2) ∈ Cι−κ+1,γ(S2), it
follows that the right hand side F (κ−2) in Equation (6.47) is now in Cι−κ(η−1

i (Ui)), which
is one order more than before. The same argument as before applies and we obtain that
u(κ−2) ∈ Cι−κ+2,γ(S2) and there exists a constant K independently of u such that

‖u(κ−2)‖Cι−κ+2,γ(S2) ≤ K(‖u(κ−2)‖Cι−κ+1,γ(S2) + ‖u(κ)‖Cι−κ,γ(S2)).

We insert Inequality (6.49) into the previous estimate and obtain that there exists a constant
K independently of u such that

‖u(κ−2)‖Cι−κ+2,γ(S2) ≤ K(‖u(κ−2)‖Cι−κ,γ(S2) + ‖u(κ)‖Cι−κ,γ(S2)). (6.50)

We observe that u(κ−2) = (−∆S2+ 1
4)

κ−2
2 u is a finite linear combination of partial derivatives

of u with order smaller or equal to κ−2. Therefore, there exists a constant K independently
of u such that

‖u(κ−2)‖Cι−κ,γ(S2) ≤ K‖u‖Cι−2,γ(S2).

We insert the previous estimate, Inequality (6.35) and the induction hypothesis into In-
equality (6.50) and obtain that there exists a constant K independently of u and f such
that

‖u(κ−2)‖Cι−κ+2,γ(S2) ≤ K(‖u‖Hι(S2) + ‖f‖C0,γ(S2)).

This finishes the induction argument and the proof of the proposition, since we can take
κ = 2 and it holds that u(0) = u.
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Corollary 6.23. For an even integer ι ≥ 2 and γ ∈ (0, 1) and all v ∈ Cι,γ(S2)

‖v‖∆S2 ,C
ι,γ(S2) =

∥∥∥∥∥
(
−∆S2 +

1

4

) ι
2

v

∥∥∥∥∥
C0,γ(S2)

defines a norm on Cι,γ(S2), which is equivalent to the usual norm on Cι,γ(S2).

Proof. We arbitrarily fix v ∈ Cι,γ(S2). We observe that Cι,γ(S2) ⊂ Hι(S2). Since v ∈
Cι,γ(S2), it holds that (−∆S2 + 1

4)
ι
2 v ∈ C0,γ(S2). Therefore, we can apply the previous

proposition with right hand side (−∆S2 + 1
4)

ι
2 v and obtain that there exists a constant K

independently of v such that

‖v‖Cι,γ(S2) ≤ K

‖v‖Hι(S2) +

∥∥∥∥∥
(
−∆S2 +

1

4

) ι
2

v

∥∥∥∥∥
C0,γ(S2)

 .

We apply the definition of Sobolev spaces on S2 to obtain that

‖v‖Hι(S2) =

∥∥∥∥∥
(
−∆S2 +

1

4

) ι
2

v

∥∥∥∥∥
L2(S2,R)

≤ 2
√
π

∥∥∥∥∥
(
−∆S2 +

1

4

) ι
2

v

∥∥∥∥∥
C0(S2)

.

We conclude that there exists a constant K independently of v such that

‖v‖Cι,γ(S2) ≤ K

∥∥∥∥∥
(
−∆S2 +

1

4

) ι
2

v

∥∥∥∥∥
C0,γ(S2)

= K‖v‖∆S2 ,C
ι,γ(S2).

Besides the estimate, this also implies the positivity of ‖ · ‖∆S2 ,C
ι,γ(S2), because ‖ · ‖Cι,γ(S2)

is a norm. The other properties of a norm are clear for ‖ · ‖∆S2 ,C
ι,γ(S2).

For the proof of the other direction, we observe that (−∆S2 + 1
4)

ι
2 v is a finite linear com-

bination of partial derivatives with order smaller or equal to ι. Therefore, there exists a
constant K ′ independently of v such that

‖v‖∆S2 ,C
ι,γ(S2) =

∥∥∥∥∥
(
−∆S2 +

1

4

) ι
2

v

∥∥∥∥∥
C0,γ(S2)

≤ K ′‖v‖Cι,γ(S2).

For our discussion of the regularity of continuous 2-weakly isotropic Gaussian spherical
random fields, we will discover that this proposition is in particular well-suited, because it
provides upper bounds of higher order Hölder norms in terms of powers of the spherical
Laplace operator. The effect of the spherical Laplace operator on 2-weakly isotropic spher-
ical random fields is sufficiently well understood, since the spherical Laplace operator is
diagonalized by the real spherical harmonics and we have proved that those random fields
can be expanded in the real spherical harmonics.

We begin to explore the Hölder continuity of continuous 2-weakly isotropic Gaussian spher-
ical random fields. The following result follows with a version of the Kolmogorov–Čentsov
continuity theorem on manifolds from the paper [2] by Andreev and Lang. Additionally, we
will apply some related considerations to characterize the LpP integrability of Hölder norms.
These considerations can be cited from Section 6.2.
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Theorem 6.24. Let T be a continuous 2-weakly isotropic Gaussian spherical random field
such that the angular power spectrum satisfies that (Cll

1+δ : l ≥ 0) is summable for some
δ ∈ (0, 2]. For all γ ∈ (0, δ2) there exists an indistinguishable modification T ∗ of T such that
T ∗ ⊂ C0,γ(S2) and for all p ∈ (0,∞) there exists a constant Kp independently of T and
(Cl : l ≥ 0) such that

‖T‖LpP (Ω,C0,γ(S2)) ≤ Kp

∑
l≥0

Cll
1+δ

 1
2

.

Proof. We check that T ∈ L2k
P⊗dσ(Ω × S2,R) for all k ∈ N. This is clear for k = 1 by

Lemma 3.3. We conclude with the same argument that we used to prove Inequality (5.9)
and Lemma 2.8 that

‖T‖2k
L2k
P⊗dσ(Ω×S2,R)

= E

∫
S2

∣∣∣∣∣∣
∑
l≥0

l∑
m=−l

√
Clβ̃l,mỸl,m(x)

∣∣∣∣∣∣
2k

dσ(x)


≤ (2k)!

2kk!

∫
S2

∑
l≥0

l∑
m=−l

ClỸl,m(x)

k

dσ(x)

=
(2k)!

2kk!

∫
S2

∑
l≥0

Cl
2l + 1

4π

k

dσ(x).

Since (Cll : l ≥ 0) is summable and the sphere has finite volume, T ∈ L2k
P⊗dσ(Ω × S2,R).

Lemma 5.2 provides the other needed condition that we can apply Theorem 3.5 in [2] with
n = 2, d = 0, ε = δk − 2 and we choose k > 2

δ−2γ , then we conclude that there exists
a modification T ∗ of T that is in C0,γ(S2). Since T is already continuous, T and T ∗ are
indistinguishable. We can apply Equation (6.20) in the same way as we did in the proof of
Theorem 6.16 and obtain that for every p ∈ (0,∞) there exists a constant Kp independently
of T and (Cl : l ≥ 0) such that

E
[
‖T‖p

C0,γ(S2)

] 1
p ≤ Kp

∑
l≥0

Cll
1+δ

 1
2

.

Remark 6.25. In the case that T is a 2-weakly isotropic Gaussian spherical random field
with the same summability condition on the angular power spectrum as in the previous
theorem, that is not necessarily continuous, the previous theorem still holds. But the modi-
fication and the field are not indistinguishable and the bound of the LpP (Ω, C0,γ(S2))-norm
is still valid, but it holds for the modification and not for the field.

Since we understand Hölder continuity, we can apply in the next theorem the deterministic
regularity result in Proposition 6.22 pathwise on a continuous 2-weakly isotropic Gaussian
spherical random field T to conclude Hölder regularity of order ι, where ι ≥ 0 is an even
integer. It is convenient here, that the verification of the membership of realizations of T
in Hι(S2) is relatively unproblematic, due to the specific definition of the norm on Hι(S2)
and the known specific expansion of T .

Lukas Herrmann 78 ©



Proposition 6.26. Let T be a continuous 2-weakly isotropic Gaussian spherical random
field such that the angular power spectrum satisfies that (Cll

1+2ι+δ : l ≥ 0) is summable for
some δ ∈ (0, 2] and some even integer ι ≥ 0. For all γ ∈ (0, δ2) there exists an indistin-
guishable modification T ∗ of T such that T ∗ ⊂ Cι,γ(S2) and for all p ∈ (0,∞) there exists
a constant Kp independently of T and (Cl : l ≥ 0) such that

‖T‖LpP (Ω,Cι,γ(S2)) ≤ Kp

∑
l≥0

Cll
1+2ι+δ

 1
2

.

Proof. The case ι = 0 is already proven in Theorem 6.24. Hence, we can assume that ι ≥ 2.
We define the 2-weakly isotropic Gaussian spherical random field T̂ :

T̂ =

(
−∆S2 +

1

4

) ι
2

T.

Note that T̂ is not necessarily continuous. The angular power spectrum (Ĉl : l ≥ 0) of T̂ is
given by (Ĉl : l ≥ 0) = (Cl(l+ 1

2)2ι : l ≥ 0). It is evident that (Ĉll
1+δ : l ≥ 0) is summable.

Theorem 6.24 is applicable and together with Remark 6.25 we conclude that there exists
a continuous modification T̂ ∗ of T̂ such that T̂ ∗ ⊂ C0,γ(S2). Moreover for all p′ ∈ (0,∞)
there exists a constant Kp′ independently of T̂ ∗ and (Ĉl : l ≥ 0) such that

‖T̂ ∗‖
Lp
′
P (Ω,C0,γ(S2))

≤ Kp′

∑
l≥0

Cll
1+δ

 1
2

. (6.51)

The modification T̂ ∗ is again a 2-weakly isotropic spherical random field and the expansion
of T̂ in the real spherical harmonics also converges to T̂ ∗ in the L2

P (Ω, L2(S2,R))-norm as
already mentioned at the beginning of this chapter. Since the convergence is in L2

P it is
also in probability. Itô and Nisio analyzed the convergence of sums of independent Banach
space valued random variables in [18]. Theorem 3.1 in [18] implies that the expansion in
the real spherical harmonics of T̂ converges P -a.s to T̂ and to T̂ ∗ in L2(S2,R). Therefore,
there exists a measurable set Ω∗ of full probability such that T̂ (ω) = T̂ ∗(ω) with equality
in L2(S2,R) for all ω ∈ Ω∗.
From Lemma 6.12 we know that T ∈ L2k

P (Ω, Hι(S2)) for all k ∈ N and that the truncated
expansion TL converges to T in the L2k

P (Ω, Hι(S2))-norm as L → ∞. Hence, the conver-
gence is also in probability. An application of Theorem 3.1 in the paper of Itô and Nisio,
i.e. [18], implies that P -a.s. TL converges to T as L→∞ in the Hι(S2)-norm. This implies
that there exists a measurable set of full probability Ω∗∗ such that T (ω) ∈ Hι(S2) for all
ω ∈ Ω∗∗. The intersection of Ω∗ and Ω∗∗ is still a measurable set with full probability,
which we also denote by Ω∗ to limit the used notation. Moreover, Lemma 6.12 implies with
the continuous embedding L2(dp′e)

P (Ω,R) ⊂ Lp
′

P (Ω,R) that for all p′ ∈ (0,∞) there exists a
constant Kp′ independently of T and (Cl : l ≥ 0) such that

‖T‖
Lp
′
P (Ω,Hι(S2))

≤ Kp′

∑
l≥0

Cll
1+2ι

 1
2

. (6.52)

We obtain that for all ω ∈ Ω∗ it holds that(
−∆S2 +

1

4

) ι
2

T (ω) = T̂ ∗(ω)
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with equality in L2(S2,R). Recall that T is continuous by assumption. We arbitrarily fix
ω ∈ Ω∗. Since T (ω) ∈ C0(S2)∩Hι(S2) and T̂ ∗(ω) ∈ C0,γ(S2), Proposition 6.22 is applicable
and it implies that T (ω) ∈ Cι,γ(S2) and that there exists a constant K independently of
T (ω) and T̂ ∗(ω) such that

‖T (ω)‖Cι,γ(S2) ≤ K(‖T (ω)‖Hι(S2) + ‖T̂ ∗(ω)‖C0,γ(S2)).

Since ω ∈ Ω∗ was arbitrarily chosen and Ω∗ is a measurable set with full probability, we
obtain with the last estimate, Inequalities (6.51) and (6.52) and the triangle inequality that
for all p ∈ [1,∞) there exists a constant Kp independently of T and (Cl : l ≥ 0) such that

‖T‖LpP (Ω,Cι,γ(S2)) = E
[
‖T‖p

Cι,γ(S2)

] 1
p ≤ K

(
E
[
‖T‖p

Hι(S2)

] 1
p

+ E
[
‖T̂ ∗‖p

C0,γ(S2)

] 1
p

)

≤ Kp

∑
l≥0

Cll
1+2ι+δ

 1
2

,

where we tacitly used that
∑

l≥0 Ĉll
1+δ can be bounded with

∑
l≥0Cll

1+2ι+δ. The claim
for p ∈ (0, 1) follows with the embedding L1

P (Ω,R) ⊂ LpP (Ω,R), which is due to the Hölder
inequality. The indistinguishable modification of T is given by T ∗ = T1Ω∗ .

The statement of the previous proposition for an arbitrarily chosen ι ∈ N0 will follow with
interpolation theory. For the discussion of the derivatives of odd integer order, we introduce
a new interpretation of a 2-weakly isotropic Gaussian spherical random field. We define
weighted sequence spaces.

Definition 6.27. For an integer k ≥ 0 and σ ∈ (0, 2] we introduce the normed sequence
space

`2k,σ(N) =

(al : l ≥ 1) ∈ `2(N) :
∑
l≥1

a2
l l

1+2k+σ <∞

 .

For (al : l ≥ 1) ∈ `2k,σ(N) the norm is given by

‖(al : l ≥ 1)‖`2k,σ(N) =

∑
l≥1

a2
l l

1+2k+σ

 1
2

.

We can interpret a 2-weakly isotropic Gaussian spherical random field as a linear mapping
on these sequence spaces. For all even integers ι ≥ 0 and δ ∈ (0, 2] Proposition 6.26 implies
that for all γ ∈ (0, δ2) and p ∈ (0,∞) the following mapping:

T : `2ι,δ(N)→ LpP (Ω, Cι,γ(S2)) (6.53)

that is defined by

(al : l ≥ 1) 7→
∑
l≥1

l∑
m=−l

alβ̃l,mỸl,m, (6.54)

is linear and bounded, since by Proposition 6.26 for every p ∈ (0,∞) the operator norm
of T is bounded by the constant Kp from this proposition. Note that we tacitly used the
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same notation for this operator to emphasize the connection to 2-weakly isotropic Gaussian
spherical random fields. They are of course different mathematical objects. Also note
that as in previous chapters (β̃l,m : l ≥ 1,m = −l, ..., l) is an i.i.d. sequence of standard
normally distributed random variables and (Ỹl,m : l ≥ 0,m = −l, ..., l) are the real spherical
harmonics. We can now use our knowledge of interpolation theory to obtain the general
result.

Theorem 6.28. Let T be a continuous 2-weakly isotropic Gaussian spherical random field
such that the angular power spectrum satisfies that (Cll

1+2ι+δ : l ≥ 0) is summable for
some δ ∈ (0, 2] and some integer ι ≥ 0. For all γ ∈ (0, δ2) there exists an indistinguishable
modification T ∗ of T such that T ∗ ⊂ Cι,γ(S2) and for all p ∈ (0,∞) there exists a constant
Kp independently of T and (Cl : l ≥ 0) such that

‖T‖LpP (Ω,Cι,γ(S2)) ≤ Kp

∑
l≥0

Cll
1+2ι+δ

 1
2

.

Proof. In the case that ι is even Proposition 6.26 implies the claim. Therefore we assume
that ι ≥ 1 is odd. Proposition 6.26 implies that the claim is already established for ι − 1
and ι+ 1. We see that for all p ∈ (0,∞) the 2-weakly isotropic Gaussian spherical random
field T can be interpreted as a bounded linear mapping from `2ι−1,δ(N) to LpP (Ω, Cι−1,γ(S2))

and from `2ι+1,δ(N) to LpP (Ω, Cι+1,γ(S2)). This notion was introduced in Equation (6.53)
and Equation (6.54).
We consult now Appendix C for a summary of relevant interpolation theory. Lemma C.3
implies that

T :
(
`2ι−1,δ(N), `2ι+1,δ(N)

)
1
2
,2
→
(
LpP (Ω, Cι−1,γ(S2)), LpP (Ω, Cι+1,γ(S2))

)
1
2
,2

is also a linear bounded mapping. Lemma C.4 implies that with equivalent norms(
`2ι−1,δ(N), `2ι+1,δ(N)

)
1
2
,2

= `2ι,δ(N).

For p ∈ [2,∞) Lemma C.5 implies that(
LpP (Ω, Cι−1,γ(S2)), LpP (Ω, Cι+1,γ(S2))

)
1
2
,2
⊂ LpP (Ω, Cι,γ(S2)).

Therefore we have established that for all p ∈ [2,∞) it holds that

‖T‖LpP (Ω,Cι,γ(S2)) =
∥∥∥T (
√
C l : l ≥ 1)

∥∥∥
LpP (Ω,Cι,γ(S2))

≤ Kp

∥∥∥(
√
C l : l ≥ 1)

∥∥∥
`2ι,δ(N)

= Kp

∑
l≥1

Cll
1+2ι+δ

 1
2

.

The statement follows for p ∈ (0, 2) with the embedding L2
P (Ω,R) ⊂ LpP (Ω,R) due to

the Hölder inequality. Note that we tacitly proved the case that C0 = 0. Since the term√
C0β̃0,0Ỹ0,0 is constant in S2, it does not cause difficulties and does not contribute, when

we consider derivatives.
Since the L2

P (Ω, Cι,γ(S2))-norm of T is finite, it follows that there exists a measurable set Ω∗

of full probability such that ‖T (ω)‖Cι,γ(S2) is finite for all ω ∈ Ω∗. Hence, T (ω) ∈ Cι,γ(S2)
for all ω ∈ Ω∗. The indistinguishable modification of T is given by T ∗ = T1Ω∗ .
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6.5. Notes on Sobolev spaces on the sphere

In this section we will give the proof of Proposition 6.5. Since the norms of W k,p(S2) are
equivalent for all smooth atlases, we will perform the proof with our usual atlas (Ui, ηi :
i = 1, ..., 6) of S2 with partition of unity Ψ.

Proof of Proposition 6.5. We use the notation, which we introduced at the beginning of
this chapter. For f ∈W k,2(S2) and i = 1, ..., p we define

fi = fΨi : Ui → R.

Note that
∑6

i=1 fi = f , which holds by definition of a partition of unity. Also it holds
that f, f1, ..., f6 ∈ L2(S2,R). Therefore they all obey an expansion in the real spherical
harmonics, i.e.

f =
∑
l≥0

l∑
m=−l

ãl,mỸl,m and fi =
∑
l≥0

l∑
m=−l

ã
(i)
l,mỸl,m for i = 1, ..., 6.

We know that for i = 1, ..., 6 the functions (fi)ηi ∈W
k,2
0 (η−1

i (Ui)). For an arbitrary multi-
index α ∈ N2

0 with |α| = k we compute the L2(η−1
i (Ui),R)-norm of the α-weak derivative

of the functions (fi : i = 1, ..., 6). We can interchange the sum and the α-weak derivative
and evaluate the respective partial derivative of the real spherical harmonics.∫

η−1
i (Ui)

(∂α(fi)ηi(y))2 dy '
∫
Ui

(∂αfi(x))2 dσ(x)

=

∫
S2

∑
l≥0

l∑
m=−l

ã
(i)
l,m∂αỸl,m(x)

2

dσ(x). (6.55)

Note that the image measure of dy under ηi and the measure dσ(x) are equivalent on Ui for
i = 1, ..., 6. In the proof of Lemma 6.18 we established that the partial derivatives of real
spherical harmonics results in finitely many linear combinations of real spherical harmonics
with coefficients of the following type: powers of m ∈ {−l − k, ..., l + k} with exponents
at most equal to k and functions ∂qθ

1
sinh(θ)

for h, q ≤ k, which are smooth and therefore
bounded. This argument led in Lemma 6.19 to Inequality (6.33), i.e.

(∂αỸl,m(x))2 ≤ 22k−16kk2kl2kK

6k∑
j=1

Ỹ 2
lj ,mj

(x), (6.56)

where lj ≤ l + k and mj ∈ {−lj , ..., lj} for all j = 1, ..., 6k. K is a constant, that is
independent of l and m. With Inequalities (6.55) and (6.56) we conclude that

‖∂α(fi)ηi‖2L2(η−1
i (Ui),R)

+ ‖(fi)ηi‖2L2(η−1
i (Ui),R)

≤ K
∑
l≥0

l∑
m=−l

(ã
(i)
l,m)2(l2k + 1)

≤ K
∑
l≥0

l∑
m=−l

(ãl,m)2

(
l +

1

2

)2k

= K‖f‖Hk(S2),
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where we applied the orthonormality of the real spherical harmonics and tacitly included
the other pre factors in Inequality (6.56) into the constant K apart from the dependency
on l. We also used that f =

∑p
i=1 fi and the property that the partition of unity takes

values between zero and one to obtain that for all i ∈ {1, ..., 6} it holds that ‖f‖2L2(S2,R) ≥
‖fi‖2L2(Ui,R). The above inequality can be achieved for all i ∈ {1, ..., 6} and all multi-indices
α ∈ N2

0 that satisfy that |α| = k. It was sufficient to consider the highest weak derivative
and the L2-norm of the function due to Theorem 4.2.4 in [25].

We do not discuss whether or not the spaces Hk(S2) and W k,2(S2) are actually equal with
equivalent norms for k ∈ N, because this is not necessary in this project. The reader is
referred to a recent paper by Dai and Xu [9]. The two authors work with similar definitions
of Sobolev spaces on the sphere. In particular Lemma 3.9, Remark 3.1 and Equation 3.17
in [9] could lead to further results.

We close the chapter with a brief example. We wonder, under which decay of the angular
power spectrum would a continuous 2-weakly isotropic Gaussian spherical random field
be P -a.s. smooth. We mean that derivatives of arbitrary order must have a continuous
modification. Theorem 6.20 gives us a condition on the needed decay of the angular power
spectrum, i.e. (Cll

k : l ≥ 0) has to be summable for all k ∈ N. A class of angular power
spectra (Cl : l ≥ 0) that meets this condition would be that for α > 0 and all integers l ≥ 0
it holds that

Cl . exp(−lα).

To prove this, we introduce n ∈ N such that 1
n < α. The resulting infinite sum is bounded

by an integral, which we manipulate with a transformation and partial integration such
that for all k ∈ N it holds that∑

l≥0

Cll
k .

∑
l≥0

exp(−lα)lk .
∑
l≥0

exp(−l
1
n )lk

.
∫ ∞

0
exp(−x

1
n )xkdx ' n

∫ ∞
0

exp(−y)yk+n−1dy ' n(k + n− 1)! .

With the same Matlab code from Appendix A which we used for the two plots at the
end of Chapter 3 we produce plots of truncated expansions of 2-weakly isotropic Gaussian
spherical random fields with L = 200. For the angular power spectrum we take the one we
defined just above with α = 1 and α = 3

4 .
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Figure 6.1.: realization of TL with Cl = exp(−l)

Figure 6.2.: realization of TL with Cl = exp(−l
3
4 )
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7. Log-normally distributed spherical
random fields

Random fields which are log-normally distributed play an important role in engineering
applications. Isotropic log-normal spherical random field were introduced in the paper [20]
of Lang and Schwab. Also they proved P -a.s. Hölder continuity. We recapitulate their
statement, which is Corollary 6.2 in [20] in the first section and then investigate higher
regularity similar to isotropic Gaussian spherical random fields in the previous chapter.

7.1. Basic properties of log-normally distributed spherical
random fields

Definition 7.1. For a Gaussian spherical random field T we define the log-normal spherical
random field to be

A = exp(T ).

A log-normal spherical random field is a well-defined spherical random field, since the
exponential function is measurable.

Lemma 7.2. The log-normal spherical random field A, which results from a 2-weakly
isotropic Gaussian spherical random field T , is also 2-weakly isotropic.

Proof. For x ∈ S2 Lemma 4.6 implies that T (x) is normally distributed with mean zero
and finite variance σ2

T . Consequently A(x) is log-normally distributed with mean exp(1
2σ

2
T )

and second moment exp(2σ2
T ). Note that σ2

T is independent of x.
We fix x1, x2 ∈ S2 and g ∈ SO(3) to show the invariance under the action of SO(3) of the
covariance of (A(x1), A(x2)). Lemma 4.7 implies that (T (x1), T (x2)) and (T (gx1), T (gx2))
have the same multivariate normal distribution. In particular their probability density
functions agree, which are denoted by fT (x1),T (x2) and fT (gx1),T (gx2). The invariance can
now be calculated. We obtain that

E[A(x1)A(x2)] = E[exp(T (x1)) exp(T (x2))]

=

∫ ∞
−∞

∫ ∞
−∞

exp(x) exp(y)fT (x1),T (x2)(x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

exp(x) exp(y)fT (gx1),T (gx2)(x, y)dxdy

= E[exp(T (gx1)) exp(T (gx2))] = E[A(gx1)A(gx2)].

In the same way, we obtain that for all x ∈ S2 and g ∈ SO(3) it holds that E[A(x)] =
E[A(gx)].

In Chapter 5 we developed sufficient conditions on a 2-weakly isotropic Gaussian spherical
random field such that it has a Hölder continuous modification. Now we adapt the strategy
to obtain a similar result for a 2-weakly isotropic log-normal spherical random field.
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Lemma 7.3. Let T be a 2-weakly isotropic Gaussian spherical random field, such that for
its angular power it holds that (Cll

1+δ : l ≥ 0) is summable for δ ∈ (0, 2], then for any
k ∈ N, x, y ∈ S2 and a constant Kk > 0 depending on k it holds that

E
[
| exp(T (x))− exp(T (y))|2k

]
≤ Kk

∑
l≥0

Cll
1+δ

k

d(x, y)δk.

Proof. A small application of the fundamental theorem of calculus and the monotonicity of
the exponential function yield that for x, y ∈ R it holds that

|ex − ey| = |
∫ x

y
esds| ≤ (ex + ey)|x− y|. (7.1)

This fact can be applied to the left hand side of the inequality in the claim of the lemma
to obtain with the help of the Cauchy–Schwarz inequality and Lemma 5.2 that

E
[
| exp(T (x))− exp(T (y))|2k

]
≤ E

[
|T (x)− T (y)|2k(exp(T (x)) + exp(T (y)))2k

]
≤ E

[
|T (x)− T (y)|4k

] 1
2
E
[
(exp(T (x)) + exp(T (y)))4k

] 1
2

≤ K̃k

∑
l≥0

Cll
1+δ

k

d(x, y)δkE
[
(exp(T (x)) + exp(T (y)))4k

] 1
2
.

Note that the summability of the sequence (Cll
1+δ : l ≥ 0) was needed in order to apply

Lemma 5.2. If we show that E[(exp(T (x)) + exp(T (y)))4k]
1
2 can be bounded independently

of x and y, then the claim of the lemma will be proven. We apply the fact that for all p > 1
and b, c ≥ 0 it holds that

(b+ c)p ≤ 2p−1(bp + cp), (7.2)

which follows from the convexity of the function (x 7→ xp) for x ∈ R and obtain that

E
[
(exp(T (x)) + exp(T (y)))4k

] 1
2 ≤ 2

2k−1
2 E

[
(exp(T (x))2k + exp(T (y))2k)2

] 1
2

≤ 2
2k−1

2

(
E
[
(exp(T (x))4k

] 1
2

+ E
[
(exp(T (y))4k

] 1
2

)
.

(7.3)

Lemma 4.6 implies that T (x) is normally distributed with mean zero and variance σ2
T =∑

l≥0Cl
2l+1
4π for all x ∈ S2. The moments of log-normally distributed random variables are

known. For a random variable X ∼ N (µX , σ
2
X) the moments of exp(X) are given by

E [exp(X)n] = exp(nµX +
n2σ2

X

2
)

for all n ∈ N. Therefore the 4kth moment of exp(T (x)) and exp(T (y)) are given by

E
[
(exp(T (x))4k

]
= E

[
(exp(T (y))4k

]
= exp(8k2σ2

T ).
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We insert the value of the 4kth moment into Inequality (7.3) and obtain that

E
[
(exp(T (x)) + exp(T (y)))4k

] 1
2 ≤ 2

2k+1
2 exp(4k2σ2

T ). (7.4)

This finishes the proof with the constant Kk = K̃k2
2k+1

2 exp(4k2σ2
T ).

The previous lemma has a very similar content as Lemma 5.2, i.e. the claim is the respective
inequality for a 2-weakly isotropic log-normal spherical random field. The difference lies in
the fact that Lemma 5.2 deals with a 2-weakly isotropic Gaussian spherical random field
T whereas Lemma 7.3 with the resulting 2-weakly isotropic log-normal spherical random
field A = exp(T ). Lemma 5.2 was the ingredient in the proof of Theorem 5.4 that relied on
the distribution of the spherical random field. Hence we expect Theorem 5.4 also to hold
for a 2-weakly isotropic log-normal spherical random field, which results from a 2-weakly
isotropic Gaussian spherical random field that satisfies the conditions of Lemma 7.3. This
is achieved with the following proposition.

Proposition 7.4. Let A be a 2-weakly isotropic log-normal spherical random field, which
results from the 2-weakly isotropic Gaussian spherical random field T such that for its
angular power spectrum it holds that (Cll

1+δ : l ≥ 0) is summable for some δ ∈ (0, 2]. For
all γ ∈ (0, δ2) there exist a modification A∗ of A, a P -a.s. positive random variable h∗ and a
constant K > 0 such that A∗ is almost surely locally γ-Hölder continuous, i.e. there exists
a measurable set of full probability Ω∗ such that for all ω ∈ Ω∗ and all x, y ∈ S2 satisfying
d(x, y) < h∗(ω) it holds that

|A∗(x, ω)−A∗(y, ω)| ≤ Kd(x, y)γ .

Proof. The proof of Theorem 5.4 can be inserted line by line. At the moment, when
Lemma 5.2 is applied in the proof of Theorem 5.4, here we apply Lemma 7.3 instead.

Note that in the next section, Theorem 7.7 will also partially imply this proposition, but
with different characteristics. This is due to the fact that we will use results from Chapter 6
that relied on the version of the Kolmogorov–Čentsov continuity theorem from the paper
of Andreev and Lang [2].

7.2. Differentiability of isotropic log-normal spherical random
fields

We also wish to transfer the differentiability results for 2-weakly isotropic Gaussian spherical
random fields to 2-weakly isotropic log-normal spherical random fields. As a preparation
we quote a generalization of the formula of Faà di Bruno for derivatives of compositions
of functions in the case of the exponential function from [16]: let n ∈ N, for a n-times
differentiable function h : Rn → R it holds that

∂n

∂x1 · · · ∂xn
exp(h(x)) = exp(h(x))

∑
π

∏
B∈π

∂|B|h(x)∏
j∈B ∂xj

, (7.5)

where the sum is taken over all partitions π of the set {1, ..., n}. The product is taken over
the blocks in each partition. This is Equation (4) in [16], which is due to Proposition 1 in
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[16]. In our case we would like to discuss partial derivatives that result from multi-indices
in N2

0. Due to Proposition 2 in [16] the variables xj ’s in the partial derivative ∂n

∂x1···∂xn
can be identical in the case that h : Rm → R with m ≤ n. The partial derivative that
results from a multi-index α ∈ N2

0 would be written as ∂|α|

∂x1···∂x|α|
, where x1, ..., xα1 = θ and

xα1+1, ..., xα1+α2 = ϕ. This is also explained in Example 1 in [16]. The second ingredient
will be the discussion in the paper of Charrier [4], where the author shows the membership
of log-normal random fields in LpP (Ω, C0) for p ∈ (0,∞). This is Proposition 2.3 and
Proposition 3.10 in [4]. We review the proofs, which rely on a theorem by Fernique, which
can be found in [8] as Theorem 2.6. We adapt these statements to our setup in the next
proposition.

Proposition 7.5. Let T be a continuous 2-weakly isotropic Gaussian spherical random field
such that its angular power spectrum satisfies that (Cll

1+δ : l ≥ 0) for some δ ∈ (0, 2]. For
all p ∈ (0,∞)

E
[
exp(‖T‖C0(S2))

p
]
<∞,

and there exists a constant Kp dependent on p such that for all L ∈ N it holds that

E
[
exp(‖TL‖C0(S2))

p
]
≤ Kp.

Remark 7.6. The assumptions of the previous proposition imply that the random variables
(minx∈S2 T (x))−1 and maxx∈S2 T (x) are P -a.s well defined. And clearly P -a.s. also holds
that

(min
x∈S2

exp(T (x)))−1 = exp(− min
x∈S2

T (x)) ≤ exp(‖T‖C0(S2))

as well as P -a.s. maxx∈S2 exp(T (x)) ≤ exp(‖T‖C0(S2)). The previous proposition implies
that for all p ∈ (0,∞) it holds that (minx∈S2 exp(T (x)))−1,maxx∈S2 exp(T (x)) ∈ LpP (Ω,R).
Furthermore the LpP (Ω,R)-norm of (minx∈S2 exp(TL(x)))−1 and maxx∈S2 exp(TL(x)) can
be bounded independently of L for all p ∈ (0,∞).

Proof of Proposition 7.5. To be able to apply Fernique’s theorem we have to check that
P ◦ T−1 is a Gaussian measure on the Banach space C0(S2) in the sense of [8]. From the
beginning of Chapter 6 we know that the law of T , i.e. P ◦ T−1, is a probability measure
on (C0(S2),B(C0(S2))).
We have to show that `(T ) is normally distributed for all ` ∈ C0(S2)∗ in order to conclude
that P ◦ T−1 is a Gaussian measure on C0(S2). We arbitrarily fix ` ∈ C0(S2)∗. The dual
of C0(S2) is described by Example 6 in Section 4.9 in [29], i.e. for every linear functional
` ∈ C0(S2)∗ there exists a real-valued signed finite measure µ on the Borel sets B(S2) such
that `(f) =

∫
S2 fdµ for all f ∈ C0(S2). With Hahn’s decomposition, which is Theorem 3

in Section 1.3 in [29], we obtain the sets BP , BN ∈ B(S2) such that for all B ∈ B(S2) it
holds that

µ(B ∩BP ) ≥ 0, µ(B ∩BN ) ≤ 0 and BP ∪BN = S2.

We take these sets to define the density g and the finite measure |µ|:

g = 1BP − 1BN and |µ|(B) = µ(B ∩BP )− µ(B ∩BN ),

for all B ∈ B(S2). We observe that dµ = gd|µ|. We remind that for L ∈ N the truncated
expansion in the real spherical harmonics, TL =

∑L
l=0

∑l
m=−l

√
Clβ̃l,mỸl,m, of T converges
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to T in L2
P (Ω, L2(S2,R)) as L→∞. Therefore, the convergence is also in probability. Also

it is a sum of independent L2(S2,R)-valued random variables. Theorem 3.1 in [18] implies
that TL converges P -a.s. to T in L2(S2,R). Therefore also in L1(S2,R) and together with
our knowledge about C0(S2)∗ we obtain that P -a.s. limL→∞ `(T

L) = `(T ). We consider
the characteristic function of `(T ). Since the absolute value of the function x 7→ exp(ix)
on R is bounded by one, we obtain with the dominated convergence theorem that for all
λ ∈ R it holds that

E[eiλ`(T )] = E[ lim
L→∞

eiλ`(T
L)] = lim

L→∞
E[eiλ`(T

L)] = lim
L→∞

exp

(
−1

2
λ2

L∑
l=0

Cl

l∑
m=−l

`(Ỹl,m)2

)
.

We consider the sum over m in the above expression and apply the representation of ` in
order to obtain with the Cauchy–Schwarz inequality and Lemma 2.8 that

l∑
m=−l

`(Ỹl,m)2 =
l∑

m=−l

(∫
S2

Ỹl,mgd|µ|
)2

≤
∫
S2

l∑
m=−l

Ỹ 2
l,md|µ|‖g‖2L2

d|µ|(S
2,R)

=
2l + 1

4π
|µ|(S2)‖g‖2L2

d|µ|(S
2,R).

Since (Cll : l ≥ 0) is summable, we obtain with the above inequality that

σ2
`(T ) =

∑
l≥0

Cl

l∑
m=−l

`(Ỹl,m)2 ≤
∑
l≥0

Cl
2l + 1

4π
|µ|(S2)‖g‖2L2

d|µ|(S
2,R) <∞,

where we defined σ2
`(T ) in the above equation. We conclude that

E[eiλ`(T )] = exp

(
−1

2
λ2σ2

`(T )

)
,

which implies that `(T ) ∼ N (0, σ2
`(T )). Therefore, P ◦T

−1 is a symmetric Gaussian measure
on C0(S2) in the sense of Section 2.2.1 in [8]. Note that the same argument trivially also
applies to the truncated random field TL. Therefore P ◦(TL)−1 is also a symmetric Gaussian
measure on C0(S2).

We define the closed balls Br(0) = {f ∈ C0(S2) : ‖f‖C0(S2) ≤ r}. From basic probability
theory we conclude that P ◦T−1[Br(0)] = P [{‖T‖C0(S2) ≤ r}]→ 1 as r →∞. Equivalently,
for all ε ∈ (0, 1) there is r ∈ (0,∞) such that P [{‖T‖C0(S2) ≤ r}] > 1 − ε. The strict
monotonicity of the logarithm implies that there exists ε0 ∈ (0, 1) such that log( ε0

1−ε0 ) ≤ −2.
For this ε0 we choose r0 ∈ (0,∞) such that P [{‖T‖ ≤ r0}] > 1 − ε0 and we choose λ > 0
such that 32λr2

0 ≤ 1. For these choices of λ and r0 we obtain that

log

(
1− P [{‖T‖C0(S2) ≤ r0}]
P [{‖T‖C0(S2) ≤ r0}]

)
+ 32λr2

0 ≤ log

(
ε0

1− ε0

)
+ 32λr2

0 ≤ −1, (7.6)

which are the assumptions in Fernique’s theorem, which is Theorem 2.6 in [8]. The state-
ment of this theorem adapted to our framework is that

E[exp(λ‖T‖2C0(S2))] ≤ e
16λr20 +

e2

e2 − 1
. (7.7)
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Furthermore 0 ≤ (
√
λx− p

2
√
λ

)2 implies that px ≤ λx2 + p2

4λ . Together with Inequality (7.7)
we conclude that

E[exp(‖T‖C0(S2))
p] = E[exp(p‖T‖C0(S2))] ≤ E[exp(λ‖T‖2C0(S2))] e

p2

4λ

≤ e16λr20+ p2

4λ +
e2+ p2

4λ

e2 − 1
.

The proof of the second claim of the theorem will be closely oriented on the proof of
Proposition 3.10 in [4]. The strategy for the proof of the second claim is to choose the
values λ and r0 independently of L such that Inequality (7.6) holds for TL for all L ∈ N.
Theorem 6.20 applied to the truncated random field TL implies that there exists a constant
K̂ such that we can bound the L2

P (Ω, C0(S2))-norm independently of L, i.e.

‖TL‖L2
P (Ω,C0(S2)) ≤ K̂

∑
l≥0

Cll
1+δ

 1
2

<∞.

We define K = K̂(
∑

l≥0Cll
1+δ)

1
2 . Note that K is finite due to the assumption on the

angular power spectrum of T . The Chebychev inequality implies that for r > 0 and for all
L ∈ N it holds that

P [{‖TL‖C0(S2) > r}] ≤
‖TL‖2

L2
P (Ω,C0(S2))

r2
≤ K2

r2
.

There exists x0 ∈ (0, 1) such that log(1−x0
x0

) ≤ −2. We choose r0 = K√
1−x0

. When we also
choose λ > 0 sufficiently small such that 32λr2

0 ≤ 1, then we obtain for all L ∈ N that

log

(
1− P [{‖TL‖C0(S2) ≤ r0}]
P [{‖TL‖C0(S2) ≤ r0}]

)
+ 32λr2

0 ≤ log

(
1− x0

x0

)
+ 32λr2

0 ≤ −1.

So we established Inequality (7.6) with choices for λ and r0 that do not depend on L.
Therefore the argument can be completed in the same way as for the first claim. We then

take Kp = e16λr20+ p2

4λ + e2+
p2

4λ

e2−1
. Note that our choices for λ and r0 in the proof of the first

and second claim are in general different.

Theorem 7.7. Let A be a 2-weakly isotropic log-normal spherical random field that results
from a continuous 2-weakly isotropic Gaussian spherical random field T such that the an-
gular power spectrum of T satisfies that (Cll

1+2ι+δ : l ≥ 0) is summable for some δ ∈ (0, 2]
and some integer ι ≥ 0.
For all γ ∈ (0, δ2) there exists an indistinguishable modification A∗ of A such that A∗ ⊂
Cι,γ(S2) and for all p ∈ (0,∞) it holds that A ∈ LpP (Ω, Cι,γ(S2)).
For all p ∈ (0,∞) and all L ∈ N0 the LpP (Ω, Cι,γ(S2))-norm of AL = exp(TL) is bounded
independently of L, i.e. for all p ∈ (0,∞) there exists a constant Kp independently of L
such that

‖AL‖LpP (Ω,Cι,γ(S2)) < Kp.

For all p ∈ (0,∞) the sequence (AL : L ∈ N0) converges to A = exp(T ) in LpP (Ω, Cι,γ(S2)),
i.e. for all p ∈ (0,∞) there exists a constant Kp independently of L such that

‖A−AL‖LpP (Ω,Cι,γ(S2)) ≤ Kp

(∑
l>L

Cll
1+2ι+δ

) 1
2

.
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Proof. We start with the case that ι = 0. We know from Theorem 6.20 that there exists
an indistinguishable modification T ∗ ⊂ C0,γ(S2) of T that results in an indistinguishable
modification A∗ of A. We remind of our standard atlas (Uj , ηj : j = 1, ..., 6) with smooth
partition of unity Ψ of S2. We fix i ∈ {1, ..., 6} and remind of our usual notation that for
x ∈ Ui we set η−1

i (x) = (θx, ϕx). Since supp(Ψi) is relatively closed in S2, Lemma 6.2 implies
that there exists a partition of unity Ψ̂ subordinate to the open cover (Uj : j = 1, ..., 6)
such that Ψ̂i = 1 on supp(Ψi). Let Ψ̂ be another partition of unity subordinate to the atlas
(Ui, ηi : i = 1, ..., 6), such that for all i ∈ {1, ..., 6} on supp(Ψi) it holds that Ψ̂i = 1. For
x, y ∈ Ui we obtain with Inequality (7.1) that

|A∗(x)−A∗(y)| ≤ (A∗(x) +A∗(y))|T ∗(x)− T ∗(y)|,

which implies with the bound of a product of Hölder functions, which is Inequality (6.4),
that

‖(A∗Ψi)ηi‖C0,γ(η−1
i (Ui))

≤ ‖(Ψi)ηi‖C0,γ(η−1
i (Ui))

(
‖A∗ηi‖C0(supp((Ψi)ηi ))

+ |A∗ηi |γ,0,supp((Ψi)ηi )
)

≤ K‖(A∗Ψ̂i)ηi‖C0(η−1
i (Ui))

(
1 + 2‖(T ∗Ψ̂i)ηi‖C0,γ(η−1

i (Ui))

)
,

where we assume that ‖(Ψi)ηi‖C0,γ(η−1
i (Ui))

≤ K and applied that (A∗Ψi)ηi is equal to zero

outside of supp((Ψi)ηi). Since the last inequality also holds for all other j ∈ {1, ..., 6}\{i}
we obtain with the definition of the Hölder norms on S2 that

‖A∗‖C0,γ(S2) ≤ K‖A∗‖C0(S2)

(
1 + 2‖T ∗‖C0,γ(S2)

)
.

We can now apply Proposition 7.5 and Theorem 6.20 to obtain with the Cauchy–Schwarz
inequality that for all p ∈ (0,∞) there exists a constant Kp such that

E
[
‖A‖p

C0,γ(S2)

] 1
p ≤ KE

[
‖A‖2p

C0(S2)

] 1
2p
E
[(

1 + 2‖T‖C0,γ(S2)

)2p] 1
2p ≤ Kp. (7.8)

Since the modification T ∗ and A∗ are equal to T and A on measurable set with full proba-
bility we can always consider T and A when taking the expectation instead of T ∗ and A∗.
We will do this in the future without mentioning it. The partition of unity Ψ contributed
with the factor K. In the future we might tacitly ignore Ψ at some occasions to ease the
notation in the proof.
Note that for L ∈ N this argument can be repeated for the truncated random field TL

and AL = exp(TL) with the same result. Moreover Proposition 7.5 and Theorem 6.20 will
ensure that the constant Kp in Inequality (7.8) will not depend on L.

The proof of the second claim, which is the discussion of the LpP (Ω,R)-norm of ‖A∗ −
AL∗‖C0,γ(S2) for L ∈ N and the desired convergence is computationally more involved. We
will mostly apply Inequality (7.1) in a particular way. We look at the difference of the
function A∗ − AL∗ at x, y ∈ supp(Ψi) ⊂⊂ Ui for the same fixed i ∈ {1, ..., 6} and obtain
with Inequality (6.29) that

|A∗(x)−AL∗(x)− (A∗(y)−AL∗(y))|

= |eTL∗(x)(e(T ∗−TL∗)(x) − 1)− eTL∗(y)(e(T ∗−TL∗)(y) − 1)|

≤ eTL∗(x)|e(T ∗−TL∗)(x) − e(T ∗−TL∗)(y)|+ |e(T ∗−TL∗)(y) − 1||eTL∗(x) − eTL∗(y)|. (7.9)
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We apply Inequality (7.1) to the two differences and the second factor in the last inequality
to obtain that

|e(T ∗−TL∗)(x) − e(T ∗−TL∗)(y)|

≤ (e(T ∗−TL∗)(x) + e(T ∗−TL∗)(y))|(T ∗ − TL∗)(x)− (T ∗ − TL∗)(y)|,

|eTL∗(x) − eTL∗(y)| ≤ (eT
L∗(x) + eT

L∗(y))|TL∗(x)− TL∗(y)|

and
|e(T ∗−TL∗)(y) − 1| ≤ e(T ∗−TL∗)(y)|T ∗(y)− TL∗(y)|.

We insert the last two inequality into Inequality (7.9), divide by ‖(θx, ϕx)− (θy, ϕy)‖γR2 and
take the supremum over all x, y ∈ supp(Ψi) to obtain that

|A∗ηi −A
L∗
ηi |γ,0

≤ ‖A∗ηi‖C0(1 + ‖AL∗ηi ‖
2
C0)|T ∗ηi − T

L∗
ηi |γ,0 + ‖eT

∗
ηi
−TL∗ηi ‖C0‖T ∗ηi − T

L∗
ηi ‖C0 |TL∗ηi |γ,0. (7.10)

Note that we will sometimes drop the dependence of the domain in the norms and semi-
norms for notational convenience as we did above. The previous argument of course holds
for all i ∈ {1, ..., 6}. With the plain application of Inequality (7.1) we obtain that

‖A∗ −AL∗‖C0(S2) ≤ (‖AL∗‖C0(S2) + ‖A∗‖C0(S2))‖T ∗ − TL∗‖C0(S2). (7.11)

We combine the Inequalities (7.10) and (7.11) to obtain that

‖A∗ −AL∗‖C0,γ(S2) ≤ ‖A∗‖C0(1 + ‖AL∗‖2C0)|T ∗ − TL∗|γ,0
+ (‖eT ∗−TL∗‖C0 |TL∗|γ,0 + ‖AL∗‖C0 + ‖A∗‖C0)‖T ∗ − TL∗‖C0

≤
(
‖A∗‖C0(1 + ‖AL∗‖2C0) + ‖eT ∗−TL∗‖C0 |TL∗|γ,0

+‖AL∗‖C0 + ‖A∗‖C0

)
‖T ∗ − TL∗‖C0,γ .

We can repeatedly apply the Cauchy–Schwarz inequality, Proposition 7.5 and Remark 6.21
on Theorem 6.20 as above to obtain that for all p ∈ (0,∞) there exists a constant Kp

independently of L such that

E
[
‖A−AL‖p

C0,γ(S2)

] 1
p ≤ Kp

(∑
l>L

Cll
1+δ

) 1
2

.

Now we prove the general case ι ≥ 1. According to Theorem 6.20 there exists an indis-
tinguishable modification T ∗ ⊂ Cι,γ(S2) of T , then A∗ = exp(T ∗) is an indistinguishable
modification of A. Again we fix i ∈ {1, ..., 6}. To satisfy the definition of the Hölder norms
on S2 we need to analyze partial derivatives of the term (A∗Ψi)ηi . With the multivariate
Leipniz rule we obtain that for β ∈ N2

0 such that |β| ≤ ι it holds that

∂β(A∗Ψi)ηi =
∑
α≤β

(
β

α

)
∂αA

∗
ηi∂β−α(Ψi)ηi . (7.12)

Since (Ψi)ηi is smooth and Ψi is compactly supported, we can assume that for all m ≤ ι+1
the Cm(η−1

i (Ui))-norm of (Ψi)ηi is bounded independently of m and i by a constant K.
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The interesting term is where A∗ηi is involved. We apply Equation (7.5) to A∗ηi to obtain
that for α ∈ N2

0 with |α| ≤ ι it holds that

∂αA
∗
ηi = A∗ηi

∑
π

∏
B∈π

∂|B|T ∗ηi∏
j∈B ∂xj

, (7.13)

where the sum is taken over all partitions π of the set {1, ..., |α|} and the product is taken
over all blocks of the respective partition. Note that x1, ..., xα1 = θ and xα1+1, ..., x|α| = ϕ
as described after we introduced Equation (7.5). For the sake of a convenient notation, we
define

Tα =
(∑

π

∏
B∈π

∂|B|T ∗ηi∏
j∈B ∂xj

)
◦ η−1

i .

For x, y ∈ Ui and β ∈ N2
0 satisfying |β| = ι we look at the difference of partial derivatives

and obtain with Equation (7.12), Equation (7.13) and Inequality (6.29) that

|∂β(A∗Ψi)(x)− ∂β(A∗Ψi)(y)| ≤ K
∑
α≤β

(
β

α

)
|∂αA∗(x)− ∂αA∗(y)|

= K
∑
α≤β

(
β

α

)
|A∗(x)Tα(x)−A∗(y)Tα(y)|

≤ K
∑
α≤β

(
β

α

)
(|A∗(x)||Tα(x)− Tα(y)| (7.14)

+ |Tα(y)||A∗(x)−A∗(y)|). (7.15)

Note that to ease the notation we just made a slight abuse of notation: with ∂β(A∗Ψi)(x)
we mean ∂β(A∗Ψi)ηi(η

−1
i (x)). We will use this notation at some occasions in the remaining

part of the proof without mentioning it again.
We will treat the Expressions (7.14) and (7.15) separately and we will start with the first
of those. The term Tα consist of finite sums and products of partial derivatives of T ∗ηi of
order at most ι. We need a more general version of Inequality (6.29). For real numbers
a1, ..., an, b1, ..., bn ∈ R we iteratively apply Inequality (6.29) to obtain that

|
n∏
i=1

ai −
n∏
i=1

bi| ≤ |an||
n−1∏
i=1

ai −
n−1∏
i=1

bi|+
n−1∏
i=1

|bi||an − bn|

≤ |an||an−1||
n−2∏
i=1

ai −
n−2∏
i=1

bi|+ |an|
n−2∏
i=1

|bi||an−1 − bn−1|+
n−1∏
i=1

|bi||an − bn|

≤ · · · ≤
n∑
i=1

|ai − bi|
i−1∏
j=1

|bj |
n∏

j=i+1

|aj |. (7.16)

For the difference quotient we obtain with the triangle inequality that

|Tα(x)− Tα(y)|
‖(θx, ϕx)− (θy, ϕy)‖γR2

≤
∑
π

|
∏
B∈π

∂|B|T ∗ηi (θx,ϕx)∏
j∈B ∂xj

−
∏
B∈π

∂|B|T ∗ηi (θy ,ϕy)∏
j∈B ∂xj

|

‖(θx, ϕx)− (θy, ϕy)‖γR2

.

Lukas Herrmann 93 ©



Together with Inequality (7.16) and Equation (6.3) we obtain that for a constant K > 0
dependent on the domain η−1

i (Ui) and ι it holds that

|Tα(x)− Tα(y)|
‖(θx, ϕx)− (θy, ϕy)‖γR2

≤ KQ(‖T ∗‖Cι,γ(S2)), (7.17)

where 0 6= Q is a polynomial in P(ι)(R) with degree smaller or equal than ι, i.e. for Q(X) =∑ι
j=1 qjX

j such that qj ≥ 0 for j ∈ {2, ..., ι} and q1 > 0. We tacitly applied the fact that

Cm(η−1
i (Ui)) ⊂ Cι,γ(η−1

i (Ui)) for all integers 0 ≤ m ≤ ι. With a similar argument we
obtain that

|Tα(x)| ≤ KQ(‖T ∗‖Cι,γ(S2)). (7.18)

The difference quotient that results from Expression (7.15) can be estimated with Inequal-
ity (7.1), i.e.

|Tα(y)| |A∗(x)−A∗(y)|
‖(θx, ϕx)− (θy, ϕy)‖γR2

≤ 2KQ(‖T ∗‖Cι,γ(S2))‖A∗‖C0(S2)
|T ∗(x)− T ∗(y)|

‖(θx, ϕx)− (θy, ϕy)‖γR2

.

(7.19)
We combine Inequalities (7.17), (7.18) and (7.19) to obtain an estimate for the difference
quotient of ∂β(A∗Ψi), i.e.

|∂β(A∗Ψi)(x)− ∂β(A∗Ψi)(y)|
‖(θx, ϕx)− (θy, ϕy)‖γR2

≤ KN
(
‖A∗‖C0(S2)Q(‖T ∗‖Cι,γ(S2))

+2‖A∗‖C0(S2)Q(‖T ∗‖Cι,γ(S2))‖T ∗‖C0,γ(S2)

)
= KN‖A∗‖C0(S2)Q(‖T ∗‖Cι,γ(S2))(1 + 2‖T ∗‖C0,γ(S2)),

where N =
∑

α≤β
(
β
α

)
. We take the supremum over all x, y ∈ supp(Ψi) and obtain with

the definition of the Hölder norms on S2 and Equation (6.3) that

‖A∗‖Cι,γ(S2) ≤ C
(
‖A∗‖C0(S2) +KN‖A∗‖C0(S2)Q(‖T ∗‖Cι,γ(S2))(1 + 2‖T ∗‖C0,γ(S2))

)
,

(7.20)
where the constant C results from the equivalence of the Hölder norms in Equation (6.3).
The right hand side of Inequality (7.20) is in LpP (Ω,R) for all p ∈ (0,∞) due to the
Cauchy–Schwarz inequality, Theorem 6.20 and Proposition 7.5. Therefore the first claim of
the theorem is proven.

For the proof of the second claim of the theorem we can use the same argument as we used
to proof Inequality (7.14)/(7.15) to obtain that

|∂β(A∗Ψi)ηi − ∂β(AL∗Ψi)ηi |γ,0,η−1
i (Ui)

≤ K
∑
α≤β

(
β

α

)
|(A∗Tα)ηi − (AL∗T Lα )ηi |γ,0,supp((Ψi)ηi )

≤ K
∑
α≤β

(
β

α

)(
|AL∗ηi (Tα − T Lα )ηi |γ,0,supp((Ψi)ηi )

(7.21)

+|(Tα)ηi(A
∗ −AL∗)ηi |γ,0,supp((Ψi)ηi )

)
.

(7.22)
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We will discuss the summands individually. For notational convenience we will sometimes
drop the dependence of the domain in the norms or semi-norms. We fix α ≤ β and obtain
for Expression (7.21) with Inequalities (7.17) and (7.18) that

|AL∗ηi (Tα − T Lα )ηi |γ,0 ≤ ‖AL∗ηi ‖C0 |(Tα)ηi − (T Lα )ηi |γ,0 + ‖(Tα)ηi − (T Lα )ηi‖C0 |AL∗|γ,0
≤ K‖AL∗‖C0,γ(S2)Q(‖T ∗ − TL∗‖Cι,γ(S2)).

For Expression (7.22) we obtain with Inequality (7.18) that

|(Tα)ηi(A
∗ −AL∗)ηi |γ,0 ≤ ‖(Tα)ηi‖C0 |A∗ηi −A

L∗
ηi |γ,0 + ‖A∗ηi −A

L∗
ηi ‖C0 |(Tα)ηi |γ,0

≤ KQ(‖T ∗‖Cι,γ(S2))‖A∗ −AL∗‖C0,γ(S2).

We combine the last two inequalities and obtain with the definition of Hölder norms on S2

and Equation (6.3) that

‖A∗ −AL∗‖Cι,γ(S2) ≤ C
(
‖A∗ −AL∗‖C0(S2) +KN(‖AL∗‖C0,γ(S2)Q(‖T ∗ − TL∗‖Cι,γ(S2))

+Q(‖T ∗‖Cι,γ(S2))‖A∗ −AL∗‖C0,γ(S2))
)
,

(7.23)

where the constant C results from the equivalence relation in Equation (6.3). It remains
to show that ‖A∗ −AL∗‖Cι,γ(S2) converges in L

p
P (Ω,R) in the desired way. We will discuss

the summands in Inequality (7.23) individually and will begin with the first one. The
polynomial Q is dominated by the first order term q1x for small arguments x > 0. Therefore
it is sufficient to consider how ‖T ∗−TL∗‖Cι,γ(S2) converges. Powers of this term due to the
polynomial Q will result in powers of the bound of ‖T ∗ − TL∗‖Cι,γ(S2) in LpP -sense, which
converges to zero faster due to Remark 6.21 on Theorem 6.20. We obtain with the Cauchy–
Schwarz inequality and the already proven case ι = 0 that for a constant Kp independent
of L it holds that

E
[
‖AL‖p

C0,γ(S2)
‖T − TL‖p

Cι,γ(S2)

] 1
p ≤ E

[
‖AL‖2p

C0,γ(S2)

] 1
2p
E
[
‖T − TL‖2p

Cι,γ(S2)

] 1
2p

≤ KpE
[
‖T − TL‖2p

Cι,γ(S2)

] 1
2p
.

With Remark 6.21 on Theorem 6.20 we obtain that there exists a K̂p independently of L
such that

E
[
‖AL‖p

C0,γ(S2)
‖T − TL‖p

Cι,γ(S2)

] 1
p ≤ KpK̂p

(∑
l>L

Cll
1+2ι+δ

) 1
2

.

Since the second claim of the theorem has already been proven for ι = 0, we obtain for
the first and third summand in Inequality (7.23) with a similar argument relying on Theo-
rem 6.20 that

E
[
‖A−AL‖p

C0(S2)

] 1
p
, E

[
Q(‖TL‖Cι,γ(S2))

p‖A−AL‖p
C0,γ(S2)

] 1
p ≤ Kp

(∑
l>L

C1+δ
l

) 1
2

,

where we tacitly included the constants K, C and N into Kp in a suitable way. Therefore,
the second claim in the case that ι ≥ 1 is also proven with a threefold application of the
triangle inequality.
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7.3. Notes on the proof of the differentiability results

The proof of the differentiability of 2-weakly isotropic log-normal spherical random fields
relied on the fact that under our assumptions A ∈ LpP (Ω, C0(S2)) for all p ∈ (0,∞). This
was Proposition 7.5 in the previous section, with Fernique’s theorem as the main ingredient.
In this section we prove a proposition that will imply Proposition 7.5 and will potentially
ease the proof of Theorem 7.7 due to its stronger statement.
In the previous chapter we proved the respective result of Theorem 7.7 for 2-weakly isotropic
Gaussian spherical random fields, i.e. Theorem 6.20 and Remark 6.21, and used Lemma 5.2
as a main ingredient. The respective result for the log-normal case is Lemma 7.3. Therefore
we expect to obtain Theorem 7.7 in a similar way as in the Gaussian case for Hölder
continuity, i.e. ι = 0.

Proposition 7.8. Let A be a 2-weakly isotropic log-normal spherical random field, which
results from a continuous 2-weakly isotropic Gaussian spherical random field T such that
its angular power spectrum satisfies that (Cll

1+δ : l ≥ 0) is summable for δ ∈ (0, 2]. For
all γ ∈ (0, δ2) there exists an indistinguishable modification A∗ ⊂ C0,γ(S2) of A and A ∈
LpP (Ω, C0,γ(S2)) for all p ∈ (0,∞).
For all p ∈ (0,∞) the sequence (AL : L ∈ N0) = (exp(TL) : L ∈ N0) converges to
A = exp(T ) in the LpP (Ω, C0,γ(S2))-norm, i.e. for all p ∈ (0,∞) there exists a constant Kp

independently of L such that

‖A−AL‖LpP (Ω,C0,γ(S2)) ≤ Kp

(∑
l>L

Cll
1+δ

) 1
2

.

Proof. The proof will be very similar to the proof of Theorem 6.16 and Remark 6.17. As in
many proofs before we remind of our usual atlas (Ui, ηi : i = 1, ..., 6) of S2 with partition
of unity Ψ. Since T (x) ∼ N (0, σ2

T ) for all x ∈ S2 by Lemma 4.6, we obtain with Tonelli’s
theorem that for all k ∈ N A ∈ L2k

P⊗dσ(Ω× S2,R), i.e. it holds that

E
[ ∫

S2

A(x)2kdσ(x)
]

=

∫
S2

E
[
A(x)2k

]
dσ(x)

=

∫
S2

exp(2k2σ2
T )dσ(x) = 4π exp(2k2σ2

T ).

Lemma 7.3 enables us to apply Theorem 3.5 from [2] with d = 0, n = 2 and ε = kδ − 2.
We choose k > 2

δ−2γ . It follows that there exists a modification A∗ of A such that A∗ ⊂
C0,γ(S2). The modification A∗ and A are indistinguishable, because both random fields
are continuous. The respectively limit argument was given in the proof of Theorem 6.16.
Note that Inequality (6.21) can also be established for the 2-weakly isotropic log-normal
spherical random field A with Lemma 7.3 instead of Lemma 6.14, i.e.

E

[
‖(AΨi)ηi‖2kC0,γ(η−1

i (Ui))

]
≤ CE

[
‖Aηi‖2kL2k(η−1

i (Ui),R)

]
+Kk

∑
l≥0

C1+δ
l

k

, (7.24)

where the constants Kk is due to Lemma 7.3 and the constant C comes from a Sobolev
embedding as in development of Inequality (6.21). Note that Inequality (7.24) and the the
embedding L2bp+1c

P (Ω,R) ⊂ LpP (Ω,R) for all p ∈ (0,∞) already implies the first claim of
the proposition.
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For the second claim we have to examine the right hand side of Inequality (7.24) and replace
A with A − AL. For the first summand we apply Tonelli’s theorem, the Cauchy–Schwarz
inequality and the triangle inequality as well as Inequalities (7.1) and (7.4) to obtain that

E
[ ∫

S2

(A(x)−AL(x))2kdσ(x)
]

≤ E
[ ∫

S2

(A(x) +AL(x))2k(T (x)− TL(x))2kdσ(x)
]

≤
∫
S2

E
[
(A(x) +AL(x))4k

] 1
2
E
[
(T (x)− TL(x))4k

] 1
2

dσ(x)

≤ 4π 22k exp(4k2σ2
T )

(2k)!

2kk!

(∑
l>L

Cl
2l + 1

4π

)k
,

where the second factor is achieved with Inequality (5.9) and Lemma 2.8. For the second
summand in Inequality (7.24) we have to prove Lemma 7.3 for A − AL. Note that in the
case of a 2-weakly isotropic Gaussian spherical random field, as in Theorem 6.26, this was
immediate since the expansion of T − TL in the real spherical harmonics was known. In
our case we have to apply Inequality (7.1) and use a similar argument as in the proof of
Theorem 7.7. With Inequality (7.2) we obtain that for k, L ∈ N it holds that

E
[
|(A−AL)(x)− (A−AL)(y)|2k

]
= E

[
|AL(x)(e(T−TL)(x) − e(T−TL)(y))

+(e(T−TL)(y) − 1)(AL(x)−AL(y))|2k
]

≤ 22k−1
(
E
[
(AL(x))2k|e(T−TL)(x) − e(T−TL)(y)|2k

]
(7.25)

+E
[
(e(T−TL)(y) − 1)2k|AL(x)−AL(y)|2k

])
.

(7.26)

We will examine the two summands in the above inequality individually. For Expres-
sion (7.25) we obtain with Inequality (7.1) and the Cauchy–Schwarz inequality that

E
[
(AL(x))2k|e(T−TL)(x) − e(T−TL)(x)|2k

]
≤ E

[
(AL(x))2k(e(T−TL)(x) + e(T−TL)(y))2k|(T − TL)(x)− (T − TL)(y)|2k

]
≤ E

[
(AL(x))8k

] 1
4
E
[
(e(T−TL)(x) + e(T−TL)(y))8k

] 1
4
E
[
|(T − TL)(x)− (T − TL)(y)|4k

] 1
2
.

Since AL(x) and e(T−TL)(x) are log-normally distributed with mean and variance indepen-
dent of x and moments of finite order exists we obtain with Lemma 5.2 that for every k ∈ N
there exists a constant Kk such that

E
[
(AL(x))2k|e(T−TL)(x) − e(T−TL)(x)|2k

]
≤ Kk

(∑
l>L

Cll
1+δ

)k
d(x, y)δk.

Expression (7.26) can be treated in a similar way. With Inequality (7.1) and the Cauchy–
Schwarz inequality we obtain that

E
[
(e(T−TL)(y) − 1)2k|AL(x)−AL(y)|2k

]
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≤ E
[
(e(T−TL)(y) + 1)2k|T (x)− TL(x)|2k|AL(x)−AL(y)|2k

]
≤ E

[
(e(T−TL)(y) + 1)8k

] 1
4
E
[
|T (x)− TL(x)|8k

] 1
4
E
[
|AL(x)−AL(y)|4k

] 1
2
.

Now we apply that for exp((T − TL)(y)) and AL(x) all moments of finite order exists and
do not depend on x or y. With the usual argument we bound E[|T (x) − TL(x)|8k] and
obtain that

E
[
(e(T−TL)(y) − 1)2k|AL(x)−AL(y)|2k

]
≤ Kk

(∑
l>L

Cl
2l + 1

4π

)k
d(x, y)δk.

We combine the estimates for Expressions (7.25) and (7.26) and obtain the statement of
Lemma 7.3 for A − AL, i.e. there exists a constant Kk independently of x, y and L such
that

E
[
|(A−AL)(x)− (A−AL)(y)|2k

]
≤ Kk

(∑
l>L

Cll
1+δ

)k
d(x, y)δk.

We conclude a respective version of Inequality (7.24), i.e. for all i ∈ {1, ..., 6} there exists a
constant Kk independently of L such that

E

[
‖((A−AL)Ψi)ηi‖2kC0,γ(η−1

i (Ui))

]
≤ Kk

(∑
l>L

Cll
1+δ

)k
.

The embedding L2bp+1c
P (Ω,R) ⊂ LpP (Ω,R) for all p ∈ (0,∞) implies the second claim of the

proposition.

We see that the previous proposition does not only include the statement of Proposition 7.5,
furthermore it also includes the statement of Theorem 7.7 in the case that ι = 0 without
the use of Fernique’s theorem.
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8. Elliptic partial differential equations on
the sphere

In this chapter we want to discuss elliptic partial differential equations on the sphere.
The definitions of the differential operators on the sphere will be according to the theory
on Riemannian manifolds with respect to a chosen coordinate system and also due to an
intrinsic definition valid on the sphere. The latter is discussed in the book of Atkinson and
Han [3]. We will consider the following type of equation on S2:

−∇S2 · (A∇S2u) = f, (8.1)

for given functions A and f . This formal problem will be made precise afterwards. The
spherical gradient and the spherical Laplace operator can be also described intrinsically.
According to Equation (3.4) in [3] for a function v ∈ C2(S2) it holds that

∆v̂(x)
∣∣∣
‖x‖=1

= ∆S2v(θx, ϕx),

where ∆ is the usual Laplace operator on three dimensional domains of Euclidean space and
v̂ denotes the function: x 7→ v( x

‖x‖). Similarly, Equation (3.7) in [3] states for v ∈ C1(S2)
that

∇v̂(x)
∣∣∣
‖x‖=1

= ∇S2v(θx, ϕx),

where ∇ is the usual gradient on three dimensional domains of Euclidean space. Note that
in [3] these Equations are stated for a general atlas of the sphere. Therefore the value of
the spherical gradient and the spherical Laplace operator are independent of the atlas and
the respective coordinate system.
The following lemma is the divergence theorem on the sphere. It is a slight modification of
Proposition 3.3 in [3].

Lemma 8.1. For v,A ∈ C1(S2) and w ∈ C2(S2) it holds that∫
S2

∇S2v · (A∇S2w)dσ = −
∫
S2

v∇S2 · (A∇S2w)dσ.

Proof. This follows directly from Equation (2.4.185) in [22].

For the analysis of Equation (8.1) we are interested in the Poincaré inequality for a subspace
of H1(S2).

Definition 8.2. Let the equivalence relation ∼ be given by: v ∼ w for v, w ∈ H1(S2)
if and only if there exists c ∈ R such that v = w + c. We define the quotient space
H1(S2)/∼ = H1(S2)/R.

If a certain expression is equal for all representatives of an equivalence class in H1(S2)/R
it will sometimes be useful to consider the representative v that satisfies that

∫
S2 vdσ = 0.

We will see this technique after the following lemma, which is a Poincaré inequality.
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Lemma 8.3. For all v ∈ V = {w ∈ H1(S2) :
∫
S2 wdσ = 0} it holds that

‖v‖L2(S2) ≤
1√
2
‖∇S2v‖L2(S2).

Proof. Since V is a closed linear subspace of H1(S2), it holds that C∞(S2) ∩ V is dense in
V. Therefore it suffices to prove the claimed inequality for functions φ ∈ C∞(S2) ∩ V, i.e.
φ ∈ C∞(S2) that satisfies that

∫
S2 φdσ = 0. Since C∞(S2) ⊂ L2(S2,R) there exists an

expansion of φ in the real spherical harmonics. The real spherical harmonic function Ỹ0,0

is constant, therefore the coefficient φ0,0 =
∫
S2 φỸ0,0dσ = 0. We obtain the expansion

φ =
∑
l≥1

l∑
m=−l

φl,mỸl,m

with equality in L2(S2,R). Now we consider the Rayleigh quotient and obtain with
Lemma 8.1 and the orthonormality of the real spherical harmonics that

inf
φ∈C∞(S2)∩V

‖∇S2φ‖2L2(S2,R)

‖φ‖2
L2(S2,R)

= inf
φ∈C∞(S2)∩V

−
∫
S2 φ∆S2φdσ

‖φ‖2
L2(S2,R)

= inf
0 6={φl,m}l≥1,m=−l,...,l

∑
l≥1

∑l
m=−l l(l + 1)φ2

l,m∑
l≥1

∑l
m=−l φ

2
l,m

= 2.

Note that the infimum will be attained for the sequences that satisfy that φl,m = 0 for
l ≥ 2.

For v ∈ H1(S2)/R the expression ‖∇S2v‖L2(S2,R) is independent of the representative of
the equivalence class v. In the case that v 6= 0 in H1(S2)/R, we choose the representative
ṽ in v that satisfies that

∫
S2 ṽdσ = 0. Note that we just disregarded the common notation

to denote equivalence classes with [·]. The Poincaré inequality implies that

‖∇S2v‖L2(S2,R) = ‖∇S2 ṽ‖L2(S2,R) ≥
√

2‖ṽ‖L2(S2,R) > 0.

Therefore, for all v ∈ H1(S2)/R we define

‖v‖H1(S2)/R = ‖∇S2v‖L2(S2,R),

which is a well-defined norm on H1(S2)/R, since it is independent of the representative
of the respective equivalence class. Moreover H1(S2)/R becomes a Hilbert space with the
inner product

(v, w)H1(S2)/R =

∫
S2

∇S2v · ∇S2wdσ.

We will consider the variational formulation of the problem in Equation (8.1) for a strictly
positive continuous function A on S2: to find a unique u ∈ H1(S2)/R such that

b(u, v) =

∫
S2

A∇S2u · ∇S2vdσ =

∫
S2

fvdσ = `f (v) (8.2)

for all v ∈ H1(S2)/R.
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Lemma 8.4. The bilinear form b in Equation (8.2) on H1(S2)/R×H1(S2)/R is symmetric.
Moreover b is also continuous and coercive, i.e. for all v, w ∈ H1(S2)/R it holds that

|b(w, v)| ≤ ‖A‖C0(S2)‖w‖H1(S2)/R‖v‖H1(S2)/R

and for all w ∈ H1(S2)/R it holds that

b(w,w) ≥ (min
x∈S2

A(x))‖w‖2H1(S2)/R.

Proof. The continuity of b follows with the Cauchy–Schwarz inequality. Symmetry and
coercivity are clear.

We state the Lax–Milgram lemma as the next theorem. We take the version from Yosida’s
book [29]. There it is the main theorem in Section 7 in Part 3 of [29].

Theorem 8.5. Let H be a Hilbert space with inner product (·, ·) and induced norm ‖ ·‖ and
let b̂ be a real-valued bilinear functional on the product Hilbert space H×H which satisfies:

boundedness, i.e. there exists a constant K1 such that for all x, y ∈ H

|b̂(x, y)| ≤ K1‖x‖ · ‖y‖,

and coercivity, i.e. there exists a constant K2 such that for all x ∈ H

b̂(x, x) ≥ K2‖x‖2.

Then there exists a uniquely determined linear bounded operator S with a bounded linear
inverse S−1 such that

(x, y) = b̂(x, Sy)

whenever x, y ∈ H, and ‖S‖ ≤ K−1
2 , ‖S−1‖ ≤ K1.

Proof. This is explicitly the main theorem in Section 7 in Part 3 of [29] in the case of a
real-valued bilinear functional b̂.

Since H1(S2)/R is a Hilbert space the Lax–Milgram lemma, Theorem 8.5, is applicable.
First the Riesz representation theorem, which is the main theorem in Section 6 in Part 3 of
[29] yields that for every ` ∈ (H1(S2)/R)∗ there exists a unique u` ∈ H1(S2)/R such that
for all v ∈ H1(S2)/R it holds that

(u`, v)H1(S2)/R = `(v) and ‖u`‖H1(S2)/R = ‖`‖(H1(S2)/R)∗ .

Now Theorem 8.5 implies that there exists a uniquely determined bounded linear operator
S on H1(S2)/R such that

b(Su`, v) = (u`, v)H1(S2)/R = `(v)

for all v ∈ H1(S2)/R. We set u = Su` and u is the unique solution to the problem in
Equation (8.2) if we take ` ∈ (H1(S2)/R)∗ as right hand side. Theorem 8.5 and Lemma 8.4
yield the estimate

‖u‖H1(S2)/R = ‖Su`‖H1(S2)/R ≤
‖u`‖H1(S2)/R

minx∈S2 A(x)
=
‖`‖(H1(S2)/R)∗

minx∈S2 A(x)
.
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In our discussion we want to take a function in L2(S2,R) as right hand side of Equa-
tion (8.2). If a function f ∈ L2(S2,R) additionally satisfies that

∫
S2 fdσ = 0, then

`f = (v 7→
∫
S2 fvdσ) ∈ (H1(S2)/R)∗. Therefore we make this assumption on f . For

this choice of right hand side `f ∈ (H1(S2)/R)∗ we obtain a unique solution u ∈ H1(S2)/R
to the problem in Equation (8.2) with the above argument. The above estimate, Lemma 8.3
and the Cauchy–Schwarz inequality yield the estimate

‖u‖H1(S2)/R ≤
‖`f‖(H1(S2)/R)∗

minx∈S2 A(x)
≤ sup

v∈H1(S2)/R

‖f‖L2(S2,R)‖v‖L2(S2,R)

minx∈S2 A(x)‖v‖H1(S2)/R
≤ 1√

2

‖f‖L2(S2,R)

minx∈S2 A(x)
,

(8.3)
where we tacitly always selected the representative v that satisfies that

∫
S2 vdσ = 0.

A second continuous function Â on S2 such that minx∈S2 Â(x) > 0 induces the bilinear
form b̂ and we can consider the respective problem in Equation (8.2) with b̂ instead of b
and with the same right hand side f . We observe that this problem has a unique solution
û ∈ H1(S2)/R that also satisfies Inequality (8.3), i.e.

‖û‖H1(S2)/R ≤
1√
2

‖f‖L2(S2,R)

minx∈S2 Â(x)
.

With the same argument that is used to prove the first Strang lemma, in Section 4.1 in
[6], we will obtain that the mapping A 7→ u from C0(S2) ∩ {A : minx∈S2 A(x) > 0} to
H1(S2)/R is continuous.

Proposition 8.6. The unique solution u of Equation (8.2) depends continuously on the
coefficient A.
Let A, Â ∈ C0(S2) ∩ {Ã : minx∈S2 Ã(x) > 0} be two coefficients that induce bilinear forms
b and b̂. For the respective solutions u with respect to A and û with respect to Â of Equa-
tion (8.2) with the same right hand side f ∈ L2(S2,R) ∩ {f̃ :

∫
S2 f̃dσ = 0} it holds that

‖u− û‖H1(S2)/R ≤
1√
2

‖f‖L2(S2,R)

(min
x∈S2

A(x))(min
x∈S2

Â(x))
‖A− Â‖C0(S2). (8.4)

Proof. We start with the proof of the second claim We adapt the argument in [6] as an-
nounced. We introduce the notation V = H1(S2)/R. We can apply manipulations using
that û and u solve the respective equations to obtain with the coercivity of the bilinear
form that

min
x∈S2

Â(x)‖û− u‖2V ≤ b̂(û− u, û− u) = lf (û− u)− b̂(u, û− u) = b(u, û− u)− b̂(u, û− u).

We continue this computation and obtain that

min
x∈S2

Â(x)‖û− u‖V ≤
|b(u, û− u)− b̂(u, û− u)|

‖û− u‖V
≤ sup

w∈V

|b(u,w)− b̂(u,w)|
‖w‖V

.

We obtain with the Cauchy–Schwarz inequality that

‖û− u‖V ≤
1

min
x∈S2

Â(x)
sup
w∈V

|b(u,w)− b̂(u,w)|
‖w‖V

≤ 1

min
x∈S2

Â(x)
‖u‖V‖A− Â‖C0(S2).
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We apply Inequality (8.3) and obtain that

‖u− û‖H1(S2)/R ≤
1√
2

‖f‖L2(S2,R)

(min
x∈S2

A(x))(min
x∈S2

Â(x))
‖A− Â‖C0(S2).

To show the first claim, we choose a sequence (An : n ≥ 0) ⊂ C0(S2)∩{Ã : minx∈S2 Ã(x) >
0} that converges to A in C0(S2), i.e. ‖A− An‖C0(S2) = εn → 0 as n→∞. For all n ∈ N
the solution of Equation (8.2) with respect to An is denoted by un. We observe that for all
y ∈ S2and n ∈ N it holds that An(y) ≥ minx∈S2 A(x)− εn. There exists N ∈ N such that
for all integer n ≥ N it holds that εn ≤ 1

2 minx∈S2 A(x) and we obtain that

1

min
x∈S2

An(x)
≤ 2

min
x∈S2

A(x)

Therefore for all n ∈ N (minx∈S2 An(x))−1 can be bounded independently of n and with
Inequality (8.4) we conclude that un converges to u in H1(S2)/R. This implies that the
mapping A 7→ u is a continuous mapping from C0(S2) ∩ {Ã : minx∈S2 Ã(x) > 0} to
H1(S2)/R and the first claim is proven.

In the following we want to impose higher regularity on the right hand side f and on the
coefficient A that we used to define the bilinear form b. The next section discusses how
higher order Hölder regularity on the right hand side and on the coefficients of elliptic
operators affects the regularity of the solution in bounded domains of Euclidean space.

8.1. The Schauder interior estimates

Gilbarg and Trudinger elaborate in their book [14] the Schauder estimates of solutions of
elliptic partial differential equations of second order in domains of Euclidean space. They
present estimates of the Hölder norms of higher order partial derivatives of the solution in
terms of the right hand side and the supremum norm of the solution. However, in [14] the
dependence on the coefficients of the respective differential operator in the estimates is not
emphasized. In this project we are interested in the precise dependence of the constants
in the estimates on the coefficients of the respective differential operator. Therefore we
will take a close look at the proofs to distinguish the contribution of the coefficients to the
constants.

For the discussion of the proof of the Schauder estimates we introduce a set of semi-norms.
We fix the bounded domain D ⊂ Rn for some n ∈ N with diameter diam(D) = r. Even
though we will be interested in the case n = 2, we will discuss the Schauder estimates for
an arbitrary dimension n ∈ N, because the proof will be the same and the concentration
on n = 2 will not lead to simplifications. For x, y ∈ D we define

dx = dist(x, ∂D) and dx,y = min{dx, dy}.

Let k ∈ N. For f ∈ Ck(D), γ ∈ (0, 1] and σ ∈ R we define the semi-norms

[f ]∗k,D = sup
x∈D
|β|=k

dkx|∂βf(x)|,
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[f ]∗γ,k,D = sup
x,y∈D,x6=y
|β|=k

dk+γ
x,y

|∂βf(x)− ∂βf(y)|
‖x− y‖γRn

,

[f ]
(σ)
k,D = sup

x∈D
|β|=k

dσ+k
x |∂βf(x)|,

[f ]
(σ)
γ,k,D = sup

x,y∈D,x6=y
|β|=k

dσ+k+γ
x,y

|∂βf(x)− ∂βf(y)|
‖x− y‖γRn

,

for f ∈ C0(D) we define
|f |(σ)

γ,0,D = [f ]
(σ)
0,D + [f ]

(σ)
γ,0,D.

For two functions f, g ∈ C0,γ(D), Inequality (6.11) in [14] states that for the product of f
and g and σ + τ ≥ 0 it holds that

|fg|(σ+τ)
γ,0,D ≤ |f |

(σ)
γ,0,D|g|

(τ)
γ,0,D. (8.5)

The following lemma states some interpolation inequalities with explicit constants, which
hold for these semi-norms. It is Lemma 6.32 in [14]. We will review its proof to discover
the precise constants.

Lemma 8.7. For γ ∈ (0, 1), f ∈ C2,γ(D), β ∈ (0, 1) and ε > 0 it holds that

[f ]∗1,D ≤ 512 ε
− 1
γ+1 ‖f‖C0(D) + ε[f ]∗γ,2,D (8.6)

and
[f ]∗2,D ≤ 6422

2
γ ε
− 2
γ ‖f‖C0(D) + ε[f ]∗γ,2,D. (8.7)

Moreover for a constant K that depends on β and γ it holds that for all ε ∈ (0, 1]

[f ]∗β,0,D ≤ K ε
− 1

1−β ‖f‖C0(D) + ε[f ]∗γ,2,D (8.8)

and
[f ]∗β,1,D ≤ K ε

− 4
1−β ‖f‖C0(D) + ε[f ]∗γ,2,D. (8.9)

For γ ∈ (0, 1), f ∈ C1,γ(D), β ∈ (0, 1) and ε > 0 it holds that

[f ]∗1,D ≤ 2 4
1
γ ε
− 1
γ ‖f‖C0(D) + ε[f ]∗γ,1,D (8.10)

and for a constant K that depends on β and γ it holds that for all ε ∈ (0, 1]

[f ]∗β,0,D ≤ K ε
− 1

1−β ‖u‖C0(D) + ε[f ]∗γ,1,D. (8.11)

Proof. In this proof we quote some inequalities from the original proof of this lemma given
in [14], which can be combined to obtain the constants depending on ε. We state Inequal-
ity (6.83) in [14], which says that for ε′ > 0 it holds that

[f ]∗1,D ≤
4

ε′
‖f‖C0(D) + ε′[f ]∗2,D (8.12)

and Inequality (6.85) in [14], which says that for ε′ > 0 it holds that

[f ]∗2,D ≤ 16 ε
′− 1

γ [f ]∗1,D + ε′[f ]∗γ,2,D. (8.13)
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We combine Inequality (8.12) and (8.13) with ε1, ε2 > 0 to obtain that

[f ]∗1,D ≤
4

ε1
‖f‖C0(D) + ε1[f ]∗2,D ≤

4

ε1
‖f‖C0(D) + 16ε1ε

− 1
γ

2 [f ]∗1,D + ε1ε2[f ]∗γ,2,D.

We want to achieve that ε
2 = ε1ε2 and 16ε1ε

− 1
γ

2 = 1
2 . This is obtained with the choice

ε1 = 32
− γ
γ+1 2

− 1
γ+1 ε

1
γ+1 and ε2 = ε

2ε1
. We insert our choices of ε1 and ε2 and obtain what

is claimed in the lemma, i.e.

[f ]∗1,D ≤ 512 ε
− 1
γ+1 ‖f‖C0(D) + ε[f ]∗γ,2,D. (8.14)

Now we combine Inequalities (8.12) and (8.13) with ε1, ε2 > 0 in the other order to obtain
that

[f ]∗2,D ≤ 16 ε
− 1
γ

1 [f ]∗1,D + ε1[f ]∗γ,2,D ≤ 64 ε
− 1
γ

1 ε−1
2 ‖f‖C0(D) + 16ε2ε

− 1
γ

1 [f ]∗2,D + ε1[f ]∗γ,2,D.

We want to achieve that ε
2 = ε1 and 16ε2ε

− 1
γ

1 = 1
2 . Therefore we choose ε2 = 1

322
− 1
γ ε

1
γ and

obtain that
[f ]∗2,D ≤ 6422

2
γ ε
− 2
γ ‖f‖C0(D) + ε[f ]∗γ,2,D. (8.15)

We state Inequality (6.88) in [14], which says that for ε′ > 0 it holds that

[f ]∗β,0,D ≤ 2 2
β

1−β ε
′− β

1−β ‖f‖C0(D) + ε′[f ]∗1,D. (8.16)

From the comments just under Inequality (6.88) in [14] it is evident that for ε′ > 0 it holds
that

[f ]∗β,1,D ≤ 2 2
β

1−β ε
′− β

1−β [f ]∗1,D + ε′[f ]∗2,D. (8.17)

We combine Inequalities (8.16) and (8.14) with ε1, ε2 > 0 to obtain that

[f ]∗β,0,D ≤ 2 2
β

1−β ε
− β

1−β
1 ‖f‖C0(D) + ε1[f ]∗1,D ≤

2 2
β

1−β

ε
β

1−β
1

+
512ε1

ε
1

γ+1

2

 ‖f‖C0(D) + ε1ε2[f ]∗γ,2,D.

We want to achieve that ε = ε1ε2 and ε1 = ε
1

γ+1

2 . With the choices ε2 = ε
ε1

and ε1 = ε
1

γ+2

we obtain that

[f ]∗β,0,D ≤
(

2 2
β

1−β ε
− β

(1−β)(γ+2) + 512

)
‖f‖C0(D) + ε[f ]∗γ,2,D.

The fact that ε ∈ (0, 1] implies that

ε
− β

(1−β)(γ+2) ≤ ε−
1

1−β ,

which implies the third claim of the lemma. For the fourth claim of the lemma we combine
Inequalities (8.17), (8.14) and (8.15) with ε1, ε2, ε3 > 0 to obtain that

[f ]∗β,1,D ≤ 2 2
β

1−β ε
− β

1−β
1 [f ]∗1,D + ε1[f ]∗2,D
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≤

2 2
β

1−β

ε
β

1−β
1

512

ε
1

γ+1

2

+ ε1
6422

2
γ

ε
2
γ

3

 ‖f‖C0(D) +

2 2
β

1−β

ε
β

1−β
1

ε2 + ε1ε3

 [f ]∗γ,2,D.

We want to achieve that ε = 2 (2ε−1
1 )

β
1−β + ε1ε3 and ε1 = ε

2
γ

3 . The choices ε1 = (2−1ε)
2

2+γ ,

ε2 = 2
− 1

1−β (2−1ε)
2+(1−β)γ
(2+γ)(1−β) and ε3 = (2−1ε)

γ
2+γ satisfy that

ε
β

1−β
1 ε

1
1+γ

2 = 2
− 2+β

(2+γ)(1−β) ε
2β(1+γ)+γ(1−β)+2
(2+γ)(1+γ)(1−β) .

Then we obtain the estimate

[f ]∗β,1,D ≤
(

2
13

1−β ε
− 2β(1+γ)+γ(1−β)+2

(2+γ)(1+γ)(1−β) + 6422
2
γ

)
‖f‖C0(D) + ε[f ]∗γ,2,D.

The fact that ε ∈ (0, 1] implies that

ε
− 2β(1+γ)+γ(1−β)+2

(2+γ)(1+γ)(1−β) ≤ ε−
4

(1−β) ,

which finishes the proof of the fourth claim of the lemma. The fifth inequality in the
lemma is stated in Gilbarg and Trudinger [14] as Inequality (6.86). The constant 2 4

1
γ ε
− 1
γ

is obtained from the proof of Inequality (8.85) in [14].
For the last inequality we combine Inequalities (8.16) and (8.10) with ε1, ε2 > 0 and obtain
that

[f ]∗β,0,D ≤ 2 2
β

1−β ε
− β

1−β
1 ‖f‖C0(D) + ε1[f ]∗1,D

≤ 2 2
β

1−β ε
− β

1−β
1 ‖f‖C0(D) + 2 4

1
γ ε1ε

− 1
γ

2 ‖f‖C0(D) + ε1ε2[f ]∗γ,1,D.

We want to achieve that ε = ε1ε2 and ε1 = ε
1
γ

2 . We choose ε1 = ε
1

1+γ , ε2 = ε
γ

1+γ and obtain
that

[f ]∗β,0,D ≤
(

2
1

1−β ε
− β

(1−β)(1+γ) + 2
2+γ
γ

)
‖f‖C0(D) + ε[f ]∗γ,1,D.

The fact that ε ∈ (0, 1] implies the sixth claim of the lemma, because

ε
− β

(1−β)(1+γ) ≤ ε−
1

1−β .

8.1.1. The Schauder interior estimates for classical solutions

For sets of real-valued, continuous functions on D (ai,j : ai,j = aj,i, i, j = 1, ..., n), (bi : i =
1, ..., n) and c we introduce the differential operator

L = ai,j∂i∂j + bi∂i + c (8.18)

where we used the usual summation convention to ease the notation, i.e. for two vectors
v, w ∈ Rn we define

∑n
i=1 viwi = viwi. We require additionally that for all x ∈ D and

ξ ∈ Rn it holds that
Λ(x)‖ξ‖2Rn ≥ ai,j(x)ξiξj ≥ λ(x)‖ξ‖2Rn ,

for two strictly positive functions Λ and λ on D. If infx∈D λ(x) > 0 we call the operator L
in Equation (8.18) strictly elliptic. Without loss of generality we assume that the functions
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Λ and λ are continuous on D and that minx∈D λ(x) > 0. This notion of strict ellipticity
agrees with [14], which is our main reference for Section 8.1.1 and Section 8.1.2. Schauder
developed a theory to estimate the Hölder norms of solutions and derivatives of solutions
u to the problem Lu = f in terms of the right hand side f and the supremum norm of the
solution. The problem, i.e. Lu = f , is only stated formally at this point. It will be made
precise afterwards.
The next lemma is Lemma 6.1 in [14] and is a preliminary result for the general statement.
In this lemma the coefficients (ai,j : i, j = 1, ..., n) of the operator L are taken to be
constant over D and the other coefficients are set to zero. We review its proof to work out
the respective constant in the estimate precisely.

Lemma 8.8. Let A ∈ Rn×n be a constant symmetric matrix such that for two constants
λ,Λ > 0 and all ξ ∈ Rn it holds that

λ‖ξ‖2Rn ≤ Ai,jξiξj ≤ Λ‖ξ‖2Rn .

If u ∈ C2(D) and f ∈ C0,γ(D) for γ ∈ (0, 1) satisfy Ai,j∂i∂ju = f in D, then there exists
a constant C > 0 depending only on n and γ such that

[u]∗γ,2,D ≤ CΛ2+ γ
2 λ−

γ
2

(
‖u‖C0(D) + (λ−1 + Λ

γ
2 λ−1− γ

2 )|f |(2)
γ,0,D

)
. (8.19)

Proof. The idea of the proof is to use a suitable coordinate transformation to be able to
apply known results for the case of the Poisson equation. For an invertible matrix R ∈ Rn×n
the transformation x 7→ Rx = y results in u → ũ = u ◦ R−1 and transforms the operator
Ai,j∂i∂j as well, i.e. we evaluate the partial derivatives to obtain that

Ai,j∂i∂ju(x) = Ai,j∂i∂j ũ(Rx)

=

n∑
i,j,k=1

Ai,j∂iRk,j∂kũ
∣∣∣
Rx

=
n∑

i,j,k,l=1

Ai,jRl,i∂lRk,j∂kũ
∣∣∣
Rx

= (RAR>)k,l∂k∂lũ(y) = Ãk,l∂k∂lũ(y).

Since the matrix A is symmetric and positive definite, we know from linear algebra that
it can be diagonalized with an orthogonal matrix and has strictly positive eigenvalues
(λ1, ..., λn). Let R be this orthogonal matrix. Let J be the diagonal matrix that results from

the inverted square roots of the eigenvalues, i.e. J = diag(λ
− 1

2
1 , ..., λ

− 1
2

n ). If we transform the
matrix A with Q = JR, then Ã becomes the identity matrix and the transformed problem
becomes the Poisson equation, i.e. ∆ũ = f̃ for f̃ = f ◦ Q−1 and ũ = u ◦ Q−1, where we
redefined ũ.

The next step is to relate the norms of a function v and respectively ṽ = v ◦ Q−1 to
each other. We define the domain D̃ = Q(D). Since R is an orthogonal matrix and the
eigenvalues of A satisfy that λ ≤ λ1, ..., λn ≤ Λ, which form the other matrix J we obtain
that for all ξ ∈ Rn, it holds that

Λ−1‖ξ‖2Rn ≤ ‖Qξ‖2Rn ≤ λ−1||ξ‖2Rn . (8.20)
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For v ∈ Ck(D) and some integer k ≥ 0, we examine the semi-norm of ṽ. We compute
the partial derivative of ṽ as above and obtain together with Inequality (8.20) that for
j ∈ {1, ..., n} and y ∈ D̃ it holds that

|∂iṽ(y)| = |
n∑
i=1

∂iv(x)Qi,j | ≤ ‖Q∇v(x)‖Rn ≤ λ−
1
2n sup

j=1,...,n
|∂jv(x)|,

where x = Q−1y and ∇ = (∂1, ..., ∂n)> is the usual gradient on subdomains of Euclidean
space. This gives the estimate

|ṽ|1,D̃ ≤ λ
− 1

2n|v|1,D.

For higher order derivatives the above argument can be iterated in order to obtain for a
multi-index β ∈ Nn0 satisfying |β| = k that

|∂βṽ(y)| ≤ λ−
k
2nk sup

|α|=k
|∂αv(x)|,

where x = Q−1y. We obtain the estimate

|ṽ|k,D̃ ≤ λ
− k

2nk|v|k,D.

The whole argument also works similarly the other way around, where we bound the semi-
norm of v with the one of ṽ, i.e.

|v|k,D ≤ Λ
k
2nk|ṽ|k,D̃.

Together we obtain that

Λ−
k
2n−k|v|k,D ≤ |ṽ|k,D̃ ≤ λ

− k
2nk|v|k,D. (8.21)

Note that the argument also applies similarly to the Hölder semi-norms | · |γ,k,D, i.e. for
v ∈ Ck,γ(D) it holds that

λ
γ
2 Λ−

k
2n−k|v|γ,k,D ≤ |ṽ|γ,k,D̃ ≤ Λ

γ
2 λ−

k
2nk|v|γ,k,D. (8.22)

Note that with Inequality (8.20) we obtain that for x ∈ D and x̃ = Qx it holds that

Λ−
1
2dx ≤ d̃x̃ ≤ λ−

1
2dx, (8.23)

where d̃x̃ = dist(x̃, ∂D̃). This inequality enables us to relate the semi-norms | · |(j)γ,0,D for
some positive integer j and [·]∗γ,k,D to each other with the help of Inequalities (8.20), (8.22)
and (8.23), i.e.

|ṽ|(j)
γ,0,D̃

= sup
x̃∈D̃

d̃jx̃|ṽ(x̃)|+ sup
x̃,ỹ∈D̃,x̃ 6=ỹ

d̃j+γx̃,ỹ

|ṽ(x̃)− ṽ(ỹ)|
‖x̃− ỹ‖γRn

≤ λ−
j
2 [v]

(j)
0,D + Λ

γ
2 λ−

j+γ
2 [v]

(j)
γ,0,D ≤ (λ−

j
2 + Λ

γ
2 λ−

j+γ
2 )|v|(j)γ,0,D (8.24)

and
Λ−k−

γ
2 λ

γ
2 n−k[v]∗γ,k,D ≤ [ṽ]∗

γ,k,D̃
≤ λ−k−

γ
2 Λ

γ
2 nk[v]∗γ,k,D. (8.25)
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Theorem 4.8 in [14] states that there exists a constant C > 0 that depends only on n and
γ such that the following estimate holds for the function ũ,

[ũ]∗
γ,2,D̃

≤ C
(
‖ũ‖

C0(D̃)
+ |f̃ |(2)

γ,0,D̃

)
. (8.26)

We combine this estimate with the Estimates (8.24) and (8.25) to obtain that

[u]∗γ,2,D ≤ Λ2+ γ
2 n2λ−

γ
2 [ũ]∗

γ,2,D̃

≤ CΛ2+ γ
2 n2λ−

γ
2

(
‖ũ‖

C0(D̃)
+ |f̃ |(2)

γ,0,D̃

)
≤ CΛ2+ γ

2 n2λ−
γ
2

(
‖u‖C0(D) + (λ−1 + Λ

γ
2 λ−1− γ

2 )|f |(2)
γ,0,D

)
.

The Schauder theory interprets the functions (ai,j : i, j = 1, ..., n) as small perturbations
from a frozen at a point x0 ∈ D. This point x0 will be varied after an upper bound of a
difference quotient of the solution is established independently of this point x0. The next
theorem illustrates this point of view in its proof. It is Theorem 6.2 in [14]. Again we review
its proof to emphasize the dependencies of the respective constants on the coefficients of
the differential operator.

Theorem 8.9. Let u ∈ C2,γ(D) and f ∈ C0,γ(D) for some γ ∈ (0, 1) satisfy Lu = f . Let
D′ ⊂⊂ D be a closed subset such that dist(D′, ∂D) = d for some d > 0. If the coefficients
of L are all Hölder continuous, i.e. (ai,j : i, j = 1, ..., n), (bi : i = 1, ..., n), {c} ⊂ C0,γ(D),
then the following estimate holds:

d2+γ |u|γ,2,D′ ≤ K
(
‖u‖C0(D) + ‖f‖C0,γ(D)

)
.

The constant K depends implicitly on γ and r through a constant K, i.e.

K = K

((1 + ‖Λ‖C0(D))
2+γ

minx∈D λ(x)1+γ

) 9
1−γ

(1 + a+ b+ c)
9

1−γ

 ,

where

a =
n∑

i,j=1

|ai,j |γ,0,D, b =
n∑
i=1

‖bi‖C0,γ(D) and c = ‖c‖C0,γ(D).

Proof. We fix two interior points x0, y0 ∈ D. We use x0 and the equation Lu = f to define
the function F , i.e.

ai,j(x0)∂i∂ju = (ai,j(x0)− ai,j)∂i∂ju− bi∂iu− cu+ f = F. (8.27)

For µ ≤ 1
2 we set Bµdx0 = Bµdx0 (x0) ⊂ D. We interpret Equation (8.27) as an equation

in Bµdx0 and apply the estimate of the previous lemma to obtain in the case that y0 ∈
Bµdx0

2

(x0) and α ∈ Nn0 with |α| = 2 it holds that

(
µdx0,y0

2

)2+γ |∂αu(x0)− ∂αu(y0)|
‖x0 − y0‖γRn

≤ CΛ(x0)2+ γ
2 n2λ(x0)−

γ
2

(
‖u‖C0(Bµdx0

) + (λ(x0)−1 + Λ(x0)
γ
2 λ(x0)−1− γ

2 )|F |(2)
γ,0,Bµdx0

)
.
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In the case that ‖x0 − y0‖Rn ≥
µdx0

2 with the same multi-index α it holds that

d2+γ
x0,y0

|∂αu(x0)− ∂αu(y0)|
‖x0 − y0‖γRn

≤ 2

µγ
(d2
x0 |∂αu(x0)|+ d2

y0 |∂αu(y0)|) ≤ 4

µγ
[u]∗2,D.

The combination of these two estimates yields that for all x0, y0 ∈ D◦ it holds that

d2+γ
x0,y0

|∂αu(x0)− ∂αu(y0)|
‖x0 − y0‖γRn

≤ C 22+γ

µ2+γ

Λ(x0)2+ γ
2 n2

λ(x0)
γ
2

(
‖u‖C0(D) +

λ(x0)
γ
2 + Λ(x0)

γ
2

λ(x0)1+ γ
2

|F |(2)
γ,0,Bµdx0

)
+

4

µγ
[u]∗2,D.

(8.28)

To ease the notation, we set B = Bµdx0 . The next step is to estimate |F |(2)
γ,0,B. For this

reason we will establish the below estimate, which will be Inequality (8.29), for functions
g ∈ C0,γ(D) first. For y ∈ B it holds that dy = dist(y, ∂D) > (1 − µ)dx0 . We use this
property to bound |g|(2)

γ,0,D = [g]
(2)
0,D + [g]

(2)
γ,0,D from below. We simply apply the definition

and obtain that

[g]
(2)
0,D = sup

x∈D
d2
x|g(x)| ≥ (1− µ)2d2

x0 sup
x∈B
|g(x)| = (1− µ)2d2

x0‖g‖C0(B)

and

[g]
(2)
γ,0,D = sup

x,y∈D,x6=y
d2+γ
x,y

|g(x)− g(y)|
‖x− y‖γRn

≥ (1− µ)2+γd2+γ
x0 sup

x,y∈B,x 6=y

|g(x)− g(y)|
‖x− y‖γRn

= (1− µ)2+γd2+γ
x0 |g|γ,0,B.

In the following chain of inequalities we apply first the fact that for x ∈ B it holds that
dist(x, ∂B) ≤ µdx0 , then we use the two estimates, which we just established, and at last
that µ ≤ 1

2 to obtain that

|g|(2)
γ,0,B ≤ µ

2d2
x0‖g‖C0(B) + µ2+γd2+γ

x0 |g|γ,0,B

≤ µ2

(1− µ)2
[g]

(2)
0,D +

µ2+γ

(1− µ)2+γ
[g]

(2)
γ,0,D

≤ 4µ2[g]
(2)
0,D + 8µ2+γ [g]

(2)
γ,0,D. (8.29)

Now we begin to bound |F |(2)
γ,0,B and obtain with the triangle inequality that we can analyze

the components of F individually:

|F |(2)
γ,0,B ≤

n∑
i,j=1

|(ai,j(x0)− ai,j)∂i∂ju|(2)
γ,0,B +

n∑
i=1

|bi∂iu|(2)
γ,0,B + |cu|(2)

γ,0,B + |f |(2)
γ,0,B.

We will indeed estimate these components individually and start with those that involve
(ai,j : i, j = 1, ..., n). We fix i, j ∈ {1, ..., n} and apply Inequality (8.5) and Inequality (8.29)
to obtain that

|(ai,j(x0)− ai,j)∂i∂ju|(2)
γ,0,B ≤ |ai,j(x0)− ai,j |(0)

γ,0,B|∂i∂ju|
(2)
γ,0,B
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≤ |ai,j(x0)− ai,j |(0)
γ,0,B(4µ2[∂i∂ju]

(2)
0,D + 8µ2+γ [∂i∂ju]

(2)
γ,0,D)

≤ |ai,j(x0)− ai,j |(0)
γ,0,B(4µ2[u]∗2,D + 8µ2+γ [u]∗γ,2,D).

Furthermore we apply that for x ∈ B it holds that dx > (1− µ)dx0 ≥
dx0
2 , because µ ≤ 1

2 ,
and that dx,y(B) = min{dist(x, ∂B), dist(y, ∂B)} < µdx0 to obtain that

|ai,j(x0)− ai,j |(0)
γ,0,B = sup

x∈B
|ai,j(x0)− ai,j(x)|+ sup

x,y∈B
dx,y(B)γ

|ai,j(x)− ai,j(y)|
‖x− y‖γRn

≤ sup
x∈B

|ai,j(x0)− ai,j(x)|
‖x0 − x‖γRn

(µdx0)γ + sup
x,y∈B

(µdx0)γ
|ai,j(x)− ai,j(y)|
‖x− y‖γRn

≤ µγ2γ [ai,j ]
∗
γ,0,D + µγ sup

x,y∈B
2γdγx,y

|ai,j(x)− ai,j(y)|
‖x− y‖γRn

≤ 4µγ [ai,j ]
∗
γ,0,D.

We combine the last two computations and conclude using Inequality (8.7) from Lemma 8.7
with ε = µγ that

n∑
i,j=1

|(ai,j(x0)− ai,j)∂i∂ju|(2)
γ,0,B ≤ 4µγ

n∑
i,j=1

[ai,j ]
∗
γ,0,D(4µ2[u]∗2,D + 8µ2+γ [u]∗γ,2,D)

≤ 32µ2+γ
n∑

i,j=1

[ai,j ]
∗
γ,0,D

(
6422

2
γ

µ2
‖u‖C0(D) + µγ [u]∗γ,2,D

)
.

(8.30)

For the components that involve (bi : i = 1, ..., n) we fix i ∈ {1, ..., n} and apply Inequal-
ity (8.5) and Inequality (8.29) to obtain that

|bi∂iu|(2)
γ,0,B ≤ 8µ2|bi∂iu|(2)

γ,0,D ≤ 8µ2|bi|(1)
γ,0,D|∂iu|

(1)
γ,0,D ≤ 8µ2|bi|(1)

γ,0,D([u]∗1,D + [u]∗γ,1,D).

In the next step we apply Inequality (8.6) and Inequality (8.9) from Lemma 8.7 with
ε = 2−1µ2γ in each case and obtain a constant K dependent on γ such that

n∑
i=1

|bi∂iu|(2)
γ,0,B ≤ 8µ2

n∑
i=1

|bi|(1)
γ,0,D

[(
1024

µ
2γ
γ+1

+
K

µ
8γ
1−γ

)
‖u‖C0(D) + µ2γ [u]∗γ,2,D

]

≤ 8µ2
n∑
i=1

|bi|(1)
γ,0,D

(
1024 +K

µ
8γ
1−γ

‖u‖C0(D) + µ2γ [u]∗γ,2,D

)
. (8.31)

The component that involves the function c is estimated in a similar way. We apply
Inequality (8.29) and Inequality (8.5) to obtain that

|cu|(2)
γ,0,B ≤ 8µ2|cu|(2)

γ,0,D ≤ 8µ2|c|(2)
γ,0,D(‖u‖C0(D) + [u]∗γ,0,D).

In the next step we apply Inequality (8.8) from Lemma 8.7 with ε = µ2γ and obtain a
constant K dependent on γ such that

|cu|(2)
γ,0,B ≤ 8µ2|c|(2)

γ,0,D

(
K

µ
2γ
1−γ
‖u‖C0(D) + µ2γ [u]∗γ,2,D

)
. (8.32)
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Furthermore Inequality (8.29) yields that

|f |(2)
γ,0,B ≤ 8µ2|f |(2)

γ,0,D. (8.33)

Finally we apply Inequality (8.7) from Lemma 8.7 with ε = µ2γ to [u]∗2,D and obtain that

[u]∗2,D ≤
6422

2
γ

µ4
‖u‖C0(D) + µ2γ [u]∗γ,2,D. (8.34)

We combine the contributions to |F |(2)
γ,0,B stated in Inequalities (8.30), (8.31), (8.32) and

(8.33) and obtain that for a constant K, which only dependent on γ, it holds that

|F |(2)
γ,0,B ≤ Kµ

2+γ
n∑

i,j=1

[ai,j ]
∗
γ,0,D

(
K

µ2
‖u‖C0(D) + µγ [u]∗γ,2,D

)

+Kµ2
n∑
i=1

|bi|(1)
γ,0,D

(
K

µ
8γ
1−γ
‖u‖C0(D) + µ2γ [u]∗γ,2,D

)

+Kµ2|c|(2)
γ,0,D

(
K

µ
2γ
1−γ
‖u‖C0(D) + µ2γ [u]∗γ,2,D

)
+Kµ2|f |(2)

γ,0,D

= K1µ
2+2γ [u]∗γ,2,D +K2

(
‖u‖C0(D) + |f |(2)

γ,0,D

)
,

where K1 and K2 are constants that depend on the coefficients of the operator L and γ. Note
that only K2 depends additionally on µ. We insert the last estimate into Inequality (8.28)
and obtain with Inequality (8.34) that

d2+γ
x0,y0

|∂αu(x0)− ∂αu(y0)|
‖x0 − y0‖γRn

≤ C 22+γ

µ2+γ

Λ(x0)2+ γ
2 n2

λ(x0)
γ
2

(
‖u‖C0(D) +

λ(x0)
γ
2 + Λ(x0)

γ
2

λ(x0)1+ γ
2

|F |(2)
γ,0,B)

)
+

4

µγ
[u]∗2,D

≤ K̃1µ
γ [u]∗γ,2,D + K̃2

(
‖u‖C0(D) + |f |(2)

γ,0,D

)
,

where the constants K̃1 and K̃2 will be discussed later in the proof. We emphasize that K̃1

is independent of µ. We take the supremum over x0, y0 ∈ D and obtain that

[u]∗γ,2,D ≤ K̃1µ
γ [u]∗γ,2,D + K̃2

(
‖u‖C0(D) + |f |(2)

γ,0,D

)
.

If we choose the parameter µ small enough such that µ satisfies that K̃1µ
γ ≤ 1

2 , then we
obtain that

[u]∗γ,2,D ≤ 2 K̃2

(
‖u‖C0(D) + |f |(2)

γ,0,D

)
. (8.35)

It remains to investigate how the constant K̃2 depends on the coefficients of the operator
L and on γ. We observe that

K1 = K

 n∑
i,j=1

[ai,j ]
∗
γ,0,D +

n∑
i=1

|bi|(1)
γ,0,D + |c|(2)

γ,0,D
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and that

K2 = K

K n∑
i,j=1

[ai,j ]
∗
γ,0,D +

K

µ
8γ
1−γ

n∑
i=1

|bi|(1)
γ,0,D +

K

µ
2γ
1−γ
|c|(2)
γ,0,D + 1

 ,

where we applied that µ ≤ 1
2 . For a new constant K we obtain that

K̃1 = K

1 +
‖Λ‖2+ γ

2

C0(D)
‖λ‖

γ
2

C0(D)
+ ‖Λ‖2+γ

C0(D)

minx∈D λ(x)1+γ

 (1 +K1)

and that

K̃2 = K
‖Λ‖2+ γ

2

C0(D)

minx∈D λ(x)
γ
2

1 +
‖λ‖

γ
2

C0(D)
+ ‖Λ‖

γ
2

C0(D)

minx∈D λ(x)1+ γ
2

K2

+
K

µ4+γ
.

If we set µ = (2K̃1)
− 1
γ and insert µ into K2, we obtain that

K2 ≤ K

((1 + ‖Λ‖C0(D))
2+γ

minx∈D λ(x)1+γ

) 8
1−γ

(1 + a+ b+ c)
9

1−γ

 ,

where we tacitly applied that 1 + 8
1−γ ≤

9
1−γ . To obtain the exponents 8

1−γ and 9
1−γ in the

last inequality, it was important that K̃1 ≥ 1. We insert the last estimate as the redefined
constant K2 into K̃2 and obtain for a new constant K that

K̃2 = K

((1 + ‖Λ‖C0(D))
2+γ

minx∈D λ(x)1+γ

) 9
1−γ

(1 + a+ b+ c)
9

1−γ

 = K.

Here we could leave the exponent 9
1−γ , because 4 + γ < 9

1−γ . Again it was important that
here K2 ≥ 1.
Note that we were able to bound the appearing semi-norms | · |(τ)

γ,0,D for τ ≥ 0 of a function
f ∈ C0,γ(D) in the following way:

|f |(τ)
γ,0,D ≤ sup

x∈D
rτ |f(x)|+ sup

x,y∈D,x6=y
rτ+γ |f(x)− f(y)|

‖x− y‖γRn
≤ (rτ + rτ+γ)‖f‖C0,γ(D).

The factors consisting of combinations of r were tacitly included in the respective constant
K. A similar relation holds for the case [ai,j ]

∗
γ,2,D for i, j ∈ {1, ..., n}. Also for the inner

domain D′ it holds that
d2+γ |u|γ,2,D′ ≤ [u]∗γ,2,D.

The main goal of this section is to achieve higher order regularity of functions u satisfying
Lu = f depending on the regularity of the coefficients of the operator L and on the right
hand side f . This is achieved in the next theorem. It is Theorem 6.17 in [14]. Again we
review its proof to distinguish the dependence of the respective constants on the coefficients
of the differential operator L.
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Theorem 8.10. Let u ∈ C2(D) and f ∈ Ck,γ(D) for some γ ∈ (0, 1) and k ∈ N0 satisfy
Lu = f . Let D′ ⊂⊂ D be a closed subset such that dist(D′, ∂D) = d for some d > 0. If the
coefficients of L are in Ck,γ(D), then u ∈ Ck+2,γ(D′) and for k ≥ 1 the following estimate
holds:

|u|γ,k+2,D′ ≤
(

1 +
K
d2+γ

(
1 +

K
d2+γ

))k
(1 + a+ b+ c)2k

(
‖u‖C0(D) + ‖f‖Ck,γ(D)

)
,

where K is the constant in the statement of Theorem 8.9 and

a =
n∑

i,j=1

‖ai,j‖Ck,γ(D), b =
n∑
i=1

‖bi‖Ck,γ(D) and c = ‖c‖Ck,γ(D).

Note that for k = 0 an estimate for |u|γ,2,D′ is already given in Theorem 8.9.

Proof of Theorem 8.10. For k = 0 Lemma 6.16 in [14] implies that u ∈ C2,γ(D′). Therefore,
we assume in the following that k ≥ 1. We will prove the claim with the help of Theorem 8.9.
For a function g on Rn, a real number h > 0 and a unit coordinate vector el for l ∈ {1, ..., n}
the difference quotient at x ∈ Rn in the xl-direction is defined as

∆h
l g(x) =

g(x+ hel)− g(x)

h
.

The idea behind the following argument is to apply the Schauder interior estimate in The-
orem 8.9 to the problem L(∆h

l u) = F h and eventually obtain the desired regularity of u.
We expand L(∆h

l u) and add terms that sum to zero to meet Lu = f repeatedly to obtain
that

L(∆h
l u) =

1

h
(Lu− Lu) =

1

h
(ai,j∂i∂ju+ bi∂iu+ cu− f)

=
1

h
(ai,j∂i∂ju+ bi∂iu+ cu− f) + ∆h

l f

= −(∆h
l a

i,j)∂i∂ju− (∆h
l b
i)∂iu− (∆h

l c)u+ ∆h
l f = F h,

where we introduced for a function g the notation g(x) = g(x+hel). We fix two subdomains
B′, B of D that satisfy D′ ⊂⊂ B′ ⊂⊂ B ⊂⊂ D and dist(D′, ∂B′) = dist(B′, ∂B) =
dist(B, ∂D) = d

3 . Lemma 6.16 in [14] implies that u ∈ C2,γ(B). Since we assume that
f ∈ C1,γ(D) we can manipulate ∆h

l f according to the fundamental theorem of calculus to
obtain that for x ∈ B′ and h < d

3 it holds that

∆h
l f(x) =

1

h

∫ 1

0

d

dt
f(x+ thel)dt =

1

h

∫ 1

0
Df
∣∣∣
x+thel

heldt =

∫ 1

0
∂lf(x+ thel)dt.

This equality also implies that for every 0 < h < d
3 it holds that ∆h

l f ∈ C0,γ(B′) and
in particular it provides bounds of the C0,γ(B′)-norm of ∆h

l f independently of h, i.e.
‖∆h

l f‖C0(B′) ≤ ‖∂lf‖C0(B) and |∆h
l f |γ,0,B′ ≤ |∂lf |γ,0,B. Note that the same estimates also

apply to the coefficients of the operator L, that are by assumption in C1,γ(D) as well and
they apply to the function u and its first derivative, since u ∈ C2,γ(B) due to Lemma 6.16
in [14] as mentioned earlier. To be able to apply the Schauder interior estimate in The-
orem 8.9 we have to discuss the Hölder-norm of the function F h. Inequality (4.7) in [14]
with α, β = γ says that for functions g1, g2 ∈ C0,γ(D) it holds that

‖g1g2‖C0,γ(D) ≤ ‖g1‖C0,γ(D)‖g2‖C0,γ(D). (8.36)
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This enables us to obtain the following bound independently of h

‖F h‖C0,γ(B′) ≤ ‖∂lf‖C0,γ(B) +

n∑
i,j=1

‖∂lai,j‖C0,γ(B)‖∂i∂ju‖C0,γ(B)

+

n∑
i=1

‖∂lbi‖C0,γ(B)‖∂iu‖C0,γ(B) + ‖∂lc‖C0,γ(B)‖u‖C0,γ(B), (8.37)

which implies that F h ∈ C0,γ(B′). Now we can apply the interior estimate in Theorem 8.9 to
the problem L(∆h

l u) = F h with the nested domainsD′ ⊂⊂ B′ and obtain for i, j ∈ {1, ..., n}
that

d2+γ |∂i∂j∆h
l u|γ,0,D′ ≤ K(‖∆h

l u‖C0(B′) + ‖F h‖C0,γ(B′)), (8.38)

where we tacitly included the factor 32+γ into the constant K. Note that K is the constant,
that is stated in Theorem 8.9, which depends on the coefficients of the operator L. As
pointed out above the right hand side is bounded independently of h. Since the left hand side
is a Hölder semi-norm it follows that the set of functions (∂i∂j∆

h
l u : h < d

3) is equicontinuous
in D′ for i, j ∈ {1, ..., n}. The Arzelà–Ascoli theorem, which is Theorem 4.44 in [12], implies
that a subsequence of (∂i∂j∆

h
l u : h < d

3) converges to a continuous function. Since this
sequence is a differential quotient, this is sufficient to conclude that ∂i∂j∆h

l u converges
uniformly on compact subsets of D′ to ∂i∂j∂lu as h → 0 and ∂i∂j∂lu is continuous. The
fact that the convergence is only on compact subsets of D′ can be safely disregarded in the
following, since D′ is compact itself. Since the Hölder semi-norm of ∂i∂j∆h

l u is bounded
independently of h for all i, j ∈ {1, ..., n} and l ∈ {1, ..., n} was chosen arbitrarily, it follows
that u ∈ C3,γ(D′). To finish the proof of the case k = 1 we have to compute the bound of
the Hölder semi-norm of third order partial derivatives of u. We combine Inequality (8.38)
and Equation (6.3) to obtain that

d2+γ |∂i∂j∂lu|γ,0,D′ = lim
h→0

d2+γ |∂i∂j∆h
l u|γ,0,D′ ≤ lim

h→0
K(‖∆h

l u‖C0(B′) + ‖F h‖C0,γ(B′))

≤ lim
h→0
KK̃(‖u‖C0(B′) + |u|γ,2,B′ + ‖F h‖C0,γ(B′)),

where the constant K̃ is due to the equivalence of Hölder norms given in Equation (6.3).
We continue the estimation and apply Inequality (8.37) and bound the appearing norms of
first and second order partial derivatives of u with Equation (6.3) and the Schauder interior
estimate in Theorem 8.9 applied to Lu = f with the nested sets B ⊂⊂ D. We obtain that

|u|γ,3,D′ ≤
K
d2+γ

(
1 +

K
d2+γ

)1 +
n∑

i,j=1

‖ai,j‖C1,γ(D) +
n∑
i=1

‖bi‖C1,γ(D) + ‖c‖C1,γ(D)


·
(
‖u‖C0(D) + ‖f‖C1,γ(D)

)
, (8.39)

where we tacitly included the constant K̃ that depends on the domain D into K.

For the general case k > 1 we proceed by induction with respect to the order of differentia-
tion. We assume that there are subdomains D′ = Dk ⊂⊂ Dk−1 ⊂⊂ ... ⊂⊂ D1 ⊂⊂ D0 = D
such that dist(Dl, ∂Dl−1) = d

k for all l ∈ {1, ..., k}. We apply the proof of the case k = 1
with the nested sets D1 ⊂⊂ D and obtain that

|u|γ,3,D1 ≤
K
d2+γ

(
1 +

K
d2+γ

)
(1 + a+ b+ c)

(
‖u‖C0(D) + ‖f‖C1,γ(D)

)
,
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where we tacitly included the factor k2+γ into K and we used the following notation:

a =

n∑
i,j=1

‖ai,j‖Ck,γ(D), b =

n∑
i=1

‖bi‖Ck,γ(D) and c = ‖c‖Ck,γ(D).

We want to prove that for all l ∈ {1, ..., k} it holds that u ∈ C l+2,γ(Dl) and it holds that

|u|γ,l+2,Dl ≤
(

1 +
K
d2+γ

(
1 +

K
d2+γ

))l
(1 + a+ b+ c)2l

(
‖u‖C0(D) + ‖f‖Cl,γ(D)

)
. (8.40)

This is already established for l = 1. Now, we assume this claim for l ∈ {1, ..., k − 1} and
want to prove that this implies the claim for l + 1, i.e. that u ∈ C l+3,γ(Dl+1) and that
Inequality (8.40) holds for l + 1.
This means that u ∈ C l+2,γ(Dl) and f and the coefficients of the operator L are in Ck,γ(D).
For a multi-index β ∈ Nn0 such that |β| = l, we differentiate the equation Lu = f for l
times and obtain that for ũ = ∂βu it holds that

Lũ = L(∂βu) = ∂βf −
∑

06=α≤β

(
β

α

)
∂αa

i,j∂β−α∂i∂ju

−
∑

06=α≤β

(
β

α

)
∂αb

i∂β−α∂iu

−
∑

06=α≤β

(
β

α

)
∂αc∂β−αu = f̃β.

The idea of the induction argument is to apply the proof of the case k = 1. From the above
equation we see that the right hand side f̃β ∈ C1,γ(Dl) and then we can apply the proof of
the case k = 1 with the nested sets Dl+1 ⊂⊂ Dl to obtain that ∂βu ∈ C3,γ(Dl+1) and that
the following estimate holds:

|∂βu|γ,3,Dl+1
≤ K̃

(
‖∂βu‖C0(Dl)

+ ‖f̃β‖C1,γ(Dl)

)
,

where K̃ is the constant from the proof of the case k = 1, i.e.

K̃ =
K
d2+γ

(
1 +

K
d2+γ

)
(1 + a+ b+ c).

Since β is an arbitrary multi-index referring to a partial derivative of order l, it follows that
u ∈ C l+3,γ(Dl+1). We now seek to develop an estimate of the C l+3,γ(Dl+1) semi-norm of
u in terms of ‖u‖C0(D) and norms of the coefficients of the operator L and the function f .
We apply Equation (6.2) and tacitly include the appearing constant into K̃ and obtain that

|u|γ,l+3,Dl+1
≤ K̃

(
‖u‖C0(Dl)

+ |u|l,Dl + max
|β|=l

‖f̃β‖C1,γ(Dl)

)
. (8.41)

To estimate max|β|=l ‖f̃β‖C1,γ(Dl)
, we bound ‖f̃β̃‖C1,γ(Dl)

for an arbitrary multi-index β̃

that satisfies that |β̃| = l and try to find a bound, which does not depend on β̃. Therefore
we analyze the norm of f̃β̃. We apply that the product of two Hölder functions can be
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bounded with the product of the individual Hölder norms, that is Inequality (6.4), to
obtain the following estimate for the Hölder norm of f̃β̃:

‖f̃β̃‖C1,γ(Dl)
≤ ‖f‖Cl+1,γ(Dl)

+K
∑

06=α≤β̃

(
β̃

α

) n∑
i,j=1

‖ai,j‖C|α|+1,γ(Dl)
‖u‖

C|β̃−α|+3,γ(Dl)

+

n∑
i=1

‖bi‖C|α|+1,γ(Dl)
‖u‖

C|β̃−α|+2,γ(Dl)

+‖c‖C|α|+1,γ(Dl)
‖u‖

C|β̃−α|+1,γ(Dl)

 ,

where the constant K is due to the estimate in Inequality (6.4). In the above sum for the
multi-indices α and β̃ it holds that 0 < |α| ≤ l and |β̃−α| ≤ l−1, since α 6= 0. Therefore,
we can bound the components of the above sum with Equation (6.3) in this way:

‖ai,j‖C|α|+1,γ(Dl)
‖u‖

C|β̃−α|+3,γ(Dl)
≤ Ca(‖u‖C0(Dl)

+ |u|γ,l+2,Dl),

‖bi‖C|α|+1,γ(Dl)
‖u‖

C|β̃−α|+2,γ(Dl)
≤ Cb(‖u‖C0(Dl)

+ |u|γ,l+2,Dl),

‖c‖C|α|+1,γ(Dl)
‖u‖

C|β̃−α|+1,γ(Dl)
≤ Cc(‖u‖C0(Dl)

+ |u|γ,l+2,Dl).

The constant C is due to the equivalence of Hölder norms, which is Equation (6.3). We
insert these three estimates in the previous one and obtain that

‖f̃β̃‖C1,γ(Dl)
≤ ‖f‖Cl+1,γ(Dl)

+KN(a+ b+ c)(‖u‖C0(Dl)
+ |u|γ,l+2,Dl),

where N =
∑

06=α≤β̃
(
β̃
α

)
and the constant C is tacitly included into K. Since there are

only finitely many multi-indices β ∈ Nn0 that satisfy that |β| = l, N can be bounded
independently of β̃. We simply redefine N = max|β|=l

∑
06=α≤β

(
β
α

)
. Hence, the previous

estimate is also valid for max|β|=l ‖f̃β‖C1,γ(Dl)
. We insert this estimate into Inequality (8.41)

and obtain with another application of the equivalent Hölder norms in Equation (6.3) that

|u|γ,l+3,Dl+1
≤ K̃

(
‖u‖C0(Dl)

+ |u|l,Dl + (a+ b+ c)(‖u‖C0(Dl)
+ |u|l+2,Dl) + ‖f‖Cl+1,γ(Dl)

)
≤ K̃(1 + a+ b+ c)

(
‖u‖C0(Dl)

+ |u|γ,l+2,Dl + ‖f‖Cl+1,γ(Dl)

)
,

where we tacitly included the constants K and N into K̃ in the above computation as-
suming KN ≥ 1. Now we apply the induction hypothesis and insert the estimate in
Inequality (8.40) for l into the above inequality and obtain with a few manipulations that

|u|γ,l+3,Dl+1
≤ K̃(1 + a+ b+ c)

(
‖u‖C0(Dl)

+ K̃l(‖u‖C0(D) + ‖f‖Cl,γ(D)) + ‖f‖Cl+1,γ(Dl)

)
≤ K̃(1 + a+ b+ c)K̃l(‖u‖C0(D) + ‖f‖Cl+1,γ(D)),

where we introduced the notation K̃l = (1 + Kd−2−γ(1 + Kd−2−γ))l(1 + a + b + c)2l. We
observe that

K̃(1 + a+ b+ c)K̃l ≤
(

1 +
K
d2+γ

(
1 +

K
d2+γ

))l+1

(1 + a+ b+ c)2l+2,

which finishes the induction argument and the proof of the theorem, because we can take
l = k − 1 and conclude the desired result for l = k.

Lukas Herrmann 117 ©



8.1.2. The Schauder interior estimates for weak solutions

Another interesting case is when the operator L is given in divergence form, i.e.

L = ∂i(a
i,j∂j + bi) + ci∂i + e.

We are interested in the problem

Lu = ∂i(a
i,j∂ju+ biu) + ci∂iu+ eu = g + ∂if

i. (8.42)

We will then consider the variational formulation, i.e. u satisfies that∫
D

(ai,j∂j + bi)u∂iv − ci∂iuv − euv dx =

∫
D
−gv + f i∂iv dx, (8.43)

for all v ∈ C1
0 (D) and g ∈ Lp(D) and (fi : i = 1, ..., n) ⊂ C0,γ(D) for some p ∈ [1,∞) and

γ ∈ (0, 1). In this case we will say that u ∈ W 1,2(D) satisfies Equation (8.42) in the sense
of distributions. This setup is also discussed in Gilbarg and Trudinger [14] in Chapter 8.
For the subsequent discussion we have to introduce another semi-norm. For g ∈ Lp(D) and
τ ∈ R we define

|g|(τ)
Lp(D) = ‖gdτ(·)‖Lp(D)

for p ∈ [1,∞). The first step is to find an analogue of Lemma 8.8.

Lemma 8.11. Let A ∈ Rn×n be a constant symmetric matrix such that for two constants
λ,Λ > 0 and all ξ ∈ Rn it holds that

λ‖ξ‖2Rn ≤ Ai,jξiξj ≤ Λ‖ξ‖2Rn .

If u ∈ C1,γ(D), g ∈ Lp(D) and (fi : i = 1, ..., n) ⊂ C0,γ(D) for γ = 1 − n
p satisfy

Ai,j∂i∂ju = g + ∂if
i in the sense of distributions, then for a constant C it holds that

[u]∗γ,1,D ≤ C
Λ1+ γ

2

λ
γ
2

‖u‖C0(D) +
|g|(1+γ)

Lp(D)

λ
1+γ
2

+
λ
γ
2 + Λ

γ
2

λ1+ γ
2

n∑
i=1

|fi|(1)
γ,0,D

 .

Proof. The proof of this lemma is very similar to the proof of Lemma 8.8. We apply the
same change of coordinates, i.e. Q ∈ Rn×n, as in the proof of Lemma 8.8 to be able to
transfer results about solutions to the Poisson equation to our elliptic equation here. Note
that ∂if i transforms under Q as:∫

D
f i(x)∂iv(x) dx =

∫
D̃
f̂ i(y)∂j ṽ(y)Qj,i|det(Q−1)| dy,

where f̂i = fi ◦ Q−1 and ṽ = v ◦ Q−1. We observe that ũ satisfies ∆ũ = g̃ + ∂if̃
i in the

sense of distributions, where ũ = u ◦Q−1, g̃ = g ◦Q−1 and f̃i = (fj ◦Q−1)Qj,i.
In Gilbarg and Trudinger [14], the same proof for Theorem 4.8 in [14] can be applied to
Estimate (4.45) in [14]. Together with the remark about Estimate (4.45) in [14] at the very
end of Chapter 4 in [14], we obtain that for a constant C it holds that

[ũ]∗
γ,1,D̃

≤ C

(
‖ũ‖

C0(D̃)
+ |g̃|(1+γ)

Lp(D̃)
+

n∑
i=1

|f̃i|(1)

γ,0,D̃

)
.
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We apply a similar argument as in the proof of Lemma 8.8 with Inequalities (8.23), (8.24)
and (8.25) and obtain that

[u]∗γ,1,D ≤
Λ1+ γ

2

λ
γ
2

n[ũ]∗
γ,1,D̃

≤ Λ1+ γ
2

λ
γ
2

C

(
‖ũ‖

C0(D̃)
+ |g̃|(1+γ)

Lp(D̃)
+

n∑
i=1

|f̃i|(1)

γ,0,D̃

)

≤ Λ1+ γ
2

λ
γ
2

C

‖u‖C0(D) +
|g|(1+γ)

Lp(D)

λ
1+γ
2

+
λ
γ
2 + Λ

γ
2

λ1+ γ
2

n∑
i=1

|fi|(1)
γ,0,D

 ,

where we tacitly used that Q can be seen as a bounded bilinear form on Rn×Rn with norm
smaller or equal to λ−

1
2 due to Inequality (8.20), which appears as an additional factor in

the coefficient of
∑n

i=1 |fi|
(1)
γ,0,D.

The following result corresponds to Theorem 8.32 in [14] and states an estimate for the
Hölder semi-norm of the solution. We provide the proof in order to track the dependence
of the constants on the coefficients of L in the resulting bound.

Theorem 8.12. Let u ∈ C1,γ(D), g ∈ Lp(D) and (fi : i = 1, ..., n) ⊂ C0,γ(D) for
some γ ∈ (0, 1) such that p = n

1−γ satisfy the variational problem in Equation (8.43). Let
D′ ⊂⊂ D be a closed subset such that dist(D′, ∂D) = d for some d > 0.
If the coefficients of L are Hölder continuous, i.e. (ai,j : i, j = 1, ..., n), (bi : i = 1, ..., n) ⊂
C0,γ(D) and (ci : i = 1, ..., n), {e} ⊂ Lp(D), then the following estimate holds:

d1+γ |u|γ,1,D′ ≤ K

(
‖u‖C0(D) + ‖g‖Lp(D) +

n∑
i=1

‖fi‖C0,γ(D)

)
.

The constant K depends implicitly on r and γ through a constant K, i.e.

K = K

(
(1 + ‖Λ‖C0(D))

2+γ

minx∈D λ(x)1+γ

) 2
1−γ

(1 + a+ b+ c+ e)
2

1−γ ,

where

a =
n∑

i,j=1

‖ai,j‖C0,γ(D), b =
n∑
i=1

‖bi‖C0,γ(D), c =
n∑
i=1

‖ci‖Lp(D) and e = ‖e‖Lp(D).

Proof. The proof is similar to the proof of Theorem 8.9. We will therefore often refer to the
development of the proof of this theorem, when arguments can be applied to our setup here.
However we will not repeat the whole argument, but rather state the respective inequality
in the respective step.

We fix again two interior points x0, y0 ∈ D and rewrite the equation Lu = g + ∂if
i, i.e.

ai,j(x0)∂i∂ju = ∂i[(a
i,j(x0)− ai,j)∂ju− biu]− ci∂iu− eu+ g + ∂if

i,= G+ ∂iF
i

where
G = −ci∂iu− eu+ g and F i = (ai,j(x0)− ai,j)∂ju− biu+ f i
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for i = 1, ..., n. We interpret this equation in B = Bµdx0 (x0) ⊂ D for some µ ≤ 1
2 and apply

the estimate in Lemma 8.11. With a similar argument as in the proof of Theorem 8.9 we
obtain that for all x0, y0 ∈ D and i ∈ {1, ..., n} it holds that

d1+γ
x0,y0

|∂iu(x0)− ∂iu(y0)|
‖x0 − y0‖γRn

≤ C 4

µ1+γ

Λ(x0)1+ γ
2

λ(x0)
γ
2

‖u‖C0(D) +
|G|(1+γ)

Lp(B)

λ(x0)
1+γ
2

+
λ(x0)

γ
2 + Λ(x0)

γ
2

λ(x0)1+ γ
2

n∑
i=1

|Fi|(1)
γ,0,B

+
4

µγ
[u]∗1,D.

The next step is to estimate |G|(1+γ)
Lp(B) and

∑n
i=1 |Fi|

(1)
γ,0,B. In the proof of Theorem 8.9 we

relied on Inequality (8.29) for functions h ∈ C0,γ(D). With the same argument we can
show that for h ∈ C0,γ(D) it holds that

|h|(1)
γ,0,B ≤ 2µ[h]

(1)
0,D + 4µ1+γ [h]

(1)
γ,0,D. (8.44)

First we consider the contributions in
∑n

i=1 |Fi|
(1)
γ,0,B, i.e.

n∑
i=1

|Fi|(1)
γ,0,B ≤

n∑
i,j=1

|(ai,j(x0)− ai,j)∂ju|(1)
γ,0,B +

n∑
i=1

|biu|(1)
γ,0,B +

n∑
i=1

|fi|(1)
γ,0,B.

With the same argument that we applied to obtain Inequality (8.30) that relied on Inequal-
ity (8.29) and Inequality (8.7) from Lemma 8.7, we obtain in our case with Inequality (8.44)
and Inequality (8.10) from Lemma 8.7 that for a constant K, which is independent of µ, it
holds that

n∑
i,j=1

|(ai,j(x0)− ai,j)∂ju|(1)
γ,0,B ≤ Kµ

1+γ
n∑

i,j=1

[ai,j ]
∗
γ,0,D

(
K

µ
‖u‖C0(D) + µγ [u]∗γ,1,D

)
.

Similarly to the development of Inequality (8.32), we obtain with Inequality (8.44) and
Inequality (8.11) from Lemma 8.7 that for a constant independent of µ, say also K, it holds
that

n∑
i=1

|biu|(1)
γ,0,B ≤ Kµ

n∑
i=1

|bi|(1)
γ,0,D

(
(K µ

− 2
1−γ + 1)‖u‖C0(D) + µ2γ [u]∗γ,1,D

)
.

Inequality (8.44) also implies that

n∑
i=1

|fi|(1)
γ,0,B ≤ 4µ

n∑
i=1

|fi|(1)
γ,0,D.

Now we estimate the contributions in |G|(1+γ)
Lp(B), i.e.

|G|(1+γ)
Lp(B) ≤ |c

i∂iu|(1+γ)
Lp(B) + |eu|(1+γ)

Lp(B) + |g|(1+γ)
Lp(B).

With a similar argument as we used to proof Inequality (8.29) in the proof of Theorem 8.9
we obtain that

|h|(1+γ)
Lp(B) ≤ 4µ1+γ |h|(1+γ)

Lp(D). (8.45)
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With Inequality (8.45) and Inequality (8.10) from Lemma 8.7 we obtain that

|ci∂iu|(1+γ)
Lp(B) ≤ 4µ1+γ |ci∂iu|(1+γ)

Lp(D) ≤ 4µ1+γ
n∑
i=1

|ci|(γ)
Lp(D)[u]∗1,D

≤ 4µ1+γ
n∑
i=1

|ci|(γ)
Lp(D)

(
2 4

1
γ

µ
‖u‖C0(D) + µγ [u]∗γ,1,D

)
.

For the other two terms we obtain with Inequality (8.45) that

|eu|(1+γ)
Lp(B) ≤ 4µ1+γ |e|(1+γ)

Lp(B)‖u‖C0(D) and |g|(1+γ)
Lp(B) ≤ 4µ1+γ |g|(1+γ)

Lp(D).

Similar as in the proof of Theorem 8.9 we obtain with the derived estimates for |G|(1+γ)
Lp(B)

and
∑n

i=1 |Fi|
(1)
γ,0,B that

[u]∗γ,1,D ≤ K1µ
γ [u]∗γ,1,D +K2

(
‖u‖C0(D) + ‖g‖Lp(D) +

n∑
i=1

‖fi‖C0,γ(D)

)
.

When we achieve that K1µ
γ ≤ 1

2 we obtain that

[u]∗γ,1,D ≤ 2 K2

(
‖u‖C0(D) + ‖g‖Lp(D) +

n∑
i=1

‖fi‖C0,γ(D)

)
.

The constants K1 and K2 are given by

K1 = K

(
(1 + ‖Λ‖C0(D))

2+γ

minx∈D λ(x)1+γ

)
(1 + a+ b+ c)

and

K2 = K

(
(1 + ‖Λ‖C0(D))

2+γ

minx∈D λ(x)1+γ

) 2
1−γ

(1 + a+ b+ c+ e)
2

1−γ .

8.2. Regularity of solutions of elliptic partial differential
equations on the sphere

In this section we return to the elliptic problem in Equation (8.1) and the respective weak
form in Equation (8.2). The respective elliptic operator was induced by a coefficient A ∈
C0(S2) such that minx∈S2 A(x) > 0. We recall the problem in Equation (8.2). In the
beginning of Chapter 8, we already proved that there exists a unique u ∈ H1(S2)/R such
that

b(u, v) =

∫
S2

A∇S2u · ∇S2vdσ =

∫
S2

fvdσ = `f (v)

for all v ∈ H1(S2)/R, where f ∈ L2(S2,R) satisfies that
∫
S2 fdσ = 0. In this section

we impose higher regularity on the coefficient A and on the right hand side f and aim to
prove which regularity the solution u will have. Also we are interested in estimates of the
solution in terms of the right hand side and the coefficient A. In particular we emphasize the
dependence on the coefficient A, which is not always explicitly analyzed in the literature.
This is, where the analysis of the Schauder interior estimates from Section 8.1 will be
applied.
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8.2.1. Lp estimates of solutions of elliptic partial differential equations on
the sphere

We start with the situation, that the coefficient A is Hölder continuous. The solution
to the problem in Equation (8.2) is in H1(S2)/R and therefore an equivalence class of
functions in H1(S2), we will consider the representative u of the solution that satisfies that∫
S2 udσ = 0. Charrier, Scheichl and Teckentrup have analyzed such situation in bounded
domains in Euclidean space in [5]. In particular Proposition 3.1 in [5] yields the membership
of the weak solution u in a Sobolev space with more than one weak derivative, which leads
to stronger integrability of the first weak derivative in terms of its Lp-norm. Their argument
is essentially the development of the proof of Theorem 9.1.16 by Hackbusch in [15].

Proposition 8.13. Let u ∈ H1(S2) be the representative of the solution in H1(S2)/R to
the problem in Equation (8.2) that satisfies that

∫
S2 u dσ = 0.

If A ∈ C0,t(S2) for some t ∈ (0, 1), then for all γ ∈ (0, t) it holds that u ∈W 1,p(S2), where
p = 2

1−γ . Furthermore, there exists a constant K independently of A, f and the solution u
such that u satisfies the estimate:

‖u‖W 1,p(S2) ≤ K
(1 + ‖A‖C0,t(S2))

2

(minx∈S2 A(x))2
‖f‖L2(S2,R).

Let A1, A2 ∈ C0,t(S2) ∩ {Ã : minx∈S2 Ã(x) > 0} be two coefficients that induce bilinear
forms. For the respective solutions u1 with respect to A1 and u2 with respect to A2 with
the same right hand side f ∈ L2(S2,R) ∩ {f̃ :

∫
S2 f̃dσ = 0} that satisfy for k = 1, 2 that∫

S2 uk dσ = 0 it holds that

‖u1 − u2‖W 1,p(S2) ≤ K
‖A1‖C0,t(S2)

(min
x∈S2

A1(x))2

(1 + ‖A2‖C0,t(S2))
2

(min
x∈S2

A2(x))2
‖f‖L2(S2,R)‖A1 −A2‖C0,t(S2),

where K is a constant that is independent of A1, A2, f and the solutions u1, u2. More-
over the solution u depends continuously on the coefficient A, i.e. the mapping A 7→ u is
continuous from C0,t(S2) ∩ {Ã : minx∈S2 Ã(x) > 0} to W 1,p(S2).

Proof. We will consider the variational problem in Equation (8.2) with respect to this A.
Since the mentioned result of Charrier, Scheichl and Teckentrup in [5] or respectively of
Hackbusch in [15] is for bounded domains in Euclidean space, we will pull the bilinear
form b in Equation (8.2) back to the chart domains. We will in general follow the proof
of Lemma A.4 in [5], which is part of the proof of the mentioned result Proposition 3.1 in
[5]. We remind of our usual atlas (Ui, ηi : i = 1, ..., 6) and partition of unity Ψ. Due to
the definition of the Sobolev norms on S2 we are interested in the behavior of (uΨi)ηi for
all i ∈ {1, ..., 6}. Since uΨi is compactly supported, the statement of Lemma A.4 in [5] is
sufficient for our purposes. We fix i ∈ {1, ..., 6} and obtain with the Leibniz rule that uΨi

satisfies that

−∇S2 · (A∇S2uΨi) = fΨi −A∇S2u · ∇S2Ψi −∇S2 · (Au∇S2Ψi) = Fi.

Since Ψi is compactly supported in Ui, we obtain the variational formulation for uΨi, i.e.∫
Ui

A∇S2(uΨi) · ∇S2v dσ =

∫
S2

(fΨi −A∇S2u · ∇S2Ψi)v +Au∇S2Ψi · ∇S2vdσ

Lukas Herrmann 122 ©



for all v ∈ H1(S2)/R. We pull the problem back to the chart domain and obtain that∫
η−1
i (Ui)

Aηi

(
∂θ(uΨi)ηi∂θv +

1

sin2(θ)
∂ϕ(uΨi)ηi∂ϕv

)
sin(θ)dx = `(Fi)ηi sin(θ)(v), (8.46)

for all v ∈W 1,2
0 (η−1

i (Ui)), where we tacitly used Proposition 6.5. The functional `(Fi)ηi sin(θ)

is given by

`(Fi)ηi sin(θ)(v) =

∫
η−1
i (Ui)

(fΨi)ηi sin(θ)v −Aηi sin(θ)∂θuηi∂θ(Ψi)ηiv −
Aηi

sin(θ)
∂ϕuηi∂ϕ(Ψi)ηiv

+ (Au)ηi sin(θ)∂θ(Ψi)ηi∂θv +
(Au)ηi
sin(θ)

∂ϕ(Ψi)ηi∂ϕvdx.

for all v ∈W 1,2
0 (η−1

i (Ui)). It holds formally that

(Fi)ηi sin(θ) = (fΨi)ηi sin(θ)−Aηi sin(θ)∂θuηi∂θ(Ψi)ηi −
Aηi

sin(θ)
∂ϕuηi∂ϕ(Ψi)ηi

− ∂θ
(

(Au)ηi sin(θ)∂θ(Ψi)ηi

)
− ∂ϕ

((Au)ηi
sin(θ)

∂ϕ(Ψi)ηi

)
.

We will abuse notation for the rest of the proof of this proposition and write the dual
pairing of `(Fi)ηi sin(θ) and v ∈W−1,2(η−1

i (Ui)) as

`(Fi)ηi sin(θ)(v) =

∫
η−1
i (Ui)

(Fi)ηi sin(θ)vdx.

This notation is more convenient, because we want to exploit that the components of
(Fi)ηi sin(θ) are compactly supported and change the domain of integration, which is
η−1
i (Ui) at the moment. The subtlety here is that we cannot give a meaning to (Fi)ηi .
It would be a product of a function and a distribution, i.e. since Aηi is only Hölder contin-
uous

∂θ

(
(Au)ηi sin(θ)∂θ(Ψi)ηi

)
has to be understood as a distribution and the product of the latter with 1

sin(θ) has no clear
meaning. In the following we will disregard the notation `(Fi)ηi sin(θ) and use (Fi)ηi sin(θ)

instead, also when we mean the functional. Clearly (Fi)ηi sin(θ) ∈ W−1,2(η−1
i (Ui)). More-

over, we claim that (Fi)ηi sin(θ) ∈ W γ−1,2(η−1
i (Ui)). This will be verified at a later point

in the proof.
Let D be a subdomain of η−1

i (Ui) with smooth boundary such that supp((Ψi)ηi) ⊂⊂ D ⊂⊂
η−1
i (Ui). Since ηi(D) is relatively closed in S2, Lemma 6.2 implies that there exists a
partition of unity Ψ̂ subordinate to the open cover (Uj : j = 1, ..., 6) such that on D it
holds that (Ψ̂i)ηi = 1. We wish to extend Aηi to all of R2, i.e. we choose χ ∈ C∞(R2, [0, 1])
such that χ = 0 on supp((Ψi)ηi) and χ = 1 on the complement of D and define

Aηi =

{
(Aηi(x)(1− χ(x)) + miny∈D Aηi(y)χ(x) if x ∈ D
miny∈D Aηi(y)χ else

.

The pulled back problem in Equation (8.46) implies that∫
R2

Aηi

(
∂θ(uΨi)ηi∂θv +

1

sin2(θ)
∂ϕ(uΨi)ηi∂ϕv

)
sin(θ)dx =

∫
R2

(Fi)ηi sin(θ)vdx, (8.47)
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for all v ∈ C∞0 (R2), where we tacitly used the fact that (Fi)ηi sin(θ) and (uΨi)ηi are
compactly supported in η−1

i (Ui) and can therefore be extended with zero in the rest of R2.
Now we are able to apply Lemma 3.2 in [5] with the matrix diag(sin(θ)Aηi ,

1
sin(θ)Aηi) and

obtain that (uΨi)ηi ∈W 1+γ,2(R2). Furthermore for a constant K, which is independent of
(uΨi)ηi , Aηi and (Fi)ηi sin(θ), it holds that

‖(uΨi)ηi‖W 1+γ,2(R2) ≤ K
1

minx∈R2 Aηi(x)

(
‖Aηi‖C0,t(R2)‖(uΨi)ηi‖W 1,2(R2)

+ ‖(Fi)ηi sin(θ)‖W γ−1,2(R2)

)
+ ‖(uΨi)ηi‖W 1,2(R2).

Since Aηi is constant outside of D and χ is smooth, there exists a constant independently
of Aηi such that

‖Aηi‖C0,t(R2) ≤ K‖Aηi‖C0,t(D) = K‖(AΨ̂i)ηi‖C0,t(D)

≤ K‖(AΨ̂i)ηi‖C0,t(η−1
i (Ui))

≤ K‖A‖C0,t(S2),

where we applied that (Ψ̂i)ηi = 1 on D. Since (uΨi)ηi and (Fi)ηi sin(θ) are compactly
supported in D, we obtain with the last two estimates that

‖(uΨi)ηi‖W 1+γ,2(D) ≤ K
1

minx∈D Aηi(x)

(
‖Aηi‖C0,t(D)‖(uΨi)ηi‖W 1,2(D)

+ ‖(Fi)ηi sin(θ)‖W γ−1,2(D)

)
+ ‖(uΨi)ηi‖W 1,2(D). (8.48)

Note that ∂θ, ∂ϕ are linear and continuous mappings from W γ,2(D) to W γ−1,2(D). We
apply our knowledge about ∂θ, ∂ϕ as operators and then we use Ψ̂i to meet the definition
of the Sobolev and Hölder norms on S2, i.e. we obtain that

‖(Fi)ηi sin(θ)‖W γ−1,2(D) ≤ K
(
‖(fΨi)ηi‖W γ−1,2(D) + ‖(AΨ̂i)ηi‖C0(D)‖(uΨ̂i)ηi‖W γ,2(D)

+‖(AΨ̂i)ηi‖C0,t(D)‖(uΨ̂i)ηi‖W 1,2(D)

)
≤ K

(
‖(fΨi)ηi‖W γ−1,2(η−1

i (Ui))

+2‖(AΨ̂i)ηi‖C0,t(η−1
i (Ui))

‖(uΨ̂i)ηi‖W 1,2(η−1
i (Ui))

)
(8.49)

≤ K
(
‖f‖L2(S2,R) + 2‖A‖C0,t(S2)‖u‖W 1,2(S2)

)
,

where we included the contributions of Ψi into the constant K. Also we tacitly applied
the continuous embedding L2(D,R) ⊂ W γ−1,2(D), which is due to Theorem 4.6.1.(c)
in [25]. Since (Fi)ηi sin(θ) is compactly supported in D, we showed that (Fi)ηi sin(θ) ∈
W γ−1,2(η−1

i (Ui)). With Proposition 6.5, Proposition 8.3 and Inequality (8.3) we obtain
that for a constant K it holds that

‖u‖W 1,2(S2) ≤ K‖u‖H1(S2)/R ≤
K√

2

‖f‖L2(S2,R)

minx∈S2 A(x)
.

Theorem 4.6.1.(c) in [25] implies that W 1+γ,2(D) ⊂W 1,p(D) for p = 2
1−γ . Therefore, for a

constant K it holds that

‖(uΨi)ηi‖W 1,p(η−1
i (Ui))

= ‖(uΨi)ηi‖W 1,p(D) ≤ K‖(uΨi)ηi‖W 1+γ,2(D),
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where we also applied that (uΨi)ηi is compactly supported in D. We combine the last four
inequalities and consider the definition of the Hölder norms on S2 to obtain that for a new
constant K ′ it holds that

‖(uΨi)ηi‖W 1,p(η−1
i (Ui))

≤ K‖(uΨi)ηi‖W 1+γ,2(η−1
i (Ui))

≤ K ′
(1 + ‖A‖C0,t(S2))

2

(minx∈S2 A(x))2
‖f‖L2(S2,R).

(8.50)
This argument applies to all other j ∈ {1, ..., 6}\{i}. Hence, the estimate in Inequal-
ity (8.50) holds for all i ∈ {1, ..., 6}. Since (uΨi)ηi is compactly supported in η−1

i (Ui)

for all i ∈ {1, ..., 6}, it holds that (uΨi)ηi ∈ W
1,p
0 (η−1

i (Ui)). Therefore, we conclude that
u ∈W 1,p(S2) and the first claim of the proposition is proven.

For the second claim, we look at two coefficients A1, A2 ∈ C0,t(S2)∩{Ã : minx∈S2 Ã(x) > 0}
with respective bilinear forms b1 and b2. Let u1, u2 ∈ H1(S2) be the respective solutions
to the problem in Equation (8.2) with respect to b1 and b2 and the same right hand side f
that satisfy that

∫
S2 ukdσ = 0 for k = 1, 2. We are interested in the problem that u1 − u2

satisfies. We obtain that weakly

−∇S2 · (A1∇S2(u1 − u2)) = f +∇S2 · (A1∇S2u2)

= f − f −∇S2 · (A2∇S2u2) +∇S2 · (A1∇S2u2)

= ∇S2 · ((A1 −A2)∇S2u2) = F.

We fix i ∈ {1, ..., 6} and observe that (u1 − u2)Ψi satisfies that

−∇S2 · (A1∇S2((u1 − u2)Ψi)) = FΨi −A1∇S2(u1 − u2) · ∇S2Ψi

−∇S2 · (A1(u1 − u2)∇S2Ψi)

= (∇S2 · ((A1 −A2)∇S2u2))Ψi

−A1∇S2(u1 − u2) · ∇S2Ψi

−∇S2 · (A1(u1 − u2)∇S2Ψi) = F 1,2
i .

Since (FΨi)ηi sin(θ) ∈ W γ−1,2(D), we obtain that (F 1,2
i )ηi sin(θ) ∈ W γ−1,2(D). Therefore

the argument in the proof of the first claim of this proposition is applicable. Especially
with Inequality (8.48) we conclude that (u1Ψi)ηi , (u2Ψi)ηi , ((u1 − u2)Ψi)ηi ∈ W 1+γ,2(D).
Also Inequality (8.48) implies an estimate for the W 1+γ,2(D)-norm of ((u1 − u2)Ψi)ηi , i.e.

‖((u1 − u2)Ψi)ηi‖W 1+γ,2 ≤ K
1

minx∈D(A1)ηi(x)

(
‖(A1)ηi‖C0,t‖((u1 − u2)Ψi)ηi‖W 1,2

+‖(F 1,2
i )ηi sin(θ)‖W γ−1,2

)
+ ‖((u1 − u2)Ψi)ηi‖W 1,2 , (8.51)

where we excluded the domain D, respectively D, in the above inequality for notational
convenience. We remind that D was chosen in the proof of the first claim and satisfies that
supp(Ψi)ηi ⊂⊂ D ⊂⊂ η−1

i (Ui). As in the proof of the first claim we have to estimate the
norm of the right hand side (F 1,2

i )ηi sin(θ). With Inequality (8.49) we obtain that

‖(F 1,2
i )ηi sin(θ)‖W γ−1,2(D) ≤ K

(
‖(FΨi)ηi sin(θ)‖W γ−1,2(η−1

i (Ui))

+2‖(A1Ψ̂i)ηi‖C0,t(η−1
i (Ui))

‖((u1 − u2)Ψ̂i)ηi‖W 1,2(η−1
i (Ui))

)
,
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where Ψ̂ is the partition of unity subordinate to the open cover (Uj : j = 1, ..., 6), that was
chosen in the proof of the first claim. We remind that on D it holds that (Ψ̂i)ηi = 1. Since
∂θ, ∂ϕ are continuous linear operators fromW γ−1,2(D) toW γ,2(D) and due to the fact that
(FΨi)ηi sin(θ) is compactly supported in D, we can estimate the W γ−1,2(η−1

i (Ui))-norm of
(FΨi)ηi sin(θ), i.e.

‖(FΨi)ηi sin(θ)‖W γ−1,2(η−1
i (Ui))

= ‖(FΨi)ηi sin(θ)‖W γ−1,2(D)

= ‖((∇S2 · ((A1 −A2)∇S2u2))Ψi)ηi sin(θ)‖W γ−1,2(D)

≤ K(‖(A1 −A2)ηi∂θ(u2)ηi‖W γ,2(D) + ‖(A1 −A2)ηi∂ϕ(u2)ηi‖W γ,2(D))

≤ K ′‖(A1 −A2)ηi‖C0,t(D)(‖∂θ(u2)ηi‖W γ,2(D) + ‖∂ϕ(u2)ηi‖W γ,2(D))

≤ K ′‖((A1 −A2)Ψ̂i)ηi‖C0,t(η−1
i (Ui))

‖(u2Ψ̂i)ηi‖W 1+γ,2(η−1
i (Ui))

≤ K ′′‖A1 −A2‖C0,t(S2)

(1 + ‖A2‖C0,t(S2))
2

(minx∈S2 A2(x))2
‖f‖L2(S2,R),

where we tacitly included the contributions of Ψi into the constant K and applied Inequal-
ity (8.50) in the last step. Note that the estimate in Inequality (8.50) was applicable, since
its development also applies with Ψ̂i instead of Ψi. We insert the last two estimates and
the estimate in Proposition 8.6, which is Inequality (8.4), into Inequality (8.51) to obtain
that

‖((u1 − u2)Ψi)ηi‖W 1+γ,2(η−1
i (Ui))

≤ K ′
‖A1‖C0,t(S2)

min
x∈S2

A1(x)
‖u1 − u2‖W 1,2(S2) +

‖(FΨi)ηi sin(θ)‖W γ−1,2(η−1
i (Ui))

min
x∈S2

A1(x)


≤ K

‖A1‖C0,t(S2)

min
x∈S2

A1(x)
‖u1 − u2‖H1(S2)/R +

(1 + ‖A2‖C0,t(S2))
2

(min
x∈S2

A2(x))2

‖f‖L2(S2,R)

min
x∈S2

A1(x)
‖A1 −A2‖C0,t(S2)


≤ K ′′

‖A1‖C0,t(S2)

(min
x∈S2

A1(x))2

(1 + ‖A2‖C0,t(S2))
2

(min
x∈S2

A2(x))2
‖f‖L2(S2,R)‖A1 −A2‖C0,t(S2).

We remind that Theorem 4.6.1.(c) in [25] implies that W 1+γ,2(η−1
i (Ui)) ⊂ W 1,p(η−1

i (Ui))
for p = 2

1−γ . This implies that there exists a constant K independently of u1, u2 and Ψi

such that

‖((u1 − u2)Ψi)ηi‖W 1,p(η−1
i (Ui))

≤ K‖((u1 − u2)Ψi)ηi‖W 1+γ,2(η−1
i (Ui))

.

We combine the last two inequality and since the whole argument applies for all i ∈ {1, ..., 6}
we obtain the second claim of the proposition, i.e. there exists a constant K independently
of A1, A2, f , u1 and u2 such that

‖u1 − u2‖W 1,p(S2) ≤ K
‖A1‖C0,t(S2)

(min
x∈S2

A1(x))2

(1 + ‖A2‖C0,t(S2))
2

(min
x∈S2

A2(x))2
‖f‖L2(S2,R)‖A1 −A2‖C0,t(S2).

(8.52)

For the proof of the third claim let (An : n ∈ N), {A} ⊂ C0,t(S2)∩ {Ã : minx∈S2 Ã(x) > 0}
be such that An → A in the C0,t(S2)-norm as n → ∞, i.e. ‖An − A‖C0,t(S2) = εn → 0 as
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n → ∞. For all n ∈ N let u, un ∈ W 1,p(S2) be the solutions with respect to the bilinear
forms induced by A and An to the problem in Equation (8.2) that satisfy that

∫
S2 u dσ = 0

and
∫
S2 un dσ = 0. We already established in the proof of Proposition 8.6 that there exists

N ∈ N such that for integers n ≥ N it holds that
1

min
x∈S2

An(x)
≤ 2

min
x∈S2

A(x)
.

There exists an integer, say also N , such that ‖An − A‖C0,t(S2) ≤ ‖A‖C0,t(S2) for every
integer n ≥ N . With the triangle inequality we obtain that for every n ≥ N it holds that

‖An‖C0,t(S2) ≤ ‖An −A‖C0,t(S2) + ‖A‖C0,t(S2) ≤ 2‖A‖C0,t(S2).

Therefore, (minx∈S2 An(x))−2 and ‖An‖C0,t(S2) can be bounded independently of n ∈ N
and we conclude with Inequality (8.52) that un → u in the W 1,p(S2)-norm as n → ∞.
Therefore, the mapping A 7→ u from C0,t(S2) ∩ {Ã : minx∈S2 Ã(x) > 0} to W 1,p(S2) is
continuous.

Corollary 8.14. Let t, γ, p, u, A, u1, u2, A1, A2 and f be as in Proposition 8.13. There
exist continuous representatives ũ, ũ1, ũ2 ∈ C0,γ(S2) of u and of u1, u2 respectively such
that the two estimates in Proposition 8.13 hold for the C0,γ(S2)-norm of ũ and ũ1 − ũ2

respectively with an unchanged right hand side of the estimates.
Moreover, ũ depends continuously on the coefficient A, i.e. the mapping A 7→ ũ is continuous
from C0,t(S2) ∩ {Ã : minx∈S2 Ã(x) > 0} to C0,γ(S2).

Proof. Due to Proposition 8.13, it holds that u, u1, u2 ∈W 1,p(S2). The Sobolev embedding
theorem on S2, which is Theorem 6.10, implies that W 1,p(S2) ⊂ C0,γ(S2) with continuous
embedding, i.e. there exists a constant K such that for all v ∈ W 1,p(S2) it holds that
‖ṽ‖C0,γ(S2) ≤ K‖v‖W 1,p(S2), where the continuous representative of v is denoted by ṽ. This
implies the existence of ũ, ũ1, ũ2 ∈ C0,γ(S2) and the two estimates.
The proof of the third claim is almost identical to the proof of third claim of Proposi-
tion 8.13. Let (An : n ∈ N) ⊂ C0,t(S2) ∩ {Ã : minx∈S2 Ã(x) > 0} be such that An → A
in the C0,t(S2)-norm as n → ∞. For all n ∈ N let ũn ∈ C0,γ(S2) be the continuous so-
lution with respect to the bilinear forms induced by An to the problem in Equation (8.2)
that satisfy

∫
S2 ũn dσ = 0. Since we already established in the proof of the third claim of

Proposition 8.13 that (minx∈S2 An(x))−2 and ‖An‖C0,t(S2) can be bounded independently
of n ∈ N, the second claim of this corollary implies the claim, i.e. there exists a constant K
independently of n, ũ, ũn, A, An and f such that

‖ũ− ũn‖C0,γ(S2) ≤ K
‖A‖C0,t(S2)

(min
x∈S2

A(x))2

(1 + ‖An‖C0,t(S2))
2

(min
x∈S2

An(x))2
‖f‖L2(S2,R)‖A−An‖C0,t(S2).

Note that in Proposition 8.13 we were generous with our right hand side f ∈ L2(S2,R).
The proof of the previous proposition relied on Lemma 3.2 in [5]. In Lemma 3.2 in [5],
which is for certain elliptic problems in domains of Euclidean space, it was needed that
f ∈ W γ−1,2 to obtain that the solution will be in W 1+γ,2. If one would discuss Sobolev
spaces on S2 of fractional order, then the assumption on the right hand side f could be
sharpened accordingly. We preferred to have have f ∈ L2(S2,R) to avoid Sobolev spaces
of fractional order on S2 in this discussion. In the following subsection we aim at higher
regularity of the solution to Equation (8.2). Then we will need at least that f ∈ Lp(S2,R)
for p > 2. Since the results of the next subsection are our main aim, the discussion with
f ∈ L2(S2,R) was not too restrictive.
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8.2.2. Schauder estimates on the sphere

In this section we develop Schauder estimates for elliptic equations of second order on
the sphere. We return to the problem equation, which we introduced in the beginning of
Chapter 8 as Equation (8.1). However, for the estimate of first order partial derivatives,
we consider the problem:

−∇S2 · (A∇S2u) + cu = g +∇S2 · f. (8.53)

The right hand side g and the coefficient c are at least in Lp(S2,R) for p > 2 and the
coefficient A is a Hölder continuous, strictly positive function on S2. The part of the right
hand side f , that is in divergence form, is a Hölder continuous vector field on S2. In
our usual coordinates a vector field X on S2 has a θ̂-component denoted by Xθ and a
ϕ̂-component that is denoted by Xϕ. If u ∈ H1(S2) satisfies that∫

S2

A∇S2u · ∇S2v + cuv dσ =

∫
S2

gv − f · ∇S2v dσ (8.54)

for all v ∈ H1(S2), we call u a weak solution of Equation (8.53). We want to develop
estimates of the solution u on S2 analogue to the Schauder interior estimates on domains
of Euclidean space. Since Hölder continuity is a local property we analyze the solution u
multiplied with a bumb function and pull this product back to the chart domains. On the
chart domains the function will be compactly supported and the Schauder interior estimates
can be applied.

Theorem 8.15. For some γ ∈ (0, 1) let u ∈ C0(S2) ∩ W 1,p(S2) be a weak solution of
Equation (8.53) for p = 2

1−γ . If g, c ∈ Lp(S2,R), c ≥ 0 and A, fθ, fϕ ∈ C0,γ(S2), then
u ∈ C1,γ(S2) and u satisfies the estimate that

‖u‖C1,γ(S2) ≤ K

(
(1 + ‖A‖C0,γ(S2) + ‖c‖Lp(S2,R))

4

minx∈S2 A(x)1+γ

) 2
1−γ (

‖u‖W 1,p(S2) + ‖g‖Lp(S2,R)

+
∑

β∈{θ,ϕ}

‖fβ‖C0,γ(S2)

)
,

where K is a constant that is independent of the solution u and A, c, g and f .

Proof. Since Hölder continuity is a local property, we multiply the solution with a cut-off
function and pull this product back to the chart domains, where we are able to apply the
Schauder interior estimate from Section 8.1.2. We remind of our usual atlas (Ui, ηi : i =
1, ..., 6) with partition of unity Ψ subordinate to the open cover (Ui : i = 1, ..., 6). We fix
i ∈ {1, ..., 6} and set D′ = supp((Ψi)ηi) and let D be a subdomain of η−1

i (Ui) with smooth
boundary such that D′ ⊂⊂ D ⊂⊂ η−1

i (Ui). Since ηi(D) is relatively closed in S2, we can
apply Lemma 6.2 and conclude that there exists a partition of unity Ψ̂ subordinate to the
open cover (Uj : j = 1, ..., 6) such that (Ψ̂i)ηi = 1 on D. We observe that uΨi satisfies
weakly that

−∇S2 · (A∇S2(uΨi)) + cuΨi = Fi,

where Fi is given by

Fi = gΨi + (∇S2 · f)Ψi −A∇S2u · ∇S2Ψi −∇S2 · (Au∇S2Ψi)
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= gΨi +∇S2 · (fΨi)− f · ∇S2Ψi −A∇S2u · ∇S2Ψi −∇S2 · (Au∇S2Ψi).

Since Ψi is compactly supported in Ui, uΨi satisfies that∫
Ui

A∇S2(uΨi) · ∇S2v + c(uΨi)v dσ =

∫
Ui

(gΨi)v − (fΨi) · ∇S2v − (f · ∇S2Ψi)v

−A∇S2u · ∇S2Ψi +Au∇S2Ψi · ∇S2v dσ

for all v ∈ H1(S2). We pull the problem back to the chart domains and obtain that in our
local coordinates uΨi satisfies that∫
D
Aηi

(
∂θ(uΨi)ηi∂θv +

1

sin2(θ)
∂ϕ(uΨi)ηi∂ϕv

)
sin(θ) + cηi sin(θ)(uΨi)ηiv dx

=

∫
D
gηi sin(θ)v − ((fθ)ηi sin(θ)∂θ(Ψi)ηi + (fϕ)ηi∂ϕ(Ψi)ηi)v

− (fθΨi)ηi sin(θ)∂θv − (fϕΨi)ηi∂ϕv

−Aηi
(
∂θuηi∂θ(Ψi)ηi +

1

sin2(θ)
∂ϕuηi∂ϕ(Ψi)ηi

)
sin(θ)v

+ (Au)ηi sin(θ)∂θ(Ψi)ηi∂θv + (Au)ηi
1

sin(θ)
∂ϕ(Ψi)ηi∂ϕv dx,

for all v ∈W 1,2
0 (D). We divide the right hand side into the part that is given in divergence

form and the part that is not. We define:

G̃ = −(gΨi)ηi sin(θ) + (fθ)ηi sin(θ)∂θ(Ψi)ηi + (fϕ)ηi∂ϕ(Ψi)ηi

+Aηi

(
∂θuηi∂θ(Ψi)ηi +

1

sin2(θ)
∂ϕuηi∂ϕ(Ψi)ηi

)
sin(θ)

and

F̃ =

(
−(fθΨi)ηi sin(θ) + (Au)ηi sin(θ)∂θ(Ψi)ηi , −(fϕΨi)ηi + (Au)ηi∂ϕ

(Ψi)ηi
sin(θ)

)>
.

Moreover we define the coefficient matrix of the above elliptic operator as

a = diag

(
Aηi sin(θ),

Aηi
sin(θ)

)
.

We obtain that uΨi is a weak solution of the following equation in our local coordinates:

∂l(a
l,k∂k(uΨi)ηi)− cηi sin(θ)(uΨi)ηi = G̃+ ∂lF̃

l (8.55)

(uΨi)ηi

∣∣∣
∂D

= 0

We have to analyze the regularity of the coefficients of the operator and the right hand side.
Since 1

sin(θ) is smooth on the closure of η−1
i (Ui), Inequality (6.4) implies that the components

of a are in C0,γ(D). The Sobolev embedding theorem, which is Theorem 4.6.1.(e) in [25],
implies that (uΨi)ηi ∈ C0,γ(η−1

i (Ui)) and for a constant K it holds that

‖(uΨi)ηi‖C0,γ(η−1
i (Ui))

≤ K‖(uΨi)ηi‖W 1,p(η−1
i (Ui))

. (8.56)
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Since (fθΨi)ηi , (fϕΨi)ηi , (uΨi)ηi ∈ C0,γ(η−1
i (Ui)) and Aηi ∈ C0,γ(D), Inequality (6.4) im-

plies that the components of F̃ are in C0,γ(D), where we tacitly used that Ψi is smooth
and compactly supported. Also G̃ ∈ Lp(η−1

i (Ui),R). Therefore the theory in Gilbarg and
Trudinger [14] becomes applicable.
Since the operator in Equation (8.55) is strictly elliptic in the sense of Section 8.1.1 and
−c ≤ 0, Theorem 8.34 in [14] together with the remark at the very end of Section 8.11
in [14] imply that the Dirichlet problem in Equation (8.55) has a unique weak solution in
C1,γ(D). This implies that (uΨi)ηi ∈ C1,γ(η−1

i (Ui)), because (Ψi)ηi is compactly supported
in D. Since i ∈ {1, ..., 6} was arbitrarily fixed, we conclude that u ∈ C1,γ(S2).

For the proof of the second claim we fix the same i ∈ {1, ..., 6} and consult the Schauder
interior estimate for weak solutions in Section 8.1.2. Since G̃, F̃ and (uΨi)ηi are compactly
supported in D and (Ψ̂i)ηi = 1 on D, we can add Ψ̂i as a factor to the right hand side and
the solution. Now we can apply Theorem 8.12 with the nested sets D′ ⊂⊂ D and we obtain
that

|(uΨi)ηi |γ,1,D′ ≤ K
(
‖(uΨi)ηi‖C0(D) + ‖G̃(Ψ̂2

i )ηi‖Lp(D,R)

+ ‖F̃θ(Ψ̂2
i )ηi‖C0,γ(D) + ‖F̃ϕ(Ψ̂2

i )ηi‖C0,γ(D)

)
≤ KK

(
‖(uΨi)ηi‖W 1,p(η−1

i (Ui))
+ ‖G̃(Ψ̂2

i )ηi‖Lp(D,R)

+ ‖F̃θ(Ψ̂2
i )ηi‖C0,γ(D) + ‖F̃ϕ(Ψ̂2

i )ηi‖C0,γ(D)

)
(8.57)

We analyze the right hand side of the above inequality and obtain that

‖G̃(Ψ̂2
i )ηi‖Lp(D,R) ≤ K

(
‖gηi‖Lp(η−1

i (Ui),R) +
∑

β∈{θ,ϕ}

‖(fβΨi)ηi‖C0,γ(η−1
i (Ui))

+ ‖(AΨ̂i)ηi‖C0,γ(η−1
i (Ui))

‖(uΨ̂i)ηi‖W 1,p(η−1
i (Ui))

)
≤ K

(
‖g‖Lp(S2,R) +

∑
β∈{θ,ϕ}

‖fβ‖C0,γ(S2) + ‖A‖C0,γ(S2)‖u‖W 1,p(S2)

)
.

(8.58)

Since a product of two Hölder functions results again a Hölder function, which is shown in
Inequality (6.4), and due to Inequality (8.56) we obtain that

‖F̃θ(Ψ̂2
i )ηi‖C0,γ(D) ≤ K

(
‖(fθΨi)ηi‖C0,γ(η−1

i (Ui))

+‖(AΨ̂i)ηi‖C0,γ(η−1
i (Ui))

‖(uΨ̂i)ηi‖W 1,p(η−1
i (Ui))

)
≤ K

(
‖fθ‖C0,γ(S2) + ‖A‖C0,γ(S2)‖u‖W 1,p(S2)

)
, (8.59)

where the same estimate also holds for the C0,γ(D)-norm of F̃ϕ(Ψ̂2
i )ηi . Note that the

contributions from sin(θ) and Ψi are included in the constant K. This causes no problem
because sin(θ) and Ψi are smooth and Ψi is in addition compactly supported.

The next step is to analyze the constant K. Since 1
sin(θ) is a smooth function on supp((Ψ̂i)ηi),

for the coefficients in the matrix a and a constant K it holds that
2∑

l,k=1

‖al,k‖C0,γ(D) ≤ K‖(AΨ̂i)ηi‖C0,γ(D) ≤ K‖A‖C0,γ(S2).
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The functions Λ and λ from Section 8.1 that satisfy that λ‖ξ‖2R2 ≤ ‖aξ‖2R2 ≤ Λ‖ξ‖2R2 for all
ξ ∈ R2 are bounded from above and below in this way:

min
(θ,ϕ)∈D

sin(θ) min
x∈ηi(D)

A(x) ≤ λ ≤ Λ ≤ max
x∈ηi(D)

A(x) max
(θ,ϕ)∈D

1

sin(θ)
. (8.60)

The constant K can be bounded with Theorem 8.12 and the last two inequalities, i.e.

K ≤ K

(
(1 + ‖A‖C0(S2))

2+γ

minx∈S2 A(x)1+γ

) 2
1−γ (

1 + ‖A‖C0,γ(S2) + ‖c‖Lp(S2,R)

) 2
1−γ ,

where K is a constant independent of the coefficients A and c and the solution u. We
combine the last inequality with the Inequalities (8.57), (8.58) and (8.59) and apply the
fact that (uΨi)ηi is equal to zero outside of D′ to obtain that

‖(uΨi)ηi‖C1,γ(η−1
i (Ui))

≤ K

(
(1 + ‖A‖C0(S2))

2+γ

minx∈S2 A(x)1+γ

) 2
1−γ (

1 + ‖A‖C0,γ(S2) + ‖c‖Lp(S2,R)

) 2
1−γ+1

·
(
‖u‖W 1,p(S2) + ‖g‖Lp(S2,R) +

∑
β∈{θ,ϕ}

‖fβ‖C0,γ(S2)

)

≤ K

(
(1 + ‖A‖C0,γ(S2) + ‖c‖Lp(S2,R))

4

minx∈S2 A(x)1+γ

) 2
1−γ

·
(
‖u‖W 1,p(S2) + ‖g‖Lp(S2,R) +

∑
β∈{θ,ϕ}

‖fβ‖C0,γ(S2)

)
.

This argument applies to all other j ∈ {1, ..., 6}\{i}. Hence the second claim of the theorem
is also proven.

A similar localization procedure on the chart domains can be applied when the right hand
side and the coefficient satisfy higher order Hölder regularity. We will obtain a form of
Schauder estimates for higher order Hölder regularity on the sphere. For estimates of
higher order partial derivatives, we consider the problem:

−∇S2 · (A∇S2u) + cu = f, (8.61)

where first order partial derivatives of the coefficient A and the right hand side f are at
least Hölder continuous. If u ∈ H1(S2) satisfies that∫

S2

A∇S2u · ∇S2v + cuvdσ =

∫
S2

fvdσ

for all v ∈ H1(S2), then we call u a weak solution of Equation (8.61)

Theorem 8.16. For some γ ∈ (0, 1) let u ∈ C1,γ(S2) be a weak solution of Equation (8.61).
If f, c ∈ Cι−1,γ(S2), c ≥ 0 and A ∈ Cι,γ(S2) for some positive integer ι ≥ 1, then u ∈
Cι+1,γ(S2) and u satisfies the estimate that

‖u‖Cι+1,γ(S2) ≤ K

(
(1 + ‖A‖Cι,γ(S2) + ‖c‖Cι−1,γ(S2))

5

minx∈S2 A(x)1+γ

) 18ι2

1−γ (
‖u‖C1,γ(S2) + ‖f‖Cι−1,γ(S2)

)
,

where K is a constant that is independent of the solution u and A, c and f .
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Proof. The proof of this theorem will follow an iterative argument. For κ ∈ {1, ..., ι} we
assume that we already proved that u ∈ Cκ,γ(S2) and we want to show that this implies
that u ∈ Cκ+1,γ(S2) and we want to establish an estimate of the Cκ+1,γ(S2)-norm of u in
terms of the coefficients A and c, the right hand side f and the Cκ,γ(S2)-norm of u.

We remind of our usual atlas (Ui, ηi : i = 1, ..., 6) with partition of unity Ψ subordinate to
the open cover (Ui : i = 1, ..., 6). We fix i ∈ {1, ..., 6} and set D′ = supp((Ψi)ηi) and let D
be a subdomain of η−1

i (Ui) with smooth boundary such that D′ ⊂⊂ D ⊂⊂ η−1
i (Ui). Since

ηi(D) is relatively closed in S2, we can apply Lemma 6.2 and conclude that there exists a
partition of unity Ψ̂ subordinate to the open cover (Uj : j = 1, ..., 6) such that (Ψ̂i)ηi = 1
on D. Since u is a weak solution of Equation (8.54) we observe that uΨi satisfies weakly
that

−∇S2 · (A∇S2(uΨi)) + c(uΨi) = Fi,

where Fi is given by

Fi = fΨi −A∇S2u · ∇S2Ψi −∇S2 · (Au∇S2Ψi).

From the proof of the previous theorem we recall that uΨi satisfies the Dirichlet problem
in Equation (8.55) in our local coordinates in the sense of distributions:

∂l(a
l,k∂k(uΨi)ηi)− cηi sin(θ)(uΨi)ηi = (Fi)ηi sin(θ) (8.62)

(uΨi)ηi

∣∣∣
∂D

= 0,

where a = diag(Aηi sin(θ), Aηi sin−1(θ)). Moreover (uΨi)ηi is the unique solution of the
above Dirichlet problem. This was due to Theorem 8.34 in [14]. Note that (Fi)ηi ∈ C0,γ(D)
and is compactly supported in D. In our case the coefficients of the differential operator are
continuously differentiable, therefore we are not in the situation of an operator in divergence
form as we were in the proof of the previous theorem. Therefore, we consider the following
Dirichlet problem:

al,k∂l∂kũ+ bl∂lũ− cηi sin(θ)ũ = (Fi)ηi sin(θ) (8.63)

ũ
∣∣∣
∂D

= 0.

The coefficients of the operator in Equation (8.63) are given by:

a = diag

(
Aηi sin(θ),

Aηi
sin(θ)

)
and

b = (∂la
l,θ, ∂la

l,ϕ)> =

(
sin(θ)∂θAηi + cos(θ)Aηi , ∂ϕ

Aηi
sin(θ)

)>
.

Every function ũ ∈ C2(D) that satisfies the Dirichlet problem in Equation (8.63) also
satisfies the Dirichlet problem in Equation (8.62) weakly and is by uniqueness equal to
(uΨi)ηi . The uniqueness was established in the proof of the previous theorem and is due
to Theorem 8.34 in [14].
As in the previous proof we have to analyze the regularity of the coefficients and the right
hand side. Since 1

sin(θ) is a smooth function on D, we observe that the components of a
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are in Cκ,γ(D) and similarly the components of b are in Cκ−1,γ(D). Since the operator in
Equation (8.63) is strictly elliptic in the sense of Section 8.1.1 and −c ≤ 0, Theorem 6.14
in [14] implies that there exists a unique solution ũ ∈ C2,γ(D) to the respective Dirichlet
problem in Equation (8.63). The uniqueness implies that ũ = (uΨi)ηi ∈ C2,γ(D) and that
(uΨi)ηi satisfies Equation (8.63) in D.
We assumed that u ∈ Cκ,γ(S2), this implies that (Fi)ηi ∈ Cκ−1,γ(D). Therefore, we can
apply Theorem 8.10 with the nested domains D′ ⊂⊂ D to the problem in Equation (8.63).
It implies that (uΨi)ηi ∈ Cκ+1,γ(D′). Due to the fact that supp((Ψi)ηi) = D′, it holds
that (uΨi)ηi ∈ Cκ+1,γ(η−1

i (Ui)). Since i ∈ {1, ..., 6} was arbitrarily fixed, it follows that
u ∈ Cκ+1,γ(S2). Note that in the case that κ = 1, we made the assumption u ∈ C1,γ(S2)
in this theorem. Therefore, we have proven that u ∈ Cι+1,γ(S2).

Now we have to prove the estimate of the Cκ+1,γ(S2)-norm of the solution u. Theorem 8.10
also yields an estimate for the Cκ+1,γ(D′)-semi-norm of (uΨi)ηi , i.e.

|(uΨi)ηi |γ,κ+1,D′ ≤ K
(
‖(uΨi)ηi‖C0(D) + ‖(Fi)ηi‖Cκ−1,γ(D)

)
. (8.64)

The Hölder norm of the right hand side (Fi)ηi can be bounded in terms of f , A and u, i.e.
there exists a constant K independently of A, f and u such that

‖(Fi)ηi‖Cκ−1,γ(D) ≤ K
(
‖f‖Cκ−1,γ(S2) + ‖Aηi‖Cκ,γ(D)‖uηi‖Cκ,γ(D)

)
≤ K

(
‖f‖Cκ−1,γ(S2) + ‖(AΨ̂i)ηi‖Cκ,γ(η−1

i (Ui))
‖(uΨ̂i)ηi‖Cκ,γ(η−1

i (Ui))

)
≤ K

(
‖f‖Cκ−1,γ(S2) + ‖A‖Cκ,γ(S2)‖u‖Cκ,γ(S2)

)
.

We insert the estimate in the previous inequality of the right hand side (Fi)ηi into Inequal-
ity (8.64) and obtain with Inequality (6.3) that

‖(uΨi)ηi‖Cκ+1,γ(η−1
i (Ui))

≤ (1 +K)
(
‖u‖C0(S2) + ‖f‖Cκ−1,γ(S2) + ‖A‖Cκ,γ(S2)‖u‖Cκ,γ(S2)

)
,

where we tacitly included the constant K into K and applied the fact that (uΨi)ηi is equal
to zero outside of D′. Since the argument also applies to all other j ∈ {1, ..., 6}\{i}, we
obtain with the definition of Hölder norms on S2 that

‖u‖Cκ+1,γ(S2) ≤ (1 +K)
(
‖u‖C0(S2) + ‖f‖Cκ−1,γ(S2) + ‖A‖Cκ,γ(S2)‖u‖Cκ,γ(S2)

)
. (8.65)

The next step is to analyze the constant K. We remind of the proof of Theorem 7.7, where
we estimated the Hölder norm of the product of a Hölder and a smooth function on a
bounded domain with the Faà di Bruno formula. We obtained that the Hölder norm of
the product can be bounded by the Hölder norm of the Hölder function multiplied with
a constant that depends on the smooth function. Since 1

sin(θ) and cos(θ) are a smooth
functions on the closure of η−1

i (Ui), for the coefficients a and b and a constant K it holds
that

2∑
l,k=1

‖al,k‖Cκ,γ(D),
2∑
l=1

‖bl‖Cκ−1,γ(D) ≤ K‖A‖Cκ,γ(S2).
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The constant K in Inequality (8.64) is bounded with Theorem 8.9 and Theorem 8.10. We
additionally apply the last inequality and Inequality (8.60) to obtain that for a constant
K, which is independent of A, c, f and u, it holds that

K ≤ K

(
(1 + ‖A‖C0(S2))

2+γ

minx∈S2 A(x)1+γ

) 18κ
1−γ (

1 + ‖A‖Cκ,γ(S2) + ‖c‖Cκ−1,γ(S2)

) 18κ
1−γ+2κ

,

Note that all factors in the above estimate of K are greater than 1. We insert the estimate
of the constant K into Inequality (8.65) and obtain that

‖u‖Cκ+1,γ(S2) ≤ K

(
(1 + ‖A‖C0(S2))

2+γ

minx∈S2 A(x)1+γ

) 18κ
1−γ (

1 + ‖A‖Cκ,γ(S2) + ‖c‖Cκ−1,γ(S2)

) 18κ
1−γ+2κ

·
(
‖u‖C0(S2) + ‖f‖Cκ−1,γ(S2) + ‖A‖Cκ,γ(S2)‖u‖Cκ,γ(S2)

)
≤ K ′

(
(1 + ‖A‖C0(S2))

2+γ

minx∈S2 A(x)1+γ

) 18κ
1−γ (

1 + ‖A‖Cκ,γ(S2) + ‖c‖Cκ−1,γ(S2)

) 18κ
1−γ+2κ+1

·
(
‖u‖Cκ,γ(S2) + ‖f‖Cκ−1,γ(S2)

)
≤ K ′

(
(1 + ‖A‖Cκ,γ(S2) + ‖c‖Cκ−1,γ(S2))

5

minx∈S2 A(x)1+γ

) 18κ
1−γ (

‖u‖Cκ,γ(S2) + ‖f‖Cκ−1,γ(S2)

)
.

Therefore, we have obtained an iterative formula for the bound of the Cι+1,γ(S2)-norm of
u. We expand this recursion and conclude that

‖u‖Cι+1,γ(S2) ≤ K

(
(1 + ‖A‖Cι,γ(S2) + ‖c‖Cι−1,γ(S2))

5

minx∈S2 A(x)1+γ

) 18ι2

1−γ (
‖u‖C1,γ(S2) + ‖f‖Cι−1,γ(S2)

)
.

8.3. Random elliptic partial differential equations on the
sphere

In this section we want to further discuss the problem in Equation (8.1) and in Equa-
tion (8.2). In particular we want to take the function A to be a 2-weakly isotropic log-normal
spherical random field such that the angular power spectrum of the respective continuous
2-weakly isotropic Gaussian spherical random field T satisfies that (Cll

1+2ι+δ : l ≥ 0) is
summable for some δ ∈ (0, 2] and an integer ι ≥ 0.
We fix γ ∈ (0, δ2) for this section. Theorem 7.7 implies that there exists an indistingin-
guishable modification A∗ of A such that A∗ ⊂ Cι,γ(S2). This means that there exists a
measurable set of full probability Ω∗ such that A∗1Ω∗ = A1Ω∗ On the compliment of Ω∗ we
set A = 1 and can therefore disregard the indistinguishable modification A∗ in the follow-
ing. Also Theorem 7.7 implies that A ∈ LpP (Ω, Cι,γ(S2)) and that AL = exp(TL) converges
to A in the LpP (Ω, Cj,γ(S2))-norm as L → ∞ for all j ∈ {0, 1, ..., ι} and all p ∈ (0,∞), i.e.
for all p ∈ (0,∞) there exists a constant Kp independently of L and (Cl : l ≥ 0) such that

‖A−AL‖LpP (Ω,Cj,γ(S2)) = E
[
‖A−AL‖p

Cj,γ(S2)

] 1
p ≤ Kp

(∑
l>L

Cll
1+2j+δ

) 1
2

, (8.66)
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for all j ∈ {0, 1, ..., ι}. The Hölder regularity of A is therefore dependent on ι and γ.

Now we return to the problem in Equation (8.2). Since T is continuous and therefore
bounded on S2 it holds that A = exp(T ) is continuous and minx∈S2 A(x) is strictly positive.
Therefore, due to the discussion at the beginning of this chapter, for all ω ∈ Ω the problem
to find u(ω) ∈ H1(S2)/R such that

bω(u(ω), v) =

∫
S2

A(ω)∇S2u(ω) · ∇S2v dσ =

∫
S2

fv dσ = `f (v) (8.67)

for all v ∈ H1(S2)/R, admits a unique solution u(ω) such that Inequality (8.3) holds, i.e.

‖u(ω)‖H1(S2)/R ≤
1√
2

‖f‖L2(S2,R)

minx∈S2 A(ω, x)
, (8.68)

where `f = (v 7→
∫
S2 fvdσ) for f ∈ L2(S2,R) such that

∫
S2 fdσ = 0 as in the beginning of

this chapter. We remind that at the beginning of Chapter 6, we established that the map-
ping ω 7→ T (ω) is A − B(C0(S2)) measurable. Therefore also ω 7→ A(ω) = exp(T (ω)) is.
Proposition 8.6 implies that the mapping A 7→ u is continuous from C0(S2) to H1(S2)/R.
Hence it is also B(C0(S2)) − B(H1(S2)/R) measurable, where B(H1(S2)/R) is the Borel
σ-algebra of H1(S2)/R. The mapping ω 7→ u(ω) from Ω to H1(S2)/R can be seen as a com-
position of these mappings and is consequently A−B(H1(S2)/R) measurable. Remark 7.6
on Proposition 7.5 implies that (minx∈S2 A(x))−1 ∈ LpP (Ω,R) for all p ∈ (0,∞). Hence, for
all p ∈ (0,∞) we obtain the estimate

‖u‖LpP (Ω,H1(S2)/R) = E
[
‖u‖p

H1(S2)/R

] 1
p ≤ E

[(
1

minx∈S2 A(x)

)p] 1
p ‖f‖L2(S2,R)√

2
<∞.

(8.69)
We conclude that u ∈ LpP (Ω, H1(S2)/R) for all p ∈ (0,∞).

8.3.1. Basic properties and approximation

For all L ∈ N0 let bL be the bilinear form that results from AL = exp(TL), where TL is the
truncated expansion of T . Since TL is also continuous, AL is continuous and minx∈S2 AL(x)
is strictly positive.
By the same argument as before we obtain that for all ω ∈ Ω and all L ∈ N0 we can find a
unique uL(ω) ∈ H1(S2)/R such that

bLω(uL(ω), v) = lf (v), (8.70)

for all v ∈ H1(S2)/R. As in the discussion about the solution u to the problem in Equa-
tion (8.67), for all L ∈ N0 it holds that uL is A − B(H1(S2)/R) measurable and it holds
that

‖uL‖H1(S2)/R ≤
1√
2

‖f‖L2(S2,R)

minx∈S2 AL(x)

Due to Remark 7.6 on Proposition 7.5, for all p ∈ (0,∞) there exists a constant Kp, which
is independent of L, such that

‖uL‖LpP (Ω,H1(S2)/R) = E
[
‖uL‖p

H1(S2)/R

] 1
p ≤ Kp‖f‖L2(S2,R).
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Therefore uL ∈ LpP (Ω, H1(S2)/R) for all L ∈ N0 and all p ∈ (0,∞) and the norm can be
bounded independently of L. The following proposition discusses the convergence of uL to
u in the LpP (Ω, H1(S2)/R)-norm as L→∞ for all p ∈ (0,∞).

Proposition 8.17. For L ∈ N0 and p ∈ (0,∞) let u, uL ∈ LpP (Ω, H1(S2)/R) be the
solutions to Equation (8.67) and Equation (8.70), then for all δ ≥ ε > 0 there exists a
constant Kp,ε independently of L such that

‖u− uL‖LpP (Ω,H1(S2)/R) ≤ Kp,ε‖f‖L2(S2,R)

(∑
l>L

Cll
1+ε

) 1
2

.

We indicate ε in the constant in the above proposition to emphasize that the constant may
become very large for borderline values of ε.

Proof. Proposition 8.6 implies an estimate of the H1(S2)/R-norm of u− uL, i.e.

‖u− uL‖H1(S2)/R ≤
1√
2

‖f‖L2(S2,R)

(minx∈S2 A(x))(minx∈S2 AL(x))
‖A−AL‖C0(S2).

Remark 7.6 implies that the Lp
′

P (Ω,R)-norm of (minx∈S2 AL(x))−1 can be bounded inde-
pendently of L for all p′ ∈ (0,∞). With a twofold application of the Cauchy–Schwarz
inequality we obtain with Remark 7.6 that there exists a constant K independently of L
such that

E
[
‖u− uL‖p

H1(S2)/R

] 1
p ≤ 1√

2
E

[( ‖f‖L2(S2,R)

(minx∈S2 A(x))(minx∈S2 AL(x))

)p
‖A−AL‖p

C0(S2)

] 1
p

≤ K√
2
‖f‖L2(S2,R)E

[
‖A−AL‖2p

C0(S2)

] 1
2p
.

The second factor in the above inequality is treated with Theorem 7.7 for γ = ε
2 and δ = ε.

We conclude that there exists a constant Kp,ε independently of L such that

E
[
‖u− uL‖p

H1(S2)/R

] 1
p ≤ Kp,ε‖f‖L2(S2,R)

(∑
l>L

Cll
1+ε

) 1
2

.

Note that in the preceding discussion in this section, we could have also taken an arbitrary
` ∈ (H1(S2)/R)∗.

We remind that by our assumptions at the beginning of this section the 2-weakly isotropic
log-normal spherical random field A results from a continuous 2-weakly isotropic Gaussian
spherical random field, whose angular power spectrum satisfies that (Cll

1+2ι+δ : l ≥ 0) is
summable for some δ ∈ (0, 2] and an integer ι ≥ 0. In the case that ι = 0, it was a sufficient
condition that δ > 0 such that there exists a continuous 2-weakly isotropic lognormal
spherical random field, which is also Hölder continuous. It seems that we cannot lower the
assumptions on the angular power spectrum in order to only obtain P -a.s. the membership
of the realizations of A in C0(S2) or even in L∞(S2), because if we set δ = 0 we only obtain
that A is P -a.s. in L2(S2,R) by Lemma 3.3 or more precisely in L2k

P⊗dσ(Ω × S2,R) for all
k ∈ N, where the norm depends on k.
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But we are able to exploit this Hölder continuity of A and obtain higher regularity of
the solution u of Equation (8.67) with Proposition 8.13. In the following we want to fix
a particular representative of the solution u. For all ω ∈ Ω we will always consider the
representative u(ω) ∈ H1(S2) in [u(ω)] ∈ H1(S2)/R that satisfies that

∫
S2 u(ω)dσ = 0. We

used the parentheses [·] to distinguish between the equivalence class and the representatives.
Due to Lemma 8.3 [v] ∈ H1(S2)/R is mapped continuously to the representative v ∈ [v]
that satisfies that

∫
S2 vdσ = 0. Therefore, we observe that the mapping ω 7→ u(ω) is

A− B(H1(S2)) measurable.

Proposition 8.18. Let u be the representative of the unique weak solution of Equation (8.67)
that satisfies that

∫
S2 udσ = 0 with right hand side f ∈ L2(S2,R) such that

∫
S2 fdσ = 0

and let uL be the respective representative of the unique weak solution of Equation (8.70)
for L ∈ N0 with the same right hand side.
The mapping ω 7→ u(ω) from Ω to W 1,q(S2) is A − B(W 1,q(S2)) measurable. For q =

2
1−γ it holds that u ∈ LpP (Ω,W 1,q(S2)) for all p ∈ (0,∞) and there exists a constant Kp

independently of f and u such that

‖u‖LpP (Ω,W 1,q(S2)) ≤ Kp‖f‖L2(S2,R).

For all L ∈ N0, uL is also in LpP (Ω,W 1,q(S2)) for all p ∈ (0,∞) and there exists a constant
Kp independently of L, f and uL such that

‖uL‖LpP (Ω,W 1,q(S2)) ≤ Kp‖f‖L2(S2,R).

Moreover for all p ∈ (0,∞) there exists a constant Kp independently of L, f , u and uL

such that

‖u− uL‖LpP (Ω,W 1,q(S2)) ≤ Kp‖f‖L2(S2,R)

(∑
l>L

Cll
1+δ

) 1
2

.

Proof. We apply Theorem 7.7 with t = 2γ+δ
4 and obtain that on a measurable set of full

probability, say also Ω∗ as in the beginning of Section 8.3, A1Ω∗ ⊂ C0,t(S2). As before we set
A = 1 on the compliment of Ω∗. Also Theorem 7.7 implies that A,AL ∈ Lp

′

P (Ω, C0,t(S2)) for
all p′ ∈ (0,∞) and all L ∈ N0. Moreover the Lp

′

P (Ω, C0,t(S2))-norm of AL can be bounded
independently of L.
Now we apply Proposition 8.13 that u ⊂W 1,q(S2). It also implies that the mapping A 7→ u
from C0,t(S2) ∩ {Ã : minx∈S2 Ã(x) > 0} to W 1,q(S2) is continuous. Therefore it is also
B(C0,t(S2))−B(W 1,q(S2)) measurable. Remark 6.11 implies that B(C0,t(S2)) = B(C0(S2)).
We can interpret the mapping ω 7→ u(ω) as a composition of measurable mappings and
conclude that ω 7→ u(ω) is A− B(W 1,q(S2)) measurable.

Proposition 8.13 also implies that u satisfies the estimate that

‖u‖W 1,q(S2) ≤ K
(1 + ‖A‖C0,t(S2))

2

(minx∈S2 A(x))2
‖f‖L2(S2,R),

where the constant K is independent of A, f and the solution u. Remark 7.6 implies that
(minx∈S2 A(x))−1 is in Lp

′

P (Ω,R) for all p′ ∈ (0,∞). Therefore a twofold application of the
Cauchy–Schwarz inequality implies the second claim.
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Remark 7.6 also implies that the Lp
′

P (Ω,R)-norm of (minx∈S2 AL(x))−1 can be bounded
independently of L ∈ N0 for all p′ ∈ (0,∞). We apply Proposition 8.13 to uL and obtain
the third claim in the same way.

For the proof of the fourth claim we consult the second estimate in Proposition 8.13, i.e.
there exists a constant K independently of u, uL, A,AL and the right hand side f such that

‖u− uL‖W 1,q(S2) ≤ K
‖A‖C0,t(S2)

(min
x∈S2

A(x))2

(1 + ‖AL‖C0,t(S2))
2

(min
x∈S2

AL(x))2
‖f‖L2(S2,R)‖A−AL‖C0,t(S2).

We recall that Theorem 7.7 and Remark 7.6 imply that ‖A‖C0,t(S2), (minx∈S2 A(x))−2 ∈
Lp
′

P (Ω,R) for all p′ ∈ (0,∞). Moreover Theorem 7.7 and Remark 7.6 also imply that
‖AL‖C0,t(S2), (minx∈S2 AL(x))−2 ∈ Lp

′

P (Ω,R) and their Lp
′

P (Ω,R)-norm can be bounded
independently of L for all p′ ∈ (0,∞). Now a fourfold application of the Cauchy–Schwarz
inequality implies that for all p ∈ (0,∞) there exist constants Kp,K

′
p independently of f

such that

E
[
‖u− uL‖p

W 1,q(S2)

] 1
p ≤ Kp‖f‖L2(S2,R)E

[
‖A−AL‖2p

C0,t(S2)

] 1
2p

≤ K ′p‖f‖L2(S2,R)

(∑
l>L

Cll
1+δ

) 1
2

,

where we applied Theorem 7.7 another time to obtain the estimate for the L2p
P (Ω, C0,t(S2))-

norm of A−AL.

In the following proposition we prove the existence of continuous solutions. Note that the
measurability will be implied by the fact that the solution depends continuously on the
coefficient A, which is measurable.

Proposition 8.19. There exists a unique, continuous weak solution û ⊂ C0,γ(S2) to the
problem in Equation (8.67) that satisfies that

∫
S2 ûdσ = 0 with right hand side f ∈ L2(S2,R)

such that
∫
S2 fdσ = 0 and for all L ∈ N0 there exists a unique, continuous weak solution

ûL ⊂ C0,γ(S2) to the problem in Equation (8.70) that satisfies that
∫
S2 û

Ldσ = 0 with the
same right hand side f ∈ L2(S2,R) such that

∫
S2 fdσ = 0.

The mappings ω 7→ û(ω) and ω 7→ ûL(ω) from Ω to C0,γ(S2) are A−B(C0(S2)) measurable
for all L ∈ N0.

Proof. As in the proof of Proposition 8.18, we apply Theorem 7.7 with t = 2γ+δ
4 and obtain

that on a measurable set of full probability, say also Ω∗ as in the beginning of Section 8.3,
A1Ω∗ ⊂ C0,t(S2). As before we set A = 1 on the compliment of Ω∗. Due to Corollary 8.14,
for all ω ∈ Ω there exists û(ω) such that û(ω) is a solution of the problem in Equation (8.67).
We interpret the mapping ω 7→ û(ω) as a composition of the mappings ω 7→ A(ω) and
A 7→ û. The first of the two mappings is A − B(C0(S2)) measurable. Corollary 8.14
implies that the mapping A 7→ û is continuous from C0,t(S2) ∩ {Ã : minx∈S2 Ã(x) > 0}
to C0,γ(S2). Since Remark 6.11 implies that B(C0,t(S2)) = B(C0,γ(S2)) = B(C0(S2)),
we conclude that the mapping ω 7→ û(ω) is a composition of measurable mappings and is
therefore A− B(C0(S2)) measurable.
The uniqueness of the solution was already established pathwise in H1(S2)∩{ũ :

∫
S2 ũdσ =

0}. If we assume that for some ω ∈ Ω there exist two continuous weak solution in H1(S2)∩
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{ũ :
∫
S2 ũdσ = 0}, then they have to agree on a dense subset of S2. Since they are

continuous, they agree everywhere in S2.
The proof of the second claim about the existence and uniqueness of a continuous weak
solution ûL to the problem in Equation (8.70) for all L ∈ N0 is completely analogous.

Remark 8.20. Let ũ, (ũL : L ∈ N0) be as in the previous proposition. Proposition 8.18
implies with the Sobolev embedding theorem on S2, which is Theorem 6.10, that ũ, ũL ∈
LpP (Ω, C0,γ(S2)) for all p ∈ (0,∞) and all L ∈ N0. It also implies that for all p ∈ (0,∞)
there exists a constant Kp independently of L and f such that

‖ũL‖LpP (Ω,C0,γ(S2)) ≤ Kp‖f‖L2(S2,R).

Moreover for all p ∈ (0,∞) there exists a constant Kp independently of L , f , ũ and ũL

such that

‖ũ− ũL‖LpP (Ω,C0,γ(S2)) ≤ Kp‖f‖L2(S2,R)

(∑
l>L

Cll
1+δ

) 1
2

.

Proposition 8.18 of course also applies to the continuous weak solution ũ that exists due
to Propsition 8.19, i.e. ũ ∈ LpP (Ω,W 1,q(S2)) for all p ∈ (0,∞) and the respective estimates
in Proposition 8.18 hold, where q = 2

1−γ as in Proposition 8.18. The analogous statement
applies to ũL for all L ∈ N0, where (ũL : L ∈ N0) is as in Propsition 8.19.
In the following we will always consider the continuous solutions to the problems in Equa-
tion (8.67) and in Equation (8.70). We will denote them with u instead of ũ and uL instead
of ũL for all L ∈ N0 respectively.

8.3.2. Higher order regularity of solutions

The Schauder regularity theory from the previous section can be applied to obtain higher
regularity of the solution of the random partial differential equation. We are interested in
the solution of the following problem: to find u such that

−∇S2 · (A∇S2u) = f with
∫
S2

u dσ = 0, (8.71)

where
∫
S2 fdσ = 0. We have solved this in the variational formulation, i.e. Equation (8.67),

and obtained a weak solution with realizations in C0,γ(S2) ∩W 1,q(S2) for q = 2
1−γ . The

first step in this subsection will be to impose higher regularity on the right hand side f to
obtain with the Schauder estimates that first order partial derivatives of the realizations of
the solution are Hölder continuous. In the second step, higher regularity of the coefficient
A and on the right hand side f will lead to higher regularity of the solution in terms of
Hölder continuity of its higher order partial derivatives. The next theorem is the first part
of the precise version of Theorem 1.4 from the introduction.

Theorem 8.21. Let u be the unique, continuous weak solution of the problem in Equa-
tion (8.67) that satisfies that

∫
S2 udσ = 0 with right hand side f ∈ Lq(S2,R) such that∫

S2 fdσ = 0 for q = 2
1−γ and for all L ∈ N0 let uL be the respective unique, continuous

weak solution of the problem in Equation (8.70) with the same right hand side that satisfies
that

∫
S2 u

Ldσ = 0.
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We obtain that u ∈ LpP (Ω, C1,γ(S2)) for all p ∈ (0,∞) and there exists a constant Kp

independently of f and u such that

‖u‖LpP (Ω,C1,γ(S2)) ≤ Kp‖f‖Lq(S2,R).

For all L ∈ N0, uL is also in LpP (Ω, C1,γ(S2)) for all p ∈ (0,∞) and there exists a constant
Kp independently of L, f and uL such that

‖uL‖LpP (Ω,C1,γ(S2)) ≤ Kp‖f‖Lq(S2,R).

Proof. Note that A ⊂ C0,γ(S2). Proposition 8.18 implies that u ⊂ W 1,q(S2). Therefore,
u ⊂ C0(S2) ∩W 1,q(S2) and we can apply Theorem 8.15 and obtain that u ⊂ C1,γ(S2).
Moreover it implies that there exists a constant K, which is independent of A, f and u,
such that

‖u‖C1,γ(S2) ≤ K

(
(1 + ‖A‖C0,γ(S2))

4

(minx∈S2 A(x))1+γ

) 2
1−γ (

‖u‖W 1,q(S2) + ‖f‖Lq(S2,R)

)
,

where we tacitly applied that for α > 0 it holds that minx∈I exp(x)α = (minx∈I exp(x))α

for I ⊂ R. Remark 7.6 implies that (minx∈S2 A(x))−1 ∈ Lp
′

P (Ω,R) for all p′ ∈ (0,∞). This
also holds for ‖A‖C0,γ(S2) due to Theorem 7.7. Proposition 8.18 implies this property for
‖u‖W 1,q(S2) and that for all p′ ∈ (0,∞) there exists a constant Kp′ independently of f such
that

E
[
‖u‖p

′

W 1,q(S2)

] 1
p′ ≤ Kp′‖f‖L2(S2,R).

Since Lq(S2,R) ⊂ L2(S2,R) with continuous embedding, a threefold application of the
Cauchy–Schwarz inequality implies the first claim.

The proof of the second claim is very similar. For all L ∈ N0 we can establish the respective
estimate of the C1,γ(S2)-norm of uL in terms of AL and the W 1,q(S2)-norm of uL. We
note that the Lp

′

P (Ω,R)-norm of (minx∈S2 AL(x))−1, ‖AL‖C0,γ(S2) and ‖uL‖W 1,q(S2) can be
bounded independently of L ∈ N0 for all p′ ∈ (0,∞) due to Remark 7.6, Theorem 7.7 and
Proposition 8.18. Also Proposition 8.18 implies that that for all p′ ∈ (0,∞) there exists a
constant Kp′ independently of L and f such that

E
[
‖uL‖p

′

W 1,q(S2)

] 1
p′ ≤ Kp′‖f‖L2(S2,R).

Corollary 8.22. Let q = 2
1−γ , u, u

L and f be as in the previous theorem. For all p ∈ (0,∞)

there exists a constant Kp independently of L, f , u and uL such that

‖u− uL‖LpP (Ω,C1,γ(S2)) ≤ Kp‖f‖Lq(S2,R)

(∑
l>L

Cll
1+δ

) 1
2

.

Proof. We give a brief proof of this corollary. We observe that u− uL satisfies weakly that

−∇S2 · (A∇S2(u− uL)) = f +∇S2 · (A∇S2uL)

= f − f −∇S2 · (AL∇S2uL) +∇S2 · (A∇S2uL)
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= ∇S2 · ((A−AL)∇S2uL).

Since A,AL ⊂ C0,γ(S2) and uL ⊂ C1,γ(S2), it holds that the components of the vector
field (A − AL)∇S2uL are in C0,γ(S2). Therefore we can apply the Schauder estimate in
Theorem 8.15 and obtain that

‖u− uL‖C1,γ(S2) ≤ K

(
(1 + ‖A‖C0,γ(S2))

4

(minx∈S2 A(x))1+γ

) 2
1−γ (

‖u− uL‖W 1,q(S2) (8.72)

+
∑

β∈{θ,ϕ}

‖(A−AL)(∇S2uL)β‖C0,γ(S2)

)
.

We observe that for β = θ, ϕ and a constant K, which is independent of A, AL and uL, it
holds that

‖(A−AL)(∇S2uL)β‖C0,γ(S2) ≤ K‖A−AL‖C0,γ(S2)‖uL‖C1,γ(S2).

Proposition 8.18 implies that for all p′ ∈ (0,∞) there exists a constant Kp′ independently
of L and f such that

E
[
‖u− uL‖p

′

W 1,q(S2)

] 1
p′ ≤ Kp′‖f‖L2(S2,R)

(∑
l>L

Cll
1+δ

) 1
2

.

The previous theorem implies that the Lp
′

P (Ω, C1,γ(S2))-norm of uL can be bounded inde-
pendently of L for all p′ ∈ (0,∞). Note that Theorem 7.7 implies that for all p′ ∈ (0,∞)
there exists a constant Kp′ independently of L such that

E
[
‖A−AL‖p

′

C0,γ(S2)

] 1
p′ ≤ Kp′

(∑
l>L

Cll
1+δ

) 1
2

.

For p ∈ (0,∞) we consider the LpP (Ω,R)-norm of Inequality (8.72). With these estimates the
claim of the corollary follows with a fourfold application of the Cauchy–Schwarz inequality
in the same way as in the proof of the previous theorem.

We remind that at the beginning of Section 8.3 we considered a particular 2-weakly isotropic
lognormal spherical random field A = exp(T ) that resulted from a continuous 2-weakly
isotropic Gaussian spherical random field T , whose angular power spectrum satisfies that
(Cll

1+2ι+δ : l ≥ 0) is summable for an integer ι ≥ 0 and some δ ∈ (0, 2]. We fixed γ ∈ (0, δ2)
and established that after a modification on a measurable set of zero probability it holds that
A ⊂ Cι,γ(S2). This was an implication of Theorem 7.7. In other words, the summability of
the angular power spectrum of T in terms of ι and δ gives sufficient conditions for higher
order Hölder continuity of A. Up to this point, all results are true for ι ≥ 0 and we obtained
that with a suitable right hand side the first order partial derivatives of the solution u are
P -a.s. Hölder continuous. Now we want to exploit the higher order Hölder regularity of the
coefficient A and focus on the case ι ≥ 1. We observe that higher order Hölder regularity
of the coefficient of the operator −∇S2 · (A∇S2) and of the right hand side transfers to
the solution through the Schauder estimates. This was the content of Section 8.2.2. We
want to show that the summability of the angular power spectrum of T in terms of ι and
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δ also gives sufficient conditions for P -a.s. higher order Hölder continuity of the solution
u. The parameter δ influence through γ ∈ (0, δ2), that we already fixed at the beginning
of Section 8.3. The next theorem is the second part of the precise version of Theorem 1.4
from the introduction.

Theorem 8.23. Let u be the unique, continuous weak solution of the problem in Equa-
tion (8.67) that satisfies that

∫
S2 udσ = 0 with right hand side f ∈ Cm,α(S2) that satisfies

that
∫
S2 fdσ = 0 for an integer m ≥ 0 and α ∈ (0, 1). For all L ∈ N0 let uL be the respec-

tive unique, continuous weak solution of the problem in Equation (8.70) with the same right
hand side that satisfies that

∫
S2 u

Ldσ = 0.
If ι ≥ 1, then we obtain that u ∈ LpP (Ω, Ck,β(S2)) with k = min{ι + 1,m + 2} and β =
min{γ, α} for all p ∈ (0,∞) and that there exists a constant Kp independently of f and u
such that

‖u‖LpP (Ω,Ck,β(S2)) ≤ Kp‖f‖Ck−2,β(S2).

Moreover if ι ≥ 1, then for all L ∈ N0, uL is also in LpP (Ω, Ck,β(S2)) for all p ∈ (0,∞) and
there exists a constant Kp independently of L and f and uL such that

‖uL‖LpP (Ω,Ck,β(S2)) ≤ Kp‖f‖Ck−2,β(S2).

Proof. The proof is similar to the proof of the previous theorem. Theorem 8.21 implies
that u ⊂ C1,γ(S2). Note that A ⊂ Ck−1,β(S2) and f ∈ Ck−2,β(S2), because Cι,γ(S2) ⊂
Ck−1,β(S2) and Cm,α(S2) ⊂ Ck−2,β(S2) both with continuous embeddings. Therefore, we
can apply Theorem 8.16 and obtain that u ⊂ Ck,β(S2). Moreover it implies that there
exists a constant K independently of A, f and u such that

‖u‖Ck,β(S2) ≤ K

(
(1 + ‖A‖Cι,γ(S2))

5

(minx∈S2 A(x))1+γ

) 18ι2

1−γ (
‖u‖C1,γ(S2) + ‖f‖Ck−2,β(S2)

)
.

Remark 7.6 implies that (minx∈S2 A(x))−1 ∈ Lp
′

P (Ω,R) for all p′ ∈ (0,∞), which also holds
for ‖u‖C1,γ(S2) due to Theorem 8.21 as well as for ‖A‖Cι,γ(S2) due to Theorem 7.7. Moreover
Theorem 8.21 implies that for all p′ ∈ (0,∞) there exists a constant Kp′ independently of
f such that

E
[
‖u‖p

′

C1,γ(S2)

] 1
p′ ≤ Kp′‖f‖Lq(S2,R),

where q = 2
1−γ . Since Ck−2,β(S2) ⊂ Lq(S2,R) with continuous embedding, a threefold

application of the Cauchy–Schwarz inequality implies the first claim.

The proof of the second claim is very similar. For all L ∈ N0 we can establish the respective
estimate of the Ck,β(S2)-norm of uL in terms of AL and the C1,γ(S2)-norm of uL. We
note that the Lp

′

P (Ω,R)-norm of (minx∈S2 AL(x))−1, ‖AL‖C0,γ(S2) and ‖uL‖W 1,q(S2) can be
bounded independently of L ∈ N for all p′ ∈ (0,∞) due to Remark 7.6, Theorem 7.7 and
Theorem 8.21. Also Theorem 8.21 implies that for all p′ ∈ (0,∞) there exists a constant
Kp′ independently of L and f such that

E
[
‖uL‖p

′

C1,γ(S2)

] 1
p′ ≤ Kp′‖f‖Lq(S2,R),

where q = 2
1−γ . The second claim is then obtained in the same way as the first claim, which

we already proved.
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Corollary 8.24. Let ι ≥ 1, k = min{ι + 1,m + 2}, β = min{γ, α}, u, uL and f be as in
the previous theorem. For all p ∈ (0,∞) there exists a constant Kp independently of L, f ,
u and uL such that

‖u− uL‖LpP (Ω,Ck,β(S2)) ≤ Kp‖f‖Ck−2,β(S2)

(∑
l>L

Cll
1+2(k−1)+δ

) 1
2

.

Proof. We outline the proof of this corollary briefly. We observe that u−uL satisfies weakly
that

−∇S2 · (A∇S2(u− uL)) = ∇S2 · ((A−AL)∇S2uL).

Since u, uL ⊂ Ck,β(S2) and A, AL ⊂ Ck−1,β(S2), we observe that the realizations of the
right hand side, i.e. ∇S2 · ((A− AL)∇S2uL), are in Ck−2,β(S2). Moreover we observe that
there exists a constant K independently of A, AL and uL such that

‖∇S2 · ((A−AL)∇S2uL)‖Ck−2,γ(S2) ≤ K‖A−AL‖Ck−1,γ(S2)‖uL‖Ck,γ(S2).

Therefore we can apply Theorem 8.16 and obtain that exists a constant K independently
of A, AL, u, uL and f such that

‖u− uL‖Ck,β(S2)

≤ K

(
(1 + ‖A‖Cι,γ(S2))

5

(minx∈S2 A(x))1+γ

) 18ι2

1−γ (
‖u− uL‖C1,γ(S2) + ‖A−AL‖Ck−1,β(S2)‖uL‖Ck,γ(S2)

)
.

The previous theorem implies that the Lp
′

P (Ω, Ck,β(S2))-norm of uL can be bounded in-
dependently of L for all p′ ∈ (0,∞). For p ∈ (0,∞) we consider the LpP (Ω,R)-norm the
above inequality. The claim of this corollary follows with a fourfold application of the
Cauchy–Schwarz inequality and Corollary 8.22 and Theorem 7.7.

In the case that ι ≥ 1 Theorem 8.23 implies that the solution u(ω) to Equation (8.67) is
twice continuously differentiable for all ω ∈ Ω∗, where Ω∗ is suitable measurable set of full
probability. For all test functions v ∈ C1(S2) we can partially integrate in Equation (8.67)
with Lemma 8.1 to obtain that

−
∫
S2

∇S2 · (A(ω)∇S2u(ω))v dσ =

∫
S2

fv dσ

for all ω ∈ Ω∗ and all v ∈ C1(S2). One could localize this equation as we did in Section 8.2
and argue with the de Bois Reymond lemma on the chart domains that u(ω) satisfies
Equation (8.71) classically for all ω ∈ Ω∗.
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9. Conclusions

After we introduced 2-weakly spherical random fields, we developed an expansion with
respect to the spherical harmonics of 2-weakly isotropic spherical random fields, where we
made use of the representation theory of SO(3).
The combination of 2-weakly isotropy and Gaussian distribution gave us an expansion with
respect to the real spherical harmonics, which only depends on the angular power spectrum
of the spherical random field. Therefore, 2-weakly isotropic Gaussian spherical random
fields are characterized with their angular power spectrum. The angular power spectrum
induces a symmetric nuclear operator Q, which is interpreted as a covariance operator of
a Gaussian measure on L2(S2,R). The discussion of the Q-Wiener process with respect to
this covariance operator Q as an additive noise term in the heat equation showed that for
the heat equation this noise is a very suitable choice, since the problem can be reduced to
a decoupled system of stochastic ordinary differential equations.
In Chapter 5 we proved sufficient conditions on the angular power spectrum of a 2-weakly
isotropic Gaussian spherical random field such that there exists a Hölder continuous modifi-
cation. Since the modification is again a 2-weakly isotropic spherical random field with the
same expansion, this result can be interpreted as an existence result for continuous 2-weakly
isotropic Gaussian spherical random fields. In Chapter 6, we saw that this is part of a deeper
principal. We could generalize these conditions such that a continuous 2-weakly isotropic
Gaussian spherical random field T has P -a.s. Hölder continuous higher order partial deriva-
tives, where the order and the Hölder coefficient depend on the subscribed condition on T .
Moreover we obtained Lp bounds in the stochastic sense of the respective Hölder norms of T
as well as convergence of the truncated expansion of T to T in the LpP (Ω, Cι,γ(S2))-norm,
where the convergence is controlled with the angular power spectrum. For algebraically
bounded angular power spectra, one would obtain a convergence rate, which is independent
of p provided that p is finite, but potentially unbounded.
It is also noteworthy that the regularity results do not provide P -a.s. Lipschitz continuity for
a continuous 2-weakly isotropic Gaussian spherical random field T or its partial derivatives.
Our results readily imply differentiability of one order higher with Hölder continuous partial
derivatives, i.e. assuming that for an integer ι ≥ 0 we are interested in the needed decay
of the angular power spectrum of T such that P -a.s. realizations of T are in Cι,1(S2), then
we have to demand the decay that implies P -a.s. the membership in Cι+1,ε(S2) for an
arbitrarily small ε > 0 and employ the embedding Cι+1,ε(S2) ⊂ Cι,1(S2). An explanation
for this gap can be seen in the fact that we can provide a sufficient condition on the decay
of the angular power spectrum to obtain that P -a.s. realizations of T are inW ι,q(S2) for all
q ∈ [1,∞). Since the respective W ι,q(S2)-norms are not uniformly bounded with respect to
q, it seems that it is not possible to conclude the membership in W ι,∞(S2) with the given
decay of the angular power spectrum. The reason behind the unboundedness with respect
to q of this norm is that higher order moments of the normal distribution are not bounded
independently of the order.
Since the regularity can be transferred to log-normally distributed 2-weakly isotropic spher-
ical random fields, we were able to discuss random elliptic partial differential equations on
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the sphere, where we considered the elliptic operator −∇S2 ·(A∇S2) for a 2-weakly isotropic
log-normal spherical random field A. The Schauder theory turned out to be very suitable
to discuss the regularity of the solution. We developed that with a sufficiently smooth right
hand side the decay of the angular power spectrum of the continuous 2-weakly Gaussian
spherical random field T that defined the log-normal coefficient A = exp(T ) in the elliptic
operator precisely implies the path regularity of the random solution with one order more
of differentiability than the coefficient, i.e. if the decay of the angular power spectrum im-
plies that P -a.s. the realizations of A are in Cι,γ(S2) for an integer ι ≥ 0 then P -a.s. the
realization of the solution u are in Cι+1,γ(S2). For all integers L ≥ 0 this analysis also
applies to solutions uL with respect to the coefficient AL that results from the truncated
expansion of the respective continuous 2-weakly isotropic Gaussian spherical random field.
Since we provided a detailed convergence analysis of uL converging to u for L → ∞ in
Section 8.3.1 and Section 8.3.2 and bounds for uL independently of L, the way for further
numerical analysis in terms of finite element and Monte Carlo methods is smoothed.
The regularity theory in Section 8.2 could be carried out similarly on closed compact man-
ifolds. Also the discussion of random elliptic partial differential equation similarly applies
on closed compact manifolds, provided that the log-normal coefficient is given and satisfies
the conditions to form an elliptic operator and obeys the same regularity.

Another future aspect might be to investigate questions like, under which conditions a
spherical random field or a 2-weakly isotropic spherical random field lies P -a.s. in some
function space over the sphere. In this project we found conditions such that a continuous
2-weakly isotropic Gaussian spherical random field has P -a.s. Hölder continuous higher
order partial derivatives and that it lies in the space of square integrable functions, the
latter came without much work from the definition of 2-weakly isotropy. To investigate the
membership of a 2-weakly isotropic spherical random field in other function spaces, it might
be interesting to use a different definition, which does not rely on pointwise evaluation of
the spherical random field, i.e. for all x ∈ S2, T (x) satisfies the 2-weakly isotropic property
in Definition 3.2. Because not in all function spaces the pointwise evaluation of functions
is well-defined.
If we have a similar setup as in this project, i.e. (Ω,A, P ) denotes a probability space and B
is some function space over the sphere, we could take as definition: a spherical random field
T , which takes values in some function space B and is in L2

P (Ω, B) is 2-weakly isotropic if
it satisfies that for all η ∈ B∗ and for all g ∈ SO(3)

E[B∗〈η, T 〉B] = E[B∗〈η,D(g)T 〉B], (9.1)

and for all η, ψ ∈ B∗ and for all g ∈ SO(3)

E[B∗〈η, T 〉B B∗〈ψ, T 〉B] = E[B∗〈η,D(g)T 〉B B∗〈ψ,D(g)T 〉B], (9.2)

where B∗ denotes the dual space of B, B∗〈., .〉B denotes the dual pairing of the function
space B and D(g) is the left regular representation, which was introduced in Chapter 2.
Since we demanded that T ∈ L2

P (Ω, B) the conditions in Equation (9.1) and Equation (9.2)
are well-defined. The definition is motivated because in some function spaces the pointwise
evaluation, which is commonly denoted by δx for some x ∈ S2, is continuous and therefore
an element of B∗. In these cases this new definition is a bit more restrictive than the
definition in this project for 2-weakly isotropy, because for η = δx and ψ = δy it reduces to
the definition in this project.
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Of course this suggestion as the definition for 2-weakly isotropy raises some non-trivial ques-
tion for example the existence of such a spherical random field depending on the function
space B or if there are also expansions in some basis, which could be helpful for simulation
purposes. The proof of the latter, the expansion of a 2-weakly isotropic spherical random
field, relied on the property of 2-weakly isotropy being defined pointwise. So similar results
for this new definition could involve quite some effort. But this definition puts the discus-
sion more in the framework of function spaces and if one could overcome some difficulties
other questions could become more accessible since these function spaces often also provide
useful technology.
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A. MATLAB code for the 2-weakly
isotropic Gaussian spherical random
field

This is an implementation of the real spherical harmonics:

1 function Y=Y_lm_full(l,N)
2 %this function evaluates the real spherical harmonics for fixed l and
3 %m=−l,...,l. N is connected to the resolution.
4

5

6 theta = linspace(0,pi,N);
7 phi = linspace(0,2*pi,2*N)';
8 Y = zeros(2*N,N,2*l+1);
9

10 %evaluate the normed associated legendre polynomials
11 L = sqrt(1/(2*pi))*legendre(l,cos(theta),'norm');
12

13 for m=−l:l
14 if (m>0)
15 Y(:,:,l+m+1) = sqrt(2)*cos(phi*m)*L(m+1,:);
16 elseif (m<0)
17 Y(:,:,l+m+1) = sqrt(2)*sin(phi*m)*L(−m+1,:);
18 else
19 Y(:,:,l+m+1) = ones(2*N,1)*L(1,:);
20 end
21 end
22

23 end

This is an implementation of the truncated 2-weakly isotropic Gaussian random field:

1 function [x,y,z,T]=RandomField(alpha,N,L)
2 %this function realizes a 2−weakly isotropic spherical random field
3 %alpha cotrolls the decay of the angular power C_l=(1+l)^(−alpha)
4 %L is the truncation
5 %N is the space discretization
6 %the function 'Y_lm_full' is needed
7

8 T = zeros(2*N,N);
9 theta = linspace(0,pi,N);

10 phi = linspace(0,2*pi,2*N)';
11

12 T = randn(1,1)*1/2*sqrt(1/pi)*T;
13

14 %simulate T up to order L
15 C = (1:L+1).^(−alpha);
16 for l=0:L
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17 beta=randn(1,2*l+1);
18 Y = Y_lm_full(l,N);
19 for m=−l:l
20 T = T + sqrt(C(l+1))*beta(1,l+m+1)*Y(:,:,l+m+1);
21 end
22 end
23

24 %set the coordinates
25 x = (cos(phi)*sin(theta));
26 y = (sin(phi)*sin(theta));
27 z = (ones(2*N,1)*cos(theta));
28

29 %plot the truncated T
30 surf(x,y,z,T)
31 shading flat
32 colorbar
33

34 end
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B. MATLAB code for the stochastic heat
equation with 2-weakly isotropic
Q-Wiener noise

This function computes the coefficients of the expansion in the real spherical harmonics for
a function f in L2(S2,R):

1 function A=coeff(f,l,N)
2 %this function computes the coefficients of a real L^2(S^2) function for
3 %fixed l and space discretization N
4 %the function 'Y_lm_full' is needed.
5

6

7 A = zeros(2*l+1,1);
8 theta = linspace(0,pi,N);
9 %phi = linspace(0,2*pi,2*N)';

10

11

12 Y=Y_lm_full(l,N);
13 for m=−l:l
14 %using trapezoidal rule
15 I = f.*Y(:,:,l+m+1).*(ones(2*N,1)*sin(theta));
16

17 A(l+1+m) = sum(sum(I))*(2*pi^2)/(2*N^2);
18 end
19 end

This is an implementation of the truncated solution of the stochastic heat equation with
2-weakly isotropic Q-Wiener noise Equation (1.1):

1 function [V,x,y,z,W]=st_heat_eq
2 % this is an implementation of the stochastic heat equation on the sphere,
3 % as initial condition we take the for L=20 truncated expansion of an
4 % indicator function f.
5 % M is time discretization
6 % N is the space discretization
7 % T is the time horizon
8 %
9 % to run this function, the functions 'Y_lm_full' and 'coeff' are needed.

10 % W is the solution with respect to the coordinates 'x,y,z' in the time
11 % horizon [0,T]
12 % V is a video generated with the single plots of W
13

14 clear all
15 close all
16 alpha = 3;
17 T = 3;
18 M = 100;
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19 N = 200;
20 L = 50;
21 h = T/M;
22

23 theta = linspace(0,pi,N);
24 phi = linspace(0,2*pi,2*N)';
25

26 %allocate memory
27 W = zeros(2*N,N,M+1);
28

29

30 %set the initial condition
31 f = zeros(2*N,N);
32 f(N/2:3*N/2,N/4:3*N/4) = 1;
33

34 %set the angular power spectrum
35 C = (1:L+1).^(−alpha);
36

37

38 for l=0:L
39 A = coeff(f,l,N);
40 beta = randn(M+1,2*l+1);
41 Y = Y_lm_full(l,N);
42 for m=−l:l
43 for j=0:M
44 W(:,:,j+1) = W(:,:,j+1) + ...

Y(:,:,l+m+1)*(A(l+m+1)*exp(−l*(l+1)*h*j) +...
45 sqrt(C(l+1))*sqrt(h)*exp(−l*(l+1)*(h*j − ...

h*(0:j)))*beta(1:(j+1),l+m+1));
46 end
47 end
48 end
49

50 %define the coordinates
51 x = (cos(phi)*sin(theta));
52 y = (sin(phi)*sin(theta));
53 z = (ones(2*N,1)*cos(theta));
54

55 %create the video
56 for j=1:(M+1)
57 surf(x,y,z,W(:,:,j));
58 shading flat
59 V(j)= getframe;
60 end
61

62 end
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C. Interpolation theory

In the following we will summarize the needed material from interpolation theory. We
will very briefly define the main objects and state the needed results. We will follow the
exposition of Tartar in [24] and will cite some specific results from the book of Triebel [25].
This short exposition however requires some prior knowledge of the reader.

Let (E0, ‖ · ‖E0), (E1, ‖ · ‖E1) be two normed vector spaces which are both continuously
imbedded in another topological vector space E . Elements in E0 will be denoted by a0 and
elements in E1 will be denoted by a1. We obtain the spaces

E0 ∩ E1 equipped with the norm ‖a‖E0∩E1 = max{‖a‖E0 , ‖a‖E1},
E0 + E1 equipped with the norm ‖a‖E0+E1 = inf

a=a0+a1
{‖a0‖E0 + ‖a1‖E1}.

E0, E1 is called an interpolation couple. We will follow the so called K-method and define
for a ∈ E0 + E1 and t > 0 the so called K-functional

K(t, a, E0, E1) = inf
a=a0+a1

{‖a0‖E0 + t‖a1‖E1}.

The dependency on the spaces in the K-functional will be disregarded, whenever they are
clear. We define the interpolation spaces of E0 and E1.

Definition C.1. For θ ∈ (0, 1) and p ∈ [1,∞) we define the space

(E0, E1)θ,p =

{
a ∈ E0 + E1 :

∫ ∞
0

t−θpK(t, a)p
dt

t
<∞

}
and for p =∞ we define

(E0, E1)θ,∞ =

{
a ∈ E0 + E1 : sup

t>0
t−θK(t, a) <∞

}
.

For a ∈ (E0, E1)θ,p the respective norms are given by

‖a‖(E0,E1)θ,p =

(∫ ∞
0

t−θpK(t, a)p
dt

t

) 1
p

and ‖a‖(E0,E1)θ,∞ = sup
t>0

t−θK(t, a).

The interpolation spaces and theK-functional have many interesting properties, we however
focus on what is necessary.

Lemma C.2. For θ ∈ (0, 1) and 1 ≤ p ≤ q ≤ ∞ it holds that (E0, E1)θ,p ⊂ (E0, E1)θ,q with
continuous embedding.

Proof. This is Lemma 22.2 in [24].

If we consider a second interpolation couple F0, F1 we can interpolate linear bounded op-
erators.
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Lemma C.3. Let A be a linear mapping that maps from E0 +E1 to F0 +F1. If A maps E0

into F0 such that ‖Ax0‖F0 ≤M0‖x0‖E0 for all x0 ∈ E0 and if A maps E1 into F1 such that
‖Ax1‖F1 ≤M1‖x1‖E1 for all x1 ∈ E1, then A is a linear bounded mapping from (E0, E1)θ,p
to (F0, F1)θ,p for all θ ∈ (0, 1) and p ∈ [1,∞]. Moreover we obtain a bound on the operator
norm of A, i.e. for all x ∈ (E0, E1)θ,p it holds that

‖Ax‖(F0,F1)θ,p ≤M
1−θ
0 M θ

1 ‖x‖(E0,E1)θ,p .

Proof. This is Lemma 22.3 in [24].

With this general setup we are interested in the interpolation spaces that result from the
sequence space `2k,δ(N) for integers k ≥ 0 and δ ∈ (0, 2] and from LpP (Ω, Cι,γ(S2)) for
integers ι ≥ 0, p ∈ (0,∞) and γ ∈ (0, 1), where (Ω,A, P ) is a probability space. Note that
these spaces were introduced in Chapter 6.

Lemma C.4. For an integer k ≥ 0 and δ ∈ (0, 2] it holds with equivalent norms that(
`2k,δ(N), `2k+2,δ(N)

)
1
2
,2

= `2k+1,δ(N).

Proof. Since the sequence spaces can be interpreted as a Lp-space with the counting mea-
sure, we can cite a result from Triebel [25] for Lp-spaces with weights. In the notation of
[25] we have that `2k,δ(N) = L2,w2

0
(N) and `2k+2,δ(N) = L2,w2

1
(N), where w0(x) = x(1+2k+δ)/2

and w1(x) = x(1+2(k+2)+δ)/2. Theorem 1.18.5 in [25] implies that with equivalent norms it
holds that(

`2k,δ(N), `2k+2,δ(N)
)

1
2
,2

=
(
L2,w2

0
(N), L2,w2

1
(N)
)

1
2
,2

= L2,w2(N) = `2k+1,δ(N),

where w2(x) = w0(x)w1(x) = x1+2(k+1)+δ.

Lemma C.5. For an integer ι ≥ 0, p ∈ [2,∞) and γ ∈ (0, 1) it holds with continuous
embedding that(

LpP (Ω, Cι,γ(S2)), LpP (Ω, Cι+2,γ(S2))
)

1
2
,2
⊂ LpP (Ω, Cι+1,γ(S2)).

Proof. In this proof we also cite some tools from Triebel [25]. Since Cι+2,γ(S2) ⊂ Cι,γ(S2)
these two Hölder spaces are an interpolation couple. With Lemma C.2 we obtain that with
continuous embedding it holds that(

LpP (Ω, Cι,γ(S2)), LpP (Ω, Cι+2,γ(S2))
)

1
2
,2
⊂
(
LpP (Ω, Cι,γ(S2)), LpP (Ω, Cι+2,γ(S2))

)
1
2
,p
.

Theorem 1.18.4 in [25] is applicable and implies that with equivalent norms it holds that(
LpP (Ω, Cι,γ(S2)), LpP (Ω, Cι+2,γ(S2))

)
1
2
,p

= LpP

(
Ω,
(
Cι,γ(S2), Cι+2,γ(S2)

)
1
2
,p

)
.

If B ⊂ R2 is a bounded domain with smooth boundary Theorem 4.5.1 in [25] implies that
with equivalent norms

(Cι,γ(B), Cι+2,γ(B)) 1
2
,∞ = Cι+1,γ(B).
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In particular, there exists a constant K such that for all f̃ ∈ (Cι,γ(B), Cι+2,γ(B)) 1
2
,∞ it

holds that
‖f̃‖Cι+1,γ(B) ≤ K‖f̃‖(Cι,γ(B),Cι+2,γ(B)) 1

2 ,∞
. (C.1)

In Section 6.1 we defined the Hölder spaces on S2 with respect to an atlas. Let (Vj , βj : j ∈
J ) be a finite, smooth atlas of S2 such that the boundary of β−1

j (Vj) is smooth for all j ∈ J
and let Ψ be a partition of unity subordinate to the open cover (Vj : j ∈ J ) of S2. We arbi-
trarily fix f ∈ (Cι,γ(S2), Cι+2,γ(S2)) 1

2
,∞ and j ∈ J and apply the mentioned interpolation

result of Hölder spaces on subdomains of Euclidean space, in particular Inequality (C.1),
to obtain that

‖f‖(Cι,γ(S2),Cι+2,γ(S2)) 1
2 ,∞

= sup
t>0

t−
1
2

(
inf

f=f1+f2

{
‖f1‖Cι,γ(S2) + t‖f2‖Cι+2,γ(S2)

})
≥ sup

t>0
t−

1
2

(
inf

f=f1+f2

{
‖(f1Ψj)βj‖Cι,γ(β−1

j (Vj))
+ t‖(f2Ψj)βj‖Cι+2,γ(β−1

j (Vj))

})
≥ sup

t>0
t−

1
2

(
inf

(fΨj)βj=f1,j+f2,j

{
‖f1,j‖Cι,γ(β−1

j (Vj))
+ t‖f2,j‖Cι+2,γ(β−1

j (Vj))

})
= ‖(fΨj)βj‖(Cι,γ(β−1

j (Vj)),Cι+2,γ(β−1
j (Vj))) 1

2 ,∞

≥ K−1‖(fΨj)βj‖Cι+1,γ(β−1
j (Vj))

,

where the infimum is taken over the respective functions such that f1 ∈ Cι,γ(S2), f2 ∈
Cι+2,γ(S2), f1,j ∈ Cι,γ(β−1

j (Vj)) and f2,j ∈ Cι+2,γ(β−1
j (Vj)) is maintained. This argument

can be repeated for all j ∈ J . Since the atlas is finite, we conclude that f ∈ Cι+1,γ(S2)
and that there exists a constant K such that for all f ∈ (Cι,γ(S2), Cι+2,γ(S2)) 1

2
,∞ it holds

that
‖f‖Cι+1,γ(S2) ≤ K‖f‖(Cι,γ(S2),Cι+2,γ(S2)) 1

2 ,∞
.

Hence, it holds with continuous embedding that(
Cι,γ(S2), Cι+2,γ(S2)

)
1
2
,∞ ⊂ C

ι+1,γ(S2).

We apply Lemma C.2 and obtain that

LpP

(
Ω,
(
Cι,γ(S2), Cι+2,γ(S2)

)
1
2
,p

)
⊂ LpP (Ω, Cι+1,γ(S2)),

which implies the claim together with the first two inequalities.
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