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Abstract

The following report follows very closely the guidelines provided in the
paper of Schwab and Sülli [17] to solve parabolic problems on function
spaces over a separable Hilbert space. Instead of a space time varia-
tional formulation, we consider here a Backward Euler scheme for the
time discretization. The convergence of the Backward Euler scheme in a
Hilbert space setting is proved. We present a class of high dimensional
and infinite dimensional Fokker-Planck equations; for which a spectral
Galerkin method is chosen in order to find a numerical approximation.
The well-posedness of elliptic and parabolic problems in L2pH, µq spaces
is discussed, and we show that the Wiener-Hermite polynomial chaos
provides an appropriate basis for the discretization of variational oper-
ators. We show that the corresponding discrete operator equations in
`2pNq can be approximated by a sequence of sparse problems that con-
verge quasioptimally, in the sense of the best N-term rates possible for
the exact solution.
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Chapter 1

Introduction

This project presents numerical methods available to approximate the so-
lutions of a class of high dimensional parabolic problems, possibly infinite
dimensional. In particular we study the infinite dimensional Fokker-Planck
equation (FP) for the Kolmogorov forward equation on a Hilbert space. The
solutions to these kind of equations are useful in many different contexts (see,
e.g., [2, 6] and the references therein). Citing [12, p. X] “parabolic equations
on Hilbert spaces appear in mathematical physics to model systems with in-
finitely many degrees of freedom. Typical examples are provided by spin
configurations in statistical mechanics and by crystals in solid state theory.
Infinite-dimensional parabolic equations provide an analytic description of
infinite-dimensional diffusion processes in such branches of applied math-
ematics as population biology, fluid dynamics, and mathematical finance”.
The numerical solutions to these equations have however received less atten-
tion and are generally done by path simulation of the corresponding stochas-
tic partial differential equation. In this project we study instead the solution
suggested in Schwab and Sülli [17]. Their approach offers a new, deter-
ministic adaptive spectral Galerkin approach to the construction of finite-
dimensional numerical approximations to the deterministic forward equa-
tion in infinite-dimensional spaces, which exhibit certain optimality proper-
ties. The equations are considered in a space-time variational formulation
in Gelfand-triples of Sobolev spaces over a separable Hilbert space H with
respect to a Gaussian measure µ. In this project however, we only consider a
variational formulation in the space dimension, the Backward Euler method
is used for integration in time. This reduces the parabolic problem to an ellip-
tic problem at each time step. The solution is discretized via the choice of an
appropriate Riesz basis, and approximated using the algorithms presented in
[10] for adaptive Galerkin approximations of elliptic operator equations on
bounded domains in Rd. Most notably due to the lack of a suitable extension
of Lebesgue measure to infinite dimensions, the study of infinite-dimensional
Fokker–Planck equations is done on a separable Hilbert space H, equipped
with a Gaussian measure µ. In this context we are in analogy with the finite
dimensional study on weighted L2 spaces of operators of the form BxpMBx¨q,
where M is a density function. In the Gaussian case, the multivariate Her-
mite polynomials provide the Riesz basis for a spectral Galerkin approximation.
We verify that for a particular class of second order operators, the associ-
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1. Introduction

ated discretized variational operator, viewed as a bi-infinite matrix, can be
approximated by a sequence of sparse matrices in the sense of the operator
norm. This verification ensures optimality of the adaptive procedure.

The project is structured as follows: Chapter 2 first presents the necessary
theory of Gaussian measures on separable Hilbert spaces, together with the
introduction of L2pH, µq spaces where µ is a Gaussian measure and H is in-
finite dimensional. Following [12, 15], we present the extension of the Lapla-
cian and the associated heat-semigroup to the infinite dimensional setting,
and see how to derive the variational formulation of second order operators.
The rest of Chapter 2 is dedicated to the study of abstract elliptic problems
and abstract parabolic problems. We define the solutions to such problems
and precise the necessary conditions we shall assume for their existence. In
Chapter 3 we first consider Fokker–Planck equations that arise in bead-spring
chain models for d-dimensional polymeric flow d P t2, 3u, with chains con-
sisting of K`1 beads whose kinematics are statistically described by a config-
uration vector q P RKd , K ě 1. The probability density function ψ “ ψpq, tq
that is sought as the solution of the associated Fokker–Planck equation is
therefore a function of Kd spatial variables with K ě 1 and the time vari-
able t. The aim is to embed this finite-dimensional problem of potentially
very high dimension into an infinite-dimensional problem. Hence, Chapter 3
follows with the introduction of the infinite dimensional Fokker-Planck equa-
tion for which we verify well-posedness. In Chapter 4 we describe the first
level of discretization in the time dimension. The Backward Euler method is
chosen and we give the full proof of its consistency and stability in a Hilbert
space setting. We then continue with the space discretization in Chapter
5 the adaptive procedures to approximate the solutions of abstract elliptic
equations on separable Hilbert spaces. We prove the compressibility of the
Backward Euler operator associated to the equations in Chapter 3. Finally in
Chapter 6 we show some numerical results obtained for a canonical example
of the Fokker-Planck equation from Chapter 3, in finite dimensions.
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Chapter 2

Preliminaries

2.1 Gaussian measures on Hilbert spaces

2.1.1 Trace class operators

We let H be a separable Hilbert space over R with norm | ¨ | associated with
the inner-product x¨, ¨y. The space of all bounded linear operators on H will
be denoted LpHq and equipped with the operator norm }¨}LpHq. We further
let L`pHq denote the sub-space of symmetric non-negative operators on H,
and for an operator T P LpHq, we will denote by T˚ its adjoint. We will also
let BpHq denote the borel sigma algebra on H, associated to | ¨ |.

Definition 2.1 An operator T P LpHq is said to be of trace class if there exist
sequences panqn and pbnqn in H such that for all f P H,

T f “
8
ÿ

n“1

x f , anybn, and
8
ÿ

n“1

|an||bn| ă 8. (2.1)

We will denote by L1pHq the space of all linear operators of trace class. It is
a Banach space with norm

}T}L1pHq
“ inf

#

8
ÿ

n“1

|an||bn| : T f “
8
ÿ

n“1

x f , anybn @ f P H

+

(2.2)

L`1 pHq :“ L1pHqX L`pHq. For an operator R P L1pHq, its trace, TrpRq is given
by

Tr R “
8
ÿ

n“1

xRen, eny, (2.3)

where penqn Ă H is any complete orthonormal basis of H.

Definition 2.2 An operator T P LpHq is Hilbert-Schmidt if there exists an or-
thonormal basis penqn Ă H such that

8
ÿ

n“1

|Ten|
2 ă 8. (2.4)
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2. Preliminaries

We will let L2pHq denote the space of all Hilbert-Schmidt operators on H. It
is a Hilbert space for the scalar product

xT, SyL2pHq
“

8
ÿ

i“1

xTen, Seny, (2.5)

where penqn Ă H is any complete orthonormal system of H. The following
well known spectral theorem also detailed later in Theorem 2.23, for bilinear
forms, gives a useful characterization of the operators we shall use [12, p. 6].

Theorem 2.3 Assume that S is a compact self-adjoint operator in LpHq. Then there
exists a sequence pλkqk Ă R and a complete orthonormal system pekqk Ă H such
that Sek “ λkek, k P N. Moreover, S P L1pHq if and only if

ř8
k“1 |λk| ă 8, in

which case

}S}L1pHq
“

8
ÿ

k“1

|λk|, and Tr S “
8
ÿ

k“1

λk . (2.6)

2.1.2 Gaussian measures on Hilbert spaces

Following [12], we first define Gaussian measures on R. For a P R and λ ą 0,
the Gaussian measure on R with mean a and variance λ is defined by

Na,λpdxq :“
1

?
2πλ

exp
ˆ

´px´ aq2

2λ

˙

dx . (2.7)

For a “ 0 we shall simply write Nλ :“ N0,λ for short.

Proposition 2.4 For a P R and λ ą 0 we have,
ż

R

xNa,λpdxq “ a,
ż

R

px´ aq2Na,λpdxq “ λ,

N̂a,λphq “
ż

R

eixhNa,λpdxq “ eiah´ 1
2 λh2

, h P R.

We call a the mean, λ the variance and N̂a,λ the Fourier transform (or characteristic
function) of Na,λ.

We now proceed to define the Gaussian measure Na,Q for an a P H and a
Q P L`pHq, for H a finite dimensional Hilbert space. Let H be of dimension
d, Q P L`pHq and let pe1, . . . , edq be an orthonormal basis of H such that
Qek “ λkek, k “ 1 . . . d, for some λ1, . . . , λd P R`. We set

xk :“ xx, eky, x P H, k “ 1, . . . , d, (2.8)

and we identify H with Rd through the isomorphism

γ : H Ñ Rd, x ÞÑ γpxq “ px1, x2, . . . , xdq. (2.9)
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2.1. Gaussian measures on Hilbert spaces

The probability measure Na,Q on pRd,BpRdqq is given by

Na,Q “
d
â

k“1
Nak ,λk . (2.10)

We have the following properties.

Proposition 2.5 Let H be a finite dimensional Hilbert space, a P H, Q P L`pHq
and µ “ Na,Q then,

ż

H
xNa,Qpdxq “ a, (2.11)

ż

H
xx´ a, yyxx´ a, zyNa,Qpdxq “ xQy, zy, y, z P H. (2.12)

Moreover, the Fourier transform of the measure Na,Q is given by

N̂a,Qphq :“
ż

H
eixh,xyNa,Qpdxq “ eixa,hy´ 1

2 xQh,hy, h P H. (2.13)

Finally, if the determinant of Q is positive, Na,Q is absolutely continuous with respect
to Lebesgue measure in Rd and we have

Na,Qpdxq “
1

a

p2πqd detpQq
e´

1
2 xQ

´1px´aq,px´aqydx. (2.14)

We now let µ be a probability measure on pH,BpHqqwhere H is any separable
Hilbert space, possibly infinite dimensional. We assume that

ż

H
|x|µpdxq ă 8, (2.15)

Then for any, h P H, the linear functional F : H Ñ R defined as,

Fphq “
ż

H
xx, hyµpdxq, h P H (2.16)

is continuous since

|Fphq| ď
ż

H
|x|µpdxq|h|, h P H. (2.17)

By the Riesz representation theorem there exists a unique m P H such that

Fphq “ xm, hy, h P H. (2.18)

m is called the mean and we shall write,

m “

ż

H
xµpdxq. (2.19)

We now assume that
ż

H
|x|2µpdxq ă 8. (2.20)
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2. Preliminaries

Consequently, the bilinear form G : H ˆ H Ñ R defined as

Gph, kq “
ż

H
xx´m, hyxx´m, kyµpdxq, h, l P H (2.21)

is also continuous, and by the Riesz isomorphism there exists a unique linear
bounded operator Q P LpHq such that

Gph, kq “ xQh, ky, h, k P H. (2.22)

Q is called the covariance of µ.

Proposition 2.6 Let µ be a probability measure on pH,BpHqq with mean m and
covariance Q. Then Q P L`1 pHq, i.e. Q is symmetric, positive and of trace class.

For a P H and Q P L`1 pHq, a Gaussian measure Na,Q on pH,BpHqq is a measure
µ of mean a, covariance operator Q and Fourier transform

N̂a,Qphq “ exp
ˆ

ixa, hy ´
1
2
xQh, hy

˙

, h P H. (2.23)

The Gaussian measure Na,Q is said non-degenerate if kerpQq “ t0u. Since
Q P L`1 pHq there exists an orthonormal sequence pekqk Ă H and a sequence
of non-negative numbers pλkqk with Qek “ λkek, k “ 1, 2, . . .. For x P H we
set xk “ xx, eky, k P N. We now let R8 denote the space of all sequences
pxnqn Ă R equipped with the metric

dpx, yq :“
8
ÿ

k“1

2´k |xk ´ yk|

1` |xk ´ yk|
(2.24)

We will also let `2pNq denote the space of all sequences x “ pxnqn P R8 such
that

}x}`2pNq :“

˜

8
ÿ

k“1

x2
k

¸1{2

ă 8 . (2.25)

`2pNq is a Hilbert space with inner product xx, yy
`2pNq :“

ř8
k“1 xkyk. In the

next theorem, we identify H with `2pNq through the natural isomorphism
γ : H Ñ `2,

x P H ÞÑ px1, x2, . . .q P `2. (2.26)

It is known ([12, p.10]) that for any Gaussian measure on H, the set `2pNq Ă

R8 has measure 1. In order to define the Gaussian measure on `2pNq as
an infinite product of Gaussian measures on R, we introduce the projection
operators, pJ : R8 Ñ R|J|, J Ă N;

x “ pxnq
8
n“1 ÞÑ pJpxq “ pxj1 , . . . , xj|J|q, j1, . . . , j|J| P J. (2.27)

For any J P FpNq, the set of all finite subsets of N, the product σ-algebra
and the product measure

â

jPJ
Σj,

â

jPJ
Naj ,λj , (2.28)
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2.1. Gaussian measures on Hilbert spaces

are understood in the usual way, with Σi the Borel σ-algebra on R, i P N.
The infinite product of the σ-algebras tΣi, i P Nu, is defined as the smallest
σ-algebra with respect to which the projections pJ are measurable, i.e,

Σ0 :“
8
â

k“1
Σk “ σppJ , J P FpNqq. (2.29)

There exists a unique measure µ on pR8, Σ0q such that

µ ˝ p´1
J “

â

jPJ
Naj ,λj , (2.30)

it shall be denoted
Â8

k“1 Nak ,λk .

Theorem 2.7 ([12, p. 9]) Suppose that a P H and Q P L`1 pHq. Then, there exists
a unique probability measure µ on pH,BpHqq such that

ż

H
eixh,xyµpdxq “ eixa,hy´ 1

2 xQh,hy (2.31)

Moreover, µ is the restriction to H (identified with the Hilbert space `2pNq) of the
product measure

8
â

k“1
µk “

8
â

k“1
Nak ,λk , (2.32)

defined on pR8,BpR8qq.

We refer to µ :“ Na,Q as the Gaussian measure associated to the mean a and
the covariance operator Q. Theorem 2.7 implies that a random variable X with
values in H is Gaussian if, and only if, for any h P H the real-valued random
variable xh, Xy is Gaussian.

2.1.3 L2 and Sobolev spaces

We let H :“ L2pH, µq denote the Hilbert space of equivalence classes of func-
tions from H into R with inner-product

xu, vyH :“
ż

H
upxqvpxqµpdxq, u, v P H, (2.33)

and norm
}u}H :“ xu, uy1{2H ă 8 . (2.34)

From now on, µ “ NQ :“ N0,Q for some operator Q P L`1 pHq with KerpQq “
t0u. We shall also suppose that there exists a complete orthonormal system
pekqk in H and a sequence pλkqk of positive real numbers, the eigenvalues
of Q (repeated according to their multiplicity and enumerated in decreasing
order), such that Qek “ λkek. The subspace Q1{2pHq is called the reproducing
kernel of the measure NQ. It is a dense subspace of H since we assumed
KerpQq “ t0u. In fact, if x0 P H is such that xQ1{2h, x0y “ 0 for all h P H,
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2. Preliminaries

then Q1{2x0 “ 0, and therefore Qx0 “ 0, which implies that x0 “ 0. We now
introduce the isomorphism

W : H Ñ H,

f ÞÑ W f , W f pxq “ xQ´1{2 f , xy, x P H.

One can check that we have
ż

H
xW f pxq, Wgpxqyµpdxq “ x f , gy, (2.35)

so that W is an isometry and can be uniquely extended to all f P H. For
every f P H we see that W f is an N| f |2 real valued Gaussian random variable
on R.

We now define the Hermite polynomials on H “ L2pH, µq. Let us consider
to this end the set Γ of all mappings γ : n P N Ñ γn P t0u YN, such
that |γ| :“

ř8
k“1 γk ă 8. Clearly γ P Γ if, and only if, γn “ 0 for all,

except possibly finitely many, n P N. For any γ P Γ we define the Hermite
polynomial

Hγpxq “
8
ź

k“1

Hγk

`

Wekpxq
˘

, x P H, (2.36)

where the functions on the right hand side are defined by

Hnpξq “
p´1qn
?

n!
e

ξ2
2

dn

dξn

´

e´ξ2{2
¯

, ξ P R, n P t0u YN. (2.37)

Hn is the classical Hermite polynomial of degree n with the first few terms
given by,

H0pξq ” 1, H1pξq “ ξ, H2pξq “
1
?

2

´

ξ2 ´ 1
¯

, H3pξq “
1
?

6

´

ξ3 ´ 6
¯

. . .

(2.38)
For the rest of this project, we shall use the convention H´1 ” 0. It is well
known that the Hermite polynomials form an orthonormal basis of L2pR, N1q.
We also have the following relationships.

Proposition 2.8 For n P N and all ξ P R we have

ξHnpξq “
?

n` 1Hn`1pξq `
?

nHn´1pξq, (2.39)

Dξ Hnpξq “
?

nHn´1pξq, (2.40)

D2
ξ Hnpξq ´ ξDξ Hnpξq “´ nHnpξq. (2.41)

The numerical methods presented in Chapter 5 make extensive use of the
following theorem.

Theorem 2.9 The system pHγqγPΓ is orthonormal and complete on L2pH, µq.

A proof may be found in [12, p.191]
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2.1. Gaussian measures on Hilbert spaces

2.1.4 The Sobolev space W1,2pH, µq

We will denote by EpHq the linear space spanned by all exponential functions,
that is all functions ϕ : x P H ÞÑ ϕpxq P R of the form

ϕpxq “ exh,xy, h P H. (2.42)

Proposition 2.10 For any h P H, the exponential function Eh, defined as

Ehpxq “ exh,xy, x P H (2.43)

belongs to LppH, µq, p ě 1, and
ż

H
exh,xyµpdxq “ e

1
2 xQh,hy, (2.44)

Moreover the subspace EpHq is dense in H.

For any k P N we consider the partial derivative in the direction ek, defined
as

Dk ϕpxq “ lim
εÑ0

ϕpx` εekq ´ ϕpxq
ε

, x P H, ϕ P EpHq. (2.45)

When ϕ P EpHq with ϕpxq “ ex f ,xy, f P H, we have

Dk ϕpxq “ fkex f ,xy, where fk “ x f , eky (2.46)

The following proposition is central to this project.

Proposition 2.11

Dk Hγ “

c

γk
λk

Hγk´1pWekqH
pkq
γ , (2.47)

with Hpkqγ “
ś

j‰k HγjpWejq and the convention H´1pWekq “ 0. Moreover, the
family

!

Hγk´1pWekqH
pkq
γ , γ P Γ, γk ą 0

)

, (2.48)

is orthonormal in H.

The verification of (2.47) can be done using the identity (2.40) and the fact that
Wekpxq “ λ

´1{2
k xk. We now let Λ0 denote the linear span of

 

Hγ b ek : γ P Γ, k P N
(

,
and D the linear operator

D : EpHq Ă H :“ L2pH, µq Ñ LpH, µ; Hq,

ϕ ÞÑ Dϕ with Dϕpxq :“
8
ÿ

k“1

Dk ϕpxqek.

Thanks to Proposition 9.2.2 in Da Prato and Zabczyk [12], Dk is closable in
H for all k P N. If ϕ belongs to the domain of the closure of Dk, which we
shall still denote by Dk, we shall say that Dk ϕ belongs to H. Analogously, by
Proposition 9.2.4 in [12], D is a closable linear operator. If ϕ belongs to the
domain of the closure of D, which we shall still denote by D, we shall say
that Dϕ belongs to L2pH, µ; Hq.

9



2. Preliminaries

We will now consider the linear space V “ W1,2pH, µq Ă L2pH, µq, of func-
tions ϕ P L2pH, µq such that Dϕ P L2pH, µ; Hq. It is a Hilbert space with inner
product

xu, vyV “ xu, vyH `
ż

H
xDupxq, Dvpxqyµpdxq, (2.49)

and associated norm }u}V “ pxu, uyVq
1{2.

Theorem 2.12 ([12, p. 199]) A function ϕ P H belongs to V if, and only if,
ÿ

γPΓ

xγ, λ´1y˚|ϕγ|
2 ă 8, (2.50)

where

ϕγ :“ xϕ, Hγy, and xγ, λ´1y˚ :“

#

ř8
k“0 γkλ´1

k , if γ ‰ 0,
1 if γ “ 0,

(2.51)

and pλkqk is the sequence of (positive) eigenvalues (repeated according to their mul-
tiplicity) of the covariance operator Q P L`1 pHq, KerpQq “ t0u. Moreover, if (2.50)
holds, then

}ϕ}2V “ }ϕ}
2
H `

ÿ

γPΓ

xγ, λ´1y˚|ϕγ|
2. (2.52)

Identifying H with its own dual H˚, we obtain

ϕ P V˚ ðñ
ÿ

γPΓ

xγ, λ´1y´1
˚ |ϕγ|

2 ă 8. (2.53)

Furthermore, the embedding of V into H is compact.

Proof The proof of (2.50) and (2.52) can be found in Da Prato and Zabczyk
[12, p.200]. Using Proposition 2.11 we can further notice that

Ψ “ pψγqγPΓ :“
ˆ

Hγ

p1` xγ, λ´1y˚q1{2

˙

γPΓ
(2.54)

is an orthonormal basis of V . In deed,
@

ψγ, ψν

D

V “
@

ψγ, ψν

D

H `

ż

H
xDψγpxq, Dψνpxqyµpdxq

“p1` xγ, λ´1y˚q
´1{2p1` xν, λ´1yq´1{2

˜

δγ,ν `

8
ÿ

k“1

ż

H
Dk HγpxqDk Hνpxqµpdxq

¸

“p1` xγ, λ´1y˚q
´1

˜

δγ,ν `

8
ÿ

k“1

ˆ

γk
λk

˙1{2 ˆ νk
λk

˙1{2
δγ,ν

¸

“ δγ,ν.

Since
´

|ϕγ|
2p1` xγ, λ´1y˚q

´1{2
¯

γPΓ
converges if and only if

´

|ϕγ|
2xγ, λ´1y

´1{2
˚

¯

γPΓ
converges, by taking ϕn Ñ ϕ, pϕnqn Ă H we find,

8 ą }ϕ}2V˚ ðñ V˚xϕ, xy2V ă 8, @x P V , }x}V ď 1, (2.55)

ðñ lim
nÑ8

xϕn, xy2H ă 8, @x P V , }x}V ď 1. (2.56)
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2.1. Gaussian measures on Hilbert spaces

By expanding ϕn into the polynomial chaos basis
`

Hγ

˘

γPΓ, and x into the
orthonormal basis Ψ, we find

p2.56q ðñ lim
nÑ8

ÿ

γPΓ

xγ, λ´1y´1
˚ |ϕ

n
γ|

2 ă 8,

ðñ
ÿ

γPΓ

xγ, λ´1y´1
˚ |ϕγ|

2 ă 8. ˝

2.1.5 Variational formulation of second order operators

We are now interested in formulating a generalization of the Laplacian to
infinite dimensional spaces. A straightforward generalization is impossible,
mostly due to the lack of a suitable extension of Lebesgue measure to infinite
dimensions. Following Chapter 3 in Da Prato and Zabczyk ([12]), we briefly
look at strong solutions to the heat equation on infinite dimensional Hilbert
spaces, we then present the L2pµq analysis following Ann Piech ([15]).

It is instructive to consider the problem

Btupt, xq “
1
2

TrpQD2upt, xqq, t ą 0, x P H (2.57)

up0, xq “u0 P B, (2.58)

where B is an appropriate Banach space to be determined, and D2 denotes
the second order Fréchet derivative at 0 of the function g : H Ñ R defined
by gphq “ upt, x` hq, t ą 0, x P H. Under suitable assumptions on B and Q
described below, the solution to this problem is given by

upt, xq “
ż

H
u0px` yqNtQpdyq. (2.59)

In the case when dimpHq ă 8 the solution is well understood, as the Radon-
Nikodyn derivative of the measure NtQpdyq is simply given by the multivari-
ate Gaussian density of mean 0 and covariance matrix tQ. When dimpHq “
8, we consider a sequence of finite rank operators Qn converging strongly to
Q in L`pHq, and let punqn be the sequence of solutions to the problems

Btunpt, xq “
1
2

TrpQnD2unpt, xqq, t ą 0, x P H (2.60)

unp0, xq “u0. (2.61)

When this sequence of solutions is convergent, we may take its limit as the
solution to (2.57). We now see the conditions we must impose on Q to have
this possibility. We let CbpHq denote the space of bounded continuous func-
tions on H, taking values in R.

Proposition 2.13 Assume that u0 P CbpHq and lim|y|Ñ8 u0pyq “ 0. If TrpQq “
8 and pQnqn is a sequence of finite rank symmetric positive operators converging
strongly to Q, then limnÑ8 unpt, xq “ 0, for all t ą 0 and x P H.

Proposition 2.13 indicates that if TrpQq “ 8 then, for a majority of initial
functions u0, the equation (2.57) does not have a continuous solution on
r0,`8qˆ H. This is why we will assume that Q P L`pHq is of trace class.

11
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Remark 2.14 One can show that the heat equation (2.57) is the Kolmogorov equa-
tion corresponding to the simplest Ito equation

dXptq “ dWptq, Xp0q “ x, , t ą 0, (2.62)

on a Hilbert space H, where W is a Wiener process on some probability space
pΩ,F , Pq taking values in H, with covariance operator Q.

From [12], we can find a unique strong solution to (2.57), in the sense that
Dtu and D2u exist, are continuous and bounded, and satisfy (2.57), for t ą
0 and x P H; provided that u0 P UC2

bpHq, the space of functions having
uniformly continuous and bounded derivatives of second order. In this case,
the solution is given by (2.59). We shall denote by pPtqtą0 the heat-semigroup
of operators defined by

Pt ϕpxq “
ż

H
ϕpx` yqNtQpdyq. (2.63)

The infinitesimal generator of the heat semi-group is given by ∆Q : Dp∆Qq Ñ

H, which action can be interpreted as ([12])

∆Q ϕpxq :“
8
ÿ

k“1

λkD2
k ϕpxq, x P H. (2.64)

It is known that when H is finite dimensional and ϕ P CbpHq, the function
upt, xq “ Pt ϕpxq is of class C8 in t and x when t ą 0. Moreover when
dimpHq ă 8, the semi-group pPtqtą0 is strongly continuous on CbpHq. These
results are not true in infinite dimensions ([12]). We refer to [12, Chap. 3]
for a further analysis on spaces of continuous functions, and proceed to the
variational formulation.

The above analysis has pointed out some of the major problems for extending
the Laplacian to infinite dimensions. We shall now show that the operator
(2.64) fails even to be symmetric.

Lemma 2.15 Let ϕ, ψ P EpHq. Then the following identity holds:
ż

H
ψpxqDk ϕpxqµpdxq `

ż

H
ϕpxqDkψpxqµpdxq “

1
λk

ż

H
xk ϕpxqψpxqµpdxq.

(2.65)

Proof Since EpHq is dense in W1,2pH, µq it is enough to prove (2.65) for

ϕpxq “ ex f ,xy, ψpxq “ exg,xy, x P H, (2.66)

where f , g P H. In this case we have
ż

H
ψpxqDk ϕpxqµpdxq “

ż

H
fkex f`g,xyµpdxq “ fke

1
2 xQp f`gq, f`gy, (2.67)

ż

H
ϕpxqDkψpxqµpdxq “

ż

H
gkex f`g,xyµpdxq “ gke

1
2 xQp f`gq, f`gy, (2.68)

ż

H
ϕpxqxkψpxqµpdxq “

ż

H
xkex f`g,xyµpdxq, (2.69)

12
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“
d
dt

ż

H
ex f`g`tek ,xyµpdxqæt“0 “

d
dt

e
1
2 xQp f`g`tekq, f`g`tekyæt“0 (2.70)

“λkp fk ` gkqe
1
2 xQp f`gq, f`gy. (2.71)

Since D is a closable operator for all k P N, we can easily extend Lemma
2.15 to ϕ,ψ P V . Using this extension and summing up over k leads to the
formula, for all G P span

 

Hγ b ek, γ P Γ, k P N
(

and ϕ P V :
ż

H
xDϕpxq, Gpxqyµpdxq `

ż

H
ϕpxqdivpGpxqqµpdxq “

ż

H
xx, Q´1Gpxqyµpdxq.

(2.72)
We shall often use the previous formula for G “ Dupxq. Moreover, we have
the following estimate.

Proposition 2.16 Let k P N and Dk ϕ P L2pH, µq. Then xk ϕ P L2pH, µq and the
following estimate holds:

ż

H
x2

k ϕ2pxqµpdxq ď 2λk

ż

H
ϕ2pxqµpdxq ` 4λ2

k

ż

H
pDk ϕpxqq2µpdxq. (2.73)

Summing up over k in (2.73) leads to the following estimate.

Proposition 2.17 Let ζ P V . Then the function

H Ñ R, x ÞÑ |x|ζpxq, (2.74)

belongs to H, and
ż

H
|x|2ζ2pxqµpdxq ď 2TrpQq

ż

H
ζ2pxqµpdxq ` 4 }Q}2

ż

H
|Dζpxq|2µpdxq. (2.75)

We now consider iterating the operators Dk, k P N.

Lemma 2.18 Let h, k P N, then the linear operator DhDk , defined in EpHq, is
closable.

When ϕ belongs to the domain of the closure of DhDk , which we shall say
that DhDk ϕ is an element of L2pH, µq. We now define W2,2pH, µq as the space
of all functions ϕ P L2pH, µq such that DhDk ϕ P L2pH, µq for all h, k P N and

ÿ

h,kPN

}DhDk ϕ}2H ă 8. (2.76)

Then W2,2pH, µq is a Hilbert space with the inner product

xu, vyW2,2pH,µq “ xu, vyV `
8
ÿ

h,k“1

ż

H
xDhDkupxq, DhDkvpxqyµpdxq. (2.77)

If ϕ P W2,2pH, µq we can define a Hilbert-Schmidt operator D2 ϕpxq on H for
almost any x P H by setting

xD2 ϕpxqα, βy “
8
ÿ

h,k“1

DhDk ϕpxqαhβk, α, β P H. (2.78)

13
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Unlike the embedding of V into H, when H is infinite dimensional, the em-
bedding of W2,2pH, µq into V is not compact. We can see this by setting
ϕpnqpxq “ xn, n P N, which gives

›

›

›
ϕpnq

›

›

›

2

L2pH,µq
“ λn Ñ 0, as n Ñ8, (2.79)

and
›

›

›
ϕpnq

›

›

›

2

W1,2pH,µq
“

›

›

›
ϕpnq

›

›

›

2

W2,2pH,µq
“ 1` λn. (2.80)

Therefore ϕpnq converges to 0 in L2pH, µq but has no subsequence converging
to 0 in W1,2pH, µq. For any γ P Γ, k P N we also have D2

k Hγ P H and

D2
k Hγ “

#

?
γkpγk´1q

λk
Hγk´2pWekqH

pkq
γ , if γk ‰ 0,

0 otherwise,
(2.81)

and since
!

Hγk´2pWekqH
pkq
γ , γ P Γ, γk ą 0

)

is an orthonormal set,

ż

H
|D2

k ϕpxq|2µpdxq “
ÿ

γPΓ

γkpγk ´ 1q
λ2

k
|ϕγ|

2. (2.82)

Proceeding similarly, we also find for h ‰ k,
ż

H
|DhDk ϕpxq|2µpdxq “

ÿ

γPΓ

γhγk

λ2
k

. (2.83)

This gives us a characterization of elements in W2,2pH, µq like Theorem 2.12.

Theorem 2.19 ([12, p. 203]) A function ϕ P H belongs to W2,2pH, µq if and only
if

ÿ

γPΓ

xγ, λ´1y2˚|ϕγ|
2 ´

ÿ

γPΓ

xγ, λ´2y2|ϕγ|
2 ă 8. (2.84)

Using Lemma 2.15, we can derive the variational form of the generator of
the heat semi-group ∆Q in (2.64). Using the identification H » H˚, for all
u P Dp∆Qq X V , v P V ,

V˚x´∆Qu, vyV “´
8
ÿ

k“1

λk

ż

H
vpxqD2

k upxqµpdxq (2.85)

“

8
ÿ

k“1

λk

ż

H
DkupxqDkvpxqµpdxq ´

8
ÿ

k“1

ż

H
xkvpxqDkupxqµpdxq

(2.86)

“

8
ÿ

k“1

λk

ż

H
DkupxqDkvpxqµpdxq ´

ż

H
xx, Dupxqyvpxqµpdxq.

(2.87)

Since this operator is not symmetric, it is suggested in [15] to consider instead
the operator L with Lupxq :“ TrpQD2upxqq ´ xx, Dupxqy. We are interested in

14
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the closure of ´L; the operator N “ ´L̄, also known as the number operator
from quantum field theory. We have for all u P Dp∆Qq X V , v P V ,

V˚x´Lu, vyV “
8
ÿ

k“1

λk

ż

H
DkupxqDkvpxqµpdxq. (2.88)

In view of Remark 2.14, we can see the heat semi-group pPtqtą0 as a Markov
transition semi-group with transition probabilities Nx,tQpdyq, i.e

Pt f pxq “
ż

H
f pyqNx,tQpdyq, x P H. (2.89)

It is in this sense that the heat semi-group is interpreted in [15], where it is
shown that the semi-goup pOtqtą0 generated by L is defined by

Ot f pxq “
ż

H
f pyqNe´tx ,p1´e´2tqQpdyq. (2.90)

By verifying the claim on every element of the polynomial chaos basis (2.36),
we have the following proposition.

Proposition 2.20 ([15, Proposition 1]) pOtqtą0 forms a strongly continuous con-
traction semi-group on L2pH, µq.

It can be seen that pOtqtą0 is the generator of the Ito process

Xptq “ e´tx`Wp1´ e´2tq, (2.91)

where W is a Wiener process on some probability space pΩ,F , Pq taking
values in H, with covariance operator Q.

The principal drawback of defining L this way is that Trp∆Q f pxqq must exist
separately from xx, Dupxqy, i.e that p∆Q f pxqq must be of trace class. Thanks
to the following approach ([15]), we shall be able to only require the weaker
assumption that p∆Q f pxqq is Hilbert-Schmidt.

Definition 2.21 Assume that f P L2pH, µq, |D f pxq| exists for a.e. x and is in
L2pµq and

›

›D2 f pxq
›

›

H-S
exists for a.e. x and is in L2pµq. Let Pn, be the orthogonal

projection of H onto te1, , ..., enu. It is shown in [15, Proposition 4] show that
!

TrpPnD2 f pxq ´ xx, PnD f pxqyq
)

nPN
(2.92)

is a Cauchy sequence in L2pµq. L f is defined as the limit of this sequence.

This definition makes use of the following useful lemma.

Lemma 2.22 If f is a C2 mapping from Rn to Rn with | f pxq| and |D f pxq|H-S in
L2pµ1q with µ1 „ Np0, Inq, then we have

ż

Rn
pTrpD f pxqq ´ x ¨ f pxqq2 µ1pdxq ď

ż

Rn

´

| f pxq|2 ` |Dp f pxqq|2H-S

¯

µ1pdxq.

(2.93)
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The analysis in [15, Prop. 11, 13] further shows that for all x P Q1{2pHq, and
f P H, we have the generalized derivatives

xDpOt f pxqq, hy “ ´petp1´ e´2tqq´1
ż

H
f pyqxe´tx´y, hyNe´tx ,p1´e´2tqQpdyq,

(2.94)
and for h, k P H

xD2Ot f pxqh, ky “ pe2t ´ 1q´1
ż

H
f pyq (2.95)

ˆ

´

p1´ e´2tq´1xe´tx´ y, hyxe´tx´ y, ky ´ xh, ky
¯

Ne´tx ,p1´e´2tqQpdyq,

(2.96)

with |DOt f p¨q| and
›

›D2Ot f p¨q
›

›

H-S
in H. Any f in DpLq is also in the domain

of N, and ´N f “ L f .

2.2 Abstract elliptic problems

Let H and V be two separable Hilbert spaces over R, such that V Ă H with
dense and continuous injection. We will further assume that the canonical
embedding of V into H is dense and compact. This will be denoted as V ãÑ

H. We will identify H with its dual space H˚, so that the inner product on
H denoted by x¨, ¨yH extends, by continuity, to the duality pairing V˚x¨, ¨yV on
V˚ ˆ V . In this setting we have the Gelfand triple,

V ãÑ H – H˚ ãÑ V˚. (2.97)

Let A P LpV ,V˚q, and f P V˚. We are interested in solving the following
abstract elliptic equation on V ,

Au “ f , u P V . (2.98)

Defining the bilinear form a : V ˆ V Ñ R, apu, vq :“V˚ xAu, vyV the equation
reads as

apu, vq “ f pvq @v P V . (2.99)

We shall assume that A is selfadjoint, i.e., A “ A˚ (which implies that the
bilinear form ap¨, ¨q is symmetric on VˆV and coercive on V, i.e., there exists
a real number γ0 ą 0 such that @u P V : apu, uq ě γ0 }u}

2
V . Our assumption

A P LpV ,V˚q implies the existence of a positive real number γ1 “ }A}LpV ,V˚q ě

γ0 such that @u, v P V: |apu, vq| ď γ1 }u}V }v}V ; i.e., the bilinear form a is
bounded. Under these assumptions, the energy norm }¨}a defined by }v}a “
papv, vqq1{2 is equivalent to the V norm and we have

γ0 }v}
2
V ď }v}

2
a ď γ1 }v}

2
V . (2.100)

We recall the following version of the Hilbert–Schmidt theorem

Theorem 2.23 Suppose that H and V are separable Hilbert spaces, with V densely
and compactly embedded in H. Let a : V ˆV Ñ R be a nonzero, symmetric, coercive
and bounded bilinear form. Then, there exists a sequence of real numbers pλnqn and a
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sequence of unit H-norm elements pϕnqn in V , which solve the following eigenvalue
problem : find λ P R and ϕ P Vz t0u such that

apϕ, vq “ λ xϕ, vyH @v P V . (2.101)

The real numbers pλnqn , n P N, which can be assumed to be in increasing order with
respect to the index n P N, are positive, bounded away from 0, and limnÑ8 λn “ 8.
In addition, the ϕn , n P N, form an orthonormal system in H whose closed span
in H is equal to H, and the scaled elements ϕn{

?
λn, n P N, form an orthonormal

system with respect to the inner product defined by the bilinear form a, whose closed
span with respect to the norm }¨}a induced by ap¨, ¨q is equal to V . Furthermore,

h “
8
ÿ

n“1

xh, ϕnyH ϕn, and }h}2H “
8
ÿ

n“1

xh, ϕny
2
H @h P H, (2.102)

and

v “
8
ÿ

n“1

a

ˆ

v,
ϕn
?

λn

˙

ϕn
?

λn
and }v}2a “

8
ÿ

n“1

a

ˆ

v,
ϕn
?

λn

˙2
@v P V , (2.103)

and in addition for h P H,

h P V ô
8
ÿ

n“1

λn xh, ϕny
2
H ă 8. (2.104)

Thanks to Theorem 2.23, we know that there exists a sequence σ “ pλnqn Ă

R` of eigenvalues of A, with accumulation point at 8, and a sequence of
H-orthonormal elements pϕλqλPσ Ă H of associated eigenfunctions, i.e

Aϕλ “ λϕλ, λ P σ, and xϕλ, ϕλ1yH “ δλ,λ1 , λ, λ1 P σ. (2.105)

In particular, therefore, the system tϕλ : λ P σu forms a normalized Riesz
basis of H. The next two lemmas whose proofs are elementary show that
renormalized versions of tϕλ : λ P σu constitute Riesz bases in V and V˚ as
well.

Lemma 2.24 The following two-sided bound holds for each v P V:

γ0 }v}
2
V ď

ÿ

λPσ

λ|vλ|
2 ď γ1 }v}

2
V . (2.106)

For f P V˚ , we have that

f “
ÿ

λPσ

fλ ϕλ, fλ :“V˚ x f , ϕλyV , λ P σ. (2.107)

Lemma 2.25 The following two-sided bound holds for each f P V˚:

1
γ1
} f }2V˚ ď

ÿ

λPσ

1
λ
| fλ|

2 ď
1

γ0
} f }2V˚ (2.108)
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Since we can write the solution of (2.98) as

u “ A´1 f “
ÿ

λPσ

uλ ϕλ with uλ “ λ´1 fλ, λ P σ, (2.109)

we have the identity,
ÿ

λPσ

λ|uλ|
2 “

ÿ

λPσ

λ´1| fλ|. (2.110)

By lemma 2.24, the left hand side of this identity belongs to the interval
r}u}2V γ0, γ1 }u}

2
V ], while the right hand side belongs to r} f }2V˚ γ´1

1 , γ´1
0 } f }2V˚ ].

From this we deduce that

γ0 }u}
2
V ď } f }2V˚ ď γ1 }u}

2
V , (2.111)

and that A´1 is a (bi-Lipschitz) quasi-isometric isomorphism between V˚ and
V , when these spaces are equipped with the norms }¨}V˚ and }¨}V respectively.

Example 2.26 Within the framework of Section 2.1, we consider an operator A on
W2,2pH, µq defined as follows,

Aupxq “ upxq ´ TrpD2upxqq ` xx, Q´1Dupxqy. (2.112)

Using the integration by parts formula (2.65), we have the bilinear form

apu, vq :“ x´Au, vyH “
ż

H
upxqvpxqµpdxq`

ż

H
xDupxq, Dvpxqyµpdxq, u, v P V .

(2.113)
This is nothing other the scalar product on V , so that γ0 “ γ1 “ 1.

2.3 Abstract parabolic problems

We now introduce the Bochner spaces L2pr0, Ts;Vq, L2pr0, Ts;Hq and L2pr0, Ts;V˚q
and we define

H1pr0, Ts;Vq :“
!

u P L2pr0, Ts;Vq : u1 P L2pr0, Ts;Vq
)

, (2.114)

where u1 will signify du{dt or Bu{Bt depending on the context. We are inter-
ested in the following abstract evolution problem in r0, Ts,

u1ptq ` Auptq “ f ptq with up0q P H, (2.115)

where f P L2pr0, Ts;Hq, and A P LpV ,V˚q with }A}LpV ,V˚q “ γ1 ą 0, satisfies
A “ A˚ and

Dγ0 ą 0 @v P V : apv, vq :“ V˚xAv, vyV ě γ0 }v}
2
V . (2.116)

The bilinear form a associated to A is hence continuous and coercive. The
following theorem from [11] gives the existence of a solution to the evolution
problem (2.115) in a more general setting.

Theorem 2.27 Given f P L2pr0, Ts;V˚q and a bilinear form apt; u, vq : V ˆV Ñ R

with the following properties
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1. For every u, v P V the function t ÞÑ apt; u, vq is measurable,

2. |apt; u, vq| ď M }u}V }v}V for a.e. t P r0, Ts, u, v P V ,

3. apt; v, vq ě α }v}2V ´ C }v}2H for a.e. t P r0, Ts, v P V ,

for some non-negative constants α, C, M. For all u0 P H, there exists a unique
solution u P L2pr0, Ts,Vq X H1pr0, Ts,V˚q satisfying

V˚xu
1ptq, vyV ` apt; u, vq “ f ptq, a.e. t P r0, Ts,@v P V , (2.117)

and
up0q “ u0. (2.118)

We define the solution space of (2.115) as X :“ L2pr0, Ts,Vq X H1pr0, Ts,V˚q
equipped with the norm

}u}X :“
´

}u}2L2pr0,Ts;Vq `
›

›u1
›

›

2
L2pr0,Ts;V˚q

¯1{2
. (2.119)

Under the assumptions on V , H, and V˚ we have the continuous embedding
X ãÑ Cpr0, Ts;Hq (in the sense that any v P X is equal almost everywhere
to a function that is uniformly continuous as a mapping from the nonempty
closed interval r0, Ts of the real line into H). Therefore, for u P X and 0 ď
t ď T, the values uptq are well-defined in H and there exists a constant C “
CpTq ą 0 such that

@u P X @t P r0, Ts : }uptq}H ď C }u}X . (2.120)

For the numerical schemes discussed in chapter 4, we require a precise rep-
resentation of the solution of (2.115). To this end we exploit that A is coercive
as a bilinear form on V ˆ V , we hence see that }pλI ` Aqv}H ě λ }v}V for all
v P V and by invertibility pλI ` Aq is surjective. By the Lumer-Phillips Theo-
rem [14, p.14], p´Aq generates a strongly continuous semi-group of contrac-
tions tStutPr0,Ts on H, solution to

lim
εÑ0

›

›

›

›

St`εx´ Stx
ε

` Ax
›

›

›

›

H
“ 0 @x P V , t ą 0. (2.121)

We shall write DpAq :“ V to refer to the domain of definition of A is this
context. For every u P DpAq, we have

AStu “ St Au. (2.122)

The semi-group tSptqutPr0,Ts associated to ´A is in fact
 

e´tA(

tPr0,Ts. We shall

say that a function f P L2p0, T;Hq is strongly differentiable if there exists a
function f 1 P L2pr0, Ts;Hq such that

lim
εÑ0

›

›

›

›

f pt` εq ´ f ptq
ε

›

›

›

›

H
“ 0. (2.123)

It is strongly continuously differentiable if in addition f 1 is continuous in t
with respect to the H-norm.
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Theorem 2.28 ([1, p. 203]) Given u0 P V and f P L2p0, T;Hq, such that f is
strongly continuously differentiable in p0, Tq, with continuous derivative in r0, Ts,
there exists a unique solution u P X to the evolution problem

u1ptq ` Auptq “ f ptq 0 ă t ă T, (2.124)

moreover it has the representation

uptq “ e´tAup0q `
ż t

0
e´pt´sqA f psqds, (2.125)

and satisfies }uptq ´ u0}H Ñ 0 as t Ñ 0.

By strong continuity of the semi-group
 

e´tA(

tPr0,Ts, the integral in (2.125)
is interpreted as a Riemann integral in the topology }¨}H. In chapter 4 this
allows to apply bounded linear operators to such integrals and have the in-
tegral and the operator commute; because the integral is seen as a limit of
Riemann sums.

Remark 2.29 Let A P LpV ,V˚q have the same properties as above, and let λ P R.
Then the problem

u1ptq ` Auptq ` λu “ f ptq, t P r0, Ts, (2.126)
up0q “u0, (2.127)

reduces to the problem (2.115) by setting v :“ eλtuptq. In deed we can check that v
satisfies

v1ptq ` Avptq “ f ptq, t P r0, Ts, (2.128)
vp0q “u0. (2.129)

Hence the evolution problem is analogous and given an operator of the form A`λI P
LpV ,V˚q, we reduce ourselves to the study of the simpler evolution problem.
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Chapter 3

The Fokker-Planck equation

In this section we present a typical parabolic problem, the Fokker-Planck
equation. In each case the solution lies in a weighted Hilbert space allowing
for representations in Hermite polynomials expansions from section 2.1.2.

3.1 The finite dimensional problem

For k “ 1, 2, . . . K and d P t1, 2, 3u, let Dk be either a bounded ball, centered
at the origin, of radius

a

bk in Rd, either Rd. We can unify the two scenarios
by identifying Rd with an open ball of radius `8, and taking bk P p0,8s,
with either k finite for all k “ 1, 2, . . . , K, either k infinite for all k “ 1, 2, . . . , K.
We define D :“ D1 ˆ D2 ˆ . . . DK. On the interval r0, bk

2 q we consider the
function Uk P C1r0, bk

2 q, referred to as a potential, such that Ukp0q “ 0, Uk is
strictly monotonic increasing and limsÑb´k {2

Uk “ `8, k “ 1, . . . , K. We then
associate with Uk the partial Maxwellian, defined by

Mkpqkq :“
1
Zk

exp
ˆ

´Uk

ˆ

1
2
|qk|

2
˙˙

, qk P Dk,

where

Zk “

ż

Dk

exp
ˆ

´Uk

ˆ

1
2
|pk|

2
˙˙

dpk,

for k “ 1, . . . , K, and we define the (full) Maxwellian

Mpqq :“ M1pq1q ¨ ¨ ¨MKpqKq, q “ pqJ1 , . . . , qJK q
J P D Ď RKd.

Clearly, Mpqq ą 0 on D,
ş

D Mpqqdq “ 1 and lim|qk|Ñbk
Mkpqkq “ 0, k “

1, . . . , K. When the domains Dk are bounded balls, we shall suppose that
there exist positive constants Ck1 and Ck2 , and real numbers αk ą 1, k “
1, . . . , K, such that

0 ă Ck1 ď exp
ˆ

´Uk

ˆ

1
2
|qk|

2
˙˙

{pdistpqk, BDkqq
αk ď Ck2 ă 8, k “ 1, . . . , K.

Alternatively, when Dk “ Rd for all k “ 1, . . . , K, we shall assume that
Ukpsq “ s, k “ 1, . . . , K.
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3. The Fokker-Planck equation

We are interested in solving the Fokker-Planck equation,

Btψ´
K
ÿ

i,j“1

Aij∇qi ¨

ˆ

M∇qj

ˆ

ψ

M

˙˙

“ f , pq, tq P Dˆ r0, Ts, (3.1)

subject to the initial condition

ψpq, 0q “ ψ0pqq, q P D, (3.2)

where A P RKˆK is a symmetric positive definite matrix with minimal eigen-
value γ0 ą 0 and maximal eigenvalue γ1 ą 0, f P Cp0, T; L2pDqq and ψ0 P

L1pDq is a nonnegative function such that
ş

D ψ0dq “ 1. As ψ0 is a prob-
ability density function, and this property needs to be propagated during
the course of the evolution over the time interval r0, Ts, the boundary condi-
tion on BD ˆ r0, Ts needs to be chosen so that ψp¨, tq remains a nonnegative
function for all t P r0, Ts, and

ş

D ψpq, tqdq “ 1 for all t P r0, Ts. This can be
achieved, formally at least, by demanding that

K
ÿ

i“1

Aij∇qi ¨

ˆ

M∇qj

ˆ

ψ

M

˙˙

¨
qj

|qj|
Ñ 0, as |qj|

2 Ñ bj, j “ 1, . . . K, (3.3)

where either bj P p0,8q for all j “ 1, . . . , K when Dj is a bounded ball of
radius bj; or bj :“ `8 for all j “ 1, . . . , K when Dj “ Rd. By writing,

ψ̂ :“
ψ

M
, ψ̂0 :“

ψ0

M
,

the initial-value problem (3.1), (3.2) can be restated as follows:

MBtψ̂´
K
ÿ

i,j“1

Aij∇qi ¨

´

M∇qj ψ̂
¯

“ M f , pq, tq P Dˆ r0, Ts, (3.4)

subject to the initial condition

ψ̂pq, 0q “ ψ̂0pqq, q P D, (3.5)

together with the (formal) boundary condition

K
ÿ

i“1

Aij∇qi ¨

´

M∇qj ψ̂
¯

¨
qj

|qj|
Ñ 0, as |qj|

2 Ñ bj, j “ 1, . . . K. (3.6)

We consider the Maxwellian-weighted L2 space

L2
MpDq “ tϕ̂ P L2

locpDq|
?

Mϕ̂ P L2pDqu

equipped with the inner product p¨, ¨qL2
MpDq

and norm || ¨ ||L2
MpDq

, defined, re-
spectively, by

pψ̂, ϕ̂qL2
MpDq

:“
ż

D
Mpqqψ̂pqqϕ̂pqqdq, ||ϕ̂||L2

MpDq
:“ pϕ̂, ϕ̂q

1
2
L2

MpDq
,
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3.2. The Fokker-Planck equation in countably many dimensions

and the associated Maxwellian-weighted H1 space

H1
MpDq :“ tϕ̂ P L2

MpDq|∇qk ϕ̂ P L2
MpDq, k “ 1, 2, . . . Ku

equipped with the inner product p¨, ¨qH1
MpDq

and norm || ¨ ||H1
MpDq

defined, re-
spectively, by

pψ̂, ϕ̂qH1
MpDq

:“ pψ̂, ϕ̂qL2
MpDq

`

K
ÿ

k“1

p∇qkψ̂,∇qk ϕ̂qrL2
MpDqs

d , ||ϕ̂||H1
MpDq

:“ pϕ̂, ϕ̂q
1
2
H1

MpDq
.

Adopting the notations introduced in the previous sections, we take H :“
L2

MpDq,V :“ H1
MpDq, and consider the linear differential operator

Aϕ̂ “ ´
K
ÿ

i,j“1

Aij∇qj ¨ pM∇qi ϕ̂q, ϕ̂ P V (3.7)

that maps V into its dual space V˚.

As described in [17], under the assumptions on M the embedding H1
MpDq ãÑ

L2
MpDq is dense and compact. Moreover, if we assume that f is strongly

continuously differentiable and we strengthen our original assumption ψ0 P

L1pDq by demanding that ψ̂0 P L2
MpDq (||ψ0||L1pDq ď ||ψ̂0||L2

MpDq
“ ||ψ̂0||H

for all ψ0 P H “ L2
MpDqq, and since A is continuous and coercive, we

know from Theorem 2.27 that there exists a unique solution ψ̂ to the vari-
ational formulation in space of the problem : given ψ̂0 P H, find ψ̂ P X :“
L2p0, T;Vq X H1p0, T;V˚q such that for a.e. t P r0, Ts,

p
d
dt

ψ̂ptq, vqL2
MpDq

`V˚ xψ̂ptq, vyV “ x f , vyH , @v P V , (3.8)

ψ̂pq, 0q “ ψ̂0pqq, q P D. (3.9)

If we further assume that ψ0 P V , we can use theorem 2.28 and see the
problem as an evolution problem on X :“ L2p0, T;Vq X H1p0, T;V˚q;

ψ̂1ptq ` Aψ̂ptq “ f ptq, ψ̂p0q “ ψ0, (3.10)

with solution ψ̂ptq “ e´tAψ̂0 `
şt

0 e´pt´sqψ̂psq f psqds.

3.2 The Fokker-Planck equation in countably many dimen-
sions

For k P N, let us denote by Dk the set Rd equipped with the Gaussian mea-
sure

µkpdqkq :“ Nak ,Σk “
1

p2πqd{2 detpΣkq
1{2

exp
ˆ

´
1
2
pqk ´ akq

JΣ´1
k pqk ´ akq

˙

dqk

(3.11)
with mean ak P Rd and positive definite covariance matrix Σk P Rdˆd. We
shall assume henceforth that ak “ 0 for all k P N, and that the covariance
operator Q, represented by the bi-infinite block- diagonal matrix

Σ “ diagpΣ1, Σ2, . . .q (3.12)
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3. The Fokker-Planck equation

with dˆ d diagonal blocks Σk, k “ 1, 2, . . ., is trace class. We define

D :“
8
ą

k“1

Dk, (3.13)

so that
q “ pqJ1 , qJ2 , . . .qJ P D, qk P Dk, k “ 1, 2, . . . (3.14)

We equip the domain D with the product measure

µ “
8
â

k“1
µk “

8
â

k“1
N0,Σk . (3.15)

Let M “
 

Mij
(8

i,j“1 P R8ˆ8 be a symmetric infinite matrix, i.e., Mij “ Mji

for all i, j P N. Suppose further that there exists a real number γ0 ą 0 such
that

8
ÿ

i,j“0

Mi,jξiξ j ě γ0 }ξ}
2
`2 , @ξ “ pξiq

8
i“0 P `

2pNq, (3.16)

a real number γ1 ą 0 such that

|
8
ÿ

i,j“0

Mi,jξiηj| ď γ1 }ξ}`2 }η}`2 , @ξ “ pξiq
8
i“0, η “ pηiq

8
i“0 P `

2pNq. (3.17)

Using the abstract framework in section 2.3 we select H “ L2pD, µq, V “

W1,2pD, µq and define

X :“ L2p0, T;Vq X H1p0, T;V˚q. (3.18)

With these spaces, given f P L2p0, T;Hq strongly continuously differentiable,
and ψ̂0 P X we formulate the infinite dimensional Fokker-Planck equation as the
problem of finding ψ̂ P X such that

V˚x
d
dt

ψ̂ptq, vyV ` apψ̂ptq, vq “ x f ptq, vyH , a.e. t P r0, Ts @v P V , (3.19)

ψ̂pq, 0q “ ψ̂0pqq, q P D, (3.20)

where

apu, vq :“
8
ÿ

i,j“1

Mi,j

A

∇qi u,∇qj v
E

rL2pD,µqsd
. (3.21)

Assuming for instance that d “ 1 for all k P N, we shall heuristically derive
the strong formulation of this problem. We see in this case that the spectral
decomposition of the operator Q is given. In this case, the variables q coincide
with the decomposition on the complete µ-orthonormal system pekqk Ă H
with sequence pλnqn Ă R such that Qek “ λkek, k “ 1, . . . , n, from Chapter
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3.2. The Fokker-Planck equation in countably many dimensions

2.1. Assuming first that M P L`1 pHq, we may use formula (2.78) to have

TrpMD2upxqq “
8
ÿ

k“1

xMD2upxqek, eky (3.22)

“

8
ÿ

k“1

xD2upxqek, Meky (3.23)

“

8
ÿ

k“1

8
ÿ

l“1

DkDlupxqxMek, ely (3.24)

“

8
ÿ

k“1

8
ÿ

l“1

Mkl DkDlupxq (3.25)

Using formula (2.65) and summing up over l and k shows that

´

ż

H
TrpMD2upxqqvpxqµpdxq “

8
ÿ

k,l“1

ż

H
MklxDkupxq, Dlvpxqyµpdxq (3.26)

´

ż

H
xx, vpxqQ´1MDupxqyµpdxq. (3.27)

Hence we infer that this operator corresponds to the second order operator
L with Lupxq “ ´TrpMD2upxqq ` xx, Q´1MDupxqy.

By chapter 2.1.2 we know that V ãÑ H – H˚ ãÑ V˚, and we use again the
abstract framework from section 2.3 to see this as an evolution problem in X ;

ψ̂1ptq ` Aψ̂ptq “ f ptq, ψ̂p0q “ ψ0 P V , (3.28)

where A is the linear operator from V into V˚ induced by a, and the solution
has a representation with the time propagator e´tA.

Example 3.1 We may take A tridiagonal depending on a bounded sequence ε “
pεiq

8
i“1 with }ε}`8pNq ă 1{2. The matrix

Arεs “ tridiag tpεi, 1, εiq, i “ 1, 2, . . .u (3.29)

satisfies (3.16) with γ0 “ 1´ 2 }ε}`8 and (3.17) with γ1 “ 1` 2 }ε}`8 .
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Chapter 4

Semi discretization in time

4.1 Semi-group approximations

We consider the general setting of abstract evolution problems presented in
chapter 2.3, we let H and V be separable Hilbert spaces as in the triple (2.97).
Moreover we assume that A P LpV ,V˚q is a linear, selfadjoint, positive defi-
nite operator, and f P L2p0, T;Hq is strongly continuously differentiable. We
are interested in solving the initial value problem,

u1ptq ` Auptq “ f ptq a.e t P r0, Ts, with up0q “ u0 P V . (4.1)

We use the representation given by Theorem 2.28 to write the solution as

uptq “ e´tAup0q `
ż t

0
e´pt´sqA f psqds. (4.2)

We first assume f ” 0. In order to approximate the solution (4.2) on the
interval r0, Ts, we introduce a time discretization. To this end we partition
the interval r0, Ts into M equal time intervals rti, ti`1s, i “ 0, . . . , M´ 1, with
|ti`1 ´ ti| “ h. We approximate the solution uptq on the nodes ttiui“1,...,M, by
a sequence of elements tUnun“0,...,M Ă V with the Backward Euler scheme,

pI ` hAqUn`1 “ Un, U0 “ u0. (4.3)

We now introduce the Backward Euler operator,

Bh :“ pI ` hAq´1, (4.4)

where h ą 0 is small. As we shall see with Proposition 4.2 we have }Bh}LpHq ď

1.

Proposition 4.1 Let A be as above, then

1
h
pI ´ BhqAv “ ABhv “ Bh Av @v P V , and lim

hÑ0
Bhv “ v @v P H. (4.5)

Proof The left identity can be verified easily and also follows from (2.122)
and Proposition 4.2. To prove the other statement, we first assume v P DpAq.
Then

}v´ Bhv}H “ h
›

›

›

›

1
h

Bh Av
›

›

›

›

H
ď h }Av}H . (4.6)
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4. Semi discretization in time

Taking h Ñ 0 gives the desired conclusion. ˝

The following proposition gives a useful representation of Bh. We shall use
the notation St for the semi-group generated by ´A.

Proposition 4.2 With A as above, for every u0 P H,

Bhu0 “

ż 8

0

e´t{h

h
Stu0dt. (4.7)

Proof We first notice that since }St}LpHq ď 1 @t ě 0, the integral is well
defined. By setting

B̃hu0 :“
ż 8

0

e´t{h

h
Stu0dt, @u0 P H, (4.8)

we will show that pI ` hAqB̃hu0 “ u0, for all u0 P H. In deed, for any ε ą 0,
using (2.122) one has

Sε B̃hu0 ´ B̃hu0

ε
“

1
ε

ż 8

0

e´t{h

h
pSt`εu0 ´ Stu0qdt (4.9)

“
1
hε

ż 8

0
pe´pt´εq{h ´ e´t{hqStu0dt´

1
hε

ż ε

0
e´pt´εq{hStu0dt

(4.10)

“
eε{h ´ 1

hε

ż 8

0
e´t{hStu0dt´

eε{h

hε

ż ε

0
e´t{hStu0dt. (4.11)

By taking the limit as ε Ñ 0` one has,

lim
εÑ0`

Sε B̃hu0 ´ B̃hu0

ε
“

1
h

B̃hu0 ´
1
h

u0, (4.12)

which shows that B̃hu0 P Dp´Aq and AB̃hu0 “
1
h u0 ´

1
h B̃hu0. From this we

can retrieve pI` hAqB̃hu0 “ u0, for all u0 P H. From the injectivity of pI` hAq
we see that in deed B̃hu0 “ pI ` hAq´1u0, @u0 P H. ˝

4.2 Convergence analysis

By Proposition 4.2, we first see that for every u0 P H,

}Bhu0}H
}u0}H

ď
1

}u0}H

ż 8

0

e´t{h

h
}St}LpHq }u0}H dt ď 1, (4.13)

since }St}LpHq ď 1 for t ě 0. This gives us the stability estimates

}Bh}LpHq ď 1, and }uptq}H ď }u0}H , @t ě 1. (4.14)

Also by Proposition 4.2, we can see the backward-Euler operator as a weighted
average of the semi-group. More precisely, given a random variable X on a
probability space pΩ,F , Pq with exponential distribution of parameter 1{h
the proposition allows us to write

Bhu0 “ EpSXu0q, @u0 P H. (4.15)
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4.2. Convergence analysis

In deed, the density w of X is wptq “ h´1e´t{h1r0,8rptq,where 1r0,8rptq is the
indicator function of the positive real line. Furthermore, the density of a sum
of n independent exponential random variables X1, . . . , Xn of parameter 1{h
is the n-convolution wn :“ w ˚w ˚ ¨ ¨ ¨ ˚w. By induction using (4.7) we can see
that

Bnu0 “

ż 8

0
wnptqStu0dt @u0 P H, (4.16)

which allows to write Bnu0 “ EpS 1
n pX1`¨¨¨`Xnq

u0q for some independent and
identically distributed exponential random variables X1, . . . , Xn of parameter
1{h. In our discretization setting, we take h “ T{M and approximate upTq by

UM “ BMu0 “ EpS 1
M pX1`¨¨¨`XMq

u0q. (4.17)

By the Law of Large Numbers, the quantity 1
n pX1 ` ¨ ¨ ¨ ` Xnq converges al-

most surely to T, and since the semi-group is strongly continuous S 1
M pX1`¨¨¨`XMq

v
converges almost surely to STv in H @v P H. Finally since }St}LpH ď 1
for t ě 0, by dominated convergence BMu0 “ EpS 1

M pX1`¨¨¨`XMq
u0q Ñ STu0.

Meaning that the Backward Euler approximations are consistent. We shall
now proceed to the general case f ‰ 0 and find the rate of convergence. The
scheme is now given by

Un`1 ´Un

h
` AUn`1 “ f ptn`1q n “ 1 . . . M, U0 “ u0. (4.18)

We shall make use of the following theorem ([4]).

Theorem 4.3 Assume u0 P DpAkq for some integer k ě 2. Then the solution in
Theorem 2.28 given by (4.2) satisfies

u P Ck´jpr0, Ts,DpAjqq @j “ 0, . . . , k. (4.19)

Theorem 4.3 allows us to find easily the rate of convergence for a particular
class of initial solutions.

Theorem 4.4 For a given u0 P DpA2q and f P L2p0, T;Hq, such that f is strongly
continuously differentiable in p0, Tq, with continuous derivative in r0, Ts, let

 

Un
h
(

n“1,...,M
be the backward Euler approximations of uptnq, n “ 1, . . . , M. Then

›

›uptnq ´Un
h
›

›

H “ Ophq, as h Ñ 0. (4.20)

Proof Assuming that we have the exact solution at tn, using the definition
the approximation error for uptn`1q is given by

ε̂n “ uptn`1q ´ uptnq ´ h p f ptn`1q ´ Auptn`1qq n “ 1 . . . M. (4.21)

Since }Bh}LpHq ď 1, we have the estimate

›

›uptnq ´Un
h
›

›

H ď

M
ÿ

k“1

}ε̂n}H . (4.22)
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4. Semi discretization in time

Consequently we are reduced to estimating }ε̂n}H for n “ 1 . . . M. We can do
it in the following way.

}ε̂n}H “}uptn`1q ´ uptnq ´ h p f ptn`1q ´ Auptn`1qq}H (4.23)

“

›

›

›

›

ż tn`1

tn

u1ptqdt´ hu1ptn`1q

›

›

›

›

H
(4.24)

“

›

›

›

›

›

h
mn
ÿ

i“1

βn,i
`

u1pτn,iq ´ u1ptn`1q
˘

`wε

›

›

›

›

›

H

(4.25)

ďh
mn
ÿ

i“1

βn,i
›

›u1pτn,iq ´ u1ptn`1q
›

›

H ` ε. (4.26)

Since by Theorem 4.3 u1ptq is Riemann integrable, for n “ 1, . . . , M the nodes
τn,i and the weights βn,i i “ 1, . . . , mn exist (with

ř

i βn,i “ 1) as to approxi-
mate the integral of u1ptq up to an error wε, with }wε}H ă ε. By Theorem 4.3
u1ptq is of bounded variation, so taking τn,i and βn,i i “ 1, . . . , mn independent
of n (as is possible) and summing over n then exchanging the summation over
i and n gives,

n
ÿ

k“1

}ε̂n}H ď hVT
0 pu

1q ` ε̃ “ Ophq, (4.27)

where VT
0 pu

1q is the variation of u1 on r0, Ts. ˝

We now turn to the case u0 P V “ DpAq. We need the following lemma ([4]).

Lemma 4.5 Let u0 P DpAq. Then @ε ą 0 Dū0 P DpA2q such that }u0 ´ ū0}H ă ε
and }Au0 ´ Aū0}H ă ε. Which shows that DpA2q is dense in DpAq (for the graph
norm).

Proof We set ū0 “ Bhu0 for some h ą 0 to be fixed later. We have

ū0 P DpAq, and ū0 ` hAū0 “ ū0. (4.28)

Thus Aū0 P DpAq, so that ū0 P DpA2q. On the other hand, by Proposition 4.1

lim
hÑ0

}Bhu0 ´ u0}H “ 0, lim
hÑ0

}Bh Au0 ´ Au0}H “ 0, and Bh Au0 “ ABhu0.

(4.29)
The conclusion follows by taking h ą 0 small enough. ˝

By Lemma 4.5, given u0 P DpAq we can construct a sequence pu0nq in DpA2q

such that u0n Ñ u0 and Au0n Ñ Au0. By Theorem 4.4 we know that the
solution un to

u1nptq ` Aunptq “ f ptq on r0, Ts, unp0q “ un0, (4.30)

is approximated at rate h by the backward Euler Scheme. On the other hand,
the stability estimate gives

}unptq ´ umptq}H ď}u0n ´ u0m}H Ñ
m,nÑ8

0 (4.31)
›

›u1nptq ´ u1mptq
›

›

H ď}Au0n ´ Au0m}H Ñ
m,nÑ8

0. (4.32)
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4.2. Convergence analysis

Therefore

unptq Ñuptq, uniformly on r0, Ts, (4.33)

u1nptq Ñu1ptq, uniformly on r0, Ts, (4.34)

with u P C1pr0, Ts,Vq. Passing to the limit in (4.30), using the fact that A is a
closed operator, we see that uptq P DpAq and u is solution to (4.1). Since the
functions of bounded variation form a Banach space, by (4.33) and (4.34) we
have that u1 is of bounded variation, moreover since DpAq “ V ĂĂ H and Bh
is continuous on H, up to a subsequence

›

›Bn
h u0 ´ uptnq

›

›

H ď
›

›Bn
h u0 ´ Bn

h um0
›

›

H
Ñ0

mÑ8

`Ophq ` }umptnq ´ uptnq}H
Ñ0

mÑ8

. (4.35)

Showing that the backward Euler approximations are Ophq also if u0 P V .
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Chapter 5

Adaptive Galerkin discretization in space

5.1 Discrete operator representations

5.1.1 Riesz bases

Definition 5.1 A sequence of elements ΦΞ :“ tϕν : ν P Ξu in a Hilbert space H is
called a Riesz basis for H if its associated synthesis operator,

TΦ : `2pΞq Ñ H : c “ pcνqνPΞ P `
2pΞq ÞÑ

ÿ

νPΞ

cν ϕν (5.1)

is boundedly invertible.

By identifying `2pΞq with its dual, the adjoint of TΦ, known as the analysis
operator, is

T˚Φ : H˚ Ñ `2pΞq : g ÞÑ rgpϕνqsνPΞ. (5.2)

The two values,

bΦ :“
›

›

›
T´1

Φ

›

›

›

HÑ`2pΞq
and BΦ :“ }TΦ}`2pΞqÑH (5.3)

are called the Riesz bounds of Φ. For all f P H˚,

bΦ } f }H˚ ď

˜

ÿ

νPΞ

| f pϕνq|
2

¸1{2

ď BΦ } f }H˚ . (5.4)

The Riesz basis Φ is called a Parseval frame if bΦ “ BΦ. The Riesz operator is
the self adjoint linear map,

SΦ :“ TΦT˚Φ : H˚ Ñ H, f ÞÑ
ÿ

νPΞ

f pϕνqϕν. (5.5)

The sequence Φ˚ :“ S´1
Φ Φ is a Riesz basis of H˚, called the canonical dual

basis. Its synthesis operator is TΦ˚ “ S´1
Φ TΦ. Since S´1

Φ is self-adjoint, the
Riesz operator of Φ˚ is given by

SΦ˚ “ TΦ˚T˚Φ˚ “ S´1
Φ TΦT˚ΦS´1

Φ “ S´1
Φ SΦS´1

Φ “ S´1
Φ . (5.6)
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5. Adaptive Galerkin discretization in space

Moreover since

TΦT˚Φ˚ “ TΦT˚ΦS´1
Φ “ idH and TΦ˚T˚Φ “ S´1

Φ TΦT˚Φ “ idH˚ , (5.7)

writing the elements of Φ˚ as ϕ˚ν :“ S´1
Φ ϕν, we have

w “
ÿ

νPΞ

ϕ˚ν pwqϕν, @w P H and f “
ÿ

νPΞ

f pϕνqϕ
˚
ν . (5.8)

For a Riesz basis Υ indexed by Ξ, We shall denote by rΥs the infinite vector
with entries indexed by Ξ. This will be convenient for further matrix notation
hereafter.

5.1.2 Best N-term approximations and approximation classes

We are concerned with the general problem of approximating an element
f P H, up to a desired accuracy, with as few memory usage as possible. To
this end, we assume given a Riesz basis Ψ “ pψλqλPΛ of the Hilbert space H
and introduce the nonlinear N-term approximation manifold

ΣNpΨq :“
!

cJΨ : # tλ P Λ : cλ ‰ 0u ď N
)

Ă H,

and the N-term approximation error

σNp f , Ψq :“ inf
gPΣN

} f ´ g}H , (5.9)

for an element f P H. We further define the nonlinear approximation space

AspΨ,Hq :“
 

f P H : σNpH, Ψq À N´s( , (5.10)

with norm

} f }AspΨ,Hq :“ inf
 

C ą 0 : σNp f , Ψq ď CN´s( . (5.11)

For f P H we let PNp f q be the element of ΣN that minimizes } f ´ fN}H over
fN P ΣN . The space AspΨ,Hq consists of the elements f of H whose best
N-term approximations converge with rate s to f . It is in general not pos-
sible to find best N-term approximations, especially when the vector to be
approximated is defined implicitly through a matrix equation. Nevertheless
we present hereafter methods to approximate such solutions u, which when-
ever u P AspΨ,Hq, converge to the solution u with rate s. Moreover, the
complexity of these methods is linear in N; the cardinality of the set of “ac-
tive” coefficients necessary to represent the finitely supported approximation.
That is, for f P AspΨ,Hq

} f ´ PNp f q}H ď } f }As N´s, @N P N0. (5.12)

When the space Hilbert space H will be `2, we shall omit the precision H in
every of the above notations.

34



5.1. Discrete operator representations

5.1.3 Compressibility

We now consider the problem of discretizing operators A P LpH,H˚q. As-
suming that we have Riesz bases Ψ “ pψνqνPΞ and Ψ̃ “ pψ̃νqνPΞ of H and H˚
respectively. We further assume that Ψ̃ is the canonical dual base of Ψ. We
consider the action of A on an element f of H at the matrix level.

Proposition 5.2 For a given f P H˚, an element u P H satisfies

Au “ f , (5.13)

if and only if u “ T´1
Ψ u satisfies

Au “ f, (5.14)

where A “ pxAψµ, ψνyqµ,νPΞ P Lp`2pΞqq, and f “ TΨ̃f.

Consequently, we hereafter present methods to efficiently compute abstract
matrix vector multiplications of the form

cJ P `2pΞq ÞÑ Ac. (5.15)

Since the index sets of Ψ and Ψ̃ are the same we shall denote `2pΞq by `2.

Example 5.3 With the framework from Chapter 2, we consider the elliptic equation
in V

Au “ f , (5.16)

where A is given by

Aupxq “ ´TrpD2upxqq ` xx, Q´1Dupxqy, (5.17)

with associated bilinear form

apu, vq “
ż

H
xDupxq, Dvpxqyµpdxq, u, v P V . (5.18)

Choosing the polynomial chaos basis Υ :“ pHγqγPΓ from Theorem 2.9 for H and the
rescaled orthonormal base Ψ :“ pHγ{p1` xγ, λ´1y˚q

1{2qγPΓ from Theorem 2.12 for
V and applying the above methodology gives the matrix A associated to this problem,

A “ aprΨs prΨsq. (5.19)

Denoting by Dλ the matrix diag
!

`

1` xγ, λ´1y˚
˘1{2 , γ P Γ

)

, we have Dλ “

}rΥs}V and pDλq´1 “ }rΥs}V˚ , and we may write

rΥsV :“ rΨs “ pDλq´1 rΥs . (5.20)

Using the bilinear form associated to A given by (5.18), we may write the entries
pAγ,νqγ,νPΓ of the matrix with

pAqγ,ν “ apψγ, ψνq “
ÿ

kPN

pDλ
γq
´1 @Dk Hγ, Dk Hν

D

H pD
λ
ν q
´1. (5.21)
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5. Adaptive Galerkin discretization in space

Clearly, if γ “ 0, then pAqγ,ν “ δγ,ν for all ν P Γ; similarly, if ν “ 0, then
pAqγ,ν “ δγ,ν for all γ P Γ. We shall therefore focus our attention on the nontrivial
case when γ, ν P Γz t0u; for any such γ, ν, we have by Proposition 2.11 that

pAqγ,ν “
ÿ

kPN,γkě1,νkě1

pDλ
γq
´1

d

γkνk

λ2
k

A

Hγk´1pWekqH
pkq
γ , Hνk´1pWekqH

pkq
ν

E

H
pDλ

ν q
´1

(5.22)

“δγ,νpDλ
γq
´1pDλ

ν q
´1

ÿ

kPN,γkě1

d

γ2
k

λ2
k

(5.23)

“
δγ,νxγ, λ´1y˚

1` xγ, λ´1y˚
. (5.24)

On the other hand, if we consider the operator A from Example 2.26; Aupxq “
upxq´TrpD2upxqq` xx, Q´1Dupxqy, the bilinear form a associated to A is no other
than x¨, ¨yV . In this case the associated matrix is the identity since Ψ :“ pHγ{p1`
xγ, λ´1y˚q

1{2qγPΓ is an orthonormal basis of V .

Definition 5.4 An operator A P Lp`2q is said n-sparse if each column contains
at most n non-zero entries. It is s˚-compressible for s˚ P p0,8s if there exists a
sequence pAjqjPN such that Aj is nj-sparse, with pnjqjPN P NN satisfying

cA :“ sup
jPN

nj`1

nj
ă 8 (5.25)

and for every s P p0, s˚q,

dA,s :“ sup
jPN

ns
j
›

›A´Aj
›

›

`2Ñ`2 ă 8. (5.26)

The operator A is strictly s˚-compressible if, in addition,

sup
sPp0,s˚q

dA,s ă 8. (5.27)

We will use the approximation errors eA,j :“
›

›A´Aj
›

›

`2Ñ`2 . The definition
implies that these approximation errors satisfy eA,j ď dA,sn´s

j .

Definition 5.5 An operator A P Lp`2q is s˚-computable for s˚ P p0,8s if it is
s˚-compressible with approximating sequence pAjqjPN as in definition 5.4 such that
there exists a routine

BuildArj, ks ÞÑ
”

pliq
nj
i“1, paiq

nj
i“1

ı

, (5.28)

with the k-th column of Aj equal to

nj
ÿ

i“1

aiεli , (5.29)

where εli is the Kronecker sequence that is 1 at li and 0 elsewhere, and there is
a constant bA such that the number of arithmetic operations and storage locations
used by a call of BuildArj, ks is less than bAnj for any j P N and k P N.
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5.1. Discrete operator representations

Example 5.6 We now reconsider Example 3.1, with

Mrεs “ tridiag tpεi, 1, εiq, i “ 1, 2, . . .u , (5.30)

for a bounded sequence ε “ pεiq
8
i“1 with }ε}`8pNq ă 1{2. We follow [17], however

for implementation considerations, we present here a construction of the bi-infinite
matrix associated to the operator (3.21) ’column’-wise. The bilinear form a reduces
to

apu, vq “
8
ÿ

i,j“1

Mij

A

Dqi u, Dqj v
E

L2pD,µq
(5.31)

“

8
ÿ

i“1

@

Dqi u, Dqi v
D

L2pD,µq
(5.32)

`

8
ÿ

j“2

εj´1

A

Dqj´1 u, Dqj v
E

L2pD,µq
(5.33)

`

8
ÿ

j“1

εj

A

Dqj`1 u, Dqj v
E

L2pD,µq
, (5.34)

with the diagonal term having already been discussed. By superposition we may
now confine ourselves to investigating the computability of the matrix A when the
matrix M has entries Mij “ εiδi,j´1, i, j “ 1, 2, . . ., and when M has entries Mij “

εiδi,j`1, i, j “ 1, 2, . . . . The matrices A corresponding to these two cases will be
denoted below by Ap´q and Ap`q , and we denote their respective entries by Ap´q

γν and
Ap`q

γν , with γ, ν P Γ. For the sake of excluding trivial situations we shall assume
henceforth that εi ‰ 0, i “ 1, 2, . . .. Instead of the orthonormal basis pHγ{p1 `
xγ, λ´1y˚q

1{2qγPΓ of V , we shall now take the Riesz basis pHγ{pxγ, λ´1y˚q
1{2qγPΓ;

as we shall see this basis has the advantage of scaling to 1 the diagonal entries of A.
Given γ, ν P Γz t0u, writing, as before,

Dλ :“ diag
"

´

xγ, λ´1y˚

¯1{2
, γ P Γ

*

, (5.35)

we calculate that

Ap˘q

γν “
ÿ

i,jPN,
γiě1,νjě1

εiδi˘1,jpDλ
γq
´1

d

γiνj

λiλj

A

Hγi´1Hpiqγ , Hνj´1Hpjqν

E

H
pDλ

ν q
´1

(5.36)

“
ÿ

´

jě2
jě1

¯

,
γj¯1ě1,νjě1

εj´1
j
pDλ

γq
´1

d

γj¯1νj

λj¯1λj

A

Hγj¯1´1Hpj¯1q
γ , Hνj´1Hpjqν

E

H
pDλ

ν q
´1,

(5.37)

with the notational convention ν0 :“ 0 and λ0 :“ λ1pą 0q. Thus, for example,
if γ “ 11 :“ p1, 0, 0, . . .q, then Ap`q

γ,ν “ 0 for all ν P Γz t0u; Ap´q

γ,ν “ ε1 for ν “
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5. Adaptive Galerkin discretization in space

p0, 1, 0, 0, . . .q, and Ap´q

γν “ 0 for all other ν P Γz t0u. Also, if γ “ 0, then
Ap˘q

0ν “ δ0ν for all ν P Γ; and, analogously, if ν “ 0, then Ap˘q

0ν “ δγ0 for all γ P Γ.

It therefore remains to compute Ap˘q

γν for γ, ν P Γz t0, 11u. Hence, by defining for a
fixed integer j ě 1 and for γ, ν P Γz t0u such that γj¯1 ě 1 and νj ě 1 the expression

h
p˘q,pjq
γν :“

A

Hγj¯1´1Hpj¯1q
γ , Hνj´1Hpjqν

E

H
, (5.38)

we deduce that

h
p˘q,pjq
γν “

#

1 if γj “ νj ´ 1^ γj¯1 “ νj¯1 ` 1^ νl “ γl , l P tj, j¯ 1uc
XN,

0 otherwise.
(5.39)

For γ P Γ let us define the support of γ by supppγq :“ ti P N : γi ‰ 0u. Then,
Aγν “ 0 if supppγqX supppγq “ ∅. Therefore A is sparse. Now for each γ, ν P Γ
there is at most one j P supppνq such that hp˘q,pjq ‰ 0, when it exists, let it be denoted
by j˘, in which case we have

Ap˘q

γν “ εj˘´1
j˘

d

γj˘¯1νj˘
λj˘¯1λj˘

xγ, λ´1y
´1{2
˚ xν, λ´1y

´1{2
˚ , (5.40)

In any case, we deduce that in each ‘column’ with index ν P Γz t0, 11u the matrix
Ap`q contains nonzero off-diagonal entries only in ‘rows’ ν; for which there exists
j` P supppνq such that hp˘q,pj`q ‰ 0, and analogously for Ap´q, showing that A is
still very sparse.

We now refer to Definition 5.5 and verify condition (5.28): i.e., we wish to show that
for s̄ ą 0

cA,s̄ :“ sup
NPN

N
›

›

›
A´ArNs

›

›

›

1{s̄

`2pΓqÑ`2pΓq
ă 8 (5.41)

where pArNsq8N“1 is a sequence of infinite matrices, which we shall define below. We
shall make use of Stechkin’s lemma.

Lemma 5.7 (Stechkin) Let 0 ă p ď q ď 8 and assume that α “ pαγqγPΓ P `
ppΓq.

For N ě 1, let ΓN Ă Γ denote the set of indices corresponding to the N largest values
of |αγ|. Then,

¨

˝

ÿ

γRΓN

|αγ|
q

˛

‚

1{q

ď N´r }α}`ppΓq , with r :“
1
p
´

1
q
ě 0. (5.42)

We define ArNs ‘column’-wise for N P N as follows: if N “ 1, we select ArNs to be
the diagonal part of A. If N ą 1, we define ArNs to contain, in the off-diagonal of
the ‘column’ associated with index ν P Γ, at most N nonzero elements of Aγν where
γ “ γpν, iq with the index i such that i P

 

j : νj ‰ 0^ pνj ´ 1 ‰ 0_ νj ` 1 ‰ 0q
(

X
!

j : ε
rNs
j ‰ 0

)

. Here, for a given sequence ε P `2pNq in the definition (5.30) of the
infinite, tridiagonal matrix M appearing in the bilinear form ap¨, ¨q, we denote by
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5.1. Discrete operator representations

εrNs its best pN ´ 1q-term approximation in `2pNq. Then, for all N P N and for
every 0 ă p ď 2,

›

›ε´ εrNs
›

›

`2pNq
ď N´p1{p´1{2q }ε}`ppNq . (5.43)

We note that by definition of εrNs, AN is defined completely analogously ‘row’-wise
for every γ P Γ, ‘row’ γ has at most N nonzero elements of Aγν where ν “ νpγ, iq
with the index i satisfying a symmetric set of conditions. As described in [17] we
have

›

›

›
A´ArNs

›

›

›

`2Ñ`2
ď sup

γPΓ

ÿ

νPΓ

ˇ

ˇ

ˇ
Aγν ´ArNsγν

ˇ

ˇ

ˇ

2
. (5.44)

It therefore follows from the definition of the entries Aγν of A and from the above
calculations that

@N P N :
›

›

›
A´ArNs

›

›

›

`2pΓqÑ`2pΓq
ď
›

›ε´ εrN´1s
›

›

`2pNq
ď 21{p´1{2N´p1{p´1{2q }ε}`ppNq ,

(5.45)
from which we deduce, with Cp :“ 2p1{p´1{2q{s̄ that

cA,s̄ “ sup
NPN

N
›

›

›
A´ArNs

›

›

›

1{s̄

`2pΓqÑ`2pΓq
ď Cp sup

NPN

´

N1´p1{p´1{2q{s̄
¯

}ε}
1{s̄
`ppNq ă 8

(5.46)
provided that ε P `ppNq with 0 ă p ă 2 and s̄ “ s̄ppq is chosen as

0 ă s̄ :“ 1{p´ 1{2. (5.47)

Referring to the definition of s˚-computability (cf. Definition 5.5), we infer that A
is s˚-computable with any 0 ă s ď s˚ppq if the sequence in Example 3.1 belongs
to `ppNq with some 0 ă p ă 2, resp. with s˚ “ 1{p´ 1{2 (this encompasses the
previous case, if p “ 0 is understood to indicate that ε is the zero sequence).

The routine BuildArν, k, εs presented hereafter gives the step by step procedure to
construct a column of Ak, when the sequence ε is decreasing, so that it’s best k
approximation is it’s first k terms. For every γ P Γ let pγpi,jq, a, bq denote the multi-
index γ whose value on i and j is replaced by a and b respectively.

Routine 5.1 BuildArν, k, εs ÞÑ v

v “ 1ν

for j in supppνq do
if j ă k then

if νj´1 ě 1 then
γ`j “ pν

pj,j´1q, νj ` 1, νj´1 ´ 1q

v
γ`j
“ εj´1

b

γj´1νj
λj´1λj

xγ`j , λ´1y
´1{2
˚ xν, λ´1y

´1{2
˚

if νj`1 ě 1 then
γ´j “ pν

pj,j`1q, νj ` 1, νj`1 ´ 1q

v
γ´j
“ εj

b

γj`1νj
λj`1λj

xγ´j , λ´1y
´1{2
˚ xν, λ´1y

´1{2
˚
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5. Adaptive Galerkin discretization in space

Figure 5.1: Visualization of finite parts of the matrix A. The left figure shows
a construction of the columns of A on a set of multi-indices E Ă Γ with total
degree (TD) less than or equal to 5 in the first 10 dimensions (d). On the
right is the same construction for a set of multi-indices with total degree less
than 21 in 4 dimensions. A color ranging from red to blue is associated to
each entry, depending on its `8 weight, with red chosen for the entries of
maximum weight, and blue those of minimum. In both cases it is chosen
εi “ i´1.1 and Q diagonal with λk “ k´2.

5.1.4 Adaptive application of s˚-computable operators

We now let A P Lp`2q be an s˚-computable operator. With approximating
sequence pAkqkPN satisfying

}A´Ak}`2Ñ`2 ď ēA,k. (5.48)

We present here a method to efficiently apply the matrix A to sequences
v P `2. Using the algorithms described in Appendix A such as

BucketSortrv, εs ÞÑ
”

pvrpsq
P
p“1, pΞpq

P
p“1

ı

, (5.49)

we partition the vector v P `2 into vrps :“ væΞp, p “ 1, . . . , P, where vr1s
contains the largest elements of v, vr2s the next largests, and so on. The
integer P is minimal with

2´P{2 }v}`8
a

#supp v ď ε. (5.50)
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5.1. Discrete operator representations

Moreover the number of operations and storage locations required by a call
of BucketSort is bounded by

#supp v`maxp1, rlogp}v}`8q
a

#supp v{εsq. (5.51)

Routine 5.2 ApplyArv, εs ÞÑ z

pvrpsq
P
p“1 Ð BucketSortrv, ε

2ēA,0
s

compute the minimal l P t1, . . . , Pu s.t δ :“ ēA,0

›

›

›
v´

řl
p“1 vrps

›

›

›

`2
ď ε

2

k “ pkpq
l
p“1 Ð p0qlp“1

while ζk ą ε´ δ do
k Ð NextOptrks with objective ´ζk “ ´

řl
p“1 ēA,kp

›

›vrps
›

›

`2pΞpq

and cost σk “
řl

p“1 nkpp#supp vrpsq

z Ð
řl

p“1 Akp vrps

The algorithm BucketSortrv, εs consists of three subtasks. The first task is to
partition v into vectors with decreasing `8 weight. The smaller elements are
neglected, and this truncation produces an error of at most δ ď ε{2. Next,
the greedy algorithm NextOpt also detailed in appendix A assigns a sparse
operator Akp to each section vrps, p “ 1, . . . , P. This optimization ensures
that the final step, consisting of the sum of each ordinary matrix vector mul-
tiplication of the sparse operators with their assigned section approximates
the abstract matrix vector multiplication up to an error ε, as desired. The
algorithm enjoys additional properties which are detailed in the following
theorem. However, to ensure that the algorithm terminates, we must assume
that pēA,kqkPN0 is nonincreasing and converges to 0; n0 “ 0 with pnkqkPN0
strictly increasing, and

ηk :“
ēA,k ´ ēA,k`1

nk`1 ´ nk
nonincreasing in k. (5.52)

Moreover we assume
r̄A :“ sup

kPN0

ēA,k

ēA,k`1
ă 8. (5.53)

Theorem 5.8 For any finitely supported v P `2 and any ε ą 0, a call of ApplyArv, εs
terminates, its output is a finitely supported z P `2 with

}Av´ z}`2 ď δ` ζk ď ε, (5.54)

where k “ pkpq
P
p“1 is the vector constructed by the greedy algorithm in ApplyArv, εs.

Furthermore, the number of arithmetic operations required by the final step of ApplyArv, εs
is bounded by

P
ÿ

p“1

nkpp#supp vrpsq (5.55)
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5. Adaptive Galerkin discretization in space

if the relevant entries of Akp are precomputed. If supkPN ēA,kns
k ă 8 @s P p0, s˚q,

then for any s P p0, s˚q,

#supp z ď σk À ε´1{s }v}1{sAs . (5.56)

5.1.5 Time stepping as a bi-infinite matrix vector equation

In what follows, we consider the backward Euler scheme (4.18). For n “

0, . . . , M´ 1 we would like to solve

pI ` hAqUn`1 “ I Un ` h f ptn`1q, (5.57)

where I is the identity operator from V to V˚ with respect to the triple (2.97).
We assume that we have a Riesz basis Υ “ pψλqλPΓ of H which renormalized
in V or V˚ gives the Riesz bases

Ψ “

ˆ

ψλ

}ψλ}V

˙

λPΓ
and Ψ̃ “

ˆ

ψλ

}ψλ}V˚

˙

λPΓ
(5.58)

of V or V˚ respectively. We have their associated Riesz operators TΨ and TΨ̃.
If we let B :“ I ` hA P LpV ,V˚q, the problem resumes to finding Un P `2pΓq
for n “ 0, . . . , M´ 1 such that

BUn`1 “ gn, (5.59)

where B :“ T˚Ψ̃ ˝ B ˝ TΨ, and gn “ TΨ̃pI Un ` h f ptn`1qq. Letting M P Lp`2q

denote the matrix xIΨ, ΨyH and A P Lp`2q the matrix xAΨ, ΨyH, we may
represent the operator B as

pBqλ,λ1 “
δλ,λ1

}ψλ}V }ψλ1}V
`

h
}ψλ}V }ψλ1}V

xAψλ, ψλ1yH (5.60)

where pBqλ,λ1 “
´

T˚Ψ̃ ˝ Bψλ

¯

λ1
. We may notice that the two terms in the

above sum represent the additive contribution of the operators I and hA
taken separately. We have the Riesz constants,

ΛΨ :“ }TΨ}`2pΓqÑV “ sup
cP`2pΓq

}TΨc}V
}c}`2pΓq

, (5.61)

and,

ΛΨ̃ :“
›

›TΨ̃
›

›

`2pΓqÑV˚ “ sup
cP`2pΓq

›

›TΨ̃c
›

›

V˚

}c}`2pΓq

, (5.62)

giving us upper bounds for }B}`2pΓqÑ`2pΓq and }B´1}`2pΓqÑ`2pΓq;

}B}`2pΓqÑ`2pΓq ď}B}LpV ,V˚q ΛΨΛΨ̃, (5.63)

›

›B´1
›

›

`2pΓqÑ`2pΓq
ď
}B´1}LpV˚ ,Vq

ΛΨΛΨ̃
. (5.64)

Using (5.63) and (5.64), we may bound the condition number of B,

kB :“ }B}`2pΓqÑ`2pΓq

›

›B´1
›

›

`2pΓqÑ`2pΓq
ď }B}LpV ,V˚q

›

›B´1
›

›

LpV˚ ,Vq . (5.65)
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Taking h ă 1{ }A}LpV ,V˚q, we may use a Neumann series argument to infer
that B´1 “ pI ` hAq´1 is well defined and continuous. We also obtain an
estimate for the condition number,

kB ď 1, (5.66)

which holds uniformly in h for h ď 1{ }A}LpV ,V˚q.

5.2 Adaptive Galerkin methods

We are now interested in solving the discrete operator equations (5.59). We
take a more general approach and consider solving in `2pΓq the bi-infinite
matrix vector equation

Au “ f, (5.67)

for a given A P Lp`2pΓq, `2pΓ1qq and f P `2pΓ1q. We further assume that A is
symmetric and positive definite, which is the case in (5.59). We assume that
the action of A can be approximated by a routine

ApplyArv, εs Ñ z, }Av´ z}`2pΓ1q ď ε, (5.68)

for finitely supported vectors v. Similarly, we require a routine that given
ε ą 0 produces an approximation

RHSfrεs Ñ g, }f´ g}`2pΓ1q ď ε, (5.69)

to approximate the right hand side up to arbitrary precision. Moreover we
require,

RHSs :“ sup
0ăεă}f}

`2

r# operations required by the call RHSfs
s
ă ε. (5.70)

Some efficient methods to compute these approximations where presented in
section 5.1.4 and in [10]. These two methods are combined into ResidualA,f
which enables to compute the error between a given approximation and the
solution to (5.67).

Routine 5.3 ResidualA, f rε, v, η0, χ, ω, βs ÞÑ rr, η, ζs

Require: ζ Ð χη0

repeat
rÐ RHS f rβζs ´ ApplyArv, p1´ βqζs
η Ð }r}`2

if ζ ď ωη or η ` ζ ď ε then
break

ζ Ð ω 1´ω
1`ω pη ` ζq

Let }A} ď α̂ and
›

›A´1
›

› ď α̌. Then kA :“ α̂α̌ is an upper bound for the
condition number }A}

›

›A´1
›

›. Furthermore, we let }f} ď λ. We now present
an adaptive solver for the bi-infinite matrix equation.
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5. Adaptive Galerkin discretization in space

Routine 5.4 SolveA, f rε, χ, θ, ω, σ, βs ÞÑ ruε, ε̄s

Ξp0q Ð ∅, ũp0q Ð 0, δ0 Ð α̌1{2λ
for k “ 0, 1, . . . do

if δk ď ε then
break
rrk, ηk, ζks Ð ResidualA, f rεα̌´1{2, ũpkq, α̂1{2δk, χ, ω, βs

δ̄k Ð α̌1{2pηk ` ζkq

if δ̄k ď ε then
break
rΞpk`1q, ρks Ð RefinerΞpkq, rk,

b

η2
k ´ pζk ` θpηk ` ζkqq

2s

θ̄k Ð
´
b

η2
k ´ ρ2

k ´ ζk

¯

{ pηk ` ζkq

rũpk`1q, τk`1s Ð GalerkinA, f rΞpk`1q, ũpkq, σ minpδk, δ̄kqs

δk`1 Ð τk`1 `

b

1´ θ̄2
k κ´1

A minpδk, δ̄kq

uε Ð ũpkq

ε̄ Ð minpδk, δ̄kq

The method SolveA, f uses approximate residuals computed with ResidualA, f
to adaptively select and iteratively solve a finite section of (5.67). For a finite
index set Ξ Ă N and a finitely supported r P `2 and ε ą 0, the routine

RefinerΞ, r, εs ÞÑ rΞ̃, ρs, (5.71)

constructs a set Ξ̃ Ą Ξ such that ρ :“ }r´ ræΞ̃}`2 ď ε, and #Ξ̃ is minimal with
this property, up to a constant factor ĉ. For ĉ “ 1 this can be done by sorting
r and adding to Ξ the indices for which |ri| is largest. Using an appropriate
sorting algorithm, this can be done at a computational cost of order #supp r.

The function GalerkinA, f approximates the solution of (5.67) restricted to the
index set Ξ. It is the Galerkin projection on this set, that is

uGalerkinpΞq “ argmin
#supp wĂΞ

xApw´ uq, w´ uy`2 “ argmin
#supp wĂΞ

}w´ u}A . (5.72)

A convergence analysis and optimality properties of this algorithm is detailed
in [5], [7] and [10]. We have the following theorem.

Theorem 5.9 Let ε, χ, θ, ω ą 0, ω` θ `ωθ ď 1, 0 ă σ ă 1´
b

1´ θ2κ´1
A , and

0 ă β ă 1, then SolveA, f constructs a finitely supported uε with

}u´ uε}A ď ε, (5.73)

and for all k P N0,

κ´1{2
A

1´ω

1`ω
δ̄k ď

›

›

›
u´ ũpkq

›

›

›

A
ď minpδk, δ̄kq. (5.74)

Moreover, if u P As for some s ą 0 and,

θ̂ :“
θp1`ωq ` 2ω

1´ω
ă κ´1{2

A , (5.75)
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then by iteration k,
›

›

›
u´ ũpkq

›

›

›

`2
ď 2s ĉsκAτ´1ρp1´ ρ1{sq´s 1`ω

1´ω }u}As
`

#Ξpkq
˘´s (5.76)

for ρ “ σ`

b

1´ θ2κ´1
A and τ “

a

1´ θ2κA.

5.3 Convergence of the fully discrete problem

We shall now approximate the solution Un, n “ 0, 1, . . . , M of the backward
Euler scheme (5.57), with the algorithms presented above. Let Ũn be the fully
discrete and finitely supported approximation of Un

h , given by

Ũn
h “ TΨUn, (5.77)

and similarly we define Ũn,pkq
h “ TΨŨn,pkq, the approximation of Ũn

h by (5.59)
after the k-th iteration of the previous algorithm. We assume that Un

h P As,
n “ 1, . . . , M. The following theorem shows how the computational error
›

›uptnq ´ Ũn
h

›

›

H is of order minp1, sq.

Theorem 5.10 Let u0 P V and f P L2p0, T;Hq, such that f is strongly continu-
ously differentiable in p0, Tq, with continuous derivative in r0, Ts. We assume that
for n “ 1, . . . , M, f ptnq satisfies the computability conditions for the right hand side
(5.69) and (5.70). We further assume that A is an s˚-computable operator satisfying
all the properties of Theorem 2.23. Then for ε, χ, θ, ω ą 0, ω ` θ ` ωθ ď 1, 0 ă

σ ă 1´
b

1´ θ2κ´1
A , and 0 ă β ă 1, the approximation method defined by (5.59)

satisfies,
›

›

›
uptnq ´ Ũn,pkq

h

›

›

›

H
ď hVT

0 pu
1q (5.78)

` 2s ĉsκAτ´1ρp1´ ρ1{sq´s 1`ω
1´ω }u}As

`

#Ξpkq
˘´s . (5.79)

Proof We simply use the triangular inequality,
›

›

›
uptnq ´ Ũn,pkq

h

›

›

›

H
ď
›

›uptnq ´Un
h
›

›

H `

›

›

›
Un

h ´ Ũn,pkq
h

›

›

›

H
. (5.80)

Assuming that a step n´ 1 we have approximated uptnq with precision ε{2,
under the assumption on f we can use RHS f rε{2s to approximate I Un `

h f ptn`1qq up to precision ε. Estimation (5.79) is hence deduced from Theorem
5.9 (5.76), while (5.78) has been estimated in Chapter 4. ˝
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Chapter 6

Implementation

In this final part of the project, we present numerical solutions to problem
(2.115), in the particular case where A is the generator of the heat semigroup.
In this setting, we take Q diagonal and solve for a given u0 P UCbpHq, the
problem

u1ptq ´ ∆Quptq “ f ptq (6.1)
up0q “ u0, (6.2)

with f strongly continuously differentiable from r0, Ts to H. The exact solu-
tion to this problem is given by

upt, xq “
ż

H
u0pyqNx,tQpdyq `

ż t

0

ż

H
f ps, yqNx,pt´sqQpdyqds. (6.3)

6.1 Associated matrix equation

When A “ ´2∆Q, we have seen in (2.85) that the associated bilinear form is
given by

V˚xAu, vyV “
8
ÿ

k“1

λk

ż

H
pDkupxq2µpdxq ´

ż

H
xx, vpxqDupxqyµpdxq. (6.4)

Let d denote the nonsymmetric bilinear form on V ˆ V defined by

dpu, vq :“ ´
ż

H
xx, vpxqDupxqyµpdxq. (6.5)

Following [17, Section 10] we now show that d is continuous.

Proposition 6.1 Assume that the covariance operator Q of the Gaussian measure µ
on H is of trace class. Then, d : W1,2pH, µq ˆW1,2pH, µq Ñ R is continuous and

|dpu, vq| ď
ˆ

2TrpQq
ż

H
|vpxq|2µpdxq ` 4 }Q}2

ż

H
|Dvpxq|2µpdxq

˙1{2
}Du}L2pH,µq .

(6.6)
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6. Implementation

Proof We estimate

|dpu, vq| ď
˜

8
ÿ

k“1

}|xk|v}2L2pH,µq

¸1{2 ˜
ÿ

kě1

}Dku}2L2pH,µq

¸1{2

(6.7)

“

˜

8
ÿ

k“1

}|xk|v}2L2pH,µq

¸1{2

}Du}2L2pH,µq . (6.8)

Using [12, Prop. 9.2.10] and the assumption that v P W1,2pH, µq, we deduce
that, for a Gaussian measure µ with trace-class covariance Q,
ż

H
}x}2 pvpxqq2µpdxq ď 2TrpQq

ż

H
|vpxq|2µpdxq ` 4 }Q}2

ż

H
}Dvpxq}2 µpdxq.

(6.9)
This then yields the desired inequality (6.6). ˝

The bound (6.6) implies a Garding inequality for the Fokker–Planck operator
with drift. Let a : V ˆ V be defined as

apu, vq :“
8
ÿ

k“1

λk

ż

H
DkupxqDkvpxqµpdxq (6.10)

Proposition 6.2 Assume that the covariance operator Q of the Gaussian measure µ
is trace-class. Then, the bilinear form

ap¨, ¨q ` dp¨, ¨q : V ˆ V Ñ R (6.11)

is continuous and satisfies the Garding inequality (i.e it satisfies 2 and 3 in Theorem
2.27) in the triple V Ă H » H˚ Ă V˚. In particular, the variational problem is
well-posed.

Proof The continuity of the bilinear form ap¨, ¨q ` dp¨, ¨q is evident from the
previous proposition and the continuity of ap¨, ¨q. The Garding inequality
follows from the coercivity of ap¨, ¨q on V ˆV and from the continuity estimate
(6.6) using a Cauchy inequality. ˝

6.2 s˚-computability of Bh

We take Ψ “
`

ψγ

˘

γPΓ :“
´

Hγ{xγ, λ´1y
1{2
˚

¯

γPΓ
as a Riesz basis of V . Let

Bh :“V˚ xrΨs , rΨsyV ` h paprΨs , rΨsq ` dprΨs , rΨsqq. From the previous section
we can easily compute the contributions of V˚xrΨs , rΨsyV and haprΨs , rΨsq,
since for all γ, ν P Γ, using Proposition 2.11,

V˚xψγ, ψνyV “
δγ,ν

xγ, λ´1y˚
, (6.12)

hapψγ, ψνq “
h

xγ, λ´1y
1{2
˚ xν, λ´1y

1{2
˚

8
ÿ

k“1

λk

ż

H
Dk HγDk Hνµpdxq (6.13)

“
hδγ,ν

xγ, λ´1y˚

ÿ

kPsupppγq

γk. (6.14)

(6.15)

48



6.2. s˚-computability of Bh

We are hence interested in computing dpψγ, ψνq for γ, ν P Γ. We compute for
k ě 1,

ż

H
xkDk HγpxqHνpxqµpdxq. (6.16)

Since Dk Hγpxq “
b

γk
λk

Hpkqγ pxqHγk´1pWekpxqq with

Hpkqγ pxq “
ź

j‰k

HγjpWejpxqq, (6.17)

and xk “ λ
1{2
k Wekpxq, we rewrite (6.16) as

p6.16q “
?

γk

ż

H
WekpxqHγk´1pWekpxqqH

pkq
γ pxqHνpxqµpdxq, (6.18)

“
?

γk

ż

H

´

?
γk HγkpWekpxqq `

a

γk ´ 1Hγk´2pWekpxqq
¯

Hpkqγ pxqHνpxqµpdxq,

(6.19)

“γkδγ,ν `
a

γkpγk ´ 1qδν,γ´21k . (6.20)

where we have used that ξHnpξq “
?

n` 1Hn`1pξq `
?

nHn´1pξq and 1k is
the multi-index with value one at k and 0 elsewhere, is the function γ with
the k-th component decreased by two units. Since there is at most one k such
that for γ, ν P Γ, δν,γ´21k ‰ 0, summing over k the last expression gives

pBhqγ,ν “

$

&

%

1
xγ,λ´1y˚

if γ “ ν,
´h
?

γkpγk´1q

xγ,λ´1y
1{2
˚ xν,λ´1y

1{2
˚

if νk “ γk ´ 2 and νl “ γl , l ‰ k.
(6.21)

For m P N, the following procedure enables the approximation of a column
ν of Bh, having at most m` 1 non-zeros entries.

Routine 6.1 BuildBrν, m, λs ÞÑ v

vν “
1

xν,λ´1y˚
for j “ 1 to m do

vν`21j “
´h

b

pνj`2qpνj`1q

xν`21j ,λ´1y
1{2
˚ xν,λ´1y

1{2
˚

Let BN
h denote the matrix obtained when approximating all the columns ν P Γ

of Bh according to BuildBrν, N, λs. To show s˚-computability we must bound

CB,s̄ :“ sup
NPN

N
›

›

›
Bh ´ BN

h

›

›

›

1{s̄

`2pΓqÑ`2pΓq
. (6.22)

We shall use Schur’s Lemma (cf. [16], p.6, ¶2, and [3] p.449, Theorem B)
stated hereafter.

Theorem 6.3 (Schur) A matrix A :“ paijq P Lp`2pNqq if and only if there exist
positive numbers C1 and C2 and a positive sequence u :“ pujqj such that

8
ÿ

j“1

aiju
1{2
j ď C1u1{2

i , i “ 1, 2, . . . (6.23)
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and

8
ÿ

i“1

aiju
1{2
j ď C2u1{2

j , j “ 1, 2, . . . , (6.24)

in which case we have }A}`2pNq ď C1{2
1 C1{2

2 .

We observe that for all γ P Γ, pBN
h qγν ‰ 0 only for ν “ γ or ν “ γ ´ 21k,

k ď N, and pBN
h qγν “ pBhqγν otherwise. This shows that for any ‘row’ γ P Γ

of the matrix Bh ´ BN
h there are column entries for every k ą N such that

γk ě 2. On the other hand, for every ‘column’ ν P Γ, there are row entries for
every k ą N. We now verify the hypothesis of Schur’s lemma (Theorem 6.3)
for the positive sequence uγ “ 1, γ P Γ meaning that all rows and columns
of pBhqγν ´ pBN

h qγν are in `1pΓq. For any ’row’ γ P Γ,

ÿ

νPΓ

ˇ

ˇ

ˇ
pBhqγν ´ pBN

h qγν

ˇ

ˇ

ˇ
“h

ÿ

kąN
γkě2

ˇ

ˇ

ˇ

ˇ

ˇ

a

γkpγk ´ 1q

xγ, λ´1y
1{2
˚ xγ´ 21k, λ´1y

1{2
˚

ˇ

ˇ

ˇ

ˇ

ˇ

(6.25)

ďh

¨

˚

˚

˝

ÿ

kąN
γkě2

λkpγk{λkq

xγ, λ´1y˚

˛

‹

‹

‚

1{2 ¨

˚

˚

˝

ÿ

kąN
γkě2

γk ´ 1
xγ, λ´1y˚ ´ 2λ´1

k

˛

‹

‹

‚

1{2

(6.26)

ďh

¨

˚

˚

˝

ÿ

kąN
γkě2

λk

˛

‹

‹

‚

1{2 ¨

˚

˚

˝

ÿ

kąN
γkě2

2λk

˛

‹

‹

‚

1{2

(6.27)

ďh
?

2N´r }λ}`ppNq , (6.28)

where the last line follows from Stechkin’s lemma (Lemma 5.7) for 0 ă p ă 1
and r “ 1{p ´ 1. We have also used the fact that for any γ P Γ, γk{λk ď

xγ, λ´1y˚, k P supppγq. Also, if γk ą 2,

γk ´ 1
xγ, λ´1y˚ ´ 2λ´1

k

ď
γk ´ 1

γk{λk ´ 2λ´1
k

“ λk
γk ´ 1
γk ´ 2

ď 2λk, (6.29)

while if γk “ 2 we have

γk ´ 1
xγ, λ´1y˚ ´ 2λ´1

k

“
1

xγpkq, λ´1y
˚

ď
λj

γj
, (6.30)

with j ą k the next index j P supppγq such that there is no index l P supppγq
with k ă l ă j. If no such index exists it is possible to pick again j “
maxpsupppγqq without changing the validity of (6.27). On the other hand, for
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each column ν P Γ we also have

ÿ

γPΓ

ˇ

ˇ

ˇ
pBhqγν ´ pBN

h qγν

ˇ

ˇ

ˇ
“h

ÿ

kąN

ˇ

ˇ

ˇ

ˇ

ˇ

a

pνk ` 1qpνk ` 2q

xν, λ´1y
1{2
˚ xν` 21k, λ´1y

1{2
˚

ˇ

ˇ

ˇ

ˇ

ˇ

(6.31)

ďh

˜

ÿ

kąN

λkpνk ` 2q{λk
xν` 21k, λ´1y˚

¸1{2 ˜
ÿ

kąN

νk ` 1
xγ, λ´1y˚

¸1{2

(6.32)

ďh

˜

ÿ

kąN

λk

¸1{2
¨

˚

˚

˝

ÿ

kąN
γkě2

2λk

˛

‹

‹

‚

1{2

(6.33)

ďh
?

2N´r }λ}`ppNq , (6.34)

for 0 ă p ă 1 and r “ 1{p´ 1. By the above estimations, we can use Schur’s
Lemma (Theorem 6.3) for C1 “ C2 “ h

?
2N´r }λ}`ppNq to find that

›

›

›
Bh ´ BN

h

›

›

›

`2pΓqÑ`2pΓq
ď h

?
2N´r }λ}`ppNq . (6.35)

This shows that for λ P `ppNq, Bh is s˚-computable with s˚ “ 1{p´ 1. More-
over the approximating sequence satisfies (5.52) and (5.53).

6.3 Right hand side and initial condition

For the sake of simplicity, we consider a uniform forcing term of the form

f pt, xq “ gptq, t P r0, Ts, x P H. (6.36)

Trivially, f pt, xq “ gptqH0pxq so that the corresponding vector in `2pΓq is given
by pgptq, 0, 0, . . .q . Moreover, we shall also assume given the full scaled Poly-
nomial Chaos expansion of the initial condition,

u0 “
ÿ

γPΓ

uγ
0 ψγ, with uγ

0 “ ψ˚γpu0q, (6.37)

where pψ˚γqγPΓ is the canonical dual base corresponding to Ψ defined through
the Riesz operator SΨ in (5.5). In fact, Ψ˚ “

`

xγ, λ´1y˚Hγ

˘

γPΓ and the action

on an element f P V is defined as ψ˚γp f q “
ş

Hxγ, λ´1y˚Hγpxq f pxqµpdxq. We
require the availability of a routine RHSrg, εs Ñ g such that for g “ u0 and
g “ f ,

}g´ T˚Υ g}
`2pΓq ď ε, and #supppgq À min

!

N : }T˚Υ g}
`2pΓq´PN g `

2pΓq ď ε
)

,
(6.38)

with the number of arithmetic operations and storage locations used by the
call RHSrg, εs being bounded by some absolute multiple of #supppgq ` 1.
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Example 6.4 Consider for 0 ă a ă T in ra, Ts ˆRn the parabolic problem

Btupx, tq ´ div
ˆ

MpxqA∇
ˆ

upx, tq
Mpxq

˙˙

“ 0, px, tq P Rn ˆ ra, Ts (6.39)

upx, aq “ u0px, aq x P Rn, (6.40)

Mpxq “
1

p2πqn{2
e´

}x}2
2 , x P Rn. (6.41)

where A is a symmetric positive definite matrix on Rn. The case a “ 0 can also be
determined but is not considered here. By applying the methodology in section 3.1,
we view this as the problem of finding ũ :“ u{M solving

MpxqBtũpx, tq ´ div pMpxqA∇ũq “ 0, px, tq P Rn ˆ ra, Ts (6.42)
ũpx, aq “ u0px, aq{Mpxq x P Rn. (6.43)

For the sake of simplicity, we shall first take A “ In and consider the associated
variational problem on the Maxwellian weighted L2 space H :“ L2pRn, NIq. Using
the theory in Section 2.1.5, in particular (2.65) (2.90) and (2.91), we shall consider
the solution to this equation given by

ũpx, tq “ p1´ e´2tq´n{2 exp

˜

´
}x}2

2pe2t ´ 1q

¸

, (6.44)

with u0px, aq “ ũpx, aq. One can check that the function (6.44) satisfies (6.42).

In order to test the numerical schemes discussed, we take Υ :“ pHγqγPΓ (with Γ “
Nn) as a complete orthonormal system on H, and look for the solution under the
form

ũpx, tq “
ÿ

γPΓ

@

ũptq, Hγ

D

H Hγpxq. (6.45)

Fortunately, in this particular case it is possible to find the full Hermite expansion of
the solution and to compare it with numerical results. In deed, for any t P ra, Ts

@

ũptq, Hγ

D

H “

ż

Rn
ũpt, xqHγpxqMpxqdx (6.46)

“p1´ e´2tq´n{2
n
ź

k“1

ż

R

exp

˜

´
x2

k
2pe2t ´ 1q

¸

HγkpxkqN1pdxkq. (6.47)

We are hence interested in computing for m ě 0 the integral

Im :“
ż

R

e´x2{2θptqHmpxqex2{2pxqdx, (6.48)

with θptq :“ e2t ´ 1. By symmetry, we see that (6.48) vanishes for odd m. For m
even, we shall use Proposition 9.1.1 in Da Prato and Zabczyk ([12, p.188]) inferring
that for all m P N

Hmpxq “
p´1qn
?

m!
ex2{2 dm

dxm pe
´x2{2q. (6.49)
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Hence using integration by parts ([8, p.22-29]),

Cm :“ I2m “
1

a

p2mq!

ż

R

e´x2{2θptq d2m

dx2m pe
´x2{2qdx (6.50)

“
1

a

p2mq!

ż

R

x
θptq

e´x2{2θptq d2m´1

dx2m´1 pe
´x2{2qdx (6.51)

“
´
a

p2m´ 1q!
θptq

a

p2m!q

ż

R

e´x2{2θptqxH2m´1pxqex2{2dx (6.52)

“
´1

θptq
?

2m

ż

R

e´x2{2θptq
?

2mH2mpxqe´x2{2dx (6.53)

`
´1

θptq
?

2m

ż

R

e´x2{2θptq?2m´ 1H2m´2pxqe´x2{2dx (6.54)

“´
1

θptq
Cm ´

1
θptq

c

2m´ 1
2m

Cm´1 (6.55)

“p´1qmpθptq ` 1q´m

d

p2m´ 1qp2m´ 3q ¨ ¨ ¨ 1
2mp2m´ 2q ¨ ¨ ¨ 1

C0 (6.56)

“p´1qm
d

2πθptq
θptq ` 1

pθptq ` 1q´m
a

p2mq!
2mpm!q

. (6.57)

with C0 “
a

2πθptq{pθptq ` 1q. Using Stirling’s approximation for m ě M and
a predefined M P N we can assume that the last expression can be evaluated in
constant time. In this case, the full development of the solution ũpt, xq of (6.39) is
found on the set of Γ̃ :“ tγ P Γ : γk “ 2mk, k P supppγqu and is given by ũpx, tq “
ř

γPΓ̃
@

ũptq, Hγ

D

H Hγpxq with

@

ũptq, Hγ

D

H “

n
ź

k“1

p´1qmk e´2mkt
a

p2mkq!
2mkpmk!q

. (6.58)

We also note here that the above development of the solution converges in L2pRn, NIpdxqq
and not with respect to Lebesgue measure. Hence, approximations are good locally
around the origin essentially.
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Figure 6.1: Visualization of the solution of (6.42) for d “ 2, on the left is plot-
ted the expansion of the solution on a set of bivariate Hermite polynomials
with total degree at most 6. On the right is the exact solution at time t “ 0.5.
One notices a good approximation around the origin, which degrades after
about two standard deviations away from 0. This is compensated after the
change of variables in (6.39).

Equation (6.4) gives us the spectral decomposition from Theorem 2.23; the Hermite
polynomials being the eigenfunctions of this problem. In deed, one has

Dk

´

e´}x}
2
{2Dk Hγkpxkq

¯

“
?

γkDk

´

e´}x}
2
{2Hγk´1

¯

(6.59)

“
?

γkp´1qγk´1pγk!q´1{2Dk

´

Dγk´1
k

´

e´}x}
2
{2
¯¯

(6.60)

“´ γke´}x}
2
{2Hγk . (6.61)

Hence, for an initial condition under the form u0 “
ř

γ uγ
0 Hγ we know that the

solution at time t is given by uptq “
ř

γ uγ
0 e´|γ|tHγ. It is possible to compute the

energy of the solution at time t ą 0 using (6.44), but it is also possible to use the
above decomposition to see that

}uptq}2H “ 1`Ope´tq, as t Ñ8. (6.62)

For higher dimensions, due to the impossibility of plotting the resulting function, we
show in Figure 6.2 the L2 norm of the numerical solutions.
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Figure 6.2: On the left we see the convergence of the Backward Euler approx-
imations to the representation (6.58) as the step size decreases. The experi-
ment was realized in dimension d “ 20 and maximum polynomial degree 4.
On the right is the plot of the energy decay of the solutions for high dimen-
sional instances pn “ dq. The maximum polynomial degree is in this case
also 4.

We have also considered numerical solutions to (6.42) for A “ Arεs with

Arεs “ tridiag tpεi, 1, εiq, i “ 1, 2, . . . , Ku . (6.63)

In this particular case, we know from Example 5.6 that the associated bi-infinite
matrix is symmetric. Moreover, for any support set of the approximation of the
initial condition, we can make the approximate matrix square, and of full rank. This
implies that the set of active coefficients is invariant during the numerical integration
in time. The matrix is also very sparse, it is hence possible to consider an exact solver
for relatively high dimensions, depending on the sparsity of the initial condition.
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Figure 6.3: Test case for K “ 18, 26 and εi “ 2, i “ 1, 2, . . . , K. The left plot
shows linear convergence of the Backward Euler approximations. The right
plot shows the L2 norm of the solution decaying in time.
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[17] Ch. Schwab, E. Sülli Adaptive Galerkin approximation algorithms for partial
differential equations in infinite dimensions, Tech. Rep. 2011-69, Seminar for
Applied Mathematics, ETH Zurich, 2011.

[18] R. Spigler, M. Vianello (1995), Convergence analysis of the semi-implicit euler
method for abstract evolution equations, Numerical Functional Analysis and
Optimization, 16:5-6, 785-803

[19] T. Vidar Galerkin finite element methods for parabolic problems Springer,
2006.

58



Appendix A

Generalized knapsack problems

A.1 Problem setting

The adaptive solver relies on the possibility of iteratively finding appropriate
sparse operators increasing the value of an approximate solution, in terms of
residuals, at a corresponding computational cost. The problem of choosing
the appropriate operators is hence seen as generalized knapsack problem. We
specify this hereafter following [10]. Let M P N0, and for each m P M let
pcm

j qjPN0 and pωm
j qjPN0 be two increasing sequences, interpreted as costs and

values. We associate to each j “ pjmqmPM P NM
0 a cost

cj “
ÿ

mPM
cm

jm , (A.1)

and a value
ωj “

ÿ

mPM
ωm

jm . (A.2)

We are interested in maximizing ωj under a constraint on cj, or equivalently
minimizing cj under a constraint on ωj.

A.2 A sequence of optimal solutions

For each m PM and all j P N0, let

∆cm
j : cm

j`1 ´ cm
j and ∆ωm

j :“ ωm
j`1 ´ωm

j . (A.3)

We furthermore define quantities qm
j as the quotient of these two increments;

qm
j :“

∆ωm
j

∆cm
j

, m PM, j P N0. (A.4)

These values are interpreted as the value to cost ratio of passing to j` 1 from
j in the index m PM. We shall iteratively build a sequence pjkqkPN0 in NM,
such that each jk is optimal under some assumptions.
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A. Generalized knapsack problems

Assumption A.1 For all m PM,

cm
0 “ 0 and ∆cm

j ą 0 j P N0, (A.5)

i.e pcm
j qjPN0 is strictly increasing. Also, pωm

0 qmPM P `1pMq and pωm
j qjPN0 is

nondecreasing for all m P M, i.e ∆ωm
j ě 0 for all j P N0. Furthermore, for each

m PM, the sequence pqm
j qjPN0 is nonincreasing, i.e if i ě j, then qm

i ď qm
j . Finally,

for any ε ą 0, there are only finitely many m PM for which qm
0 ě ε.

The assumption that pqm
j qjPN0 is nonincreasing is equivalent to

ωm
i

ωm
j
ď

∆cm
i

∆cm
j

if i ě j (A.6)

if ∆ωm
j ą 0. In this sense, pωm

j qjPN0 increases more slowly than pcm
j qjPN0 .

Also, this assumption implies that if ∆ωm
j “ 0, then ωm

i “ ωm
j for all i ě j.

We define a total order on MˆN0 by

pm, jq ą pn, iq if

$

’

’

&

’

’

%

qm
j ą qm

i or

qm
j “ qn

i and m ă n or

qm
j “ qn

i and m “ n and j ă i.
(A.7)

To any sequence j “ pjmqmPM in N0 we associate the set

ttjuu :“ tpm, jq PMˆN0; j ă jmu . (A.8)

We now construct the sequence pjkqkPN0 in NM. Let j0 :“ 0 P NM, and
for all k P N0 we construct jk`1 from jk as follows. Let mk P N0 maximize
qm

jkm
. Existence of such maximum is guaranteed by Assumption A.1. If the

maximum is not unique, we select the smallest mk among all maxima. We
then define jk`1

mk
: jk

mk
` 1, and set jk`1

m :“ jk
m if mk ‰ m. For this sequence we

abbreviate ck :“ cjk and ωk :“ ωjk .

Lemma A.2 For all k P N0, ttkuu :“
!!

jk
))

consists of the fist k terms of MˆN0

with respect to the order ą.

Proof The case k “ 0 is trivial. By induction, if the assumption holds for
some k P N0,

ttk` 1uu “ ttkuu Y
!

pmk, jk
mk
q

)

, (A.9)

with pmk, jk
mk
q the ą-minimal element of the set

!

pm, jkmq; m PM
)

. For each

m P M, Assumption A.1 implies qm
i ď qm

jkmk
for all i ě jkmk

` 1. Therefore,

pmk, jk
mk
q ą pm, iq for all i ě jkm ` 1, and consequently pmk, jk

mk
q is the ą-

minimal element of pMˆN0qz ttkuu. ˝

Theorem A.3 For all k P N0, the sequence jk maximizes ωj among all finitely
supported sequences j “ pjmqmPM in N0 with cj ď ck. Furthermore, if c| ă ck and
there exist k pairs pm, iq PMˆN0 with ∆ωm

i ą 0, then ωj ă ωk.
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A.3. Numerical construction

Proof Let k P N and let j “ pjmqmPM be a finitely supported sequence of in
N0 with cj ď ck. By definition,

ωj “
ÿ

mPM
ωm

0 `
ÿ

mPM

jm´1
ÿ

i“0

qm
i ∆cm

i “ ωj0 `
ÿ

pm,iqPttjuu

qm
i ∆cm

i . (A.10)

Therefore, the assertion reduces to
ÿ

pm,iqPttjuuzttkuu

qm
i ∆cm

i ď
ÿ

pm,iqPttkuuzttjuu

qm
i ∆cm

i . (A.11)

Note that by (A.1) and (A.3)
ÿ

pm,iqPttjuuzttkuu

∆cm
i “ cj ´ c1 for c1 :“

ÿ

ppm,iqPttjuuXttkuu

∆cm
i . (A.12)

By Lemma A.2 and (A.7), q :“ qmk´1

jk´1
mk´1

satisfies q ď qm
i for all pm, iq P ttkuu, and

qm
i ď q for all pm, iq P pMˆN0qz ttkuu. In particular, q ą 0 if there exist k

pairs pm, iq PMˆN0 with qm
i ą 0 since # ttkuu “ k. Consequently,

ÿ

pm,iqPttjuuzttkuu

qm
i ∆cm

i ďq
ÿ

pm,iqPttjuuzttkuu

∆cm
i (A.13)

ďqpck ´ c1q ď
ÿ

pm,iqPttkuuzttjuu

qm
i ∆cm

i , (A.14)

and this inequality is strict if qi ą 0 and ck ą cj. ˝

A.3 Numerical construction

We now present greedy algorithms to construct the sequence pjkqkPN0 . We
shall assume that for each m P M, the sequences pcm

j qjPN0 and pcm
j qjPN0 are

stored as linked lists. We shall first assume that M is finite with #M :“ M.
We define a list N as the set of triples pm, jk

m, qm, jk
mq, sorted in ascending

order, with respect to ą. We assume to have a data structure enabling the
removal of the minimal element of the list, and the insertion of new elements.

Routine A.1 NextOptrj,N s Ñ rj, m,N s
m Ð PopMinpN q
jm Ð jm ` 1
q Ð pωm

jm`1 ´ωm
jmq{pc

m
jm`1 ´ cm

jmq

N Ð InsertrN , pm, jm, qqs

Proposition A.4 Let N0 be initialized as
 

pm, 0, qm
0 q; m PM

(

and j0 :“ 0 P NM
0 .

Then the recursive application of

NextOptrjk,Nks Ñ rjk`1, mk,Nk`1s (A.15)
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constructs the sequence pjkqkPN0 as defined above. Initialization of the data struc-
ture N0 requires OpM log Mq operations and OpMq memory. One step of (A.15)
requires OpMq operations if N is realized as a linked list, and Oplog Mq operations
if N is realized as a tree. The total number of operations required by the first k steps
is OpkMq in the former case and Opk log Mq in the latter. In both cases, the total
memory requirement for the first k steps is OpM` kq.

Proof Recursive application of NextOpt as in (A.15) constructs the sequence
pjkqkPN0 by Lemma A.2 and the definition of ą. In the k-th step, the element
mk is removed from N and reinserted in a new position. Therefore, the size
of N remains constant at M. The computational cost of (A.15) is dominated
by the insert oepration on N , which has the complexity stated above. ˝

We now turn to the case when M is countably infinite. By enumerating the
elements of M, it suffices suffices to consider the case M “ N. We assume
in this case that the sequence pqm

0 qmPM is nonincreasing.

As above, we use a list N of triples pm, jkm, qm
jk
m
q to construct the sequence

pjkqkPN0 . However, N should only store triples for which m is candidate for
the next value of mk, i.e all m with jk

m ‰ 0 and the smallest m with jk
m “ 0.

As in the finite case, N cn be realized as a linked list or a tree. The data
structure should provide a function for removing the smallest element with
respect to ą, and for inserting a new element.

Routine A.2 NextOptInfrj,N , Ms Ñ rj, m,N , Ms

m Ð PopMinpN q
jm Ð jm ` 1
q Ð pωm

jm`1 ´ωm
jmq{pc

m
jm`1 ´ cm

jmq

N Ð InsertrN , pm, jm, qqs
if m “ M then

M Ð M` 1
q Ð pωM

1 ´ωM
0 q{c

M
1

N Ð InsertrN , pM, 1, qqs

Proposition A.5 Let N0 be initialized as
 

p1, 0, q1q
(

, M0 :“ 1 and j0 :“ 0 P NM
0 .

Then the recursion

NextOptInfrjk,Nk, Mks Ñ rjk`1, mk,Nk`1, Mk`1s (A.16)

constructs the sequence pjkqkPN0 as defined above. For all k P N0, the ordered set Nk
contains exactly Mk elements, and Mk ď k. The k-th step of (A.16) requires Opkq
operations if N is realized as a linked list, and Opk log kq if N is realized as a tree.
The total number of operations required by the first k steps is Opk2q in the former
case and Opk log kq in the latter. In both cases, the total memory requirement for the
first k steps is Opkq.

Proof It follows from the definitions that recursive application of NextOptInf
as in (A.16) constructs the sequence pjkqkPN0 . In the k-th step, the element
mk is removed from N and reinserted in a new position. If mk “ M, an
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additional element is inserted, and M is incremented. Therefore, the number
of elements in N is M, and M ď k. The computational cost of (A.16) is
dominated by the insert operation on N , which has the complexity stated
above. ˝

Remark A.6 As mentioned above, pcm
j qjPN0 and pωm

j qjPN0 are assumed to be stored
in a linked list for eachm P M. By removing the first element from the Mk-th list
in the k-th step of (A.15) or (A.16), NextOpt and NextOptInf only ever access the
first two elements of one of these lists, which takes Op1q time. The memory locations
of the lists can be stored in a hash table for efficient access.

Remark A.7 An appropriate way to store pjkqkPN0 is to collect pmkqkPN0 in a linked
list. Then jk can be reconstructed by reading the first k elements of the list, which
takes Opkq time independantly of the size of the list. Also, the total memory require-
ment is Opkq is the first k elements are stored.
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