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Abstract

The following report follows very closely the guidelines provided in the
paper of Schwab and Siilli [17] to solve parabolic problems on function
spaces over a separable Hilbert space. Instead of a space time varia-
tional formulation, we consider here a Backward Euler scheme for the
time discretization. The convergence of the Backward Euler scheme in a
Hilbert space setting is proved. We present a class of high dimensional
and infinite dimensional Fokker-Planck equations; for which a spectral
Galerkin method is chosen in order to find a numerical approximation.
The well-posedness of elliptic and parabolic problems in L?(H, ) spaces
is discussed, and we show that the Wiener-Hermite polynomial chaos
provides an appropriate basis for the discretization of variational oper-
ators. We show that the corresponding discrete operator equations in
(%(N) can be approximated by a sequence of sparse problems that con-
verge quasioptimally, in the sense of the best N-term rates possible for
the exact solution.
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Chapter 1

Introduction

This project presents numerical methods available to approximate the so-
lutions of a class of high dimensional parabolic problems, possibly infinite
dimensional. In particular we study the infinite dimensional Fokker-Planck
equation (FP) for the Kolmogorov forward equation on a Hilbert space. The
solutions to these kind of equations are useful in many different contexts (see,
e.g., [2, 6] and the references therein). Citing [12, p. X] “parabolic equations
on Hilbert spaces appear in mathematical physics to model systems with in-
finitely many degrees of freedom. Typical examples are provided by spin
configurations in statistical mechanics and by crystals in solid state theory.
Infinite-dimensional parabolic equations provide an analytic description of
infinite-dimensional diffusion processes in such branches of applied math-
ematics as population biology, fluid dynamics, and mathematical finance”.
The numerical solutions to these equations have however received less atten-
tion and are generally done by path simulation of the corresponding stochas-
tic partial differential equation. In this project we study instead the solution
suggested in Schwab and Siilli [17]. Their approach offers a new, deter-
ministic adaptive spectral Galerkin approach to the construction of finite-
dimensional numerical approximations to the deterministic forward equa-
tion in infinite-dimensional spaces, which exhibit certain optimality proper-
ties. The equations are considered in a space-time variational formulation
in Gelfand-triples of Sobolev spaces over a separable Hilbert space H with
respect to a Gaussian measure y. In this project however, we only consider a
variational formulation in the space dimension, the Backward Euler method
is used for integration in time. This reduces the parabolic problem to an ellip-
tic problem at each time step. The solution is discretized via the choice of an
appropriate Riesz basis, and approximated using the algorithms presented in
[10] for adaptive Galerkin approximations of elliptic operator equations on
bounded domains in R?. Most notably due to the lack of a suitable extension
of Lebesgue measure to infinite dimensions, the study of infinite-dimensional
Fokker-Planck equations is done on a separable Hilbert space H, equipped
with a Gaussian measure p. In this context we are in analogy with the finite
dimensional study on weighted L? spaces of operators of the form dy(M?dy-),
where M is a density function. In the Gaussian case, the multivariate Her-
mite polynomials provide the Riesz basis for a spectral Galerkin approximation.
We verify that for a particular class of second order operators, the associ-
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ated discretized variational operator, viewed as a bi-infinite matrix, can be
approximated by a sequence of sparse matrices in the sense of the operator
norm. This verification ensures optimality of the adaptive procedure.

The project is structured as follows: Chapter 2 first presents the necessary
theory of Gaussian measures on separable Hilbert spaces, together with the
introduction of L?(H, y) spaces where 1 is a Gaussian measure and H is in-
finite dimensional. Following [12, 15], we present the extension of the Lapla-
cian and the associated heat-semigroup to the infinite dimensional setting,
and see how to derive the variational formulation of second order operators.
The rest of Chapter 2 is dedicated to the study of abstract elliptic problems
and abstract parabolic problems. We define the solutions to such problems
and precise the necessary conditions we shall assume for their existence. In
Chapter 3 we first consider Fokker-Planck equations that arise in bead-spring
chain models for d-dimensional polymeric flow d € {2,3}, with chains con-
sisting of K + 1 beads whose kinematics are statistically described by a config-
uration vector 4 € RKY | K > 1. The probability density function ¢ = 1(q,t)
that is sought as the solution of the associated Fokker-Planck equation is
therefore a function of Kd spatial variables with K > 1 and the time vari-
able t. The aim is to embed this finite-dimensional problem of potentially
very high dimension into an infinite-dimensional problem. Hence, Chapter 3
follows with the introduction of the infinite dimensional Fokker-Planck equa-
tion for which we verify well-posedness. In Chapter 4 we describe the first
level of discretization in the time dimension. The Backward Euler method is
chosen and we give the full proof of its consistency and stability in a Hilbert
space setting. We then continue with the space discretization in Chapter
5 the adaptive procedures to approximate the solutions of abstract elliptic
equations on separable Hilbert spaces. We prove the compressibility of the
Backward Euler operator associated to the equations in Chapter 3. Finally in
Chapter 6 we show some numerical results obtained for a canonical example
of the Fokker-Planck equation from Chapter 3, in finite dimensions.



Chapter 2

Preliminaries

2.1 Gaussian measures on Hilbert spaces

2.1.1 Trace class operators

We let H be a separable Hilbert space over R with norm | - | associated with
the inner-product (-, -). The space of all bounded linear operators on H will
be denoted L(H) and equipped with the operator norm |-, ,,. We further

let L™ (H) denote the sub-space of symmetric non-negative operators on H,
and for an operator T € L(H), we will denote by T* its adjoint. We will also
let B(H) denote the borel sigma algebra on H, associated to | - |.

Definition 2.1 An operator T € L(H) is said to be of trace class if there exist
sequences (ay)n and (by), in H such that for all f € H,

e} a0
Tf = Y. {f,anby, and ) |ay||ba| < . (2.1)
n=1 n=1

We will denote by Li(H) the space of all linear operators of trace class. It is
a Banach space with norm

0

0
ITl,, ) = inf { S lanllba] = TF = S <F anbu Vf H} (2.2)
n=1 n=1

L{ (H) := L1(H) n L*(H). For an operator R € L1 (H), its trace, Tr(R) is given
by

o0

Tr R = ) (Rey,en), (2.3)

n=1

where (e;), < H is any complete orthonormal basis of H.

Definition 2.2 An operator T € L(H) is Hilbert-Schmidt if there exists an or-
thonormal basis (ey), < H such that

o0
Z |Te,|* < 0. (2.4)
n=1
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We will let Ly (H) denote the space of all Hilbert-Schmidt operators on H. It
is a Hilbert space for the scalar product

0
(T, S>L2(H) = Z<Ten/ Sen), (2.5)
i=1

where (e;), < H is any complete orthonormal system of H. The following
well known spectral theorem also detailed later in Theorem 2.23, for bilinear
forms, gives a useful characterization of the operators we shall use [12, p. 6].

Theorem 2.3 Assume that S is a compact self-adjoint operator in L(H). Then there
exists a sequence (Ax)x < R and a complete orthonormal system (ey)r < H such
that Se = Arex, k € N. Moreover, S € Li(H) if and only if )21 |A| < oo, in
which case

0 o0
ISl = D5 WAkl and Trs =) A (2.6)
k=1 k=1

2.1.2 Gaussian measures on Hilbert spaces

Following [12], we first define Gaussian measures on R. Fora € Rand A > 0,
the Gaussian measure on R with mean 4 and variance A is defined by

exp <_("2;”)2) dx . 2.7)

1
N, A(dx) :=
a,)\( ) DA
For a = 0 we shall simply write N := N , for short.

Proposition 2.4 For a € R and A > 0 we have,

J XN,y A (dx) = a,
R
| = PNy =
R
Ry (h) :J ¢, (dx) = IR CR
R

We call a the mean, A the variance and N,z, A the Fourier transform (or characteristic
function) of Ny z.

We now proceed to define the Gaussian measure N, o for an 2 € H and a
Q € L*(H), for H a finite dimensional Hilbert space. Let H be of dimension
d, Q € L*(H) and let (ey,...,e;) be an orthonormal basis of H such that
Qer = Arer, k=1...d, for some Ayq,...,A; € Ry. We set

xp:={x,e), x€H, k=1,...,d, (2.8)
and we identify H with R? through the isomorphism

Y:H—->RY, xe y(x) = (x1,%2,...,%4). (2.9)
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The probability measure N, o on (RY, B(RY)) is given by
d

Noo = @) Nag 2, (2.10)
k=1

We have the following properties.

Proposition 2.5 Let H be a finite dimensional Hilbert space, a € H, Q € L*(H)
and p = N, o then,

J XN, o(dx) = a, (2.11)
H

JH<x —a,yXx —a,z)N,o(dx) ={Qy,z), y,z€ H. (2.12)
Moreover, the Fourier transform of the measure N, g is given by
No,o(h) := J FMON, o(dx) = <=2 e H (2.13)
H

Finally, if the determinant of Q is positive, N, ¢ is absolutely continuous with respect
to Lebesgue measure in RY and we have

1 1/4—1
Nyo(dx) = ——— ¢ 2(Q (=) (x=a)) gy 214
() (2m)d def(Q)e § 219

We now let i be a probability measure on (H, B(H)) where H is any separable
Hilbert space, possibly infinite dimensional. We assume that

J |x|p(dx) < oo, (2.15)
H

Then for any, h € H, the linear functional F : H — R defined as,

F(h) = fH<x,h>‘u(dx), heH (2.16)
is continuous since
F(h)| < JH|x|y(dx)|h\, heH. 2.17)
By the Riesz representation theorem there exists a unique m € H such that
F(h) ={(m,h), heH. (2.18)
m is called the mean and we shall write,
m = JH xp(dx). (2.19)

We now assume that
J |xu(dx) < . (2.20)
H
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Consequently, the bilinear form G : H x H — R defined as
Gh k) f o m WYx — m, op(dy), T le H (2.21)
H

is also continuous, and by the Riesz isomorphism there exists a unique linear
bounded operator Q € L(H) such that

G(h,k) =<(Qh,k), h,keH. (2.22)
Q is called the covariance of p.

Proposition 2.6 Let y be a probability measure on (H,B(H)) with mean m and
covariance Q. Then Q € L (H), i.e. Q is symmetric, positive and of trace class.

Fora € H and Q € L] (H), a Gaussian measure N, o on (H, B(H)) is a measure
u of mean a, covariance operator Q and Fourier transform

N, o(h) = exp <i<a,h> — %(Qh, h>) , heH. (2.23)

The Gaussian measure N, is said non-degenerate if ker(Q) = {0}. Since
Q € L{ (H) there exists an orthonormal sequence (¢;)y = H and a sequence
of non-negative numbers (Ay); with Qer = Axex, k = 1,2,.... For x € H we
set xp = (x,er), k € IN. We now let R® denote the space of all sequences
(x1)n < R equipped with the metric

o0
N gk Xl
2(x,y) ._1;12 R r— (2.24)

We will also let £2(IN) denote the space of all sequences x = (x,), € R® such

that
o \12
)l 2y = <Z x,%) <. (2.25)
k=1

/2(IN) is a Hilbert space with inner product (x, Ve = S XYk In the
next theorem, we identify H with ¢2(IN) through the natural isomorphism
v:H — 2,

xeHw (x1,x,...) € 2. (2.26)
It is known ([12, p.10]) that for any Gaussian measure on H, the set /2(IN)

R® has measure 1. In order to define the Gaussian measure on ¢?(IN) as
an infinite product of Gaussian measures on IR, we introduce the projection

operators, p; : R® — RV, JcN;
x = (xn)plq — py(x) = (le,...,x]-m), iy €T (2.27)

For any | € F(IN), the set of all finite subsets of IN, the product o-algebra
and the product measure

j€l j€l
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are understood in the usual way, with X; the Borel o-algebra on R, i € IN.
The infinite product of the o-algebras {¥;, i € IN}, is defined as the smallest
o-algebra with respect to which the projections p; are measurable, i.e,

0= Q) Tk =0(py, ] € F(N)). (2.29)
k=1

There exists a unique measure p on (R*, %)) such that

opyt = @Nya,s (2.30)
i€l

it shall be denoted ®;~; N,

KAk

Theorem 2.7 ([12, p. 91) Suppose that a € H and Q € Ly (H). Then, there exists
a unique probability measure y on (H, B(H)) such that

f ei<h’x>y(dx) - ei<ﬂrh>*%<thh> (2.31)
H

Moreover, y is the restriction to H (identified with the Hilbert space (*(IN)) of the
product measure

e} o0
& e = & Napapr (2.32)
k=1 k=1

defined on (R*, B(R™)).

We refer to u := N, o as the Gaussian measure associated to the mean a and
the covariance operator Q. Theorem 2.7 implies that a random variable X with
values in H is Gaussian if, and only if, for any & € H the real-valued random
variable (h, X) is Gaussian.

2.1.3 L? and Sobolev spaces

We let H := L?(H, yt) denote the Hilbert space of equivalence classes of func-
tions from H into R with inner-product

U, 0),, = fH u(x)v(x)u(dx), wu,veH, (2.33)

and norm
1/2
lull, = Cu,upsf* < oo (2.34)

From now on, u = N := Np ¢ for some operator Q € L (H) with Ker(Q) =
{0}. We shall also suppose that there exists a complete orthonormal system
(ex)r in H and a sequence (Ay) of positive real numbers, the eigenvalues
of Q (repeated according to their multiplicity and enumerated in decreasing
order), such that Qe; = Axex. The subspace QY 2(H) is called the reproducing
kernel of the measure Ng. It is a dense subspace of H since we assumed
Ker(Q) = {0}. In fact, if xo € H is such that (Q"?h,xo) = 0 for all h € H,
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then Q'?xy = 0, and therefore Qxy = 0, which implies that xy = 0. We now
introduce the isomorphism
W:H— H,
fWr, Wi(x) =(Q V?*f,x), xeH.

One can check that we have
Wi, Wepmta) = 1,9 235)

so that W is an isometry and can be uniquely extended to all f € H. For
every f € H we see that Wy is an N|¢2 real valued Gaussian random variable
on R.

We now define the Hermite polynomials on # = L?(H, ). Let us consider
to this end the set T' of all mappings v : n € N — v, € {0} UN, such
that || := Y2, 7 < . Clearly 4 € T if, and only if, 7, = 0 for all,
except possibly finitely many, n € IN. For any v € I' we define the Hermite
polynomial

H,(x) = ﬁ H,, (W(x)), xe€H, (2.36)
k=1

where the functions on the right hand side are defined by

(=Yt 2dt o _ap
Hy (&) = mezd—gn(e ) FeR, ne{0}uN. (2.37)
H,, is the classical Hermite polynomial of degree n with the first few terms
given by,

M@ =1, M@ -8 M@ -5 (2-1), mE- (@)
(2.38)

For the rest of this project, we shall use the convention H_; = 0. It is well
known that the Hermite polynomials form an orthonormal basis of L%(R, Ny ).
We also have the following relationships.

Proposition 2.8 For n € N and all ¢ € R we have

$Hn(8) =vVn +1Hy11(8) + vVnHy1(3), (2.39)
D@'Hn (g) :\/EHn—l(C)/ (2.40)
DéHn (¢) = EDgHn(¢) = — nHu(9). (241)

The numerical methods presented in Chapter 5 make extensive use of the
following theorem.

Theorem 2.9 The system (H.,).er is orthonormal and complete on L?(H, ).
A proof may be found in [12, p.191]
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2.1.4 The Sobolev space W'2(H, )

We will denote by E(H) the linear space spanned by all exponential functions,
that is all functions ¢ : x € H — ¢(x) € R of the form

p(x) = e peH. (2.42)
Proposition 2.10 For any h € H, the exponential function Ej,, defined as
Ep(x) =", xeH (2.43)

belongs to LP(H, u), p = 1, and
fH e<h'x>;4(dx) = e%<Qh’h>, (2.44)

Moreover the subspace E(H) is dense in H.

For any k € IN we consider the partial derivative in the direction ey, defined

as
Dig(x) = lim Plx + ee’;) —90) v eH, geE(H) (2.45)
€e—

When ¢ € E(H) with ¢(x) = ¢/, f € H, we have

Digp(x) = fie’™,  where fi = (f,er) (2.46)
The following proposition is central to this project.

Proposition 2.11
k
DyHy = | %Hvk_l(wek)hé ), (2.47)
(k

with H“r) = H#k Hy,;(W,;) and the convention H_1(We,) = 0. Moreover, the
family
k
{Hoya W) HY, yeT, 3 > 0}, (2.48)
is orthonormal in H.

The verification of (2.47) can be done using the identity (2.40) and the fact that

We, (x) = /\k_l/zxk. We now let A denote the linear span of {H, ®@¢;: v €T, ke N},
and D the linear operator

D:E(H)c M :=L*(H,u) — L(H, u; H),
0
¢ — Do with Do(x) := 2 Dy g(x)ey.
k=1

Thanks to Proposition 9.2.2 in Da Prato and Zabczyk [12], Dy is closable in
‘H for all k € IN. If ¢ belongs to the domain of the closure of Dy, which we
shall still denote by Dy, we shall say that D¢ belongs to H. Analogously, by
Proposition 9.2.4 in [12], D is a closable linear operator. If ¢ belongs to the
domain of the closure of D, which we shall still denote by D, we shall say
that Dg belongs to L2(H, u; H).
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We will now consider the linear space V = WY?(H,u) c L?(H, u), of func-
tions ¢ € L?(H, u) such that D € L2(H, u; H). It is a Hilbert space with inner
product

(u, vy, = u, v, + JH<Du(x), Do(x))u(dx), (2.49)

and associated norm [u, = ((u, u),)".

Theorem 2.12 ([12, p. 199]) A function ¢ € H belongs to V if, and only if,

DU A Dkl P < 0, (2.50)
yel'
where
_ D AT, ify #0,
@y =@, Hy), and {y, A Dy = {?kl})r’:k_ko fr (2.51)

and (Ay)y is the sequence of (positive) eigenvalues (repeated according to their mul-
tiplicity) of the covariance operator Q € Ly (H), Ker(Q) = {0}. Moreover, if (2.50)
holds, then

Il = Il + 25 v A™ sl (2.52)
yel
Identifying H with its own dual H*, we obtain
peV Z(’Y,/\*1>;l|(p,y|2 < 0. (2.53)
yel

Furthermore, the embedding of V into H is compact.

Proof The proof of (2.50) and (2.52) can be found in Da Prato and Zabczyk
[12, p.200]. Using Proposition 2.11 we can further notice that

(1+<, )‘_1>*)1/2

is an orthonormal basis of V. In deed,

a2y =yt + | P 10), D)

¥ = ()er o= ( t )Wer (254)

=(1+ <7,)\—1>*)—1/2(1 +<v, /\—1>)—1/2 (&W + i fH DkH,y(x)DkH,,(x)y(dx)>
k=1

0 1/2 1/2
et e £ () (3) ) o
k=1

Since (|g07\2(1 + {7, )t_1>*)_1/2> . converges if and only if (|(p7|2<'y, )\_1>;1/2)
ye
converges, by taking ¢, — ¢, (¢n)n = H we find,

yel

0 > ||pf3s <= xlp, )3 <0, ¥xeV, x|, <1, (2.55)
— nlirro10 <<pn,x>i <o, VxeV, [x], <1 (2.56)

10
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By expanding ¢, into the polynomial chaos basis (H,) and x into the

yel'”
orthonormal basis ¥, we find

(256) = lim > (7,A" ") g4 < oo,
yel

— 2 ATH Mgy < . o
yel

2.1.5 Variational formulation of second order operators

We are now interested in formulating a generalization of the Laplacian to
infinite dimensional spaces. A straightforward generalization is impossible,
mostly due to the lack of a suitable extension of Lebesgue measure to infinite
dimensions. Following Chapter 3 in Da Prato and Zabczyk ([12]), we briefly
look at strong solutions to the heat equation on infinite dimensional Hilbert
spaces, we then present the L2(y) analysis following Ann Piech ([15]).

It is instructive to consider the problem

oru(t, x) :%Tr(QDzu(t, x)), t>0,xeH (2.57)
u(0,x) =ug € B, (2.58)

where B is an appropriate Banach space to be determined, and D? denotes
the second order Fréchet derivative at 0 of the function ¢ : H — R defined
by g(h) = u(t,x +h), t > 0, x € H. Under suitable assumptions on B and Q
described below, the solution to this problem is given by

u(t,x) = fH up(x 4+ y)Nio(dy). (2.59)

In the case when dim(H) < oo the solution is well understood, as the Radon-
Nikodyn derivative of the measure N;g(dy) is simply given by the multivari-
ate Gaussian density of mean 0 and covariance matrix tQ. When dim(H) =
o, we consider a sequence of finite rank operators Q, converging strongly to
Qin LT (H), and let (u,), be the sequence of solutions to the problems

O (t, x) :%Tr(QnDzun(t, x)), t>0,xeH (2.60)
un (0, x) =up. (2.61)

When this sequence of solutions is convergent, we may take its limit as the
solution to (2.57). We now see the conditions we must impose on Q to have
this possibility. We let C,(H) denote the space of bounded continuous func-
tions on H, taking values in IR.

Proposition 2.13 Assume that ug € Cp(H) and limy, ., uo(y) = 0. If Tr(Q) =
oo and (Qn)n is a sequence of finite rank symmetric positive operators converging
strongly to Q, then limy, o0 ty(t,x) =0, forall t > 0 and x € H.

Proposition 2.13 indicates that if Tr(Q) = oo then, for a majority of initial
functions ug, the equation (2.57) does not have a continuous solution on
[0, +0) x H. This is why we will assume that Q € L*(H) is of trace class.

11
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Remark 2.14 One can show that the heat equation (2.57) is the Kolmogorov equa-
tion corresponding to the simplest Ito equation

dX(t) =dW(t), X(0)=x, ,t>0, (2.62)
on a Hilbert space H, where W is a Wiener process on some probability space
(Q, F,P) taking values in H, with covariance operator Q.

From [12], we can find a unique strong solution to (2.57), in the sense that
D;u and D?u exist, are continuous and bounded, and satisfy (2.57), for t >
0 and x € H; provided that uy € UC;(H), the space of functions having
uniformly continuous and bounded derivatives of second order. In this case,
the solution is given by (2.59). We shall denote by (P;);~¢ the heat-semigroup
of operators defined by

Pigp(x) = fH 9(x + y)Nig(dy). 2.63)

The infinitesimal generator of the heat semi-group is given by Ag : D(Ag) —
‘H, which action can be interpreted as ([12])

o0
Agop(x) := Z MD3g(x), xeH. (2.64)
k=1

It is known that when H is finite dimensional and ¢ € C,(H), the function
u(t,x) = Prg(x) is of class C* in t and x when t > 0. Moreover when
dim(H) < oo, the semi-group (P;);~ is strongly continuous on Cy(H). These
results are not true in infinite dimensions ([12]). We refer to [12, Chap. 3]
for a further analysis on spaces of continuous functions, and proceed to the
variational formulation.

The above analysis has pointed out some of the major problems for extending
the Laplacian to infinite dimensions. We shall now show that the operator
(2.64) fails even to be symmetric.

Lemma 2.15 Let ¢, ¢ € E(H). Then the following identity holds:

| #@D@@uEn + | pDwn@n = - | splxpixn@.
H H k JH (265)

Proof Since E(H) is dense in W2(H, y) it is enough to prove (2.65) for
p(x) = &, P(x) = 89 xeH, (2.66)

where f, g € H. In this case we have
fH () Dy (x)pu(dx) = fH felFH 8 Oudn) = b QUADSD (267)
| oDwEuEn - | ge*eOun) - gl @O0, @)
H H

[ omptontan = [ wesoua, (2.69)
H H
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:% JH e<f+g+tek1x>y(dx) Mo = %e%<Q(f+g+f€k),f+g+t€k> Mo (2.70)
:Ak(fk +gk)e%<Q(f+g)ff+g>‘ (271)

Since D is a closable operator for all k € IN, we can easily extend Lemma
2.15 to ¢, € V. Using this extension and summing up over k leads to the
formula, for all G € span{H, ®e¢;, Y€, ke N}and gV :

f (Dg(x), G(x))p(dx) + f 9 (x)div(G(x))p(dx) = f (x, Q7' G(x)yp(dlx).
" " " 2.72)

We shall often use the previous formula for G = Du(x). Moreover, we have
the following estimate.

Proposition 2.16 Let k € IN and Dy € L>(H,u). Then xx¢ € L2(H, ) and the
following estimate holds:

J x¢g* (x)u(dx) <2)\kf (Pz(x)#(dXHM%J (Deg(x))*u(dx).  (2.73)
H H H

Summing up over k in (2.73) leads to the following estimate.
Proposition 2.17 Let { € V. Then the function
H-> R, x— [x|0(x), (2.74)

belongs to H, and
f g2 () pu(dx) < zw(Q)f 2 (x)p(dx) + 4| QJP f IDZ(x)Pu(dx). @.75)
H H H

We now consider iterating the operators Dy, k € IN.

Lemma 2.18 Let h,k € IN, then the linear operator Dy Dy , defined in E(H), is
closable.

When ¢ belongs to the domain of the closure of Dy Dy , which we shall say
that D, Dy ¢ is an element of L2(H, ). We now define W??(H, 1) as the space
of all functions ¢ € L?(H, ) such that D, Dy € L?>(H, u) for all i,k € N and

> IDkDiol, < . (2.76)
h,keIN

Then W22(H, 1) is a Hilbert space with the inner product
o0
U, V)220, = (U, 0Dy + Z JH<Dthu(x),Dthv(x)>y(dx). (2.77)
hk=1

If p € W>2(H, u) we can define a Hilbert-Schmidt operator D?¢(x) on H for
almost any x € H by setting

(D*¢(x)a, B) = > DpDiop(x)ayfy, a,peH. (2.78)
hk=1

13
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Unlike the embedding of V into H, when H is infinite dimensional, the em-
bedding of W22(H, ) into V is not compact. We can see this by setting
go(”) (x) = xp,n € IN, which gives

2

o

=A,—0, asn— o, (2.79)

L2 (H 1)

and
2

=1+ Ap. (2.80)

W22 (H,1)

o],

Therefore ¢(") converges to 0 in L2(H, 1) but has no subsequence converging
to 0in W?(H, p1). For any 7 € I, k € N we also have D?H, € H and

wls 2(’H n) H

v/ -1 k) .
DI%H«Y _ ’Ykglk )H’yk72(W€k)H’§/ )/ if Yk # 0/ (281)
0 otherwise,
and since { Hvk,z(ng)H,(yk), yeTl, vy > 0} is an orthonormal set,
f ID2g(x) Pu(d) = 37 =D, 12 (2.82)
yel
Proceeding similarly, we also find for /1 # k,
| 1DuDrgPuta) = 3 1. 289
H yel 'k

This gives us a characterization of elements in W>?(H, 1) like Theorem 2.12.

Theorem 2.19 ([12, p. 203]) A function ¢ € H belongs to W>2(H, ) if and only
if
DA P = D AT o P < 0. (2.84)

yer yel

Using Lemma 2.15, we can derive the variational form of the generator of
the heat semi-group Ag in (2.64). Using the identification H ~ H*, for all
ueDAg)nV,veV,

v (—=Aqu,v)y = — Z /\kj v(x)D,%u(x)y(dx) (2.85)
k=1 “H
-3 ¢ |, DrnoD((a) - > f x¢0(x) Dgaa(x)pu(dlx)
= = (2.86)
= k; M JH Dyu(x) Do (x)p(dx) — L<x, Du(x))v(x)p(dx).
(2.87)

Since this operator is not symmetric, it is suggested in [15] to consider instead
the operator L with Lu(x) := Tr(QD?u(x)) — {x, Du(x)). We are interested in

14
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the closure of —L; the operator N = —L, also known as the number operator
from quantum field theory. We have for allu €e D(Ag) nV,ve V,

vi{—Lu, vy, = 2 )\kf Dyu(x)Dyo(x)pu(dx). (2.88)
k=1 H

In view of Remark 2.14, we can see the heat semi-group (P:);~¢ as a Markov
transition semi-group with transition probabilities Ny ;o(dy), i.e

Pif(x) = fo (y)Nyo(dy), x€ H. (2.89)

It is in this sense that the heat semi-group is interpreted in [15], where it is
shown that the semi-goup (O;);~0 generated by L is defined by

Of(x) = fHf(y)Nﬂx,@,ﬂf)Q<dy>. (2.90)

By verifying the claim on every element of the polynomial chaos basis (2.36),
we have the following proposition.

Proposition 2.20 ([15, Proposition 11) (O;);~¢ forms a strongly continuous con-
traction semi-group on L?(H, ).

It can be seen that (O;);~¢ is the generator of the Ito process

X(t) =e fx + W1 —e™?), (2.91)
where W is a Wiener process on some probability space (Q), F,P) taking
values in H, with covariance operator Q.

The principal drawback of defining L this way is that Tr(Agf(x)) must exist
separately from (x, Du(x)), i.e that (Agf(x)) must be of trace class. Thanks
to the following approach ([15]), we shall be able to only require the weaker
assumption that (Agf(x)) is Hilbert-Schmidt.

Definition 2.21 Assume that f € L?>(H,u), |Df(x)| exists for a.e. x and is in
L2(u) and |D*f(x)|,, exists for a.e. x and is in L*(y). Let Py, be the orthogonal
projection of H onto {e1,, ...,en}. It is shown in [15, Proposition 4] show that

{Tr(PaDf(x) = Gx, PaDF (x))) | (292)

nelN
is a Cauchy sequence in L?(y). Lf is defined as the limit of this sequence.
This definition makes use of the following useful lemma.
Lemma 2.22 If f is a C? mapping from R" to R" with |f(x)| and |Df(x)|y.s in
L?(uy) with py ~ N(0, Iy), then we have

| @ Ore) —xfP (@0 < [ (IR + D) Ras) (@),
K e (2.93)

15
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The analysis in [15, Prop. 11, 13] further shows that for all x € Ql/ 2(H ), and
f € H, we have the generalized derivatives

(D(Of(x)), by = (' (1 — =) ! fHf<y><e*““*y,h>fox,(1,fzf)Q(dy>,

(2.94)

and for h, ke H
D20fmk = @ -7 | fw) (2.95)
X(ﬂ—edﬂq@4x—%@@4x—%b—4hb>MﬂWFr%Qmw,
(2.96)

with |DO:f(-)| and [D204f(-)|,, in H. Any f in D(L) is also in the domain
of N,and —Nf = Lf.

2.2 Abstract elliptic problems

Let H and V be two separable Hilbert spaces over IR, such that V < H with
dense and continuous injection. We will further assume that the canonical
embedding of V into H is dense and compact. This will be denoted as V —
H. We will identify H with its dual space H*, so that the inner product on
H denoted by (-, -),, extends, by continuity, to the duality pairing (-, -)» on
V* x V. In this setting we have the Gelfand triple,

Vs H o= HE > V*. (2.97)

Let A € L(V,V*), and f € V*. We are interested in solving the following
abstract elliptic equation on V),

Au=f, uel. (2.98)

Defining the bilinear form a: V x V — R, a(u,v) :=yx (Au,v), the equation
reads as
a(u,v) = f(v) Yvel. (2.99)

We shall assume that A is selfadjoint, i.e., A = A* (which implies that the
bilinear form a(-, -) is symmetric on V x V and coercive on V, i.e., there exists
a real number o > 0 such that Vu € V : a(u, u) = o |u/3. Our assumption
A€ L(V,V*) implies the existence of a positive real number 1 = || A, %, =
7o such that Vu,v € V: |a(u,v)| < 71 |ul, 7], ; ie., the bilinear form a is
bounded. Under these assumptions, the energy norm ||, defined by |v|, =

(a(o, U))l/ Zis equivalent to the V norm and we have
Yool < ol < 7 feli- (2.100)
We recall the following version of the Hilbert-Schmidt theorem

Theorem 2.23 Suppose that ‘H and V are separable Hilbert spaces, with V densely
and compactly embedded in H. Let a : V x V — R be a nonzero, symmetric, coercive
and bounded bilinear form. Then, there exists a sequence of real numbers (Ay,), and a
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sequence of unit H-norm elements (@) in V, which solve the following eigenvalue
problem : find A € R and ¢ € V\ {0} such that

a(,v) = Alg,v), Yve. (2.101)

The real numbers (Ay)n , n € IN, which can be assumed to be in increasing order with
respect to the index n € IN, are positive, bounded away from 0, and limy, o Ay, = 0.
In addition, the ¢, , n € IN, form an orthonormal system in H whose closed span
in H is equal to H, and the scaled elements ¢, /~/An, n € N, form an orthonormal
system with respect to the inner product defined by the bilinear form a, whose closed
span with respect to the norm |-||, induced by a(-,-) is equal to V. Furthermore,

a0 e 0]

h=> hguyy ou, and |kl =D hgu)s, VheH, (2.102)
n=1 n=1
and
< on\ @ 2_ % on \’
v = alov, 22 " and o|® = a(v, ") YoeV, (2.103
;(W)W ol = 2,0 (o 0 (2109
and in addition for h € H,
e}
heV e Y Aylhgn)y < 0. (2.104)
n=1

Thanks to Theorem 2.23, we know that there exists a sequence ¢ = (A,), ©
Ry of eigenvalues of A, with accumulation point at co, and a sequence of
‘H-orthonormal elements (¢)) e = H of associated eigenfunctions, i.e

A(p/\ =/\(p/\, )\EO’, and <(P/\/(P)\'>H =5/\//\/, /\,A/€0'. (2105)

In particular, therefore, the system {¢, : A € ¢} forms a normalized Riesz
basis of H. The next two lemmas whose proofs are elementary show that
renormalized versions of {¢, : A € ¢} constitute Riesz bases in V and V* as
well.

Lemma 2.24 The following two-sided bound holds for each v € V:

yo ol < D7 Aloal? < 1 o3 (2.106)

Aeo

For f € V* , we have that

f=> fagr, fai=u f o, Aeo (2.107)
Aec
Lemma 2.25 The following two-sided bound holds for each f € V*:
1 Top_ 1,0
- £ < D] UL ” £ 115 (2.108)

A€o

17
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Since we can write the solution of (2.98) as

u=A"f=>upr with uy=A"'f;, Aeg, (2.109)

A€o

we have the identity,

Al = Y AT AL (2.110)

A€o Aeo

By lemma 2.24, the left hand side of this identity belongs to the interval

[HuH% Y0, 71 ||uH$,], while the right hand side belongs to [Hlez}* 71_1, 70_1 Hlez,*]
From this we deduce that

2 2 2
Yo luly < fI5e < v luly, (2.111)

and that A~! is a (bi-Lipschitz) quasi-isometric isomorphism between V* and
V, when these spaces are equipped with the norms |- |« and [|-|,, respectively.

Example 2.26 Within the framework of Section 2.1, we consider an operator A on
W22(H, i) defined as follows,

Au(x) = u(x) — Tr(D?u(x)) + {x, Q"' Du(x)). (2.112)
Using the integration by parts formula (2.65), we have the bilinear form
a(u,v) := (—Au,v), = J u(x)o(x)u(dx) +J (Du(x), Dv(x))u(dx), wu,vel.
H H

(2.113)
This is nothing other the scalar product on 'V, so that yo = y1 = 1.

2.3 Abstract parabolic problems

We now introduce the Bochner spaces L2([0, T]; V), L?([0, T]; H) and L([0, T]; V*)
and we define

HY([0, T; V) = {u e L2([0, T}; V) : o' e L2([0, T];V)}, (2.114)

where 1" will signify du/dt or du/dt depending on the context. We are inter-
ested in the following abstract evolution problem in [0, T],

u'(t) + Au(t) = f(t) with u(0)e H, (2.115)
where f € L?([0,T];H), and A € L(V,V*) with [A[l %) = 711 > 0, satisfies
A = A* and

F9 >0 YoeV : a(v,0):= +(A0,0)y = 70 ||v]>3. (2.116)

The bilinear form a associated to A is hence continuous and coercive. The
following theorem from [11] gives the existence of a solution to the evolution
problem (2.115) in a more general setting.

Theorem 2.27 Given f € L%([0, T]; V*) and a bilinear form a(t;u,v) : V x ¥V — R
with the following properties

18
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1. For every u,v € V the function t — a(t;u,v) is measurable,
2. |la(t;u,v)| < M|ul,, |v|, forae. te[0,T], u,veV,

3. a(tv,v) = o5 - C ||UH?Z¢ forae te[0,T],veV,

for some non-negative constants a,C, M. For all ug € H, there exists a unique
solution u € L*([0,T], V) n H'([0, T], V*) satisfying

v’ (t),0)y +a(t;u,0) = f(t), ae te0,T],YoeV, (2.117)

and
u(0) = up. (2.118)

We define the solution space of (2.115) as X' := L%([0, T], V) n H'([0, T], V*¥)
equipped with the norm

. 2 2 1/2
IR (T 7 iy (2.119)

Under the assumptions on V, H, and V* we have the continuous embedding
X — C([0,T; H) (in the sense that any v € & is equal almost everywhere
to a function that is uniformly continuous as a mapping from the nonempty
closed interval [0, T] of the real line into H). Therefore, for u € X and 0 <
t < T, the values u(t) are well-defined in H and there exists a constant C =
C(T) > 0 such that

VueX Vte[0,T] : |u(t)|, <Clul,. (2.120)

For the numerical schemes discussed in chapter 4, we require a precise rep-
resentation of the solution of (2.115). To this end we exploit that A is coercive
as a bilinear form on V x V, we hence see that (Al + A)v|,, = A |v|,, for all
v € V and by invertibility (Al + A) is surjective. By the Lumer-Phillips Theo-
rem [14, p.14], (—A) generates a strongly continuous semi-group of contrac-
tions {St}e(o,r] on H, solution to

lim Strex — Six

e—0

+Ax| =0 VxeV, t>0. (2.121)

H

We shall write D(A) := V to refer to the domain of definition of A is this
context. For every u € D(A), we have

ASu = S;Au. (2.122)

The semi-group {S(t)} (o 7] associated to —A is in fact {e~*4} o7 We shall
say that a function f € L?(0, T; 1) is strongly differentiable if there exists a
function f’ € L2([0, T]; H) such that

flt+e) = f()

€

lim
e—0

= 0. (2.123)
H

It is strongly continuously differentiable if in addition f’ is continuous in ¢
with respect to the H-norm.

19
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Theorem 2.28 ([1, p. 203]) Given ug € V and f € L?(0,T;H), such that f is
strongly continuously differentiable in (0, T), with continuous derivative in [0, T],
there exists a unique solution u € X to the evolution problem

W(t)+Au(t) = f(t) 0<t<T, (2.124)

moreover it has the representation

u(t) = e*tAu(O) + f e*(t’S)Af(s)ds, (2.125)
0

and satisfies |u(t) — ugl,, — 0ast — 0.

By strong continuity of the semi-group {e~/4} tefo,r) the integral in (2.125)

is interpreted as a Riemann integral in the topology |-|,. In chapter 4 this
allows to apply bounded linear operators to such integrals and have the in-
tegral and the operator commute; because the integral is seen as a limit of
Riemann sums.

Remark 2.29 Let A € L(V,V*) have the same properties as above, and let A € R.
Then the problem

u'(t) + Au(t) + Au =f(t), tel0,T], (2.126)

u(0) =uy, (2.127)

reduces to the problem (2.115) by setting v := eMu(t). In deed we can check that v

satisfies
o'(t) + Av(t) =f(t), tel0,T], (2.128)
v(0) =uyp. (2.129)

Hence the evolution problem is analogous and given an operator of the form A+ Al €
L(V,V*), we reduce ourselves to the study of the simpler evolution problem.



Chapter 3

The Fokker-Planck equation

In this section we present a typical parabolic problem, the Fokker-Planck
equation. In each case the solution lies in a weighted Hilbert space allowing
for representations in Hermite polynomials expansions from section 2.1.2.

3.1 The finite dimensional problem

Fork =1,2,...Kand d € {1,2,3}, let D be either a bounded ball, centered
at the origin, of radius \/lTk in R?, either RY. We can unify the two scenarios
by identifying R? with an open ball of radius +c0, and taking by € (0, 0],
with either k finite for all k = 1,2,..., K, either k infinite forallk = 1,2, ..., K.
We define D := Dy x Dy x ...Dg. On the interval [O,%) we consider the
function Uy € C[0, bZ—k), referred to as a potential, such that U(0) = 0, Uy is
strictly monotonic increasing and lim by J2 U =+, k=1,...,K. We then

associate with Uy the partial Maxwellian, defined by

1 1
My (qr) == Z, &P (—Uk (2|4k|2>> , Gk € Dy,

1
Zy = J exp <Uk (2|Pk|2>) dpx,
Dy

fork =1,...,K, and we define the (full) Maxwellian

where

M(q) := Mi(q1) -~ Mx(qk), q=(q{,...,q¢)" e DS R

Clearly, M(q) > 0 on D, {, M(q)dg = 1 and limg |y Mi(qx) = 0, k =
1,...,K. When the domains D are bounded balls, we shall suppose that
there exist positive constants Cy, and Ci,, and real numbers a; > 1, k =
1,...,K, such that

0 < Cy, <ex —Uy 1 k2 dist(gy, 0Dy “kﬁck <w, k=1,...,K
1 p 2q q 2

Alternatively, when Dy = RY for all k = 1,...,K, we shall assume that
Up(s) =s,k=1,..., K.

21
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We are interested in solving the Fokker-Planck equation,

K
R (quj < ;&)) —f, (gHeDx[0,T], (1)

ij=1
subject to the initial condition

#(q,0) =vo(q), qeD, (3.2)

where A € is a symmetric positive definite matrix with minimal eigen-
value 7y > 0 and maximal eigenvalue y; > 0, f € C(0,T;L*(D)) and p €
LY(D) is a nonnegative function such that §, ¢odg = 1. As y is a prob-
ability density function, and this property needs to be propagated during
the course of the evolution over the time interval [0, T|, the boundary condi-
tion on 0D x [0, T] needs to be chosen so that §(-, ) remains a nonnegative
function for all t € [0,T], and §,, ¢(q,t)dg = 1 for all ¢ € [0, T]. This can be
achieved, formally at least, by demanding that

IRKXK

K ,
S Ve (M, (L)) L oo, as P —b, j=1,..K (3)
1 ¥ 4qi 5\ M | | ’ 4j i ] ’ ,
i=1 qj
where either bj € (0,00) for all j = 1,...,K when D;is a bounded ball of

radius b]-; or bj :=+4ow forallj=1,...,Kwhen D;= R4, By writing,

bim s doim 4,

the initial-value problem (3.1), (3.2) can be restated as follows:
K
Mo~ Y AV (MVy$) =Mf, @HeDx[0T], (34
ij=1
subject to the initial condition

$(9,0) = Po(q), qeD, (3.5)

together with the (formal) boundary condition

K
~ qi )

Z AijVg; - (quﬂ/’> . ﬁ —0, as |q]‘|2 —-b;, j=1,...K (3.6)

i=1

We consider the Maxwellian-weighted L? space

L}(D) = {¢ € L{,(D)|VM¢ € L*(D)}

equipped with the inner product (-, ) 12,(0) and norm || - || 12,(0)/ defined, re-
spectively, by
. o ) N
@, )iz vy = ; M(q)p(q)¢(@)dq, [I9ll2 ) = (& (P)fwy



3.2. The Fokker-Planck equation in countably many dimensions

and the associated Maxwellian-weighted H! space

H}y(D) = {¢ € I31(D)| Vg, ¢ € L3y(D),k = 1,2,... K]

equipped with the inner product (-, -) ul () and norm I -] ul (o) defined, re-
spectively, by

K 1
(¢, €”)H1 (D) = (¢, )LZ (D) I;(vqklpr VQk(lA’)[L%/I(D)]dr H(PHHl (D) * = (¢, (i’)H1 D)’

Adopting the notations introduced in the previous sections, we take H :=
L3,(D),V := H},(D), and consider the linear differential operator

AP = — 2 AijVg - (MVg,9), ¢V (3.7)

that maps V into its dual space V*.

As described in [17], under the assumptions on M the embedding H1,(D) —
L2,(D) is dense and compact. Moreover, if we assume that f is strongly
continuously differentiable and we strengthen our original assumption g €
LY(D) by demanding that ¢ € L3;(D) ([0l < Ilollz,wy = Il¥oll
for all Y € H = L%,(D)), and since A is continuous and coercive, we
know from Theorem 2.27 that there exists a unique solution ¢ to the vari-

ational formulation in space of the problem : given ¢y € H, find ) € X :=
L%(0, T; V) n H'(0, T; V*) such that for a.e. t € [0, T],

d . "
(allb(t)’v)L%/[(D) tyx <l/)(t)/v>v = <f, U>H , YveV, (3.8)

$(q,0) = o(q), qe€D. (39)
If we further assume that ¢y € V, we can use theorem 2.28 and see the
problem as an evolution problem on & := L2(0 T;V) n H! (0, T; V*);

P+ AP() = f(5), - $(0) = yo, (310)
with solution §(t) = e~y + §5 e~ (=) (s) f(s)ds

3.2 The Fokker-Planck equation in countably many dimen-
sions

For k € N, let us denote by Dy the set R? equipped with the Gaussian mea-
sure

1
(27)"? det(5,)1/2

1 _
#i(dgr) := No 5, = exp (—2(% —a) S (g - ﬂk)) dgx

(3.11)
with mean a; € R? and positive definite covariance matrix X € R¥*4. We
shall assume henceforth that a; = 0 for all k € IN, and that the covariance
operator Q, represented by the bi-infinite block- diagonal matrix

% = diag(Zq, %o, .. ) (3.12)

23
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with d x d diagonal blocks X, k = 1,2,.. ., is trace class. We define

o0
D:= X Dy, (3.13)
k=1
so that
g=0(q{,97,..) €D, greDy, k=12,... (3.14)

We equip the domain D with the product measure

o0 0
U= ® Wi = ® No/zk. (3.15)
k=1 k=1
Let M = {Mif}z?:l € R®*® be a symmetric infinite matrix, i.e., M;; = M;;

for all i,j € IN. Suppose further that there exists a real number vy > 0 such
that

Y OMEg = v0lElh,  YE = ()2 € (2(N), (3.16)
i,j=0

a real number 7y > 0 such that

0
> Mgl < mlélelnle, V&= (E)E0m = (1) € A(N).  (3.17)
ij=0

Using the abstract framework in section 2.3 we select H = L?*(D, ),V =
W12(D, i) and define

X :=L*(0,T; V) n HY(0, T; V*). (3.18)

With these spaces, given f € L2(0, T; H) strongly continuously differentiable,
and iy € X we formulate the infinite dimensional Fokker-Planck equation as the
problem of finding ¢ € X such that

(TR0, + a(§0,0) = (0,0, ae tel0T] VoeV, (319)

$(9,0) = Po(q), qeD, (3.20)

where

o0
a(u,v) := Z M; <tiu, quv> (3.21)

2 d’
ij=1 [L=(D,p)]

Assuming for instance that d = 1 for all k € IN, we shall heuristically derive
the strong formulation of this problem. We see in this case that the spectral
decomposition of the operator Q is given. In this case, the variables g coincide
with the decomposition on the complete p-orthonormal system (ex), < H
with sequence (A;), < R such that Qey = Agey, k = 1,...,n, from Chapter
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2.1. Assuming first that M € L] (H), we may use formula (2.78) to have

Tr(MD?u(x)) = §<MD2u(x)ek,ek> (3.22)
k=1

= i<D2u(x)ek, Mey) (3.23)
k=1

= ]i 12 Dy Dyju(x){Mey, e;) (3.24)

= i i My DiDjuu(x) (3.25)

=~
Il
—_
Il
—_

Using formula (2.65) and summing up over ! and k shows that
0
- || MDAt = 3 | MidDx), Do) (320
kil=1

—J (x,0(x)Q ' MDu(x))u(dx). (3.27)
H

Hence we infer that this operator corresponds to the second order operator
L with Lu(x) = —=Tr(MD?u(x)) + {x, Q" 'MDu(x)).

By chapter 2.1.2 we know that V — H =~ H* — V*, and we use again the
abstract framework from section 2.3 to see this as an evolution problem in X’;

P+ AP(t) = f(t), $0) =goeV, (3.28)

where A is the linear operator from V into V* induced by a, and the solution
has a representation with the time propagator e~*4.

Example 3.1 We may take A tridiagonal depending on a bounded sequence € =
(€))7 with [€]|,00 ) < 1/2. The matrix

Ale] = tridiag {(e;,1,€;), i =1,2,...} (3.29)

satisfies (3.16) with vy = 1 — 2 ||€],c0 and (3.17) with y; = 1+ 2| €] ;0.
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Chapter 4

Semi discretization in time

4.1 Semi-group approximations

We consider the general setting of abstract evolution problems presented in
chapter 2.3, we let H and V be separable Hilbert spaces as in the triple (2.97).
Moreover we assume that A € £(V, V¥) is a linear, selfadjoint, positive defi-
nite operator, and f € L?(0, T; H) is strongly continuously differentiable. We
are interested in solving the initial value problem,

u'(t) + Au(t) = f(t) aetel0,T], with u(0)=upe V. 4.1)

We use the representation given by Theorem 2.28 to write the solution as
t
u(t) = e u(0) + f e_(t_s)Af(s)ds. (4.2)
0

We first assume f = 0. In order to approximate the solution (4.2) on the
interval [0, T], we introduce a time discretization. To this end we partition
the interval [0, T] into M equal time intervals [f;,¢;41],i =0,...,M — 1, with
|tit1— ti| = h. We approximate the solution u(t) on the nodes {t;};,_; 1, by
a sequence of elements {U"},_, ,; <V with the Backward Euler scheme,

(I+hrAU =u, U° = u. (4.3)
We now introduce the Backward Euler operator,
By := (I+hA)7, (4.4)

where /i > 0 is small. As we shall see with Proposition 4.2 we have |By |, <
1.

Proposition 4.1 Let A be as above, then
1
h

Proof The left identity can be verified easily and also follows from (2.122)
and Proposition 4.2. To prove the other statement, we first assume v € D(A).
Then

(I — By)Av = AByv = B,Av YveV, and ;llirr(l) Byjv=v YveH. (45)

1
HU - BhUHH =h ‘hBhAv

< h|Av],,. (4.6)
H
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Taking i — 0 gives the desired conclusion. o

The following proposition gives a useful representation of B,. We shall use
the notation S; for the semi-group generated by —A.

Proposition 4.2 With A as above, for every ug € H,

0 p—t/h
Bjug = f 7 Srupdt. (4.7)
0

Proof We first notice that since [S¢[,;, < 1 Vt > 0, the integral is well
defined. By setting

. 0 ,—t/h
Bhuo = JO 2 Stuodt, Yug € H, (48)

we will show that (I + hA)Byug = uy, for all uy € H. In deed, for any € > 0,
using (2.122) one has

SgBhuO — Bhuo _ 1 JOO e~ t/h
c el (Sttetto — Stug)dt (4.9)
L (P an et - L [T t-ms gt
e ), tUo e Jo tUo
(4.10)
e€/h 1 r© e/ e
= e JO e_t/hStuodt e J() e_t/hStuodt. (4.11)
By taking the limit as € — 0" one has,
. SEBhuo — Bhuo . 15 1
Jim S < B — o, (4.12)

which shows that Bjug € D(—A) and ABjug = jug — Byuo. From this we
can retrieve (I + hA)I?huo = uyg, for all ug € H. From the injectivity of (I + hA)
we see that in deed Bjug = (I +hA) lug, Yug € H. o

4.2 Convergence analysis

By Proposition 4.2, we first see that for every ug € H,

0 ,—t/h
HBWOHH< 1 f e
uoll,, luoll, Jo h

ISt 23y lui0lly At < 1, (4.13)

since |S¢|, <1 for t > 0. This gives us the stability estimates
[Bulley <1, and u(b)ly, < fuolly, , vt = 1. (4.14)

Also by Proposition 4.2, we can see the backward-Euler operator as a weighted
average of the semi-group. More precisely, given a random variable X on a
probability space (Q), F,IP) with exponential distribution of parameter 1/h
the proposition allows us to write

Bhuo = ]E(qu()), Vuo e H. (4.15)



4.2. Convergence analysis

In deed, the density w of X is w(t) = hile’t/h]l[o,oo[(t),where Ljo,e0[(t) is the
indicator function of the positive real line. Furthermore, the density of a sum
of n independent exponential random variables X1, ..., X,; of parameter 1/
is the n-convolution wy, := w *w - - - * w. By induction using (4.7) we can see
that

0
B'ug = J wy (£)Spupdt Vug € H, (4.16)
0

X+t Xn)”‘)) for some independent and

identically distributed exponential random variables X, ..., X, of parameter
1/h. In our discretization setting, we take h = T/M and approximate u(T) by

which allows to write B"uy = E(S1 (

uM = pMy = E(S 1 (x4 X,y 10)- (4.17)

By the Law of Large Numbers, the quantity %(Xl + .-+ X;) converges al-

most surely to T, and since the semi-group is strongly continuous S L (X4 Xp)

converges almost surely to Stv in H Vo € H. Finally since ||S¢f,; < 1

for t > 0, by dominated convergence BMug = IE(S%( 1y) — Stup.

Xi+-+Xwm)
Meaning that the Backward Euler approximations are consistent. We shall
now proceed to the general case f # 0 and find the rate of convergence. The
scheme is now given by

un+l _ un

> + AU = f(tyy) n=1...M, U°=u,. (4.18)
We shall make use of the following theorem ([4]).

Theorem 4.3 Assume ug € D(A¥) for some integer k = 2. Then the solution in
Theorem 2.28 given by (4.2) satisfies

ue Ck([o,T), D(A)) Vj=0,...,k (4.19)
Theorem 4.3 allows us to find easily the rate of convergence for a particular
class of initial solutions.

Theorem 4.4 For a given ug € D(A?) and f € L2(0, T; H), such that f is strongly
continuously differentiable in (0, T), with continuous derivative in [0, T], let {U,’f}

be the backward Euler approximations of u(t,), n =1,..., M. Then
|u(ts) = Uj],, = O(h), as h — 0. (4.20)

Proof Assuming that we have the exact solution at t,, using the definition
the approximation error for u(t,1) is given by

én = ultyrr) —ult) = h (F(tus1) — Aultysr)) n=1..M.  (421)

Since | By ;;;, < 1, we have the estimate

M
Ju(ta) = Ui, < X léaly, - (4.22)
k=1

n=1,...,
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Consequently we are reduced to estimating [€é;||,, for n = 1... M. We can do
it in the following way.

l€nllyy = lultns1) — u(tn) = b (f(tns1) — Aultni1))ly (4.23)

= J e u'()dt — hu' (t,41) (4.24)
ty H

= 'h 2” .Bn,z' (u/(Tn,i) - u/(tn+l)> + We (4.25)
i=1 H

<h Y B | (1) = 1/ (tni1) |, + € (4.26)

i=1

Since by Theorem 4.3 1//(t) is Riemann integrable, for n = 1,..., M the nodes
T,; and the weights B,,; i = 1,...,m, exist (with }}; B,,; = 1) as to approxi-
mate the integral of #/(t) up to an error we, with |we|,, < €. By Theorem 4.3
u'(t) is of bounded variation, so taking 7, ; and B, ;i = 1,...,m, independent
of n (as is possible) and summing over n then exchanging the summation over

i and n gives,
n

D lenly <hVE (W) +& = O(h), (4.27)
k=1
where V] (1) is the variation of u’ on [0, T]. o

We now turn to the case 1y € V = D(A). We need the following lemma ([4]).

Lemma 4.5 Let ug € D(A). Then Ve > 0 3y € D(A?) such that |ug — ilo|,, < €
and |Aug — Ailg|,, < €. Which shows that D(A?) is dense in D(A) (for the graph
normy).

Proof We set iiy = Bjug for some h > 0 to be fixed later. We have
g e D(A), and iy + hAig = . (4.28)
Thus Ailg € D(A), so that ilg € D(A?). On the other hand, by Proposition 4.1

;llirrb | Byuo — uoll;, = 0, %irrb |ByAug — Augl,, =0, and BjAug = ABjuo.

(4.29)
The conclusion follows by taking & > 0 small enough. o

By Lemma 4.5, given ug € D(A) we can construct a sequence (i) in D(A?)
such that up, — ug and Aug, — Aug. By Theorem 4.4 we know that the
solution u, to

wl(£) + Auy(t) = f(t) on[0,T], un(0) = uyo, (4.30)

is approximated at rate /1 by the backward Euler Scheme. On the other hand,
the stability estimate gives

[ (£) = (D)5, < luion — ttomlly, | — 0 (4.31)
| (£) — ui,l(t)HH <[ Augy — Ao, e 0. (4.32)



4.2. Convergence analysis

Therefore

uy(t) »u(t), uniformly on [0, T], (4.33)
u),(t) —u'(t), uniformly on [0, T], (4.34)

with u € C1([0, T], V). Passing to the limit in (4.30), using the fact that A is a
closed operator, we see that u(t) € D(A) and u is solution to (4.1). Since the
functions of bounded variation form a Banach space, by (4.33) and (4.34) we
have that u’ is of bounded variation, moreover since D(A) = V cc H and By,
is continuous on H, up to a subsequence

|Biiuo — u(tn)],, < |Bjiuo — Bjiumol,, + O(h) + Jum(tn) — u(tn)[,  (4.35)

—0 —
m—00 m—00

Showing that the backward Euler approximations are O(h) also if 1y € V.
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Chapter 5

Adaptive Galerkin discretization in space

5.1 Discrete operator representations

5.1.1 Riesz bases

Definition 5.1 A sequence of elements ®F := {¢, : v € &} in a Hilbert space H is
called a Riesz basis for H if its associated synthesis operator,

T : EZ(E) —H: c=(cv)rec € EZ(E) — Z CvPv (6.1)
VEE
is boundedly invertible.
By identifying ¢%(&) with its dual, the adjoint of Tg, known as the analysis
operator, is

Tg:H* > 3E) : g~ [8(v)lvez. (5.2)
The two values,
by = HqulHH—MZ(E) and  Bg := | Tol 2y (53)
are called the Riesz bounds of ®. For all f € H*,
1/2
bo | fllx < (Z f(qvv)|2> < Bo [ fllyqx - (54)
Vel

The Riesz basis P is called a Parseval frame if by = Bg. The Riesz operator is
the self adjoint linear map,

S = T@T&i cHY - H, f — Z f(q)v)q)v (5.5)

vEE

The sequence ®* := Sq_)ldD is a Riesz basis of H*, called the canonical dual
basis. Its synthesis operator is Tgp+ = Sq:qu). Since S;l is self-adjoint, the
Riesz operator of ®* is given by

Sor = TexTis = Sg' ToTiSs" = Sp'SwSg' = Sp' (5.6)
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Moreover since
® xo—1 _ * _ co—1 * -
Tcqu)* = T@T@Sq) = ld';.,g and Tq;.* Tq) = S@ Tq)Tcp = ld'H*, (5.7)
writing the elements of ®* as ¢} := S3'¢,, we have
W= g5, YweH and f=) f(o.)9}. (5.8)
veE veR

For a Riesz basis Y indexed by &, We shall denote by [Y] the infinite vector
with entries indexed by Z. This will be convenient for further matrix notation
hereafter.

5.1.2 Best N-term approximations and approximation classes

We are concerned with the general problem of approximating an element
f € H, up to a desired accuracy, with as few memory usage as possible. To
this end, we assume given a Riesz basis ¥ = (y)ea of the Hilbert space H
and introduce the nonlinear N-term approximation manifold

T (¥) = {JT c#{AeA oy £0) < N} cH,
and the N-term approximation error

on(f,¥) = inf If gl 59

for an element f € H. We further define the nonlinear approximation space
A H):={feH : on(H,¥) <N}, (5.10)
with norm
Ifllgs g0y 2= If{C >0 : on(f,F) <CN°}. (5.11)

For f € H we let Py(f) be the element of Xy that minimizes ||f — fy|,, over
fn € Zn. The space A°(Y,H) consists of the elements f of H whose best
N-term approximations converge with rate s to f. It is in general not pos-
sible to find best N-term approximations, especially when the vector to be
approximated is defined implicitly through a matrix equation. Nevertheless
we present hereafter methods to approximate such solutions #, which when-
ever u € A°(Y,#H), converge to the solution u with rate s. Moreover, the
complexity of these methods is linear in N; the cardinality of the set of “ac-
tive” coefficients necessary to represent the finitely supported approximation.
That is, for f € A5(¥,H)

If = Pn(H)ly < Ifls N7°, VN € No. (5.12)

When the space Hilbert space H will be ¢2, we shall omit the precision # in
every of the above notations.
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5.1.3 Compressibility

We now consider the problem of discretizing operators A € L(H,H*). As-
suming that we have Riesz bases ¥ = (),ez and ¥ = (§y)yez of H and H*
respectively. We further assume that ¥ is the canonical dual base of ¥. We
consider the action of A on an element f of H at the matrix level.

Proposition 5.2 For a given f € H*, an element u € H satisfies

Au = f, (5.13)
ifand only if u = Ty Ly satisfies

Au =f, (5.14)

where A = (<A1/J/,l, 1P1/>)y,veE € 'C(EZ(E‘))/ and f = T‘?f

Consequently, we hereafter present methods to efficiently compute abstract
matrix vector multiplications of the form

' e 2(8) —~ Ac. (5.15)
Since the index sets of ¥ and ¥ are the same we shall denote (?(Z) by /2.

Example 5.3 With the framework from Chapter 2, we consider the elliptic equation

inV
Au = f, (5.16)
where A is given by
Au(x) = —Tr(D?*u(x)) + (x, Q"' Du(x)), (5.17)
with associated bilinear form
a(u,0) = J (Du(x), Do(x)u(dx), ,0e V. (5.18)
H

Choosing the polynomial chaos basis Y := (H.).er from Theorem 2.9 for H and the

rescaled orthonormal base ¥ := (H, /(1 + (r, AH Y 2)er from Theorem 2.12 for
V and applying the above methodology gives the matrix A associated to this problem,

A =a([Y]([¥D) (5.19)

Denoting by D* the matrix diag{(l +{v, )\*1>*)1/2,'y € F}, we have DV =
1Y, and (DM~ = ||[Y] |, and we may write

[Y]y := [¥] = (DY) ' [Y]. (5.20)

Using the bilinear form associated to A given by (5.18), we may write the entries
(A )y, ver of the matrix with

(A)yv = a(, ) = Y. (D)) (D¢H,, D¢H, ), (D))~ (5.21)
kelN
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Clearly, if v = 0, then (A)yy = 0y for all v € T; similarly, if v = 0, then
(A)yy = 64 for all oy € T. We shall therefore focus our attention on the nontrivial
case when vy, v € I'\ {0}; for any such -y, v, we have by Proposition 2.11 that

— YiVk k k —
A= Y O I Hy W) HYY, Hy o (We)HY ) (D)
keN, v, =1,1y,>1 k

(5.22)
7

=6,,(D)) I DN Y [ (5.23)
kEN,’)/kZl k

_6"/,V<’Y/ /\_1>* (5 24)

Ly ATy
On the other hand, if we consider the operator A from Example 2.26; Au(x) =
u(x) — Tr(D?u(x)) + {x, Q~'Du(x)), the bilinear form a associated to A is no other
than {-,-),,. In this case the associated matrix is the identity since ¥ := (H, /(1 +
(v, /\71>*)1/2)7er is an orthonormal basis of V.

Definition 5.4 An operator A € L({?) is said n-sparse if each column contains
at most n non-zero entries. It is s*-compressible for s* € (0, 0] if there exists a
sequence (A;)jeN such that A; is nj-sparse, with (n;)jeN € INN satisfying

.
CA = sup o (5.25)
jeIN nj
and for every s € (0,s*),
das :=supn; |A— A, . <o (5.26)

jEN

The operator A is strictly s*-compressible if, in addition,

sup das < 0. (5.27)
s€(0,s%)
We will use the approximation errors ea; := A — Aj|,_ ,. The definition

implies that these approximation errors satisfy ea ; < d A,sn;s.
Definition 5.5 An operator A € L({?) is s*-computable for s* € (0,0] if it is

s*-compressible with approximating sequence (A;)jeN as in definition 5.4 such that
there exists a routine

Buildalj, k] = (1)L (@)L, |, (5.28)
with the k-th column of A; equal to

1
>l aiey, (5.29)
i=1

where €, is the Kronecker sequence that is 1 at l; and O elsewhere, and there is
a constant b such that the number of arithmetic operations and storage locations
used by a call of Build[j, k| is less than ban; for any j € N and k € N.
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Example 5.6 We now reconsider Example 3.1, with
Mle]| = tridiag {(e;, 1,€;), i =1,2,...}, (5.30)

for a bounded sequence € = (€;);2, with |€] 0, < 1/2. We follow [17], however
for implementation considerations, we present here a construction of the bi-infinite
matrix associated to the operator (3.21) "column’-wise. The bilinear form a reduces
to

a(u,v) = ii M;; <inu, quv>L2(Dw (5.31)
J=
= i<DQiu’ inv>L2(D,y) (532)
i=
+ ie]-_l (Dy 1, Dq/.v>L2(Dw (5.33)
]:
+ ie]' <D%‘+1”’ quU>L2(D,;[) , (5.34)
=

with the diagonal term having already been discussed. By superposition we may
now confine ourselves to investigating the computability of the matrix A when the
matrix M has entries Mj; = €;6; 1, i,j =1,2,..., and when M has entries M;; =
€i0ij+1, i,j = 1,2,.... The matrices A corresponding to these two cases will be
denoted below by A™) and A, and we denote their respective entries by AY,) and

A(ﬁ) , with «y,v € T. For the sake of excluding trivial situations we shall assume
henceforth that €; # 0,i = 1,2,.... Instead of the orthonormal basis (H./(1 +

(v, )\’1>*)1/2)7er of V, we shall now take the Riesz basis (H./({7, A’1>*)1/2)7er;
as we shall see this basis has the advantage of scaling to 1 the diagonal entries of A.
Given y,v € T\ {0}, writing, as before,

D! = diag { ((7,/\’1>*) 2 ,Y E F} , (5.35)

we calculate that

e : : _
ASY = > €di11,(D)) 7! A?/\{ <H i—lH(l),Huj—1H§])> (D))"
- ; n
1,j€EN, ]
yiz1ly1

(5.36)

-1 [ViFYj (F1) () Ay—1
- 2 (DM | U H, . HY™Y H, {H DY),
<J>2) E;' 1) \ /\]'11/\]'< I v >H( v)
>1)

YiF1=Llyi=1

(5.37)

with the notational convention vy := 0 and Ag := A1(> 0). Thus, for example,
if y =11 := (1,0,0,...), then A{) = 0 for all v e T\{0}; A{) = €1 forv =
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(0,1,0,0,...), and Afﬁ,) = 0 for all other v € T\ {0}. Also, if v = 0, then
A(Of) = oy for all v € T'; and, analogously, if v = 0, then A(Of) = 6y forall y eT.

It therefore remains to compute ASy for y,v € T\ {0,11}. Hence, by defining for a
fixed integer j = 1 and for vy, v € I'\ {0} such that vz, > 1 and v; > 1 the expression

050 = (Hypya HY™, Hy oy HY) (5.39)
we deduce that

poo _ )1 = vi—Iaym =vim 1A=, ledjjT AN,
L 0 otherwise.
(5.39)
For «v € T let us define the support of v by supp(y) := {ie N :vy; #0}. Then,
Ay = 0 if supp(y)n supp(y) = @. Therefore A is sparse. Now for each y,v € T
there is at most one j € supp(v) such that b0 s 0, when it exists, let it be denoted
by j., in which case we have

Vi+F1Yj —1\—1/2 —1\—1/2
AG) = ey [ AT, AT, (5.40)

it e

In any case, we deduce that in each ‘column’ with index v € T\ {0,11} the matrix
AF) contains nonzero off-diagonal entries only in ‘rows’ v; for which there exists
j+ € supp(v) such that h&U+) = 0, and analogously for A(=), showing that A is
still very sparse.

We now refer to Definition 5.5 and verify condition (5.28): i.e., we wish to show that
fors>0
1/5
Casi=sup N HA — AN (5.41)
NelN

£2(T)—2(T)

where (AIV] )%y is a sequence of infinite matrices, which we shall define below. We
shall make use of Stechkin’s lemma.

Lemma 5.7 (Stechkin) Let0 < p < q < o0 and assume that & = (& )yer € £F(T).
For N = 1, let 'y < T denote the set of indices corresponding to the N largest values
of |a|. Then,

1/q
Z |y [ SN ey, withr:=
1¢lN

> 0. (5.42)

<=
= | =

We define AIN! “column’-wise for N € N as follows: if N = 1, we select AN to be
the diagonal part of A. If N > 1, we define AN to contain, in the off-diagonal of
the ‘column’ associated with index v € T', at most N nonzero elements of A.,, where
v = v(v, i) with the index i such that i € {j : v #0 A (j =1 #0vvj+1#0)} n
{j : e][N] # 0}. Here, for a given sequence € € ¢>(IN) in the definition (5.30) of the
infinite, tridiagonal matrix M appearing in the bilinear form a(-,-), we denote by
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eIN its best (N — 1)-term approximation in ¢>(N). Then, for all N € N and for
every 0 < p <2,

e = €™ 2y < NTWPT2 e (5.43)
We note that by definition of €N, AN is defined completely analogously ‘row’-wise
for every v € T, ‘row” 7y has at most N nonzero elements of A, where v = v(vy,i)
with the index i satisfying a symmetric set of conditions. As described in [17] we

have

HA _ AV Al 2

<sup ‘AW (5.44)

Y€l yer

It therefore follows from the definition of the entries A, of A and from the above
calculations that

242

. N 1/p—1/207—(1/p—1/2
INEN: [A-AM e el < 2PN e
(5.45)
from which we deduce, with Cp := 2(1/p=1/2)/5 that
1/5 - =
.= — AN < 1-(1/p=1/2)/s 1/5
ors = VA Ay < o g (V0P el < =
(5.46)
provided that € € £P (IN) with 0 < p < 2 and § = 5(p) is chosen as
0<s:=1/p-1)2. (5.47)

Referring to the definition of s*-computability (cf. Definition 5.5), we infer that A
is s*-computable with any 0 < s < s*(p) if the sequence in Example 3.1 belongs
to (P (IN) with some 0 < p < 2, resp. with s* = 1/p —1/2 (this encompasses the
previous case, if p = 0 is understood to indicate that € is the zero sequence).

The routine Build[v, k, €] presented hereafter gives the step by step procedure to
construct a column of Ay, when the sequence € is decreasing, so that it’s best k
approximation is it’s first k terms. For every «y € T let (y\*)), a, b) denote the multi-
index y whose value on i and j is replaced by a and b respectively.

Routine 5.1 Builda[v, k€] — v

v=1,
for j in supp(v) do
if j < k then
ifvj_1 > 1 then
’y;r = (Ui, vi+1vi1—1)
’Y/ 1Yj < + A 1>—1/2< A 1>—1/2

Aj—14;

V'y;' = €j,1
if vj;1 > 1 then

v = WU v 1y - 1)

_ [Yi+1Y 4, — 1\—1/2 1\—1/2
VW;_E 1+1)\< AT AT
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TD<«=5, d= 10
0 0
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0 1000 2000 3000 0 2000 4000 6000 8000 10000
nz = 4191 nz = 46536

Figure 5.1: Visualization of finite parts of the matrix A. The left figure shows
a construction of the columns of A on a set of multi-indices E c I' with total
degree (TD) less than or equal to 5 in the first 10 dimensions (d). On the
right is the same construction for a set of multi-indices with total degree less
than 21 in 4 dimensions. A color ranging from red to blue is associated to
each entry, depending on its /* weight, with red chosen for the entries of
maximum weight, and blue those of minimum. In both cases it is chosen
€; =i ! and Q diagonal with A, = k=2

5.1.4 Adaptive application of s*-computable operators

We now let A € L£(£?) be an s*-computable operator. With approximating
sequence (Ay)reN satisfying

A = Axllop < ek (5.48)
We present here a method to efficiently apply the matrix A to sequences

v € (2. Using the algorithms described in Appendix A such as

BucketSort[v,e] — [(U[p]ﬁ:lr (Ep)gzl] , (5.49)

we partition the vector v € £2 into O[] = U[Ep, p =1,...,P, where o[
contains the largest elements of v, v|y the next largests, and so on. The

integer P is minimal with

2P/ |y o0 \/Hsupp v < €. (5.50)
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Moreover the number of operations and storage locations required by a call
of BucketSort is bounded by

#supp v + max(1, [log(|[v],« )\/#supp v/e|). (5.51)

Routine 5.2 Apply4[v, €] — z

(V[p])fa):l < BucketSort|[v, ﬁ]

compute the minimal / € {1,...,P} s.t § := €, Hv - Z;zl Uy le <5

k = (kp)lp:1 - (0);:1
while {, > € —J do
k < NextOpt[k] with objective —{; = — le:l ek, ||V Hﬂ(a,,)

N

and cost 0 = Z;ﬂ=1 Nk, (#supp vi,)

I
z < Xp—1 Ak, V)

The algorithm BucketSort[v, €] consists of three subtasks. The first task is to
partition v into vectors with decreasing ¢* weight. The smaller elements are
neglected, and this truncation produces an error of at most § < €/2. Next,
the greedy algorithm NextOpt also detailed in appendix A assigns a sparse
operator A, to each section v[,), p = 1,...,P. This optimization ensures
that the final step, consisting of the sum of each ordinary matrix vector mul-
tiplication of the sparse operators with their assigned section approximates
the abstract matrix vector multiplication up to an error €, as desired. The
algorithm enjoys additional properties which are detailed in the following
theorem. However, to ensure that the algorithm terminates, we must assume
that (24 )reN, is nonincreasing and converges to 0; ng = 0 with (1y)ken,
strictly increasing, and

CAk —CAk+1

x := —————— nonincreasing in k. (5.52)
Mg+1 — Mg
Moreover we assume _
- €Ak
Fai=sup —— < . (5.53)
keNp €Ak+1

Theorem 5.8 For any finitely supported v € (% and any € > 0, a call of Apply 4[v, €]
terminates, its output is a finitely supported z € (> with

[AV —z|2 <04k <€, (5.54)

wherek = (k,[,);;:1 is the vector constructed by the greedy algorithm in Apply 4[v, €].

Furthermore, the number of arithmetic operations required by the final step of Apply 4[v, €]

is bounded by

P
Z N, (#supp vp,)) (5.55)
r=1
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if the relevant entries of Ay, are precomputed. If supye axny < o0 Vs € (0,5%),
then for any s € (0,s*),

#suppz < oy < e V5 v (5.56)

5.1.5 Time stepping as a bi-infinite matrix vector equation

In what follows, we consider the backward Euler scheme (4.18). For n =
0,...,M—1 we would like to solve

(I+hAU™ = TU" + hf(tpyr), (5.57)

where I is the identity operator from V to V* with respect to the triple (2.97).
We assume that we have a Riesz basis Y = (1) er of H which renormalized
in V or V* gives the Riesz bases

‘Y:( L2 ) and ?:( L2 ) (5.58)
[Wally ) rer Al / rer

of V or V* respectively. We have their associated Riesz operators Ty and Ty.
If we let B := [ + hA € L(V,V*), the problem resumes to finding U" e ¢2(T)
forn=0,...,M —1 such that

BU" ™! = g, (5.59)

where B := TgoBo Ty, and g" = Tg(I U" + hf(ty+1)). Letting M € L(¢%)
denote the matrix (I¥,¥), and A € L(/?) the matrix (AY,¥),,, we may
represent the operator B as

SN h

AA "
[l larly 1wl [9arly

where (B), \» = (Tf-’lj o Bl[J/\)/v. We may notice that the two terms in the

above sum represent the additive contribution of the operators I and hA
taken separately. We have the Riesz constants,

By = (AP, Prry, (5.60)

| Tye|
Ay = HT‘I’H/Z(F)ﬂV = Ssup Ic| L, (5.61)
ce2(r) 1412 (ry
and,
Tgc
Ay = ”T‘i’Hﬂ(r)—»v* = sup M (5.62)

ce(T) HCHZZ(F) '

giving us upper bounds for B2, 2 and B2 21y

HBH/Z(r)_.zz(r) < HBqu,y*) Ay Ay, (5.63)
1B~ £
1 WV*V)
HB Hﬂ(r)—wz(r) \TA\? (5.64)
Using (5.63) and (5.64), we may bound the condition number of B,
kg = [Blagy—em B 2w oem < 1Bl B oy, - (5.65)
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Taking h < 1/|A[,,y+), we may use a Neumann series argument to infer
that B™! = (I + hA)™! is well defined and continuous. We also obtain an
estimate for the condition number,

kg <1, (5.66)

which holds uniformly in h for b < 1/ Al ;%)

5.2 Adaptive Galerkin methods

We are now interested in solving the discrete operator equations (5.59). We
take a more general approach and consider solving in ¢?(T) the bi-infinite
matrix vector equation

Au=f, (5.67)

for a given A € L((*(T),¢*(T")) and f € ¢>(T"). We further assume that A is
symmetric and positive definite, which is the case in (5.59). We assume that
the action of A can be approximated by a routine

Applyalv.e]l =z, [Av—z|2p <§, (5.68)

for finitely supported vectors v. Similarly, we require a routine that given
€ > (0 produces an approximation

RHS¢[e] — g, |[If— g”ﬂ(r’) <€ (5.69)

to approximate the right hand side up to arbitrary precision. Moreover we
require,

RHS; := sup [# operations required by the call RHS¢]® < €. (5.70)
O<e<|f| 2

Some efficient methods to compute these approximations where presented in
section 5.1.4 and in [10]. These two methods are combined into Residualg ¢
which enables to compute the error between a given approximation and the
solution to (5.67).

Routine 5.3 Residualy ¢ le, v, 1o, X, w, B] — [x,14,C]

Require: { < x1

repeat
r RHSf[BC] — Applyslv, (1 — )]
1 |rf2

if { <wnyory+{ <ethen
break

{—wiz2(n+7)

Let |A| < & and |[A7!| < & Then ks := & is an upper bound for the
condition number |A| |A™!|. Furthermore, we let |f| < A. We now present
an adaptive solver for the bi-infinite matrix equation.
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Routine 5.4 Solvey r €, x,0,w,0,B] — [ue, €]

20 — g, w0 —o0, & —all2r
fork=0,1,... do
if 6y < € then
break
[rk/ ks gk] <~ ReSidualA,f [6&_1/2/ ﬁ(k)/ &1/25k1 X w, ,B]
8 — &2 (i + Z)
if 6y < € then
break

[20+D, o]  Retine[2M), 1y, /17 — (G + Ok + x))?]
O — ( U;%*P;%*ék)/(’?ﬁr@k)
[a5+D, 741] < Galerking ([E6+D, 4, o min(dy, 5)]
§k+1 — Ty1 + \/1 — 6_]%7(21 min(ék, Sk)

e — @

€ «— min(ék, 5_k)

The method Solve 4 ; uses approximate residuals computed with Residualy ¢
to adaptively select and iteratively solve a finite section of (5.67). For a finite
index set Z = IN and a finitely supported r € ¢2 and € > 0, the routine

Refine[E, r,€] — [, p], (5.71)

constructs a set &  E such that p := |[r — || 2 < €, and #E is minimal with
this property, up to a constant factor ¢. For ¢ = 1 this can be done by sorting
r and adding to E the indices for which |r;| is largest. Using an appropriate
sorting algorithm, this can be done at a computational cost of order #supp r.

The function Galerking, £ approximates the solution of (5.67) restricted to the
index set E. It is the Galerkin projection on this set, that is

UGaerkin(2) = argmin (A(w —u),w —u)p, = argmin [w—uf,. (5.72)
#supp wCE #supp wCE

A convergence analysis and optimality properties of this algorithm is detailed
in [5], [7] and [10]. We have the following theorem.

Theorem 5.9 Let€,x,0,w >0, w+0+wd <1,0 <o <1—4/1—02;", and
0< B <1, then Solvey s constructs a finitely supported u. with

[u—ue, <e (5.73)
and for all k € Ny,

;1/2%& < ”u —a® HA < min(é, 3y). (5.74)

Moreover, if u € A® for some s > 0 and,

6. W <%, (5.75)
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then by iteration k,

lul| s (#E®) ™ (5.76)

Hu — @ ng < 258Kk, (1 — p'/e) T lx

1—w
forp =0 +4/1—02; " and T = /1 — 62k,.

5.3 Convergence of the fully discrete problem

We shall now approximate the solution U", n = 0,1,..., M of the backward
Euler scheme (5.57), with the algorithms presented above. Let U" be the fully
discrete and finitely supported approximation of U}, given by

Up = TyU", (5.77)

and similarly we define (I} = TyU"®, the approximation of U} by (5.59)
after the k-th iteration of the previous algorithm. We assume that U}l € A,
n =1,...,M. The following theorem shows how the computational error
|u(tn) — Uy, is of order min(1, s).

Theorem 5.10 Let ug € V and f € L?(0, T; H), such that f is strongly continu-
ously differentiable in (0, T), with continuous derivative in [0, T]. We assume that
forn=1,..., M, f(t,) satisfies the computability conditions for the right hand side
(5.69) and (5.70). We further assume that A is an s*-computable operator satisfying
all the properties of Theorem 2.23. Then for €,x,0,w > 0, w+0+wb < 1,0 <

o <1—4/1—62;1, and 0 < B < 1, the approximation method defined by (5.59)
satisfies,

u(t) - T

< WV (W) (5.78)
H
+ 2K, p(1— p'*) T u s (HED) . (5.79)

Proof We simply use the triangular inequality,

Hu(fn) - leZ/(k) HH < Jults) = Uy, + Hug _ HZ,(k)

‘H . (5.80)

Assuming that a step n — 1 we have approximated u(t,) with precision €/2,
under the assumption on f we can use RHS¢[€/2] to approximate [ U" +
hf(t,+1)) up to precision €. Estimation (5.79) is hence deduced from Theorem
5.9 (5.76), while (5.78) has been estimated in Chapter 4. o
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Chapter 6

Implementation

In this final part of the project, we present numerical solutions to problem
(2.115), in the particular case where A is the generator of the heat semigroup.
In this setting, we take Q diagonal and solve for a given ug € UC,(H), the
problem

u'(t) — Aou(t) = f(t) (6.1)
0) = up, (6.2)

with f strongly continuously differentiable from [0, T] to H. The exact solu-
tion to this problem is given by

t
utx) = [ w0@Nuo) + | | ForN e goldnis  63)

6.1 Associated matrix equation

When A = —2A(, we have seen in (2.85) that the associated bilinear form is
given by

Q0
Aoy = 33 | (DuxPp(@) ~ [ (o o(Dutepp(dn).  64)
k=1
Let 9 denote the nonsymmetric bilinear form on V x V defined by

o(u,v) = — JH<x,v(x)Du(x)>y(dx). (6.5)

Following [17, Section 10] we now show that 9 is continuous.

Proposition 6.1 Assume that the covariance operator Q of the Gaussian measure y
on H is of trace class. Then, d : WY2(H, u) x WY2(H, u) — R is continuous and

1/2
o(u,0)] < (zTr<Q> jH|v<x>|2y<dx> +4)QP? jH|Dv<x>2u<dx>) 1Dt 24 -
(6.6)
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Proof We estimate

0 1/2 1/2
2
v)| < (Z |xk|v|Lz(H/,4)> (Z |Dku|%zmw> (6.7)
k=1

k=1

. 1/2
2 2
= <Z |xk|v|L2(H/y)> ”Du”LZ(H,,L) : (6.8)

k=1

Using [12, Prop. 9.2.10] and the assumption that v € W'2(H, 1), we deduce
that, for a Gaussian measure y with trace-class covariance Q,

|, 1312 (o) () < 2T(Q) | o) Pt + 41017 | 1Do()1? ()
(6.9)
This then yields the desired inequality (6.6). =

The bound (6.6) implies a Garding inequality for the Fokker-Planck operator
with drift. Let a : V x V be defined as

ZA,{f Dytt(x) Do () u(dx) 6.10)

Proposition 6.2 Assume that the covariance operator Q of the Gaussian measure p
is trace-class. Then, the bilinear form

a,)+0(,):VxV->NR (6.11)

is continuous and satisfies the Garding inequality (i.e it satisfies 2 and 3 in Theorem
2.27) in the triple V < H ~ H* < V*. In particular, the variational problem is
well-posed.

Proof The continuity of the bilinear form a(:,-) + d(-,-) is evident from the
previous proposition and the continuity of a(-,-). The Garding inequality
follows from the coercivity of a(-,-) on V x V and from the continuity estimate
(6.6) using a Cauchy inequality. o

6.2 s*-computability of B,

We take ¥ = (1/;7)7€r = (Hv/<% /\_1>1‘/2)7er as a Riesz basis of V. Let

B, =y« (Y], [¥Y])v + 1 (a([¥], [¥]) + 2([¥], [¥])). From the previous section
we can easily compute the contributions of ,«{[¥],[¥])y and ha([¥],[¥]),
since for all y, v € T, using Proposition 2.11,

Oy v
e o (6.12)
h
ol ) = ZAkf DyH,DyHyu(dx)  (6.13)
o,

= Y- (6.14)
Ay kesnp(n)

(6.15)
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We are hence interested in computing (1, ¢,) for 7, v € I'. We compute for
k=1,

JH XD Hy (x)Hy (x)p(dx). (6.16)
Since DiH (x) = /T HS (x) Hy, 1 (W, (x)) with
HY (x) = [ ] Hay (Wey (1)), (6.17)
j#k
and x; = )\i/ZWek(x), we rewrite (6.16) as
(6.16) =y fH We, (%) Hoyg -1 (We, (x)) HS? () Hy (x)u(dx), (6.18)

V0 [, (VR (W, (0) 375 = T, -2(Wey () HIO () (1) ()

(6.19)
=Yk0yv + VY (rk — 1)dy,q—21,- (6.20)

where we have used that {H, (&) = vn +1H,.1(§) + v/nH,_1(&) and 1j is
the multi-index with value one at k and 0 elsewhere, is the function y with
the k-th component decreased by two units. Since there is at most one k such
that for v, v € T, 6,421, # 0, summing over k the last expression gives

1 .
1 ify—v
{(r A=y ! !
(Br)yv = —h ] . (6.21)
L o A71>172k<(3")\71)>1/2 ifry=9c—2andv; =1, | #k.
” ® ” *

For m € IN, the following procedure enables the approximation of a column
v of By, having at most m + 1 non-zeros entries.

Routine 6.1 Buildg[v, m,A] — v

v, — 1
VT ATy
for j =1tomdo
—h (Vj+2)(l/j+1)

AP

Vl/+2ﬂ]‘ =

Let BY denote the matrix obtained when approximating all the columns v € T
of Bj, according to Buildg[v, N, A]. To show s*-computability we must bound

NG
Cgs:=sup N HBh - B H .
NeN 2(T)—2(T)

We shall use Schur’s Lemma (cf. [16], p.6, 12, and [3] p.449, Theorem B)
stated hereafter.

Theorem 6.3 (Schur) A matrix A := (a;j) € L(#?(N)) if and only if there exist
positive numbers Cy and Cy and a positive sequence u := (u;); such that

(6.22)

0
S <cu? i=12,... (6.23)
j=1
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and

0¢]

S <qui? j=12,..., (6.24)
in which case we have | Al 2y, < Cl/ZC;/z.

We observe that for all ¢y € T, (qu\])w # O0only forv = yorv =9—2I,
k < N, and (BhN )yv = (By)yv otherwise. This shows that for any ‘row” y € T’
of the matrix B, — B}Z:] there are column entries for every k > N such that
Yk = 2. On the other hand, for every ‘column’ v € T, there are row entries for
every k > N. We now verify the hypothesis of Schur’s lemma (Theorem 6.3)
for the positive sequence 1, = 1, v € I' meaning that all rows and columns

of (By)yv — (BhN)W are in /(T). For any row’ vy €T,

-1
Z] By)yy — (BY)0| =h v /2 vk —1) = (6.25)
vel k> N (A~ 1> (y — 20, _1>*
Ye=2
1/2 1/2
M/ M) Y —1
< -
ng A ng (1A =207
V=2 V=2
(6.26)
1/2 1/2
<h| > A D2 (6.27)
k>N k>N
Tk=2 Y22
<IV2NT A - (6.28)

where the last line follows from Stechkin’s lemma (Lemma 5.7) for 0 < p <1
and r = 1/p — 1. We have also used the fact that for any v € I, /A <
(y,A7 1y, k € supp (). Also, if 7y > 2,

_1 _1 1
Tk < Tk AT <oy, (6.29)

A =20 T =22 T2

while if v, = 2 we have

g

T -1 < 7—’ (6.30)

<r)// )\_l>* - 2)\]?1 <’)/(k)/)\71>*

with j > k the next index j € supp(7) such that there is no index [ € supp(7)
with k < I < j. If no such index exists it is possible to pick again j =
max(supp(7)) without changing the validity of (6.27). On the other hand, for
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each column v € T we also have
Vk + 1)(1/k + 2)

B),)yv — (BY)yu| =
2 e Z A, A- 1>*/2<v+znk, —1y1/2

yel
Ax( 2)/A 1 12
<h k (Vi + /l k Z Vi +1
v+ 21](/ >* k>N <r)// >*

(6.31)

(6.32)
1/2
1/2
<h (Z Ak> D124 (6.33)
k>N k>N
Tk=2
<IV2NT" Al vy (6.34)

for 0 < p <1 and r = 1/p — 1. By the above estimations, we can use Schur’s
Lemma (Theorem 6.3) for C; = Cp = hv/2N~7 1Al p o to find that

”Bh _BN

h 2(r)—2(T)

<IV2NT A - (6.35)

This shows that for A € £7(IN), By, is s*-computable with s* = 1/p — 1. More-
over the approximating sequence satisfies (5.52) and (5.53).

6.3 Right hand side and initial condition
For the sake of simplicity, we consider a uniform forcing term of the form
f(t,x)=g(t), te]0,T], xe H. (6.36)

Trivially, f(t,x) = g(t)Ho(x) so that the corresponding vector in ¢2(T) is given
by (g(#),0,0,...) . Moreover, we shall also assume given the full scaled Poly-
nomial Chaos expansion of the initial condition,

ug = Z ugy,  with ul = ¢ (uo), (6.37)
yel

where (i) er is the canonical dual base corresponding to ¥ defined through
the Riesz operator Sy in (5.5). In fact, ¥* = ((v, /\_1>*H'Y)'yel" and the action

on an element f € V is defined as ¥ (f) = {4{7, A™DHy (x) f(x)p(dx). We
require the availability of a routine RHS[g, €] — g such that for ¢ = ug and

g=1f

|8 — T8l <€ and #supp(g) < min {N : [Tgla p,, () <€},
(6.38)
with the number of arithmetic operations and storage locations used by the
call RHS[g, €] being bounded by some absolute multiple of #supp(g) + 1.
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Example 6.4 Consider for 0 < a < T in [a, T] x R" the parabolic problem

duu(x, t) — div <M(x)AV (”]‘\EI’EX t;)) —0, (x,HeR"x[a,T]  (639)
u(x,a) = ug(x,a) xeR", (6.40)

1 .
M(x) = We 2, xelR". (641)

where A is a symmetric positive definite matrix on R". The case a = 0 can also be
determined but is not considered here. By applying the methodology in section 3.1,
we view this as the problem of finding il := u/M solving

M(x)épi(x, t) — div (M(x)AVil) =0, (x,t)eR" x [a,T| (6.42)

ii(x,a) = ug(x,a)/M(x) xeR". (6.43)

For the sake of simplicity, we shall first take A = I,, and consider the associated
variational problem on the Maxwellian weighted L2 space H := L>(R", Nj). Using

the theory in Section 2.1.5, in particular (2.65) (2.90) and (2.91), we shall consider
the solution to this equation given by

2
ﬁ(x, i’) _ (1 _e—Zt)—fl/z exp <_2(€;:|—1)> ’ (644)

with ug(x,a) = d(x,a). One can check that the function (6.44) satisfies (6.42).

In order to test the numerical schemes discussed, we take Y := (Hy)qer (with T’ =
IN") as a complete orthonormal system on H, and look for the solution under the
form

i(x, t) = > (i), Hyy, Hy(x). (6.45)

yel

Fortunately, in this particular case it is possible to find the full Hermite expansion of
the solution and to compare it with numerical results. In deed, for any t € [a, T]

(a(t), Hy ), = JW (¢, %) H. (x)M(x)dx (6.46)

2

L x
—(—e 2y J exp (m) Ha, (x;) N1 (dxy). (6.47)
k=1"R
We are hence interested in computing for m > 0 the integral
Iy = j e_xz/ze(t)Hm(x)exz/z(x)dx, (6.48)
R

with 6(t) := e** — 1. By symmetry, we see that (6.48) vanishes for odd m. For m
even, we shall use Proposition 9.1.1 in Da Prato and Zabczyk ([12, p.188]) inferring
that for all m e N

Ha(r) = e S0 ), (649)
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Hence using integration by parts ([8, p.22-29]),

o 222000 97" d 32
Con 1= o = W (e )dx (6.50)
7x2/29 (t)

Y 21’}’1 J dxzm—l
- 6(”)3”2_7; J —/20(0) x 0 (x)e% 2dx (6.52)

d2m71

(/%) dx (6.51)

__— —x2/26(t) 2mHy,, —x2/2d 6.53
79(0\/2—"1 C V2mHyy (x)e X (6.53)

-1 —x2/20(t) —x%/2
= V2 — 1Hy,_ d 6.54
o Jr’ M= 1Hgn—p (™ Pdx - (654)

1 1 2m—1

= w m_@ Ty oml (6.55)
=(=1)"(0(t) + 1)"”\/ (2";(2(127”2; 3) e e (6.56)
—(-1) 92(7;9&)1( ) +1)" znf?:;)) (6.57)

with Cy = +/270(t)/(0(t) + 1). Using Stirling’s approximation for m > M and
a predefined M € IN we can assume that the last expression can be evaluated in
constant time. In this case, the full development of the solution ii(t, x) of (6.39) is
found on the set of T := {y € T : 7 = 2my, k € supp(v)} and is given by i(x,t) =

7er<” H,y>HH7 x) with

(0, Hy, = | [(~yme2me Y2

I ) (6.58)

We also note here that the above development of the solution converges in L*(R", Nj(dx))

and not with respect to Lebesgue measure. Hence, approximations are good locally
around the origin essentially.
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uNumeric(1/2), TD<40 uExact(1/2)

| /W i\
‘//I'M\\\Ql

L

-5 _5 -5 5

Figure 6.1: Visualization of the solution of (6.42) for d = 2, on the left is plot-
ted the expansion of the solution on a set of bivariate Hermite polynomials
with total degree at most 6. On the right is the exact solution at time ¢ = 0.5.
One notices a good approximation around the origin, which degrades after
about two standard deviations away from 0. This is compensated after the
change of variables in (6.39).

Equation (6.4) gives us the spectral decomposition from Theorem 2.23; the Hermite
polynomials being the eigenfunctions of this problem. In deed, one has

Dk (eiutz/ZDkHﬁ’k(xk)) :ka ((37Hx|‘2/2H,yk,1) (659)
— 2
= V(=1 () 2D, (DT (e 2) )
(6.60)
= —me M H,, (6.61)

Hence, for an initial condition under the form ug = 3., ul H, we know that the

solution at time t is given by u(t) = 3., uge’”“Hv. It is possible to compute the
energy of the solution at time t > 0 using (6.44), but it is also possible to use the
above decomposition to see that

lu®)3, =1+ 0", ast— . (6.62)

For higher dimensions, due to the impossibility of plotting the resulting function, we
show in Figure 6.2 the L% norm of the numerical solutions.
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; Convergence in time dimension Energy decay of numerical solutions
10° T T 1.8 T
d=15
d=20
10°F :
5 5
5 5}
o g
10°F :
1074 0 ‘ 1 ‘ 2 3
10 10 10 10
1/h

Figure 6.2: On the left we see the convergence of the Backward Euler approx-
imations to the representation (6.58) as the step size decreases. The experi-
ment was realized in dimension d = 20 and maximum polynomial degree 4.
On the right is the plot of the energy decay of the solutions for high dimen-
sional instances (n = d). The maximum polynomial degree is in this case
also 4.

We have also considered numerical solutions to (6.42) for A = Ale] with
Ale] = tridiag {(e;, 1,€;), i =1,2,...,K}. (6.63)

In this particular case, we know from Example 5.6 that the associated bi-infinite
matrix is symmetric. Moreover, for any support set of the approximation of the
initial condition, we can make the approximate matrix square, and of full rank. This
implies that the set of active coefficients is invariant during the numerical integration
in time. The matrix is also very sparse, it is hence possible to consider an exact solver
for relatively high dimensions, depending on the sparsity of the initial condition.
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; Convergence in time dimension Energy decay of numerical solutions
10° T T 6.5

———d=18
d=26 ||

551 1

12 error
energy

10 ] 351 1

10 . . 2 : :
10 10 10° 10* 0.2 0.3 0.4 0.5

1/h t

Figure 6.3: Test case for K = 18,26 and ¢; = 2, i = 1,2,...,K. The left plot
shows linear convergence of the Backward Euler approximations. The right
plot shows the L? norm of the solution decaying in time.
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Appendix A

Generalized knapsack problems

A.1 Problem setting

The adaptive solver relies on the possibility of iteratively finding appropriate
sparse operators increasing the value of an approximate solution, in terms of
residuals, at a corresponding computational cost. The problem of choosing
the appropriate operators is hence seen as generalized knapsack problem. We
specify this hereafter following [10]. Let M € INy, and for each m € M let
(c;”) jeN, and (w}“) jeN, be two increasing sequences, interpreted as costs and

values. We associate to each j = (ju)mer € N a cost

¢ = Z CZL, (A1)
meM
and a value
wj = Z w};’l. (A.2)
mem

We are interested in maximizing wj under a constraint on ¢j, or equivalently
minimizing ¢j under a constraint on wj.

A.2 A sequence of optimal solutions

For each m € M and all j € Ny, let

Aci:cf' g —¢f' and  Aw(" =Wl - w (A.3)

We furthermore define quantities q}” as the quotient of these two increments;

Aw?
g = —L, meM, jeNy. (A.4)
ch
These values are interpreted as the value to cost ratio of passing to j + 1 from
j in the index m € M. We shall iteratively build a sequence (jk)ke]No in NM,

such that each j* is optimal under some assumptions.
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Assumption A.1 Forall me M,

=0 and Ac}” >0 jeNy, (A.5)

ie (c]’.”)]-e]N0 is strictly increasing. Also, (Wi )mepm € CH(M) and (w;-”)]-e]No is

nondecreasing for all m € M, i.e Aw}“ > 0 for all j € INg. Furthermore, for each

m e M, the sequence (q}")]-eNo is nonincreasing, i.e if i > j, then q;" < q}”. Finally,
for any € > 0, there are only finitely many m € M for which q5' > €.

The assumption that (q}”) jeN, 18 nonincreasing is equivalent to

w™ A"
wflm < Ac;." ifi>j (A.6)
] ]

if Aw]m > 0. In this sense, ((U]m)]‘eNO increases more slowly than (c}“)]'eNo.
Also, this assumption implies that if Aw/" = 0, then Wi = w" for all i > j.
We define a total order on M x Ny by

7> or

(m,j) > (n,i) if q}" =q! and m<n or (A7)

q]f"=q? and m=mn and j<i

To any sequence j = (j)mem in INg we associate the set
{{if} :={(m,j) e M xNo;j < jm}. (A8)

We now construct the sequence (jk)keNo in NM. Let j° := 0 ¢ NM, and

for all k € Ny we construct j**1 from j* as follows. Let m; € Ny maximize
q;?,f. Existence of such maximum is guaranteed by Assumption A.1. If the
maximum is not unique, we select the smallest m; among all maxima. We
then define ]’;;;1 : ],’j1k +1, and set jkF1 := K if my # m. For this sequence we
abbreviate ¢; := Cik and wy := Wik

Lemma A.2 Forall k € Ny, {k}} := {{]k}} consists of the fist k terms of M x Ny
with respect to the order >.

Proof The case k = 0 is trivial. By induction, if the assumption holds for
some k € N,

ftk+ 1 = 4k o {ome )} (A9)

with (my, ]%k) the >-minimal element of the set {(m, k),me M} For each

m € M, Assumption A.1 implies g}" < q;?,f for all i > ]",;k + 1. Therefore,
Tﬂk

(mk,jﬂk) > (m,i) for all i > jk 41, and consequently (mk,j’fnk) is the >-

minimal element of (M x INg)\ {k}}. o

Theorem A.3 For all k € Ny, the sequence j* maximizes wj among all finitely
supported sequences j = (jm)mem in No with ¢ < c. Furthermore, if ¢| < ¢ and
there exist k pairs (m,i) € M x No with Aw}" > 0, then wj < w.
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Proof Let k € IN and let j = (ji)mem be a finitely supported sequence of in
INp with ¢j < ¢;. By definition,

jnt_l

wj= Wi+ D Y grA = wp+ DL gl A (A.10)
meM meM =0 (mi)elii}

Therefore, the assertion reduces to

At < D A (A.11)
(mDe{{i\{kh (m ek}
Note that by (A.1) and (A.3)
Acl' =¢j—c" for = > Acl". (A.12)
(m e {kH ((mi)e{{ini{kh

By Lemma A.2 and (A7), q := q;zk:ll satisfies g < g/ for all (m, i) € {{k}}, and

k—1
q!" < g for all (m,i) € (M x Np)\ {{k}}. In particular, g > 0 if there exist k
pairs (m, i) € M x INg with g}" > 0 since # {{k}} = k. Consequently,

DIogiAdt<g D A (A.13)
(m e i\ {k} (mDe{i\ k)
<q(ex —¢') < > N (A.14)
(mD)e{{k\{}
and this inequality is strict if g; > 0 and ¢ > ¢;. o

A.3 Numerical construction

We now present greedy algorithms to construct the sequence (j) keN,- We
shall assume that for each m € M, the sequences (c]'”) jeN, and (c]’”) jeN, are

stored as linked lists. We shall first assume that M is finite with #M := M.
We define a list NV as the set of triples (m, j,, 4", k), sorted in ascending
order, with respect to >. We assume to have a data structure enabling the

removal of the minimal element of the list, and the insertion of new elements.

Routine A.1 NextOpt[j, N] — [j, m, N]
m < PopMin(N)

jm <« jm +1
g« (W;Z,+1 — Wﬂ)/(c}?ﬂrl - C;:ln)
N « Insert|N, (m,jm,q)]

Proposition A.4 Let N be initialized as {(m,0,q);m e M} and j° := 0 e N
Then the recursive application of

NextOpt[jk,Nk] — [jk+l,mk,Nk+1] (A.15)
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constructs the sequence (jk)keNU as defined above. Initialization of the data struc-
ture Ny requires O(Mlog M) operations and O(M) memory. One step of (A.15)
requires O(M) operations if N is realized as a linked list, and O(log M) operations
if N is realized as a tree. The total number of operations required by the first k steps
is O(kM) in the former case and O(klog M) in the latter. In both cases, the total
memory requirement for the first k steps is O(M + k).

Proof Recursive application of NextOpt as in (A.15) constructs the sequence
G5 keN, by Lemma A.2 and the definition of >. In the k-th step, the element
my is removed from N and reinserted in a new position. Therefore, the size
of NV remains constant at M. The computational cost of (A.15) is dominated
by the insert oepration on A/, which has the complexity stated above. o

We now turn to the case when M is countably infinite. By enumerating the
elements of M, it suffices suffices to consider the case M = IN. We assume
in this case that the sequence (q(')me M is nonincreasing.

As above, we use a list NV of triples (m, jﬁ,q]’i‘) to construct the sequence

(jk JkeN,- However, N should only store triples for which m is candidate for

the next value of my, i.e all m with jk, # 0 and the smallest m with j%, = 0.
As in the finite case, N cn be realized as a linked list or a tree. The data
structure should provide a function for removing the smallest element with
respect to >, and for inserting a new element.

Routine A.2 NextOptInf[j, N, M] — [j,m, N, M]

m < PopMin(N\)
q< (w}ﬁﬂ - W;Z)/(C%H - <,
N « Insert[N, (m,jm,q)]
if m = M then
M—M+1
q — (wi' = wph) /ey
N « Insert|N,(M,1,q)]

)

Proposition A.5 Let Ny be initialized as {(1,0,q')}, Mo := 1 and j° := 0 e Ny
Then the recursion

NextOptInf [jk/ Nk/ Mk] - [jk+1/ my, Nk—i—lr Mk—i-l] (A16)

constructs the sequence (jk)keN0 as defined above. For all k € Ny, the ordered set N
contains exactly My elements, and My < k. The k-th step of (A.16) requires O(k)
operations if N is realized as a linked list, and O(klogk) if N is realized as a tree.
The total number of operations required by the first k steps is O(k?) in the former
case and O(klogk) in the latter. In both cases, the total memory requirement for the
first k steps is O (k).

Proof It follows from the definitions that recursive application of NextOptInf
as in (A.16) constructs the sequence (jk)keNO. In the k-th step, the element
my is removed from N and reinserted in a new position. If m; = M, an
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additional element is inserted, and M is incremented. Therefore, the number
of elements in N is M, and M < k. The computational cost of (A.16) is
dominated by the insert operation on N, which has the complexity stated
above. o

Remark A.6 As mentioned above, (c]'-") jeN, and (w]m) jeN, are assumed to be stored
in a linked list for eachm € M. By removing the first element from the My-th list
in the k-th step of (A.15) or (A.16), NextOpt and NextOptInf only ever access the
first two elements of one of these lists, which takes O(1) time. The memory locations
of the lists can be stored in a hash table for efficient access.

Remark A.7 An appropriate way to store (j¥) ke, 18 to collect (my)ren, in a linked
list. Then j* can be reconstructed by reading the first k elements of the list, which
takes O(k) time independantly of the size of the list. Also, the total memory require-
ment is O(k) is the first k elements are stored.
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