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Abstract

This master’s thesis explores a method to calculate the magnetic field generated by eddy
currents. It was introduced in a previous work by R. Hiptmair. The method is valid for
eddy currents generated by quasi-stationary exciting magnetic fields.
Inside the conductor a normal vectorial Maxwell problem is solved using vectorial

boundary element methods. Outside the conductor, for domains with trivial first coho-
mology group, a scalar potential approach is used. For more complicated domains that
do not have trivial first cohomology groups a more intricate special scalar potential with
certain discontinuities is used. This allows to apply scalar boundary element methods on
the outside of the conductor. For this case, new Calderon identities for the scalar prob-
lem are introduced. On the boundary of the conductor itself the equations are coupled
to solve the full eddy current problem.
The method is tested for various geometries and compared to exact solutions where

available.
If the domain outside the conductor does not have a trivial first cohomology group

the method as constructed is dependent on the construction of cutting surfaces. This
thesis manages to remove this dependence and reduce computations to the boundary of
the cutting surfaces only. These boundaries correspond to homology cycles.
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1 Introduction

Eddy currents are currents induced in an electric conductor when it is moved through
a magnetic field (ref. [11, p.298]). The eddy currents create magnetic fields which in-
teract with the magnetic field present and often significantly change the dynamics of
the system. As [11, p.298] states, “eddy currents are notoriously di�cult to calculate.”
Nevertheless they are of importance as metals moving in magnetic fields are abundant
in engineering applications.

This master’s thesis explores a boundary element method to calculate eddy currents
on the surfaces of conductors moving slowly through exciting magnetic fields. These
magnetic fields are generated by closed electric currents (such as in a coil or a circular
wire). This work deals with the motivation of the model, the derivation of the bound-
ary element method, the implementation of the boundary element method and possible
simplifications of it.

In published literature one can find multiple methods for calculating these eddy cur-
rents, such as a boundary element method based on the electric field (mentioned in [13]
and [14]) or a mixed BEM-FEM approach as mentioned in [24].
In [13] Ralf Hiptmair derives multiple boundary element methods for the calculation of
eddy currents and explores two of them in detail: one is based on formulating the prob-
lem with electric fields and the other is based on formulating the problem with magnetic
fields. The magnetic field method from [13] relies on a scalar potential formulation of the
magnetic field outside the conductor. This formulation allows the use of scalar boundary
element methods outside the conductor but places some requirements on the geometry
of the conductor. These geometrical constraints can lead to a complicated formulation.
This thesis builds on [13] and explores the method based on magnetic fields formulated
there. An attempt is made to simplify some of the complications stemming from the
geometry of the problem. [13] has an error in formulating the Calderon identities for the
case of objects with complicated geometries. This error is fixed in this thesis.

In Chapter 2 the eddy current model is introduced. This model is a simplification
of the Maxwell equations under specific assumptions which are discussed there. The
chapter also introduces standard notation for the electric and magnetic fields and their
respective potentials.
Chapter 3 deals with the functional analysis framework in which the calculations of

this thesis happen. It introduces the proper definition and setup of the function spaces
and the traces for the boundary. Function spaces and trace spaces for the magnetic fields
and the potentials are introduced and justified.
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The basic theory for the boundary element method is introduced in Chapter 4. It
consists of standard theory developed elsewhere that forms the basis for most boundary
element methods. Also, a standard notation for all operators is introduced.
Chapter 5 then deals with the application of boundary element theory to construct

boundary integral equations for the case where the conductor has a simple geometry.
The method consists of coupling boundary integral equations on the inside and on the
outside of the conductor. Simple geometry means that the complement of the conductor
has trivial first cohomology group.
In Chapter 6 the boundary integral equations from Chapter 5 are discretized and a

matrix equation is formulated to solve the problem computationally. An implementation
is provided using the framework of BETL2 [20] for the case where the conductor is a
sphere.
As the theory from Chapter 5 only holds for simple geometries, Chapter 7 introduces

boundary integral equations that allow conductors with more general geometries. The
corresponding boundary integral equations are derived; they di↵er substantially from
the rather standard equations in Chapter 5.
Chapter 8 deals with the discretization and implementation of the equations derived in

Chapter 5. First the new boundary integral equations are tested by themselves, then the
coupled eddy current problem itself is solved. A few issues remain, these are discussed.
The formulation in Chapter 7 and Chapter 8 includes cutting surfaces. These are

special surfaces that are needed for the method, however the method is to some degree
independent of the specific choice of cutting surfaces. In fact, the method can be reduced
to just the boundary of these cutting surfaces. This is discussed in Chapter 9.
Finally, Chapter 10 summarizes the thesis and gives an outlook on possible future

work.
The appendix (Chapter 11) contains code snippets that show how the methods applied

throughout the thesis are actually implemented using the BETL2 framework [20]. The
snippets are referenced throughout the thesis but moved to the appendix for readability
purposes.

2



2 Eddy current model problem

As stated in the introduction, eddy currents are caused by time-varying magnetic fields
in conductors. In this model the magnetic field will be caused by an exciting current js.
The conductor ⌦c, the interior of its complement ⌦e and the boundary between them
form the domain.

2.1 Domain

The domain consists of the conductor, a bounded open ⌦c in R3, the interior of the
complement of the conductor, ⌦e, which is empty space and the boundary between the
conductor and the air which is called �. A sketch of the situation for a model problem
(the simple geometry, which will be discussed in Chapters 5 and 6) can be seen in Figure
2.1.
It is assumed that the conductor is simple, linear, homogeneous and isotropic with
constant conductivity � > 0 and constant permeability µc > 0 (these approximations
are from the model used in [13] which introduces them in Section 2). It is also assumed
that the exciting current js is compactly supported outside the conductor.
Additionally it is assumed that the surface of ⌦c, �, is a smooth closed manifold. In
practice it will consist of piecewise polygons (which may be curved), as the input for the
numerical method will be a mesh of triangles.
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Figure 2.1: Sketch of the domain; the conductor ⌦c in gray and the exciting current js
in red

2.2 Maxwell equations

The eddy current model is based on the Maxwell equations. The basic Maxwell equations
(this version is taken from [11, p.330]) are:

divD = ⇢f

divB = 0

curlE = �@B
@t

curlH = jf +
@D

@t

(2.1)

H is understood to be 1
µB (because of the linear material, ref. [11, p.382]). D is

understood to be "E. ⇢f and jf are free charge and free current respectively. The
conductivity of the material is denoted by �.
From now on free charge will be assumed to be 0.
This version of the Maxwell equations is just one version; there are other versions that

may di↵er by scaling (ref. [11, p.326]). However, all describe the same physics.

In frequency domain (after a Fourier transform), the Maxwell equations are:
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divD = 0

divB = 0

curlE = �i!B = �i!µH

curlH = jf + i!D

(2.2)

where ! is the frequency.

2.3 Approximations

Some simplifications are made to the Maxwell equations in the eddy current model. It is
assumed that the field is quasi-stationary without displacement current (this is justified
in e.g. [7, p.151], [13, Chapter 2]).
This is a good approximation if !"0 ⌧ � (where "0 is the permittivity of vacuum). As
[13, Chapter 1] states, this means that the timescale is long enough so that space charges
do not need to be taken into account (this is the quasi-stationary part). This generally
holds “for good conductors and frequencies which are not too high” [7, p.151].
It is also necessary that the field is slowly varying, or as [7, (30)] puts it, !L

c ⌧ 1 with
c the speed of light and L the maximum distance that can occur between two points in
the conductor (this is the same requirement as [13, (1)]).

Omitting the displacement current turns (2.2) into:

divD = 0

divB = 0

curlE = �i!µH

curlH = jf

(2.3)

Outside the conductor the free current is just the exciting current js. Inside the con-
ductor (where there is conductivity) Ohm’s law gives jf = �E (ref. [11, p.285]). Ohm’s
law is a simplification of the Lorentz force law if the velocity of the charges is so small
that it can be disregarded (which is assumed here).

The final equations governing the model are thus:

divE = 0

divB = 0

curlE = �i!µH

curlH =

(
js in ⌦e

�E in ⌦c

(2.4)

This corresponds to the model used in [13, p.216].
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2.4 Potentials

As usual in electromagnetics it is possible to define potentials for the electric and mag-
netic fields. These are introduced here so that they can be used later on.
Similar to [11, pp.416] the way to define the magnetic potential A is such that B =
curlA. The gauge is chosen such that divA = 0.
Again similar to [11, pp.416] the way to define the electric potential V is such that
E = �gradV � i!A. As there are no free charges it is possible to set V = 0. This gives
E = �i!A and is called temporal gauge (ref. e.g. [18, p.676]).

This is consistent with the potentials as defined in [13, p.217].

2.5 Exciting field

The exciting current can be any su�ciently regular current as long as div js = 0 (which
means the current is closed). The exciting current creates the two exciting fields Es and
Hs. By Maxwell clearly divHs = 0 and as there are no free electric charges divEs = 0.
(2.3) together with the definition of the magnetic field then gives:

curlEs = �i!µ0Hs

curlHs = js
(2.5)

It is possible to conclude that:

Hs = � 1

i!µ0
curlEs (2.6)

This is consistent with [13, p.217].

2.6 Reaction field

In ⌦e it makes sense to introduce the so-called reaction fields (ref. [13, p.217]) Er :=
E�Es and Hr := H�Hs. (2.5) then gives:

curlHr = 0 in ⌦e

curl curlEr = 0 in ⌦e
(2.7)

Thus outside the conductor (⌦e) there is a double pair of fields: the exciting fields Hs

and Es and the reaction fields Hr and Er. Inside the conductor (⌦c) the fields H and
E will be called total fields, following the naming convention of [13].
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2.7 Continuity along interfaces

There are multiple areas with di↵erent conductivity and permittivity in this model. Be-
cause of this, jumps of the fields along interfaces occur. Jumps across the surface � are
written as [·]�.

For the magnetic field, [11, pp.273] states (where ? denotes the perpendicular part of
the field and || denotes the parallel part of the field):

[B?]� = 0 ) µ0H
?
s + µ0H

?
r = µcH

?

H||
s +H||

r = H|| +Kf ⇥ n = H|| (2.8)

(Kf , the free surface current, is 0)

For the electric field, [11, pp.178] states:

E?
s +E?

r = E?

1

µ0
E||

s +
1

µ0
E||

r =
1

µc
E|| (2.9)

These jump conditions can also be formulated using the trace operators from Chapter
3. They will be repeated in that chapter with updated notation.
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3 Function spaces

In this chapter the various function spaces needed for the correct formulation of boundary
integral equations are introduced, as well as the traces associated with them. The spaces
are formulated similarly to [13].

3.1 Spaces

Definition 3.1 The space for the magnetic field is (ref. [13, p.218]):

H(curl;⌦) := {� 2 L2(⌦); curl� 2 L2(⌦)} (3.1)

This can be justified physically. As e.g. [11, p.319] states the magnetic energy is an
integral of the vector potential and the current, A · j (times a constant). As the current
is the curl of the magnetic field (times a constant), the field and its curl should be in
L2(⌦) in order to ensure that the energy is finite.
One needs to be more diligent with formulating a space for the electric field, but as this
thesis only discusses methods based on the magnetic field it can be ignored for now.

Additionally, certain scalar traces formulated in the following section will need the
standard Sobolev-Hilbert spaces:

H1(⌦) := {' 2 L2(⌦); D' 2 L2(⌦)} (3.2)

and the associated H0(⌦), H
1
2 (⌦), H� 1

2 (⌦). Theory for these can be found in standard
PDE texts such as [9].
It is also necessary to introduce the following space (ref. e.g. [13, p.219]):

H1(4,⌦) := {' 2 H1(⌦); 4' 2 L2(⌦)} (3.3)

Definition 3.2 The di↵erent traces will map into di↵erent function spaces on the bound-
ary. These are:

H
� 1

2
? (curl�,�) := {� 2 H

� 1
2

? (�); curl�� 2 H� 1
2 (�)}

H
� 1

2
|| (div�,�) := {� 2 H

� 1
2

|| (�); div�� 2 H� 1
2 (�)}

(3.4)

which are based on the Sobolev-Hilbert spaces H
� 1

2
|| (�) (functions with tangential con-

tinuity) and H
� 1

2
? (�) (functions with normal continuity) on the boundary (ref. [13,

pp.218]). According to e.g. [13, p.219] or [4, Part II] the second space is the dual of
the first with respect to the usual L2(⌦) duality pairing.
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3.2 Traces

Definition 3.3 The following trace is the Dirichlet-like trace for the space H(curl;⌦):

�t : H(curl;⌦) ! H
� 1

2
? (curl�,�) �t� := n⇥ (�⇥ n)

��
�

(3.5)

The definition on the right only holds for smooth functions, but is easily extended to
all Sobolev functions in the respective space. This trace is called Dirichlet or tangential
trace.

The vector n is understood as the outward normal vector of ⌦c. The definition coincides
with the one from [13, p.219].

Definition 3.4 The following two traces are Neumann-like traces for the vectorial spaces:

�N : H(curl curl,⌦) ! H
� 1

2
|| (div�,�) �N� := curl�⇥ n

��
�

�n : H(div;⌦) ! H� 1
2 (�) �n� := n ·�

��
�

(3.6)

The definitions on the right again hold for smooth functions, but are easily extended to
all Sobolev functions in the respective space. They will be called Neumann and normal
trace.

For the Neumann trace, [13] uses a Beppo-Levi-type space. As this thesis will not deal
with the electric fields that live in this space, the normal curl space will su�ce. The
definitions coincide with [13, p.220].

For non-vectorial functions there are the standard Dirichlet and Neumann traces (as
for example used in [26]). They will be denoted by:

� : H1(⌦) ! H
1
2 (�)

@n : H1(4,⌦) ! H� 1
2 (�)

(3.7)

According to [13, Chapter 3] these are the correct trace spaces.

With the notation for trace operators the jump conditions for the magnetic field for-
mulated in (2.8) are:

µ0�
e
nHs + µ0�

e
nHr = µc�

c
nH

�etHs + �etHr = �ctH
(3.8)

where the superscript e denotes that the trace is taken from the outside and the super-
script c denotes that the trace is taken from the inside of the conductor.
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4 Boundary integral operators

In this chapter the boundary integral operators and their Calderon identities are intro-
duced. These operators are later used to formulate boundary integral equations and
solve the eddy current problem.
On the outside of the conductor, where there is 0 conductivity, the problem will be solved
like a scalar potential problem. The theory for this is well-established and will be based
on [28] in this thesis with notation from [13] for compatibility.
On the inside of the conductor the situation is more complicated. A vector-valued
curl curl problem has to be solved. Theory for this will be taken from [5], with notation
from [13].

4.1 Operators for scalar-valued functions

[28, p.111] gives the following fundamental solution to the Laplace equation in 3D:

G0(x, y) :=
1

4⇡

1

|x� y| (4.1)

With this fundamental solution the boundary integral operators can be defined:

Definition 4.1 The Laplace single layer operator V 0, the double and adjoint double
layer operators K0, K0,⇤ and the hypersingular operator D0 are defined (ref. e.g. [28,
pp.118], [13, p.225]) as following:

V 0 := �c 0
V : H� 1

2 (�) ! H
1
2 (�),

( 0
V ')(x) :=

Z

�
G0(x, y)'(y)dS(y), x /2 �

K0,⇤ :=
1

2
(@cn + @en) 

0
V : H� 1

2 (�) ! H� 1
2 (�)

K0 :=
1

2
(�c + �e) 0

K : H
1
2 (�) ! H

1
2 (�),

( 0
K')(x) :=

Z

�
(@cnyG0(x, y))'(y)dS(y), x /2 �

D0 := �@cn 0
K

(4.2)

where the superscript c means approaching from inside the conductor and the superscript
e approaching from outside the conductor.  0

V and  0
K are called single and double layer

potential respectively.
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The adjoint double layer operator can easily be expressed using the double layer oper-
ator as one is the adjoint of the other in the duality pairing of H� 1

2 (�) and H
1
2 (�) (ref.

[28, p.152]).
[28, Theorem 6.17] gives a more convenient representation for the hypersingular operator
on closed surfaces with continuous functions:

hDu, vi� =
1

4⇡

Z

�

Z

�

curl�u(y) · curl�v(x)
|x� y| dS(x)dS(y) (4.3)

where h·, ·i is the L2 scalar product.

For  0
V and  0

K , the following jump relations hold as of [28, pp.118]:

[� 0
V ]� = 0 [@n 

0
V ]� = � id

[� 0
K ]� = id [@n 

0
K ]� = 0

(4.4)

These operators together with the jump relations and the representation formula [28,
(6.1)] give the internal and external Calderon identity for the Laplace equation:

Lemma 4.2 For u 2 H1(�) solving the Laplace equation �4u = 0 on ⌦c [⌦e it holds:
✓
�cu
@cnu

◆
=

✓
1
2 id�K0 V 0

D0 1
2 id+K0,⇤

◆✓
�cu
@cnu

◆
(4.5)

✓
�eu
@enu

◆
=

✓
1
2 id+K0 �V 0

�D0 1
2 id�K0,⇤

◆✓
�eu
@enu

◆
(4.6)

Proof Ref. [28, p.137] and [28, p.182]. ⇤

4.2 Operators for vector-valued functions

For the vectorial case, a representation formula is needed from which a vectorial Calderon
identity is constructed. This formula is taken from [5, Chapter 4].
[5] works with the fundamental Helmholtz solution Ek(x, y) =

1
4⇡|x�y|e

ik|x�y| to solve a

curl curl�k2 type equation. As this thesis is concerned with solving a curl curl+2

type equation, the fundamental solution is (from [13, p.226] for compatibility):

G(x, y) :=
1

4⇡

e�|x�y|

|x� y|
(4.7)

with  = �ik, thus 2 = �k2 and, as in [5] Im(k) > 0 is required, Im(�/i) = Im(i) =
Re() > 0.
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The vectorial single layer potential is defined as in [5, p.15]:

( 
V�)(x) :=

Z

�
G(x, y)�(y)dS(y) (4.8)

The Maxwell single and double layer potentials are defined as in [5, p.15] (for  6= 0
only):1

 
A� :=  

V (�)� 1

2
grad 

V (div��)

 
C� := curl 

V (R�)
(4.9)

 
V is the scalar single layer potential with Helmholtz instead of Laplace fundamental

solution. R denotes the rotation around the outward normal vector by ⇡
2 . It is needed

in the formulation because [5] uses a rotated tangential trace instead of the normal tan-
gential trace (ref. [13, p.228]).

For  
A and  

C , the following jump relations hold as of [5, Theorem 7]:

[�t 

A]� = 0 [�N 


A]� = � id

[�t 

C ]� = � id [�N 


C ]� = 0

(4.10)

With these operators the Stratton-Chu representation formula [5, p.16] holds:

U =  
C�

c
tU+ 

A�
c
NU (4.11)

for a U such that curl curlU+ 2U = 0.
Taking the Dirichlet trace from inside yields (ref. [13, (36)] and [5, Chapter 5]):

�ctU = �ct 

C�

c
tU+ �ct 


A�

c
NU =

✓
1

2
id+C

◆
�ctU+A�cNU (4.12)

Taking the Neumann trace from inside yields (ref. [13, (36)] and [5, Chapter 5]):

�cNU = �cN 

C�

c
tU+ �cN 


A�

c
NU = N�ctU+

✓
1

2
id+B

◆
�cNU (4.13)

where the following definitions were used:

Definition 4.3 The Maxwell single layer operator A, the double and adjoint double
layer operators C, B and the hypersingular operator N are defined as following (ref.
[13, p.229]):

1Note that this is slightly di↵erent from the  
SL used in [5], as the Neumann trace there is the normal

Neumann trace divided by i.
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A = �ct 

A : H

� 1
2

|| (div�,�) ! H
� 1

2
? (curl�,�)

C =
1

2
(�ct + �et) 


C : H

� 1
2

? (curl�,�) ! H
� 1

2
? (curl�,�)

B =
1

2
(�cN + �eN ) 

A : H
� 1

2
? (curl�,�) ! H

� 1
2

? (curl�,�)

N = �cN 

C : H

� 1
2

? (curl�,�) ! H
� 1

2
|| (div�,�)

(4.14)

The adjoint double layer operator can be expressed using the double layer operator
(ref. [13, Theorem 10]) as they are negative adjoints of each other with the respective
duality pairing.
The hypersingular operator can be expressed using the vectorial single layer and single
layer potentials and a rotation R by ⇡

2 around the outward normal (ref. [13, (55)]):

hNu,vi
H

� 1
2

|| (div�,�),H
� 1

2
? (curl�,�)

= 2h�t 
V Ru,Rvi

H
� 1

2
|| (div�,�),H

� 1
2

? (curl�,�)

+ h� 
V curl� u, curl� vi

H
1
2 (�),H� 1

2 (�)

(4.15)

The calculations of (4.12) and (4.13) are summarized in the Maxwell Calderon iden-
tities (ref. [13, (36)]):

Lemma 4.4 For U 2 H(curl;⌦c) such that curl curlU+ 2U = 0 it holds:

✓
�ctU
�cNU

◆
=

✓
1
2 id+C A

N 1
2 id+B

◆✓
�ctU
�cNU

◆
(4.16)

The Calderon identities together with the physics from Chapter 2 can now be used to
solve the eddy current problem.
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5 The method for simple geometries

The Calderon identities from Chapter 4 for the Laplace equation (outside) and the
Maxwell equation (inside) can now be combined to form a boundary element method to
solve the eddy current problem.
For this chapter it will be assumed that the geometry of � is simple, that means ⌦e

has trivial first cohomology group. This will allow easy construction of scalar potentials
in the outside region ⌦e.

5.1 Inside the conductor

Inside ⌦c, (2.4) states:

curlE = �i!µcH

curlH = �E
(5.1)

This gives:

curl curlH = � curlE = �i!�µcH

curl curlH+ 2H = 0
(5.2)

with  =
p
i!�µc. As the physical constants !, �, µc are all positive, Re > 0.

This allows the application of the Calderon identity (4.16) to the interior total field
H to obtain:

✓
�ctH
�cNH

◆
=

✓
1
2 id+C A

N 1
2 id+B

◆✓
�ctH
�cNH

◆
(5.3)

By (5.2), H = � 1
2 curl curlH. Testing this with some � 2 H(curl;⌦) gives (with

h·, ·il the duality pairing between the div and curl spaces on the boundary):

hH,�iL2(⌦c) = � 1

2
hcurl curlH,�iL2(⌦c)

= � 1

2
�
hn⇥ curlH,�il + hcurlH, curl�iL2(⌦c)

�

= � 1

2
�
h�cNH, �ct�il + hcurlH, curl�iL2(⌦c)

�
(5.4)

by integration by parts (integration by parts for curl follows from Gauss’s divergence
theorem as seen in [22, Chapter 12] and basic vector calculus identities as seen in [11,
Back matter]).
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5.2 Outside the conductor

In ⌦e, (2.4), (2.7) and the fact that div js = 0 give:

divHr = 0

curlHr = 0
(5.5)

Now the assumption of trivial first cohomology group will be used:

Lemma 5.1 Let U 2 H(curl;M) where M is a smooth manifold with trivial first
cohomology group. Then there is a potential function u 2 H1(4,M) such that gradu =
U as long as curlU = 0.
The potential is not unique (ref. [13, Chapter 4]).

Proof If the first de Rham cohomology group of M is trivial, for every di↵erential 1-
form ! that is a cocycle (i.e. d! = 0) there is a function (a 0-form) u such that du = !.1

The de Rham theorem (ref. [3, p.287]) states that de Rham and singular cohomology
are isomorphic for smooth manifolds. This means the assumption of trivial first coho-
mology group su�ces to have this property.

The curl in a di↵erential geometric setting is associated with the exterior derivative
of the corresponding covector 1-form (ref. [3, p.269]), so if ! is the covector field corre-
sponding to U, it is a cocycle. The gradient in a di↵erential geometric setting gives the
vector field corresponding to the covector 1-form generated by the exterior derivative [3,
p.80]. This means gradu = U.

The potential is clearly not unique as any constant function can be added to it without
changing its important properties. ⇤

This carries over into the non-smooth setting.
This means it is possible to introduce a potential function hr such that:

gradhr = Hr

4hr = divHr = 0
(5.6)

This is the Laplace equation. This means the Calderon identity (4.6) applies:

✓
�ehr
@enhr

◆
=

✓
1
2 id+K0 �V 0

�D0 1
2 id�K0,⇤

◆✓
�ehr
@enhr

◆
(5.7)

1Terminology in this section is from [3] but should be standard.
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By the discussion in Chapter 3 and Lemma 5.1, hr should be in H1(4,⌦e). It is
possible to test this with the Dirichlet trace of some ' 2 H1(⌦e) and apply integration
by parts to obtain:

hgradhr,grad'iL2(⌦e) = hn · gradhr,'id � h4hr,'iL2(⌦c)

= h@enhr, �e'id
(5.8)

where h·, ·id denotes the duality pairing between the respective �1
2 and +1

2 Sobolev-
Hilbert spaces on the boundary.

5.3 Combining inside and outside

At this point a decay condition is added that assumes that the magnetic field decays
when going to infinity fast enough. This makes sense, as H should have finite energy.
The two test functions � in ⌦c and ' in ⌦e can be combined into a test function for all
of R3, V 2 H(curl;R3), curlV

��
⌦e

= 0 by piecewise definition:

V := � in ⌦c

V := grad' in ⌦e

�ct� = �et grad'

(5.9)

where the usual jump relations (2.8) must hold, but this time with no excitation field.
With the decay conditions, (2.4) and more integration by parts (ref. [13, (19)]):2

�i!µhH,ViL2(R3) = hcurlE,ViL2(R3) = hE, curlViL2(R3)

= hE, curl�iL2(⌦c) =
1

�
hcurlH, curl�iL2(⌦c)

(5.10)

To simplify notation, let µr = µc/µ0 and ⌧ = 1
i!µ0�

= µr

2 . Split into contributions of
⌦c and ⌦e this gives:

�µrhH,�iL2(⌦c) � hgradhr +Hs,grad'iL2(⌦e) = ⌧hcurlH, curl�iL2(⌦c)

�µrhH,�iL2(⌦c) � hgradhr,grad'iL2(⌦e) � h�enHs,'id = ⌧hcurlH, curl�iL2(⌦c)

(5.11)

where in the last step integration by parts and divHs = 0 are used.

Inserting (5.4) and (5.8) into above equation gives (ref. [13, (51)]):

⌧h�cNH, �ct�il � h@enhr, �e'id = h�enHs, �
e'id (5.12)

2this derivation is also inspired by [2, Chapter 8]
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Combining (5.3) and (5.7) with (5.12) and the tangential jump relations (2.8) gives
(ref. [13, (54)]):

Theorem 5.2 The full boundary integral equations needed to solve the eddy current
problem with the exciting field Hs are:

⌧ hN grad� �
ehr,grad� �

e'il +
⌦
D0�ehr, �

e'
↵
d
+ ⌧ h(0.5 id+B)�cNH,grad� �

e'il
�
⌦
(0.5 id�K0,⇤)@enhr, �

e'
↵
d
= h�enHs, �

e'id � ⌧ hN�etHs,grad� �
e'il

(5.13a)

h�cN�, (C � 0.5 id)grad� �
ehril + h�cN�,A�cNHil = h�cN�, (0.5 id�C)�etHsil

(5.13b)
⌦
@en', V

0@enhr
↵
d
+
⌦
@en', (0.5 id�K0)�ehr

↵
d
= 0 (5.13c)

The operators are as defined in Chapter 4.
The trial/test spaces are:

�ehr, �
e' 2 H

1
2 (�)

@enhr, @
e
n' 2 H� 1

2 (�)

�cNH, �cN� 2 H
� 1

2
|| (div�,�)

Proof The first equation follows from the bottom line of (5.7), the bottom line of (5.3)
and (5.12).
The second equation follows from the top line of (5.3).
The third equation follows from the top line of (5.7).

Throughout the calculations, �ctH = grad� �
ehr + �etHs and �ct� = grad� �

e' have
to be used. ⇤
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6 Implementation of the method for simple
geometries

This chapter is about the implementation of the boundary element method for simple
geometries (i.e. the ones where the first cohomology group of ⌦e is trivial). First the dis-
cretization of the functional spaces is discussed, then the discretization of the boundary
element operators and the boundary element equations. Subsequently the results are pre-
sented for the case where � is the 2-sphere and are compared with an analytical solution.

The framework used for the implementation that does all the discretization and setup
of operators is BETL2 [20]. The actual construction of meshes is done with Gmsh [10]
and the visualization is done with Paraview [21].

6.1 Discretization of spaces and operators in BETL2

BETL2 o↵ers tools for the discretization of the boundary functional spaces with functions
of order i with usually i = 0, 1, 2. The following is how the discretized BETL2-spaces
will be called in this thesis:

Definition 6.1 H̃(0) is the discretization of H� 1
2 (�) with piecewise continuous func-

tions of order 0. It has dimension n0.
H̃(1) is the discretization of H

1
2 (�) with continuous piecewise linear functions of order

1. It has dimension n1.

H̃(div) is the discretization of H
� 1

2
|| (div�,�) with edge functions of order 1. It has di-

mension nedge.

H̃(curl) is the discretization of H
� 1

2
? (curl�,�) with edge functions of order 1. It has

dimension nedge.

These are all finite-dimensional vector spaces and the functions mapping between them
are always understood as matrices. The way the spaces are actually implemented in
BETL2 (using code) can be seen in the appendix in Section 11.1.

For all these spaces, BETL2 has the corresponding single and double layer operators
on a trial space tested with a test space. These will be denoted by ⇤

SL(test, trial) and
⇤
DL(test, trial). The actual implementation of the operators in C++ code is discussed

in the appendix in Section 11.5.
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For grad�, curl� and div�, BETL2 o↵ers the following discretizations respectively:

Gg : H̃(1) ! H̃(curl), Gg 2 Cnedge⇥n1

Gc : H̃(1) ! H̃(div), Gc 2 Cnedge⇥n1

Gd : H̃(div) ! H̃(0), Gd 2 Cn0⇥nedge

(6.1)

These are matrices, their sizes correspond to the respective degrees of freedom of the
element spaces’ discretizations (where Cn⇥m is the space of complex n ⇥ m matrices).
The implementation of these operators in C++ code is discussed in the appendix in
Section 11.2.
For purely notational purposes the rotation operator, which rotates around the out-

ward unit normal by ⇡
2 is introduced as R. In the implementation with BETL2 this is

not actually needed, as BETL2 rotates automatically depending on which test and trial
spaces are used so that the space H̃(curl) is always matched with its dual H̃(div).1

The scalar boundary integral operators from Chapter 4 are implemented as follows:

Ṽ 0 = ⇤0
SL(H̃(0), H̃(0)), Ṽ 0 2 Cn0⇥n0

K̃0 = ⇤0
DL(H̃(0), H̃(1)), K̃0 2 Cn0⇥n1

K̃0,⇤ = (K̃0)T K̃0,⇤ 2 Cn1⇥n0

D̃0 = GT
c ⇤

0
SL(H̃(div), H̃(div))Gc, D̃0 2 Cn1⇥n1

(6.2)

As before, these are matrices, their sizes correspond to the respective degrees of freedom
of the element spaces’ discretizations. The superscript T denotes the transpose of ma-
trices.

The vectorial boundary integral operators are implemented as follows:

Ã = ⇤
SL(H̃(div), H̃(div)) +

1

2
GT

d⇤

SL(H̃(0), H̃(0))Gd

C̃ = ⇤
DL(H̃(div), H̃(curl))

B̃ = �(C̃)T

Ñ = 2RT⇤
SL(H̃(div), H̃(div))R

Ã, C̃, B̃, Ñ 2 Cnedge⇥nedge

(6.3)

As before, these are matrices, their sizes correspond to the respective degrees of freedom
of the element spaces’ discretizations. The implementation of N lacks the curl� parts
from (4.15). This is irrelevant however: wherever N will be used in the actual method
it will always be composed with at least one Gg and curl� grad� = 0.

1In Section 11.2 it is mentioned that the gradient into the curl space is currently implemented incorrectly.
This holds for the rotation as well: it happens in the wrong direction. This has to be fixed in code
by simply adding a minus sign.
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6.2 The discretized boundary integral equation

With all the discretized boundary integral operators defined as matrices, the discretized
version of Theorem 5.2 is: Seek u 2 H̃(1), ⌘ 2 H̃(div) and  2 H̃(0) such that, for
� 2 H̃(curl) and ⌫ 2 H̃(0):

0

@
⌧GT

g Ñ
Gg + D̃0 ⌧GT

g (0.5M + B̃) K̃0,⇤ � 0.5M
(C̃ � 0.5M)Gg Ã 0
0.5M � K̃0 0 Ṽ 0

1

A

0

@
u
⌘
 

1

A =

0

@
M⌫ � ⌧GT

g Ñ
�

(0.5M � C)�
0

1

A

(6.4)

where M is the respective mass matrix here with the appropriate test and trial space.
The implementation of the mass matrices in C++ code is discussed in the appendix in
Section 11.3.
In the notation of Chapter 5, u corresponds to �ehr, ⌘ corresponds to �cNH and  cor-
responds to @enhr. The exciting field data � corresponds to �etHs, the exciting field data
⌫ corresponds to �enHs. The C++ code used for the incorporation of the boundary
conditions is explained in the appendix in Section 11.6.

Using properties of the particular operator allows the simplification of the system to:

0

@
N �CT �KT

C ⌧ Ã 0
K 0 Ṽ 0

1

A

0

@
u
⌘
 

1

A =

0

@
f
g
0

1

A (6.5)

where some notations have been simplified:

N := ⌧GT
g Ñ

Gg + D̃0

C := ⌧(C̃ � 0.5M)Gg

K := 0.5M � K̃0

f = M⌫ � ⌧GT
g Ñ

�

g = ⌧(0.5M � C̃)�

(6.6)

Because of the gauging freedom of scalar potentials there is no unique solution u to
this system. For this to happen the additional constraint that �ehr integrates to 0 over �
has to be incorporated. The way this is done is discussed in the appendix in Section 11.4.

6.3 Results

The equation (6.5) has been solved for a sphere with radius a = 0.05 sitting inside a
simple wire coil of radius b = 0.065 on which a constant current j0 = 106 is the exciting
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number of bdry
elements rel. error u rel. error ⌘ rel. error  
128 0.335 0.232 0.234
512 0.163 0.111 0.0785
2048 0.080 0.052 0.022
8192 0.040 0.025 0.007

Table 6.1: L2 errors of the method described in this chapter. u is compared to the exact
solution,  is compared to an interpolation of the exact solution in H̃(0) and
⌘ is not compared to the exact Neumann trace of the interior magnetic field,
but to minus its conjugate.

current. The calculation of the corresponding magnetic field given this current can be
found in [17, pp.181]. The analytical solution to compare with is taken from [25].
Further parameters are ! = 2⇡ · 104, � = 2 · 106, µr = 10. The linear system was solved
with Eigen’s partialPivLu [8].

A picture of the method’s results can be seen in Figure 6.1, a table with error analysis
can be seen in Table 6.1. The C++ code that is used to produce the visualization is
explained in the appendix in Section 11.7.
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Figure 6.1: A visualization of the real parts of u and the real part of the magnitude
of grad� u, approximations of �ehr and �et gradhr on a sphere with 512
triangular elements
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7 Derivation of the method for complicated
geometries

In Chapter 5 it was assumed that ⌦e has trivial first cohomology group in order to find
a scalar potential for the outside Laplace problem. As this restriction excludes many
interesting geometries it is necessary to find a method that also works if ⌦e has nontrivial
first cohomology. This chapter discusses the reformulation of the method for such cases.
The chapter takes its inspiration from [13] but reformulates many equations.

7.1 Inside the conductor

Inside ⌦c the model remains the same as in Chapter 5 as the model does not change with
a more complicated geometry. The standard vectorial Calderon identity (5.3) holds:

✓
�ctH
�cNH

◆
=

✓
1
2 id+C A

N 1
2 id+B

◆✓
�ctH
�cNH

◆
(7.1)

Weakly tested with µ 2 H
� 1

2
|| (div�,�), the first line of (7.1) gives:

hµ, �ctHi� = hµ, (C + 0.5 id) �ctHi� + hµ,A�cNHi� (7.2)

By the argumentation from Chapter 5 it makes sense to test the second line of (7.1)

with V 2 H
� 1

2
? (curl�,�), curl�V = 0:

hV, �cNHi = hV, (B + 0.5 id) �cNHi� + hV,N�ctHi� (7.3)

7.2 Outside the conductor

Outside the conductor, in ⌦e, the model is more complicated. The calculation from
Chapter 5 used the assumption that ⌦e had trivial first cohomology. This assumption
is now dropped.
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Figure 7.1: Sketch of a torus with the cutting surface ⌃ in blue

7.2.1 Finding the correct function space

As � is a smooth closed surface embedded in R3, the classification theorem of compact
orientable surfaces [16, p.204] states that it is a k-torus. For the k-torus there is a simple
method to trivialize the first cohomology group of ⌦e by introducing cutting surfaces:

Definition 7.1 If � is a k-torus forming the boundary between ⌦c and ⌦e, let ⌃1, ...,⌃k

be compact oriented surfaces with trivial reduced cohomology (not intersecting each other)
that fill the k holes of the torus �. These surfaces are called Seifert surfaces (ref. [23,
pp.15]).
Define as well:

⌦0
e := ⌦e\(⌃1 [ ... [ ⌃k)

�0 := � [ ⌃1 [ ... [ ⌃k

(ref. [13, Chapter 4])

An example for cutting surfaces for a torus can be seen in Figure 7.1.

⌦0
e from Definition 7.1 has trivial first cohomology group by construction and curlHr =

0 there. This means it is possible to find a potential hr 2 H1(4,⌦0
e) such that:

]gradhr = Hr

e4hr = divHr = 0
(7.4)

where ]grad is the gradient in ⌦0
e, e4 is the Laplacian in ⌦0

e, if (2.7) holds.

The space H1(4,⌦0
e) however is too large to look for a solution in. A few properties

of the solution hr can be found that are summarized in Lemma 7.2:
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Lemma 7.2 The solution hr to (7.4) fulfills the following properties:

(i) The gradient ggradhr is continuous along all the cutting surfaces.
(ii) The function hr has a constant jump across each cutting surface.

Proof (i) The continuity of ]gradhr along cutting surfaces follows from the fact that
]gradhr = Hr. The discussion in Chapter 2 of Hr as a physical quantity gives the con-
tinuity of Hr in all of ⌦e (not just ⌦0

e).

This also means that although hr 2 H1(4,⌦0
e) it holds that ]gradhr can be easily ex-

tended to H(curl;⌦e). From now on ]gradhr will always mean the extended, continuous
version in ⌦e.

(ii) The constant jump of hr follows from Ampère’s law of magnetic fields. As of (2.7)
it holds in all of ⌦e:

curl ]gradhr = curlHr = 0 (7.5)

This means by Stokes that for a closed curve C not passing through a cutting surface:
Z

C

]gradhr(x) · t(x) dl(x) = 0 (7.6)

where t(x) is an appropriate tangent field. This is evident, as by the fundamental
theorem of line integrals [22, Chapter 5.3] it should hold that:

hr(x2)� hr(x1) =

Z

G

]gradhr(x) · t(x) dl(x) (7.7)

where G is a curve from x1 to x2; thus at any point x where hr is continuous it must
hold hr(x)� hr(x) = 0.

Consider now the points x+" and x�" which are at a distance of " from the same point
x0 of the cutting surface, just above and just below. In the limit "! 0 the curve C from
x�" to x+" (inside ⌦0

e, not along the cutting surface) is a closed curve in ⌦e.
Because C passes a cutting surface, Stokes and (7.5) do not hold, so the integral will be
some quantity depending on the point of discontinuity:

Z

C

]gradhr(x) · t(x) dl(x) = I(x0) (7.8)

This function I signifies the jump of hr across the cutting surface, as (7.7) gives hr(x+" )�
hr(x�" ) = I(x0). In the electromagnetic context this is the current flowing inside the
torus.
However I(x0) is independent of the chosen x0 on the cutting surface. Consider a second
point x00 somewhere on the cutting surface. Then it holds:

I(x00) = I(x0) +

Z

G+

]gradhr(x) · t(x) dl(x) +
Z

G�
]gradhr(x) · t(x) dl(x) (7.9)
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where G+ is a path from x+"
0 to x+" and G� is a path from x�" to x�"

0. As ]gradhr is
continuous across the cutting surface, the two additional integrals must cancel in the
limit "! 0.
This means I(x00) = I(x0). Thus the jump of hr across any cutting surface is constant.

⇤

This is consistent with [13, Chapter 4].

Lemma 7.2 motivates Definition 7.3:

Definition 7.3

H1
⌃(⌦

0
e) := {' 2 H1(4,⌦0

e) | [�']⌃i = const, (@n')⌃+
i
= �(@n')⌃�

i
8i}

[f ]⌃i is the jump of f across ⌃i.
⌃+
i is the “above part” of ⌃i oriented upwards and ⌃�

i is the “below part” of ⌃i oriented
downwards.
The corresponding Dirichlet and Neumann trace spaces are:

H
1
2
⌃ (�

0) := {v 2 H
1
2 (�\ [i @⌃i) | v 2 H

1
2 (⌃+

i ), v 2 H
1
2 (⌃�

i ), [v]⌃i = const 8i}

H
� 1

2
⌃ (�0) := {v 2 H� 1

2 (�\ [i @⌃i) | v 2 H� 1
2 (⌃+

i ), v 2 H� 1
2 (⌃�

i ), v|⌃+
i
= �v|⌃�

i
8i}

Lemma 7.2 shows that hr must be in H1
⌃(⌦

0
e): the constant jump in Dirichlet trace as

well as the continuity in the gradient (which leads to opposite Neumann traces due to the
opposite orientation of normal vectors) come from Lemma 7.2. It is enough to test with
the appropriate test functions from this space in a weak formulation. This is beyond
the scope of this thesis; theory on this can be found in e.g. [1, Section 4], [13, Theorem 2].

7.2.2 Calderon identities

As discussed in Section 7.2, inside the conductor the normal Calderon identities hold.
Outside the conductor however they do not hold; a modified version has to be used which
is derived from Green’s third identity (the representation formula).
The calculations in this subsection are done just for the case of the torus (where there
is one cutting surface, ⌃), but they easily extend to the general case.

Consider the cross-section of the torus with infinitesimally thin cutting surface dis-
played in Figure 7.2. This model provides a closed, oriented surface �0 = � [ ⌃+ [ ⌃�

on which integral equations can be formulated.

The first Calderon identity in this model takes the form of Lemma 7.4:
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Figure 7.2: Cross-section of a torus where the cutting surface ⌃ has been expanded to be
infinitesimally thick. Its above part is ⌃+, its below part is ⌃�. The whole
surface is �0 = � [ ⌃+ [ ⌃�.

Lemma 7.4 Let hr be the solution to (7.4).
Let VS be the single layer operator over the surface S and KS the double layer operator
over the surface S. Then it holds:

�ehr = �V�@
e
nhr +

✓
K� +

1

2

◆
�ehr + [h]⌃K⌃+1 on � (7.10a)

�+hr = �V�@
e
nhr +K��

ehr + [h]⌃

✓
K⌃+1 +

1

2

◆
on ⌃+ (7.10b)

��hr = �V�@
e
nhr +K��

ehr + [h]⌃

✓
K⌃+1� 1

2

◆
on ⌃� (7.10c)

Proof With G(x, y) being the Green’s kernel for the Laplace equation, Green’s third
identity is [9, p.712] (notice the changed signs, as in this formulation the normal vectors
point outwards):

�hr(x) =

Z

�0
G(x, y)

@

@ny
hr(y)dS(y)�

Z

�0
hr(y)

@

@ny
G(x, y)dS(y), x /2 �0 (7.11)

When taking the Dirichlet trace in the limit x ! x0 2 �, the equation becomes:

�ehr(x0) = �
Z

�
G(x0, y)@

e
nhr(y)dS(y) +

Z

�
�ehr(y)@

e
nyG(x0, y)dS(y) +

1

2
�ehr(x0)

�
Z

⌃+
G(x0, y)@

+
n hr(y)dS(y)�

Z

⌃�
G(x0, y)@

�
n hr(y)dS(y) (these cancel)

+

Z

⌃+
�+hr(y)@

+
n yG(x0, y)dS(y) +

Z

⌃�
��hr(y)@

�
n yG(x0, y)dS(y)

(7.12)
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where the limit properties of the single and double layer potential [28, Chapter 6], [28,
Lemma 6.7], [28, Lemma 6.11] have been used.
The superscripts + and � to the trace operators mean the trace is taken from above or
below the cutting surface (as notions of internal and external trace do not make sense
on the cutting surface).
Due to the constant jump property, ��hr = �+hr � [h]⌃. This gives:

�ehr(x0) = �
Z

�
G(x0, y)@

e
nhr(y)dS(y) +

Z

�
�ehr(y)@

e
nyG(x0, y)dS(y) +

1

2
�ehr(x0)

+

Z

⌃+
�+hr(y)@

+
n yG(x0, y)dS(y) +

Z

⌃�
(�+hr(y)� [h]⌃)@

�
n yG(x0, y)dS(y)

= �
Z

�
G(x0, y)@

e
nhr(y)dS(y) +

Z

�
�ehr(y)@

e
nyG(x0, y)dS(y) +

1

2
�ehr(y)

+ [h]⌃

Z

⌃+
@+n yG(x0, y)dS(y)

(7.13)

In the operator notation this becomes:

�ehr = �V�@
e
nhr +

✓
K� +

1

2

◆
�ehr + [h]⌃K⌃+1 on � (7.14)

When taking the Dirichlet trace in the limit x ! x0 2 ⌃+, the equation becomes:

�+hr(x0) = �
Z

�
G(x0, y)@

e
nhr(y)dS(y) +

Z

�
�ehr(y)@

e
nyG(x0, y)dS(y)

�
Z

⌃+
G(x0, y)@

+
n hr(y)dS(y)�

Z

⌃�
G(x0, y)@

�
n hr(y)dS(y) (these cancel)

+

Z

⌃+
�+hr(y)@

+
n yG(x0, y)dS(y) +

Z

⌃�
��hr(y)@

�
n yG(x0, y)dS(y)

+
1

2
�+hr(x0)�

1

2
��hr(x0)

= �
Z

�
G(x0, y)@

e
nhr(y)dS(y) +

Z

�
�ehr(y)@

e
nyG(x0, y)dS(y)

[h]⌃

Z

⌃+
@+n yG(x0, y)dS(y) +

1

2
[h]⌃

(7.15)

Here the limit properties have to be used for the ⌃+ and the ⌃� part of the integral, as
they are infinitesimally close.
With the operator notation from above:

�+hr = �V�@
e
nhr +K��

ehr + [h]⌃

✓
K⌃+1 +

1

2

◆
on ⌃+ (7.16)
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With a similar calculation for ⌃� it holds:

��hr = �V�@
e
nhr +K��

ehr � [h]⌃

✓
K⌃�1 +

1

2

◆

= �V�@
e
nhr +K��

ehr + [h]⌃

✓
K⌃+1� 1

2

◆
on ⌃�

(7.17)

This proves the first Calderon identity. ⇤

The second Calderon identity in this model takes the form of Lemma 7.5

Lemma 7.5 Let hr be the solution to (7.4).
Let DS be the hypersingular operator over the surface S and K⇤

S the adjoint double layer
operator over the surface S. Then it holds:

@enhr =

✓
�K⇤

� +
1

2

◆
@enhr �D��

ehr � [hr]⌃D⌃+1 on � (7.18a)

@+n hr = �K⇤
�@

e
nhr �D��

ehr � [hr]⌃D⌃+1 + @+n hr on ⌃+ (7.18b)

@�n hr = �K⇤
�@

e
nhr �D��

ehr � [hr]⌃D⌃+1� @+n hr on ⌃� (7.18c)

Proof Again, start with Green’s third identity for the Green’s kernel G(x, y):

hr(x) = �
Z

�0
G(x, y)

@

@ny
hr(y)dS(y) +

Z

�0
hr(y)

@

@ny
G(x, y)dS(y), x /2 �0 (7.19)

This time the Neumann trace is taken. In the limit x ! x0 2 � this yields:

@enhr(x0) = �
Z

�
@enxG(x0, y)@

e
nhr(y)dS(y) +

1

2
@enhr(x0) + @enx

Z

�
�ehr(y)@

e
nyG(x0, y)dS(y)

�
Z

⌃+
@enxG(x0, y)@

+
n hr(y)dS(y)�

Z

⌃�
@enxG(x0, y)@

�
n hr(y)dS(y)

+ @enx

Z

⌃+
�+hr(y)@

+
n yG(x0, y)dS(y) + @enx

Z

⌃�
��hr(y)@

�
n yG(x0, y)dS(y)

= �
Z

�
@enxG(x0, y)@

e
nhr(y)dS(y) +

1

2
@enhr(x0) + @enx

Z

�
�ehr(y)@

e
nyG(x0, y)dS(y)

+ [hr]⌃@
e
nx

Z

⌃+
@+n yG(x0, y)dS(y)

(7.20)

where again a limit property from [28, Chapter 6], namely [28, Lemma 6.8] was used.
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In the operator notation this becomes:

@enhr =

✓
�K⇤

� +
1

2

◆
@enhr �D��

ehr � [hr]⌃D⌃+1 on � (7.21)

When taking the Neumann trace in the limit x ! x0 2 ⌃+ this is:

@enhr(x0) = �
Z

�
@+n xG(x0, y)@

e
nhr(y)dS(y) + @+n x

Z

�
�ehr(y)@

e
nyG(x0, y)dS(y)

�
Z

⌃+
@+n xG(x0, y)@

+
n hr(y)dS(y)�

Z

⌃�
@+n xG(x0, y)@

�
n hr(y)dS(y)

+ @+n x

Z

⌃+
�+hr(y)@

+
n yG(x0, y)dS(y) + @+n x

Z

⌃�
��hr(y)@

�
n yG(x0, y)dS(y)

+
1

2
@+n hr(x0)�

1

2
@�n hr(x0)

= �
Z

�
@+n xG(x0, y)@

e
nhr(y)dS(y) + @+n x

Z

�
�ehr(y)@

e
nyG(x0, y)dS(y)

+ [hr]⌃@
+
n x

Z

⌃+
@+n yG(x0, y)dS(y) + @+n hr(x0)

(7.22)

In the operator notation this becomes

@+n hr = �K⇤
�@

e
nhr �D��

ehr � [hr]⌃D⌃+1 + @+n hr on ⌃+ (7.23)

By a similar calculation on ⌃� it holds:

@�n hr = �K⇤
�@

e
nhr �D��

ehr + [hr]⌃D⌃�1 + @�n hr on ⌃�

= �K⇤
�@

e
nhr �D��

ehr � [hr]⌃D⌃+1� @+n hr on ⌃� (7.24)
⇤

7.2.3 Weak formulation

It remains to find a weak formulation for the Calderon identities described in the last
subsection. As the spaces are dual to each other, the first Calderon identity from Lemma
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7.4 is tested with a function ' from H
� 1

2
⌃ (�0):

h', �ehri�0 = h', �ehri� +
⌦
', �+hr

↵
⌃+ +

⌦
', ��hr

↵
⌃�

=

⌧
',�V�@

e
nhr +

✓
K� +

1

2

◆
�ehr + [h]⌃K⌃+1

�

�

+

⌧
',�V�@

e
nhr +K��

ehr + [h]⌃

✓
K⌃+1 +

1

2

◆�

⌃+

+

⌧
',�V�@

e
nhr +K��

ehr + [h]⌃

✓
K⌃+1� 1

2

◆�

⌃�

=

⌧
',�V�@

e
nhr +

✓
K� +

1

2

◆
�ehr + [h]⌃K⌃+1

�

�

+ [h]⌃+ h', 1i⌃+

h', �ehri� = �h', V�@
e
nhri� +

⌧
',

✓
K� +

1

2

◆
�ehr

�

�

+ [h]⌃ h',K⌃+1i�

h', V�@
e
nhri� =

⌧
',

✓
K� � 1

2

◆
�ehr

�

�

+ [h]⌃ h',K⌃+1i�

(7.25)

By the same duality reasoning, the second Calderon identity from Lemma 7.5 is tested

with a function v from H
1
2
⌃ (�

0):

hv, @enhri�0 = hv, @enhri� +
⌦
v, @+n hr

↵
⌃+ +

⌦
v, @�n hr

↵
⌃�

=

⌧
v,

✓
�K⇤

� +
1

2

◆
@enhr �D��

ehr � [hr]⌃D⌃+1

�

�

+
⌦
v,�K⇤

�@
e
nhr �D��

ehr � [hr]⌃D⌃+1 + @+n hr
↵
⌃+

+
⌦
v,�K⇤

�@
e
nhr �D��

ehr � [hr]⌃D⌃+1� @+n hr
↵
⌃�

hv, @enhri� = �hv,D��
ehr + [hr]⌃D⌃+1i� +

⌧
v,

✓
�K⇤

� +
1

2

◆
@enhr

�

�

� [v]⌃ h1,K⇤
�@

e
nhri⌃+ � [v]⌃ h1, D��

ehr + [hr]⌃D⌃+1i⌃+

hv,D��
ehr + [hr]⌃D⌃+1i� + [v]⌃ h1, D��

ehr + [hr]⌃D⌃+1i⌃+ =

�
⌧
v,

✓
K⇤

� +
1

2

◆
@enhr

�

�

� [v]⌃ h1,K⇤
�@

e
nhri⌃+

(7.26)

7.2.4 Partial integration of the hypersingular operator

A minor issue which has to be addressed here is the formulation of the hypersingular op-
erator. As the hypersingular operator involves two derivatives it can not be implemented
the way it is defined numerically. For the case of the method with simple geometries
the hypersingular operator has been reduced to the single layer operator for vectors in
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the bilinear setting (ref. (4.3) where it was assumed that the surface is closed and the
functions continuous) using [28, Lemma 6.16] and [28, Theorem 6.17].
However these do not hold for the case of discontinuous functions and non-closed sur-
faces. In order to be able to implement the hypersingular operator these issues have to
be addressed.

The suitable modification for [28, Lemma 6.16] is Lemma 7.6:

Lemma 7.6 �0, �, ⌃± as used in this chapter before. u 2 H
1
2
⌃ (�

0) and v 2 H
� 1

2
? (curl�,�).

Then it holds:Z

�
curl�u(x) · v(x)dS(x) = �

Z

�
u(x) curl� v(x)dS(x)� [u]⌃

Z

⌃+
curl⌃+ v(x)dS(x)

Proof For reasonable extensions ũ and ṽ to ⌦e, by the reasoning of [28, Lemma 6.16]
it holdsZ

�
curl�u(x) · v(x)dS(x) =

Z

�
(curl(ũ(x)ṽ(x))� ũ(x) curl ṽ(x)) · n(x)dS(x)

Z

�
u(x) curl� v(x)dS(x) =

Z

�
curl(ũ(x)ṽ(x)) · n(x)dS(x)�

Z

�
curl�u(x) · v(x)dS(x)

(7.27)

Because of the discontinuity at the boundary of the cutting surface, applying Stokes
gives:
Z

�
curl(ũ(x)ṽ(x)) · n(x)dS(x) = �

Z

@⌃+
ũ(x)ṽ(x) · t@⌃+(x)dS(x)�

Z

@⌃�
ũ(x)ṽ(x) · t@⌃�(x)dS(x)

= �[u]⌃

Z

@⌃+
ṽ(x) · t@⌃+(x)dS(x)

= �[u]⌃

Z

⌃+
curl⌃+ v(x)dS(x)

(7.28)

where t is an appropriate tangent field. The change in sign comes from the fact that the
cutting surfaces’ boundaries are oriented opposite to the “discontinuity boundaries” on
�.
This fact combined with (7.27) gives the statement of the lemma. ⇤

The following version of the Lemma is also necessary:

Lemma 7.7 �0, �, ⌃± as used in this chapter before. u 2 H
1
2 (�0), f 2 H

1
2
⌃ (�

0) and

v 2 H
� 1

2
? (curl�,�).

Then it holds:Z

�
curl�u(x)·(f(x)v(x))dS(x) = �

Z

�
u(x) curl�(f(x)v(x))dS(x)�[f ]⌃

Z

⌃+
curl⌃+(u(x)v(x))dS(x)
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Proof Following the proof of Lemma 7.7 it is possible to arrive at the following identity:
Z

�
u(x) curl�(f(x)v(x))dS(x) =

Z

�
curl

⇣
ũ(x)f̃(x)ṽ(x)

⌘
· n(x)dS(x)

�
Z

�
curl�u(x) · (f(x)v(x))dS(x)

(7.29)

Because of the discontinuity, this time of f , at the boundary (as in Lemma 7.6) it
holds:

Z

�
curl

⇣
ũ(x)f̃(x)ṽ(x)

⌘
· n(x)dS(x) = �[f ]⌃

Z

⌃+
curl⌃+(u(x)v(x))dS(x) (7.30)

which gives the statement of the lemma. ⇤

The suitable modification for [28, Theorem 6.17] is Theorem 7.8:

Theorem 7.8 �0, �, ⌃± as used in this chapter before. u 2 H
1
2
⌃ (�

0).
Then it holds:

hv,D�u+ [u]⌃D⌃+1i� + [v]⌃ h1, D��
eu+ [u]⌃D⌃+1i⌃+

=

Z

�

Z

�
curl�v(x) · curl�u(y)G(x, y)dS(x)dS(y)

= hcurl�v,A�curl�ui�

where DS is the scalar hypersingular operator and AS is the vectorial single layer operator
(for the Laplace equation) on the surface S.

Proof Let w(x̃) :=
R
� u(y)@

e
nG(x̃, y)dS(y) + [u]⌃

R
⌃+ @

+
nG(x̃, y)dS(y) where x̃ 2 ⌦e,

x̃ /2 �.
By the reasoning of [28, Theorem 6.17] it holds:

@

@x̃i
w(x̃) =

Z

�
u(y)curl�y

�
ei ⇥ grady G(x̃, y)

�
dS(y)

+ [u]⌃

Z

⌃+
curl⌃+y

�
ei ⇥ grady G(x̃, y)

�
dS(y)

(7.31)

where the ei are the unit vectors in R3.

Using Lemma 7.6 it then holds:

@

@x̃i
w(x̃) = �

Z

�
curl�u(y) ·

�
ei ⇥ grady G(x̃, y)

�
dS(y) (7.32)
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Now it is again possible to follow the proof from [28, Theorem 6.17] to get the following
limit x̃ ! x 2 �:

(D�u+ [u]⌃D⌃+1) (x) = � lim
"!0

Z

y2�
|x�y|�"

curl�u(y) · curl�xG(x, y)dS(y)
(7.33)

When weakly testing with some v 2 H
1
2
⌃ (�), the following holds:

hv,D�u+ [u]⌃D⌃+1i� = �
Z

�
v(x) lim

"!0

Z

y2�
|x�y|�"

curl�u(y) · curl�xG(x, y)dS(y)dS(x)

= �
Z

�
lim
"!0

Z

x2�
|x�y|�"

(v(x)curl�u(y)) · curl�xG(x, y)dS(x)dS(y)

(7.34)

Using Lemma 7.7 gives:

hv,D�u+ [u]⌃D⌃+1i� =

Z

�
lim
"!0

 Z

x2�
|x�y|�"

curl�x (v(x)curl�u(y))G(x, y)dS(x)

+ [v]⌃

Z

x2⌃+

|x�y|�"

curl⌃+x(G(x, y)curl�u(y))dS(x)

!
dS(y)

(7.35)

At the same time it holds:

h1, D��
eu+ [u]⌃D⌃+1i⌃+ = �

Z

�
lim
"!0

Z

x2⌃+

|x�y|�"

curl�u(y) · curl⌃+xG(x, y)dS(x)dS(y)

= �
Z

�
lim
"!0

Z

x2⌃+

|x�y|�"

curlx (G(x, y)curl�u(y)) · n(x)dS(x)dS(y)

(7.36)

by the same reasoning as in the proofs of Lemmas 7.6 and 7.7. This time however, there
is no sign flip when integrating over @⌃+ as the boundary is approached from inside ⌃+

itself and not from �.

Combining the last two equations gives:

hv,D�u+ [u]⌃D⌃+1i� + [v]⌃ h1, D��
eu+ [u]⌃D⌃+1i⌃+

=

Z

�
lim
"!0

Z

x2�
|x�y|�"

curl�x (v(x)curl�u(y))G(x, y)dS(x)dS(y) (7.37)
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Together with the identity curl�x
�
v(x)curl�yu(y)

�
= curl�xv(x) · curl�yu(y) from

[28, p.136] this proves the theorem. ⇤

Theorem 7.8 can now be used to get a simpler statement of (7.26):

hcurl�v,A�curl��
ehri� = �

⌧
v,

✓
K⇤

� +
1

2

◆
@enhr

�

�

� [v]⌃ h1,K⇤
�@

e
nhri⌃+ (7.38)

7.3 Combining inside and outside

As in Chapter 5, the equations for inside the conductor, (7.2) and (7.3), and the equa-
tions for outside the conductor, (7.25) and (7.38), are now combined using the coupling
property (5.12). This can be accomplished in two ways: using only the first Calderon
identity (the non-symmetric way) or using both Calderon identities (the symmetric way,
as it is done in Chapter 5). Both ways will be investigated here.

7.3.1 The non-symmetric way

Inserting �ctH = ĝrad��
ehr + �etHs into (7.3) using the coupling property (5.12) gives

(where v 2 H
1
2
⌃ (�)):

1

⌧
h@enhr, vid +

1

⌧
h�enHs, vid = hV, (B + 0.5 id) �cNHil + hV,N�ctHil

h@enhr, vid + h�enHs, vid = ⌧ hV, (B + 0.5 id) �cNHil
+ ⌧

D
V,N

⇣
ĝrad��

ehr + �etHs

⌘E

l

h�enHs, vid � ⌧ hV,N�etHsil = ⌧
D
V,Nĝrad��

ehr

E

l

+ ⌧ hV, (B + 0.5 id) �cNHil � h@enhr, vid
hv, �enHsid � ⌧

D
ĝrad�v,N

�etHs

E

l
= ⌧

D
ĝrad�v,N

ĝrad��
ehr

E

l

+ ⌧
D
ĝrad�v, (B

 + 0.5 id) �cNH
E

l
� hv, @enhrid

(7.39)

where in the last line it was used that V = ĝrad�v, v 2 H
1
2
⌃ (�).
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Inserting �ctH = ĝrad��
ehr + �etHs into (7.2) gives:

0 =
D
µ, (C � 0.5 id)

⇣
ĝrad��

ehr + �etHs

⌘E

l
+ hµ,A�cNHil

hµ, (0.5 id�C) �etHsil =
D
µ, (C � 0.5 id) ĝrad��

ehr

E

l
+ hµ,A�cNHil

(7.40)

with µ 2 H
� 1

2
|| (div�,�) as in (7.2).

Finally, (7.25) gives:

0 =

⌧
',

✓
K� � 1

2

◆
�ehr

�

d

+ [h]⌃ h',K⌃+1id � h', V�@
e
nhrid (7.41)

where ' 2 H� 1
2 (�).

7.3.2 The symmetric way

The symmetric version is obtained by using the second scalar Calderon identity (7.26)
on the scalar Neumann trace in (7.39). The result is summed up in Theorem 7.9:

Theorem 7.9 The weak formulation of the symmetric boundary integral equations for
the eddy current problem are:

hv, �enHsid � ⌧
D
ĝrad�v,N

�etHs

E

l
= ⌧

D
ĝrad�v,N

ĝrad��
ehr

E

l

+ ⌧
D
ĝrad�v, (B

 + 0.5 id) �cNH
E

l

+

⌧
v,

✓
K⇤

� � 1

2

◆
@enhr

�

d

+ [v]⌃ hK⌃+1, @enhrid
+ hcurl�v,A�curl��

ehril

(7.42a)

hµ, (0.5 id�C) �etHsil =
D
µ, (C � 0.5 id) ĝrad��

ehr

E

l
+ hµ,A�cNHil (7.42b)

0 =

⌧
',

✓
1

2
�K�

◆
�ehr

�

�

� [h]⌃ h',K⌃+1i� + h', V�@
e
nhri� (7.42c)

where the unknowns are �ehr 2 H
1
2
⌃ (�), @

e
nhr 2 H� 1

2 (�) and �cNH 2 H
� 1

2
|| (div�,�). and

the test functions are v 2 H
1
2
⌃ (�), µ 2 H

� 1
2

|| (div�,�) and ' 2 H� 1
2 (�).
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Proof Inserting (7.26) into (7.39) gives the first equation:

hv, �enHsid � ⌧
D
ĝrad�v,N

�etHs

E

l
= ⌧

D
ĝrad�v,N

ĝrad��
ehr

E

l

+ ⌧
D
ĝrad�v, (B

 + 0.5 id) �cNH
E

l

+

⌧
v,

✓
K⇤

� � 1

2

◆
@enhr

�

d

+ [v]⌃ h1,K⇤
�@

e
nhrid(⌃+)

+ hcurl�v,A�curl��
ehril

hv, �enHsid � ⌧
D
ĝrad�v,N

�etHs

E

l
= ⌧

D
ĝrad�v,N

ĝrad��
ehr

E

l

+ ⌧
D
ĝrad�v, (B

 + 0.5 id) �cNH
E

l

+

⌧
v,

✓
K⇤

� � 1

2

◆
@enhr

�

d

+ [v]⌃ hK⌃+1, @enhrid
+ hcurl�v,A�curl��

ehril

(7.43)

The last two equations are just (7.40) and (7.41). ⇤

7.3.3 Dependence on the choice of cutting surface

It should be noted here that both formulations are completely independent of the choice
of the cutting surface ⌃. The only relevant choice is the boundary of the cutting surface.
This is because both formulations contain ⌃ only in integrals of the following type:

h',K⌃+1i� =

Z

�
'(x)

Z

⌃+
@enyG(x, y)dS(y)dS(x) (7.44)

As the divergence of grady G(x, y) is 0 (except on a null set where � intersects ⌃+)

for any other cutting surface ⌃+0 with the same boundary oriented in the same way it
holds by Gauss’s divergence theorem (ref. e.g. [22, Chapter 12]):

Z

⌃+
@enyG(x, y)dS(y)�

Z

⌃+0
@enyG(x, y)dS(y) = 0

Z

⌃+
@enyG(x, y)dS(y) =

Z

⌃+0
@enyG(x, y)dS(y)

(7.45)
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where the minus in the formulation comes from the fact that ⌃+0 has to be oriented in
the context of Gauss’s theorem: the two surfaces have to form the closed boundary of a
volume.

Thus the formulation is not dependent on how the cutting surface is chosen, only its
boundary matters. This is consistent with [13, pp.242].
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8 Implementation of the method for
complicated geometries

This chapter describes the implementation of the boundary element method for compli-
cated geometries outlined in Chapter 7. First the discretization of the spaces is discussed,
then the Calderon identities from Lemmas 7.4 and 7.5 are tested with a real-world ex-
ample on a torus. At last the full eddy current problem on the torus is implemented.

As in Chapter 6 the actual implementations are done with BETL2 [20], meshing is
done with Gmsh [10] and visualization is done with Paraview [21].

In this section the domain in question will always be one where the conductor is a
torus � with just one cutting surface ⌃.

8.1 Discretization of the jump spaces

The discretization of the normal trace spaces H
1
2 (�) and H� 1

2 (�) are discussed in Chap-
ter 6. However if the boundary integral equations from Lemmas 7.4 and 7.5 are to be

implemented it is necessary to discretize H
1
2
⌃ (�

0) restricted to �. The space H
� 1

2
⌃ (�0)

does not have to be implemented as it is discontinuous by nature and all parts on the
actual cutting surface ⌃ vanish in the formulation of the Calderon identities.

Consider Definition 8.1:

Definition 8.1 Let ⇢ be a function in H
1
2
⌃ (�

0) with jump of 1 over the cutting surface
that integrates to 0.
This function is called the ansatz function.

An example of such a function can be seen in Figure 8.1. The value of ⇢ on ⌃ is not
relevant, as this only enters the formulation via the jump of ⇢ over ⌃. The value of
⇢ on � is important in the sense that the solution will depend on it; but the physical
quantities do not depend on the choice of ⇢ as will be apparent by construction.

These facts motivate the following ansatz (hence the name ansatz function for ⇢):

�ehr = u+ ↵⇢ u 2 H
1
2 (�), ↵ 2 C (8.1)

With this formulation u can be used with BETL2’s usual discretization of boundary
spaces and an additional degree of freedom, the jump ↵ over the cutting surface, is
introduced (⇢ is not an unknown).

39



Figure 8.1: An example for a possible choice of the ansatz function ⇢. As the chosen
visualization method has some di�culties representing discontinuities, the
picture of the bottom shows artifacts that stem from this discontinuity. The
calculation itself in BETL2 is not a↵ected by this.
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8.2 Testing the Calderon identities

The weak formulations of the Calderon identities applied to the ansatz (8.1) produce a
linear system of equations for both identities.

8.2.1 Testing the first Calderon identity

(7.25) becomes:

h', V� id =

⌧
',

✓
K� � 1

2

◆
(u+ ↵⇢)

�

d

+ ↵ h',K⌃+1id

=

⌧
',

✓
K� � 1

2

◆
u

�

d

+ ↵

✓⌧
',

✓
K� � 1

2

◆
⇢

�

d

+ h',K⌃+1id
◆ (8.2)

where u 2 H
1
2 (�) is discussed above and  2 H� 1

2 (�) represents the Neumann trace of

hr on �. The test function is ' 2 H� 1
2 (�).

As BETL2 also o↵ers integrals over discontinuous, piecewise linear spaces, (8.2) can
be implemented in the same framework as before. Using the notation from Chapter 6,
the following matrices are formulated:

Ṽ 0 = ⇤0
SL(H̃(0�), H̃(0�)), Ṽ 0 2 Cn0⇥n0

K̃0 = ⇤0
DL(H̃(0�), H̃(1�)), K̃0 2 Cn0⇥n1

K̃0
d = ⇤0

DL(H̃(0�), H̃(1disc� )), K̃0
d 2 Cn0⇥ndisc

K̃0
s = ⇤0

DL(H̃(0�), H̃(1⌃+)), K̃0
d 2 Cn0⇥n1,s

(8.3)

where a subscript denotes the surface on which the operator is formulated and a su-
perscript 1disc means the space does not consist of continuous piecewise linears but
discontinuous piecewise linears. All the discontinuous discretizations have ndisc degrees
of freedom. n1,s is the dimension of the space H̃(1⌃+).

This gives the following matrix equation for (8.3):

Ṽ 0 =
⇣
K̃0 � 0.5M

⌘
u+ ↵

⇣⇣
K̃0

d � 0.5M
⌘
⇢+ K̃0

s1
⌘

(8.4)

where M is the respective mass matrix and 1 is a constant vector.

Consider now the physical setup of a constant current j0 along a wire loop on the in-
side of the torus (such that the loop has constant distance to �) with constant minimal
distance from the torus surface �. This will produce a magnetic field in ⌦e which will
have a potential hr in ⌦0

e obeying the Calderon identities.

The formula for such a magnetic field is known from [17, pp.181] which gives the Neu-
mann trace. The potential hr along � is found using numerical quadrature. This means
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Figure 8.2: A visualization of the calculated Neumann trace of the potential,  , on a
torus with 2766 boundary elements.

number of bdry
elements rel. error  
232 0.359274
784 0.226869
2766 0.0845532
10106 0.0538717

Table 8.1: L2 Errors of the method described in this chapter.  is compared to the exact
Neumann trace known from [17, pp.181].

there is an exact solution to try (8.4) on.
The method produces the correct solution and converges for an implementation of (8.4)
with ↵ = �j0 = �106, where the torus has a large radius of r1 = 0.5 and a small radius
of r2 = 0.1. A picture of the solution can be seen in 8.2, a convergence table can be
seen in 8.1. The linear system was solved with Eigen’s partialPivLu [8]. The C++
code that is used to produce the visualization is explained in the appendix in Section 11.7.

8.2.2 Testing the second Calderon identity

For the second identity that is tested with H
1
2
⌃ (�) the setup is more intricate. In line

with the ansatz above it is su�cient to test with functions from H
1
2 (�) as well as the

ansatz function ⇢.
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(7.38) tested with v 2 H
1
2 (�), becomes:

hcurl�v,A�curl�(u+ ↵⇢)il = �
⌧
v,

✓
K⇤

� +
1

2

◆
 

�

d

hcurl�v,A�curl�uil + ↵ hcurl�v,A�curl�⇢il = �
⌧✓

K� +
1

2

◆
v, 

�

d

(8.5)

(7.38) tested with ⇢, becomes:

hcurl�⇢,Alcurl�(u+ ↵⇢)i� = �
⌧
⇢,

✓
K⇤

� +
1

2

◆
 

�

d

� h1,K⇤
� id(⌃+)

hcurl�⇢,A�curl�uil + ↵ hcurl�⇢,A�curl�⇢il = �
⌧✓

K� +
1

2

◆
⇢, 

�

d

� hK⌃+1, id
(8.6)

The double layer operator is implemented as usual. The hypersingular operator is
replaced by the vectorial single layer operator (ref. Theorem 7.8) and implemented as
following:

D̃0 = GT
c ⇤

0
SL(H̃(div�), H̃(div�))Gc, D̃0 2 Cn1⇥n1

D̃0
d = GT

c ⇤
0
SL(H̃(div�), H̃(divdisc� ))Gdisc

c D̃0
d 2 Cn1⇥ndisc

D̃0
dd = Gdisc

c
T
⇤0
SL(H̃(divdisc� ), H̃(divdisc� ))Gdisc

c D̃0
dd 2 Cndisc⇥ndisc

(8.7)

where Gc is the combinatorial curl as used in Chapter 6 and Gdisc
c its version on dis-

continuous spaces. Those are also matrices and their sizes correspond to the respective
degrees of freedom of the element spaces.
Written as a matrix equation, (8.6) becomes:

✓
D̃0 D̃0

d⇢

⇢T D̃0
d
T ⇢T D̃0

dd⇢

◆✓
u
↵

◆
=

✓
�(K̃0T + 0.5M) 

�⇢T (K̃0
d
T + 0.5M) �  T K̃0

s1

◆
(8.8)

as the hypersingular operator is self-adjoint (this can be seen from its definition in [28,
Chapter 6.5]).
The solution on � is reclaimed as u+ ↵⇢.

The same test as in the last subsection can be performed here. As before, a stabi-
lization condition is needed so that u integrates to 0. This has not been successfully
implemented so far. It is however important and should be addressed in future work.

8.3 The eddy current problem

No convenient exact solution is available for the full eddy current problem. However,
the correctness of the Calderon identities checked in the last section instills confidence
in the correctness of the method for eddy current problems as well.
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8.3.1 The non-symmetric way

This subsection investigates the implementation of the non-symmetric equations (7.39),
(7.40) and (7.41).
Consider the usual ansatz (the C++ code used for the implementation of the ansatz

function is explained in the appendix in Section 11.6):

�ehr = u+ ↵⇢, u 2 H
1
2 (�)

@enhr =  ,  2 H� 1
2 (�)

�cNH = ⌘, ⌘ 2 H
� 1

2
|| (div�,�)

Denote the boundary conditions from the exciting field by (the C++ code used for the
incorporation of the boundary conditions also is explained in the appendix in Section
11.6):

� = �etHs

⌫ = �enHs

(7.39) becomes, tested with v 2 H
1
2 (�):

hv, ⌫id � ⌧ hgrad� v,N
�il =

⌧ hgrad� v,N
 grad� uil + ↵⌧

D
grad� v,N

ĝrad�⇢
E

l

+ ⌧ hgrad� v, (B
 + 0.5 id) ⌘il � hv, id

(8.9)

Tested with ⇢ it becomes:

h⇢, ⌫id � ⌧
D
ĝrad�⇢,N

�
E

l
=

⌧
D
ĝrad�⇢,N

 grad� u
E

l
+ ↵⌧

D
ĝrad�⇢,N

ĝrad�⇢
E

l

+ ⌧
D
ĝrad�⇢, (B

 + 0.5 id) ⌘
E

l
� h⇢, id

(8.10)

(7.40) becomes, tested with µ 2 H
� 1

2
|| (div�,�):

hµ, (0.5 id�C) �il = hµ, (C � 0.5 id)grad� uil + ↵
D
µ, (C � 0.5 id) ĝrad�⇢

E

l

+ hµ,A⌘il
(8.11)
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(7.41) becomes, tested with ' 2 H� 1
2 (�):

0 =

⌧
',

✓
K� � 1

2

◆
u

�

d

+ ↵

⌧
',

✓
K� � 1

2

◆
⇢

�

d

+ ↵ h',K⌃+1id � h', V� id (8.12)

As a matrix equation this becomes:
0

BB@

N �⌧CT �M Ñ

C Ã 0 C̃

�K 0 �Ṽ 0 �K̃

ÑT �⌧C̃T �⇢TM Ñ0

1

CCA

0

BB@

u
⌘
 
↵

1

CCA

0

BB@

f
g
0
f̃

1

CCA (8.13)

with M the appropriate mass matrix and the bold letters defined as following:

N := ⌧GT
g Ñ

Gg

Ñ := ⌧GT
g Ñ

(ĝrad�⇢)

Ñ0 := ⌧(ĝrad�⇢)
T Ñ(ĝrad�⇢)

C := (C̃ � 0.5M)Gg

C̃ := (C̃ � 0.5M)(ĝrad�⇢)

K := 0.5M � K̃0

K̃ := (0.5M � K̃0
d)⇢� K̃0

s1

f = M⌫ � ⌧GT
g Ñ

�

f̃ = ⇢TM⌫ � ⌧(ĝrad�⇢)
T Ñ�

g = (0.5M � C̃)�

(8.14)

where the BETL2 operators have either been defined in Chapter 6 or in this chapter.

The results can be seen in Figure 8.3. The linear system was solved with Eigen’s
partialPivLu [8]. The C++ code that is used to produce the visualization is explained
in the appendix in Section 11.7. The parameters are wire coil radius b = 0.07, current
along wire coil j0 = 106, torus large radius r1 = 0.05, torus small radius r2 = 0.01.

Note that the result is independent of the choice of cutting surface, as the two di↵erent
cutting surfaces of Figure 8.3 demonstrate. This is consistent with the physics of the
problem, as the cutting surface has no physical significance but is just a mathematical
tool to solve the problem. This mathematical fact is shown in Subsection 7.3.3.

8.3.2 The symmetric way

This subsection describes the implementation of the symmetric equations from Theorem
7.9.
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Figure 8.3: The top picture shows the real part of the scalar potential on the torus with
two di↵erent cutting surfaces, the bottom picture shows the real part of the
reaction field Hr on the torus with two di↵erent cutting surfaces. The results
are independent of the choice of cutting surface.
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The first equation, tested with v 2 H
1
2 (�), becomes:

hv, ⌫id � ⌧ hgrad� v,N
�il = ⌧ hgrad� v,N

 grad� uil + ↵⌧
D
grad� v,N

ĝrad�⇢
E

l

+ ⌧ hgrad� v, (B
 + 0.5 id) ⌘il +

⌧
v,

✓
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� � 1

2

◆
 

�

d

+ hcurl�v,A�curl�uil + ↵
D
curl�v,A�ĉurl�⇢

E

l

(8.15)

The first equation, tested with ⇢, becomes:

h⇢, ⌫id � ⌧
D
ĝrad�⇢,N

�
E

l
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D
ĝrad�⇢,N

 grad� u
E

l
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D
ĝrad�⇢,N

ĝrad�⇢
E

l
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D
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 + 0.5 id) ⌘
E

l
+

⌧
⇢,

✓
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d

+
D
ĉurl�⇢,A�curl�u

E

l
+ ↵

D
ĉurl�⇢,A�ĉurl�⇢

E

l

+ hK⌃+1, id
(8.16)

The second equation, tested with µ 2 H
� 1

2
|| (div�,�), becomes:

hµ, (0.5 id�C) �il = hµ, (C � 0.5 id)grad� uil + ↵
D
µ, (C � 0.5 id) ĝrad�⇢

E

l

+ hµ,A⌘il
(8.17)

The third equation, tested with ' 2 H� 1
2 (�), becomes:

0 =
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',

✓
1

2
�K�

◆
u

�

�

+ ↵

⌧
',

✓
1

2
�K�

◆
⇢

�

�

� ↵ h',K⌃+1i� + h', V� i� (8.18)

As a matrix equation this becomes:

0

BB@

N �CT �KT Ñ

C ⌧ Ã 0 C̃

K 0 Ṽ 0 K̃
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0
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1
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with M the appropriate mass matrix and the bold letters defined as following:

N := ⌧GT
g Ñ

Gg + D̃0

Ñ := ⌧GT
g Ñ

(ĝrad�⇢) + D̃0
d⇢

Ñ0 := ⌧(ĝrad�⇢)
T Ñ(ĝrad�⇢) + ⇢T D̃0

dd⇢

C := ⌧(C̃ � 0.5M)Gg

C̃ := ⌧(C̃ � 0.5M)(ĝrad�⇢)

K := 0.5M � K̃0

K̃ := (0.5M � K̃0
d)⇢� K̃0

s1

f = M⌫ � ⌧GT
g Ñ

�

f̃ = ⇢TM⌫ � ⌧(ĝrad�⇢)
T Ñ�

g = ⌧(0.5M � C̃)�

(8.20)

As the second Calderon identity from Subsection 8.2.2 has not been implemented
successfully it is not reasonable implement the symmetric formulation at this point.
This is, however, a goal for future work.
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9 Removing the cutting surfaces

In Chapters 7 and 8 a method for general geometries was formulated. However, for
the case with nontrivial first cohomology group of ⌦e the cutting surface ⌃ has to be
introduced. It serves no physical purpose and there is a lot of freedom in choosing it –
it is arbitrary to a certain degree as shown in Subsection 7.3.3.
This suggests that they can somehow be avoided completely in the formulation of the
method. This chapter deals with removing integrals over ⌃ from the formulation in
Chapters 7 and 8 entirely.

9.1 Theory

The integral that has to be simplified is:

⌦
u,K0

⌃+1
↵
d
=

Z

�

Z

⌃+
@+ny

G0(x, y)u(x)dS(y)dS(x) (9.1)

As they will be frequently used in this chapter, boundary cycles are defined here:

Definition 9.1 Let ⌃+ be the cutting surface oriented upwards as used in previous chap-
ters. Define:

c := @⌃+ (9.2)

Those are the boundaries of the cutting surfaces. They are boundary cycles in the first
homology group of � of which the cohomology group is the dual. As the cutting surfaces
can be varied, the cycles can also be replaced by any other homologous cycle.

The double layer potential can not be reduced to c using Stokes’s theorem, as grady G0(x, y)
has no vector potential but only a scalar potential. Let it be at first assumed that x /2 ⌃.
This holds almost everywhere, except for the points where ⌃ is connected to �.

The gradient of the kernel grady G0(x, y) is just the electric field at y generated by a
point charge of �1 at x. This allows the following theorem to be used:

Theorem 9.2 Let e be an electrostatic point charge and E(x) the electric field it gener-
ates.
Let S be a surface separated from the charge e by a hyperplane.1

1This is not a harsh restriction. In most cases it should be possible to choose the surface like that.
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e

S

C∂B

Cw

Cw

Br

Figure 9.1: A sketch of the cone construction used in the proof of Theorem 9.2

Let  be the solid angle of the boundary of S over the point of the charge. The solid
angle is a generalization of the 2D angle to R3. It is the area on the unit sphere covered
by the projection of a surface onto the unit sphere (ref. [29]), or as in this case, the area
circumscribed by the projection of a curve onto the unit sphere.
Then it holds: Z

S
n(x) ·E(x) dsx =

 

4⇡
e

Proof Assume the charge and the surface are separated by some hyperplane H 2 R3.
Consider a ball Br with radius r > 0 centered around the charge e fully contained

in the charge’s half-space. There is a cone C of @S over the position of the charge e.
Without loss of generality, the cone does not intersect S except at @S (the same argument
holds even with intersections, but is more cumbersome). Where the cone intersects the
ball Br it forms a surface C@B with area  r2. The side of the cone up to the intersection
with Br is called Cw. A sketch of the situation can be seen in Figure 9.1.

For notational convenience, the volume contained by C@B, Cw and S is called V .

Now, Gauss’s electric field law (ref. [11, pp.67] which uses di↵erent scaling) states that
the electric flux surface over a closed surface is just the sum of all charges enclosed by
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the surface. This gives:
Z

@Br

n(x) ·E(x) dS(x) = e (9.3)

Thus, because of symmetry:
Z

C@B

n(x) ·E(x) dS(x) =
 r2

4⇡r2
e =

 

4⇡
e (9.4)

Because V contains no charges, clearly the flux integral over @V is 0. Also, because of
how the cone was constructed, all field lines of E are parallel to Cw. This leads to the
flux integral of the field over the surface Cw being 0. This gives:

0 =

Z

@V
n(x) ·E(x) dsx =

✓
�
Z

C@B

+

Z

Cw

+

Z

S

◆
n(x) ·E(x) dS(x)

Z

S
n(x) ·E(x) dS(x) =

Z

C@B

n(x) ·E(x) dS(x) =
 

4⇡
e

(9.5)

(note: the first minus sign is due to di↵erent orientation of C@B depending on which
volume it bounds)

This proves the theorem.2

⇤

This reduces the integral in (9.1) to the following integral:

⌦
u,K0

⌃+1
↵
d
= � 1

4⇡

Z

�
 c(x)u(x)dS(x) (9.6)

where  L(x) is the solid angle created by the loop L over the point x.

It remains to handle the cases where x = y can not be disregarded. This will only
occur on the intersection of ⌃+ and �. This is a null set, so it will not matter in the
second integration.

With these simplifications, the whole method has been reduced to just evaluations
on � and the boundary of the cutting surface, c, whose dual cocycles generate the first
cohomology group of ⌦e. This is highly relevant; there are e�cient algorithms for the
computation of these cycles, (as can be seen e.g. in [15]). Those algorithms are less
expensive than constructing the whole cutting surface.

The same properties as in Chapter 8 still hold, as all the operators are still the same
mathematically. There might be numerical issues which depend on how the solid angle
is implemented.

2Some ideas for this proof come from a conversation with Nicolaus Heuer [12].
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9.2 Algorithm

The only part of last section’s method of removing cutting surfaces that requires an
algorithm that is not already used in this thesis is the calculation of the solid angle of
a point over a cutting surface. To that end, a simple algorithm will be proposed in this
section.

It is assumed that the input corresponding to the boundary cycle c is a polygon c

approximating c given in the form of a list of vertices. It is also assumed that the
point over which the solid angle is formed is 0 (otherwise a simple translation has to
be made). Then the polygon can be projected onto the sphere with the algorithm from
Code Snippet 9.1.

1 f o r each ver tex v in c do :
2 v := v/norm(v )
3 end f o r

Code Snippet 9.1: Projecting the boundary of the cutting surface to the unit sphere

It remains to calculate the area enclosed by the projected polygon. This is the solid
angle. Multiple approaches exist for this. If the polygon is convex there is a simple
algorithm depending only on the enclosed angles (where the formula is taken from [30]).
It can be seen in Code Snippet 9.2.

1 ang l e s := 0
2 nVer t i c e s := 0
3 f o r each ver tex v in c do :
4 ang l e s += enclosedAngleAt (v )
5 nVer t i c e s += 1
6 end f o r
7 area := ( ang l e s � ( nVert ices �2)⇤Pi )

Code Snippet 9.2: Calculating the area of the projected cutting surface

If the resulting polygon is non-convex, [6] has appropriate algorithms to calculate the
area enclosed by a polygon on a sphere in the general case.
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10 Conclusion

This chapter will wrap up the master’s thesis, repeating its most important points and
produce an outlook on what further work can be done.

This master’s thesis introduced the magnetic field scalar potential approach for solving
quasi-stationary eddy current problems outlined in [13]. The approach solves the internal
problem using the normal vectorial Maxwell equations and vectorial boundary element
methods. The external problem is solved as a scalar Laplace equation using scalar
boundary element methods.
The theory was formulated for objects with simple geometries using standard scalar

potentials and then for more intricate geometries using discontinuous scalar potentials.
The scalar potentials depend on cutting surfaces for more intricate geometries which are
used to trivialize the first cohomology group of the nonconductive region ⌦e.
Then boundary integral equations were formulated and simulated using BETL2 [20]

for the sphere as well as for the torus. For the sphere a symmetric coupling was used,
for the torus a symmetric and a non-symmetric coupling were derived but only the non-
symmetric one was implemented.
The results conform to the correct exact solutions where available.

Additionally, it was shown that the method is not only independent of the chosen cut-
ting surfaces for complicated geometries, but that the method can be formulated to not
need any calculation on the cutting surfaces whatsoever. Chapter 9 reduces the whole
method to boundaries of cutting surfaces only. These boundaries can be calculated in
reasonable time using established algorithms.

Further work should mainly focus on the symmetric coupling for complicated geome-
tries. The implementation of the second Calderon identity for complicated geometries
(8.8) has not been successfully completed yet. A correct implementation of (8.8) in
BETL2 is needed. This would also allow a realization of the full symmetric coupling
method for the eddy current problem on the torus as it is formulated in (8.19).
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11 Appendix

The appendix consists mostly of code snippets that illustrate the way the operators used
in this thesis are actually implemented in BETL2 using C++ code. The appendix itself
provides only little context, but the di↵erent code snippets are referenced throughout
the main body of the thesis.

The BETL2 revision used for the code is 73355M.1

All codes in this section are heavily influenced by the examples included in BETL2
[20] and often directly taken from included applications. The examples are written either
by Dr. Lars Kielhorn [19] or Elke Spindler [27]. Calculus and vector calculus identities
needed are common knowledge from [22] or [11, Back matter].

11.1 Implementation of finite element spaces

BETL2 o↵ers four basic finite element space types that are used in this thesis. Linear and
constant Lagrangian elements (scalar) and curl- and div-type edge elements (vectorial).
All the piecewise linear finite element spaces can be implemented as continuous (which
assigns only one degree of freedom for each edge or vertex) or discontinuous (which
assigns each edge or vertex multiple degrees of freedom, one for each adjacent triangle).
The finite element spaces are set up by first defining a finite element basis type,

then defining a type for the DofHandler (where Dof stands for degrees of freedom),
instantiating the DofHandler and then distribute the dofs for some grid structure. A
code example for this is provided in Code Snippet 11.1.

1 // s e t up element spaces
2 typede f f e : : FEBasis< f e : : Linear , f e : : FEBasisType : : Lagrange >

f e b a s i s l a g r a n g e 1 t ;
3 typede f f e : : FEBasis< f e : : Constant , f e : : FEBasisType : : Lagrange >

f e b a s i s l a g r a n g e 0 t ;
4 typede f f e : : FEBasis< f e : : Linear , f e : : FEBasisType : : Div >

f e b a s i s d i v t ;
5 typede f f e : : FEBasis< f e : : Linear , f e : : FEBasisType : : Curl >

f e b a s i s c u r l t ;
6

1In the kernel integration routine, the scalar multiplication function of vectors has to be set to do a
normal scalar multiplication, not a complex one.
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7 // s e t up do fhand l e r s
8 typede f f e : : DofHandler< f e b a s i s l a g r a n g e 1 t ,

f e : : FESContinuity : : Continuous , g r i d f a c t o r y t >
do fhand l e r l a g range1 t ;

9 typede f f e : : DofHandler< f e b a s i s l a g r a n g e 1 t ,
f e : : FESContinuity : : Discont inuous , g r i d f a c t o r y t >
do f hand l e r l a g r ang e 1 d i s c on t i n t ;

10 typede f f e : : DofHandler< f e b a s i s l a g r a n g e 0 t ,
f e : : FESContinuity : : Discont inuous , g r i d f a c t o r y t >
do fhand l e r l a g range0 t ;

11 typede f f e : : DofHandler< f e b a s i s d i v t ,
f e : : FESContinuity : : Continuous , g r i d f a c t o r y t > do fhand l e r d i v t ;

12 typede f f e : : DofHandler< f e b a s i s d i v t ,
f e : : FESContinuity : : Discont inuous , g r i d f a c t o r y t >
do f h and l e r d i v d i s c on t i n t ;

13 typede f f e : : DofHandler< f e b a s i s c u r l t ,
f e : : FESContinuity : : Continuous , g r i d f a c t o r y t > do f h and l e r c u r l t ;

14 typede f f e : : DofHandler< f e b a s i s c u r l t ,
f e : : FESContinuity : : Discont inuous , g r i d f a c t o r y t >
do f h and l e r c u r l d i s c o n t i n t ;

15

16 // i n s t a n t i a t e do fhand l e r s
17 do fhand l e r l a g range1 t do fhand l e r l ag range1 ;
18 do f hand l e r l a g r ang e 1 d i s c on t i n t do f hand l e r l a g r ang e1 d i s c on t i n ;
19 do fhand l e r l a g range0 t do fhand l e r l ag range0 ;
20 do fhand l e r d i v t do fhand l e r d iv ;
21 do f h and l e r d i v d i s c on t i n t do f h and l e r d i v d i s c on t i n ;
22 do f h and l e r c u r l t do f hand l e r cu r l ;
23 do f h and l e r c u r l d i s c o n t i n t d o f h and l e r c u r l d i s c on t i n ;
24

25 // d i s t r i b u t e do f s
26 do fhand l e r l ag range1 . d i s t r i bu t eDo f s ( g r i d f a c t o r y ) ;
27 do fhand l e r l a g r ang e1 d i s c on t i n . d i s t r i bu t eDo f s ( g r i d f a c t o r y ) ;
28 do fhand l e r l ag range0 . d i s t r i bu t eDo f s ( g r i d f a c t o r y ) ;
29 do fhand l e r d iv . d i s t r i bu t eDo f s ( g r i d f a c t o r y ) ;
30 do f hand l e r d i v d i s c on t i n . d i s t r i bu t eDo f s ( g r i d f a c t o r y ) ;
31 do fhand l e r cu r l . d i s t r i bu t eDo f s ( g r i d f a c t o r y ) ;
32 do f h and l e r c u r l d i s c on t i n . d i s t r i bu t eDo f s ( g r i d f a c t o r y ) ;

Code Snippet 11.1: The process needed to set up finite element spaces and distribute
the degrees of freedom in BETL2 for a grid with structure saved in
grid factory

To formulate certain operators only on parts of the grid (as it is done when using
cutting surfaces in Chapter 8), those surfaces have to be marked in the mesh file using
Gmsh physical surfaces. The class MultiInterface handles the reading of the Gmsh
markings, and the extracting of the actual FE subspaces is shown in Code Snippet 11.2.
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1 // su r f a c e dof markers & con s t r f e s p a c e s
2 typede f f e : : SurfaceDofMarker<do fhand l e r l a g range1 t : : f e spac e t ,

Mu l t i I t f t , g r i d f a c t o r y t> su r f marke r l ag range1 t ;
3 su r f marke r l ag range1 t

sur f marke r l ag range1 ( do fhand l e r l ag range1 . f e spa c e ( ) , Mu l t i I t f ,
g r i d f a c t o r y ) ;

4 su r f marke r l ag range1 . mark ( ) ;
5 const auto& i t f f e spa c e map l ag r ange1 =

sur f marke r l ag range1 . FESpaceMap ( ) ;
6

7 // get hand le r s to f e s p a c e s
8 typede f do fhand l e r l a g range1 t : : f e s p a c e t f e s p a c e l a g r a n g e 1 a l l t ;
9 f e s p a c e l a g r a n g e 1 a l l t& f e s p a c e l a g r a n g e 1 a l l =

do fhand l e r l ag range1 . f e spa c e ( ) ;
10

11 typede f su r f marke r l ag range1 t : : constrFESpace t
f e s p a c e l a g r an g e 1 c on s t r t ;

12 f e s p a c e l a g r an g e 1 c on s t r t& fespace lagrange1 gamma =
⇤ i t f f e s pa c e map l ag r ange1 . at ( index gamma ) ;

13 f e s p a c e l a g r an g e 1 c on s t r t& f e space l ag range1 s i gma =
⇤ i t f f e s pa c e map l ag r ange1 . at ( index s igma ) ;

Code Snippet 11.2: How to extract finite element subspaces in BETL2
The grid has already been read in and the indices for � and ⌃+ have
been saved in index gamma and index sigma.
The process is only shown for fe basis lagrange1 t but is exactly
the same for the other spaces. The results are the three finite element
spaces fespace lagrange1 all, fespace lagrange1 gamma and
fespace lagrange1 sigma.

To embed the continuous finite element spaces into the discontinuous finite element
spaces, special sparse matrices for continuous embeddings are constructed. Those are
not built into BETL2 at the moment and they have to be implemented using BETL2’s
sparse base operator with the continuous and the discontinuous space respectively.
An example of this can be seen in Code Snippet 11.3.

1 //THE FILE ”continuous embedding . hpp” WHICH IMPLEMENTS THE
CONTINUOUS EMBEDDING CLASS

2

3 // ! @ f i l e continuous embedding . hpp
4 // ! @author Oded Ste in
5 // ! @date 2015
6

7 #i f n d e f BETL2 CONTINUOUS EMBEDDING HPP
8 #de f i n e BETL2 CONTINUOUS EMBEDDING HPP
9
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10 // own in c l ud e s
����������������������������������������������������������������

11 #inc lude ”spa r s e ba s e ope r a t o r . hpp”
12

13 namespace be t l 2 {
14

15 template< typename CONTINUOUS SPACE T, typename
DISCONTINUOUS SPACE T >

16 c l a s s ContinuousEmbedding : pub l i c SparseBaseOperator<double ,
l i n a l g : : spa r s e : : Assign >

17 {
18 pr i va t e :
19 typede f double

numeric t ;
20 typede f SparseBaseOperator<numeric t , l i n a l g : : spa r s e : : Assign

> spar s eBase t ;
21 typede f i n t

index t ;
22

23 const CONTINUOUS SPACE T& f e c o n t i n ;
24 const DISCONTINUOUS SPACE T& f e d i s c o n t i n ;
25

26 pub l i c :
27 e x p l i c i t ContinuousEmbedding ( const CONTINUOUS SPACE T&

fe con t i n , const DISCONTINUOUS SPACE T& f e d i s c o n t i n )
28 : spa r s eBase t ( )
29 , f e c o n t i n ( f e c o n t i n )
30 , f e d i s c o n t i n ( f e d i s c o n t i n )
31 {
32 /⇤ empty ⇤/
33 }
34

35 /// f o rb i d cop i e s
36 ContinuousEmbedding ( const ContinuousEmbedding& ) = de l e t e ;
37

38 /// f o rb i d ass ignments
39 ContinuousEmbedding& operator=( const ContinuousEmbedding& )

= de l e t e ;
40

41

42

43

44 c l a s s ElementFunctor
45 {
46 pr i va t e :
47 typede f Eigen : : Matrix< double , 3 , 3 > va lu e t ;
48
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49 pub l i c :
50 ElementFunctor ( )
51 { /⇤ empty ⇤/ }
52

53

54 template< typename ELEMENT ENTITY T >
55 va lu e t operator ( ) ( const ELEMENT ENTITY T& E ) const
56 {
57 va lu e t r e s u l t ;
58 r e s u l t . s e t I d e n t i t y ( ) ;
59

60 re turn r e s u l t ;
61 }
62

63 } ;
64

65 pub l i c :
66 template< typename RUNTIME CACHE T >
67 void compute ( const RUNTIME CACHE T& runt ime cache )
68 {
69 const ElementFunctor e f ;
70 t h i s �> a s s emb l eTr ip l e t s ( f e c on t i n , f e d i s c o n t i n , e f

) ;
71 t h i s �> make sparse ( ) ;
72 }
73 } ; // end c l a s s ContinuousEmbedding
74

75 } // end namespace be t l 2
76

77

78

79

80 //IMPLEMENTATION OF THE CONTINUOUS EMBEDDING
81 typede f ContinuousEmbedding< f e s p a c e l a g r ang e1 c on s t r t ,

f e s p a c e l a g r a n g e 1 d i s c o n t i n c o n s t r t >
lagrange1 continuous embedding gamma op t ;

82 lagrange1 continuous embedding gamma op t
lagrange1 continuous embedding gamma op ( fespace lagrange1 gamma ,
f e space lagrange1 d i scont in gamma ) ;

83 lagrange1 continuous embedding gamma op . compute ( cache ) ;
84 const auto& lag1 contin emb gamma =

lagrange1 continuous embedding gamma op . matrix ( ) ;
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Code Snippet 11.3: The class for the continuous embedding operator and an example
for its implementation using the space of piecewise linear scalar
functions on �
Its layout is inspired form BETL2’s implementation of the
combinatorial gradient.
The Eigen classes used here are from the Eigen matrix library [8].

11.2 Combinatorial gradient, curl and divergence

BETL2 o↵ers combinatorial gradient, combinatorial curl (which is just combinatorial
gradient into the div space instead of the curl space) and combinatorial divergence that
map from the di↵erent finite element spaces to each other. An example for the imple-
mentation is given in Code Snippet 11.4.

1 // combinator i a l g rad i en t
2 typede f CombinatorialGradient< f e s p a c e l a g r ang e1 c on s t r t ,

f e s p a c e c u r l c o n s t r t > g r ad 1 cu r l op t ;
3 g r ad 1 cu r l op t g rad 1 cur l op ( fespace lagrange1 gamma ,

fespace cur l gamma ) ;
4 g rad 1 cur l op . compute ( cache ) ;
5 const auto& grad 1 cu r l = grad 1 cur l op . matrix ( ) ;
6

7 // combinator i a l c u r l
8 typede f CombinatorialGradient< f e s p a c e l a g r ang e1 c on s t r t ,

f e s p a c e d i v c o n s t r t > g rad 1 d iv op t ;
9 g rad 1 d iv op t grad 1 d iv op ( fespace lagrange1 gamma ,

fespace div gamma ) ;
10 grad 1 d iv op . compute ( cache ) ;
11 const auto& grad 1 d iv = grad 1 d iv op . matrix ( ) ;
12

13 // combinator i a l d ive rgence
14 typede f Combinator ia lDivergence< f e s p a c e d i v c on s t r t ,

f e s p a c e l a g r an g e 0 c on s t r t > d i v d i v 0 op t ;
15 d i v d i v 0 op t d iv d iv 0 op ( fespace div gamma ,

fespace lagrange0 gamma ) ;
16 d iv d iv 0 op . compute ( cache ) ;
17 const auto& d iv d iv 0 = d iv d iv 0 op . matrix ( ) ;

Code Snippet 11.4: An example for the implementation of the combinatorial gradient,
combinatorial curl and combinatorial divergence matrices in BETL2
The combinatorial curl is just the combinatorial gradient into the
div space instead of the curl space, as this automatically causes a
rotation by ⇡

2 .
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The BETL2 version used at the moment constructs the negative gradient instead of
the gradient in the case of grad 1 curl. This has to be corrected in the code.

11.3 Mass matrices

Mass matrices are very simple to implement in BETL2. They can be set up for any two
dual finite element spaces. An example for the setup of a mass matrix in BETL2 can be
seen in Code Snippet 11.5.

1 typede f Ident i tyOperator< f e s p a c e l a g r ang e0 c on s t r t ,
f e s p a c e l a g r an g e 1 c on s t r t > i d e n t i t y o p e r a t o r l a g 0 l a g 1 t ;

2 i d e n t i t y o p e r a t o r l a g 0 l a g 1 t
i d e n t i t y o p e r a t o r l a g 0 l a g 1 ( fespace lagrange0 gamma ,
fespace lagrange1 gamma ) ;

3 i d e n t i t y o p e r a t o r l a g 0 l a g 1 . compute ( ) ;
4 const auto& id en t i t y op e r a t o r l a g 0 l a g1 ma t =

i d e n t i t y o p e r a t o r l a g 0 l a g 1 . matrix ( ) ;
5

6 matr ix t M lag0 lag1 = id en t i t y op e r a t o r l a g 0 l a g1 ma t ;

Code Snippet 11.5: An example for the implementation of a mass matrix in BETL2
The mass matrix shown is for the two spaces H� 1

2 (�) and H
1
2 (�).

11.4 Adding constraints to functions

At one point in the method it is necessary to add a constraint that a certain function in
H̃(1) integrates to 0. This is done with the help of the mass matrices from Section 11.2.
An example is shown in Code Snippet 11.6. The approach described there is taken from
other BETL2 implementations by Lars Kielhorn [19].

1 matr ix t s t a b i l i z e r = matr ix t : : Ones (1 ,
M lag0 lag1 . rows ( ) ) ⇤M lag0 lag1 ;

2 d += s t a b i l i z e r . t ranspose ( ) ⇤ s t a b i l i z e r ;

Code Snippet 11.6: An example of ensuring that the solution of a matrix equation
integrates to zero. The stabilizer matrix evaluates to zero when
multiplied with a trial vector for a function integrating to zero. The
condition is then added to the actual matrix.
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11.5 BEM operators

More work is needed to implement the BEM operators in BETL2. First a fundamental
solution object has to be constructed (which can be a Laplace or a Helmholtz funda-
mental solution). Then the appropriate Galerkin kernel object has to be set up, which
can be single layer (SL) or double layer (DL). The Galerkin kernel object is then used
to construct a Galerkin integrator object (which can be constructed to use the Gram
determinant during integration or not; it should not be used for operations on the edge
spaces) which is used to construct a BEM operator object operating on the correct spaces.
The matrix of the operator can then be extracted from the BEM operator object. An
example of this is shown in Code Snippet 11.7.

1 // quadrature scheme
2 const i n t numQuadPoints = 12 ;
3 typede f bem : : GalerkinQuadratureRule< numQuadPoints , numQuadPoints ,

numQuadPoints > quad ru l e t ;
4

5 // cache
6 typede f bem : : Cache< g r i d f a c t o r y t , numQuadPoints , numQuadPoints >

cache t ;
7 cache t cache ( g r i d f a c t o r y ) ;
8

9 // s i n g u l a r i t y de t e c t o r
10 typede f bem : : Ga l e rk inS ingu la r i tyDetec to r< g r i d f a c t o r y t >

s i n g u l a r i t y d e t e c t o r t ;
11 s i n g u l a r i t y d e t e c t o r t s i n g u l a r i t y d e t e c t o r ( g r i d f a c t o r y ) ;
12

13 // i n t e g r a t i o n t r a i t s
14 const bool withGram = true ;
15 typede f bem : : I n t e g r a t i onTra i t s< quad ru le t , g r i d f a c t o r y t ,

s i n g u l a r i t y d e t e c t o r t , cache t , withGram , withGram >
i n t e g r a t i o n t r a i t s ;

16

17 // fundamental s o l u t i o n
18 typede f bem : : FundSol< bem : : FSType : : LAPLACE, 3 > l a p l a c e f u nd s o l t ;
19 l a p l a c e f u nd s o l t l a p l a c e f u nd s o l ;
20

21

22 // l a p l a c e l a g s l on gamma
23 typede f bem : : GalerkinKernel< l a p l a c e f und s o l t , bem : : FSLayer : : SL ,

f e s p a c e l a g r an g e 0 c on s t r t : : f e b a s i s t ,
f e s p a c e l a g r an g e 0 c on s t r t : : f e b a s i s t > l a p l a c e l a g s l k e r n e l t ;

24 l a p l a c e l a g s l k e r n e l t l a p l a c e l a g s l k e r n e l ( l a p l a c e f u nd s o l ) ;
25

26 typede f bem : : Ga l e rk in In teg ra to r< l a p l a c e l a g s l k e r n e l t ,
i n t e g r a t i o n t r a i t s > l a p l a c e l a g s l i n t e g r a t o r t ;
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27 l a p l a c e l a g s l i n t e g r a t o r t
l a p l a c e l a g s l i n t e g r a t o r ( l a p l a c e l a g s l k e r n e l ,
s i n g u l a r i t y d e t e c t o r , cache ) ;

28

29 typede f BemOperator< l a p l a c e l a g s l i n t e g r a t o r t ,
f e s pa c e l a g r ang e0 c on s t r t , f e s p a c e l a g r an g e 0 c on s t r t >
l a p l a c e l a g s l b emop t ;

30 l a p l a c e l a g s l b emop t
l ap l a c e l a g s l b emop ( l a p l a c e l a g s l i n t e g r a t o r ,
fespace lagrange0 gamma , fespace lagrange0 gamma ) ;

31 l ap l a c e l a g s l b emop . compute ( ) ;
32

33 matr ix t l a p l a c e l a g s l = ( l ap l a c e l a g s l b emop . matrix ( ) ) . template
cast<std : : complex<double>>() ;

Code Snippet 11.7: An example for the implementation of BEM operators in BETL2
The example shown is for the Laplace single layer operator on the
space H� 1

2 (�). The parts before the definition of the fundamental
solution define properties used by the integration objects.

11.6 Incorporating boundary conditions and the ansatz
function

Given analytical functions are implemented in BETL2 using a specific class for project-
ing analytical functions onto the finite element spaces. An object of this class has to
return the function value (or its gradient, or its curl, depending on the type of boundary
conditions that are constructed) at every point on the grid. Then the DofCreator()
function is used to construct a vector out of the analytical function object on a specific
fespace. An example of this can be seen in Code Snippet 11.8.

1 typede f a n a l y t i c a l : : C i r cu la rCur rentLoopExc i ta t i onHf i e ld
c o i l f u n c t o r t ;

2 typede f bem : : Analyt ica lGr idFunct ion< g r i d f a c t o r y t , c o i l f u n c t o r t ,
Trace : : D i r i c h l e t > c o i l d i r i c h l e t t ;

3

4 const c o i l f u n c t o r t c o i l f u n c t o r ( j0 , c o i l r a d i u s , r e l d e l t a ) ;
5 const c o i l d i r i c h l e t t c o i l d i r i c h l e t ( g r i d f a c t o r y , c o i l f u n c t o r ) ;
6

7 matr ix t c o e f f d i r i c h l e t ( DofCreator ( ) ( c o i l d i r i c h l e t ,
fespace cur l gamma ) ) ;
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Code Snippet 11.8: An example for the incorporation of boundary conditions in BETL2
In this example, the Dirichlet trace of the excitation field
projected onto the curl fespaye is obtained. The class
analytical :: CircularCurrentLoopExcitationHfield is used to
construct an object returning Hs at each point of the grid. The
vector coeff dirichlet is Hs projected onto fespace curl gamma.

The ansatz function ⇢ used in Chapter 8 is also implemented in that way. Is is
constructed as the Dirichlet trace of a scalar function as described in Definition 8.1.

11.7 Visualization

The visualization is done using Paraview [21]. BETL2 o↵ers classes that visualize ele-
ments of the finite element spaces from Section 11.1 in Paraview. An example of this
can be seen in Code Snippet 11.9.

1 // i n t e r p o l a t e
2 typede f Inte rpo la t ionGr idFunct ion< g r i d f a c t o r y t ,

f e s p a c e l a g r a n g e 1 a l l t , s td : : complex<double> >
i n t e r p o l a t i o n f u n c t i o n l a g r a n g e 1 a l l t ;

3 i n t e r p o l a t i o n f u n c t i o n l a g r a n g e 1 a l l t i n t e rp u ( g r i d f a c t o r y ,
f e s p a c e l a g r an g e 1 a l l , fespace lagrange1 gamma . mapLocToGrid (u) ) ;

4

5 // export
6 const std : : s t r i n g export name = basename +

” r e s u l t s / h method resu l t ” ;
7 vtu : : Exporter<g r i d f a c t o r y t> expor te r ( g r i d f a c t o r y , export name ) ;
8 expor te r ( ” c a l c u l a t ed s c a l a r p o t e n t i a l ” , in te rp u ,

vtu : : Ent ity : : Point ) ;

Code Snippet 11.9: An example of visualization using BETL2’s Paraview classes
The example is about visualizing the solution u to the eddy current
problem. As the solution u is only defined on the subsurface �,
but the Paraview classes need data on the whole mesh, u on � has
to be embedded into the larger fespace using mapLocToGrid. The
argument vtu :: Entity :: Point in the exporter function means that
the degrees of freedom of u live on the vertices of the triangles. This
makes sense for piecewise linear functions. Another option that can
be used instead is vtu :: Entity :: Cell which is needed for piecewise
constant functions.
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