
Resolution of Skin Layer in EM Simulation
Master Thesis in Computational Science and Engineering

Michael Spreng
supervised by Prof. Ralf Hiptmair

March 3, 2010

Contents

1 Introduction 5
1.1 Problem Statement . 5
1.2 Skin Layers . 5
1.3 Main Idea . 7
1.4 Circular Domain . 7

2 Numerical Methods 10
2.1 Finite Elements . 10
2.2 Discontinuous Galerkin . 10

2.2.1 Continuous Problem . 10
2.2.2 Discretized Problem . 11

2.3 Trefftz Methods . 12
2.4 Numerical Flux . 12

2.4.1 Consistency . 13
2.4.2 Ellipticity . 13

3 Implementation 16
3.1 Mesh . 16
3.2 Exponential Basis Functions . 16
3.3 Bessel Basis Functions . 17
3.4 Matrix Assembly . 18

3.4.1 Interior Contributions . 18
3.4.2 Boundary Contributions . 20
3.4.3 Matrix Assembly for Exponential Basis Functions 20

3.5 Parameters for the Numeric Fluxes . 23
3.6 Adaptive Choice of Basis Functions . 24

3.6.1 Only Exponential Basis Functions 24
3.6.2 Exponential and Bessel Basis Functions 27

4 Results and Comparisons 31
4.1 Linear Finite Elements . 31

Experiment 1: h Convergence . 31
4.2 DG with Exponential Basis Functions . 34

Experiment 2: h Convergence . 34
Experiment 3: Convergence for Number of Basis Functions per Element . 34

4.3 DG with Bessel Basis Functions . 38
Experiment 4: h Convergence . 38

3

Experiment 5: Convergence for Number of Basis Functions per Element . 38
4.4 DG with Element Specific Exponential Basis Functions 42

Experiment 6: h Convergence . 42
Experiment 7: Convergence for Number of Basis Functions per Element . 44

4.5 DG with Exponential and Bessel Basis Functions 46
Experiment 8: h Convergence . 46
Experiment 9: Convergence for Number of Basis Functions per Element . 48

4.6 Other Geometries . 50
Experiment 10: L-Shape . 50
Experiment 11: Dirichlet Problem with Two Different σ Values 51

4.7 Error for Varying σ . 53
Experiment 12: Comparison FEM and DG for Varying σ 53

5 Conclusions and Outlook 55
5.1 Conclusions . 55
5.2 Future Work and Outlook . 55

4

1 Introduction

1.1 Problem Statement

The following 2D elliptic boundary value problem on domain Ω is the subject of this
thesis:

−∆u+ σ(~x)u = 0 in Ω
∂u

∂~n
+ zu = g on ∂Ω (1.1)

with σ(~x), z > 0. This differential equation captures the effect of a skin layer, where the
parameter σ defines the thinness of the solution at the boundary, which is the skin layer.
To illustrate the behaviour, the 1D solution of boundary value problem (1.1) is displayed
in figure 1.1 for two values of σ and boundary value g = 1 on domain Ω = [−1, 1]

 0

 0.1

 0.2

 0.3

 0 0.2 0.4 0.6 0.8 1

y

x

σ = 10

u

 0

 0.01

 0.02

 0.03

 0.04

 0 0.2 0.4 0.6 0.8 1

y

x

σ = 1000

u

Figure 1.1: Skin layer for two values of σ

1.2 Skin Layers

Alternating electromagnetic fields penetrate good conductors in a layer only at their
surface. This layer is called the skin layer. All the electromagnetic field energy is
thus stored there and all ohmic power losses due to eddy currents, that may heat the
conductor, are concentrated in this layer. If one wants to calculate heating due to ohmic
losses, one has to resolve this layer.

5

An application where heating due to power losses is relevant is an ABB power trans-
former, which has a diameter of several meters. The skin depth in the copper parts is
only approximately 9.4mm at 50Hz. Thus the ratio of the skin layer to the diameter
of the transformer is rather small. This poses a problem to standard finite elements
because, as a rule of thumb, a minimum of three elements are required to resolve the
skin layer.

The electromagnetic fields are computed by the prominent and widely used eddy
current model. The E formulation in frequency domain is:

~curl
1
µ
~curl ~E + iω

1
ρ
~E = 0 (1.2)

where µ is the permeability, ω the angular frequency, and ρ is the resistivity. The

conductor

Figure 1.2: Skin layer in a conductor with a flat surface

skin effect can be studied with an idealized situation: At the surface of a flat semi-
definite, conducting, permeable, and linear medium, a spatially constant magnetic field,
Hx(t) = H0 cosωt, is applied parallel to the surface. See figure 1.2. The magnetic and
electric field on the interior of the conductor are given by [1]:

Hx = H0e
−z/δe−i(zδ−ωt) (1.3)

Ey = −(1 + i)
√
µωρ

2
H0e

−z/δe−i(zδ−ωt) (1.4)

Where δ is the skin depth

δ :=
√

2ρ
µσ

(1.5)

Obviously, the decay of the electric and magnetic field is exponential. For surfaces
that have a small curvature compared to the skin depth, the above solution is a good
approximation of the skin layer. It is popular to use impedance boundary conditions in

6

this case, but they are only a partial remedy. They fail at resolving corners, which is
where the current is concentrated.

Please note that (1.2) leads to the same behaviour like equation (1.1). Therefore, for
this study we use (1.1) as an equivalent to (1.2)

1.3 Main Idea

Standard finite elements are not able to resolve the skin layer due to the ratio of the
whole computational domain to the skin layer. A method is needed that is able to resolve
skin layers with a skin depth of less than an element width.

The idea is now to use basis functions which can fit the exponential decay. For example
exponential basis functions, with the proper decay rate could be used. But such basis
functions have a drawback: continuity can no longer be guaranteed for them. Therefore
a discontinuous Galerkin approach, which allows for discontinuities on edges or faces of
the mesh, has to be used to solve the boundary value problem. On the other hand, the
exponential basis functions are solutions to the first equation of (1.1), which simplifies
some aspects of the discontinuous Galerkin method. This is then called a Trefftz-type
method.

1.4 Circular Domain

We use the 2D unit disc as domain Ω for our reference problem, because it has an analytic
solution so we can calculate the discretization errors for it. As boundary condition we
choose

g(φ) = gc · eikφ, k = 0, 1, 2, . . . (1.6)

We also have to constrain σ to be constant on the whole domain, and we chose z = 1.
The analytic solution can be derived in polar coordinates with separation of variables:
u = R(r)Φ(φ). The Laplacian in polar coordinates is

∆f =
∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2

∂2f

∂φ2
(1.7)

Applying separation of variables and (1.7) to the given problem (1.1) yields

− Φ
∂2R

∂r2
− Φ
r

∂R

∂r
− R

r2

∂2Φ
∂φ2

+ σRΦ = 0 in Ω (1.8)

∂R

∂r
Φ +RΦ = g on ∂Ω (1.9)

From (1.9) we can derive an expression for Φ which only depends on g and R at the
boundary r = 1

Φ(φ) =
g(φ)[

∂R
∂r

]
r=1

+R(1)
= a · eikφ, with a = gc

([
∂R

∂r

]
r=1

+R(1)
)−1

(1.10)

7

Inserting this expression for Φ into (1.8):

− a · eikφ∂
2R

∂r2
− a · eikφ

r

∂R

∂r
− R

r2
a(−k2)eikφ + σaReikφ = 0 in Ω (1.11)

Multiplying the equation by − r2

a·eikφ gives a partial differential equation similar to the
modified Bessel’s differential equation.

r2∂
2R(r)
∂r2

+ r
∂R(r)
∂r

− (σr2 + k2)R(r) = 0 in Ω (1.12)

To get the exact same form of the modified Bessel’s differential equation, we need to
do the variable transformation r̃ = r ·

√
σ, R̃(r

√
σ) = R(r). Transforming now equation

(1.12) yields the modified Bessel’s differential equation:

r̃2∂
2R̃(r̃)
∂r̃2

+ r̃
∂R̃(r̃)
∂r̃

− (r̃2 + k2)R̃(r̃) = 0 in Ω (1.13)

The solutions of it are the modified Bessel function of the first kind, and the modified
Bessel function of the second kind. The function of the first kind is:

Ik(r̃) =
∞∑
m=0

1
m! Γ(m+ k + 1)

(
r̃

2

)2m+k

(1.14)

The modified Bessel function of the second kind is not finite at r = 0, but a finite solution
is needed at r = 0. Therefore only the modified Bessel function of the first kind is used.
The final solution for R is then:

R(r) = Ik(
√
σr) (1.15)

And we can calculate the expression for a:

a = gc

([
∂Ik(
√
σr)

∂r

]
r=
√
σ

+ Ik(
√
σ)

)−1

(1.16)

With help of the identity I ′k(r) = 1
2(Ik−1(r) + Ik+1(r)) we get:

a = gc

[(
Ik−1(

√
σ) + Ik+1(

√
σ)
) √σ

2
+ Ik(

√
σ)
]−1

(1.17)

An example of the solution can be seen in figure 1.3.

8

Figure 1.3: example of the solution on a circle for σ = 1000 and boundary condition
g(φ) = 1

9

2 Numerical Methods

2.1 Finite Elements

The finite element method is a popular and robust method for solving partial differential
equations, especially elliptic differential equations. See [2] or [3].

In finite Elements, the domain is decomposed into simple polygons, usually only tri-
angles or tetrahedrons which fill the domain. On each element there is a set of basis
functions, which, appropriately scaled, will approximate the solution of the differential
equation. The choice of basis functions is important in order to get a good approxima-
tion with as few elements as possible. Usually linear or quadratic basis functions are
chosen. For the problem of skin layers, they are not that well suited as the skin effect
behaves like an exponential. The proper choice of basis functions for something that
behaves as such would seem to be exponentials. A nice feature of the linear or quadratic
basis functions is, that they are continuous across element boundaries. But this can not
be conserved for exponentials as basis functions.

2.2 Discontinuous Galerkin

If we want to choose exponentials as basis functions we can no longer use continuity across
element boundaries as for standard finite elements. One way to use discontinuous basis
functions is with the DG (discontinuous Galerkin) method. The DG method introduces
values of the approximate solution u on the element boundaries, which are calculated
from both adjoining elements. This also allows for meshes with hanging nodes. The
value of u on the element boundaries is called numeric flux û. The numerical fluxes are
crucial for the simulation as they influence error and convergence ([4], [5]).

2.2.1 Continuous Problem

The DG formulation is derived analogously to [6]. To derive the DG method we will write
the second order PDE (1.1) as a system of two first order equations. This is important
for introducing the numerical fluxes consistently. Let

~γ := ~∇u (2.1)

10

be the auxiliary variable to split the second order PDE into two first order PDEs. Then
the following set of equations is equivalent to equation (1.1):

~γ = ~∇u in Ω
σ(~x)u = ~∇ · ~γ in Ω
~γ · ~n+ zu = g on ∂Ω (2.2)

Now we introduce the partition Th which represents the mesh on which the DG finite
elements will be solved. K represents one element of the partition Th. We now take the
first two equations of (2.2), multiply them by smooth test functions and integrate both
sides over element K∫

K
~γ · ~τdV =

∫
K

~∇u · ~τdV in K,∀~τ ∈ ~H(div;K)∫
K
σ(~x)uvdV =

∫
K

~∇ · ~γvdV in K,∀v ∈ H1(K) (2.3)

Then we integrate by parts both equations to get∫
K
~γ · ~τdV +

∫
K
u~∇ · ~τdV −

∫
∂K

u~τ · ~ndS = 0 ∀~τ ∈ ~H(div;K)∫
K
σ(~x)uvdV +

∫
K
~γ · ~∇vdV −

∫
∂K

~γ · ~nvdS = 0 ∀v ∈ H1(K) (2.4)

2.2.2 Discretized Problem

The discrete function space ~Σh ⊂ ~H1(div;K) is introduced for the vector valued func-
tions ~γh, ~τh ∈ ~Σh, and Vh ⊂ H1(K) is introduced for the scalar functions uh, vh ∈ Vh.
To couple the equations on different elements K we need the numerical fluxes ~̂γh and
ûh across element boundaries. From here on we use the symbol ~∇h for the element wise
application of the operator ~∇. The discretized version of eq. 2.4 is then∫

K
~γh · ~τhdV +

∫
K
uh~∇ · ~τhdV −

∫
∂K

ûh~τh · ~ndS = 0 ∀~τh ∈ ~Σh(K)∫
K
σKuhvhdV +

∫
K
~γh · ~∇vhdV −

∫
∂K

~̂γh · ~nvhdS = 0 ∀vh ∈ Vh(K) (2.5)

This would already be a valid formulation. But we want to transform it again to a single
equation. For this we first reverse partial integration in the first equation of (2.5).∫

K
~γh · ~τhdV =

∫
K

~∇uh · ~τhdV +
∫
∂K

(ûh − uh)~τh · ~ndS ∀~τh ∈ ~Σh(K) (2.6)

In order to combine the two equations, we assume that ~∇hVh ⊆ ~Σh and substitute ~τh
with ~∇hvh in each element. Insert this into (2.6) which reads then∫

K
~γh · ~∇hvhdV =

∫
K

~∇uh · ~∇hvhdV +
∫
∂K

(ûh − uh) ~∇hvh ·~ndS ∀vh ∈ ~Vh(K) (2.7)

11

Replace
∫
K ~γh · ~∇hvhdV in the second equation of (2.5) with the right hand side of eq.

2.7 to get the combined equation∫
K

(
σKuhvh + ~∇uh · ~∇vh

)
dV +

∫
∂K

(ûh − uh) ~∇vh · ~ndS −
∫
∂K

~̂γh · ~nvhdS = 0 (2.8)

This is equivalent to the system of equations in (2.5).

2.3 Trefftz Methods

A method is called a Trefftz method if the basis functions are a solution to the PDE.
We construct a Trefftz method by choosing basis functions solving −∆u+ σu = 0 from
differential equation (1.1), where σ can vary from element to element, but is constant on
each element. This leads to basis functions matching the exponential decay characteristic
for skin layers. With this special choice of the discrete function space Vh we can further
simplify eq. 2.8. In order to take advantage of our special choice of basis functions we
integrate by parts once more to obtain∫

K
(σKvh −∆vh)uhdV +

∫
∂K

ûh~∇vh · ~ndS −
∫
∂K

~̂γh · ~nvhdS = 0 (2.9)

Where the first integral equals to zero. To obtain a single formula for the whole domain,
we sum over all elements. This leads to the variational formulation: Find u ∈ Vh, such
that ∑

K

∫
∂K

ûh~∇vh · ~ndS −
∑
K

∫
∂K

~̂γh · ~nvhdS = 0 ∀vh ∈ Vh (2.10)

This formulation has only integrals over edges of the mesh, which is another advantage
of a Trefftz method, that Integrals over the elements drop out. It can conveniently be
calculated by iterating over all edges of the mesh.

2.4 Numerical Flux

For the numerical flux we introduce the same notation as in [4] to get unique values on
edges, which belong to two elements. The subscripts L and R refer to the left and right
hand side element of the edge.

average {{u}} =
1
2

(uL + uR) , {{~γ}} =
1
2

(~γL + ~γR)

jump [[u]] = uL~nL + uR~nR, [[~γ]] = ~γL · ~nL + ~γR · ~nR (2.11)

Let Fh be the edges of partition Th, and FIh = Fh\∂Ω the set of interior edges. Anal-
ogously, FBh = Fh ∩ ∂Ω is the set of boundary edges. The numerical fluxes are chosen
the same way as in [6]. For interior edges FIh we choose

ûh = {{uh}}+ ~ζ · [[uh]]N −
β
√
σK

[[
~∇huh

]]
N

~̂γh =
{{
~∇huh

}}
− α
√
σK [[uh]]N − ~ζ

[[
~∇huh

]]
N

(2.12)

12

and on boundary edges FBh we choose

ûh = uh −
δ

z

(
~∇huh · ~n+ zuh − g

)
~̂γh = ~∇huh − (1− δ)

(
~∇huh + zuh~n− g~n

)
(2.13)

The parameter ~ζ is chosen to be zero, like in [6]. This reduces the complexity of
finding appropriate values for the remaining parameters.

For δ, the natural choice is zero, as it corresponds to omitting the introduction of a
numeric flux on the boundary terms. Instead, the boundary condition is inserted into
the equations (2.4) and the numeric flux is introduced only for interior terms. This leads
to the same equations as choosing δ = 0 for the numeric flux on the boundary:

ûh = uh
~̂γh = −zuh~n+ g~n (2.14)

Note that δ = 0 is needed to show ellipticity in section 2.4.2. We will discuss the
parameters α and β in section 3.5. Next we discuss the properties consistency and
ellipticity.

2.4.1 Consistency

The method is called consistent if, given a smooth solution u which solves the given
problem (1.1), u also solves the variational formulation (2.10). For smooth functions
[[·]] = 0 and {{u}} = u. For boundary edges the term ~∇huh · ~n+ zuh − g = 0 because u
solves ~∇huh ·~n+ zuh = g on the boundary. What remains is ûh = u and ~̂γh = ~∇u for all
edges. Thus it can be seen that this is consistent by considering the derivation in section
2.2 without introducing the discretisation. Then the numerical fluxes correspond to the
function u as obtained above.

2.4.2 Ellipticity

For the ellipticity, we need the bilinear form. We derive the bilinear form from equation
(2.8) because there we didn’t use that our basis functions solve −∆u+σu = 0 and makes
it therefore more general. First we insert the numeric fluxes (2.12) and (2.13) into the

13

equation:

∑
K

[∫
K

(
σKuhvh + ~∇huh · ~∇hvh

)
dS

+
∫
∂K\∂Ω

(
{{uh}}+

β
√
σK

[[
~∇huh

]]
N
− uh

)
~∇hvh · ~ndS

+
∫
∂K∩∂Ω

(
−δ
z

[
~∇huh · ~n+ uh − g

])
~∇hvh · ~ndS

+
∫
∂K\∂Ω

(
−
{{
~∇huh

}}
+ α
√
σK [[uh]]N

)
· ~nvhdS

+
∫
∂K∩∂Ω

(
−~∇huh + (1− δ)

(
~∇huh − zuh~n− g~n

))
· ~nvhdS

]
= 0 (2.15)

In a next step, we want to write the integrals over ∂K in terms of edges FIh and FBh
of the mesh. Each interior edge is shared by two triangles. The jump [[·]] and average
{{·}} operators are independent of which triangle we look at. The remaining expressions
are of the form w~n and can be written as a jump term when translating from the sum
notation to the integration over FIh . The integral

∫
∂K\∂Ω uh

~∇hvh · ~ndS can be written

as
∫
FIh
{{uh}}

[[
~∇hvh

]]
dS +

∫
FIh

[[uh]] ·
{{
~∇hvh

}}
dS

∑
K

[∫
K

(
σKuhvh + ~∇huh · ~∇hvh

)
dS
]

+
∫
FIh
− [[uh]]N ·

{{
~∇hvh

}}
+

β
√
σK

[[
~∇huh

]]
N

[[
~∇hvh

]]
N

dS

+
∫
FIh
−
{{
~∇huh

}}
· [[vh]]N + α

√
σK [[uh]]N · [[vh]]N dS

+
∫
FBh

(
−δ
z

[
~∇huh · ~n+ zuh − g

])
~∇hvh · ~ndS

+
∫
FBh

(
−~∇huh + (1− δ)

(
~∇huh + zuh~n− g~n

))
· ~nvhdS = 0 (2.16)

14

For the usual a(u, v) = f(v) we have the bilinear form

a(u, v) =
∑
K

[∫
K

(
σKuhvh + ~∇huh · ~∇hvh

)
dS
]

+
∫
FIh
− [[uh]]N ·

{{
~∇hvh

}}
+

β
√
σK

[[
~∇huh

]]
N

[[
~∇hvh

]]
N

dS

+
∫
FIh
−
{{
~∇huh

}}
· [[vh]]N + α

√
σK [[uh]]N · [[vh]]N dS

+
∫
FBh
−δ
z
~∇huh · ~n ~∇hvh · ~n − δuh~∇hvh · ~ndS

+
∫
FBh
−δ~∇huh · ~n vh + (1− δ)zuhvhdS (2.17)

and the linear form

f(v) =
∫
FBh
−δ
z
g~∇hvh · ~n + (1− δ) gvhdS (2.18)

The bilinear form is symmetric. Ellipticity is defined as: There exists a constant C > 0,
such that

a(v, v) ≥ C ||v||2DG ∀v ∈ V

A problem arises from the term − δ
z
~∇huh·~n ~∇hvh·~n of the boundary integrals, which will

always be negative for a(v, v). The problem can be omitted by choosing δ = 0, which
was already observed to be the natural choice in section 2.4. Now ellipticity can be
shown as in [6], proposition 4.2. From this follow certain restrictions for the parameters:

α > αmin >
C2

tinv√
σh

, β > 0, δ = 0 (2.19)

Where Ctinv is a trace inverse estimate, a constant such that ||v||0,∂K ≤ Ctinvh
−1/2
K ||v||0,K

15

3 Implementation

3.1 Mesh

The implementation was made in the LehrFEM framework, a finite element framework
implemented in Matlab. One essential component is the mesh, which is stored as a
set of vectors and matrices, bundled in a Matlab struct. The vertices are stored row
wise in the m× 2 matrix Coordinates. One element is made up of three integers which
reference a row in the vertex matrix. The elements are also stored row wise in the n× 3
matrix Elements. σ is constant on an element, for that reason a sigma value is stored
for each element in the n× 1 vector ElemSigma.

There are also some auxiliary matrices which help assembling the equations, like the
Edge matrix. It is a o× 2 matrix which references row wise the two vertices of an edge,
like the element matrix. The vector BdFlags is a o × 1 vector. Its entries are negative
for edges which belong to the boundary of the domain. The o × 2 Edge2Elem matrix
stores the two elements which share the respective edge.

3.2 Exponential Basis Functions

We want solutions of the differential equation

∆u(x, y)− σku(x, y) = 0 (3.1)

as basis functions for the DGfinite element method. As the laplacian is invariant under
rotation, we can add more basis functions by choosing different angles with which the
basis functions are rotated. Therefore we solve the 1D differential equation

∂2u

∂x2
(x)− σk · u(x) = 0 (3.2)

A solution of this differential equation is

u(x) = Ae
√
σk·x +Be−

√
σk·x (3.3)

which is also a solution to the 2D equation. The second term Be−
√
σk·x can be omitted,

as it is equivalent to Ae
√
σk·x in the opposite direction. Then we introduce the rotation

of the basis function as x cos(α) + y sin(α). The basis functions should be tied to a
point of the element. For convenience, we choose this point to be the first vertex of the
element. The final basis function, with one coefficient, direction α and vertex (x0, y0) is:

A exp
[
√
σk

(
x− x0

y − y0

)
·
(

cos(α)
sin(α)

)]
(3.4)

16

3.3 Bessel Basis Functions

The exponential basis functions have a disadvantage: If the angles between the basis
functions get smaller, the functions get linearly more dependent. Thus if one uses a
lot of basis functions, the stiffness matrix gets very ill conditioned. To mitigate this
problem, we introduce another set of basis functions, which are based on the modified
Bessel functions. We start again with the differential equation (3.1) which can be written
in polar coordinates:

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂φ2
− σku = 0 (3.5)

Now we choose u(r, φ) = R(r)trig(kφ), where trig(kφ) stands for either sin(kφ) or
cos(kφ). And we multiply the equation by r2/trig(kφ).

r2∂
2R(r)
∂r2

+ r
∂R(r)
∂r

− k2R(r)− σkr2R(r) = 0 (3.6)

Now the partial differential equation is only in r. We want to write it in form of the
modified Bessel’s differential equation and introduce for that the variable transformation:
r̃ = r ·

√
σ, R̃(r

√
σ) = R(r). The second derivative of R̃ is then

∂2R̃(r̃)
∂r2

=
∂2R̃(r̃)
∂r̃2

(
∂r̃

∂r

)2

︸ ︷︷ ︸
=σ

+
∂R̃(r̃)
∂r̃

∂2r̃

∂r2︸︷︷︸
=0

=
∂2R̃(r̃)
∂r̃2

σ (3.7)

Transforming now equation (3.6) yields:

r̃2∂
2R̃(r̃)
∂r̃2

+ r̃
∂R̃(r̃)
∂r̃

− (r̃2 + k2)R̃(r̃) = 0 (3.8)

The solutions of this differential equation are the modified Bessel function of the first
kind, and the modified Bessel function of the second kind. The modified Bessel function
of the first kind is:

Ik(r̃) =
∞∑
m=0

1
m! Γ(m+ k + 1)

(
r̃

2

)2m+k

(3.9)

It is finite at r = 0. The modified Bessel function of the second kind is not finite at
r = 0, but a finite solution is needed there. Therefore only the modified Bessel function
of the first kind is used. Also we restrict k to k ∈ N0 to achieve an independent basis.

u(r, φ) = Ik(
√
σr)trig(kφ) (3.10)

The derivative of this function is also needed for calculation. It can be derived with the
identity I ′ν(z) = 1

2(Iν−1(z) + Iν+1(z))

~∇r =
1√

x2 + y2

(
x
y

)
, ~∇φ =

1
y2 + x2

(
−y
x

)
,

17

ktrig′(kφ) =
{
k sin′(kφ) = k cos(kφ)
k cos′(kφ) = (−k) sin(kφ)

(3.11)

~∇u = (~∇Ik(
√
σr))trig(kφ) + Ik(

√
σr)ktrig′(kφ)(~∇φ) (3.12)

=
1
2
[
Ik−1(

√
σr) + Ik+1(

√
σr)
] √

σ√
x2 + y2

(
x
y

)
trig(kφ)

+ Ik(
√
σr)ktrig′(kφ)

1
y2 + x2

(
−y
x

)
(3.13)

There is no easy simplification to solve the integrals analytically like for the exponential
basis functions. Therefore the integrals are solved numerically for the matrix assembly.

3.4 Matrix Assembly

We start with the variational formulation (2.10). For the purpose of calculation, we split
those integrals up into integrals over edges and sum it up afterwards.

3.4.1 Interior Contributions

On interior edges assemble∫
∂K

(
{{uh}}+ ~ζ · [[uh]]N −

β
√
σK

[[
~∇huh

]]
N

)
~∇vh · ~ndS

−
∫
∂K

({{
~∇huh

}}
− α
√
σK [[uh]]N− ~ζ

[[
~∇huh

]]
N

)
· ~nvhdS for ∂K/∈∂Ω (3.14)

Let’s write viL, v
i
R for the basis function i on the right and the left side of the edge. All

basis functions that are not part of the left or the right element will not contribute to
the integrals on this edge. u can also be written in terms of the basis functions. For l
and r basis functions on the left and right triangle respectively:

uh =
l∑

i=1

µiLv
i
L +

r∑
i=1

µiRv
i
R

Additionally we define viE as one of viL and viR, and the same thing for the normal ~nE
which is pointing out of the left or right element respectively:

18

The interior term corresponding to test function viE is then:∫
∂K

{{
l∑

i=1

µiLv
i
L +

r∑
i=1

µiRv
i
R

}}
~∇viE · ~nEdS

+
∫
∂K

~ζ ·

[[
l∑

i=1

µiLv
i
L +

r∑
i=1

µiRv
i
R

]]
N

~∇viE · ~nEdS

−
∫
∂K

β
√
σE

[[
l∑

i=1

µiL~∇viL +
r∑
i=1

µiR~∇viR

]]
N

~∇viE · ~nEdS

−
∫
∂K

{{
l∑

i=1

µiL
~∇viL +

r∑
i=1

µiR
~∇viR

}}
· ~nEviEdS

+
∫
∂K

α
√
σE

[[
l∑

i=1

µiLv
i
L +

r∑
i=1

µiRv
i
R

]]
N

· ~nEviEdS

+
∫
∂K

~ζ

[[
l∑

i=1

µiL~∇viL +
r∑
i=1

µiR~∇viR

]]
N

· ~nEviEdS (3.15)

In the next step the jump and average terms are expanded.∫
∂K

1
2

(
l∑

i=1

µiLv
i
L +

r∑
i=1

µiRv
i
R

)
~∇viE · ~nEdS

+
∫
∂K

~ζ ·

(
l∑

i=1

µiLv
i
L~nL +

r∑
i=1

µiRv
i
R~nR

)
~∇viE · ~nEdS

−
∫
∂K

β
√
σE

(
l∑

i=1

µiL~∇viL · ~nL +
r∑
i=1

µiR~∇viR · ~nR

)
~∇viE · ~nEdS

−
∫
∂K

1
2

(
l∑

i=1

µiL
~∇viL +

r∑
i=1

µiR
~∇viR

)
· ~nEviEdS

+
∫
∂K

α
√
σE

(
l∑

i=1

µiLv
i
L~nL +

r∑
i=1

µiRv
i
R~nR

)
· ~nEviEdS

+
∫
∂K

~ζ

(
l∑

i=1

µiL~∇viL · ~nL +
r∑
i=1

µiR~∇viR · ~nR

)
· ~nEviEdS (3.16)

One matrix entry, representing equation for test function viE , and solution coefficient
µmD , then looks like

A(Ei,Dm) =
∫
∂K

1
2
vmD ~∇viE · ~nE + ~ζ · vmD~nD ~∇viE · ~nE −

β
√
σE

~∇vmD · ~nD ~∇viE · ~nE

−1
2
~∇vmD · ~nEviE + α

√
σEv

m
D~nD · ~nEviE + ~ζ(~∇vmD · ~nD) · ~nEviEdS (3.17)

19

3.4.2 Boundary Contributions

On the boundary ∂Ω assemble∫
∂K

(
uh −

δ

z

(
~∇huh · ~n+ uh − g

))
~∇vh · ~ndS

−
∫
∂K

(
~∇huh − (1− δ)

(
~∇huh + uh~n− g~n

))
· ~nvhdS for ∂K ∈ ∂Ω (3.18)

E and D can be dropped from the notation because only one element is involved. Apart
from that the same notation as before is used. One element of the Matrix is:

A(i,m) =
∫
∂K

(1− δ

z
)vm~∇vi · ~n− δ

z
~∇vm · ~n~∇vi · ~n

− δ~∇vm · ~nvi + (1− δ)vmvidS (3.19)

and one element of the right hand side is:

L(i) = −
∫
∂K

δ

z
g~∇vi · ~n+ (1− δ)gvidS (3.20)

3.4.3 Matrix Assembly for Exponential Basis Functions

For exponential basis functions, it is possible to solve the integrals analytically. In order
to do so we replace v with 3.4 in the expressions for the matrix elements:

viE = exp
[
−
√
σE~x

E
0 ·
(

cos(αi)
sin(αi)

)]
︸ ︷︷ ︸

ciE

exp
[
√
σE~x ·

(
cos(αi)
sin(αi)

)]

Where ~x =
(
x
y

)
and ~xE0 =

(
xE0
yE0

)
, which is the first Vertex of the Triangle E. The

gradient is:

~∇viE = ciE exp
[
√
σE~x ·

(
cos(αi)
sin(αi)

)]
·
√
σE

(
cos(αi)
sin(αi)

)
As the formulas get quite big in that notation, the following abbreviations are introduced:

exp
[
√
σE~x ·

(
cos(αi)
sin(αi)

)]
= wiE(x, y); ~θiE =

√
σE

(
cos(αi)
sin(αi)

)
Applied to v:

viE = ciEw
i
E(x, y); ~∇viE = ciE

~θiEw
i
E(x, y)

20

Integration

The integrals are of the form
∫
wmD · wiEdS for all terms. The solution to this integral

can be derived by simplifying the two exponentials to one, which then can be integrated
easily. ∫

∂K
wmD (x, y)wiE(x, y)dS =

∫
∂K

exp
[
~x · ~θmD

]
exp

[
~x · ~θiE

]
dS

=
∫
∂K

exp
[
~x ·
(
~θmD + ~θiE

)]
dS (3.21)

In order to solve the integral, it is mapped onto the edge: ~λ(t) = ~b+ ~d · t, t ∈ [0; 1] where
~d represents the vector from the start ~b to the end point of the edge.

=
∫ 1

0
exp

[
~λ(t) ·

(
~θmD + ~θiE

)] ∣∣∣∣∣
∣∣∣∣∣∂~λ(t)
∂t

∣∣∣∣∣
∣∣∣∣∣dt

= exp
[
~b ·
(
~θmD + ~θiE

)] ∫ 1

0
exp

[
~d ·
(
~θmD + ~θiE

)
t
] ∣∣∣∣∣∣~d∣∣∣∣∣∣dt

=
exp

[
~b ·
(
~θmD + ~θiE

)] ∣∣∣∣∣∣~d∣∣∣∣∣∣
~d ·
(
~θmD + ~θiE

) {
exp

[
~d ·
(
~θmD + ~θiE

)]
− 1
}

(3.22)

A problem arises if the exponent in 3.22 goes to zero, namely ~θmD + ~θiE goes to zero when
the angles are π apart. In this case the numerical evaluation gets unstable. In order to
avoid this instability, in case δ = ~d ·

(
~θmD + ~θiE

)
< tol we use a Taylor expansion around

zero for the integral
∫ 1

0 e
δtdt:

1 +
1
1!

1
2
δ +

1
2!

1
3
δ2 +

1
3!

1
4
δ3 + · · · (3.23)

With the integral solved analytically we are ready to assemble the matrix elements.
First the interior contributions are calculated. Equation 3.17 written in terms of wiE :

A(Ei,Dm) =
1
2
cmDc

i
E
~θiE · ~nE

∫
∂K

wmD (x, y)wiE(x, y)dS

+ cmDc
i
E
~ζ · ~nD~θiE · ~nE

∫
∂K

wmD (x, y)wiE(x, y)dS

− β
√
σE

cmDc
i
E
~θmD · ~nD~θiE · ~nE

∫
∂K

wmD (x, y)wiE(x, y)dS

− 1
2
cmDc

i
E
~θmD · ~nE

∫
∂K

wmD (x, y)wiE(x, y)dS

+ α
√
σEc

m
Dc

i
E~nD · ~nE

∫
∂K

wmD (x, y)wiE(x, y)dS

+ ~ζcmDc
i
E(~θmD · ~nD) · ~nE

∫
∂K

wmD (x, y)wiE(x, y)dS (3.24)

21

The Integral
∫
∂K w

m
D (x, y)wiE(x, y)dS and the constant cmDc

i
E is the same for each term,

therefore we calculate it only once. Written in form of a matrix:

int(Ei,Dm) = cmDc
i
E

∫
∂K

wmD (x, y)wiE(x, y)dS (3.25)

Then each of the six terms is set up as a matrix:

Term 1 T1(Ei,Dm) =
1
2
~θiE · ~nE

Term 2 T2(Ei,Dm) = ~ζ · ~nD~θiE · ~nE

Term 3 T3(Ei,Dm) =
β
√
σE

~θmD · ~nD~θiE · ~nE

Term 4 T4(Ei,Dm) =
1
2
~θmD · ~nE

Term 5 T5(Ei,Dm) = α
√
σE~nD · ~nE

Term 6 T6(Ei,Dm) = ~ζ · ~nE~θmD · ~nD (3.26)

Assembly then looks as follows:

A(Ei,Dm) = (T1 + T2−T3−T4 + T5 + T6)(Ei,Dm) · int(Ei,Dm) (3.27)

For the boundary contributions, the integration for the right hand side has to be
carried out numerically, to keep it as general as possible for boundary data g. The
numerical integration is straight forward from (3.20). For the left hand side we write
again the integrals of equation 3.19 in terms of wi:

A(i,m) = (1− δ

z
)~θi · ~n

∫
∂K

vmvidS

− δ

z
~θm · ~n~θi · ~n

∫
∂K

vmvidS

− δ~θm · ~n
∫
∂K

vmvidS

+ (1− δ)
∫
∂K

vmvidS (3.28)

The matrix int(i,m) is defined analogously to eq. 3.25. Here we only have four terms
which are again set up as a matrix.

Term 1 T1(i,m) = (1− δ

z
)~θi · ~n

Term 2 T2(i,m) =
δ

z
~θm · ~n~θi · ~n

Term 3 T3(i,m) = δ~θm · ~n
Term 4 T4(i,m) = 1− δ (3.29)

Assembly then looks as follows:

A(i,m) = (T1−T2−T3 + T4)(i,m) · int(i,m) (3.30)

22

3.5 Parameters for the Numeric Fluxes

The numeric flux has four parameters, α, β, ~ζ and δ, which influence the quality of the
numerical solution. The vectorial parameter ~ζ is always chosen to be zero, like in [6].
The other three parameters α, β and δ are restricted by the proof of ellipticity, see eq.
2.19. Note that δ = 0, which only leaves α and β to be chosen.

It is not trivial to find stable parameters which work in all cases. After a lot of failed
attempts, the choice being appropriate for all simulations presented here is:

α = n2 1
h
√
σ
, β = 0.5 (3.31)

where n is the number of basis functions per element. In case σ is zero, all parameters
are set to zero. As h has the units of length and

√
σ has the units of one over length,

all units drop out of the parameters, thus all of them are chosen units free. Another
property of α is the scaling with h which enhances convergence for mesh refinement [6].

Figure 3.1 shows how the error behaves with varying values of α and β. For low values

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20 0 2 4 6 8 10

 0

 0.002

 0.004

 0.006

 0.008

 0.01

H1 error

relative H1 error
 0.005
 0.004

 0.0035
 0.003

 0.0028
actual parameters

alpha

beta

H1 error

Figure 3.1: H1 error in the α×β plane. Simulations of a circular domain, with boundary
condition g = 1, mixed basis functions with number of basis functions n = 7,
mesh width h = 0.25, z = 1, σ = 1000, ~ζ = ~0 and δ = 0

23

of alpha the error is extremely high. This region should definitely be avoided. But the
minimum error is just next to this region, and the error grows from this point on with
α. It is quite delicate to find the optimum. Because the error grows only moderately
for higher values of α than for lower, it is recommendable to have a too large value of α
than a too low one.

On the β axis, the error behaves more smoothly. β = 0 is already quite close to the
minimum. The choice of β = 0.5 is somehow arbitrary, but it is related to the ultra weak
variational formulation [7], as one would have to choose β = 0.5 to be able to recover it
[6]. As the error grows for larger values of β and the minimum is not at zero, it seems
to be a reasonable choice.

3.6 Adaptive Choice of Basis Functions

3.6.1 Only Exponential Basis Functions

From section 1.2 the behaviour of the skin layer for smooth boundaries is known. As
it is possible to choose the directions of the exponential basis functions per element, we
should take advantage of this knowledge. This is straight forward for elements that have
a boundary edge. There the direction normal to the boundary, pointing outwards, is
most favourable. As the boundary may be curved, or the element is adjacent to a corner,
several directions can be used, scattered around the relevant normals.

Listing 3.1 shows an algorithm for choosing a set of exponential basis functions. It
does so in four steps, which are illustrated in figure 3.2. The steps are:

11

1
2

3
4

4

Figure 3.2: Illustration of the algorithm for choosing exponential basis functions adapted
to the mesh. Each blue arrow stands for one basis function direction.

1. Line 2: For each edge of the element, choose one basis function in direction of the
normal of the edge, pointing outwards.

2. Line 15: For each boundary edge add 2 · n bd basis functions to the respective
element. Choose the directions symmetrically around the normal of the boundary
edge, such that there is always the angle spreading in between. The angle should
not be too small, or the basis functions will be too similar. It can be scaled with

24

σ. The higher it is, the closer together the directions may be. spreading = 0.1
radian was used for the simulations.

3. Line 38: For elements which have just one point on the boundary (not a whole
edge), choose an additional basis function with direction of the average normal of
the adjoining boundary edges.

4. Line 83: To add further basis functions to the elements, search for the biggest
angle between two neighbouring directions. Choose the new direction to be the
bisector of those two directions. Repeat this until nmin is reached.

Listing 3.1: element specific exponential basis functions
file guess basis functions exp bdvertex.m

1 % add one d i r e c t i o n f o r each edge to each element
2 for i =1: nElements
3 % se t number o f b a s i s f unc t i on s to 3
4 nBfu (i) = 3 ;
5 % ex t r a c t v e r t e x coord ina t e s o f e lement i
6 v = Coords (Elements (i , :) , :) ;
7 % ang le o f the outwards po in t i n g normal o f the edge
8 Bfu (i , 1) = out ang l e (v (2 , :) − v (1 , :)) ;
9 Bfu (i , 2) = out ang l e (v (3 , :) − v (2 , :)) ;

10 Bfu (i , 3) = out ang l e (v (1 , :) − v (3 , :)) ;
11 end
12

13 % add n bd d i r e c t i o n s f o r each boundary edge to the
14 % re s p e c t i v e e lement
15 for i = 1 : nEdges
16 % i f edge be l ong s to boundary
17 i f Mesh . BdFlags (i)<0
18 % ge t e lement con ta in ing edge i
19 % edge l oc d e f i n e s where the edge i s in the element
20 [elem , edge loc] = get e l em (Mesh , i) ;
21 % v e r t i c e s o f edge
22 v s t a r t = Coords (Elements (elem , mod(edge loc , 3) + 1) , :) ;
23 v end = Coords (Elements (elem , mod(edge loc +1 ,3)+1) , :) ;
24 % ang le o f the outwards po in t i n g normal o f the edge
25 a = out ang l e (v end − v s t a r t) ;
26 % add 2∗n bd d i r e c t i o n s wi th space ing spread ing
27 for j = 1 : n bd
28 Bfu (elem ,3+ j ∗2−1) = a+spread ing ∗ j ;
29 Bfu (elem ,3+ j ∗2) = a−spread ing ∗ j ;
30 end
31 % update number o f b a s i s f unc t i on s
32 nBfu (elem) = 3+n bd ∗2 ;
33 end
34 end
35

25

36 % add one d i r e c t i o n to a l l e lements which have one po in t
37 % in common with the boundary
38 for i = 1 : nElements
39 for j =1:3
40 v = Elements (i , j) ; % ver t e x
41 i f (nBfu (i) == 3 && is boundary po in t (v))
42 % f ind ad jo in ing edges
43 edg = Mesh . Edges (: , 1) == v ;
44 edg = edg | Mesh . Edges (: , 2) == v ;
45 % only s e l e c t boundary edges
46 edg = edg & (Mesh . BdFlags < 0) ;
47 % ge t v e r t e x i n d i c e s and o r i e n t a t i on o f found edges
48 edg idx = Mesh . Edges (edg , :) ;
49 e d g o r i e n t = sum(Mesh . EdgeOrient (edg , :) , 2) ;
50 % ge t ang l e o f normal o f edge
51 i f (e d g o r i e n t (1) > 0)
52 v s t a r t = Coords (edg idx (1 , 1) , :) ;
53 v end = Coords (edg idx (1 , 2) , :) ;
54 else
55 v s t a r t = Coords (edg idx (1 , 2) , :) ;
56 v end = Coords (edg idx (1 , 1) , :) ;
57 end
58 a (1) = out ang l e (v end − v s t a r t) ;
59 i f (e d g o r i e n t (2) > 0)
60 v s t a r t = Coords (edg idx (2 , 1) , :) ;
61 v end = Coords (edg idx (2 , 2) , :) ;
62 else
63 v s t a r t = Coords (edg idx (2 , 2) , :) ;
64 v end = Coords (edg idx (2 , 1) , :) ;
65 end
66 a (2) = out ang l e (v end − v s t a r t) ;
67 % bu i l d average d i r e c t i o n o f both edge normals
68 a = sort (a) ;
69 d = a (2) − a (1) ;
70 i f (d < pi)
71 Bfu (i , nBfu (i)+1) = mod((a(1)+a (2))/2 , 2∗ pi) ;
72 else
73 Bfu (i , nBfu (i)+1) = mod((a(1)+a (2))/2 + pi , 2∗ pi) ;
74 end
75 % update number o f b a s i s f unc t i on s
76 nBfu (i) = nBfu (i) + 1 ;
77 end
78 end
79 end
80

81 % add d i r e c t i o n s in the l a r g e s t angu lar gap
82 % un t i l n min i s reached
83 for i =1: nElements
84 i f nBfu (i) < n min

26

85 for j = 1 : (n min−nBfu (i))
86 % sor t d i r e c t i o n s to c a l c u l a t e gaps
87 Bfu (i , 1 : nBfu (i)) = sort (Bfu (i , 1 : nBfu (i))) ;
88 gaps = Bfu (i , [2 : nBfu (i) , 1]) − Bfu (i , 1 : nBfu (i)) ;
89 % modulo t a k e s care o f gaps which cros s 2∗ p i boundary
90 % ge t l a r g e s t gap
91 [a , idx] = max(mod(gaps , 2∗ pi)) ;
92 % add ang le b i s e c t o r to b a s i s
93 Bfu (i , nBfu (i)+1) = mod(Bfu (i , idx) + a /2 ,2∗pi) ;
94 nBfu (i) = nBfu (i)+1;
95 end
96 end
97 end

The basis functions are stored element wise in the matrix Bfu. As not every element
has the same number of basis functions, the auxiliary vector nBfu stores the number
of basis functions per element. The mesh is given by the vertices stored in Coords row
wise, and the elements in Elements which reference the vertex row. The parameters
for choosing the basis functions are n bd, which defines how many basis functions are
used to spread out in direction of the boundary, and n min, which defines the minimum
number of basis functions per element. Step 4 is repeated for each element until n min
is reached.

The function out angle(e) calculates the angle of the outwards pointing normal of
the edge e, which is given as a vector. The triangle must be oriented counter clock wise
in order to get the outwards pointing normal. Given an edge index i of a boundary
edge, get elem(Mesh, i) returns the element index of the corresponding element, and
where on this element the edge is located. The EdgeOrient matrix stores for each edge,
whether it is oriented in the same direction as the element as 1, or if it is in counter
direction as −1. Normal edges have two entries for both elements. Boundary edges have
only one such entry, the other is zero. The edge orientation is needed on line 51 to get
the outwards pointing normal, not the inwards pointing one. Note that Matlab has a
very general implementation of modulo, such that mod(a,2∗pi) correctly maps the angle
a to the range [0, 2π)
Bfu and nBfu are finally stored in the mesh struct for further processing as ElemBfuExp

and ElemNBfuExp respectively.
This method has one drawback. As the mesh gets finer, the skin depth may drop below

an element width. In that case the results get worse due to the missing exponential basis
functions in direction of the skin layer. This problem is addressed in the next section,
but may be solved in the same way here.

3.6.2 Exponential and Bessel Basis Functions

It is also possible to mix exponential and Bessel basis functions. Exponential basis
functions are used where the direction of the skin layer is known. Bessel basis functions
are suitable for unknown contributions to the solution, like for interior elements or in
vicinity of corners and strongly curved boundaries. For an example see figure 4.19. The

27

exponential basis functions for elements at the boundary are computed analogously to
step 2 in the previous section:

• For each boundary edge, add 2m + 1 exponential basis functions to the corre-
sponding element. Choose the exponential basis function directions symmetrically
around the outwards pointing normal of the boundary edge, such that there is
always an angle of about 0.1 radian in between.

• Further exponential basis functions are added to all elements which are less than
layer width away from the boundary. Finding the relevant boundary edges for
each element is done recursively:

Listing 3.2: finding close boundary edges recursively
file recursive boundary search.m

1 % i n i t i a l l y s e t the e l em b d l i s t en try f o r a l l bd edges
2 % on the element they be long to
3 for i = 1 : nEdges
4 i f Mesh . BdFlags (i)<0
5 % f ind the r e s p e c t i v e e lement
6 i f Mesh . Edge2Elem (i , 1) > 0
7 e l e m b d l i s t (Mesh . Edge2Elem (i , 1) , 1) = i ;
8 else
9 e l e m b d l i s t (Mesh . Edge2Elem (i , 2) , 1) = i ;

10 end
11 end
12 end
13 % re c u r s i v e l y f i nd c l o s e boundary edges
14 while t rue
15 % i t e r a t e over a l l e lements
16 for i = 1 : nElem
17 % i f e lement does not ye t have a e l em b d l i s t en try
18 i f sum(e l e m b d l i s t (i , :)) == 0
19 % ge t e l em b d l i s t e n t r i e s from neighbours
20 bd = get ne ighbours bd (i , Mesh , e l e m b d l i s t) ;
21 % i f t he r e are any c o l l e c t e d e n t r i e s
22 i f ˜isempty (bd)
23 % s to r e them in an a u x i l i a r y l i s t
24 a u x e l e m b d l i s t (i , 1 : length (bd)) = bd ;
25 % ca l c u l a t e d i r e c t i o n s
26 c = Coords (Elements (i , :) , :) ;
27 [temp dir , d i s t] = d i r e c t i o n s (bd , Mesh , c) ;
28 % i f t he r e are any d i r e c t i o n s in l a y e r w i d t h
29 i f ˜isempty (d i s t) && d i s t (1) < l aye r w id th
30 n = nBfu (i , 1) ;
31 % number o f new ba s i s f unc t i on s
32 nd = length (temp dir) ;
33 % ass i gn b a s i s f unc t i on s
34 Bfu (i , (n+1):(n+nd)) = temp dir ;

28

35 % update count o f b a s i s f un t i on s
36 nBfu (i , 1) = n + nd ;
37 end
38 end
39 end
40 end
41

42 i f sum(sum(a u x e l e m b d l i s t)) == 0
43 % i f no new en t r i e s were generated , e x i t
44 break
45 else
46 % e l s e s t o r e a u x i l i a r y l i s t back to e l em b d l i s t
47 % a f f e c t e d rows
48 r = sum(aux e l em bd l i s t , 2) > 0 ;
49 % max s i z e o f a row
50 s = s ize (aux e l e m bd l i s t , 2) ;
51 % ass i gn new rows to e l em b d l i s t
52 e l e m b d l i s t (r , 1 : s) = a u x e l e m b d l i s t (r , :) ;
53 % c l e a r a u x i l i a r y l i s t
54 a u x e l e m b d l i s t = zeros (nElem , 1 0) ;
55 end
56 end

In the first loop (line 3) the matrix of close boundaries elem bd list is initialized.
Each boundary edge gets noted on the row of its respective element index in this matrix,
the rest of the matrix is initialized with zeros. In the main loop (line 14) the entries in
elem bd list of neighbouring elements are collected. The function get neighbours bd
finds all elements which have at least one vertex in common with the current element,
looks up all boundary edge entries of them and returns that list. See listing 3.3. The
found boundary entries are stored in an auxiliary list, which is merged later on line 46
with the normal list. This ensures the selection of boundaries is independent of the
element order. directions calculates the directions to the closest boundary points. For
each boundary supplied in the argument bd; it finds the closest point to the element,
the distance, and the direction. Then only the directions with the smallest distances
(cutoff at 20% of the smallest distance) are considered. Directions which are too close
to already included directions are dropped, because they do not improve the basis. The
minimum distance to the boundary is compared to the cut off layer width and if it is
within the cutoff range, the directions are added to the set of basis functions.

For Bessel basis functions only elements with and without boundary edges are distin-
guished:

• On interior elements, add 2l + 1 Bessel functions.

• On Elements which have at least one boundary edge, add only 2(l−m)− 1 Bessel
functions.

Choosing less Bessel basis functions on the boundary assures that all elements have
about the same number of degrees of freedom.

29

Listing 3.3: the neighbour finding function; file recursive boundary search.m

1 function b = get ne ighbours bd (i , Mesh , e l e m b d l i s t)
2 % f i nd s a l l e lements which have at l e a s t
3 % one ve r t e x in common with i and re turns
4 % th e i r boundary e n t r i e s
5 elem = Mesh . Elements ;
6 n = elem (: , 1) == elem (i , 1) ;
7 for j = 1 :3
8 for k = 1 :3
9 n = n | elem (: , j) == elem (i , k) ;

10 end
11 end
12 % ge t a l l boundary e n t r i e s f o r e lements in n
13 b = unique (e l e m b d l i s t (n , :)) ;
14 % l i s t a l s o conta ins 0 , but t h a t s not an ac t ua l
15 % entry , remove i t .
16 b = b(b ˜= 0) ;
17 end

Note that by combining the basis functions, with increasing number of basis functions
per element the risk of ill conditioning increases. About 15 Bessel basis functions can
approximate an exponential basis function pretty well.

30

4 Results and Comparisons

4.1 Linear Finite Elements

Experiment 1: h Convergence

Let’s look at standard linear finite elements first. We take them as the reference to
compare with the proposed DG method. As the the thickness of the skin layer varies
with σ, we try three values of σ.

For the low σ = 1, and the skin depths equals the whole domain, that means there
is no skin layer. Figure 4.1 shows the convergence for mesh refinement on the reference
circular domain. Because there is no real skin layer, the finite element method converges
quickly.

For a moderate σ = 100, the skin depth is 10% of the domain such that we do have a
skin layer. Figure 4.2 shows a lower convergence rate and overall a higher relative error.

For the high σ = 104, the skin depth is now only 1% of the domain, which is a
quite thin skin layer. From figure 4.3 we see that for coarse meshes (< 200 degrees
of freedom), there is virtually no improvement. And for finer meshes, there is only a
moderate convergence rate. The error stays above 10% for up to 104 degrees of freedom.
The DG method will use a much coarser mesh with a similar amount of unknowns,
because we need a lot more degrees of freedom per element compared to linear finite
elements.

31

10-5

10-4

10-3

10-2

10-1

101 102 103 104

re
la

tiv
e

er
ro

r

degrees of freedom

p = 0.55

H1 error
L2 error

L infinity error
energy error

Figure 4.1: Experiment 1: Convergence of standard linear finite elements with σ = 1

10-3

10-2

10-1

100

101 102 103 104

re
la

tiv
e

er
ro

r

degrees of freedom

p = 0.49

H1 error
L2 error

L infinity error
energy error

Figure 4.2: Experiment 1: Convergence of standard linear finite elements with σ = 100

32

10-1

100

101 102 103 104

re
la

tiv
e

er
ro

r

degrees of freedom

H1 error
L2 error

L infinity error
energy error

Figure 4.3: Experiment 1: Convergence of standard linear finite elements with σ = 104

33

4.2 DG with Exponential Basis Functions

Experiment 2: h Convergence

Let’s repeat these test cases for the DG method. First for exponential basis functions
as in section 3.2 with the same 5 directions on every element.

For σ = 1 (fig. 4.4) we already observe a higher convergence rate than with linear
finite elements. On the next figure (4.5, σ = 100) the convergence rate has decreased,
but it is still better than with linear finite elements. It fails for the high σ = 104 (fig.
4.6). In contrast to linear finite elements, relative errors above 1 are possible. The
systems matrix is ill conditioned especially for coarse grids.

The result for σ = 104 can be improved by using more basis functions per element,
as in figure 4.7. The one outlier at 418 degrees of freedom is probably caused by a
particularly bad mesh and the huge condition number for coarse meshes.

Experiment 3: Convergence for Number of Basis Functions per Element

Convergence when using more basis functions per element on a fixed mesh, is illustrated
in figure 4.8. Actually the observed convergence is a lot higher in terms of degrees
of freedom than with mesh refinement. But it is not reliable, as the condition of the
matrix increases with decreasing angles between the directions of the exponential basis
functions. That means solutions will improve only to a certain point and can get really
bad beyond that point because of ill-conditioning. This problem is addressed with the
Bessel basis functions.

34

10-8

10-7

10-6

10-5

10-4

10-3

101 102 103 104 105

re
la

tiv
e

er
ro

r

degrees of freedom

p = 1.01

H1 error
L2 error

L infinity error
energy error

Figure 4.4: Experiment 2: Convergence of DG with exponential basis functions with
σ = 1. Each element has the same set of basis functions. Number of basis
functions n = 5. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

10-4

10-3

10-2

10-1

100

101 102 103 104 105

re
la

tiv
e

er
ro

r

degrees of freedom

p = 0.89

H1 error
L2 error

L infinity error
energy error

Figure 4.5: Experiment 2: Convergence of DG with exponential basis functions with
σ = 100. Each element has the same set of basis functions. Number of basis
functions n = 5. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

35

10-1

100

101

102

101 102 103 104 105

re
la

tiv
e

er
ro

r

degrees of freedom

p = 0.27

H1 error
L2 error

L infinity error
energy error

Figure 4.6: Experiment 2: Convergence of DG with exponential basis functions with
σ = 104. Each element has the same set of basis functions. Number of basis
functions n = 5. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

10-3

10-2

10-1

100

101

102

102 103 104 105

re
la

tiv
e

er
ro

r

degrees of freedom

p = 1.09

H1 error
L2 error

L infinity error
energy error

Figure 4.7: Experiment 2: Convergence of DG with exponential basis functions with
σ = 104. Each element has the same set of basis functions. Number of basis
functions n = 11. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

36

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

103 104

 3 5 7 11 15 25 35

re
la

tiv
e

er
ro

r

degrees of freedom

number of basis functions per element

p = 4.80

H1 error
L2 error

L infinity error
energy error

Figure 4.8: Experiment 3: Convergence of DG with exponential basis functions with
σ = 104. Each element has the same set of basis functions. Number of basis
functions n is varied on a fixed mesh of mesh width h = 0.25. Parameters
α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

37

4.3 DG with Bessel Basis Functions

Experiment 4: h Convergence

Next we look at the Bessel basis functions, introduced in section 3.3. Bessel basis
functions have the advantage of not suffering from ill-conditioning. But the drawback
is we can not choose the direction of the skin layer. The first two examples, figure 4.9
with σ = 1 and figure 4.10 with σ = 100, are quite similar to the exponential case. The
convergence rate does not decrease from the lower to the higher σ, but it is at a slightly
lower level.

The interesting case of σ = 104 in figure 4.11 shows again a peak of huge error at about
260 degrees of freedom. It can only be attributed to an unfavourable mesh combined
with quite few basis functions to resolve the narrow skin layer. Indeed it looks much
better if we choose 11 basis functions per element, shown in figure 4.12. It does not suffer
from ill-conditioning as with exponential basis functions, although the condition number
increases with the number of basis functions, and decreases with the mesh width. But
all this at a lower level.

Experiment 5: Convergence for Number of Basis Functions per Element

Let’s look at the convergence on a fixed mesh with increasing number of basis functions
per element n shown in figure 4.13. Again we observe a quicker convergence in terms of
degrees of freedom compared to mesh refinement. A minimum number of basis functions
per element is needed for the method to start converging, but then it converges quickly.

38

10-8

10-7

10-6

10-5

10-4

101 102 103 104 105

re
la

itv
e

er
ro

r

degrees of freedom

p = 0.88

H1 error
L2 error

L infinity error
energy error

Figure 4.9: Experiment 4: Convergence of DG with Bessel basis functions with σ = 1.
Each element has the same set of basis functions. Number of basis functions
n = 5. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

10-4

10-3

10-2

10-1

100

101 102 103 104 105

re
la

itv
e

er
ro

r

degrees of freedom

p = 0.88

H1 error
L2 error

L infinity error
energy error

Figure 4.10: Experiment 4: Convergence of DG with Bessel basis functions with σ = 100.
Each element has the same set of basis functions. Number of basis functions
n = 5. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

39

10-1

100

101

102

103

101 102 103 104 105

re
la

itv
e

er
ro

r

degrees of freedom

p = 0.43

H1 error
L2 error

L infinity error
energy error

Figure 4.11: Experiment 4: Convergence of DG with Bessel basis functions with σ = 104.
Each element has the same set of basis functions. Number of basis functions
n = 5. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

10-3

10-2

10-1

100

102 103 104 105

re
la

itv
e

er
ro

r

degrees of freedom

p = 1.16

H1 error
L2 error

L infinity error
energy error

Figure 4.12: Experiment 4: Convergence of DG with Bessel basis functions with σ = 104.
Each element has the same set of basis functions. Number of basis functions
n = 11. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

40

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

102 103 104

 1 3 5 7 11 21 35

re
la

itv
e

er
ro

r

degrees of freedom

number of basis functions per element

p = 3.54

H1 error
L2 error

L infinity error
energy error

Figure 4.13: Experiment 5: Convergence of DG with Bessel basis functions with σ =
104. Each element has the same set of basis functions. Number of basis
functions n is varied on a fixed mesh of mesh width h = 0.25. Parameters
α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

41

4.4 DG with Element Specific Exponential Basis Functions

Figure 4.14: Two examples of element wise chosen directions for exponential basis func-
tions. Each blue arrow resembles one basis function. Section 3.6.1 explains
how the basis functions are chosen.

The exponential basis functions suffer from bad conditioning when we have too many
of them in directions where we do not have a skin layer. But they are better suited
to approximate a smooth skin layer. We can take advantage of the knowledge that the
skin layer will follow the boundary and choose the directions for the exponential basis
functions accordingly. In section 4.2 all elements had the same set of basis functions.
Now let’s choose the directions according to section 3.6.1. As an example see the figure
4.14.

Experiment 6: h Convergence

For a low σ like in figure 4.15, the convergence is actually a bit worse than with ho-
mogeneous directions on all elements. But this is not that astounding as the choice of
directions is designed for an apparent skin layer.

In figure 4.16 we have a skin layer, although not a too narrow one. The element wise
choice of basis functions has an effect especially on the error for coarse meshes. For finer
meshes, where the element size is below the skin depth, the error is close to the one for
a homogeneous choice of directions. This is because we have a quite optimal basis in the
first row of elements at the boundary. If this first row is thicker than the skin depth, we
successfully resolved the most important part of the problem with a good set of basis
functions. Beyond that point, the arbitrary directions introduce a less optimal basis.

For σ = 104, figure 4.17, the same effect is observable. The relative errors start at a

42

10-7

10-6

10-5

10-4

10-3

10-2

101 102 103 104 105

re
la

tiv
e

er
ro

r

degrees of freedom

p = 0.87

H1 error
L2 error

L infinity error
energy error

Figure 4.15: Experiment 6: Convergence of DG with exponential basis functions with
σ = 1. Basis Functions are chosen according to element shape. Number of
basis functions n = 5. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

10-4

10-3

10-2

10-1

101 102 103 104 105

re
la

tiv
e

er
ro

r

degrees of freedom

p = 0.38

H1 error
L2 error

L infinity error
energy error

Figure 4.16: Experiment 6: Convergence of DG with exponential basis functions with
σ = 100. Basis Functions are chosen according to element shape. Number
of basis functions n = 5. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and

~ζ = ~0

43

high level, but quickly drop below 10%.

Experiment 7: Convergence for Number of Basis Functions per Element

We can also study what happens when we add more basis functions in step 2 and 4.
The additional basis functions on the boundary edges are restricted to six. More such
basis functions would be too far off the normal to have an impact on the boundary layer
resolution. The result is shown in figure 4.18. The error increases for high numbers of
basis functions, which is probably caused by the ill-conditioning of the matrix.

44

10-4

10-3

10-2

10-1

100

101

101 102 103 104 105

re
la

tiv
e

er
ro

r

degrees of freedom

p = 0.82

H1 error
L2 error

L infinity error
energy error

Figure 4.17: Experiment 6: Convergence of DG with exponential basis functions with
σ = 104. Basis Functions are chosen according to element shape. Number
of basis functions n = 5. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and

~ζ = ~0

10-6

10-5

10-4

10-3

10-2

10-1

100

103 104

3 5 7 11 15 25 35

re
la

tiv
e

er
ro

r

degrees of freedom

number of basis functions per element

p = 3.61

H1 error
L2 error

L infinity error
energy error

Figure 4.18: Experiment 7: Convergence of DG with exponential basis functions with
σ = 104. Basis Functions are chosen according to element shape. Number
of basis functions n is varied on a fixed mesh of mesh width h = 0.25.
Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

45

4.5 DG with Exponential and Bessel Basis Functions

Figure 4.19: Two examples of element wise chosen set of exponential and Bessel basis
functions according to section 3.6.2. Each blue arrow resembles one expo-
nential basis function. The green circles represent the Bessel basis functions.
The green dot stands for the single Bessel basis function of order zero, each
green circle around it stands for a pair of Bessel basis functions of increasing
order.

To amend the problem of ill condition of the exponential basis functions, but in order
to still have a good basis in boundary proximity, we can mix Bessel and exponential
basis functions. The set of basis functions is chosen according to section 3.6.2

Experiment 8: h Convergence

In the case of σ = 1, figure 4.20, the combination of exponential and Bessel basis
functions is not favourable for coarse meshes. Relative errors are high compared to pure
Bessel basis functions. But this case without a skin layer is not the focus of the method,
and it still works reasonably well.

Figure 4.21, σ = 100, shows the same errors for coarse meshes as with exponential
basis functions only. The combination with Bessel basis functions lead to clearly better
conditioning of the matrix, which leads to a more continuous and faster decrease of the
error.

In the extreme case of σ = 104 in figure 4.22, the error does not decrease that smoothly
any more. But no significant increase is observed compared to pure exponential adaptive
basis functions. And the relative errors drop quickly for coarse meshes to a quite low
level.

46

10-8

10-7

10-6

10-5

10-4

10-3

10-2

101 102 103 104 105

re
la

tiv
e

er
ro

r

degrees of freedom

p = 1.32

H1 error
L2 error

L infinity error
energy error

Figure 4.20: Experiment 8: Convergence of DG with exponential and Bessel basis func-
tions with σ = 1. Basis Functions are chosen in relation to boundary
edges. Number of basis functions per element n around 5. Parameters
α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

10-5

10-4

10-3

10-2

10-1

101 102 103 104 105

re
la

tiv
e

er
ro

r

degrees of freedom

p = 1.04

H1 error
L2 error

L infinity error
energy error

Figure 4.21: Experiment 8: Convergence of DG with exponential and Bessel basis func-
tions with σ = 100. Basis Functions are chosen in relation to boundary
edges. Number of basis functions per element n around 5. Parameters
α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

47

10-4

10-3

10-2

10-1

100

101 102 103 104 105

re
la

tiv
e

er
ro

r

degrees of freedom

p = 0.97

H1 error
L2 error

L infinity error
energy error

Figure 4.22: Experiment 8: Convergence of DG with exponential and Bessel basis func-
tions with σ = 104. Basis Functions are chosen in relation to boundary
edges. Number of basis functions per element n around 5. Parameters
α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

Experiment 9: Convergence for Number of Basis Functions per Element

Convergence for increasing number of basis functions per element is not straight forward,
as enough Bessel basis functions can approximate an exponential basis function quite
well. Although the aim was to circumvent ill conditioning by mixing both basis functions,
this can go wrong if too many basis functions are taken. It depends on the skin depth,
but for σ = 104 (skin depth 1%) about 17 Bessel basis functions is the maximum to use
combined with exponential basis functions, as can be seen in figure 4.23.

In that figure, if n is the number of basis functions per element, m = min(n, 7)
is the number of exponential basis functions used for each boundary edge. n Bessel
basis functions are chosen for interior elements and n −m + 1 for boundary elements.
Obviously the method fails for large numbers of basis functions. Non the less it reaches
faster relative errors of the order of 10−6 than any other method presented here. The
true strength though is the low relative error for few basis functions.

48

10-6

10-5

10-4

10-3

10-2

10-1

100

102 103 104

3 5 7 11 15 25 35

re
la

tiv
e

er
ro

r

degrees of freedom

number of basis functions per element

H1 error
L2 error

L infinity error
energy error

Figure 4.23: Experiment 9: Convergence of DG with exponential and Bessel basis func-
tions with σ = 104. Basis Functions are chosen in relation to boundary
edges. Number of basis functions n is varied on a fixed mesh of mesh width
h = 0.25. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

49

4.6 Other Geometries

Experiment 10: L-Shape

(a)

(b) (c)

Figure 4.24: Experiment 10: two examples of an L-shaped domain with boundary condi-
tion g(x, y) = 1. (b) shows the solution for σ = 100, (c) shows a 3D plot of
the thin skin layer for σ = 104. In both cases meshwidth h = 0.25, number
of basis functions per element n around 5. See (a) for the chosen set of basis
functions. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

The L-shape is a simple geometry without curved boundaries, but with corners. Figure
4.24 shows two examples calculated on the L-shape. Both examples are calculated on the
same mesh with the mixed set of basis functions. The simulation with the DG method
agrees well with the finite element solution. Note the tiny gap for the inwards pointing
corner in 4.24c.

50

Experiment 11: Dirichlet Problem with Two Different σ Values

(a) (b)

Figure 4.25: Experiment 11: Domain with two different σ values and Dirichlet boundary
condition g = 1. (b) shows the side view of the solution. σ = 100 for the
inner circle. Meshwidth h = 0.25, number of basis functions per element n
around 5. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

In all previous experiments, σ was constant over the whole domain. Here we split the
domain into two regions (see figure 4.25a): The domain is bounded by a square of side
length four. In the center of it is a circle with radius one where σ > 0, and outside this
circle is σ = 0. There is the restriction that σ is constant on each element, therefore the
mesh is chosen such that the affected edges approximate the circle well. This experiment
uses a different boundary condition: u = g on ∂Ω.

The set of basis functions is a bit different for the special case σ = 0, because expo-
nential or Bessel basis functions would only give 1 as a basis function and nothing else.
Instead simple linear, continuous basis functions are used on elements where σ = 0, but
with the DG formulation. The solution inside the circle is related to the normal solution
on a circle. See figure 4.25b, in the interval between −1 and 1. On the circle boundary,
the value of the solution u is already quite low. It goes to zero for increasing σ. Figure
4.27 shows this behaviour. The value of a point on the circle is plotted against σ. As
mentioned in the introduction, heating due to ohmic losses depend on this diminishing
part of the solution. The ohmic losses are calculated as

∫
Ω σ(~x)|u(~x)|2dV . Figure 4.26

shows the ohmic losses calculated in this example.

51

 0.01

 0.1

 1

 10

10-1 100 101 102 103 104

oh
m

ic
 lo

ss

sigma

mixed basis functions

Figure 4.26: Experiment 11: Ohmic losses for varying σ. Dirichlet boundary condition
g = 1, Meshwidth h = 0.25, number of basis functions per element n around
5 inside the circle. Outside the circle continuous linear basis functions are
used. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

 0.01

 0.1

 1

10-1 100 101 102 103 104

sk
in

 la
ye

r h
ei

gh
t

sigma

mixed basis functions

Figure 4.27: Experiment 11: height of the skin layer for varying σ. Dirichlet boundary
condition g = 1, Meshwidth h = 0.25, number of basis functions per element
n around 5 inside the circle. Outside the circle continuous linear basis
functions are used. Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

52

4.7 Error for Varying σ

Experiment 12: Comparison FEM and DG for Varying σ

10-4

10-3

10-2

10-1

100

 0.1 1 10

re
la

tiv
e

di
ffe

re
nc

e
to

 fi
ne

 F
EM

 s
ol

ut
io

n

skin depth per element width

5%

difference L2 norm DG
difference energy norm DG

difference L2 norm FEM
difference energy norm FEM

Figure 4.28: Experiment 12: Comparison of linear finite elements and the DG method
with element adaptive mixed basis functions for varying σ on a square
domain. Number of basis functions per element n around 5 for DG method.
Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

As mentioned in the introduction, standard finite elements can not resolve skin depths
below an element width, which is the motivation for this work. Therefore, in this experi-
ment linear finite elements and the DG method are compared for decreasing skin depth.
The simulation is carried out on a square domain with boundary condition g = 1, with
a fixed mesh. In figure 4.28 σ is varied. The x axis shows the skin depth per element
width, which is (

√
σh)−1. As there is no analytical solution on the square, the solution

is compared to a very fine linear finite element mesh. The y axis shows the relative error
to this reference solution. As expected, for (

√
σh)−1 < 4, which means less than four

elements to resolve the skin depth, linear finite elements error get above the 5% mark,
which is usually targeted in industrial applications.

Although both methods use the same mesh, the DG method uses 704 degrees of
freedom in contrast to 81 for linear finite elements. This is the disadvantage of the
discontinuous basis functions. Obviously the DG method behaves a lot better for high
σ values, it stays at an acceptable error range. For small skin depths one can see the
error of the DG method going up. One factor for this is surely the error in the reference

53

solution. At (
√
σh)−1 = 0.1 the reference solution has about ten elements per skin depth,

which has an estimated L2 error of order of magnitude 10−4. This is the same order of
magnitude we see in the L2 error for the DG method.

10-6

10-5

10-4

10-3

10-2

10-1

100

 0.1 1 10

re
la

tiv
e

er
ro

r

skin depth per element width

5%

L2 error DG
energy error DG

L2 error FEM
energy error FEM

Figure 4.29: Experiment 12: Comparison of linear finite elements and the DG method
with element adaptive mixed basis functions for varying σ on the circular
domain. Number of basis functions per element n around 5 for DG method.
Parameters α = n2/(h

√
σ), β = 0.5, δ = 0 and ~ζ = ~0

Another example is figure 4.29, where the same is calculated on the circular domain.
This comparison is slightly less fair, as no curved boundaries have been implemented
for linear finite elements. But that should not have a large impact on the error. On
the other hand we are able to calculate the exact error, because the analytic solution is
known. This makes it more reliable for small skin depths. It can be seen that the error
stays quite stable for up to σ = 104; (

√
σh)−1 = 0.04. Although there is a small kink

visible, which has not been further investigated for σ > 104. Note that in contrast to the
square, the circle geometry does not have corners, which might influence the behaviour
of the error with increasing skin depth.

54

5 Conclusions and Outlook

5.1 Conclusions

The goal was to have a method which resolves skin layers accurately, even if the skin
depth is smaller than an element width. The DG method presented here certainly meets
this requirement. If the mesh resolves the geometry accurately enough, then it is able
to solve the problem for a wide range of skin depths, up to a skin depth of at least 0.04
of the element size.

Several sets of basis functions have been presented, and two of them work particularly
well. The best set, if you want to have a good solution with a moderate amount of basis
functions per element, would be the mixed set presented in section 3.6.2. It uses the
knowledge of the boundary and thus can approximate the skin layer quite well with only
a few basis functions. It has some problems when a lot of basis functions per element are
used, because a certain amount of Bessel basis functions can approximate an exponential
basis function quite well. Then the system of equations get degenerate. In that case,
using only Bessel basis functions is the right choice. The results for a few basis functions
per element are worse, but it is possible to add more of them than with a mixed set of
basis functions.

One of the drawbacks of the DG method is certainly the much larger number of
degrees of freedom for the same mesh. But being able to resolve skin layers which are
smaller than an element width should more than compensate for that, as one can choose
coarser meshes, if the geometry permits it. Another disadvantage is that the DG method
can produce relative errors much larger than 1, which does not occur for linear finite
elements.

5.2 Future Work and Outlook

The method presented here was implemented only for 2D, for a differential equation
which was reduced to the relevant behaviour. The next steps would be towards inte-
grating this method in an electromagnetic simulation, in 3D with the actual differential
equations. Combining linear finite elements and the Trefftz basis functions should also
be interesting. That would allow to use the Trefftz basis functions only in regions where
a skin layer exists.

The integrals should also be further investigated. The exponentials could be integrated
analytically. However the Bessel basis functions don’t seem to be analytically integrable.
Therefore a numerical integration is needed. The problem is that the functions can get
really steep towards the integration boundary with increasing σ. To be sure to resolve

55

this properly, a large number of quadrature points were used in the implementation.
A better approach would be to use an adaptive integration scheme. Potential maxima
of the integral are known. They are at the integral boundaries, and, if Bessel basis
functions are involved, at the maxima of sin or cos which can be mapped onto the
integration domain. For some examples of these Integrals see figure 5.1. The examples
are for a medium σ of 100, in order to see the behaviour without zooming in. For thinner
skin layers, the integrals get also thinner, especially at the integration boundaries. The
smallest features of the integrals scale with (2

√
σh)−1.

Acknowledgements

I would like to thank Florian Krämer for helping me through my master thesis, Prof.
Hiptmair as my advisor, and Jörg Ostrowski and the ABB for the cooperation on this
thesis.

56

 0
 5

 10
 15
 20
 25
 30
 35

 0 0.2 0.4 0.6 0.8 1
 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0 0.2 0.4 0.6 0.8 1

(a) exponential:
R 1

0
exp

“√
σ~λ(t)~θ1

”
exp

“√
σ~λ(t)~θ2

”
dt

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1
-0.35

-0.3
-0.25

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1

 0 0.2 0.4 0.6 0.8 1

(b) exponential and Bessel:
R 1

0
exp

“
~λ(t)~θ1

”
Ik (
√
σr(t)) trig (kφ(t)) dt

-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02

 0 0.2 0.4 0.6 0.8 1
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02

 0 0.2 0.4 0.6 0.8 1

(c) Bessel:
R 1

0
Ik (
√
σr(t)) trig (kφ(t)) Iν (

√
σr(t)) trig (νφ(t)) dt

Figure 5.1: Examples of the integrals solved to calculate the matrix elements. ~λ(t) =
Pstart + t(Pend − Pstart) returns the coordinates along the edge from Pstart

to Pend. ~θ1 and ~θ2 are the vectors which represent the directions of the
exponential basis function, ~θ1 = [cos(α1), sin(α1)]. Ik is the modified Bessel
function of the first kind of order k. r(t) and φ(t) return the coordinates
along the edge in polar coordinates. trig represents one of sin or cos.

57

Bibliography

[1] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1975).

[2] D. Braess, Finite Elemente (Springer, 2007).

[3] S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Element Methods
(Texts in Applied Mathematics), 3rd ed. (Springer, 2007).

[4] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, SIAM J. Numer. Anal.
vol. 39 No. 5, 1749 (2002).

[5] P. Castillo, B. Cockburn, I. Perugia, and D. Schotzau, SIAM Journal on Numerical
Analysis 38, 1676 (2001).

[6] C. J. Gittelson, R. Hiptmair, and I. Perugia, ESAIM M2AN 43, 297 (2009).

[7] O. Cessenat and B. Despres, SIAM Journal on Numerical Analysis 35, 255 (1998).

58

	Introduction
	Problem Statement
	Skin Layers
	Main Idea
	Circular Domain

	Numerical Methods
	Finite Elements
	Discontinuous Galerkin
	Continuous Problem
	Discretized Problem

	Trefftz Methods
	Numerical Flux
	Consistency
	Ellipticity

	Implementation
	Mesh
	Exponential Basis Functions
	Bessel Basis Functions
	Matrix Assembly
	Interior Contributions
	Boundary Contributions
	Matrix Assembly for Exponential Basis Functions

	Parameters for the Numeric Fluxes
	Adaptive Choice of Basis Functions
	Only Exponential Basis Functions
	Exponential and Bessel Basis Functions

	Results and Comparisons
	Linear Finite Elements
	Experiment 1: h Convergence

	DG with Exponential Basis Functions
	Experiment 2: h Convergence
	Experiment 3: Convergence for Number of Basis Functions per Element

	DG with Bessel Basis Functions
	Experiment 4: h Convergence
	Experiment 5: Convergence for Number of Basis Functions per Element

	DG with Element Specific Exponential Basis Functions
	Experiment 6: h Convergence
	Experiment 7: Convergence for Number of Basis Functions per Element

	DG with Exponential and Bessel Basis Functions
	Experiment 8: h Convergence
	Experiment 9: Convergence for Number of Basis Functions per Element

	Other Geometries
	Experiment 10: L-Shape
	Experiment 11: Dirichlet Problem with Two Different Values

	Error for Varying
	Experiment 12: Comparison FEM and DG for Varying

	Conclusions and Outlook
	Conclusions
	Future Work and Outlook

