
Micromagnetism

Prof. R. Hiptmair, P. Corboz

October 30, 2003

1 The basic equations

The fundamental equations governing the evolution of the magnetization M in a ferro-
magnetic material are the Landau-Livshits-Gilbert equations :

dM

dt
= −γM×Heff − γα

Ms

M× (M×Heff) . (1)

Here, γ is the gyromagnetic constant with physical units m2V−1s−2, whereas α is dimen-
sionless and plays the role of a phenomenological damping parameter. The parameter Ms

represents the saturation magnetization and has dimension Am−1. The equations are valid
in the domain Ω ⊂ R3 occupied by the ferromatgnetic material.
The effective magnetic field Heff is the first variation of the Gibbs free energy E with
respect to the magnetization. In the presence of an exciting magnetic field He, it reads

E(M) =

∫

Ω

Ā

M2
s

|gradM|2 + Φ(M/Ms)− 2µ0He ·M dx + 1
2
µ0

∫

R3

|gradψ|2 dx . (2)

The Gibbs free energy is composed of several parts:

• the exchange term modelling the coupling between neighboring elementary magnets.

• the anisotropy energy with

Φ(u) = Q(1− (d · u)2), (3)

where the unit vector d ∈ R3 denotes the “easy axis”.

• the stray field term
∫
R3 |gradψ|2 dx representing the magnetic energy of the mag-

netic field due to the magnetization. Here, ψ is the scalar magnetic potential, which,
besides decay conditions at ∞, satisfies

µ0∆ψ = div M in R3 . (4)

Scaling the Landau-Livshits equation and the Gibbs free energy we arrive at the non-
dimensional form for the scaled magnetization m = (m1,m2,m3).

dm

dt
= −m× heff − αm× (m× heff) , (5)

1

where the effective magnetic field can be obtained as

heff = −∂E(m)

∂m
. (6)

The scaled free energy reads

E(m) = 1
2

∫

Ω

η|gradm|2 + Q(1− (d ·m)2)− 2he ·m dx + 1
2

∫

R3

|m0|2 dx ,

where m0 is the curl-free component of the L2(R3)-orthogonal Helmholtz decomposition
of m:

m0 = gradψ :

∫

R3

gradψ · gradϕ dx =

∫

R3

m · gradϕ dx ∀ϕ .

The equations have to be supplied with initial conditions and boundary conditions on ∂Ω.
It will turn out that

∂mi

∂n
= 0 on ∂Ω, i = 1, 2, 3 , (7)

are the right natural boundary conditions. The symbol n stands for the exterior normal
vector on ∂Ω.

2 Underlying balance laws

We form the inner product of (5) with m and obtain

dm

dt
·m = 0 ⇒ d|m|2

dt
= 2

dm

dt
·m = 0 .

Hence |m| is invariant in time. We will make the assumtion that

|m(x, 0)| = 1 ∀x ∈ Ω . (8)

This will hold for any time and reflects the assumption of microscopic magnetic saturation.
Multiplying (5) with heff and using the identity

a× (b× c) = b(a · c)− c · (a · b) (9)

we get

dm

dt
· heff = −α(m(m · heff)− heff) · heff = −α((m · heff)2 − |heff |2) = α|m× heff |2 .

This means that in the case of no excitation, that is, He = 0,

dE(m(t))

dt
=

〈
∂E(m)

∂m
,
dm(t)

dt

〉
=

∫

Ω

−heff · dm

dt
dx = −α

∫

Ω

|m× heff |2 dx .

It reveals that we are faced with a dissipative process and that α controls the strength of
dissipation. In a sense, only the second term on the right hand side of (5) has a dissipative
nature and forces the system towards an equilibrium state.

2

3 Reformulation

We can take the cross product of (5) with m and get, using (9) and |m| = 1,

m× dm

dt
= −m× (m× heff) + α(m(m · heff)− heff)×m

= −m× (m× heff) + α(m× heff) .

This can be used to replace the term m × (m × heff) in (5), which leads to the Gilbert
form of the equations

dm

dt
− αm× dm

dt
= −(1 + α2)m× heff .

4 Timestepping

Given suitable initial data m(x, 0) that satisfy (8), we aim to solve (5) We opt for a
very simple single step method, related to the implicit trapezoidal rule (method of Heun).
We assume a fixed timestep τ > 0 and and want to approximate the functions m(t) at
instances tn = nτ , n ∈ N. To that end we replace

dm

dt
(tn+ 1

2
) ≈ δmn+ 1

2 :=
mn+1 −mn

τ
, m(tn+ 1

2
) ≈ mn+ 1

2 :=
mn+1 + mn

2
,

where, for the sake of brevity, mn ≈ m(tn). It leads to the timestepping scheme

δmn+ 1
2 = −mn+ 1

2 × h
n+ 1

2
eff − αmn+ 1

2 × (mn+ 1
2 × h

n+ 1
2

eff) . (10)

Here the appropriate definition of the effective magnetic field is

h
n+ 1

2
eff := η∆mn+ 1

2 + Qd (d ·mn+ 1
2)− gradψ

n+ 1
2 + he(tn+ 1

2
) , (11)

with

−∆ψ
n+ 1

2 = − div mn+ 1
2 in R3 .

In the case he = 0, this implies

E(mn+1)− E(mn) = 1
2

∫

Ω

η|gradmn+1|2 − |gradmn|2 + Q(1− (d ·mn+1)2)

−Q(1− (d ·mn)2) dx + 1
2

∫

R3

|(mn+1)0|2 − |(mn)0|2 dx

=

∫

Ω

η grad(mn+1 −mn) · gradmn+ 1
2

−Q(d · (mn+1 −mn)(d ·mn+ 1
2) dx +

∫

R3

(mn+1 −mn) · (mn+ 1
2)0 dx

= −τ

∫

Ω

δmn+ 1
2 · hn+ 1

2
eff dx = −τ α

∫

Ω

|mn+ 1
2 × h

n+ 1
2

eff |2 dx , (12)

3

where the L2(R3)-orthogonality of the Helmholtz decomposition has been exploited. This
is the discrete analogue of the energy balance law.
We remark that timestepping can also be cast in Gilbert-form

δmn+ 1
2 − αmn+ 1

2 × δmn+ 1
2 = −(1 + α2)mn+ 1

2 × h
n+ 1

2
eff . (13)

5 Spatial discretization

Due to the rapid decay of the field ψ
n+ 1

2 away from Ω it is possible to restrict the com-
putations to a bounded domain D, whose boundary is sufficiently far away from Ω. This
computational domain D will be equipped with a triangulation that resolves the boundary
of Ω.
In order to apply a finite element method we have to cast (10) and (11) into weak form.
We set out from

δmn+ 1
2 − αmn+ 1

2 × δmn+ 1
2 =− (1 + α2)mn+ 1

2 ×
(
η∆mn+ 1

2 + Qd (d ·mn+ 1
2)

− gradψ
n+ 1

2 + he(tn+ 1
2
)
)

in Ω ,

∂mi

∂n
= 0 on ∂Ω, i = 1, 2, 3 ,

(14)

−∆ψ
n+ 1

2 =− div mn+ 1
2 in D ,

ψ
n+ 1

2 =0 on ∂D .
(15)

We seek mn in the space (H1(Ω))3, whereas ψ
n+ 1

2 is taken from H1
0 (D). We multiply (14)

by a test vector v and use the Green identity and the boundary conditions for m on ∂Ω,
to get the weak form. For the term containing the laplacian we have:
∫

Ω

(mn+ 1
2×∆mn+ 1

2)·vdx =

∫

∂Ω

(v×mn+ 1
2)·gradmn+ 1

2︸ ︷︷ ︸
0 on ∂Ω

·ndS+

∫

Ω

grad (mn+ 1
2 × v)·gradmn+ 1

2 dx

Thus, the weak form of (14) and (15) is:

1

1 + α2

∫

Ω

(δmn+ 1
2 − αmn+ 1

2 × δmn+ 1
2) · v dx =

=

∫

Ω

η grad(mn+ 1
2 × v) · gradmn+ 1

2 −Q(mn+ 1
2 × d)(d ·mn+ 1

2)v+

+(mn+ 1
2 × gradψ) · v − (mn+ 1

2 × he) · v dx

(16)

for all v ∈ (H1(Ω))3, and for all ϕ ∈ H1
0 (D)

∫

D

gradψ · gradϕ dx =

∫

D

mn+ 1
2 · gradϕ dx . (17)

4

Then, the function spaces are replaced with finite element spaces. The simplest choice
are continuous piecewise linear finite elements on D for each component of mn and the
same type of finite elements (with zero boundary values) on D for ψ.

We cannot solve (16) and (17) for mn+ 1
2 explicitely. Thus we replace mn+ 1

2 in (17) by the
old magnetisation mn, which leads us to a explicite scheme.∫

D

gradψ · gradϕ dx =

∫

D

mn · gradϕ dx . (18)

From a known magentisation mn we can calculate ψ with (17) an then use (16) to obtain

mn+ 1
2 .

All integrations will be carried out using local quadrature formulas whose nodes coincide
with the vertices of the elements.

6 Conservation of the norm of m

In this section we show that we need to use a reduced intergration for the first term on
the right hand side of (16) in order that the norm of m is conserved everywhere.
In (16) we chose the test function

v(x) =

{
mn+ 1

2 (x0) for x = x0

0 else

Many terms in (16) vanish and we obtain

1

1 + α2

∫

Ω

(δmn+ 1
2) · vdx =

∫

Ω

η grad(mn+ 1
2 × v) · gradmn+ 1

2 dx (19)

Calculating the scalar product on the left side leads to

1

1 + α2

∫

Ω

(δmn+ 1
2) · vdx ∼ (

∣∣mn+1(x0)
∣∣2 − |mn(x0)|2) (20)

If the norm of m is conserved at any point x0 in space, (|mn+1(x0)|2 − |mn(x0)|2) is
zero and the right hand side of (19) should vanish. But this is not the case in general.

Thus we introduce what is called a reduced integration. We replace grad(mn+ 1
2 × v) by

grad(I(mn+ 1
2 × v)) where I denotes the linear interpolation with values of (mn+ 1

2 × v)
taken in the corners of an elementary lattice triangle.
Let’s consider the triangle, where x0 lies on one corner of that triangle. Our special test
function v is zero in two corners and in x0 we have

mn+ 1
2 (x0)× v(x0) = mn+ 1

2 (x0)×mn+ 1
2 (x0) = 0

Therefore the right hand side of (19) vanish by using this reduced integration and the
norm of m is conserved in x0.
We can use this reasoning for any x0 in Ω, so that m is conserved anywhere in Ω.

5

7 Model-problem

We consider a translation invariant setting, in which none of the quantities depends on
the z-coordinate. This means that the problem is reduced to two dimensions. However, all
vectors still retain their three components. Only if both the excitation he and the initial
magnetization m0 have vanishing z-component this will hold for all other fields. We are
not going to assume this in the sequel.
The model problem is posed on the square D =]−2; 2[2, and Ω =]− 1

2
, 1

2
[2. The excitation

is provided by a spatially constant magnetic field he = he(t) that may vary with time,
however. As initial magnetization we choose m = (1, 0, 0)T .
We use the same regular uniform triangular mesh on Ω and D. The mesh width is h.
There are vD = 2/h− 1 lattice points per length of D, and nD = (vD)2 nodes total.
For Ω there are vΩ = 1/h + 1 lattice points per length of Ω, and nΩ = (vΩ)2 total.

Figure 1: Triangular mesh over D and Ω

6

8 FEM

As function space to approximate the components of m on Ω we use the continuous
piecewise linear finite elements with basis functions Λp, where p is indexing the location
of the basis function. The numbering starts from the upper left corner of Ω (see fig. 1).
In this basis the components of m can be written as:
ml(x) =

∑nΩ

p mp,lΛp(x) where mp,l are the expansion coefficients of the function ml in
the basis Λp. nΩ denotes the total number of lattice points in Ω.
In a similar way ψ is approximated on D : ψ(x) =

∑nD

k ψkZk(x) where the basis function
Zk are identical to Λp, but with a different numbering. As ψ is a scalar function we only
need one basis function per lattice point.
Λp (resp.Zp) is 1 at p and zero on the whole boundary of the six triangles shown below
(o is vD for Zp and vΩ for Λp).

Figure 2: Supp of Λp

We will also need the derivatives of these basis functions, which vanish for the z-
component:

Figure 3: Derivatives of basis functions with respect to x (left side) and y (right side)

7

An integral over one triangle is calculated by the quadrature formula:

∫

∆

fdx ≈
area(∆)

3

3∑
i=1

f(ai) (21)

whereas ai , i = {1, 2, 3} are the corners of the triangle ∆.

9 Discrete forms

We will denote mi,l as the expansion coefficients of the lth component of mn+1, m̃ i,l for

the lth component of mn, and mi,l for the lth component of mn+ 1
2 := mn+1+mn

2
.

9.1 Discrete form of potential problem (18)

Equation (18) leads to a simple linear system of equations for the coefficients ψk ,

∫

D

gradψ · gradZk dx =

nD∑
i

ψi

∫

D

gradZi gradZk dx

=

nD∑
i

Mkiψi, k ∈ {1, 2, ..., nD}

Mki =

∫

D

(∂xZi)(∂xZk) + (∂yZi)(∂yZk)dx (22)

A is a nD × nD constant block matrix with 5 non zero diagonals and block sizes vd × vd.

M =




C −I
−I C −I

−I C −I
...

−I C −I
−I C




C =




4 −1
−1 4 −1

−1 4 −1
...

−1 4 −1
−1 4




This block structure is typical for a matrix of a f.e.m problem. We will deal with similar
matrices later.

8

The right hand side of (18) is

∫

D

mn · gradZk dx =

∫

D

nΩ∑
i

2∑

l=1

m̃i,lΛi∂l Zkdx =

nΩ∑
i

m̃i,1Bik,1 + m̃i,2Bik,2

with

Bik,l =

∫

Ω

(∂lZk)Λi dx

where we replaced mn+ 1
2 in (18) by mn to get an explicit scheme.

Bl is of dimension nΩ×nD. Taking the Neumann boundary conditions on Ω into account
the matrix Bl takes the following block structure:

Bl =
h

6




... E ... U
L ... D ... U
... ... L ... D ... U

. . .

... ... L ... D ... U
... L ... F ...




(23)

The first element of block B is at position vD(vD−vΩ

2
− 1) + vD−vΩ

2
+ 1 of the matrix. The

blocks E,D,D,...,D,F are not arranged diagonally in the matrix but are shifted horizontally.
This shift of vD − vΩ positions is due to the fact, that the area D is bigger than Ω and
that we therefore have a different numbering of the basis functions Zk and Λp.
For l=1 the blocks are:

E =




−1 1
−1 0 1

−1 0 1
.

−1 0 1
−1 1




D =




−2 2
−2 0 2

−2 0 2
.

−2 0 2
−2 2




L =




−1 1
0 −1 1

−1 1
.

−1 1
0 0




U =




0
−1 1

−1 1
.

−1 1
−1 1




F = E

9

For l=2 the blocks are:

E =




−1 0
−1 −2

−1 −2
.

−1 −2
−1 −1




F =




1
1 2

1 2
.

1 2
1 1




D =




0 1
−1 0 1

−1 0 1
.

−1 0 1
−1 0




L =




−1 −1
0 −2 −1

−2 −1
.

−2 −1
−1




U =




1
1 2

1 2
.

1 2
1 1




These matrices Bx and By will be needed also for the fifth term of equation 16.
At each iteration step the following linear system for the coefficients ψi , i ∈ {1, 2, ..., nD}
has to be solved:

Mψc = BT
x mc

x + BT
y mc

y (24)

By ψc (resp. mc
i) the vector of the expansion coefficients of the function ψ (resp. mi) is

meant.

9.2 Discrete form of (16)

Most matrices (numbered from A1 to A6) don’t depend on mn+ 1
2 . Some of them are even

diagonal, so that they can be easily stored in a vector.
Some matrices are not the same for each component of m. For example we will have A3

l ,
l = {1, 2, 3} three different matrices for the third term in (16).
Let’s start with the first term on the left hand side (lth component) of (16).

Term 1:
∫
Ω

(δmn+ 1
2)lΛp dx

∫

Ω

(δmn+ 1
2)lΛp dx =

∫

Ω

(
mn+1 −mn

τ
)l · Λp dx =

1

τ

∫

Ω

nΩ∑
i

(mi,l − m̃i,l)ΛiΛp dx

=
1

τ

nΩ∑
i

A1
pi(mi,l − m̃i,l), l = {1, 2, 3}, p ∈ {1, 2, ..., nΩ}

10

A1
pi =

∫

Ω

ΛiΛp dx (25)

Using the quadrature formula and taking account of the Neumann boundary conditions
leads to a diagonal matrix (can be stored as a vector):

A1 =
h2

6




B
D

D
D

. . .

D
C




where the blocks A,B and C are

B =




1
3

3
. . .

3
2




D =




3
6

6
. . .

6
3




C =




2
3

3
. . .

3
1




Term 2:
∫
Ω

(mn+ 1
2 × δmn+ 1

2)lΛp dx

∫

Ω

(mn+ 1
2 × δmn+ 1

2)lΛp dx =

=
1

2τ

∫

Ω

(mn+1 + mn)l+1(m
n+1 −mn)l+2 − (mn+1 + mn)l+2(m

n+1 −mn)l+1Λp dx =

=
1

2τ

∫

Ω

(2mn
l+1m

n+1
l+2 − 2mn

l+2m
n+1
l+1)Λp dx =

=
1

τ

∫

Ω

nΩ∑
i

nΩ∑
j

(m̃j,l+1mi,l+2 − m̃j,l+2mi,l+1)ΛiΛjΛp dx =

=
1

τ
(A2

l+1ml+2 − A2
l+2ml+1) l = {1, 2, 3}, p ∈ {1, 2, ..., nΩ}.

11

A2
pi,l =

nΩ∑
j

m̃j,l

∫

Ω

ΛiΛjΛp dx =
(
A1 · diag(m̃l)

)
pi,l

(26)

The second matrix A2 is similar to the first matrix A1 except that each component j of
the diagonal of A1 is multiplied by the jth component of m̃l.

Term 3:
∫
Ω

η grad(mn+ 1
2 × v) · gradmn+ 1

2 dx

For this term we use a reduced integration. We write I(mn+ 1
2 × v) for the linear interpo-

lation over the three corners of the corresponding triangle.

∫

Ω

η grad(I(mn+ 1
2 × v)) · gradmn+ 1

2 dx = η

∫

Ω

grad




I(m2v3 −m3v2)
I(m3v1 −m1v3)
I(m1v2 −m2v1)


grad




m1

m2

m3


 dx

lth component:
We replace grad(I(mlΛp) with mp,l gradΛp where mp,l is the value lth component of ml

at lattice point p.

We get

η

nΩ∑
i=1

∫

Ω

(mp,l+2mi,l+1 −mp,l+1mi,l+2)((∂xΛp)(∂xΛi) + (∂yΛp)(∂yΛi))dx =

= η

nΩ∑
i=1

(A3
pi,l+2mi,l+1 − A3

pi,l+1mi,l+2)dx, l = {1, 2, 3}, p ∈ {1, 2, ..., nΩ}

with

A3
pi,l = mp,l

∫

Ω

((∂xΛp)(∂xΛi) + (∂yΛp)(∂yΛi))dx = mp,lANpi (27)

AN is the stiffness matrix for the laplace operator with Neumann boundary conditions.
It has the block form

AN =




E C
C D C

C D C
.

C D C
C F




(28)

with the following blocks

12

D =




2 −1
−1 4 −1

−1 4 −1
. . .

−1 4 −1
−1 2




C =




−1
2

−1
−1

. . .

−1
−1

2




E =




1 −1
2

−1
2

2 −1
2

−1
2

2 −1
2

. . .

−1
2

2 −1
2

−1
2

1




F = E

Term 4:
∫
Ω

Q(mn+ 1
2 × d)(d ·mn+ 1

2)lΛpdx

∫

Ω

Q(mn+ 1
2 × d)(d ·mn+ 1

2)lΛpdx =

=

∫

Ω

Q(
3∑

k=1

dkmk
n+ 1

2)(m
n+ 1

2
l+1 dl+2 −m

n+ 1
2

l+2 dl+1)Λpdx =

=

nΩ∑
i

(A4
pi,l+2mi,l+1 − A4

pi,l+1mi,l+2), l = {1, 2, 3}, p ∈ {1, 2, ..., nΩ}

A4
pi,l = Qdl

nΩ∑
j

(
3∑

k=1

dkmj,k)

∫

Ω

ΛiΛjΛp dx = Qdl · (A1 · diag(
3∑

k=1

dkmi,k))pi (29)

The matrix A4 is diagonal and corresponds to the matrix A1, where each component j of
the diagonal is multiplied by

∑3
k=1 dkmj,k.

Term 5:
∫
Ω

(mn+ 1
2 × gradψ)lΛpdx

∫

Ω

(mn+ 1
2 × gradψ)lΛpdx =

∫

Ω

(m
n+ 1

2
l+1 ∂l+2ψ −m

n+ 1
2

l+2 ∂l+1ψ)Λpdx =

=

∫

Ω

nΩ∑
i

nD∑
j

(mi,l+1ψj∂l+2Zj −mi,l+2ψj∂l+1Zj)ΛiΛpdx

=

nΩ∑
i

(A5
pi,l+2mi,l+1 − A5

pi,l+1mi,l+2), l = {1, 2, 3}, p ∈ {1, 2, ..., nΩ}.

13

A5
pi,l =

nD∑
j

ψj

∫

Ω

(∂lZj)ΛiΛp dx = δpi

nD∑
j

bpj,lψj (30)

A5
pi,z = 0

Bpj,l = δpi

∫

Ω

(∂lZj)ΛiΛp dx (31)

The matrices Bl are given in (23).

Term 6

∫

Ω

(mn+ 1
2 × he)l Λp dx =

∫

Ω

(m
n+ 1

2
l+1 hel+2 −m

n+ 1
2

l+2 hel+1) Λp dx =

=

nΩ∑
i

(A6
pi,l+2mi,l+1 − A6

pi,l+1mi,l+2), l = {1, 2, 3}, p ∈ {1, 2, ..., nΩ}.

A6
pi,l =

∫

Ω

he,lΛiΛpdx = (A1)pi · he l(xp)δpi (32)

This matrix is also diagonal. he l(xp) is the value of the lth component of the external
field at the lattice point p.

10 Test of the matrices

All the matrices of each term of (16) and (18) have been tested one by one by comparing
the f.e.m solution with the analytical calculated integral. We took 3 different mesh widths
to see the diminution of the error of order h2 (h0 = 1/24). For testing we chose arbitrary
magnetic fields and test functions on Ω:

14

m1 =




m1x

m1y

m1z


 =




x · y3 + 1
x2 · y + y2 + x2 − 1
x · y + x2 · y + y3




m2 =




m2x

m2y

m2z


 =




x2 · y3 − x · y2 + 1
−x2 + y

x2 · y4 − x · y2




v =




vx

vy

vz


 =




x + x4 · y − x · y4 + exp(x)
x · y + exp(y)

x + y2 − exp(x) · y




The following tables show the relative error between the f.e.m. result and the exact value
for each term.

Term 1:
∫

Ω
m1 · vdx

h rel. error x rel. error y rel. error z
h0 1.0612 · 10−4 3.3282 · 10−5 1.3339 · 10−2

h0/2 2.6971 · 10−5 7.5802 · 10−6 3.3332 · 10−3

h0/4 7.1826 · 10−6 1.1707 · 10−6 8.3256 · 10−4

Term 2:
∫

Ω
(m1 ×m2) · vdx

h rel. error x rel. error y rel. error z
h0 1.3584 · 10−2 1.7462 · 10−3 1.1540 · 10−2

h0/2 3.3947 · 10−3 4.3677 · 10−4 2.8831 · 10−3

h0/4 8.4801 · 10−4 1.0933 · 10−4 7.2133 · 10−4

Term 3:
∫

Ω
grad(m1 × v) · gradm1dx

h rel. error x rel. error y rel. error z
h0 2.0760 · 10−3 1.5707 · 10−3 4.6545 · 10−3

h0/2 5.2174 · 10−4 3.9231 · 10−4 1.1667 · 10−3

h0/4 1.2955 · 10−4 9.7748 · 10−5 2.9456 · 10−4

Term 4:
∫

Ω
(m1 × d) · v(d ·m1)dx

h rel. error x rel. error y rel. error z
h0 2.9558 · 10−3 1.5585 · 10−3 1.3111 · 10−2

h0/2 7.4250 · 10−4 3.8977 · 10−4 3.2752 · 10−3

h0/4 1.8578 · 10−4 9.7316 · 10−5 8.1723 · 10−4

Term 5:
∫

Ω
(m1 × gradψ) · vdx

h rel. error x rel. error y rel. error z
h0 3.1348 · 10−3 1.1708 · 10−3 2.6638 · 10−3

h0/2 7.8324 · 10−4 2.9172 · 10−4 6.6497 · 10−4

h0/4 1.9555 · 10−4 7.2398 · 10−5 1.6568 · 10−4

15

Term 6:
∫

Ω
(m1 × he) · vdx

Same form as term 2.

For the domain D [−2, 2]2 we tested the discretization with the following functions, sat-
isfying the Dirichelet boundary conditions:

ψ = (x− 2)(x + 2)(x− 2)(y + 2)(x− 3)(y3 − 1)

t1 = sin(2πx) sin(πy)

t2 = x sin(πx) sin(πy)

t3 = y sin(πx) sin(3πy)

The relative errors for the terms in (18) are given in the two following tables.

Term LHS:
∫

D
gradψ · grad tidx

h rel. error i=1 rel. error i=2 rel. error i=3
h0 4.8654 · 10−3 1.4299 · 10−3 1.0046 · 10−2

h0/2 1.2144 · 10−3 3.5710 · 10−4 2.5020 · 10−3

h0/4 3.0347 · 10−4 8.9251 · 10−5 6.2490 · 10−4

Term RHS:
∫

D
m1 · grad tidx

h rel. error i=1 rel. error i=2 rel. error i=3
h0 1.0865 · 10−1 1.3798 · 10−3 1.3170 · 10−2

h0/2 2.7288 · 10−2 3.4430 · 10−4 3.2730 · 10−3

h0/4 6.8316 · 10−3 8.5699 · 10−5 8.1761 · 10−4

The results show, that all the f.e.m matrices are correct.

16

11 Newton method

As the resulting system of equation for the expansion coefficients of the magnetization is
not linear, we will use the Newton method to determine them.

In this section ml denotes the vector of expansion coefficients of (mn+1(x))l, and m̃l for
the expansion coefficients of (mn(x))l. ml is ml+eml

2
.

The left hand side of (16) expressed with the matrices calculated in section 9 leads to (lth
component):

1

1 + α2

1

τ

(
A1(ml − m̃l) + α(A2

l+2ml+1 − A2
l+1ml+2)

)
=

=
1

1 + α2

1

τ
(A1(ml − m̃l) + α(A1m̃l+2 ∗ml+1 − A1m̃l+1 ∗ml+2)) =

=
1

1 + α2

1

τ
A1(ml − m̃l + α(m̃l+2 ∗ml+1 − m̃l+1 ∗ml+2))

The star ∗ stands for component-wise multiplication of two vectors.
The right hand side of (16) is

− η(A3
l+2ml+1 − A3

l+1ml+2) + A4
l+1ml+2 − A4

l+2ml+1

+ A5
l+2ml+2 − A5

l+1ml+1 + A6
l+1ml+2 − A6

l+2ml+1 =

=− η(A3
l+2ml+1 − A3

l+1ml+2) + (A4
l+1 − A5

l+1 + A6
l+1)ml+2 − (A4

l+2 − A5
l+2 + A6

l+2)ml+1

We define

Al = A4
l − A5

l + A6
l = Qdl · (A1 · diag(

3∑

k=1

dkmi,k))− diag(bl · ψc) + A1 · diag(hel(xp))

where diag(vector) means the diagonal matrix with vector as diagonal. ψc is the vector
of the expansion coefficients of ψ.
Moving all terms to the left side we arrive at

fl(m) = kA1(ml − m̃l + α(m̃l+2ml+1 − m̃l+1ml+2))

+η(A3
l+2ml+1 − A3

l+1ml+2)− Al+1ml+2 + Al+2ml+1 = 0
(33)

with k = 1
1+α2

1
τ
.

The derivative of f has takes the form

df =




D1 U1 U2
L1 D2 U3
L2 L3 D3


 (34)

The sparsity pattern of each block corresponds to the matrix AN (28). The blocks are

17

D1 = kA1 +
Qd1

2
· diag(A1(d3m2 − d2m3)) (35)

D2 = kA1 +
Qd2

2
· diag(A1(d1m3 − d3m1)) (36)

D3 = kA1 +
Qd3

2
· diag(A1(d2m1 − d1m2)) (37)

U1 = diag(αkA1m̃3 − η

2
ANm3 +

1
2
Az +

Qd2

2
A1(d3m2 − d2m3)) +

η

2
diag(m3)AN (38)

U2 = −diag(αkA1m̃2 − η

2
ANm2 +

1
2
Ay − Qd3

2
A1(d3m2 − d2m3))− η

2
diag(m2)AN (39)

U3 = diag(αkA1m̃1 − η

2
ANm1 +

1
2
Ax +

Qd3

2
A1(d1m3 − d3m1)) +

η

2
diag(m1)AN (40)

L1 = −diag(αkA1m̃3 − η

2
ANm3 +

1
2
Az − Qd1

2
A1(d1m3 − d3m1))− η

2
diag(m3)AN (41)

L2 = diag(αkA1m̃2 − η

2
ANm2 +

1
2
Ay +

Qd1

2
A1(d2m1 − d1m2)) +

η

2
diag(m2)AN (42)

L3 = −diag(αkA1m̃1 − η

2
ANm1 +

1
2
Ax − Qd2

2
A1(d2m1 − d1m2))− η

2
diag(m1)AN (43)

(44)

The Newton method works as follows:
Initialisation:
Start with m = m̃
Calculate the ψi.

Iteration:
Do while norm(f(m)) > tolerance

Calculate Df
mit+1 = mit − (Df)−1f(mit)
if it > itmax, break and error

18

12 Calculation of the energy

We want to calculate the energy at each iteration step.

E(m) = 1
2

∫

Ω

η|gradm|2 + Q(1− (d ·m)2)− 2he ·m dx + 1
2

∫

R3

|m0|2 dx

The first term can be calculated as follows

∫

Ω

|gradm|2 dx =
∑

k,l

∑
i,j

mi,lmj,l(

∫

Ω

∂kΛi∂kΛjdx) =

=
∑

l

∑
i,j

mi,lmj,lANij

where AN is the stiffness matrix of the laplacian with Neumann boundary conditions.
We defined it already in (28)

The middle integrand terms f(m) := Q(1 − (d · m)2) − 2he · m are integrated by the
following quadrature formula:

IΩ =
∑
2k∈Ω

h2

4

∑
i∈2k

f(m(xi))

where 2k ∈ Ω means all elementary lattice squares in Ω.

The last integrand is

1
2

∫

R3

|m0|2 dx = 1
2

∫

R3

|gradψ|2 dx =

=
1

2

∑
i,j

ψc
i ψ

c
j

∫

R3

∂xΛi∂xΛj + ∂yΛi∂yΛjdx =
1

2

∑
i,j

ψc
i ψ

c
jAij

where Aij is the stiffness matrix to the laplacian operator with Dirichelet boundary con-
ditions.

19

13 Interpretation of the equation

A short interpretation of the equatition 1 and the energy term 2 may help to understand
the results.

The first term γM × Heff lets the spins rotate (presession) around the axis Heff . The
second term γα

Ms
M × (M × Heff) has a dissipative character, i.e the angle between Heff

and M decreases in time.

We can solve equation 1 for a single spin with an ODE solver in Matlab. M depends only
on the time and Heff is taken as a constant vector.
Figure 4 shows the evolution in time of a spin vector.

Figure 4: Evolution of m for a single spin

Let us shortly discuss the different energy terms, which configuration leads to a minimum:

Exchange term:
∫
Ω

η|gradm|2dx
↘ for aligned spins (ferromagnet)

Anisotropy term:
∫
Ω

(1− (d ·m)2)dx

↘ for spins in direction of the easy axis

External magnetic field:
∫
Ω

(−2he ·m dx)

↘ for spins along the external magnetic field

Stray field term:
∫
R3

|m0| dx
↘ for small variation of ψ

20

14 Results

14.1 Example

We took the following parameters as an example of a simulation:
Size of domain D: 4
Size of domain Ω: 1
Number of lattice points per length of Ω: vo=33
Timestep: dt=0.2
Strength of anistropy term: Q=0.5
Direction of easy axis: d = 1/

√
3(111)T

Dissipation parameter: α=0.1
Strength of coupling: η=0.001
External field (x-component): he=0.1

Figure 14.1 shows the evolution of the energy of the system. The total energy decreases
monotonously and converges to a finite value. The curves below the total energy are the
different contributions to the energy defined in (2). It is possible that a single energy
contribution increases in time. This is due to an energy transition from another energy
contribution.

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time

en
er

gy

exchange energy
anisotropy energy
external field
magnetic energy
total energy

Figure 5: Different energy contributions

21

14.2 Screenshots at different timesteps

The following screenshots show the evolution of m of our example. We observe the
formation of vortices, which finally disappear at the upper left and the lower right
corners. In the final state, the elementary magnets tend to point in the same direction.

22

23

14.3 Dependencies

In this section we study the dependency of the results on the meshwidth, on the timestep
and on the size of the outer domain D.

In figure 14.3 the total energies of four simulations with different meshwidths are plotted.
The finest grid consists of 97x97 points and the smallest of 25x25 points. Up to the
physical time t ≈ 38 the difference between the energies is smaller than 1%. For t > 38
the curves seperate. All the simulations converge to the same final state, whereas the
simulation with the finest grid takes longest.

0 20 40 60 80 100 120
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time

en
er

gy

4*ho
2*ho
3/2*ho
ho

Figure 6: Total energies of four simulations with different meshwidths

Figure 14.3 shows the energies of the same example using three different timesteps.
Qualitatively we get the same result for the evolution of the magnetization, but there are
differences in the speed of the evolution. The example with the smallest timestep seems
to evolve a little bit faster than the examples with bigger timesteps.

Figure 14.3 compares the energies of two simulations with different size of D. From the
rather big difference in the results we can conclude, that we should chose the size of the
domain D bigger than only four times of the size of Ω. This means, that we have to take
much more meshpoints into account for the domain D, which increases the computing
time considerably. A solution would be to use an adaptive grid in D, which gets less fine
for points far away from Ω.

24

0 1 2 3 4 5 6 7 8 9 10
0.28

0.3

0.32

0.34

0.36

0.38

0.4

time

en
er

gy

0.1
0.05
0.01

Figure 7: Total energies of four simulations with different timesteps

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time

en
er

gy

D=4
D=8

Figure 8: Total energies of two simulations with different size of the domain D

25

14.4 Convergence of the Newton algorithm

The convergence of the Newton-algorithm is fast, as figure 14.4 shows. The maximum
number of steps is 3 to reach an error smaller than 10−12.

0 100 200 300 400 500 600
1.5

2

2.5

3

timestep

ite

ra
tio

ns

Figure 9: Number of iterations of the Newton algorithm used at each timestep

14.5 Energy conservation

When we set α = 0 the energy remains constant (see figure 10). Even though the total
energy remains constant, transitions between the different energy contributions can be
observed.

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time

en
er

gy

exchange energy
anisotropy energy
external field
magnetic energy
total energy

Figure 10: Energy conservation

26

A Matlab codes

In this section we present all the programs to run the simulation and to display the fields.

sim1.m (sim%.m)
A simulation file like sim1.m contains the initialization of the simulation parameters and
of the initial magnetization. All the simulation data will be stored in a directory, given
by the variable simpath. After the initialization the main routine runsimulation.m is called.

runsimulation.m
This is the main program to run a simulation. First the directory with name stored in
the variable simpath is created, then the simulation parameters are printed out by the
routine dispparams.m. The routines init.m, calcpsi.m and energy.m are called to initialize
the matrices and to calculate the initial field ψ and the energy.
In the main loop of this routine, the Newton algorithm newton.m is called to perform a
time step. The new magnetization is stored in the global variable ms. After each time
step the values of all different energy contributions are calculated and stored in the
file En.bin in the simulation directory. The scalar field ψ is stored in psi.bin and all
components of the magnetization in m.bin.

contsim.m
Arguments:(simpath) Continues a interrupted simulation
dispparams.m
Arguments:(simpath)
Displays the parameters of the simulation in the directory simpath.
init.m
Initialization of the matrices A1, AN, M, Bx, By. Uses the function basisd.m.

basisd.m
Arguments:(i)
Converts the basis index i of the basis function Λi to the corresponding index j of the
basis function Zj, which is located at the same position. j is returned.

calcpsi.m
Arguments:(m)
Returns the scalar field ψ calculated from the magnetization m.

energy.m
Arguments:(m,psi)
Calculates all the energy contributions of the system and returns them in a vector [E1
E2 E3 E4], where E1 is the energy from the exchange term, E2 is the anisotropy energy,
E3 is the contribution from the external magnetic field and E4 from the stray field term.

newton.m
Arguments:(m)
This routine contains the implementation of the Newton algorithm. It finds the root of
the function f.m, which corresponds to the new magnetization. The number of iterations

27

is returned.

f.m
Arguments:(m)
This is the function f(m) used in the Newton algorithm. The m which solves f(m)=0
corresponds to the new magnetization.

calcdm
Calculates ’dm’ for the Newton step.

plotenergy.m
Arguments:(simpath)
Plots all energy contributions stored in En.bin in the directory simpath. The total energy
is calculated and plotted too.

showm.m
Arguments:(m)
Plots the magnetization m as a coneplot. The size of the cones is set in the variable
conesize.

showpsi.m
Arguments:(psi)
Plots the scalar field psi.

dispm.m
Arguments:(simpath,step)
Plots the magnetization stored in m.bin in the directory simpath at time step step. This
routine uses showm.m.

disppsi.m
Arguments:(simpath,step)
Plots the scalar field ψ stored in psi.bin in the directory simpath at time step step. This
routine uses showpsi.m.

makemoviem.m
Arguments:(simpath,endstep,step)
Creates movie of dynamical evolution of the magnetisation m of the simulation data in
the path simpath. Every step time step a coneplot of m is appended to the film, up to time
step endstep. The data of the film is stored in the file Filmm.mat in the directory simpath.

makemoviepsi.m
Arguments:(simpath,endstep,step)
Creates movie of dynamical evolution of the scalar field ψ of the simulation data in the
path simpath. Every step time step a picture of ψ is appended to the film, up to time
step endstep. The data of the film is stored in the file Filmpsi.mat in the directory simpath.

playmoviem.m

28

Arguments:(simpath)
Displays the film Filmm.mat stored in the directory simpath.

playmoviepsi.m
Arguments:(simpath)
Displays the film Filmpsi.mat stored in the directory simpath.

29

References

[1] Zeidler Hackbusch, Schwarz. Teubner-Taschenbuch der Mathematik, volume 1. B.G.
Teubner Stuttgart, Leipzig, 1996.

30

