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Introduction

Quasi-Monte Carlo (QMC) integration is the deterministic counterpart of Monte
Carlo and it has been recently applied to the field of uncertainty quantification to
approximate statistics of PDE solutions, with promising results (see for example
[21, 9, 17] and the references mentioned therein). The first goal of this Thesis is
to introduce the main concepts and tools to describe the error decay of some high
order QMC integration rules, with respect to the number N of function evalua-
tions. In particular, we will analyse the interlaced scrambled polynomial lattice
point sets constructed in [13] and its component-by-component (CBC) construc-
tion, that does not suffer from the curse of dimensionality as classical integration
rules. Next, we will apply these to some elliptic PDEs defined on a bounded
interval or a polygon D ⊂ R2, where we allow countably many uncertain pa-
rameters; we aim at obtaining high order approximation rates independent of
the parametric dimension of the problem. We will assume that the functions of
the affine parametric expansion are locally supported: in [12, 11], it has been
shown that this hypothesis yields dependence on the parameters that can be
modeled by product weights, that is, positive coefficients γ = (γu)u⊆{1,2,...,s} in
the form γu :=

∏
j∈u γj for a sequence (γj)j≥1. The product weights can be

exploited to generate a suitable QMC rule using the fast CBC construction in
[13], that makes use of FFT. In order to reduce the overall computational cost of
coupled QMC-FEM, the technique of Multi-Level QMC integration is studied,
for example, in [22, 11, 15, 16]. Here, we will present a new result to bound the
error in the Multi-Level case, which benefits from both high order QMC rules
and high order FEM.

In Chapter 1 we review the preliminary definitions and results on some
Higher Order QMC rules, in particular regarding the randomisation procedure of
scrambling and the digit interlacing of points, that is the key to increase the or-
der of the QMC integration rule. An important class of weighted Sobolev spaces
will be introduced together with the Walsh decomposition and the ANOVA de-
composition of a multivariate function.

In Chapter 2 we show the convergence of interlaced scrambled polynomial
lattice rules to the exact integral, with order dependent on the smoothness
of the integrand but independent of the dimension of the integration domain.
Moreover, the proof is constructive in the sense that an explicit component-by-
component algorithm can be applied to achieve said order of convergence.

Chapter 3 deals with the approximate evaluation of Quantities of Interest
(QoI) of affine parametric, elliptic PDEs. We will identify three main sources
of error: a dimension truncation error, a Galerkin error and a QMC error. All
these sources will be discussed in detail. Next, we extend the analysis to Multi-
Level QMC integration, which results in a reduction of the computational effort
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needed to obtain approximations under some a priori error tolerance.
In Chapter 4 we outline some implementation aspects regarding the con-

struction of the QMC integration points studied in the previous chapters, in
particular the fast CBC algorithm for product weights. Finally, we present
various numerical experiments and describe some observations on their results.

Basic Notation

Throughout we denote by N = {1, 2, . . .} the set of natural numbers and we will
write explicitly N0 to include 0. For any n ∈ N we write {1 : n} := {1, 2, . . . , n}
and {1 : n}c := N\{1 : n}. For all u ⊆ {1 : n} and y = (y1, . . . , yn) ∈ Rn,
we write yu to denote the subvector of y containing only the components in u.
For a set Ω ∈ Rn, define ∂Ω its boundary and f

∣∣
Ω

the restriction of a function

f on Ω. Moreover, χΩ denotes the indicator function, i.e. χ
Ω(x) = 1 for all

x ∈ Ω and χ
Ω(x) = 0 else; B(Ω) and L(Ω) denote the Borel and Lebesgue

σ-algebra on Ω, respectively. For the Lebesgue measure on Rn, we write dx or
dx when we want to emphasise the variable or, in certain cases, we write λn.
We use the standard notation Lp(Ω) to denote the set of measurable functions
f with

∫
Ω
|f(x)|pdx < ∞, where functions agreeing λn-almost everywhere are

identified. Similarly, we write Wm,p(Ω) for the Sobolev space of functions which
weak derivatives up to (total) order m are in Lp(Ω). We often use the notation
Hm(Ω) := Wm,2(Ω) and H1

0 (Ω) := {f ∈ H1(Ω) : f
∣∣
∂Ω

= 0}, where f
∣∣
∂Ω

= 0 is

meant in the sense of traces.
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Chapter 1

Higher order QMC rules

In this chapter we will construct interlaced scrambled polynomial lattice rules
using the algorithm described by Goda and Dick in [13], to evaluate numer-
ically high-dimensional integrals. In particular, we consider the model prob-
lem of approximating the multivariate integral over a s-dimensional unit cube
in (1.1). This will be done by sampling the integrand F on a set of nodes
P := {y0, . . . ,yN−1} and averaging with uniform weights:

Is(F ) :=

∫
[0,1]s

F (y)dy ≈ 1

N

N−1∑
i=0

F (yi). (1.1)

One possibility is to use a Monte Carlo (MC) approximation, that relies on
independent uniformly distributed nodes yi in [0, 1)

s
. We denote by Is(F ;P )

the estimator on the right hand side of (1.1), which is well defined if and only
if F is defined pointwise. The unit cube [0, 1]s with its Lebesgue σ-algebra and
the Lebesgue measure form a probability space. Then, uniform distribution of
the samples and strong law of large numbers ensure that E[Is(F ;P )] = Is(F ),
so that there holds, for F ∈ L2([0, 1]s) ∩ C0([0, 1)

s
),

E
[(
Is(F ;P )−Is(F )

)2]
= E

[(
Is(F ;P )−E[Is(F ;P )]

)2]
= Var[Is(F ;P )]. (1.2)

This in turn implies E
[(
Is(F ;P ) − Is(F )

)2]
=

1

N2
N Var[F (y0)] = O(N−1).

Equivalently, the convergence rate of the root mean squared error is only of
O(N−1/2), no matter how smooth F is. Said rate is not desirable, especially
when each evaluation of F is very costly; this will be the case of our problem
in later sections, since every F (yi) will be the solution of a PDE, or a linear
functional of such solution.

On the other hand, a Quasi-Monte Carlo (QMC in short) integration rule
consists in a deterministic choice of the yi. This allows to exploit additional
properties of an integrand like smoothness and decay of the derivatives. As a
consequence, two problems need to be addressed to improve the convergence
rate:

• find a suitable set of nodes y0, . . . ,yN−1;

• identify the set of functions F that realises the desired decay of the error.
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The first point will be addressed in the Sections from 1.1 to 1.3 while the second
will be discussed in Section 1.6.

Furthermore, the concepts of MC and QMC can be merged (see [8, 13]); the
idea is to randomise a deterministic QMC rule in such a way that the structure
and properties of the lattice are preserved. The result of this approach is a
combination of the convergence rates of the two rules. In fact, some properly
randomised QMC approximation can converge in L2 to the exact integral with
order O(N−(α+1/2)), provided that the corresponding high order QMC rule
achieves rate O(N−α) with no scrambling. Here, the value of α is closely related
to the smoothness of the integrand. These high order rules can be constructed
by applying Owen’s scrambling and digit interlacing to polynomial lattice rules.

1.1 Polynomial lattice rules

For any b prime, we denote by Zb the field of integers modulo b, which can be
identified with the set {0, 1, . . . , b− 1} ⊂ Z.

Let Zb((x−1)) :=
{∑∞

i=l tix
−i : l ∈ Z, ti ∈ Zb ∀i

}
be the field of formal

Laurent series over Zb. Then for a fixed integer m, define the map

vm : Zb((x−1)) −→ [0, 1)
∞∑
i=l

tix
−i 7−→

m∑
i=max(1,l)

tib
−i.

Example For b = m = 2, let h(x) = x2 + 1 + x−1 + x−2 + x−4 ∈ Zb((x−1)).
Therefore, l = −2 and

vm(h(x)) = vm( x2 + 1︸ ︷︷ ︸
discard integer part

+ x−1 + x−2 + x−4︸︷︷︸
truncate

) = 2−1 + 2−2 = (0.11)2.

In the following, a natural number k is identified with the polynomial k(x) ∈
Zb[x] by replacing b by x in its b-adic expansion. Moreover, the truncation of
degree m−1 of k(x) is denoted by trm(k) ∈ Zb[x]. For vectors k = (k1, . . . , ks) ∈
Ns0, the function trm is applied component by component, that is

trm(k) = (trm(k1), . . . , trm(ks)).

The following construction of QMC lattices was introduced by H. Niederreiter
in [26].

Definition 1.1 (Polynomial lattice point set). Let m, s ∈ N, p ∈ Zb[x] be of
degree m and q = (q1, . . . , qs) ∈ (Zb[x])s. A polynomial lattice point set is
defined as P (q, p) := {x0, . . . ,xbm−1} ⊂ [0, 1)

s
where

xn :=

(
vm

(n(x)q1(x)

p(x)

)
, . . . , vm

(n(x)qs(x)

p(x)

))
.

If a QMC rule uses P (q, p)) as nodes, it is called polynomial lattice rule with
generating vector q and modulus p.
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Definition 1.2 (Dual polynomial lattice). For a polynomial lattice point set
P (q, p), its dual polynomial lattice is given by

P⊥(q, p) :=

{
k ∈ Ns0 : trm(k) · q ≡ 0 (mod p)

}
,

where the inner product is defined, ∀g, q ∈ (Zb[x])s, as

g · q :=

s∑
j=1

gjqj ∈ Zb[x].

1.2 Scrambling algorithms

Digit scrambling was first introduced by A.B. Owen in [28] and it has proven
to be a fundamental tool in QMC integration; in [8] J. Dick proved that it can
be used to improve the convergence for smooth integrands. By a lower bound
in [27, Section 2.2.4], it essentially realises the optimal rate achievable, up to
a logarithmic factor to some power dependent linearly on the dimension of the
domain. To illustrate how a random scrambling acts on our polynomial lattice,
we consider for the moment only one point x = (x1, . . . , xs) ∈ [0, 1)

s
. In fact,

once we define scrambling for a single point in [0, 1)
s
, we can apply the same

function to each element of a polynomial lattice to obtain a scrambled polynomial
lattice point set.

Every xj has b-adic expansion given by xj =
∑∞
i=1 xj,ib

−i and such expan-
sion is unique except when xj,i = b − 1 ∀i > i0 for some i0. We refer to the
sequence (xj,1, xj,2 . . .) as to the b-adic digits of xj . A scrambling algorithm
consists in applying (random) permutations of the set {0, . . . , b− 1} to the dig-
its of xj , for each 1 ≤ j ≤ s. The output will be a new point in y in [0, 1)

s
. The

following definition due to Owen, has been introduced in [28].

Definition 1.3. Let 1 ≤ j ≤ s and k ∈ N. Define πj,xj,1,...,xj,k−1
to be a

random permutation of {0, . . . , b− 1}, depending on j and on the first k − 1 b-
adic digits of xj; we assume that these permutations are independent uniformly
distributed. Then we construct the digits of yj for each j = 1, . . . , s by apply-
ing the permutations as follows: yj,1 = πj(xj,1), yj,2 = πj,xj,1(xj,2), . . . , yj,k =
πj,xj,1,...,xj,k−1

(xj,k) and so on. We then write y = Π(x) and we call this con-
struction Owen’s scrambling algorithm.

The key property of Owen’s scrambling is that the output y is a uniformly
distributed point in [0, 1)

s
, as it is shown in the next proposition. As a conse-

quence, equation (1.2) holds in the case of Owen’s scrambled polynomial lattice
point sets and we can again equivalently consider the variance of the estimator
as a measure of the integration error.

Proposition 1.4. [28, Proposition 2] Let s ∈ N and y = Π(x) satisfy that
x ∈ [0, 1)

s
. Then y = (y1, . . . , ys) is uniformly distributed in [0, 1)

s
.

Proof. Let λs be the s-dimensional Lebesgue measure. We prove that for all
Lebesgue measurable G ⊆ [0, 1)

s
there holds P(y ∈ G) = λs(G). For s =

1, fix a positive integer k and consider the one dimensional b-adic intervals
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E =

[
a

bk
,
a+ 1

bk

)
⊆ [0, 1) where 0 ≤ a < bk. By independence and uniform

distribution of the permutations, there holds

P

(∑
i>k

yj,ib
k−i = 1

)
= P(yj,i = b− 1, ∀i > k) =

∏
i>k

P(yj,i = b− 1︸ ︷︷ ︸
1/b

) = 0.

This implies that whether yj is in E or not depends only on the first k b-
adic digits of yj , up to a set of zero probability. In particular, if a has b-adic

expansion
∑k
i=1 aib

k−i,

P(yj ∈ E) = P(yj,i = ai ∀ i = 1, . . . , k) = b−k = λ1(E). (1.3)

By additivity of λ1, this can be extended to any E =
[a1

bk
,
a2

bk

)
, where 0 ≤

a1 ≤ a2 < bk. Next, arguing by density of the extrema of such itervals, one can
prove the equality for Borel measurable subsets of [0, 1) using arguments from
[7]; moreover, (1.3) holds for all subsets of sets of zero measure. Thus (1.3)
holds for any Lebesgue measurable set in [0, 1). Finally, independence of the
scrambling permutations for j = 1, . . . , s ensures that

P(yj ∈ Ej ∀ j = 1, . . . , s) =

s∏
j=1

λ1(Ej).

The claim then follows from the relation λs = ⊗sj=1λ1.

Even if Owen’s scrambling produces uniformly distributed points, its nu-
merical computation is generally not feasible. First of all, the algorithm is
virtually infinite since there is no stopping criterion for k. This issue is not
relevant in finite precision because kmax can be set to be the number of dig-
its in single or double precision. On the other hand, we would need to store
s(bkmax − 1)/(b − 1) independent permutations of Zb, but we are interested in
large s and kmax. Therefore, for practical purposes one prefers to employ more
efficient scrambling schemes that have been studied in [25, 29]. Since we may
lose uniform distribution in those cases, the aim of these methods is to control
the discrepancy of a point set, which is a measure of how far is a point set
from having a uniform distribution. We refer to [10, Chapter 3] for more details
on discrepancy theory. In the following we introduce a simplified scrambling
scheme called Random linear scrambling, due to J. Matoušek [25, pag. 540].

Definition 1.5. Define x =
∑∞
i=1 xib

−i ∈ [0, 1) and gi, hli ∈ Zb. Assume
that hii are randomly chosen in {1, . . . , b − 1} and that gi, hli for l < i, are
randomly chosen in {0, 1, . . . , b− 1}. Moreover, assume that all the choices are
independent. Then, we define the digits of y ∈ [0, 1) with the formula

yi := π̃i(x) =

i∑
l=1

hli · xl + gi ,

where arithmetics is meant to be mod b. In the multi-dimensional case, y =
(y1, . . . , ys) is defined component by component, by means of scramblings π̃j,i as

defined above, taken independently ∀j = 1, . . . , s. We then write y = Π̃(x).
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Note that each permutation depends on all the previous digits as in Owen’s
scrambling, but the amount of randomness is considerably reduced by restrict-
ing the set of permutations allowed. In the following analysis, we will always
consider Owen’s scheme, while Matoušek scheme will be used in the implemen-
tation.

1.3 Digit interlacing

Definition 1.6. Let d be a positive integer and x = (x1, . . . , xd) ∈ [0, 1)
d
. Each

component of the vector has b-adic expansion given by xj =
∑∞
i=1 xj,ib

−i. We
define the digit interlacing function as

Dd : [0, 1)
d −→ [0, 1) Dd(x) :=

∞∑
i=1

d∑
j=1

xj,ib
−d(i−1)−j .

Analogously, for k = (k1, . . . , kd) ∈ Nd0 with b-adic expansions kj =
∑∞
i=0 κj,ib

i,
the digit interlacing function is defined as

Ed : Nd0 −→ N0 Ed(k) :=

∞∑
i=0

d∑
j=1

κj,ib
di+j−1.

For x ∈ [0, 1)
ds

and k ∈ Nds0 the same functions are defined by applying them
to every consecutive d components, that is

Dd(x) :=
(
Dd(x1, . . . , xd),Dd(xd+1, . . . , x2d), . . . ,Dd(xd(s−1)+1, . . . , xds)

)
and

Ed(k) :=
(
Ed(k1, . . . , kd), Ed(kd+1, . . . , k2d), . . . , Ed(kd(s−1)+1, . . . , kds)

)
.

The value d is called interlacing factor.

Observe that, for any kj ∈ N, there are finitely many non-zero digits κj,i.
Therefore the sum in the definition of Ed, contains only a finite number of non-
zero terms.

Example Define b = 10, d = 3 and x = (0.123, 0.456, 0.789). The following
diagram illustrates the operation of digit interlacing.

0. 1

��

2

""

3 0. 4

��

5 6 0. 7

xx

8 9

0. 1 4 7 2 � � � � �

The outcome in this case will be D3(x) = 0.147258369.
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Remark Note that Ed is bijective while Dd is only injective. If we choose for
example s = 1, y = Dd(x1, . . . , xd) then y cannot be of the form

∑∞
i=0 yib

−i

with yi0+dk = b − 1 for all k ≥ k0 ∈ N0. In fact, this would force one of the
xj to end with an infinite sequence of b − 1, but in that case we would use
instead the finite b-adic representation of xj . However, the set of y realising
yi0+dk = b− 1 ∀k ≥ k0 is only countable.

Since we wish to apply interlacing on a scrambled polynomial lattice, we
now have to check that this operation preserves the uniform distribution of the
points. Then, one can use again equation (1.2) and look for a bound of the
variance of the estimator.

Proposition 1.7. Let x be uniformly distributed in [0, 1)
ds

, then y := Dd(x)
is uniformly distributed in [0, 1)

s
.

Proof. Let λs be the s-dimensional Lebesgue measure. We need to show that
for any Lebesgue measurable G in [0, 1)

s
there holds

P(y ∈ G)
(i)
= P(x ∈ D−1

d (G))
(ii)
= λds(D−1

d (G))
(iii)
= λs(G).

Item (i) follows from bijectivity of Dd : [0, 1)
ds → [0, 1)

s\N where λs(N) = 0
by the remark above.

For (ii) and (iii) we restrict to the case s = 1; the general case can be
recovered from the relation λs = ⊗sj=1λ1. First, we prove the claim for sets of

the type J :=
[
c
bdν
, c+1
bdν

)
with 0 ≤ c < bν for some ν ∈ N. Each number in J

shares the first dν digits with c; thus, the value of c uniquely determines the first
ν digits of every component of x ∈ D−1

d (J). Moreover, the remaining digits can
be chosen freely in J , so that there exist integers 0 ≤ a1, . . . , ad < bν satisfying

D−1
d (J) =

d∏
i=1

[
ai
bν
,
ai + 1

bν

)
.

Then D−1
d (J) is Lebesgue measurable and (ii) − (iii) hold in this case. Note

that the intervals of the type J generate the Borel σ-algebra by density of the
endpoints in [0, 1) and then D−1

d (B) ⊆ [0, 1)
d

is Borel measurable for any Borel
set B ⊆ [0, 1). Hence, arguing as in Proposition 1.4, we get that (ii)− (iii) hold
also for any Borel set B ⊆ [0, 1). Let Z ⊆ [0, 1) be a λ1-nullset, then for every
n ∈ N there exist a family of intervals (Ink )k∈N with Ink ⊆ [0, 1) such that∑

k

λ1(Ink ) ≤ 1

n
and Z ⊆

⋃
k

Ink

and we can assume with no loss of generality that Ink ⊆ Imk for all m ≤ n. Thus,
Z ⊆

⋂
n

⋃
k I

n
k and

λ1

(⋂
n

⋃
k

Ink

)
= lim
n→∞

λ1

(⋃
k

Ink

)
≤ lim
n→∞

∑
k

λ1(Ink ) = 0.

Therefore, completeness of the Lebesgue measure gives that D−1
d (Z) is measur-

able and λd(D−1
d (Z)) = 0, that is (ii)− (iii) hold for Z. Since every Lebesgue

measurable G can be written as disjoint union of a Borel set and a λ1-nullset,
the claim follows.
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Now we have all the ingredients to construct our lattice in the following defi-
nition.

Definition 1.8. Let b be a prime number, let p ∈ Zb[x] be of degree m and define
q ∈ (Zb[x])ds. Let Π be a scrambling algorithm and Dd be the digit interlacing
function; then the set

Dd(Π(P (q, p))) := {yi = Dd(Π(xi)) : xi ∈ P (q, p)} (1.4)

consists of bm points in [0, 1)
s

and it is called interlaced scrambled polynomial
lattice point set of order d. A QMC approximation that uses it as nodes is called
interlaced scrambled polynomial lattice rule of order d.

1.4 Walsh decomposition

Walsh functions were introduced in [30] by J.L. Walsh in the context of har-
monic analysis, following the construction of the Haar basis; in the same paper,
Walsh proved that they form a complete system for continuous functions with
bounded variation. However, only several years later, in [23], the Walsh de-
composition has been exploited for the first time to study the convergence of
QMC integration. More recently, J. Dick used the same idea in combination
with scrambled digital nets, (see [8]). In the rest of the chapter we will always
assume that b is a prime number.

Definition 1.9 (Walsh functions). Let ωb := e
2πi
b be a primitive b-th root of

unity and k =
∑m−1
i=0 κib

i ∈ N0. In one dimension, let (xi)i be the b-adic digits
of x. The k-th b-adic Walsh function is defined as

walk : [0, 1) −→ {1, ωb, . . . , ωb−1
b } walk(x) := ω

κ0x1+...+κm−1xm
b .

Furthermore, for vector valued k = (k1, . . . , ks) ∈ Ns0 and x = (x1, . . . , xs) ∈
[0, 1)s, define

walk(x) :=

s∏
j=1

walkj (xj).

In his paper, Walsh considered only the case b = 2 and often, in the lit-
erature, the name Walsh functions only refers to this case. In the following
proposition we collect some properties of Walsh functions that will be useful in
the ensuing analysis.

Proposition 1.10.

P1. For given k < bm, walk(x) depends only on the first m digits of x. Hence,
the functions are piecewise constant.

P2. The set {walk : k ∈ Ns0} is a complete orthonormal system of L2([0, 1]s).
In particular, there holds the equality in L2([0, 1]s) given by

f =
∑
k∈Ns0

f̂(k) walk, f̂(k) :=

∫
[0,1]s

f(x)walk(x)dx.

Moreover, for f ∈ C0([0, 1)
s
), the equality above holds pointwise.
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P3. Define k ∈ Nds0 and y = Dd(x) ∈ [0, 1)
s
. Then, there holds

walEd(k)(y) =

ds∏
i=1

walki(xi).

P4. ∀ y,y′ uniformly distributed in [0, 1)
s

and for all k 6= k′ in Ns0 there holds

E[walk(y)walk′(y′)] = 0.

P5. Let P⊥(q, p) = {x0, . . . ,xbm−1} be a polynomial lattice point set. Then

1

bm

bm−1∑
n=0

walk(xn) =

{
1 if k ∈ P⊥(q, p)

0 else
.

P6. ∀ y, y′ uniformly distributed in [0, 1) and ∀ k ∈ N0, let l ∈ N0 be such that
bbl−1c ≤ k < bl. Then

E[walk(y)walk(y′)] =
b

b− 1
χbblyc=bbly′c −

1

b− 1
χbbl−1yc=bbl−1y′c.

P1 and P3 follow from the definition. P2 is, for example, proved in [10,
Appendix A]. A proof of P4 and P6 can be found in [10, Lemma 13.3]. Finally,
P5 is shown in [10, Lemma 4.75].

Proposition 1.11. Let P IS be an interlaced scrambled polynomial lattice point
set and Is(F ;P IS) the corresponding QMC rule approximating the integral of
F ∈ L2([0, 1]s) ∩ C0([0, 1)

s
). Then there exist quantities σl(F ) independent of

the lattice and Γl(q, p) independent of the integrand such that

Var[Is(F ;P IS)] =
∑

l∈Nds0 \{0}

σ2
l (F )Γl(q, p). (1.5)

Proof. The proof of this result follows closely [8, Lemma 7]. First decompose F
using its Walsh expansion and note that F̂ (0) is the integral of F . Thus we get

(
1

bm

bm−1∑
n=0

F (yn)−
∫

[0,1]s
F

)2

=

 1

bm

bm−1∑
n=0

∑
k∈Ns0

F̂ (k) walk(yn)−
∫

[0,1]s
F

2

=

 1

bm

bm−1∑
n=0

∑
0 6=k∈Ns0

F̂ (k) walk(yn)

2

.

Using equation (1.2) we then obtain

Var

[
1

bm

bm−1∑
n=0

F (yn)

]
=

1

b2m
E


 ∑

0 6=k∈Ns0

F̂ (k)

bm−1∑
n=0

walk(yn)

2
 .
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By the property P4, the cross terms corresponding to k 6= k′ vanish, thus

Var

[
1

bm

bm−1∑
n=0

F (yn)

]
=

1

b2m
E

 ∑
0 6=k∈Ns0

|F̂ (k)|2
(
bm−1∑
n=0

walk(yn)

)2


=
1

b2m

∑
06=k∈Ns0

|F̂ (k)|2
bm−1∑
n,n′=0

E
[
walk(yn)walk(yn′)

]

=
1

b2m

∑
06=k∈Nds0

|F̂ (Ed(k))|2
bm−1∑
n,n′=0

E
[
walEd(k)(yn)walEd(k)(yn′)

]

=
1

b2m

∑
06=k∈Nds0

|F̂ (Ed(k))|2
bm−1∑
n,n′=0

ds∏
i=1

E
[
walki(xn,i)walki(xn′,i)

]
,

where in the last equality we used property P3 and independence of the different
components of the scrambled point xn := D−1

d (yn). Finally, for any l ∈ Nds0 ,
define Bl,ds = {(k1, . . . , kds) ∈ Nds0 : bbli−1c ≤ ki < bli for 1 ≤ i ≤ ds}. By P6,

it follows that E
[
walki(xn,i)walki(xn′,i)

]
has the same value for all k in Bl once

l is fixed. As a consequence, the claim follows if we define

σ2
l (F ) :=

∑
k∈Bl,ds

|F̂ (Ed(k))|2, (1.6)

Γl(q, p) :=
1

b2m

bm−1∑
n,n′=0

ds∏
i=1

E
[
walki(xn,i)walki(xn′,i)

]
. (1.7)

The dependence of Γl on q and p comes from the definition xn := Π(zn) for
some zn ∈ P (q, p) (cf. (1.4)).

1.5 ANOVA decomposition

To develop some theoretical aspects of quasi-Monte Carlo integration, it is some-
times useful to write a function F : [0, 1]s → R as combination of functions that
depend each on a subset of variables u ⊆ {1 : s}. One simple way of proceed-
ing is to freeze a group of variables while letting the others vary, leading to
the so called anchored decomposition. Here, we introduce instead the so called
ANOVA (ANalysis Of VAriance) decomposition, which dates back to an idea of
Hoeffding in [18].

Definition 1.12. Let F be a function satisfying F ∈ L2([0, 1]s) for some s ∈ N.
We define iteratively F ∗∅ =

∫
[0,1]s

F (y)dy and

F ∗u (yu) :=

∫
[0,1]s−|u|

F (y)dy{1:s}\u −
∑
v⊂u

F ∗v (yv),

where for u = {1 : s} we use the convention the integral over the empty set is
F (y). Then F can be written as

F (y) =
∑

u⊆{1:s}

F ∗u (yu).
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Finally, we briefly mention some useful properties of the ANOVA decompo-
sition, for more details we refer to [24]. We can easily find from the recurrence
relation that the component F ∗u is independent of yj whenever j /∈ u. Next, as
it is shown in [20, Theorem 2.1] in a more general framework, there holds the

annihilating property
∫ 1

0
F ∗u (yu)dyj = 0 for all j ∈ u. Also, ANOVA decompo-

sition is the unique decomposition of the form F =
∑

u⊆{1:s}Gu where the Gu

satisfy these two properties. More generally, the components (F ∗u )u⊆{1:s} are
orthogonal in L2([0, 1]s); hence

Var(F ) =
∑

u⊆{1:s}

Var(F ∗u ).

This justifies that ANOVA decomposition is an optimal choice to control some
kind of L2 norm of a function.

1.6 A weighted space of differentiable functions

So far, we worked under weak smoothness assumptions of the integrand, as
we only required F ∈ L2([0, 1]s) ∩ C0([0, 1)

s
). Under this general hypothesis,

the Monte Carlo integration achieves already the best error decay. The goal of
this section is to determine a space of smooth functions such that it is possible
to control the coefficients σl(F ) defined in (1.6). First, we introduce a set of
positive parameters γ = (γu)u⊆{1:s} called weights. These will play the role
of weighting the dependence of F on the different components: in particular,
small values of γu denote that the components in u are less relevant and vice
versa. In [21], the authors considered a weighted and unanchored Sobolev space
of functions to control first order derivatives. As a result, the convergence of
the QMC approximation was capped at O(N−1+δ) for δ > 0 as N → ∞, with
constant independent of s. The key idea is that, in order to achieve higher
convergence rate, we need to provide a bound on higher order derivatives of F .
This stems from the papers [8, 13], where high order QMC analysis is carried
out, and from [9, 12], where some applications to parametric PDEs have been
studied. For y = (y1, . . . , ys) and all ν = (ν1, . . . , νs) ∈ Ns0, define the multi-

index notation ∂νyF =
∂ν1+...+νsF

∂yν1
1 · · · ∂y

νs
s

. For all u ⊂ {1 : s}, we can integrate out

the coordinates that are not in u to obtain a |u|-dimensional function and define

Fu(yu) :=

∫
[0,1]s−|u|

F (y)dy{1:s}\u .

We also use the convention that for u = {1 : s}, Fu(yu) := F (y).

Definition 1.13. Fix an order α ∈ N and a positive sequence γ = (γu)u⊆{1:s}.
The weighted and unanchored Sobolev space Ws,γ,α ([0, 1]s) is defined as the
completion of the space C∞([0, 1]s) with respect to the norm ‖F‖Ws,γ,α([0,1]s),
where

‖F‖2Ws,γ,α([0,1]s) := sup
u⊆{1:s}

1

γu

∑
ν∈{1:α}|u|

sup
yu∈[0,1]|u|

∣∣∣∣∣
∫

[0,1]s−|u|
∂νyF (y)dy{1:s}\u

∣∣∣∣∣
2

.
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Here, if u = {1 : s}, the inner integral is replaced by ∂νyF (y) and if u = ∅, we
use the convention

sup
∅

∑
ν∈{1:α}0

∣∣∣∣∣
∫

[0,1]s
∂νyF (y)dy{1:s}

∣∣∣∣∣
2

dyu :=

∣∣∣∣∣
∫

[0,1]s
F (y)dy

∣∣∣∣∣
2

.

As a consequence of the next result, the spaceWs,γ,α ([0, 1]s) is a well defined
Banach space.

Proposition 1.14. The functional ‖ · ‖Ws,γ,α([0,1]s) is a norm.

Proof. For all c ∈ R, there holds ‖cF‖Ws,γ,α([0,1]s) = |c| ‖F‖Ws,γ,α([0,1]s) and the
triangular inequality follows from a multiple application of Minkowski inequality
with exponent 2 and∞. To show definiteness, we assume that ‖F‖Ws,γ,α([0,1]s) =

0. Therefore, we have that
∫

[0,1]s
F (y)dy = 0 and that for all ∅ 6= u ⊆ {1 : s},

ν ∈ {1 : α}|u| and yu ∈ [0, 1]|u|, there holds

∂νy

∫
[0,1]s−|u|

F (y)dy{1:s}\u =

∫
[0,1]s−|u|

∂νyF (y)dy{1:s}\u = 0.

From u = {1 : s} and ν = (1, 1, . . . , 1) ∈ Ns, we can deduce that ∂y1,...,ysF ≡ 0,
implying that F is independent of (at least) one variable. Without loss of
generality F is independent of the last; therefore, the case u = {1 : s − 1} and
ν = (1, 1, . . . , 1) ∈ Ns−1 implies

∂y1,...,ys−1

∫ 1

0

F (y)dys = ∂y1,...,ys−1
F (y) ≡ 0

so that F is also independent of another variable. Iterating s times, we get
that F is constant and since F has also vanishing average, we conclude that
F ≡ 0.

There is clearly a relation between the ANOVA decomposition and the
Ws,γ,α ([0, 1]s) norm: from the the definition of the functions Fu, there holds

Fu(yu) =
∑
v⊆u

F ∗v (yv)

and

‖F‖2Ws,γ,α([0,1]s) = sup
u⊆{1:s}

1

γu

∑
ν∈{1:α}|u|

sup
yu∈[0,1]|u|

∣∣∂νyFu(yu)
∣∣2 .

We will sometimes work with a discrete version of the Ws,γ,α ([0, 1]s) norm,
which entails the substitution of derivatives with (multivariate) finite differences.
For simplicity we start with univariate functions F : given a point y ∈ [0, 1] and
a sequence (zj)j≥1 ⊂ (−1, 1), we define iteratively ∆0(y)F = F (y) and, for all
ν ∈ N,

∆ν(y; z1, . . . , zν)F = ∆ν−1(y + zν ; z1, . . . , zν−1)F −∆ν−1(y; z1, . . . , zν−1)F.

Here we assume that, for our choice of (zj)j≥1, we evaluate F only at points in
its domain [0, 1]. The generalisation to the multivariate case is a tensor product

∆ν

(
y; (z1,1, . . . , z1,ν1), . . . , (zs,1, . . . , zs,νs)

)
:=

s⊗
i=1

∆νi(yi; zi,1, . . . , zi,νi) ,
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where each ∆νi is applied only to the i-th component of F while keeping the
others fixed. It turns out that we can also define the same difference operator
by a closed formula as follows.

Definition 1.15. Let ν ∈ {1 : α}s be satisfied for some α, s ∈ N and F :
[0, 1]s → R. Then, for all y = (y1, . . . , ys) in the domain of F and for all
zi = (zi,1, . . . , zi,νi), i ∈ {1 : s}, with zi,j ∈ (−1, 1) the difference operator ∆ν

is defined as

∆ν

(
y; z1, . . . ,zs

)
F :=

=
∑

v1⊆{1:ν1}

· · ·
∑

vs⊆{1:νs}

(−1)|v1|+...+|vs|F

y1 +
∑
j1∈v1

z1,j1 , . . . , ys +
∑
js∈vs

zs,js

 ,

provided that yi +
∑
j∈vi zi,j ∈ [0, 1] for all i ∈ {1 : s} and for all vi ⊆ {1 : νi}.

We now define the generalized weighted Hardy and Krause variation, using
the given characterisation of the difference operator and a structure that is
similar to the Ws,γ,α ([0, 1]s) norm. The following definition can be found in [8]
and is here slightly modified to include weights.

Definition 1.16. Fix α ∈ N and let γ = (γu)u⊆{1:s} be a sequence of weights.
Denote by λ|u| the Lebesgue measure over

⊗
k∈u [0, 1). Define Ξu as the set of

all partitions of
⊗

k∈u [0, 1)
α

into subcubes of the form

J =

αs∏
i=1

di/αe∈u

[
ai
bli
,
ai + 1

bli

)
where li ∈ N and 0 ≤ ai < bli , ∀i.

For all functions F : [0, 1]s → R we define the generalised weighted Hardy and
Krause variation as

Vs,γ,α(F ) :=

=

 ∑
u⊆{1:s}

1

γu

∑
ν∈{1:α}|u|

sup
P∈Ξu

∑
J∈P

λ|u|(Dα(J)) sup
TJ

∣∣∣∣∣∆ν

(
y; z1, . . . ,z|u|

)
Fu∏|u|

i=1

∏νi
j=1 zi,j

∣∣∣∣∣
2
 1

2

,

where TJ is the set of choices (y; z1, . . . ,z|u|), zi = (zi,1, . . . , zi,νi) satisfying:

1. y ∈ Dα(J) for a1, . . . , aα|u| and l1, . . . , lα|u| determined by J as above;

2. the operator ∆ν(y; z1, . . . ,z|u|) only takes values of the function in the set

Dα
(∏α|u|

i=1

[
bai/bcb−li+1, (bai/bc+ 1)b−li+1

))
;

3. for all i ∈ {1 : |u|}, j ∈ {1 : νi}, there holds zi,j = τi,jb
−α(li−1)−j for some

τi,j ∈ {1− b, . . . , b− 1}\{0}.

Here, we use the convention that the term corresponding to u = ∅ is equal to

1
γ∅

∣∣∣∫[0,1]s
F
∣∣∣2.
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We will apply this variation to the terms in the ANOVA decomposition of
a function. A crucial observation is that, for a fixed v ⊆ {1 : s}, the only
non-vanishing term of V 2

s,γ,α(F ∗v ) corresponds to the summand with u = v. In
fact, if u ⊂ v we have (F ∗v )u :=

∫
[0,1]s−u F

∗
v = 0 by the annihilating property;

on the other hand, if v ⊂ u, (F ∗v )u is independent of yj for j ∈ u\v, so that the
difference operator vanishes. A direct application of Definition 1.12 and again
the annihilating property imply that (F ∗v )v = Fv. Therefore,

V 2
s,γ,α(F ∗v ) =

1

γv

∑
ν∈{1:α}|v|

sup
P∈Ξv

∑
J∈P

λ|v|(Dα(J)) sup
TJ

∣∣∣∣∣∆ν

(
y; z1, . . . ,z|v|

)
Fv∏|v|

i=1

∏νi
j=1 zi,j

∣∣∣∣∣
2

.

(1.8)

Proposition 1.17. Let v ⊆ {1 : s} and F : [0, 1]s → R be a continuous
function. If ∂νyFv ∈ C0([0, 1]s) for all ν ∈ {1 : α}|v|. Then, for every choice of
positive weights γ there holds

Vs,γ,α(F ∗v ) ≤ ‖F‖Ws,γ,α([0,1]s) .

Proof. In the definition of Vs,γ,α(F ), the expression inside the absolute value is
a divided difference of order ν with νi ≤ α. Thus, by the mean value theorem,

for all ν and (y; zi) ∈ TJ there exists ξ = (ξ1, . . . , ξ|v|) ∈ [0, 1)
|v|

satisfying

∆ν

(
y; z1, . . . ,z|v|

)
Fv∏|v|

i=1

∏νi
j=1 zi,j

= ∂νyFv(ξ).

Moreover, for all ∅ 6= v ⊆ {1 : s} and all ν ∈ {1 : α}|v| there holds∑
J∈P

λ|v|(Dα(J)) sup
(y;zi)∈TJ

∣∣∂νyFv(ξ)
∣∣2 ≤ sup

yv∈[0,1]|v|

∣∣∂νyFv(yv)
∣∣2 ,

which is a bound independent of the partition. Hence, equation (1.8) implies

Vs,γ,α(F ∗v ) ≤ 1

γv

∑
ν∈{1:α}|v|

sup
yv∈[0,1]|v|

∣∣∂νyFv(yv)
∣∣2 ≤ ‖F‖Ws,γ,α([0,1])s .
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Chapter 2

Bounds on the variance of
the estimator

The triple ([0, 1]s,L([0, 1]s),⊗sj=1dyj) forms a probability space. As discussed

in the previous chapters, we look for a bound on the L2([0, 1]s) error of the
randomised QMC approximation, considering the (root of) the variance of the
estimator. The upper bound that will be presented in this chapter, based on
the work by Goda and Dick [8, 13], takes the form

Var(Is(F ;P IS)) ≤ B(q, p) ‖F‖2Ws,γ,α([0,1]s) , (2.1)

where P IS := Dd(Π(P (q, p))) as in equation (1.4). Here B(q, p) is a com-
putable deterministic quantity independent of the dimension s and the inte-
grand. Therefore, it can be used as a quality criterion to determine a good
generating polynomial q and modulus p. Then, q will be constructed by a
component-by-component (CBC) algorithm, that is using induction over the
dimension. Such CBC-constructed polynomial is not necessarily the one min-
imising B(q, p); however, it is a good approximation that can be found without
involving the solution of a multivariate optimisation problem and, additionally,
can be implemented using FFT with computational cost O(dsN log(N)).

2.1 Decay of Walsh coefficients

We have seen in (1.5) how the Walsh basis decomposition allows to separate
the error due to the integand from the error due to the lattice. The goal of this
section is to provide an upper bound for the Walsh coefficients σl(F ) defined
in (1.6), under the assumption that F is in the weighted space Ws,γ,α ([0, 1]s)
for some positive weights γ and α ∈ N. To ease the notation, we partition
the vector l = (lu,0) ∈ Nds0 so that u contains all non-zero components, i.e.
lu ∈ N|u|. Moreover, for any u ⊆ {1 : ds}, we denote by v(u) ⊆ {1 : s} the set
of active dimensions, that is

i ∈ v(u) ⇐⇒ ui := u ∩ {(i− 1)d+ 1 : id} 6= ∅

23



(cf. Definition 1.6 of digit interlacing). Moreover, analogously to the proof of
Proposition 1.11, we define

B(lv,0),s := {(k1, . . . , ks) ∈ Ns0 : bli−1 ≤ ki < bli for i ∈ v , ki = 0 for i /∈ v}
B(lu,0),ds := {(k1, . . . , kds) ∈ Nds0 : bli−1 ≤ ki < bli for i ∈ u , ki = 0 for i /∈ u}.

Proposition 2.1. Let l = (lu,0) ∈ Nds0 , d ∈ N and F with bounded generalized
weighted Hardy and Krause variation of order α. Then for the constant D :=
4max(d−α,0)b(2d−1)α, there holds

σ2
(lu,0)(F ) ≤ V 2

s,γ,α(F ∗v(u))γv(u)D
|v(u)| (b− 1)2|u|

b2 min(α,d)|lu|+α|u|
. (2.2)

The proof of this proposition is a consequence of the two lemmas below. First
we define the coefficients β′k := (b− 1)b−k+(i−1)d−(lk−1)d where k ∈ ui, i ∈ v(u).
Then we reorder the sets {β′k : k ∈ ui} = {βi,j(lu) : 1 ≤ j ≤ |ui|} so that
βi,1(lu) < . . . < βi,|ui|(lu) for all i ∈ v(u). Hence, we write

β(lu,0) :=
∏
i∈v(u)

min(α,|ui|)∏
j=1

βi,j(lu).

Lemma 2.2. For all l ∈ Nds0 , let u ⊆ {1 : ds} satisfy that lu ∈ N|u|. Let F be
of bounded generalized weighted Hardy and Krause variation of order α. Then
there holds

σ(lu,0)(F ) ≤ 2|v(u)|max(d−α,0)β(lu,0)
√
γv(u)Vs,γ,α(F ∗v(u)). (2.3)

Proof. By definition of the interlacing function, Ed(ξ) = 0 ⇐⇒ ξ = 0 ∈ Rd, so
that k ∈ B(lu,0),ds is equivalent to Ed(k) ∈ B(lv(u),0),s. Thus

σ2
(lu,0)(F ) :=

∑
k∈B(lv(u),0),s

|F̂ (k)|2.

Each Walsh coefficient, using the ANOVA decomposition of F , satisfies

F (y) =
∑

v⊆{1:s}

F ∗v (yv) =⇒ F̂ (k) =
∑

v⊆{1:s}

F̂ ∗v (k),

where F̂ ∗v denote the Walsh coefficients of F ∗v . We claim that ∀k ∈ B(lv(u),0),s

and ∀v 6= v(u), there holds F̂ ∗v (k) = 0. To show this, fix an arbitrary k ∈
B(lv(u),0),s. By Fubini’s theorem we get

F̂ ∗v (k) =

∫
[0,1]s

F ∗v (yv)
∏
i∈v(u)

walki(yi)dy

=

∫
[0,1]|v|

F ∗v (yv)
∏

i∈v(u)∩v

walki(yi)

∫
[0,1]s−|v|

∏
i∈v(u)\v

walki(yi)dy{1:s}\vdyv

where by convention the inner integral is defined to be equal to 1 if v = {1 : s}.
If ∃i ∈ v(u)\v, then ki 6= 0 and

∫ 1

0
walki(yi)dyi = 0 so that F̂ ∗v (k) = 0. Else, if
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∃i ∈ v\v(u), the above can be rewritten as

F̂ ∗v (k) =

∫
[0,1]|v|

F ∗v (yv)
∏
i∈v(u)

walki(yi)dyv

=

∫
[0,1]|v(u)|

∏
i∈v(u)

walki(yi)dyv

∫
[0,1]|v|−|v(u)|

F ∗v (yv)dyv(u)dyv\v(u)

and the inner integral vanishes by the annihilating property of ANOVA de-
composition. Thus, F̂ (k) = F̂ ∗v(u)(k) and we obtain σ(lu,0)(F ) = σ(lu,0)(F

∗
v(u)).

Applying [8, Lemma 9], we get

σ(lu,0)(F ) ≤ 2|v(u)|max(d−α,0)β(lu,0)Vs,α(F ∗v(u)),

where Vs,α = Vs,1,α is the unweighted counterpart of Vs,γ,α. Finally, observe
that the annihilating property and being F ∗v(u) independent of yj for j /∈ v(u)
imply that the only non-zero summand in the generalised Hardy and Krause
variation is for the subset v(u) ⊆ {1 : s} (cp. equation (1.8)), so that

V 2
s,γ,α(F ∗v(u)) = γ−1

v(u)V
2
s,α(F ∗v(u))

and the claim follows.

Lemma 2.3. [13, Lemma 3] For l ∈ Nds0 , let ∅ 6= u ⊆ {1 : ds} satisfy that
lu ∈ N|u| and α, d, s ∈ N. There holds

β(lu,0) ≤ b(2d−1)α|v(u)|/2 (b− 1)|u|

bmin(α,d)|lu|+α|u|/2
.

2.2 Quality criterion of a lattice

In this section we will prove an error bound for the interlaced scrambled poly-
nomial lattice as in (2.1). This is similar to a Koksma–Hlawka inequality in the
sense that splits the error into two parts, one due to the integrand and the other
due to the quality of the lattice. The following lemma, proved in [13, Lemma
2] allows to rewrite (1.5) and makes the gain coefficients Γ(lu,0) more explicit.

Proposition 2.4. Let d ∈ N and F ∈ L2([0, 1]s) ∩ C0([0, 1)
s
). Let Is(F ;P IS)

be an interlaced scrambled polynomial lattice rule with generating polynomial
q ∈ Zb[x]ds and modulus p ∈ Zb[x], approximating

∫
[0,1]s

F . Then there holds

Var[Is(F ;P IS)] =
∑

∅6=u⊆{1:ds}

b|u|

(b− 1)|u|

∑
lu∈N|u|

σ2
(lu,0)(F )

b|lu|
|B(lu,0),ds ∩ P⊥(q, p)|

(2.4)
where P⊥(q, p) is the dual lattice of Definition 1.2 .

Proof. Recall that by Proposition 1.11, with the notation l := (lu,0),

Var[Is(F ;P IS)] =
∑

∅6=u⊆{1:ds}

∑
lu∈N|u|

σ2
(lu,0)(F )Γ(lu,0)(q, p).
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Hence, it is sufficient to prove that ∀ l := (lu,0) there holds

Γ(lu,0)(q, p) =
b|u|−|lu|

(b− 1)|u|
|B(lu,0),ds ∩ P⊥(q, p)|, (2.5)

where Γ(lu,0) was defined in (1.7). Note that ki = 0 =⇒ li = 0 so that the
property P6 of Proposition 1.10 gives

Γ(lu,0)(q, p) =
1

b2m

bm−1∑
n,n′=0

∏
i∈u

[
b

b− 1
χbblixn,ic=bblixn′,ic

− 1

b− 1
χbbli−1xn,ic=bbli−1xn′,ic

]
.

Let Slu(v) be the set of points (xn,xn′) ∈ [0, 1)
ds × [0, 1)

ds
such that xn,i and

xn′,i share the first li b-adic digits for all i ∈ v and the first li − 1 b-adic digits
for all i ∈ u\v. Using the identity

∏
i∈u(xi + yi) =

∑
v⊆u(

∏
i∈v xi)(

∏
i∈u\v yi),

the product above gives∏
i∈u

[
b

b− 1
χbblixn,ic=bblixn′,ic −

1

b− 1
χbbli−1xn,ic=bbli−1xn′,ic

]
=

=
∑
v⊆u

(−1)|u|−|v|b|v|

(b− 1)|u|

∏
i∈v

χbblixn,ic=bblixn′,ic
∏
i∈u\v

χbbli−1xn,ic=bbli−1xn′,ic

=
∑
v⊆u

(−1)|u|−|v|b|v|

(b− 1)|u|
χ

(xn,xn′ )∈Slu (v) .

If we define

Rlu,v := {k ∈ Nds0 : ki < bli ∀i ∈ v, ki < bli−1 ∀i ∈ u\v and ki = 0 else}

and if we apply P1 from Proposition 1.10, we obtain walk(xn)walk(xn′) = 1 for
all k ∈ Rlu,v and (xn,xn′) ∈ Slu(v). On the other hand, if (xn,xn′) /∈ Slu(v),

then
∑
k∈Rlu,v

walk(xn)walk(xn′) = 0, because of the definition of Walsh func-

tions and the identity
∑bl−1
k=0 (ωξb )

k = 0 valid for all ξ ∈ {1, . . . , b− 1}. Thus,

Γ(lu,0)(q, p) =
1

b2m

bm−1∑
n,n′=0

∑
v⊆u

(−1)|u|−|v|b|v|

(b− 1)|u|
1

|Rlu,v|
∑

k∈Rlu,v

walk(xn)walk(xn′)

=
∑
v⊆u

(−1)|u|−|v|b|v|

(b− 1)|u|
1

|Rlu,v|
∑

k∈Rlu,v

∣∣∣∣∣ 1

bm

bm−1∑
n=0

walk(xn)

∣∣∣∣∣
2

=
∑
v⊆u

(−1)|u|−|v|b|v|

(b− 1)|u|
1

|Rlu,v|
∑

k∈Rlu,v∩P⊥(q,p)

1

where in the last equality we used the property P5. Note that |Rlu,v| =
b|lu|−|u|+|v| so that

Γ(lu,0)(q, p) =
b|u|−|lu|

(b− 1)|u|

∑
v⊆u

(−1)|u|−|v|
∑

k∈Rlu,v∩P⊥(q,p)

1.

26



Finally, since v1 ⊆ v2 ⇐⇒ Rlu,v1
⊆ Rlu,v2

, then for each k ∈ Rlu,u there is a
minimal v(k) ⊆ u with k ∈ Rlu,v(k). Moreover, v(k) = u ⇐⇒ k ∈ B(lu,0),ds

and this implies that∑
v⊆u

(−1)|u|−|v|
∑

k∈Rlu,v∩P⊥(q,p)

1 =
∑

k∈Rlu,u∩P⊥(q,p)

∑
v(k)⊆v⊆u

(−1)|u|−|v|

=
∑

k∈Rlu,u∩P⊥(q,p)

χ
v(k)=u

= |B(lu,0),ds ∩ P⊥(q, p)|.

Thus, (2.5) holds and the proof is complete.

Corollary 2.5. Let d ∈ N and F ∈ Ws,γ,α ([0, 1]s) with ∂νyF ∈ C0([0, 1]s) for all

ν ∈ {0 : α}s. Let Is(F ;P IS) be an interlaced scrambled polynomial lattice rule
with generating polynomial q ∈ Zb[x]ds and modulus p ∈ Zb[x], approximating∫

[0,1]s
F . Then there holds

Var[Is(F ;P IS)] ≤ ‖F‖2Ws,γ,α([0,1]s)

∑
∅6=u⊆{1:ds}

γv(u)D
|v(u)|

∑
ku∈N|u|

(ku,0)∈P⊥(q,p)

rα,d(ku,0).

(2.6)
Here D is the constant of Proposition 2.1 and for all (ku,0) ∈ B(lu,0) we define

rα,d(ku,0) :=
∏
j∈u

b− 1

bα−1
b−(2 min(α,d)+1)lj =

(b− 1)|u|

b(α−1)|u|+(2 min(α,d)+1)|lu|
.

Proof. First, from (2.4) we get

Var[Is(F ;P IS)] =
∑

∅6=u⊆{1:ds}

b|u|

(b− 1)|u|

∑
lu∈N|u|

∑
(ku,0)∈B(lu,0)∩P⊥(q,p)

σ2
(lu,0)(F )

b|lu|

=
∑

∅6=u⊆{1:ds}

b|u|

(b− 1)|u|

∑
ku∈N|u|

(ku,0)∈P⊥(q,p)

σ2
(lu,0)(F )

b|lu|
.

We showed in Proposition 1.17 that Vs,γ,α(F ∗v(u)) ≤ ‖F‖Ws,γ,α([0,1]s). Then,
using the upper bound of Proposition 2.1 one obtains

Var[Is(F ;P IS)] ≤
∑

∅6=u⊆{1:ds}

∑
ku∈N|u|

(ku,0)∈P⊥(q,p)

V 2
s,α(F ∗v(u))γv(u)D

|v(u)|(b− 1)|u|

b(2 min(α,d)+1)|lu|+(α−1)|u|

≤ ‖F‖2Ws,γ,α([0,1]s)

∑
∅6=u⊆{1:ds}

γv(u)D
|v(u)|

∑
ku∈N|u|

(ku,0)∈P⊥(q,p)

rα,d(ku,0).

This last corollary gives the bound as in (2.1), once we define

Bα,d,γ(q, p) :=
∑

∅6=u⊆{1:ds}

γv(u)D
|v(u)|

∑
ku∈N|u|

(ku,0)∈P⊥(q,p)

rα,d(ku,0). (2.7)
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We conclude this section with a remark on the dependence of this quality crite-
rion on the parameters α, d,γ. We see that Bα,d,γ is formally independent of F ,
but it still varies with the parameters determining the space Ws,γ,α ([0, 1]s). In
particular, the corresponding QMC rule will be also influenced by those param-
eters and remains valid, provided that F ∈ Ws,γ,α ([0, 1]s) for the same fixed
values of α, d,γ.

2.3 CBC error analysis

The previous sections provide us a quality criterion for the QMC lattice; thus we
can proceed with its construction. The first step is to determine the generating
vector q. Fix the smoothness α ∈ N, the sequence of positive weights γ and
the order of the QMC rule d ∈ N. Given the form of the error estimates of the
previous section, a natural way to construct a good generating vector q for a
QMC rule is to minimize the function Bα,d,γ(q, p). This can be done efficiently
using inductively the components of q already computed. For any 1 ≤ τ ≤ ds,
define qτ := (q1, . . . , qτ ), β := dτ/de and generalise Bα,d,γ(q, p) for qτ as follows

Bα,d,γ(qτ , p) :=
∑

∅6=u⊆{1:τ}

γv(u)D
|v(u)|

∑
ku∈N|u|

(ku,0)∈P⊥(qτ ,p)

rα,d(ku,0). (2.8)

Remark For τ = ds this corresponds to the previous Bα,d,γ(q, p) defined in
(2.7). Moreover, here the extension of ku with zero components is such that
(ku,0) ∈ Nτ .

Algorithm - CBC construction of the generating vector. Let Rm :=
{q ∈ Zb[x], deg(q) < m, q 6= 0} be the set of admissible choices for q, that is
|Rm| = bm − 1. The CBC algorithm is given by the following steps:

1. Choose an irreducible polynomial p ∈ Zb[x] of degree m;

2. Set q1 = 1;

3. For τ = 2, . . . , ds choose qτ := argminq∈Rm Bα,d,γ
(
(qτ−1, q), p

)
.

The next proposition is the key step to estimate the error of the CBC con-
struction and its proof was first presented in [13, Theorem 1].

Proposition 2.6. Let b ∈ N be prime and j0, d0 ∈ N satisfy τ = (j0 − 1)d+ d0

with 0 < d0 ≤ d. If q, p are constructed with the CBC algorithm above, then

for all λ ∈
(

1

2 min(α, d) + 1
, 1

]
and all τ = 1, . . . , ds, there holds for a positive

constant Cλ,d := C(b, α, d, λ),

Bα,d,γ(qτ , p) ≤
1

(bm − 1)
1
λ

 ∑
∅6=v⊆{1:j0−1}

γλvC
|v|
λ,d + Cλ,d0,d

∑
v⊆{1:j0−1}

γλv∪{j0}C
|v|
λ,d

 1
λ

where, for all d0 ≤ d, there holds Cλ,d0,d ≤ Cλ,d,d =: Cλ,d. Moreover, Cλ,d
satisfies

lim
λ↘(2 min(α,d)+1)−1

Cλ,d =∞.
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Proof. We proceed by induction over τ . First, note that there holds

∞∑
k=1
bm|k

rα,d(k) =
b− 1

bα−1

∞∑
l=1

b−(2 min(α,d)+1)l
bl−1∑
k=bl−1

bm|k

1

=
b− 1

bα

∞∑
l=m+1

b−2 min(α,d)l

bl−1

(
bl − bl−1

bm

)

=
(b− 1)2

bα
b−2 min(α,d)m

bm(b2 min(α,d) − 1)
.

For τ = 1, we have j0 = d0 = 1 and q1 ≡ 1. Thus, for all λ > 1
2 min(α,d)+1 we

get

Bα,d,γ(1, p) = γ{1}D

∞∑
k=1
bm|k

rα,d(k)

=
1

b(2 min(α,d)+1)m
γ{1}D

(b− 1)2

bα(b2 min(α,d) − 1)

≤ 1

(bm − 1)1/λ

[
γλ{1}

(
D(b− 1)2

bα(b2 min(α,d) − 1)

)λ]1/λ

and the claim holds if Cλ,d ≥ Dλ

(
(b− 1)2

bα(b2 min(α,d) − 1)

)λ
=: DλC̆λ,d. Assume

now that the result is true for some 1 ≤ τ < ds. In equation (2.8) we separate
summands including the (τ + 1)-component as follows

Bα,d,γ((qτ , q), p) =
∑

∅6=u⊆{1:τ+1}

γv(u)D
|v(u)|

∑
ku∈N|u|

(ku,0)∈P⊥((qτ ,q),p)

rα,d(ku,0)

=
∑

∅6=u⊆{1:τ}

γv(u)D
|v(u)|

∑
ku∈N|u|

(ku,0)∈P⊥((qτ ,q),p)

rα,d(ku,0)

+
∑

u⊆{1:τ+1}
τ+1∈u

γv(u)D
|v(u)|

∑
ku∈N|u|

(ku,0)∈P⊥((qτ ,q),p)

rα,d(ku,0)

=: Bα,d,γ(qτ , p) + θ(q).

Throughout the rest of the proof, to simplify the notation, we avoid to explicit
the dependency on p unless necessary. The only term that depends on the last
component q of the generating vector is θ(q), so that the choice qτ+1 made in
the CBC algorithm satisfies θ(qτ+1) ≤ θ(q) for all q ∈ Rm. This implies that
for all λ > 0, one has θλ(qτ+1) ≤ (bm − 1)−1

∑
q∈Rm θ

λ(q).

Jensen’s inequality (
∑
ck)λ ≤

∑
cλk valid for a positive sequence (ck)k and
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0 < λ ≤ 1, ensures that

θλ(qτ+1) ≤ 1

bm − 1

∑
q∈Rm

∑
u⊆{1:τ+1}
τ+1∈u

γλv(u)D
λ|v(u)|

∑
ku∈N|u|

(ku,0)∈P⊥((qτ ,q))

rλα,d(ku,0)

=
∑

u⊆{1:τ+1}
τ+1∈u

γλv(u)D
λ|v(u)| 1

bm − 1

∑
q∈Rm

∑
ku∈N|u|

(ku,0)∈P⊥((qτ ,q))

rλα,d(ku,0).

At this point we distinguish two cases in the inner sum, depending on
whether kτ+1 is a multiple of bm or not. In the first case, trm(kτ+1) = 0
and we get

(ku,0) ∈ P⊥((qτ , q)) ⇐⇒ (ku\{τ+1},0) ∈ P⊥(qτ )

that is a relation independent of q. If instead trm(kτ+1) 6= 0, at most one
q ∈ Rm satisfies the equation

trm(ku,0) · (qτ , q) = trm(kτ+1)q +

τ∑
j=1

trm(kj)qj ≡ 0 (mod p).

In fact, assume by contradiction that ∃q, q̄ ∈ Rm distinct solutions, then sub-
tracting the corresponding equations, the hypothesis that p is irreducible yields
p | trm(kτ+1) ∨ p |(q − q̄). This gives a contradiction because p has degree
strictly larger than trm(kτ+1) and q− q̄, and neither of them vanish. The same
equation and the assumption that q 6= 0 imply (ku\{τ+1},0) /∈ P⊥(qτ ) in this
case. Thus, defining ū := u\{τ + 1} we obtain

1

bm − 1

∑
q∈Rm

∑
ku∈N|u|

(ku,0)∈P⊥((qτ ,q))

rλα,d(ku,0) (2.9)

=

 1

bm − 1

∑
kτ+1: bm-kτ+1

rλα,d(kτ+1)

 ∑
kū∈N|u|−1

(kū,0)/∈P⊥(qτ )

rλα,d(kū,0) (2.10)

+

 ∑
kτ+1: bm|kτ+1

rλα,d(kτ+1)

 ∑
kū∈N|u|−1

(kū,0)∈P⊥(qτ )

rλα,d(kū,0). (2.11)

Now we rewrite the term in the parenthesis of (2.10) and (2.11). Note that if
l ≤ m there are no multiples of bm in {bl−1 : bl − 1}, while if l ≥ m + 1, there

are bl−bl−1

bm many multiples. First, for (2.11) there holds

∑
k: bm|k

rλα,d(k) =
(b− 1)λ

bλ(α−1)

∞∑
l=1

b−(2 min(α,d)+1)λl
bl−1∑
k=bl−1

bm|kτ+1

1

=
(b− 1)1+λ

bm+1+λ(α−1)

∞∑
l=m+1

b(1−(2 min(α,d)+1)λ)l.
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On the other hand, the parenthesis in (2.10) becomes

1

bm − 1

∑
k: bm-k

rλα,d(k) =
(b− 1)λ

(bm − 1)bλ(α−1)

∞∑
l=1

b−(2 min(α,d)+1)λl
bl−1∑
k=bl−1

bm-k

1

=
(b− 1)1+λ

(bm − 1)b1+λ(α−1)

m∑
l=1

b(1−(2 min(α,d)+1)λ)l

+
(b− 1)1+λ

bm+1+λ(α−1)

∞∑
l=m+1

b(1−(2 min(α,d)+1)λ)l.

Moreover, observe that
∑
ku∈N|ū| r

λ
α,d(kū,0) =

∏
j∈ū
∑∞
kj=1 r

λ
α,d(kj) by a multi-

nomial identity, so that using similar arguments we also have

∑
kū∈N|u|−1

rλα,d(kū,0) =
∏
j∈ū

(b− 1)1+λ

b1+λ(α−1)

∞∑
lj=1

b(1−(2 min(α,d)+1)λ)lj .

Therefore, we obtain from (2.9) that for all u ⊆ {1 : τ + 1} with τ + 1 ∈ u,

1

bm − 1

∑
q∈Rm

∑
ku∈N|u|

(ku,0)∈P⊥((qτ ,q))

rλα,d(ku,0)

=
(b− 1)1+λ

bm+1+λ(α−1)

∞∑
l=m+1

b(1−(2 min(α,d)+1)λ)l
∑

kū∈N|u|−1

rλα,d(kū,0)

+
(b− 1)1+λ

(bm − 1)b1+λ(α−1)

m∑
l=1

b(1−(2 min(α,d)+1)λ)l
∑

kū∈N|u|−1

(kū,0)/∈P⊥(qτ )

rλα,d(kū,0)

≤ (b− 1)1+λ

(bm − 1)b1+λ(α−1)

∞∑
l=1

b(1−(2 min(α,d)+1)λ)l
∑

kū∈N|u|−1

rλα,d(kū,0)

=
1

bm − 1

[
(b− 1)1+λ

b1+λ(α−1)

∞∑
l=1

b(1−(2 min(α,d)+1)λ)l

]|u|
=

1

bm − 1
C̃
|u|
λ,d ,

where C̃λ,d :=
(b− 1)1+λ

bλ(α−1)(b(2 min(α,d)+1)λ − b)
<∞. This in turn implies that

θλ(qτ+1) ≤ 1

bm − 1

∑
u⊆{1:τ+1}
τ+1∈u

γλv(u)D
λ|v(u)|C̃

|u|
λ,d .

We write τ + 1 = (j1 − 1)d + d1, for some j1, d1 ∈ N such that d1 ≤ d. Define
the partition of {1 : τ} given by S̄ ∪ S, where Sj := {(j − 1)d + 1 : jd} for all

1 ≤ j < j1, S :=
⋃j1−1
j=1 Sj and S̄ := {(j1 − 1)d+ 1 : (j1 − 1)d+ d1 − 1}, that is

the empty set when d1 = 1. Then, each u ⊆ {1 : τ + 1} containing τ + 1 can be
partitioned by the singleton {τ + 1}, some w̄ ⊆ S̄ and some ∅ 6= wj ⊆ Sj for all
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j ∈ v(u).

∑
u⊆{1:τ+1}
τ+1∈u

γλv(u)D
λ|v(u)|C̃

|u|
λ,d =

∑
w̄⊆S̄

∑
w⊆S

γv(w)∪{j1}D
λ(|v(w)|+1)C̃

|w|+|w̄|+1
λ,d

= C̃λ,dD
λ
∑
w̄⊆S̄

C̃
|w̄|
λ,d

∑
v⊆{1:j1−1}

γv∪{j1}D
λ|v|

∑
wj⊆Sj ,∀j∈v
v(

⋃
wj)=v

∏
j∈v

C̃
|wj |
λ,d

= C̃λ,dD
λ

∑
w̄⊆S̄

C̃
|w̄|
λ,d

 ∑
v⊆{1:j1−1}

γv∪{j1}D
λ|v|

∏
j∈v

∑
wj⊆Sj
wj 6=∅

C̃
|wj |
λ,d

= C̃λ,dD
λ(1 + C̃λ,d)

d1−1
∑

v⊆{1:j1−1}

γv∪{j1}D
λ|v|
(

(1 + C̃λ,d)
d − 1

)|v|
.

In particular, defining Cλ,a,d := Dλ
(

(1+max{C̃λ,d, C̆λ,d})a−1
)

, to include the

case τ = 1, we get

θλ(qτ+1) ≤ 1

bm − 1
(Cλ,d1,d − Cλ,d1−1,d)

∑
v⊆{1:j1−1}

γv∪{j1}C
|v|
λ,d,d.

Finally, by Jensen’s inequality and inductive hypothesis

Bλα,d,γ(qτ+1, p) ≤ Bλα,d,γ(qτ , p) + θλ(qτ+1)

≤ 1

bm − 1

 ∑
∅6=v⊆{1:j0−1}

γλvC
|v|
λ,d + Cλ,d0,d

∑
v⊆{1:j0−1}

γλv∪{j0}C
|v|
λ,d


+

1

bm − 1
(Cλ,d1,d − Cλ,d1−1,d)

∑
v⊆{1:j1−1}

γv∪{j1}C
|v|
λ,d,d

=
1

bm − 1

 ∑
∅6=v⊆{1:j1−1}

γλvC
|v|
λ,d + Cλ,d1,d

∑
v⊆{1:j1−1}

γλv∪{j1}C
|v|
λ,d

 ,
where in the last step we used that either j1 = j0 and d1 = d0 + 1, so that the
equality is trivial, or j1 = j0 + 1 and d1 = 1, hence Cλ,d1−1,d = 0 and the result
follows.

Theorem 2.7. Let s,m, α, d ∈ N and b be a prime number. Let γ = (γv)v⊆{1:s}
be a sequence of positive weights. Then there exist p ∈ Zb[x], q ∈ Zb[x]ds con-
structed with a CBC algorithm such that Dd(Π(P (q, p))) := {y0, . . . ,ybm−1}

has the property that, for all λ ∈
(

1

2 min(α, d) + 1
, 1

]
, there is a positive con-

stant C := C(b, α, d, λ) such that for all F ∈ Ws,γ,α ([0, 1]s) satisfying that
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∂νyF ∈ C0([0, 1]s) for all ν ∈ {0 : α}s, there holds

E

( 1

bm

bm−1∑
i=0

F (yi)− Is(F )

)2


≤ 1

(bm − 1)
1
λ

 ∑
∅6=v⊆{1:s}

γλvC
|v|

 1
λ

‖F‖2Ws,γ,α([0,1]s) .

Proof. By Proposition 2.6 applied with τ = ds, that is j0 = s and d0 = d, there
holds

Bα,d,γ(q, p) ≤ 1

(bm − 1)
1
λ

 ∑
∅6=v⊆{1:s}

γλvC
|v|

 1
λ

,

where C is the constant Cλ,d of the proposition. The claim then follows by
combining the above inequality with (1.2) and Corollary 2.5.

Corollary 2.8. Under the assumptions of Theorem 2.7, let N = bm be the
number of nodes of the corresponding QMC rule. If we choose d ≥ α and the
weights in product form

γv =
∏
j∈v

γj , with γj ∼ j−(2α+1) ∀j ≥ 1,

then for all s and for any δ > 0, the L2(Ω) error of the QMC approximation

decays as O(N−(α+ 1
2 )+δ) as N →∞, with constants independent of s.

Proof. For product weights and for all λ ∈
(

1
2 min(α,d)+1 , 1

]
, there holds

∑
∅6=v⊆{1:s}

γλvC
|v| ≤ exp

C∑
j≥1

γλj

 <∞

and the claim follows.

All the results of this chapter are still valid when Vs,γ,α(F ) <∞, as shown
in [13]. The key difference here is that the space Ws,γ,α is not based on an
`2 norm over u ⊆ {1 : s}, but it only entails a weaker `∞ criterion, which is
more indicated for QMC applications to PDEs. Furthermore, all the integrands
in the following chapters will always be smooth, so that this weighted Sobolev
space can be used with no loss of information.
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Chapter 3

QMC-FEM for affine
parametric, elliptic PDEs

Let D ⊂ Rd be a bounded interval if d = 1, or a polygon if d = 2; we wish
to study an elliptic partial differential equation on D with uncertain diffusion
coefficient a(x,y). We distinguish between the space variable x ∈ D and the

parameters y ∈ U :=
[
− 1

2 ,
1
2

]N
and we assume that for (yj)j≥1 ∈ U , the yj

are independent and identically uniformly distributed. These parameters model
the uncertainty of the following problem: given smooth functions a(·,y), f , find
u(x,y) solving the parametric equation{

−div
(
a(x,y)∇u(x,y)

)
= f(x) x ∈ D,

u(x,y) = 0 x ∈ ∂D.
(3.1)

The operators div and ∇ are only with respect to x and we assume that f is
independent of y. In the subsequent sections, we will only consider a weaker
formulation of this elliptic PDE. Hence, in Section 3.1 we will describe in detail
convenient hypothesis on a(·,y) and f for the existence and uniqueness of a
weak solution. For now, we only mention the assumption that the dependence
of the diffusion coefficients on the parameters is affine, that is

a(x,y) = ā(x) +
∑
j≥1

yjψj(x) (3.2)

for some ā ∈ L∞(D) and a suitable sequence (ψj)j≥1 ⊂ L∞(D). These functions
can be interpreted as fluctuations of the diffusion coefficient around the nominal
value given by a(x,0) = ā(x). The triple (U,⊗j≥1L([−1/2, 1/2]),⊗j≥1dyj) is
a probability space that reflects independence and uniform distribution of the
uncertainties. Our goal is to approximate numerically ensemble averages of
(functionals of) the solution u on this probability space, that is

I(G(u)) :=

∫
U

G(u(·,y))dy. (3.3)

The functional G is often referred to as quantity of interest in the literature. We
further assume that G is not influenced by the uncertainty of the equation and
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that we are able to evaluate it exactly. Since the problem depends on infinitely
many variables, the first step is to reduce it to a finite number s of dimensions;
the truncated integral will be denoted by Is(G(us)). Next, the integral has
to be approximated by a quadrature rule, that we choose to be an interlaced
scrambled QMC rule and that we denote by Is(·;P IS). Finally, each evaluation
of us(·,y) consists of the solution of a PDE, so that we have to take into account
the corresponding discretisation error and replace us with the Galerkin solution
us,h

∥∥I(G(u))− Is(G(us,h);P IS)
∥∥
L2(U)

≤‖I(G(u))− Is(G(us))‖L2(U)

+
∥∥Is(G(us))− Is(G(us);P

IS)
∥∥
L2(U)

+
∥∥Is(G(us − us,h);P IS)

∥∥
L2(U)

≤|I(G(u))− Is(G(us))| (3.4)

+
∥∥Is(G(us))− Is(G(us);P

IS)
∥∥
L2(U)

(3.5)

+ sup
y∈U

∣∣G(us(·,y)− us,h(·,y))
∣∣. (3.6)

These sources of error will be discussed in Section 3.2, Section 3.3 and Section
3.4 respectively.

3.1 Well-posedness analysis

In this section the definition of the problem will be made formal by introducing
some assumptions that will ensure well-posedness. We follow the description of
[12] based on locally supported uncertainties. The first step is to consider the
weak formulation of our problem. We denote by X the Hilbert space H1

0 (D)
and by X ′ its (topological) dual H−1(D); by multipling (3.1) by a test function
v ∈ X and integrating by parts we obtain∫

D

a(x,y)∇u(x,y) · ∇v(x)dx =

∫
D

f(x)v(x)dx ∀v ∈ X.

With a slight abuse of notation motivated by the Riesz representation theorem,
we identify with f the functional in X ′ given by the right hand side. Moreover,
we denote the left hand side by the bilinear form By(u(·,y), v), so that we are
left with the following equation: given f ∈ X ′ and y ∈ U , find u(·,y) ∈ X such
that

By(u(·,y), v) = f(v) ∀v ∈ X. (3.7)

In order to ensure existence and uniqueness of the solution of this problem, we
introduce the assumptions that for some constants āmin, āmax ∈ R, there holds

0 < āmin ≤ ā(x) ≤ āmax, a.e. x ∈ D (3.8)

and that for a sequence (bj)j≥1 ⊆ (0, 1] and a κ ∈ (0, 1),∥∥∥∥
∑
j≥1 |ψj |/bj

2ā

∥∥∥∥
L∞(D)

≤ κ. (3.9)
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In particular, (3.8) is sufficient to have uniform ellipticity of the nominal equa-
tion, while (3.9) states that the fluctuations are relatively small with respect
to the nominal diffusion coefficient. At this stage, we do not require any extra
hypothesis on (bj)j≥1; however, for the QMC error bound we will also impose
that this sequence belongs to `p(N) for some p ∈ (0, 1). In [21], the assumptions
were similar, but imposed stronger bounds on the ψj . In fact, there it was
required smallness (compared to ā) of the sum

∑
j≥1 ‖ψj‖L∞(D). While this is

easier to work with by means of abstract operator equations, it prevents from
exploiting local support of the ψj . In turn, (3.9) controls the overlap of the ψj
and it is more indicated to analyse the case of B-Splines, NURBS, Wavelets or
other locally supported fluctuation functions.

To prove well-posedness we will make use of a weaker version of (3.9), ob-
tained by setting bj = 1 for all j. Then we get, for some 0 < κ̄ < 1,∥∥∥∥

∑
j≥1 |ψj |

2ā

∥∥∥∥
L∞(D)

≤ κ̄. (3.10)

Proposition 3.1. Under the assumptions in (3.8) and (3.10) for κ̄ ∈ (0, 1),
the problem in (3.7) has unique solution for all y ∈ U . Moreover, there holds
the following bound, uniformly in y:

‖u(·,y)‖X ≤
‖f‖X′

āmin(1− κ̄)
.

Proof. Following [12, Section 2], the proof is an application of the Lax-Milgram
lemma; we only have to check that By is a continuous and coercive bilinear
form on X×X, with bounds independent of y. Exploiting the affine parametric
structure in (3.2), we get

a(x,y) ≥ āmin + āmin

∑
j≥1 yjψj(x)

ā(x)

≥ āmin

(
1−

∑
j≥1 |ψj(x)|

2ā(x)

)
a.e. x ∈ D

and similarly

a(x,y) ≤ āmax

(
1 +

∑
j≥1 |ψj(x)|

2ā(x)

)
a.e. x ∈ D.

Thus,

By(w,w) ≥ āmin(1− κ̄) ‖w‖2X > 0 ∀w ∈ X\{0},
|By(w, v)| ≤ āmax(1 + κ̄) ‖w‖X ‖v‖X ∀w, v ∈ X

and the claim follows.

We sometimes identify a continuous bilinear form B : X × X → R with
a bounded linear operator A ∈ L(X,X ′) via B(w, v) = 〈Aw, v〉, where the
angled brackets denote the duality product in X,X ′. Hence, By induces a linear
operator Ay and coercivity of the former translates into bounded invertibility

of the latter with the relation
∥∥A−1

y

∥∥
L(X′,X)

≤ 1

āmin(1− κ̄)
.
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3.2 Dimension truncation

Fix a finite s ∈ N. The infinite sum in (3.2) has to be truncated to the first
s terms, which is equivalent to setting yj = 0 ∀j > s. As a consequence,
Proposition 3.1 applies and, for all y ∈ U , we get weak solutions us(·,y) :=
u(·, (y1, . . . , ys, 0, 0, . . .)) ∈ X of the equation

∫
D

ā(x) +
∑
j≤s

yjψj(x)

∇us(x,y) · ∇v(x)dx = f(v) ∀v ∈ X.

We denote the right hand side above by Bs,y(us(·,y), v) and the corresponding
induced linear operator by As,y. The coercivity estimate Bs,y(w,w) ≥ āmin(1−
κ̄) ‖w‖2X is valid for all w ∈ X\{0} following the same lines as in Proposition

3.1, thus
∥∥A−1

s,y

∥∥
L(X′,X)

≤ 1

āmin(1− κ̄)
. Moreover, the integral in (3.3) is over

an infinite dimensional set, hence we also restrict it to the subset
[
− 1

2 ,
1
2

]s
. We

then define for F : U → R,

Is(F ) :=

∫
[− 1

2 ,
1
2 ]
s
F (y)dy1 . . . dys.

Note that formally Is(G(us)) → I(G(u)) as s → ∞. The following proposition
has been proved in [12, Proposition 5.1] and allows to control the truncation
error of the QMC approximation in (3.4).

Proposition 3.2. Assume the conditions (3.8), (3.9) and (3.10) for κ, κ̄ ∈ (0, 1)
and κ̄ ≤ κ. If (bj)j≥1 ⊆ (0, 1], then for all s ∈ N and for all y ∈ U there holds

‖u(·,y)− us(·,y)‖X ≤
āmax ‖f‖X′
ā2

min(1− κ̄)2
sup
j≥s+1

bj . (3.11)

Moreover, if
κāmax

āmin(1− κ̄)
sup
j≥s+1

bj < 1 ,

then for every G ∈ X ′ holds

|I(G(u))− Is(G(us))| ≤

‖G‖X′ ‖f‖X′
(1− κ̄)āmin − āmaxκ supj≥s+1{bj}

κ2ā2
max

(1− κ̄)2ā2
min

(
sup
j≥s+1

bj

)2

. (3.12)

Proof. To simplify the notation we omit the dependence of u, us on y. By
definition, As,yus = f = Ayu; therefore,

0 = As,y(u− us) + (Ay −As,y)u =⇒ u− us = −A−1
s,y(Ay −As,y)u.

The tail operator ∆s,y := Ay −As,y has the following expression

∆s,yw : v 7→
∫
D

∑
j>s

yjψj∇w∇v. (3.13)
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Thus, the condition (3.9) gives

∥∥A−1
s,y∆s,y

∥∥
L(X,X)

≤ 1

āmin(1− κ̄)

∥∥∥∥∥∥
∑
j>s

|yj ||ψj |

∥∥∥∥∥∥
L∞(D)

≤ āmax

āmin(1− κ̄)

∥∥∥∥
∑
j>s |ψj |/bj

2ā

∥∥∥∥
L∞(D)

sup
j≥s+1

bj

≤ κāmax

āmin(1− κ̄)
sup
j≥s+1

bj . (3.14)

With the estimate from Proposition 3.1 we can conclude

‖u− us‖X ≤
āmax ‖f‖X′
ā2

min(1− κ̄)2
sup
j≥s+1

bj

and the first part of the theorem is proved. The assumption and (3.14) gives∥∥A−1
s,y∆s,y

∥∥
L(X,X)

< 1. Denoting by I the identity operator in X, the Neumann

series below converges absolutely:

A−1
y = (I +A−1

s,y∆s,y)−1A−1
s,y =

∑
k≥0

(A−1
s,y∆s,y)kA−1

s,y.

Since
[
− 1

2 ,
1
2

]
has Lebesgue measure 1 and us = u(·, (y1, . . . , ys, 0, 0, . . .)) for

every finite s, then for all G ∈ X ′ there holds I(G(us)) = Is(G(us)) by Fubini’s
theorem. Therefore, using linearity of G,

|I(G(u))− Is(G(us))| = |I(G(u− us))| = |I(G(A−1
y f −A−1

s,yf))|

≤
∑
k≥1

∣∣∣G ◦ I ((A−1
s,y∆s,y)kA−1

s,yf
) ∣∣∣

≤ ‖G‖X′
∑
k≥1

∣∣∣I ((A−1
s,y∆s,y)kus

) ∣∣∣
where, for all u ∈ X, in the last two expressions we interpret I(u) as the Bochner
integral with respect to the measure ⊗j≥1dyj =: dy. We now show that the

term for k = 1 vanishes. Let Us :=
[
− 1

2 ,
1
2

]N\{1:s}
. Clearly, As,y and us are

independent of yj for j > s and are measurable with respect to the product
σ-algebra B(

[
− 1

2 ,
1
2

]s
)⊗ {∅, Us}, then applying Fubini’s theorem,

∫
U

A−1
s,y∆s,yusdy =

∫
[− 1

2 ,
1
2 ]
s
A−1
s,y

∫
Us

∆s,ydy{1:s}cusdy{1:s}.

Recall the definition (3.13) of the tail operator ∆s,y: using the identity
∫ 1

2

− 1
2

yjdyj =

0 for j > s, the inner integral above vanishes. By a geometric series argument
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we can finally deduce

|I(G(u))− Is(G(us))| ≤ ‖G‖X′
∑
k≥2

∣∣∣I ((A−1
s,y∆s,y)kus

) ∣∣∣
≤ ‖G‖X′ sup

y∈U

∑
k≥2

∥∥A−1
s,y∆s,y

∥∥k
L(X,X)

‖us‖X

≤
‖G‖X′ ‖us‖X

1− κāmax supj≥s+1 bj
āmin(1−κ̄)

(
κāmax

āmin(1− κ̄)
sup
j≥s+1

bj

)2

≤
‖G‖X′ ‖f‖X′

(1− κ̄)āmin − āmaxκ supj≥s+1{bj}
κ2ā2

max

(1− κ̄)2ā2
min

(
sup
j≥s+1

bj

)2

.

3.3 Parametric regularity

With the definition of the norm for Ws,γ,α

(
[− 1

2 ,
1
2 ]s
)

as in Section 1.6 in mind,
we investigate the behaviour of the derivatives of u(x,y) with respect to the
parameters y. For simplicity, we will make use of the following multiindex
notation. For ν = (ν1, ν2, . . .) ∈ NN

0 , define |ν| :=
∑
j≥1 νj , ν! :=

∏
j∈supp(ν) νj !

and supp(ν) = {j ∈ N : νj 6= 0}. For sequences b = (bj)j≥1, we also write
bν :=

∏
j∈supp(ν) b

νj
j . Let F := {ν ∈ NN

0 : |ν| < ∞} be the countable set of
finitely supported multiindices.

Let Ũ := [−1, 1]N be an auxiliary domain and fix a scaling factor η ∈ (κ, 1).
For every fixed y ∈ U , we introduce a new diffusion coefficient parametrised by
z ∈ Ũ .

ãy(x, z) := ā(x) +
∑
j≥1

yjψj(x) +
∑
j≥1

zj
η−1 − 2|yj |

2bj
ψj(x).

Define the shorthand notation Ty(z) :=

(
yj +

η−1 − 2|yj |
2bj

zj

)
j≥1

, so that for

all y, z, we have ãy(·, z) = a(·, Ty(z)). This allows to extend the set U of
admissible parameters in such a way that the value z = 0 gives the equation
in (3.1); we will then consider the solution ũy(x, z) of the equation below and
analyse its Taylor expansion with a real variable approach:{

−div
(
ãy(x, z)∇ũy(x, z)

)
= f(x) x ∈ D,

ũy(x, z) = 0 x ∈ ∂D.
(3.15)

Note the affine parametric structure with respect to z of ãy(x, z); we can
then use similar arguments as the previous sections to prove well-posedness.
In particular, by (3.8) and (3.10), for the new nominal operator āy(x) :=
ā(x) +

∑
j≥1 yjψj(x) one obtains

0 < (1− κ̄)āmin ≤ ā(x) +
∑
j≥1

yjψj(x) ≤ (1 + κ̄)āmax a.e. x ∈ D (3.16)
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and by (3.9), together with the assumption that bj ≤ 1, the new fluctuations

ψy,j :=
η−1−2|yj |

2bj
ψj satisfy∥∥∥∥∥∥

∑
j≥1

η−1−2|yj |
2bj

|ψj |
ā+

∑
j≥1 yjψj

∥∥∥∥∥∥
L∞(D)

≤

∥∥∥∥∥
∑
j≥1 |ψj |/(2ηbj)−

∑
j≥1 |yj ||ψj |/bj

ā−
∑
j≥1 |yj ||ψj |

∥∥∥∥∥
L∞(D)

≤
∥∥∥∥
∑
j≥1 |ψj |/bj

2ηā

∥∥∥∥
L∞(D)

≤ κ

η
< 1. (3.17)

These two inequalities allow to apply Proposition 3.1, so that the weak formu-
lation of (3.15) has a unique weak solution satisfying ∀y ∈ U,z ∈ Ũ that

‖ũy(·, z)‖X ≤
‖f‖X′

(1− κ̄)āmin(1− κ
η )

and ∀y ∈ U, z ∈ Ũ there holds ũy(·, z) = u(·, Ty(z)) ∈ X. For all y ∈ U,ν ∈ F ,
define the Taylor coefficients

ty,ν :=
1

ν!
∂νz ũy(·, z)

∣∣
z=0

.

In particular, there holds that (‖ty,ν‖X)ν∈F ∈ `2(F) uniformly in y ∈ U . We
now present the proof of this summability property, given in [12, Lemma 4.1].

Lemma 3.3. Assume the conditions (3.8), (3.9) and (3.10) for κ, κ̄ ∈ (0, 1)
and κ̄ ≤ κ. Let η ∈ (κ, 1) be arbitrary, fixed. Then, for every y ∈ U , it holds
that ∑

ν∈F
‖ty,ν‖2X ≤

η(1 + κ̄)

(η − κ)(1− κ̄)3

āmax

ā3
min

‖f‖2X′ <∞. (3.18)

Proof. Recall the multivariate product rule for sufficiently regular functions g, h.

∂νz (g(z)h(z)) :=
∑
τ≤ν

(
ν

τ

)
∂τz g(z)∂ν−τz h(z)

where τ ≤ ν means that τj ≤ νj ∀j ∈ N. Consider the weak formulation of
(3.15) and differentiate it with respect to z; since f is independent of z, we
obtain∑

τ≤ν

(
ν

τ

)∫
D

∂τz ãy(x, z)∇∂ν−τz ũy(x, z) · ∇v(x)dx = 0 ∀v ∈ X.

The coefficient ãy(x, z) is affine parametric for the nominal operator āy(x) and
the fluctuations ψy,j(x). Thus, the only non-zero terms correspond to τ = 0
or τ = ej with j ∈ supp(ν), where ej denotes the sequence with 1 in the j-
th position and zeros elsewhere. Setting z = 0 and dividing by ν! we get a
recurrence relation for the Taylor coefficients:∫

D

āy(x)∇ty,ν(x) · ∇v(x)dx = −
∑

j∈supp(ν)

∫
D

ψy,j∇ty,ν−ej (x) · ∇v(x)dx.
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If we choose v = ty,ν , Young inequality and (3.17) give∫
D

āy|∇ty,ν |2dx ≤ 1

2

∑
j∈supp(ν)

∫
D

|ψy,j |
(
|∇ty,ν |2 + |∇ty,ν−ej |2

)
dx

≤ κ

2η

∫
D

āy(x)|∇ty,ν |2 +
1

2

∑
j∈supp(ν)

∫
D

|ψy,j ||∇ty,ν−ej |2dx.

Define the energy norm ‖u‖2āy :=
∫
D
āy|∇u|2 for all u ∈ X, thus we proved that(

1− κ

2η

)
‖ty,ν‖2āy ≤

1

2

∑
j∈supp(ν)

∫
D

|ψy,j ||∇ty,ν−ej |2dx.

Fix k ∈ N; summing over all the ν ∈ F such that |ν| = k leads to∑
ν∈F
|ν|=k

‖ty,ν‖2āy ≤
η

2η − κ
∑
ν∈F
|ν|=k

∑
j∈supp(ν)

∫
D

|ψy,j ||∇ty,ν−ej |2dx

=
η

2η − κ
∑
ν∈F
|ν|=k−1

∑
j≥1

∫
D

|ψy,j ||∇ty,ν |2dx

≤ κ

2η − κ
∑
ν∈F
|ν|=k−1

‖ty,ν‖2āy

where in the last inequality we applied again (3.17). Iteration of this argument
implies that

∞∑
k=0

∑
ν∈F
|ν|=k

‖ty,ν‖2āy ≤
∞∑
k=0

(
κ

2η − κ

)k
‖ũy(·,0)‖2āy

=
2η − κ
2η − 2κ

‖u(·,y)‖2āy

≤ η

η − κ
‖u(·,y)‖2āy .

Observe that by (3.16) the two norms ‖·‖X and ‖·‖āy are equivalent since

(1− κ̄)āmin ‖u‖2X ≤ ‖u‖
2
āy
≤ (1 + κ̄)āmax ‖u‖2X .

Hence, recalling the estimate from Proposition 3.1 we conclude∑
ν∈F
‖ty,ν‖2X ≤

1

(1− κ̄)āmin

∑
ν∈F
‖ty,ν‖2āy ≤

η(1 + κ̄)

(η − κ)(1− κ̄)3

āmax

ā3
min

‖f‖2X′

and the proof is complete.

In the next step we find a sequence of weights that implies finiteness of the
Ws,γ,α

([
− 1

2 ,
1
2

]s)
norm. As in [12], the locality of the fluctuations leads to

weights in product form, that is

γu =
∏
j∈u

γj for some (γj)j≥1 ⊂ (0,+∞).
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In the following proof we will use the observation that, since Ty(z) is affine and
ũy(·, z) = u(·, Ty(z)), the chain rule gives the relation

ty,ν =
1

ν!

 ∏
j∈supp(ν)

(
η−1 − 2|yj |

2bj

)νj ∂νyu(·,y) (3.19)

that links directly the Taylor coefficients with the partial derivatives of u.

Proposition 3.4. Fix s, α ∈ N. Assume the conditions (3.8), (3.9) and (3.10)
for κ, κ̄ ∈ (0, 1) and κ̄ ≤ κ. Let η ∈ (κ, 1) be arbitrary, fixed. Then, if we choose
the weights γ = (γu)u⊆{1:s} in the product form

γu =
∏
j∈u

α∑
ν=1

[(
2bj

1− η

)ν
ν!

]2

(3.20)

there exist a real constant K1 <∞ independent of s such that

‖G(us)‖Ws,γ,α([− 1
2 ,

1
2 ]s) ≤ K1.

Proof. Define F := G(us), then by (3.19) and Lemma 3.3, for all y ∈ U and ν
with supp(ν) = u, there holds

∣∣∂νyF (y)
∣∣ ≤ ‖G‖X′ ν!

∏
j∈u

(
2bj

η−1 − 2|yj |

)νj ‖ty,ν‖X
≤ ‖G‖X′ ν!

∏
j∈u

(
2bj

1− η

)νj ‖ty,ν‖X
≤ K1

∏
j∈u

(
2bj

1− η

)νj
νj !

 ,

where

K1 :=

√
η(1 + κ̄)

(η − κ)(1− κ̄)3

āmax

ā3
min

‖f‖X′ ‖G‖X′ .

Hence, by Jensen’s integral inequality and the estimate above we get

‖F‖2Ws,γ,α([− 1
2 ,

1
2 ]s) ≤ sup

u⊆{1:s}

1

γu

∑
ν∈{1:α}|u|

sup
y∈[− 1

2 ,
1
2 ]s

∣∣∂νyF (y)
∣∣2

≤ K2
1 sup
u⊆{1:s}

1

γu

∑
ν∈{1:α}|u|

∏
j∈u

[(
2bj

1− η

)νj
νj !

]2

≤ K2
1 sup
u⊆{1:s}

1

γu

∏
j∈u

α∑
ν=1

[(
2bj

1− η

)ν
ν!

]2

.

The claim then follows from the definition of the weights, upon taking square
roots.
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Observe that the summability of the Taylor coefficients is not necessary in
the proof above, since we only used uniform boundedness of those, indepen-
dently of the dimension s. The definition of the product weights given in the
previous proposition is independent of s; this is consistent with our goal, since
we aim to find a dimension independent upper bound on the approximation er-
ror

∥∥I(G(u))− Is(G(us,h);P IS)
∥∥
L2(U)

. Therefore, the definition of (γu)u⊆{1:s}

in (3.20) can be extended with no modifications to every set u with |u| <∞ due
to the arbitrariety of s. We make use of this observation to bound the QMC
error.

Proposition 3.5. Fix s, α ∈ N and C ∈ (0,+∞). Assume that b = (bj)j∈N ∈
`p(N) for some p ∈ (0, 1), that bj ∈ (0,+∞) for all j ∈ N and choose γ =
(γu)u⊆{1:s} as in (3.20). Then, for all λ ∈ [p/2, 1] there exists a constant K2

independent of s such that ∑
u⊆{1:s}

γλuC
|u| ≤ K2. (3.21)

Proof. The claim is true if and only if for all λ ∈ [p/2, 1] there holds∑
u⊂N
|u|<∞

γλuC
|u| <∞.

Observe that if xj > 0 for all j ∈ N, then

∑
|u|<∞

∏
j∈u

xj =
∏
j≥1

(1 + xj) = exp

∑
j≥1

log(1 + xj)

 ≤ exp

∑
j≥1

xj

 .
This and the Jensen’s inequality (

∑
ck)λ ≤

∑
cλk , valid for a positive sequence

(ck)k and 0 < λ ≤ 1, ensure that

∑
|u|<∞

γλuC
|u| ≤

∑
|u|<∞

∏
j∈u

C

[
α∑
ν=1

(
2bj

1− η

)2ν

(ν!)2

]λ

≤ exp

∑
j≥1

C

[
α∑
ν=1

(
2bj

1− η

)2ν

(ν!)2

]λ
≤ exp

C α∑
ν=1

∑
j≥1

(
2bj

1− η

)2λν

(ν!)2λ


≤ exp

C α∑
ν=1

(ν!)2λ

(
2

1− η

)2λν∑
j≥1

b2λνj

 .
It remains to prove that

∑
j≥1 b

2λν
j < ∞ ∀ν = 1, . . . , α. Since b ∈ `p(N) and

bj > 0 ∀j, there exists j0 large such that bj ≤ 1 ∀j ≥ j0. Thus, for all λ ≥ p/2∑
j≥1

b2λνj ≤
∑
j<j0

b2λνj +
∑
j≥j0

bpj <∞.
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We are now ready to apply the results of Section 2.3 to bound the QMC
error in (3.5). First of all, note that the interlaced scrambled points P IS must
be shifted from the box [0, 1]s to [− 1

2 ,
1
2 ]s, in order to be consistent with the

integration domain. This does not affect the computation in Theorem 2.7 and
the result remains valid with no loss of generality.

Theorem 3.6. Let s ∈ N. Assume that (3.8) and (3.9) hold for κ ∈ (0, 1) and
a sequence b = (bj)j∈N satisfying bj ∈ (0, 1] and b ∈ `p(N) for some p ∈ (0, 1).
Then, there exists an interlaced scrambled polynomial lattice point set P IS of

cardinality N and of order d :=

⌊
1

p
− 1

2

⌋
+1 constructed with the CBC algorithm

of Section 2.3, such that for all λ ∈ [p/2, 1] there holds

E
[
|Is(G(us))− Is(G(us);P

IS)|2
]
≤ K 1

(N − 1)
1
λ

,

where K is a positive constant independent of s.

Proof. Let d, α ∈ N. By Theorem 2.7, there exists a CBC constructed P IS of
cardinality N satisfying

E
[
|Is(G(us))− Is(G(us);P

IS)|2
]
≤

≤ 1

(N − 1)
1
λ

 ∑
∅6=u⊆{1:s}

γλuC
|u|

 1
λ

‖G(us)‖2Ws,γ,α([− 1
2 ,

1
2 ]s)

for all λ ∈
(

1

2 min(α, d) + 1
, 1

]
. Recall that the condition (3.9) with bj ∈ (0, 1]

implies (3.10), so that we can apply Proposition 3.4 and 3.5. Therefore, if we

define K :=
(
K1 ·max(1,K2)

1
p

)2

, we obtain the desired bound for λ ∈ [p/2, 1],

provided that
1

2 min(α, d) + 1
<
p

2
.

It remains to show the order of the QMC rule. Being G(us) ∈ Ws,γ,α

(
[− 1

2 ,
1
2 ]s
)

for arbitrary α ∈ N, the condition above is equivalent to

1

2d+ 1
<
p

2
⇐⇒ 1

p
− 1

2
< d.

Since d ∈ N, it is sufficient to choose d =

⌊
1

p
− 1

2

⌋
+ 1 and thus the claim

follows.

If one compares these results with those in [12], where interlaced polynomial
lattice point sets were used, it is clear that the main difference is the introduction
of scrambling in the quadrature rule. As a result, the interlacing factor (or order)

of the QMC rule can be reduced from
⌊

1
p

⌋
+ 1 to

⌊
1
p −

1
2

⌋
+ 1. On the other

hand, we did not bound a worst case, deterministic error but the L2(U) error
because of the extra randomisation. Regarding the order of convergence, there
is essentially no difference: here, the decay of the QMC error when N → ∞ is

of O(N−
1
p ) independently of the dimension s, while in [12, Corollary 6.4] was

instead of O(N−
1
p+ε) for all ε > 0.
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3.4 High order Galerkin discretisation

To complete the error analysis, it remains to estimate the Galerkin discretisation
error in (3.6). The first assumption that we introduce simplifies the construction
of a FE space on the physical domain of the equation.

D ⊂ Rd is a bounded polygon if d=2 or a bounded interval if d=1. (3.22)

It is well known that if the coefficients a(·,y) are sufficiently smooth and if
f ∈ Hm(D) for some m ∈ N0, then the corresponding solution of (3.1) satisfies
u ∈ Hm+2(D), provided that D is smooth or convex. This results are known as
full regularity shift of elliptic operators. On the other hand, the solution u on
non-convex polygonal domains in R2 can develop singularities at the corners.
Therefore, we introduce a class of Sobolev spaces that allow to recover a similar
regularity shift property. The idea introduced in [19] is to allow the functions
in this space to have less regularity at the corners of the polygon, introducing
weights that vanish on those points. To make this precise, we define the weight
function

rD(x) :=
∏
j∈J
|x− cj |,

where {c1, . . . , cJ} is the (finite) set of the corners of D. We also introduce the

notation rβD(x) =
∏
j∈J |x − cj |βj for a tuple β = (β1, . . . , βJ). Then, for some

given m, l ∈ N0 with l ≤ m, we define the spaces Hm,l
β (D) as the completion of

C∞(D̄) under the norms

‖v‖Hm,lβ (D) :=

‖v‖2Hl−1(D) +

m∑
|α|=l

∥∥∥|Dαv|rβ+|α|−l
D

∥∥∥2

L2(D)

1/2

(3.23)

‖v‖Hm,0β (D) :=

 m∑
|α|=0

∥∥∥|Dαv|rβ+|α|
D

∥∥∥2

L2(D)

1/2

(3.24)

with the usual multiindex notation Dα for derivatives in x. We also denote
H0,0
β (D) by L2

β(D). These spaces are called Babuška-Kondrat’ev spaces and
must not be confused with the weighted Sobolev spaces introduced in Sec-
tion 1.6. We prove in the next lemmas some useful properties of those spaces.
Throughout the proofs in this section, C denotes a generic constant only depen-
dent on m,D and the inequalities in the assumptions (3.8), (3.9), (3.10) that
can change within the same formula, unless differently specified.

Lemma 3.7. If m,m′, l ∈ N0 satisfy l ≤ m ≤ m′, then Hm′,l
β (D) ⊆ Hm,l

β (D)
with continuous embedding. Moreover, if m, l, l′ ∈ N0 satisfy l ≤ l′ ≤ m, then

Hm,l′

β (D) ⊆ Hm,l
β (D) with continuous embedding.

Proof. Clearly ‖v‖Hm,lβ (D) ≤ ‖v‖Hm′,lβ (D)
if l ≤ m ≤ m′. For the second state-

ment, assume l > 0 and l′ = l + 1 ≤ m. Since |rD(x)| ≤ diam(D)J <∞, for all
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v ∈ Hm,l+1
β (D) it holds,

‖v‖2Hm,lβ (D) = ‖v‖2Hl−1(D) +
∑
|α|=l

∥∥∥|Dαv|rβD
∥∥∥2

L2(D)

+

m∑
|α|=l+1

∥∥∥|Dαv|rβ+|α|−l
D

∥∥∥2

L2(D)

≤ ‖v‖2Hl−1(D) + C
∑
|α|=l

‖|Dαv|‖2L2(D)

+ C

m∑
|α|=l+1

∥∥∥|Dαv|rβ+|α|−(l+1)
D

∥∥∥2

L2(D)

≤ C ‖v‖2Hm,l+1
β (D) .

The case l = 0 is analogous. Iterating this inequality gives the claim when
l′ > l + 1.

The next lemma rephrases [2, equation 3.2].

Lemma 3.8. If D ⊂ R2 is bounded and βj < 1 for all j = 1, . . . , J , then
L2
β(D) ⊆ H−1(D) with continuous embedding.

Proof. Every f ∈ L2
β(D) defines a linear functional H1

0 (D) 3 v →
∫
D
fv ∈ R.

Note that r−βD ∈ Lp∗ for some p∗ > 2. Hence, for p = 2p∗

p∗−2 Hölder inequality
gives ∣∣∣∣∫

D

fv

∣∣∣∣ ≤ ∥∥∥frβD∥∥∥
L2(D)

∥∥∥vr−βD ∥∥∥
L2(D)

≤ C ‖f‖L2
β(D) ‖v‖Lp(D) .

By the Sobolev embedding ‖v‖Lp(D) ≤ C ‖v‖H1
0 (D) we conclude ‖f‖H−1(D) ≤

C ‖f‖L2
β(D).

Lemma 3.9.

1. Let w ∈ Wm,∞(D) and v ∈ Hm,l
β (D). Then there is a constant C depen-

dent on m, l,D such that,

‖wv‖Hm,lβ (D) ≤ C ‖w‖Wm,∞(D) ‖v‖Hm,lβ (D) .

2. Let w ∈ Wm+1,∞(D) and v ∈ Hm+1,l+1
β (D). Then there is a constant C

dependent on m,D such that,

‖∇w · ∇v‖Hm,lβ (D) ≤ C ‖w‖Wm+1,∞(D) ‖v‖Hm+1,l+1
β (D) .
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Proof. For the first item, we observe the inequality
(
α
γ

)
≤ 2|α|. Hence,

‖wv‖2Hm,lβ (D) =
∑
|α|≤m

∫
D

(|Dα(wv)|rβ+|α|−l
D )2

≤
∑
|α|≤m

∫
D

∑
γ≤α

(
α

γ

)
|Dα−γwDγv|rβ+|α|−l

D

2

≤ ‖w‖2Wm,∞(D)

∑
|α|≤m

∫
D

∑
γ≤α

(
α

γ

)
|Dγv|rβ+|α|−l

D

2

≤ 2m+1 ‖w‖2Wm,∞(D)

∑
|α|≤m

∑
γ≤α

∥∥∥|Dγv|rβ+|α|−l
D

∥∥∥2

L2(D)

≤ C ‖w‖2Wm,∞(D)

‖v‖2Hl−1(D) +

m∑
|γ|=l

∥∥∥|Dγv|rβ+|γ|−l
D

∥∥∥2

L2(D)


where in the last step we used that |rD| is bounded and that each γ appears at
most 2m times in the double sum. For the second item, we similarly get

‖∇w · ∇v‖2Hm,lβ (D) ≤ C ‖w‖
2
Wm+1,∞(D) ‖∇v‖

2
Hm,lβ (D)

and

‖∇v‖2Hm,lβ (D) ≤ C

‖v‖2Hl(D) +

m+1∑
|γ|=l+1

∥∥∥|Dγv|rβ+|γ|−1−l
D

∥∥∥2

L2(D)


≤ C ‖v‖2Hm+1,l+1

β (D)

and the proof is complete.

Next, we impose extra regularity for the data f and the quantity of interest
G; this will later determine the order of convergence of the Galerkin solution.
For m,m′ ∈ N0 we require

f ∈ Hm,0
β (D), G ∈ Hm′,0

β (D). (3.25)

Moreover, the diffusion coefficients a(·,y) need to be regular in space, uniformly
with respect to the parameters y. In particular, we assume that

a(·,y) ∈Wm+1,∞(D) with sup
y∈U
‖a(·,y)‖Wm+1,∞(D) <∞. (3.26)

For all h > 0, let Xh be a family of nested dense subspaces of H1
0 (D), each

satisfying Mh := dim(Xh) = O(h−d) for d ∈ {1, 2}. Then, we assume that there
exist h0 > 0 and C > 0 such that for all h < h0 and for all v ∈ Hm+2,2

β ∩H1
0 (D)

there holds the discretisation property

inf
vh∈Xh

‖v − vh‖H1
0 (D) ≤ Ch

m+1 ‖v‖Hm+2,2
β (D) . (3.27)
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This is satisfied, for example, with the explicit construction of the FE triangu-
lation given in [6, Theorems 0.3 and 4.4], for piecewise polynomials of degree
at most m + 1 and continuous on D̄, where h is the parameter describing the
size of the elements. A similar construction is also available for 3-dimensional
polyhedra (see [4]).

The regularity shift of the Laplacean stated in the following theorem was
proved in [1, Theorem 2.1].

Theorem 3.10. For a polygon D ∈ R2, denote by ωj the interior angle of the
corner cj for j = 1, . . . , J . Let m ∈ N0 and βj ∈ [0, 1) be such that βj > 1−π/ωj.
Then, there is a constant C depending on m,D such that if ∆v ∈ Hm,0

β (D) and

v ∈ H1
0 (D), there holds that v ∈ Hm+2,2

β (D) and

‖v‖Hm+2,2
β (D) ≤ C ‖∆v‖Hm,0β (D) <∞.

Next, we want to extend the regularity shift to the class of elliptic PDEs of
our interest.

Proposition 3.11. Define the multiindices β as in the statement of Theorem
3.10. Let f ∈ Hm,0

β (D) and assume that (3.8), (3.10) and (3.26) hold. Then,

the solution u(·,y) of (3.1) belongs to Hm+2,2
β (D) and there exist a positive

constant C independent of y, such that

‖∆u(·,y)‖Hm,0β (D) ≤ C ‖f‖Hm,0β (D) <∞.

Proof. Since a(·,y) ∈W 1,∞(D) and ess inf a(·,y) > 0 there holds in L2(D)

−∆u(·,y) =
1

a(·,y)
(f +∇a(·,y)∇u(·,y)).

Therefore, by Lemma 3.9, we get for θy :=
∥∥∥ 1
a(·,y)

∥∥∥
Wm,∞(D)

that

‖∆u(·,y)‖Hm,0β (D)≤Cθy
(
‖f‖Hm,0β (D)+ ‖a(·,y)‖Wm+1,∞(D) ‖u(·,y)‖Hm+1,1

β (D)

)
.

For all α with |α| ≤ m, the multivariate Faà Di Bruno’s formula as stated in
[14, Corollary to Proposition 1 and 2] gives

Dα

(
1

a(·,y)

)
=
∑
P∈Π

MP
(−1)|P||P|!
a(·,y)|P|+1

∏
γ∈P

Dγa(·,y),

where Π is the set of all partitions of the multiset (i.e. set with repetitions)
{1, 1, . . . , 1︸ ︷︷ ︸
α1 times

, 2, 2, . . . , 2︸ ︷︷ ︸
α2 times

} and the MP ∈ N denote the multiplicities of the sum-

mands. In particular, |γ| ≤ m so that the assumptions on a(·,y) imply that

Dα
(

1
a(·,y)

)
∈ L∞(D) and supy∈U θy < ∞. It remains to show that for all

m ∈ N0,y ∈ U , there holds ‖u(·,y)‖Hm+1,1
β (D) ≤ C ‖f‖Hm,0β (D). By the contin-

uous embedding L2
β(D) ⊆ H−1(D) we get

‖u(·,y)‖2H1,1
β (D) ≤ ‖u(·,y)‖2L2(D) + C

∑
|α|=1

‖|Dαu(·,y)|‖2L2(D)

≤ C ‖u(·,y)‖2H1
0 (D) ≤ C ‖f‖

2
H−1(D) ≤ C ‖f‖

2
L2
β(D) .
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This proves the case m = 0. For m ≥ 1 induction gives

‖u(·,y)‖Hm+1,1
β (D) ≤ C ‖u(·,y)‖Hm+1,2

β (D)

≤ C ‖∆u(·,y)‖Hm−1,0
β (D) ≤ C ‖f‖Hm,0β (D) ,

where we used Lemma 3.7 and Theorem 3.10.

Recall that Bs,y denotes the bilinear form By from (3.7) but with trun-
cated series for j > s, so that Bs,y(us(·,y), v) = f(v) for all v ∈ H1

0 (D). The
parametric Galerkin solution us,h(·,y) ∈ Xh satisfies for all y ∈ U ,

Bs,y(us,h(·,y), vh) = f(vh) ∀vh ∈ Xh.

Since Xh ⊂ H1
0 (D), Proposition 3.1 applies and there is a unique Galerkin

solution satisfying

sup
0<h<h0

sup
y∈U
‖us,h(·,y)‖H1

0 (D) ≤
‖f‖H−1(D)

āmin(1− κ̄)
.

This in particular gives uniform stability of the numerical solutions with respect
to both the parameters and the discretisation level. Moreover, there holds the
Galerkin orthogonality property for all y ∈ U ,

Bs,y(us(·,y)− us,h(·,y), vh) = 0 ∀vh ∈ Xh.

The following proposition includes a Céa estimate and the results above.

Proposition 3.12. Let f ∈ Hm,0
β (D) be satisfied for β as in Theorem 3.10 and

assume that the conditions (3.8), (3.10) and (3.26) hold. Let h0 ∈ (0,+∞) such
that Xh satisfies the approximation property (3.27) for all h ∈ (0, h0). Then, if
0 < h < h0, there exist a positive constant C independent of h, f, s and y such
that

‖us(·,y)− us,h(·,y)‖H1
0 (D) ≤ C ‖f‖Hm,0β (D) h

m+1.

Proof. The continuity and coercivity estimates in the proof of Proposition 3.1
prove that, for all vh ∈ Xh,

‖us(·,y)− us,h(·,y)‖2H1
0 (D) ≤ CBs,y

(
us(·,y)− us,h(·,y), us(·,y)− us,h(·,y)

)
= CBs,y

(
us(·,y)− us,h(·,y), us(·,y)− vh

)
≤ C ‖us(·,y)− us,h(·,y)‖H1

0 (D)‖us(·,y)− vh‖H1
0 (D) .

Thus, quasioptimality of the Galerkin approximation holds

‖us(·,y)− us,h(·,y)‖H1
0 (D) ≤ C inf

vh∈Xh
‖us(·,y)− vh‖H1

0 (D) .

Applying the condition (3.27), Theorem 3.10 and Proposition 3.11 we obtain
the claim.

From Proposition 3.12, it is straightforward to deduce that
supy∈U

∣∣G(us(·,y)−us,h(·,y))
∣∣ ≤ C ‖G‖H−1(D) ‖f‖Hm,0β (D) h

m+1. However, us-

ing a Aubin-Nitsche duality argument it is possible to show faster convergence
of this quantity, provided that G is more regular.
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Theorem 3.13. Let f ∈ Hm,0
β (D), G ∈ Hm′,0

β (D) be satisfied for some m,m′ ∈
N0 and β as in Theorem 3.10. Assume that the conditions (3.8),(3.10) and
(3.26) hold and let h0 ∈ (0,+∞) be such that Xh satisfies the approximation
property (3.27) for all h ∈ (0, h0). Then, if 0 < h < h0, there exist a positive
constant C independent of h, f,G and y such that there holds

sup
y∈U

∣∣G(us(·,y)− us,h(·,y))
∣∣ ≤ C ‖f‖Hm,0β (D) ‖G‖Hm′,0β (D)

hm+m′+2.

Proof. For all y ∈ U , consider the parametric adjoint problem: given G ∈
Hm′,0
β (D), find vG(·,y) ∈ H1

0 (D) such that

Bs,y(w, vG(·,y)) = G(w) ∀w ∈ H1
0 (D).

By the Lax-Milgram lemma there is a unique solution to this problem. For all
y ∈ U and for all vh ∈ Xh,∣∣G(us(·,y)− us,h(·,y))

∣∣ =
∣∣Bs,y(us(·,y)− us,h(·,y), vG(·,y))

∣∣
=
∣∣Bs,y(us(·,y)− us,h(·,y), vG(·,y)− vh)

∣∣
≤ C ‖us(·,y)− us,h(·,y)‖H1

0 (D) ‖vG(·,y)− vh‖H1
0 (D) .

The first term can be bounded by Proposition 3.12; for the second, we take the
infimum over vh ∈ Xh. By (3.27) and (3.10), we are left with∣∣G(us(·,y)− us,h(·,y))

∣∣ ≤ C ‖f‖Hm,0β (D) h
m+m′+2 ‖∆vG(·,y)‖Hm,0β (D) .

Since Bs,y is symmetric, vG(·,y) solves (3.1) weakly with right hand side G.
Therefore, Proposition 3.11 gives ‖∆vG(·,y)‖Hm,0β (D) ≤ C ‖G‖Hm′,0β (D)

and the

proof is complete.

3.5 Combined QMC-FEM error analysis

The next theorem summarises the main results of this chapter, namely Propo-
sition 3.2 and Theorems 3.6 and 3.13. We express the full integration error in
terms of the truncation dimension s, the number N of QMC points and the
dimension Mh of the FE space.

Theorem 3.14. Let D ⊂ Rd, d ∈ {1, 2} be a bounded interval or a polygon.
Let the smallness conditions (3.8),(3.9) be satisfied for a sequence b = (bj)j≥1 ∈
`p(N) for some p ∈ (0, 1) and bj ∈ (0, 1]. Assume the regularity conditions
(3.25), (3.26) for some β as in Theorem 3.10. Then, for sufficiently large s and
Mh, an interlaced scrambled polynomial lattice rule of order b 1

p −
1
2c+ 1 coupled

with high order FEM realises the bound∥∥I(G(u))− Is(G(us,h);P IS)
∥∥
L2(U)

≤ C

(
N−1/p +M

−(m+m′+2)/d
h +

(
sup
j≥s+1

bj

)2
)

, (3.28)

where C is a positive constant independent of N, s,Mh and depends linearly on
‖f‖Hmβ (D) and ‖G‖Hm′β (D).
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This result gives a criteria to couple the values of N and Mh to obtain
the error below some tolerance O(ε). In particular, for given dimension d,
summability p and τ := m+m′ + 2 we can choose

M
τ
d

h ∼ N
1
p = O(ε−1)

and the value of s accordingly. As a consequence, we must run a FEM solver
with Mh = O(ε−d/τ ) degrees of freedom N = O(ε−p) times. Additionally, it
will be shown in Section 4.1 that the CBC algorithm to compute the high order

QMC rule requires O(αsN log(N)) = O
(

(b 1
p −

1
2c+ 1)ε−p log(ε−1)

)
operations

where the smoothness parameter α is related to p as in Theorem 3.6.

3.6 Multi-Level QMC

The error-vs-work analysis discussed previously, motivates a Multi-Level in-
tegration, which goal is to reduce the computational cost while keeping the
convergence rate unchanged. This method can be understood as a progressive
refinement of an initially coarse approximation. Each iteration, that is called
level, involves a different choice of s,N and Mh that will be coupled in a suit-
able way. We denote by s`, N` and M` = Mh` the respective parameters at
level ` = 0, . . . , L where L ∈ N is the last level. For example, the computational
cost can be controlled if N` is progressively decresed while increasing M`; this
means that we evaluate less times the solution of the PDE on finer meshes.
Similar arguments apply for the dimension parameters s` and we then assume
that s` ≥ s`−1. To explain the method, we define u` := us`,h` and we use the
convention u−1 ≡ 0. Then we can write the telescopic sum

G(uL) =

L∑
`=0

G(u` − u`−1).

Next, we apply different quadrature formulas Qs`,N` to each summand. We
denote by QL the resulting quadrature formula where each Qs`,N` is chosen to be
an interlaced scrambled polynomial lattice rule with N` points in s` dimensions:

QL(G(uL)) :=

L∑
`=0

Qs`,N`(G(u` − u`−1)). (3.29)

Proposition 3.4 provides the conditions for boundedness of the integrand, but
since we are interested in differences G(u`−u`−1), we want to extend some previ-
ous results to additionally obtain smallness of the integrands inWs,γ,α

(
[− 1

2 ,
1
2 ]s
)
.

In Section 3.3, we used the dilated coordinates Ty(z) with respect to the
same sequence (bj)j≥1 appearing in the sparsity assumption (3.9). As a conse-
quence, we had in (3.17) a bound of the same form of (3.10). That smallness
condition was sufficient in the case of single level QMC, while now we also need a
sparsity condition similar to (3.9). Following the construction in [11, Section 4],

we can dilate the coordinates with respect to the sequence (b̂j)j≥1 := (b1−θj )j≥1

for some θ ∈ [0, 1). If we repeat the computation in this setting, we obtain the
same results with the choice of weights

γ̂u =
∏
j∈u

α∑
ν=1

[(
2b̂j

1− η

)ν
ν!

]2

, (3.30)
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provided that b̂ ∈ `p(N) for some p ∈ (0, 1), which is a stronger assumption if
θ ∈ (0, 1). On the other hand, the sparsity loss in the QMC error allows to

obtain, for every y ∈ U , that for āy := a(·,y) and ψy,j :=
η−1 − 2|yj |

b̂j
ψj there

holds ∥∥∥∥∥
∑
j≥1 |ψy,j |/bθj

āy

∥∥∥∥∥
L∞(D)

≤ κ

η
< 1. (3.31)

In this section we denote by ũy the solution of (3.15) if we use b̂ as input for the
dilation coordinate. Moreover, ũy,s(·, z) = ũy(·, (z1, . . . , zs, 0, 0, . . .)) denotes
the corresponding solution with truncated diffusion coefficient and ũy,h`(·, z)
is the Galerkin solution. The new scaling permits to control the dimension
truncation differences as in the following theorem, which proof is omitted here
but can be found in [11, Theorem 1 and Remark 2].

Theorem 3.15. Let the assumption (3.8), (3.9) be satisfied for the sequence b.
There exists a constant C < ∞ such that for every y ∈ U and for every s ∈ N
and every θ ∈ [0, 1]∑

ν∈F

1

(ν!)2

∥∥∥∂νz (ũy(·, z)− ũy,s(·, z)
)∣∣
z=0

∥∥∥2

H1
0 (D)

≤ C ‖f‖2H−1(D) sup
j>s

b2θj .

Moreover, the same estimate holds if we replace ũy(·, z) and ũy,s(·, z) by the
respective Galerkin solutions ũy,h(·, z) and ũy,s,h(·, z), with constant C inde-
pendent of h.

Next, in order to bound Galerkin error differences, we apply the Leibniz rule
to the equation −div(a∇u) = f : for sufficiently smooth a, u and f there holds

−a∆Dαu−
∑

0 6=γ≤α

(
α

γ

)
Dγa∆Dα−γu−

∑
γ≤α

(
α

γ

)
∇Dγa·∇Dα−γu = Dαf. (3.32)

We also need certain regularity of f and ãy, that allows to apply the above
formula for a = ãy(·, z) and u = ũy(·, z), where equality is meant in L2

β+|α|(D).

In fact, it is sufficient to have f ∈ Hm,0
β (D) and ãy(·, z) ∈ Wm+1,∞(D). This

can be seen as in [3, Lemma 4.3], with the only difference that the polygonal
domain D requires Babuška-Kondrat’ev spaces in our setting. In terms of the
initial diffusion coefficient a(·,y), it is sufficient to assume that all the ψj belong
to Wm+1,∞(D) and that, for all α with |α| ≤ m+ 1,

sup
y∈U
‖a(·,y)‖Wm+1,∞(D) <∞ and

∑
j≥1

|Dαψj |
b̂j

∈ L∞(D). (3.33)

In particular, if we define

Kα :=

∥∥∥∥∥ ∑
06=γ≤α

(
α

γ

)|Dγ āy|+
∑
j≥1

|Dγψy,j |


+
∑
γ≤α

(
α

γ

)|∇Dγ āy|+
∑
j≥1

|∇Dγψy,j |

∥∥∥∥∥
L∞(D)

,
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we also get Kα <∞ for all α with |α| ≤ m. We are now ready to prove a bound
on higher order derivatives of the Taylor coefficients (cp. Lemma 3.3).

Proposition 3.16. Let m ∈ N0, f ∈ Hm,0
β . Assume that the diffusion coeffi-

cient of the PDE (3.1) satisfies (3.33) and that β is defined as in Theorem 3.10.
Moreover, assume that conditions (3.8), (3.9) hold with 0 < bj ≤ 1 for all j ≥ 1.
Then, for all α : |α| ≤ m, there is a constant C > 0 independent of f and y
such that

∑
ν∈F

1

(ν!)2

∥∥∥∆
(
∂νz ũy(·, z)

∣∣
z=0

)∥∥∥2

Hm,0β (D)
≤ C ‖f‖2Hm,0β (D) .

Proof. Throughout the proof, C denotes a generic constant independent of f
and y that can change within the same formula. Define ty,ν = 1

ν!∂
ν
z ũy(·, z)

∣∣
z=0

.

Then, It is sufficient to prove that for all α with |α| ≤ m, there holds

∑
ν∈F
‖∆Dαty,ν‖2L2

β+|α|(D) ≤ C ‖f‖
2
Hm,0β (D) . (3.34)

For |α| = 0, this follows from [11, Proposition 2]. Assuming that (3.34) holds for
all γ with |γ| < |α|, we will prove it for α, arguing similarly as in [3, Theorem

4.2]. Let φα := r
β+|α|
D and define for all ν ∈ F the quantities

cαν :=

∫
D

āy|∆Dαty,ν |2φ2
α δαν :=

∫
D

|∇Dαty,ν |2φ2
α.

Being āy > 0 a.e. in D, it is sufficient to show that
∑
ν∈F c

α
ν ≤ C ‖f‖2Hm,0β (D).

The pointwise multiplication by φα is an isometric isomorphism from L2
β+|α|(D)

to L2(D). Therefore, (3.32) can be written as follows: for all v ∈ L2(D), there
holds

∫
D

(Dαf)vφα =−
∫
D

(ãy∆Dαũy) vφα −
∫
D

 ∑
06=γ≤α

(
α

γ

)
Dγ ãy∆Dα−γ ũy

 vφα

−
∫
D

∑
γ≤α

(
α

γ

)
∇Dγ ãy · ∇Dα−γ ũy

 vφα.

We take 1
ν!∂

ν
z of this relation for some ν ∈ F\{0} and we evaluate at z = 0. As

a result, we have a recursive formula for the (derivatives of) Taylor coefficients,
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given by

∫
D

(āy∆Dαty,ν)vφα = −
∫
D

 ∑
j∈supp(ν)

ψy,j∆D
αty,ν−ej

 vφα

−
∫
D

 ∑
06=γ≤α

(
α

γ

)
Dγ āy∆Dα−γty,ν

 vφα

−
∫
D

∑
γ≤α

(
α

γ

)
∇Dγ āy · ∇Dα−γty,ν

 vφα

−
∫
D

 ∑
06=γ≤α

(
α

γ

) ∑
j∈supp(ν)

Dγψy,j∆D
α−γty,ν−ej

 vφα

−
∫
D

∑
γ≤α

(
α

γ

) ∑
j∈supp(ν)

∇Dγψy,j · ∇Dα−γty,ν−ej

 vφα.

Next, Proposition 3.11 implies that ∆Dαty,ν ∈ L2
β+|α|(D) so we can choose the

test function v = (∆Dαty,ν)φα. If we apply Young’s inequality, we then obtain
that for all ε > 0, there holds

cαν ≤ ε
∫
D

∑
0 6=γ≤α

(
α

γ

)
|Dγ āy|∆Dαty,ν |2φ2

α

+
1

4ε

∫
D

∑
06=γ≤α

(
α

γ

)
|Dγ āy||∆Dα−γty,ν |2φ2

α

+ ε

∫
D

∑
γ≤α

(
α

γ

)
|∇Dγ āy|∆Dαty,ν |2φ2

α

+
1

4ε

∫
D

∑
γ≤α

(
α

γ

)
|∇Dγ āy||∇Dα−γty,ν |2φ2

α

+
1

2

∫
D

∑
j∈supp(ν)

|ψy,j ||∆Dαty,ν |2φ2
α +

1

2

∫
D

∑
j∈supp(ν)

|ψy,j ||∆Dαty,ν−ej |2φ2
α

+ ε

∫
D

∑
06=γ≤α

(
α

γ

) ∑
j∈supp(ν)

|Dγψy,j ||∆Dαty,ν |2φ2
α

+
1

4ε

∫
D

∑
06=γ≤α

(
α

γ

) ∑
j∈supp(ν)

|Dγψy,j ||∆Dα−γty,ν−ej |2φ2
α

+ ε

∫
D

∑
γ≤α

(
α

γ

) ∑
j∈supp(ν)

|∇Dγψy,j ||∆Dαty,ν |2φ2
α

+
1

4ε

∫
D

∑
γ≤α

(
α

γ

) ∑
j∈supp(ν)

|∇Dγψy,j ||∇Dα−γty,ν−ej |2φ2
α

=: T1 + T2 + . . .+ T10.
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First, we apply (3.17) to T5 and T6, obtaining∑
|ν|=k

(T5 + T6) ≤ κ

2η

∑
|ν|=k

cαν +
κ

2η

∑
|ν|=k−1

cαν . (3.35)

Defining K ′α = Kα
āy,min

(see (3.16)), we also have∑
|ν|=k

(T1 + T3 + T7 + T9) ≤ εK ′α
∑
|ν|=k

cαν . (3.36)

Analogously, applying that rα−γD is bounded for all γ ≤ α, for all ε > 0 there is
a finite constant Cε depending also on Kα such that

∑
|ν|=k

(T2 + T4 + T8 + T10) ≤ Cε
∑

06=γ≤α

k∑
|ν|=k−1

cα−γν (3.37)

+ Cε
∑
γ≤α

k∑
|ν|=k−1

δα−γν .

Combining (3.35), (3.36) and (3.37) we get(
1− εK ′α −

κ

2η

) ∑
|ν|=k

cαν ≤
κ

2η

∑
|ν|=k−1

cαν + Cε
∑

0 6=γ≤α

k∑
|ν|=k−1

cα−γν

+ Cε
∑
γ≤α

k∑
|ν|=k−1

δα−γν .

We choose ε > 0 satisfying
κ

2η
< 1−εK ′α−

κ

2η
, that is ε <

η − κ
K ′αη

; thus, summing

over k ≥ 1 yields,

∑
0 6=ν∈F

cαν ≤ C

cα0 +
∑

0 6=γ≤α

∑
ν∈F

cα−γν +
∑
γ≤α

∑
ν∈F

δα−γν

 .

From āy ∈ L∞(D) we obtain the inequalities

cα0 ≤ C ‖u(·,y)‖2Hm+2,2
β (D) ≤ C ‖f‖

2
Hm,0β (D) ,

cα−γν ≤ C
∥∥∆Dα−γty,ν

∥∥2

L2
β+|α−γ|(D)

,

where we also used Theorem 3.10 and Proposition 3.11. Finally, again Theorem
3.10 gives ∑

γ≤α

δα−γν ≤ C ‖ty,ν‖2H|α|+1,1
β (D)

≤ C ‖∆ty,ν‖2H|α|−1,0
β (D)

= C
∑

06=γ≤α

∥∥∆Dα−γty,ν
∥∥2

L2
β+|α−γ|(D)

.
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Therefore, the claim follows by the inductive hypothesis that, for all 0 6= γ ≤ α,
there exists a constant C > 0 such that∑

ν∈F

∥∥∆Dα−γty,ν
∥∥2

L2
β+|α−γ|(D)

≤ C ‖f‖2Hm,0β (D) .

Remark As in [11, Remark 3], we have that for any finite s, the truncated
solution ũy,s(·, z) satisfies ∂νz ũy,s(·,0) = ∂νz ũy(·,0) if supp(ν) ⊆ {1 : s} and
∂νz ũy,s(·,0) = 0 else. Therefore, Proposition 3.16 also gives an upper bound for
the truncated solutions because it only consists of more terms.

Once we have summability of higher derivatives of the Taylor coefficients, we
can generalise [11, Proposition 3] and [11, Theorem 2], to have an upper bound
on Galerkin error differences.

Proposition 3.17. Let the assumption in (3.8), (3.9), (3.33) be satisfied for
0 < κ < η < 1 and let β be as in Theorem 3.10. Then there exists a constant
C > 0 such that for every y ∈ U , f ∈ Hm,0

β (D) and for every ` = 0, . . . , L there
holds∑
ν∈F

1

(ν!)2

∥∥∥∂νz (ũy(·, z)− ũy,h`(·, z)
)∣∣
z=0

∥∥∥2

H1
0 (D)

≤ CM−2(m+1)/d
` ‖f‖2Hm,0β (D) .

Moreover the same estimate holds if we replace ũy(·, z) and ũy,h`(·, z) by the
truncated solutions ũy,s`(·, z) and ũy,h`,s`(·, z), respectively, with constant C
independent of s`.

Proof. We show the first claim following the steps of [11, Proposition 3], while
the second follows along the lines of the remark above. For any y ∈ U and
ν ∈ F we define the Taylor coefficient as

ty,ν :=
1

ν!
∂νz ũy(·, z)

∣∣
z=0

and t`y,ν :=
1

ν!
∂νz ũy,h`(·, z)

∣∣
z=0

.

The recursive formula of Taylor coefficients (see proof of Lemma 3.3) implies
that ∀v ∈ X`∫

D

āy∇(ty,ν − t`y,ν) · ∇v = −
∑

j∈supp(ν)

∫
D

ψy,j∇(ty,ν−ej − t`y,ν−ej ) · ∇v,

where X` := Xh` is a subspace of H1
0 (D) that satisfies the approximation

property (3.27). For any y ∈ U we define the dilated Galerkin projection
Py,` : H1

0 → X` via the relation∫
D

āy∇(w − Py,`w) · ∇v = 0 ∀v ∈ X`.

If we test the recursion formula with v = Py,`(ty,ν−t`y,ν) ∈ X`, Cauchy-Schwarz
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inequality and (3.17) yield, for all k ≥ 1,∑
|ν|=k

∫
D

āy|∇Py,`(ty,ν − t`y,ν)|2

≤
∑
|ν|=k

∫
D

āy∇(ty,ν − t`y,ν) · ∇Py,`(ty,ν − t`y,ν)

≤ 1

2

∑
|ν|=k

∫
D

∑
j∈supp(ν)

|ψy,j |
(
|∇(ty,ν−ej − t`y,ν−ej )|

2 + |∇Py,`(ty,ν − t`y,ν)|2
)

≤ κ

2η

∑
|ν|=k−1

∫
D

āy|∇(ty,ν − t`y,ν)|2 +
κ

2η

∑
|ν|=k

∫
D

āy|∇Py,`(ty,ν − t`y,ν)|2.

Define the energy norm ‖u‖2āy :=
∫
D
āy|∇u|2 for all u ∈ H1

0 (D), hence we can
rewrite the above estimate as∑

|ν|=k

∥∥Py,`(ty,ν − t`y,ν)
∥∥2

āy
≤ κ

2η − κ
∑

|ν|=k−1

∥∥ty,ν − t`y,ν∥∥2

āy
. (3.38)

Let I denote the identity operator in H1
0 (D). By triangular inequality and

Young’s inequality, there holds∑
|ν|=k

∥∥ty,ν − t`y,ν∥∥2

āy
≤
∑
|ν|=k

(∥∥Py,`(ty,ν − t`y,ν)
∥∥
āy

+ ‖(I − Py,`)ty,ν‖āy
)2

≤ (1 + ε)
∑
|ν|=k

∥∥Py,`(ty,ν − t`y,ν)
∥∥2

āy

+

(
1 +

1

ε

) ∑
|ν|=k

‖(I − Py,`)ty,ν‖2āy .

Thus, summing over k ≥ 1, (3.38) allows to deduce

∑
0 6=ν∈F

∥∥ty,ν − t`y,ν∥∥2

āy
≤ (1 + ε)κ

2η − κ
∑
ν∈F

∥∥ty,ν − t`y,ν∥∥2

āy

+

(
1 +

1

ε

) ∑
0 6=ν∈F

‖(I − Py,`)ty,ν‖2āy .

Since κ < η < 1 there is an ε > 0 small with
(1 + ε)κ

2η − κ
< 1; for such choice there

is a constant C <∞ satisfying

∑
06=ν∈F

∥∥ty,ν − t`y,ν∥∥2

āy
≤ C

∥∥ty,0 − t`y,0∥∥2

āy
+

∑
0 6=ν∈F

‖(I − Py,`)ty,ν‖2āy

 .

Recall that the energy norm and the H1
0 (D) norm are equivalent. Therefore, it

remains to bound
∥∥ty,0 − t`y,0∥∥2

H1
0 (D)

and
∑

0 6=ν∈F ‖(I − Py,`)ty,ν‖
2
H1

0 (D). For

the first term we apply the steps of Proposition 3.12 (with By instead of Bs,y).
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For the second, a similar reasoning and an application of Propostion 3.16 allow
to conclude ∑

06=ν∈F

‖(I − Py,`)ty,ν‖2H1
0 (D) ≤ Ch

2(m+1)
` ‖f‖2Hm,0β (D) .

Since M` = O(h−d` ) (see 48), the proof is complete.

Theorem 3.18. Let the assumption in (3.8), (3.9), (3.33) be satisfied and let β
be as in Theorem 3.10. Then there exists a constant C > 0 such that for every

y ∈ U , f ∈ Hm,0
β (D), G ∈ Hm′,0

β (D) and for every ` = 0, . . . , L there holds

∑
ν∈F

1

(ν + 1)!ν!

∣∣∣∂νzG(ũy(·, z)− ũy,h`(·, z)
)∣∣
z=0

∣∣∣2
≤ CM−2(m+m′+2)/d

` ‖f‖2Hm,0β (D) ‖G‖
2

Hm
′,0

β (D)
.

Moreover the same estimate holds if we replace ũy(·, z) and ũy,h`(·, z) by the
truncated solutions ũy,s`(·, z) and ũy,h`,s`(·, z) respectively.

Proof. The proof follows by the Aubin-Nitsche duality argument along the same
lines of [11, Theorem 2] and using Proposition 3.17.

We are now ready to present the main result of the Thesis. By coupling
high order FEM with high order QMC integration, we construct a Multi-Level
QMC quadrature rule using interlaced scrambled lattice points. As a result, the
error decay of the single level QMC is preserved, while the computational cost is
reduced consistently. First, we summarise many of the results obtained so far in
one statement, to control the error in terms of the number of integration points,
the dimension of the FE space and the dimension truncation of the integral.

Theorem 3.19. Let L,α ∈ N, p, θ ∈ (0, 1) satisfy that α ≥ b 1
p −

1
2c+ 1 and θ <

1−p. Let γ, γ̂ be defined as in (3.20) and (3.30) respectively. Assume that (3.8)
and (3.9) are satisfied for a sequence b ∈ `p(N) with bj ∈ (0, 1] and assume that

(3.33) is satisfied for b̂ := ((α + 1)b1−θj )j≥1. Let f ∈ Hm,0
β (D), G ∈ Hm′,0

β (D)
and supy∈U ‖a(·,y)‖Wm+1,∞(D) < ∞, where β was defined in the statement of
Theorem 3.10. Then, there exists a Multi-Level interlaced scrambled polynomial
lattice rule QL of order b 1

p −
1
2c+ 1 with s` ≥ s`−1,M` ≥M`−1 and N` ≤ N`−1

for all ` = 1, . . . , L, satisfying∥∥I(G(u))−QL(G(uL))
∥∥
L2(U)

≤ C1

(
sup
j>sL

b2j +M
−m+m′+2

d

L +N
−1/p
0

)

+C1

L∑
`=1

N
− 1−θ

p

`

(
M
−m+m′+2

d

`−1 + δs`,s`−1
sup

j>s`−1

bθj

)
,

where C1 := C ‖G‖
Hm
′,0

β (D)
‖f‖Hm,0β (D), for some finite constant C independent

of s`, N`,M`, f and G.

Proof. In this proof we omit the domain of the weighted spacesWs,γ,α (·), which
we assume fixed equal to [− 1

2 ,
1
2 ]s. Since for all ` = 1, . . . , L, ⊗s`j=s`−1

[− 1
2 ,

1
2 ] has

Lebesgue measure 1 and there holds u`(·,y) = uh`(·, (y1, . . . , ys` , 0, 0, . . .), an
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application of Fubini’s theorem implies that Is`(G(u`−1)) = Is`−1
(G(u`−1));

hence

I(G(u))−QL(G(uL)) = I(G(u))− IsL(G(uL))

+

L∑
`=0

[
Is`(G(u` − u`−1))−Qs`,N`(G(u` − u`−1))

]
.

Note that b ∈ `p(N) implies that γ̂ ∈ `
p

1−θ (N), with p
1−θ ∈ (0, 1) by assumption.

Triangular inequality and (3.4), together with Theorem 2.7 (applied with d = α)
give∥∥I(G(u))−QL(G(uL))

∥∥
L2(U)

≤ |I(G(u))− IsL(G(uL))|

+

L∑
`=0

‖Is`(G(u` − u`−1))−Qs`,N`(G(u` − u`−1))‖L2(U)

≤ |I(G(u))− IsL(G(usL))|+ sup
y∈U
|(G(usL − uL))|

+ CN
−1/p
0 ‖G(u0)‖Ws0,γ,α

+

L∑
`=0

CN
−(1−θ)/p
` ‖G(u` − u`−1)‖Ws`,γ̂,α

.

We note that, by Proposition 3.5, the constant C is independent of `. Since bj
decay to zero, we can choose s̃ the smallest integer such that for all sL =: s ≥ s̃,
(3.12) holds. If instead sL < s̃, we can apply (3.11) to obtain similarly

|I(G(u))− IsL(G(usL))| ≤ C ‖G‖Hm′β (D) ‖f‖Hmβ (D)

(
sup
j>sL

bj · max
j=sL,...,s̃

bj

)
= C ‖G‖Hm′β (D) ‖f‖Hmβ (D)

(
sup
j>sL

b2j

)
.

Next, we apply Theorem 3.13 to bound

sup
y∈U
|(G(usL − uL))| ≤ C ‖G‖Hm′β (D) ‖f‖Hmβ (D)M

− τd
L ,

where we define τ := m+m′+2. Moreover, Lemma 3.3 holds also for the Taylor
coefficients of the FEM solution uh0 , because only the variational formulation
is used in its proof. Therefore, Proposition 3.4 can be applied when ` = 0 to
obtain

‖G(us0,h0)‖Ws0,γ,α
≤ C ‖G‖H−1(D) ‖f‖H−1(D) .

Following the steps of [11, Theorem 3], we split the Galerkin differences from
the dimension truncation in the weighted space norm:

‖G(u` − u`−1)‖Ws`,γ̂,α

≤
∥∥G(us`,h` − us`,h`−1

)
∥∥
Ws`,γ̂,α

+
∥∥G(us`,h`−1

− us`−1,h`−1
)
∥∥
Ws`,γ̂,α

.

Both terms can be treated as in the proof of Proposition 3.4. In particular,
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Theorem 3.13 implies∥∥G(us`,h` − us`,h`−1
)
∥∥
Ws`,γ̂,α

≤ ‖G(us` − us`,h`)‖Ws`,γ̂,α

+
∥∥G(us` − us`,h`−1

)
∥∥
Ws`,γ̂,α

≤ C ‖f‖Hm,0β (D) ‖G‖Hm′,0β (D)

(
M
− τd
` +M

− τd
`−1

)
≤ C ‖f‖Hm,0β (D) ‖G‖Hm′,0β (D)

M
− τd
`−1,

where the coefficient (α + 1) in the definition of b̂ compensates for the factor
1

(ν+1)! in Theorem 3.13. Similar arguments, but applying instead Theorem 3.15,

yield∥∥G(us`,h`−1
− us`−1,h`−1

)
∥∥
Ws`,γ̂,α

≤ Cδs`,s`−1
‖G‖H−1(D) ‖f‖H−1(D) sup

j>s`−1

bθj

where δi,j denotes the Kronecker’s delta. The proof is hence complete.

3.7 Error vs.work analysis of Multi-Level QMC

Similarly as in Section 3.5, we discuss how to match the values of (N`)`=0,...,L,
(M`)`=0,...,L and (s`)`=0,...,L in the Multi-Level setting, for fixed L. We want to
control the total work necessary given a tolerance O(ε) for the error, extending
to high order the analysis in [12, Section 8] and [11, Section 6]. First, we
assume that the fluctuation functions (ψj)j≥1 define a multiresolution analysis
(MRA) in L2(D), D ⊂ Rd and verify the smallness and sparsity condition of
the fluctuations in this case. In particular, we take a function ψ ∈ Wm+1,∞(D)

with ‖ψ‖L∞(D) = 1 and compact support, such that all the ψj can be obtained
by scaling and translation of ψ: for some σ, ρ > 0 to be determined later, for all
l ∈ N0 and suitable x0, . . . , xk̄l ∈ Rd, we define

ψl,k(x) := σ2−ρlψ(2l(x− xk)).

We also ask that, for each resolution level l ∈ N0, there holds k̄l = O(2dl) <∞.
Hence, we have a well-defined bijective enumeration (l, k) 7→ j ∈ N given by the
lexicographic order and we can identify ψj := ψl,k. As a consequence, choosing

∀` = 0, . . . , L, s` = 2l̄+1 − 1 for some l̄, we are including all and only the
fluctuations ψl,k up to resolution level l̄. In order to control the overlap of the
fluctuations, we also assume that the points xk satisfy that there exists a finite
K ∈ N such that, for all x ∈ D and l ∈ N0, there holds |{k : ψl,k(x) = 0}| ≤ K.
Therefore, we can enforce the condition (3.10) as follows:∥∥∥∥

∑
l≥0

∑
k |ψl,k|

2ā

∥∥∥∥
L∞(D)

≤ σK

2āmin

∑
l≥0

2−ρl =
σK

2āmin

2ρ

2ρ − 1
= κ̄,

if we choose σ :=
2(2ρ − 1)āminκ̄

2ρK
. Next, we wish to find a sequence (bj)j≥1 ∈

`p(N), for p ∈ (0, 1), such that bj ∈ (0, 1] and (3.9) holds. Let η, c > 0 be
parameters to be determined later and define, for all l ∈ N0 and for all j ∈
{2l, 2l + 1, . . . , 2l+1 − 1}

bj := (1 + c2ηl)−1 < 1.
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Then we can enforce (3.9) as follows:∥∥∥∥∥
∑
l≥0

∑
k |ψl,k|(1 + c2ηl)

2ā

∥∥∥∥∥
L∞(D)

≤ κ̄+
c

2āmin

∥∥∥∥∥∥
∑
l≥0

2ηl
∑
k

|ψl,k|

∥∥∥∥∥∥
L∞(D)

≤ κ̄+
cKσ

2āmin

1

1− 2η−ρ
= κ,

where we impose the constraint ρ > η for the convergence of the geometric

series and we define c :=
2(κ− κ̄)(1− 2η−ρ)āmin

Kσ
. Note that, sparsity of the bj

is implied by η > d/p, because∑
j≥1

bpj ∼
∑
l≥0

2(d−pη)l <∞.

Finally, it remains to verify (3.33). Since Dαψj = σ2(|α|−ρ)lDαψ and ψ ∈
Wm+1,∞(D), we obtain that there exists a constant C > 0 such that, for all α
with 0 ≤ |α| ≤ m+ 1, there holds∥∥∥∥∥∥

∑
j≥1

|Dαψj |
(α+ 1)b1−θj

∥∥∥∥∥∥
L∞(D)

≤ CKσ
∑
l≥0

2(m+1−ρ+η(1−θ))l.

The right hand side is finite if and only if m+ 1−ρ+ η(1− θ) < 0, but since we

require 1−θ > p (cp. Theorem 3.19), we need to choose θ ∈
(

1+m−ρ
η + 1, 1− p

)
.

This is possible if we pick η > d/p and ρ > max(m+ 1 + ηp, η).
When we evaluate the work below, we assume that the QMC lattices of N`

points in s` dimensions are already available for all levels. Given a QMC point
y ∈ [− 1

2 ,
1
2 ]s` and x ∈ D, we have that

|{j : j ≤ s` : ψj(x) 6= 0}| ≤ K log(s`).

Thus, in order to assemble the stiffness matrix for one QMC point, we need
O(M` log(s`)) operations. Moreover, we assume that the solution of the linear
FE system can be done in O(M`) operations using sparse matrices, even for
high order FEM (i.e. the order only affects the constant hidden in the O(·)
notation). This is repeated N` times for each level, so that the total work is
asymptotically

work = O

(
L∑
`=0

N`M` log(s`)

)
.

We are now ready to choose the parameters N`, s` and M`. The FE mesh
that we need for the approximation property (3.27) is not quasi-uniform, but it
can be also progressively refined at each level: if d = 1, we split each interval
in 2 parts (not necessarily with the same lenght) and, if d = 2 we split each
triangle in 4 parts as shown in [6, Section 5]. Thus, it is meaningful to assume
M` ∼ 2d`, for ` = 0, . . . , L. Since bj ∼ j−η/d, the estimate in Theorem 3.19
suggests to choose

sL ∼ 2ddLτ/(2η)e,

s` ∼ min(2dd`τ/(θη)e, sL) ∀` = 0, . . . , L− 1 ,
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where τ := m+m′ + 2. With these choices, the error takes the form

error = O

(
M
−τ/d
L +N

− 1
p

0 +

L∑
`=1

M
−τ/d
`−1 N

− 1−θ
p

`

)
.

Note that we allow different QMC order for the first level (that is 1/p), and for
the rest of levels (that is (1− θ)/p). Adapting the steps in [11, 22], we minimise
error vs work by finding stationary points of the Lagrangian g(λ) with respect
to the variables N`, where

g(λ) := M
−τ/d
L +N

− 1
p

0 +

L∑
`=1

M
−τ/d
`−1 N

− 1−θ
p

` + λ

L∑
`=0

N`M` log(s`).

In particular, ∂g(λ)
∂N0

= 0 induces λ =
N
−1/p−1
0

pM0 log(s0) . On the other hand, ∂g(λ)
∂N`

= 0

implies that natural choices for N`, ` ≥ 1 are

N` =

N
1+p

1−θ+p
0

(
(1− θ)M−τ/d`−1 M0 log(s0)

M` log(s`)

) p
1−θ+p

 .
Since M` ∼M`−1, for all ` ≥ 1 and M0, s0 are constants, we get

error = O

(
M
−τ/d
L +N

− 1
p

0 +N
− 1
p+ θ

1−θ+p
0

L∑
`=1

E`

)
, (3.39)

work = O

(
N0 +N

1+p
1−θ+p

0

L∑
`=1

E`

)
, (3.40)

where E` :=

(
log(s`)M

1− τp
d(1−θ)

`

) 1−θ
1−θ+p

. It remains to determine N0. To this

end, we note that, for all 0 6= r1 ∈ R and r2 > 0, there holds

L∑
`=0

2r1``r2 ≤ 2r1(L+1) − 1

2r1 − 1
Lr2 .

Thus, since log(s`) = O(`), we can deduce

L∑
`=1

E` ∼
L∑
`=0

2`
d(1−θ)−τp

1−θ+p `
1−θ

1−θ+p =


O(1) if d(1− θ) < τp

O
(
L1+ 1−θ

1−θ+p

)
if d(1− θ) = τp

O
(

2L
d(1−θ)−τp

1−θ+p L
1−θ

1−θ+p

)
if d(1− θ) > τp.

This implies that the last term of the error in (3.39) is always larger than N
− 1
p

0 ,
independently of the value of θ admissible. Analogously, the work for first level
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N0 is always dominated by the other terms. Therefore,

error = O

(
M
−τ/d
L +N

− 1
p+ θ

1−θ+p
0

L∑
`=1

E`

)

=



O

(
2−τL +N

− 1
p+ θ

1−θ+p
0

)
if d(1− θ) < τp

O

(
2−τL +N

− 1
p+ θ

1−θ+p
0 L1+ 1−θ

1−θ+p

)
if d(1− θ) = τp

O

(
2−τL +N

− 1
p+ θ

1−θ+p
0 2L

d(1−θ)−τp
1−θ+p L

1−θ
1−θ+p

)
if d(1− θ) > τp.

The choices of N0, leading to the overall error of O(2−τL), are determined by

N0 =


⌈
2
τLp(1−θ+p)
(1+p)(1−θ)

⌉
if d(1− θ) < τp⌈

(2τLL)
p(1−θ+p)

(1+p)(1−θ)L
p

1+p

⌉
if d(1− θ) = τp⌈

2
Lp(τ+d)

1+p L
p

1+p

⌉
if d(1− θ) > τp.

By (3.40), the work necessary is

work =


O
(

2
τLp

(1−θ)

)
if d(1− θ) < τp

O
(

2
τLp

(1−θ)L2+ p
(1−θ)

)
if d(1− θ) = τp

O
(
2LdL

)
if d(1− θ) > τp.

In conclusion for a prescribed accuracy ε ∼ 2−τL, we constructed a Multi-Level
QMC FEM algorithm that realises error = O(ε) and requires work

work =


O
(
ε−

p
(1−θ)

)
if d(1− θ) < τp

O
(
ε−

p
(1−θ) log(ε−1)2+ p

(1−θ)

)
if d(1− θ) = τp

O
(
ε−d/τ log(ε−1)

)
if d(1− θ) > τp.

We note that, employing higher order FEM, the condition d(1−θ) < τp becomes
less restrictive and that the corresponding work is (asymptotically) lower than
in the other two cases.
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Chapter 4

Numerical Experiments

4.1 Fast CBC construction for product weights

In this section we focus on some implementation aspects of the CBC algorithm
that was presented in Section 2.3. Here we will always assume product weights,
that means γv :=

∏
j∈v γj for a positive sequence (γj)j≥1. For the first step

of the algorithm, we assume that we can check irreducibility of polynomials
in p ∈ Zb[x] of arbitrary degree m – while this is an algebraic problem of
independent interest, MATLAB provides default choices for p up to m = 16
and we will not need higher values in our application.

What requires the most work is then the evaluation arg min in the last step,
for all τ = 1, . . . , ds. Since in each iteration we need to compute bm − 1 values
of Bα,d,γ , we prefer to represent this quantity in terms of the digits of the
polynomial lattice points, rather than by equation (2.7). We show the following
equivalent expression for Bα,d,γ , as proved in [13, Lemma 4] and [5, Lemma
7.4].

Lemma 4.1. Let α, d ∈ N be such that ᾱ := 2 min(α, d). Let φα,d : [0, 1) → R

satisfy that φα,d(0) =
(b− 1)2

bα(bᾱ − 1)
and

φα,d(z) =
(b− 1)(b− 1− bᾱblogb zc(bᾱ+1 − 1))

bα(bᾱ − 1)
∀z ∈ (0, 1)

Given a polynomial lattice P (q, p) = {(zn,1, . . . , zn,ds) ∈ [0, 1)
ds

: 0 ≤ n < bm},
there holds

Bα,d,γ(q, p) =
1

bm

bm−1∑
n=0

∑
∅6=v⊆{1:s}

γvD
|v|
∏
j∈v

[
−1 +

d∏
k=1

(1 + φα,d(zn,(j−1)d+k))

]

In particular, if the weights are in product form γv =
∏
j∈v γj, then

Bα,d,γ(q, p) = −1 +
1

bm

bm−1∑
n=0

s∏
j=1

[
1− γjD + γjD

d∏
k=1

(1 + φα,d(zn,(j−1)d+k))

]
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Proof. By P5 of Proposition 1.10, we obtain that equation (2.7) can be rewritten
as

Bα,d,γ(q, p) =
∑

∅6=u⊆{1:ds}

γv(u)D
|v(u)|

∑
ku∈N|u|

rα,d(ku,0)
1

bm

bm−1∑
n=0

wal(ku,0)(zn)

=
1

bm

bm−1∑
n=0

∑
∅6=u⊆{1:ds}

γv(u)D
|v(u)|

∑
ku∈N|u|

rα,d(ku,0) wal(ku,0)(zn)

=
1

bm

bm−1∑
n=0

∑
∅6=u⊆{1:ds}

γv(u)D
|v(u)|

∏
j∈u

∑
kj∈N

rα,d(kj) walkj (zn,j).

For z = 0, there holds∑
k∈N

rα,d(k) walk(0) =
b− 1

bα−1

∞∑
l=1

(b− 1)
bl−1

b(ᾱ+1)l

=
(b− 1)2

bα

∞∑
l=1

1

bᾱl
= φα,d(0).

On the other hand, for all z :=
∑∞
i=1 ζib

−i ∈ (0, 1) we get

∑
k∈N

rα,d(k) walk(z) =
b− 1

bα−1

∞∑
l=1

1

b(ᾱ+1)l

bl−1∑
k=bl−1

walk(z). (4.1)

For l = 1, the inner sum is

b−1∑
k=1

walk(z) =

b−1∑
κ0=1

ωκ0ζ1
b =

{
−1 if ζ1 6= 0

b− 1 if ζ1 = 0
.

Now fix l ∈ N\{1} and let k =
∑l−1
i=0 κib

i. Observe that bl−1 ≤ k < bl implies
κl−1 6= 0, so that

bl−1∑
k=bl−1

walk(z) =

b−1∑
κl−1=1

ω
κl−1ζl
b ·

l−2∏
i=0

b−1∑
κi=0

ω
κiζi+1

b

=

{
0 if ζi 6= 0 for some i = 1, . . . , l − 1

bl−1
∑b−1
κl−1=1 ω

κl−1ζl
b else

=


0 if ζi 6= 0, for some i = 1, . . . , l − 1

−bl−1 if ζl 6= 0, and ζi = 0 ∀i = 1, . . . , l − 1

bl−1(b− 1) if ζi = 0, ∀i = 1, . . . , l.

We note that blogb(z)c = −i0, where ζi0 is the first non-zero digit of z, that
is ζi = 0 for all i < i0 and ζi0 6= 0. In particular, the summands in (4.1) for
l ≥ i0 + 1 vanish and we have

∑
k∈N

rα,d(k) walk(z) =
b− 1

bα−1

(
−bi0−1

b(ᾱ+1)i0
+

i0−1∑
l=1

bl−1(b− 1)

b(ᾱ+1)l

)
,
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where the sum on the right hand side vanishes by convention in the case i0 = 1.
Therefore,

∑
k∈N

rα,d(k) walk(z) = − b− 1

bα+ᾱi0
+

(b− 1)2

bα

i0−1∑
l=1

1

bᾱl

= − (b− 1)b−ᾱi0

bα
+

(b− 1)2(1− b−ᾱi0+ᾱ)

bα(bᾱ − 1)

=
(b− 1)(b− 1− b−ᾱi0(bᾱ+1 − 1))

bα(bᾱ − 1)

= φα,d(z).

Using this equality we thus obtain

Bα,d,γ(q, p) =
1

bm

bm−1∑
n=0

∑
∅6=u⊆{1:ds}

γv(u)D
|v(u)|

∏
j∈u

φα,d(zn,j)

=
1

bm

bm−1∑
n=0

∑
∅6=v⊆{1:s}

γvD
|v|

∑
u⊆{1:ds}
v=v(u)

∏
j∈u

φα,d(zn,j)



=
1

bm

bm−1∑
n=0

∑
∅6=v⊆{1:s}

γvD
|v|

∑
u⊆{1:ds}
v=v(u)

∏
j∈v(u)

d∏
k=1

(j−1)d+k∈u

φα,d(zn,(j−1)d+k)

Define sj := {(j− 1)d+ 1 : jd} and uj := sj ∩ u for all j ∈ {1 : s}. For any fixed
v, there holds v = v(u) if and only if uj 6= ∅ for all j ∈ v. Hence,

Bα,d,γ(q, p) =
1

bm

bm−1∑
n=0

∑
v⊆{1:s}

v 6=∅

γvD
|v|
∏
j∈v

 ∑
uj⊆sj
uj 6=∅

d∏
k=1

(j−1)d+k∈uj

φα,d(zn,(j−1)d+k)


=

1

bm

bm−1∑
n=0

∑
v⊆{1:s}

v 6=∅

γvD
|v|
∏
j∈v

[
−1 +

d∏
k=1

(
1 + φα,d(zn,(j−1)d+k)

)]

and the first claim holds. For product weights, we can further simplify the above
as follows:

Bα,d,γ(q, p) =
1

bm

bm−1∑
n=0

∑
v⊆{1:s}

v 6=∅

∏
j∈v

[
−γjD + γjD

d∏
k=1

(
1 + φα,d(zn,(j−1)d+k)

)]

= −1 +
1

bm

bm−1∑
n=0

s∏
j=1

[
1− γjD + γjD

d∏
k=1

(
1 + φα,d(zn,(j−1)d+k)

)]
.

The proof is now complete.

We now describe the fast CBC algorithm, as presented in [13]. We can extend
the formula shown above to all τ = 1, . . . , ds − 1, where for 1 ≤ d0, d1 ≤ d we
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write τ = (j0 − 1)d+ d0 and τ + 1 = (j1 − 1)d+ d1. This yields

Bα,d,γ(qτ , p) = −1 +
1

bm

bm−1∑
n=0

[
1− γj0D + γj0D

d0∏
k=1

(
1 + φα,d(zn,(j0−1)d+k)

)]

×
j0−1∏
j=1

[
1− γjD + γjD

d∏
k=1

(
1 + φα,d(zn,(j−1)d+k)

)]
.

We assume that we have already found the first τ generating polynomials and we
are searching the component qτ+1(x). We define the quantities, only dependent
on the first τ components,

Pn,τ :=

j1−1∏
j=1

[
1− γjD + γjD

d∏
k=1

(
1 + φα,d(zn,(j−1)d+k)

)]

Qn,τ :=

d1−1∏
k=1

(
1 + φα,d(zn,(j1−1)d+k)

)
and recall the definition of the points

zn,(j−1)d+k = vm

(
n(x)q(j−1)d+k(x)

p(x)

)
.

Therefore, using that (j1, d1) = (j0 + 1, 1) if d0 = d or otherwise (j1, d1) =
(j0, d0 + 1), we can deduce

Bα,d,γ((qτ , q), p) = −1+
1

bm

bm−1∑
n=0

Pn,τ

[
1− γj1D

+ γj1DQn,τ

(
1 + φα,d

(
vm

(
n(x)q(x)

p(x)

)))]
.

Next, we note that the only term that is influenced by q is

bm−1∑
n=1

Pn,τQn,τ φα,d

(
vm

(
n(x)q(x)

p(x)

))
and only this needs to be minimised. Since vm truncates the integer part, we
can assume n(x)q(x) as an element in Zb[x]/(p); being p irreducible, Zb[x]/(p)
is a field whose multiplicative group is cyclic, hence there is a g ∈ Zb[x]/(p) such
that

(Zb[x]/(p))\{0} = {g0 = gb
m−1 = 1, g1, . . . , gb

m−2}.

Thus, defining an := Pn,τQn,τ , we have that there is a 1 ≤ z < bm such that,
up to a reordering of the sum over n,

bm−1∑
n=1

Pn,τQn,τ φα,d

(
vm

(
n(x)q(x)

p(x)

))
=

bm−1∑
n=1

anφα,d

(
vm

(
gz−n(x)

p(x)

))
.

This is a discrete linear convolution, which result c = (cz)
bm−1
z=1 can be computed

using FFT by the convolution theorem in O(mbm) time. Then we select the z0
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which achieves the minimum cz0 . Finally, we update Pn,τ and Qn,τ according
to {

Pn,τ+1 = Pn,τ

[
1− γj1D + γj1DQn,τ

(
1 + vm

(
gz0−n(x)
p(x)

))]
if d1 = d

Pn,τ+1 = Pn,τ else

and {
Qn,τ+1 = 1 if d1 = d

Qn,τ+1 = Qn,τ

(
1 + vm

(
gz0−n(x)
p(x)

))
else

These operations can be done in O(bm) time, thus without affecting the asymp-
totic complexity. The last step of the CBC algorithm has to be performed ds
times, so that the overall computational time is O(dsmbm). Moreover, we need
to store the vectors Pn,τ and Qn,τ only at the step τ , so that we need O(bm)
memory. In the implementation we consider only the case b = 2 so that digit
operations are bit operations.

4.2 Implementation of a scrambling algorithm

In order to implement random linear scrambled nets as in Definition 1.5, we re-
peat the construction in [24, Section 6.2.3] that is valid for general digital nets.
As a final step, we operate digit interlacing, thus obtaining an interlaced scram-
bled polynomial lattice point set. Here, we assume that the CBC algorithm
has already been performed so that we have a vector of generating polynomials.
Any digital net of bm points in [0, 1)

ds
, including a polynomial lattice, can be

defined in terms of generating matrices C1, . . . , Cds ∈ Zbm×m. This is done as
follows: let n̄ ∈ Zbm be the vector of digits of some n ∈ {0, . . . , bm − 1}, then
the relation

x̄n,j := Cj n̄ mod b

defines the vector x̄n,j , which corresponds to the m digits of the j-th com-
ponent of the n-th point of the digital net. In particular, each point xn =
(xn,1, . . . , xn,ds) is determined by xn,j := (x̄n,j)1b

−1 + . . .+ (x̄n,j)mb
−m.

Algorithm - Interlaced Scrambled Lattice generator. Since we set b =
2, we can summarise the algorithm in the following steps, where all arithmetic
operations have to be performed in the field Z2.

1. Build the generating matrices C1, . . . , Cds ∈ Zm×m2 of the polynomial
lattice rule in ds dimensions;

2. multiply each matrix Cj , j ∈ {1 : ds} by some random lower triangular
Rj ∈ Zm×m2 , with non-zero diagonal entries;

3. generate random vectors ḡj ∈ Zm2 for j ∈ {1 : ds};

4. for all n ∈ N in the range 0 ≤ n < bm, store the digits of n in a column
vector n̄ and compute r̄n,j := RjCj n̄ + ḡj ∈ Zm2 . The result contains the
digits of the j-th component of the n-th point of the scrambled lattice;
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5. interlacing consists in reshaping the 3-dimensional array (r̄n,j)n,j .

Finally, we briefly mention how to compute the generating matrices Cj in
the first part of the algorithm; for further details we refer to [10, Section 10.1].
We assume that we are given the generating polynomials q ∈ (Z2[x])ds of degree
strictly smaller than m and the modulus p(x) ∈ Z2[x] of degree m. Let qj(x) =

q
(j)
1 xm−1 + . . .+ q

(j)
m−1x+ q

(j)
m and p(x) = xm + p1x

m−1 + . . .+ pm−1x+ pm be
polynomials. Therefore, observe that

qj(x)

p(x)
=

∞∑
l=1

u
(j)
l x−l

where, for l ≤ m the coefficients u
(j)
l are determined by the triangular linear

system 

1 0 · · · · · · 0

p1 1
. . .

...
...

. . .
. . .

. . .
...

pm−2
. . . 0

pm−1 pm−2 · · · p1 1





u
(j)
1

u
(j)
2
...
...

u
(j)
m


=



q
(j)
1

q
(j)
2
...
...

q
(j)
m


and for l > m one can use the recursion u

(j)
l +u

(j)
l−1p1+u

(j)
l−2p2+. . .+u

(j)
l−mpm = 0.

The generating matrix Cj then is the m ×m Hankel matrix corresponding to

the sequence (u
(j)
l )l∈N (see [10, Remark 10.2]).

4.3 Numerical results

In the first numerical experiment, we compare the worst case error in variance
WCE2 = Bα,d,γ(q, p) against the number of QMC points, given various choices
of weights. We only consider product weights and the basis b = 2, that is
N = 2m is the number of QMC points. We give as input (α, d) ∈ {(1, 1), (2, 2)},
so that we expect a decay of approximately O(N−3) and O(N−5) respectively,
provided that the weights have the necessary summability.

Figure 4.1: Values of Bα,d,γ(q, p) against m, for s = 1000, (α, d) = (1, 1) (left) and (2, 2)
(right) and choices of weights γj = D−1j−n with n ∈ {1, 2, 3, 4, 5, 6} marked respectively by
circle,cross,diamond,plus,down triangle and asterisk.

In Figure 4.1, it is clear that smaller weights imply faster decay of the worst
case error, in both examples. As predicted by Corollary 2.8, the best convergence

70



rate is attained when n = 3 in the left picture. In the right picture, we similarly
have that n = 5 gives already a good behaviour, but it is difficult to observe
the best decay within double precision. On the other hand, extra summability
of the weights does not improve the rate beyond O(N−(2 min(α,d)+1)). Next, we
repeat the same experiment without the scaling of the weights D−1, where we
recall that D = 4(max(d−α,0)2(2d−1)α (see Proposition 2.1).

Figure 4.2: Values of
Bα,d,γ(q, p) against m, for
s = 1000, (α, d) = (1, 1) and
choices of weights γj = j−n

with n ∈ {1, 2, 3, 4, 5, 6} marked
respectively by circle, cross,
diamond, plus, down triangle
and asterisk.

Figure 4.3: Values of
Bα,d,γ(q, p) against m, for
s = 1000, (α, d) = (2, 2) and
choices of weights γj = j−n

with n ∈ {4, 5, 6, 7, 8, 9} marked
respectively by plus, down tri-
angle, asterisk, triangle, square
and star.

Unlike with scaling, the worst case error converges slower that what the
theory suggests. This is in particular evident in Figure 4.3 as we observe a loss
of 2 orders of convergence. Note that, in Figure 4.2, the scaling is compensated
by the extra summability of the weights, i.e. when n ≥ 4. A similar effect can
be observed in Figure 4.3 for n ≥ 7, even if the desired order of convergence is
never reached in our tests.

We also test the QMC rule to compute the multivariate integral of gη(y) :=

exp(−
∑s
j=1 j

−ηyj) ∈ Ws,γ,α ([0, 1]s) for some product weights
(∏

j∈u γj

)
u⊆{1:s}

to be determined. We use as reference value the exact integral over [0, 1]s, that
is

Is(gη) =

∫
[0,1]s

gη =

s∏
j=1

∫ 1

0

exp(−j−ηyj)dyj =

s∏
j=1

jη(1− exp(−j−η)).
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We have that the parameter η ∈ N describes the summability of the corre-
sponding weights; in fact, for all ν = (ν1, . . . , νs) ∈ Ns, we have that ∂νygη(y) =
gη(y)

∏
j∈supp(ν) j

−ηνj . As a consequence,

‖gη‖Ws,γ,α([0,1]s) ≤ sup
u⊆{1:s}

1

γu

∑
ν∈{1:α}|u|

∏
j∈u

j−2ηνj sup
y∈[0,1]s

g2
η(y)

= sup
u⊆{1:s}

∏
j∈u

1

γj

α∑
ν=1

j−2ην

and gη ∈ Ws,γ,α ([0, 1]s) uniformly in s, α ∈ N, provided that γj ≥ c
∑α
ν=1 j

−2ην ,
for some c > 0. We can then choose γj = D−1j−2η. According to Corollary
2.8, we can obtain L2 error decay with rate arbitrarily close to d + 1

2 with the
choice of interlacing factor d = max{1, bη − 1

2c}.
One can estimate the L2 error at least in two ways: using the unbiased esti-

mator of the variance or comparing with the exact integral; in [8], the first was
used. However, if we scramble a 1-D digital net using Matoušek scrambling and
have no interlacing, (see Definition 1.5) we get only a permutation of the QMC
points and the unbiased estimator is deterministic. Therefore, we compare the
two methods only in higher dimension. For an interlaced scrambled polyno-
mial lattice rule Qs,N of N points in s dimensions with realisations (qi)

r
i=1 and

empirical mean q̄ = 1
r

∑r
i=1 qi, define the random variables

err1 := err1(r,N) =

√√√√ 1

r − 1

r∑
i=1

(q̄ − qi)2

err2 := err2(r,N) =

√√√√1

r

r∑
i=1

(
Is(gη)− qi

)2

Figure 4.4: displays the val-
ues of err1, err2, marked by circle
and cross respectively, against
the number of QMC nodes N =
2m. Here, r = 300, (α, d) =
(2, 2), s = 5, η = 4 and the
weights are γj = D−1j−2η .

In Figure 4.4, the rate O(N−5/2+ε) expected by the theory is not observed,
but we observe instead O(N−2), especially when the exact integral is used as
comparison. The unbiased estimator of the variance gives slightly better con-
vergence (for sufficienly large N) resembling the results in [8]. Even if the
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experiment is repeated, the results are similar and this disparity seems not to
be caused by a low number r of independent repetitions.

Before testing the QMC-FEM algorithm, we want to observe the QMC error
decay for PDEs. We only consider the one dimensional case and we take, for
example, the domain D = (0, 2). We define the hat function ψ(x) := max(1 −
|x|, 0) and the fluctuations by ψj := Cjψ(

x−xj
cj

). The values of Cj , cj and xj

can be set as follows: pick an l̂ ∈ N and define equispaced nodes

x0 = 0 < x1 < . . . < x2l̂ = 2 with xj+1 = xj + h for fixed h.

For all j = 1, . . . , 2l̂− 1 there exist unique l, k ∈ N with l ≤ l̂ and k ≤ 2l−1 such

that j = 2l̂−l(2k − 1). Then we can scale horizontally the functions according

to cj := 2−l+1 to obtain a hierarchical basis functions with l̂ levels. Finally, in
order to ensure the summability of the fluctuations we can scale their L∞(D)
norms setting Cj := amin/2

l−1, obtaining

ψj(x) =
amin

2l−1
ψ
(
2l−1x− 2k + 1

)
. (4.2)

Since these functions do not overlap if they belong to the same level, the sparsity

condition is also satisfied with the choice of bj := 2−(l−1)l−
1
p−ε for some ε > 0.

This is restrictive on the weights but it can be relaxed using a different basis
for the fluctuations, as in [12]. In all the following experiments, the number of
fluctuations – and therefore the dimension of the parameter domain – is fixed

at s = 2l̂ − 1 and no dimension truncation is considered.
For the experiment in Figure 4.5, we chose the input ā(x) ≡ 1, f(x) ≡ 1

on the domain D = (0, 2), with mixed Dirichlet/Neumann boundary conditions
u(0) = 0, u′(2) = 0. Then, with the fluctuations defined in (4.2), we have the
diffusion coefficient

a(x,y) = 1 +

2l̂−1∑
j=1

yjψj(x).

As an example, we check the quantity of interest G(u) = u(2,y), which integral
can be evaluated with the formula∫

[− 1
2 ,

1
2 ]s
G(u(x,y))dy = Ey

[∫ 2

0

1

a(x,y)

∫ 2

x

f(t)dtdx

]

≈ 1

N̂

N̂−1∑
i=0

∫ 2

0

2− x
a(x,yi)

dx =: IN̂ (G(u)).

The reference value IN̂ (G(u)) is approximated with standard trapezoidal inte-

gration with mesh size δ on (0, 2); this is repeated N̂ times with QMC points
yi, and we denote the result by Iδ,N̂ (G(u))). As QMC quadrature rule we use

Qs,N (F ) = Is(F ;P IS) where N is the cardinality of the interlaced scrambled
polynomial lattice P IS and define the random variable

err := err(h,N) = |Qs,N (uh(2))− Iδ,N̂ (G(u))|.

Since we fixed Mh, in Figure 4.5 we observe the second order decay only
for small values of N : after some threshold, the overall error is essentially the
Galerkin error and remains constant.
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Figure 4.5: displays the val-
ues of err against the number of
QMC nodes N = 2m. Here,
(α, d) = (2, 2), l̂ = 2, that is s =
3, Mh = 65 and the weights are
γj = D−1j−4. For the reference

value, N̂ = 213 and δ = 2−10.

In the following experiment (Figures 4.6 and 4.7) we analyse the conver-
gence of the single level QMC-FEM as in Section 3.5. We consider the nominal
operator ā(x) = 1.5 + cos(πx), f ≡ 1 and mixed Dirichlet/Neumann boundary
conditions u(0) = 0, u′(2) = 0. We use again the same quantity of interest
G(u) = u(2,y) and we compute similarly the reference value. Moreover, since
we use a piecewise linear Finite Elements solver,so that τ = 1 in Section 3.5:
to obtain first order convergence we therefore need to set Mh ∼ N . For second
order we need analogously that Mh ∼ N2 provided that p ≤ 1/2 and so on for
higher order.

Figure 4.6: displays the val-
ues of err against the number of
QMC nodes N = 2m. Here,
(α, d) = (1, 1), l̂ = 4, i.e s = 15
Mh = N and the weights are
uniform: γj = D−1. For the

reference value, N̂ = 214 and
δ = 2−10.

In Figure 4.6, the convergence rate of O(N−1) is clear, despite the uniform
weights. This suggests that the decay condition on the weights imposed by the
theory (cp. equation (3.20) and the definition bj above) is not sharp, as full
rate can already be observed in this case. Since we only had s = 15, in order
to make this observation more explicit, we repeat the experiment with decaying
weights and larger dimension.

In Figure 4.7, we have s = 63, so that the decaying weights are considerably
smaller than the uniform ones. However, we observe that there is no difference
in the decay rate of the errors.

Finally, we conclude with a second order example, with two different choices
of QMC-FEM couplings. The order of err = O(N−2) can be observed in Figure
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Figure 4.7: values of err
against the number of QMC
nodes N = 2m. Here, (α, d) =

(1, 1), l̂ = 6, i.e. s = 63
Mh = N and the weights are
γj = D−1j−4. For the reference

value, N̂ = 214 and δ = 2−10.

Figure 4.8: values of err
against the number of QMC
nodes N = 2m. Here, (α, d) =

(2, 2), l̂ = 4, i.e. s = 15 and
the weights are γj = D−1. For

the reference value, N̂ = 214 and
δ = 2−10. Mh = N,N2 are
marked by circle and cross re-
spectively.

4.8. Note that when N increases, the choice Mh = N is less stable and the
convergence deteriorates. On the other hand, the computational cost increases
too quickly if Mh = N2, so that the constraint on the first order FEM plays a
crucial role.
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Appendix A

MATLAB Codes

% Finds f i r s t m c o e f f i c i e n t s o f q (x )/p(x ) in Z 2
% ( see Dick , Pi l l ichshammer − Dig i t a l net s and sequences
% d e f i n i t i o n 10 . 1 , remark 10 .2 and p ropo s i t i on 10 . 4 )
%
% assumes p(x ) i r r e d u c i b l e and monic o f degree m, q (x ) o f
% degree < m
% INPUT: p c o e f f i c i e n t s o f p(x ) with i n c r e a s i n g
% power up to xˆ{m−1} , v ec to r o f s i z e m.
% q c o e f f i c i e n t s o f q (x ) , matrix o f s i z e [m x s max ]
% OUTPUT: u Laurent c o e f f i c i e n t s , matrix o f s i z e [m x s max ]

func t i on u = vmcoeff (p , q )

m = s i z e (q , 1 ) ;
s max = s i z e (q , 2 ) ;

reshape (p , 1 , l ength (p ) ) ;
u = ze ro s (m, s max ) ;
q=double ( q ) ;
p=double (p ) ;
f o r i= 1 :m

u( i , : ) = mod(q (m−i +1 , : ) − p(m−i +2:m)∗ u ( 1 : i −1 , : ) , 2 ) ;
end
end

% In t e r l a c ed scrambled polynomial l a t t i c e r u l e over Z 2/ f with
% deg ( f ) = m.
% Performs the CBC cons t ruc t i on o f the gene ra t ing polynomia l s
% and computes the worst case e r r o r squared .
% See Goda , Dick − Construct ion o f i n t e r l a c e d scrambled
% polynomial l a t t i c e r u l e s o f a r b i t r a r y high order p.1272−1273
%
% INPUT: m degree o f the i r r e d u c i b l e polynomial , s c a l a r
% d i n t e r l a c i n g fa c to r , s c a l a r
% alpha smoothness o f funct ion , s c a l a r
% s max number o f dimensions , s c a l a r
% gamma parameters f o r we ight ing the dimensions ,
% vecto r [ s max x 1 ]
% prune use pruning to avoid r e p e t i t i o n o f components ,
% l o g i c a l
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%
% OUTPUT: C Generating matr i ce s o f the polynomial l a t t i c e ,
% C( : , : , i ) are matr i ce s o f s i z e [m x m]
% f o r i =1 , . . . , s max∗d
% WCE2 worst case e r ro r , qua l i t y c r i t e r i o n f o r the
% var iance o f the e s t imator

% (C) 2007 , <d i rk . nuyens@cs . kuleuven . ac . be>
% Fi l e modi f i ed by :
% Takashi Goda <goda@iba . t . u−tokyo . ac . jp>. Feb . 2013
% Marce l lo Longo . Mar . 2019

func t i on [C,WCE2] = polyLatticeCBC (m, d , alpha , s max , gamma, prune )

C = ze ro s (m,m, d∗s max ) ;

z = ze ro s ( s max∗d , 1 ) ;

N = pow2(m) ;
a2 = 2∗min( alpha , d ) ;
phi = @(x ) (1−pow2( a2∗ f l o o r ( log2 (x ) ) ) ∗ ( pow2( a2+1) −1)) . . .

/pow2( alpha )/ ( pow2( a2 )−1);

g = g f (2 , m) ; % genera to r g (x ) = 2 = (10) 2 = x
perm = gf ( z e r o s (N−1, 1 ) , m) ;
perm (1) = 1 ;
f o r j =2:N−1

% perm( j ) i s g ˆ( j−1) f o r a l l j =1 , . . . ,N−1
perm( j ) = perm( j −1)∗g ;

end
q = perm . x ;
q = ( de2bi (q ,m) ) ’ ; %ex t r a c t binary from decimal
p = de2bi ( primpoly (m) ) ;
p = p ( 1 : end−1); % p i s a monic polynomial

p s i = phi (pow2(−(1:m))∗ vmcoef f (p , q ) ) ; %ps i = \phi (v m(q/p ) )
p s i = ps i ’ ;

f f t p s i = f f t ( p s i ) ;

gamma = gamma∗power (4 ,max(d−alpha , 0 ) ) ∗ pow2 ((2∗d−1)∗alpha ) ;

P = ones (N−1, 1 ) ;
Q = ones (N−1, 1 ) ;

f o r s = 1 : s max
f o r k = 1 : d

j = ( s − 1) ∗ d + k ;
a = P.∗Q;
E2 = r e a l ( i f f t ( f f t p s i .∗ f f t ( a ) ) ) ; % convo lut ion theorem

i f prune
notva l i d = [ 1 ; z ( 1 : j −1) ] ; % prev ious components

% i f e x i s t a v a i l a b l e gene ra t ing ve c to r s
i f ˜ isempty ( s e t d i f f ( 1 :N−1, no tva l i d ) )

E2( no tva l i d ) = NaN; % min among va l i d components

end
%e l s e no pruning
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end
[ min E2 , z ( j ) ] = min (E2 ) ; % CBC argmin
i f j == 1

z ( j ) = 1 ;
end
f o r n=1:N−1 %Update Q

genPow = mod( z ( j )−n ,N−1);
Q(n) = (1 + ps i ( genPow+1)) ∗ Q(n ) ;

end

f p r i n t f ( ’ j=%4d , z=%6d\n ’ , j , z ( j ) ) ;
C( : , : , j ) = genMatrix (p , q ( : , z ( j ) ) ) ;

end
P = (1 − gamma( s ) + gamma( s ) ∗ Q) .∗ P; % Update P
Q = ones (N−1 ,1) ;

end
P0 ds = prod(1−gamma + gamma ∗ power(1+phi ( 0 ) , d ) ) ; %e r r o r f o r n==0

WCE2 = −1 + mean ( [P; P0 ds ] ) ;
end

% Computes one gene ra t ing matrix o f a polynomial l a t t i c e
% point s e t P(q , p) over Z 2 .
% ( see Dick , Pi l l ichshammer − Dig i t a l net s and sequences
% d e f i n i t i o n 10 . 1 , remark 10 .2 and p ropo s i t i on 10 . 4 )
%
% Assumes p(x ) i r r e d u c i b l e and monic o f degree m, q (x ) o f
% degree < m
% INPUT : p c o e f f i c i e n t s o f p(x ) with i n c r e a s i n g power
% up to xˆ{m−1} , column vecto r o f s i z e m.
% q c o e f f i c i e n t s o f q (x ) , column vecto r o f s i z e m

% OUTPUT: C Generating matrix o f the polynomial l a t t i c e ,
% matrix o f s i z e [m x m]

% To generate the i−th component o f the n−th point ,
% do { C( : , : , i )∗x } where x conta in s the m d i g i t s o f n<2ˆm
% in i n c r e a s i n g order

func t i on C = genMatrix (p , q )

m = s i z e (q , 1 ) ;
u = ze ro s (2∗m−1 ,1) ;
C = ze ro s (m,m) ;

u ( 1 :m) = vmcoeff (p , q ) ;

f o r j = 1 : (m−1)
u( j+m, : ) = mod(− p∗u( j : ( j+m−1 ) , : ) , 2 ) ;

end
C = hankel (u ( 1 :m) , u(m: end ) ) ;

end

% Implements the a f f i n e Matousek scrambl ing o f d i g i t a l net s
% over the f i e l d Z 2 , s ee
% Matousek − On L2 di sc repancy f o r anchored boxes , pag . 540
%
% INPUT: C Generating matr i ce s o f the polynomial l a t t i c e ,
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% C( : , : , i ) are matr i ce s o f s i z e [m x m]
% f o r i =1 , . . . , s max
% OUTPUT: G Generating matr i ce s o f the scrambled points ,
% same c l a s s and dimension as C
% B bia s ( a f f i n e scrambl ing ) , B( : , i ) are
% vec to r s o f s i z e m f o r i =1 , . . . , s max
%
% To generate the i−th component o f the n−th point ,
% do { G( : , : , i )∗x XOR B( : , i ) } where x conta in s the m d i g i t s o f
% n<2ˆm in i n c r e a s i n g order

func t i on [G,B] = af f ineNes tedScrambl ing (C)
m=s i z e (C, 1 ) ;
s max=s i z e (C, 3 ) ;
G=ze ro s (m,m, s max ) ;

rng ( ’ s hu f f l e ’ ) ;

f o r i =1: s max
%random , nons ingu la r LT matrix in Z 2
R = eye (m,m) + t r i l ( randi ( [ 0 1 ] ,m,m) ,−1) ;

G( : , : , i ) = mod(R ∗ C( : , : , i ) , 2 ) ;
end

B = randi ( [ 0 1 ] ,m, s max ) ; %random vec to r s in Z 2

end

% The func t i on i n t e r l a c e 2 computes the d i g i t i n t e r l a c i n g func t i on
% in [ 0 , 1 ) ˆ{d∗ s }
% Works f o r any base b
% INPUTS : x matrix o f s i z e [m x d∗s max ] , with e n t r i e s in
% Z b : each column r ep r e s en t s
% the d i g i t s o f the i−th component o f x
% d i n t e r l a c i n g fa c to r , s c a l a r
%
% OUTPUT : y one i n t e r l a c e d point , [ d∗m x s max ] matrix
% with e n t r i e s in Z b : each column r ep r e s en t s
% the d i g i t s o f the i−th component o f y

func t i on y = i n t e r l a c e 2 (x , d)
% i f x has wrong s i z e t h i s d i s c a rd s l a s t components
s max = f l o o r ( s i z e (x , 2 ) / d ) ;

m = s i z e (x , 1 ) ;
y=ze ro s (d∗m, s max ) ;

f o r s= 1 : s max
d ig i tMat r i x = (x ( : , ( s−1)∗d + 1 : s ∗d ) ) ’ ;
y ( : , s ) = reshape ( d ig i tMatr ix , d∗m, 1 ) ; %rear range d i g i t s

end
end

% inte r lSc rambLatt i c eGenerator gene ra t e s an i n t e r l a c e d scrambled
% polynomial l a t t i c e po int s e t over Z 2 f o r a func t i on with
% bounded g en e r a l i z e d weighted Hardy and Krause va r i a t i o n
% INPUT: m 2ˆm = number o f po ints , s c a l a r , must be <= 16
% d i n t e r l a c i n g fa c to r , s c a l a r
% alpha smoothness f a c to r , s c a l a r
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% s max number o f va r i ab l e s , s c a l a r
% gamma weights , column vecto r o f s i z e s max
% prune use pruning to avoid repeated components ,
% l o g i c a l
%
% OUTPUT: y QMC nodes , matrix o f s i z e [ 2ˆm x s max ]
% ( each row i s a po int )
%

func t i on y = inte r lSc rambLatt i c eGenerator (m, d , alpha , s max , gamma, prune )

N = pow2(m) ;
y = ze ro s (N, s max ) ;
x = ze ro s (m, d∗s max ) ;
C = polyLatticeCBC (m, d , alpha , s max , gamma, prune ) ;

[G,B] = af f ineNes tedScrambl ing (C) ;
d i sp (” Scrambled gene ra t ing matr i ce s ready ” ) ;

f o r n = 1 : N
b i t s = ( de2bi (n−1,m) ) ’ ; % array o f d i g i t s o f n
f o r s = 1 : d∗s max

% Matousek scrambl ing
x ( : , s )=mod(G( : , : , s )∗ b i t s+B( : , s ) , 2 ) ;

end
%i n t e r l a c i n g
y (n , : ) = pow2(−(1:d∗m))∗ i n t e r l a c e 2 (x , d ) ;

end
end

% Generates the h i e r a r c h i c a l b a s i s ( without pyramid scheme )
% f o r the a f f i n e parametr ic d i f f u s i o n c o e f f i c i e n t o f
% the PDE −(a ∗u ’) ’= f on the i n t e r v a l D
% and D i r i c h l e t BC.
%
% INPUT: intL l e f t extremum of the i n t e r v a l D, s c a l a r
% intR r i gh t extremum of the i n t e r v a l D, s c a l a r
% e l l max maximum l e v e l o f h i e r a r c h i c a l bas i s ,
% s c a l a r
% a bar nominal operator , f unc t i on handle
%
% OUTPUT: p s i f unc t i on handle o f the ba s i s ordered by
% l ev e l , output i s column o f s i z e 2ˆ( e l l max )−1

func t i on p s i = h i e r a r c h i c a l a s s emb l e ( intL , intR , a bar , e l l max )

x = l i n s p a c e ( intL , intR , pow2( e l l max )+1); % equispaced nodes
x ( [ 1 , end ] ) = [ ] ; % with no extrema

a min = min ( a bar ( x ) ) ;
a s s e r t ( a min > 0 , ”Nominal e l l i p t i c i t y f a i l e d ” ) ;

hat handle = @(x ) max(1−abs (x ) , 0 ) ; %mother o f hat ba s i s

s=0;

p s i = ”@(x ) [ ” ;
f o r e l l =1: e l l max

% s c a l e ba s i s to ensure summabil ity o f f l u c t u a t i o n s
powel l = pow2( e l l −1);
f o r k=1: powel l
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% x( j ) i s the peak o f cur r ent h i e r a r c h i c a l b a s i s f unc t i on
j = pow2( el l max−e l l )∗ (2∗k−1);

% concatenate s t r i n g o f new f l u c t u a t i o n
p s i = ps i + ”a min/”+ num2str ( powel l ) +”∗hat handle ( ( x−” . . .

+ num2str ( x ( j ))+”)∗”+ num2str (pow2( e l l ) ) + . . .
”/( intR−intL ) ) , ” ;

s=s+1;

end
end
p s i = ps i + ” ] ” ;
p s i=eva l ( p s i ) ; % eva lua t e s s t r i n g to produce a func t i on handle

% p lo t ( l i n s p a c e ( intL , intR ) , p s i ( l i n s p a c e ( intL , intR ) ’ ) ) ;
end

The following code assumes the availability of a FEM solver for second order
elliptic PDEs: the functions load vec and stiff compute respectively the load
vector and the stiffness matrix starting from anonymous functions. Note that,
in principle, we could implement a more efficient pyramidal scheme to evaluate
all the fluctuations. However, this is only possible if we use a FEM solver that
requires point values of the diffusion coefficient as input instead of one function
handle.

% Computes FEM so l u t i o n s o f a f f i n e parametr ic PDE f o r each
% i s t an c e o f QMC po in t s
% INPUT: intL l e f t extremum of the i n t e r v a l D, s c a l a r
% intR r i gh t extremum of the i n t e r v a l D, s c a l a r
% e l l max maximum l e v e l o f h i e r a r c h i c a l bas i s , s c a l a r
% a bar nominal operator , f unc t i on handle
% f hand l e RHS o f the PDE, func t i on handle
% y QMC points , matrix o f s i z e [ 2ˆm x s max ]
% ( each row i s a po int in [ 0 , 1 ] ˆ s max )
% M number o f FE i n t e r v a l s + 1 , s c a l a r
%
% OUTPUT: u va lue s o f f un c t i on s f o r a l l QMC points ,
% matrix o f s i z e [M x 2ˆm] ( each column i s a
% FEM so l u t i o n )

func t i on u = QMCFEM( intL , intR , a bar , f hand le , e l l max , y ,M)

p s i = h i e r a r c h i c a l a s s emb l e ( intL , intR , a bar , e l l max ) ;

x = l i n s p a c e ( intL , intR ,M) ’ ; %FEM mesh

N = s i z e (y , 1 ) ;
u = ze ro s (M,N) ;

F = load vec (x , f hand l e ) ;

%s e t f o r homogeneous D i r i c h l e t BC
%dof = 2 :M−1;

%s e t f o r Mixed BC : D i r i c h l e t at intL and Neumann at intR
dof = 2 :M;

y=y−0.5 ; %s h i f t the QMC po in t s to [−1/2 ,1/2]
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f o r i =1:N
%d i f f u s i o n c o e f f i c i e n t
a handle = @(x ) a bar ( x ) + ps i ( x )∗ ( y ( i , : ) ’ ) ;

%s t i f f n e s s matrix
A = s t i f f (x , a handle ,@(x ) 0 ,@(x ) 0 ) ;

u ( dof , i ) = (A( dof , dof ) \ F( dof ) ) ;
end
end
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