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Abstract

Impedance boundary conditions (IBC) are added to a Robust Maxwell Formulation
(Hiptmair et al. [2008]) and implemented in the three dimensional finite element code
HADAPT. The IBC lead to a substantial decrease in the number of unknowns which
allows for an efficient but approximative solution of boundary layer problems. The
approximation error is determined and analyzed for simple test geometries.
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1 Introduction

In the design of electric power devices one often has to account for currents which are
induced by other, stronger electric currents. As an example consider the configuration
given in Fig. 1.1: A semi-infinite conductor occupies the space z > 0. The region in
which z < 0 is filled with air and a spatially constant magnetic field hx = h0 cos(ωt)
is present which induces a current in the conductor. Across the interface z = 0 the
permittivity jumps from µ0 to µ and the conductivity from 0 to σ.

Figure 1.1: A spatially constant magnetic field hx induces a current in the semi-infinite
conductor (z > 0).

By assuming zero displacement current Jackson [Jackson, 1998][p. 221] derives an ex-
plicit formula for the y-component of the electric current (for z > 0):

jy =
√

2
δ
H0e

−z/δ cos(z/δ − ωt+ 3π/4) (1.1)

where the penetration depth δ is given by

δ =
√

2
µωσ

.

Eq. (1.1) shows that the electric current is decaying exponentially towards the inside
of the conductor and that the penetration depth decreases with increasing frequency ω.
In other words a boundary layer is formed which becomes narrower as the frequency
increases. In order to resolve this boundary layer with a traditional Finite Element
Method (FEM) very high spatial resolution is required which in turn requires a lot of
computing power.

Impedance boundary conditions (IBC) are often used as an approximation to overcome
this deficiency. They essentially assume a field of the form given in Eq. (1.1) inside
the conductor and resolve the electromagnetic fields only along the boundary. The aim
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1 Introduction

of this thesis was to implement IBC in HADAPT, a FEM suite developed by ABB
Switzerland Ltd.. which uses the Robust Maxwell Formulation introduced in Hiptmair
et al. [2008].

This document starts with a detailed derivation of the governing equations and a thor-
ough discussion of IBC (Chap. 2). After a compact summary of implementation specific
aspects (Chap. 3) a rich set of numerical results is presented and discussed (Chap. 4).
Chap. 5 gives a short synopsis of the most important results.
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2 Derivation of the variational equations

This chapter shows the derivation of the variational equations which are implemented in
HADAPT. It starts from the general Maxwell’s equations which are then reformulated in
terms of a− ϕ and transformed to the frequency domain. In accordance with Hiptmair
et al. [2008] an additional equation is added to stabilize Maxwell’s equations for low
frequencies and the variational formulation is derived. Finally the impedance boundary
conditions (IBC) are incorporated.

2.1 Geometric description

An artificially bounded domain Ω ∈ R3 which is composed of three distinct subdomains:
Ω = Ωa ∪Ωi ∪Ωw is considered. Ωi is the domain of the IBC conductor, Ωw the domain
of the (exciting) conductor/wire and Ωa contains the air box around the conductors (see
Fig. 2.1). Please note that the IBC conductor must be surrounded by the air box Ωa.
In order to simplify notation the computational domain Ωc = Ωa ∪ Ωw is defined.

Figure 2.1: The geometric situation.

There are several boundaries for each type of boundary condition:
Γ0 Left voltage boundary condition (ϕ = 0),
Γ1 Right voltage boundary condition (ϕ = U),
Γn Natural boundary condition,
Γw Boundary of the (exciting) conductor,
Γi Boundary of IBC conductor.

Please note that only Γw intersects with Γ0 and Γ1, all other boundaries do not intersect
with each other.
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2 Derivation of the variational equations

2.2 Maxwell’s equations for linear materials

According to [Nolting, 2007, p. 214] Maxwell’s equations for an arbitrary material are
given by

div b = 0 (2.1a)

curl e + ∂b
∂t

= 0 (2.1b)

div d = ρ (2.1c)

curl h− ∂d
∂t

= j. (2.1d)

where b and e denote the magnetic and electric field, respectively. ρ stands for the
charge density and j denotes the current density.
Remark. By taking the divergence of (2.1d) it is seen that the charges are preserved in
the system:

div curl h︸ ︷︷ ︸
=0

−div ∂d
∂t

= div j (2.2)

(2.1c)⇔ ∂ρ

∂t
+ div j = 0. (2.3)

Assumption. Only linear materials are considered. The constitutive relations are

b = µrµ0h
d = εrε0e

= µh
= εe,

(2.4)

where µ is the permeability and ε the electric permittivity of the material.

Assumption. The current j can be expressed with Ohm’s Law:

j = σe, (2.5)

where σ denotes the electric conductivity.

Therefore Maxwell’s equations for linear materials are given by

div b = 0 (2.6a)

curl e + ∂b
∂t

= 0 (2.6b)

div εe = ρ (2.6c)

curl 1
µ

b− ∂εe
∂t

= j. (2.6d)
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2.3 a − ϕ formalism

2.3 a − ϕ formalism

The four Eqs. (2.6) can be reduced to two equations by introducing the scalar potential
ϕ and the vector potential a such that

b = curl a, (2.7)

e = − gradϕ− ∂a
∂t
. (2.8)

If the above equations are inserted in Eqs. (2.6) the homogeneous equations (2.6a)
and (2.6b) are automatically fulfilled. The remaining inhomogeneous equations (2.6c)
and (2.6d) become

−div ε gradϕ− ∂

∂t
div εa = ρ (2.9a)

curl 1
µ

curl a + ε grad ∂ϕ
∂t

+ ε
∂2a
∂t2

= j. (2.9b)

With this trick it was possible to reduce a system of four first order partial differential
equations to a pair of second order partial differential equations which are generally
easier to solve on the computer.
Remark. Eqs. (2.9) define a and ϕ not uniquely. This becomes clear by adding a rotation
free component, grad χ, to a and ϕ:

a′ = a + grad χ (2.10)

ϕ′ = ϕ− ∂χ

∂t
. (2.11)

The last term in Eq. (2.11) was chosen such that the electric field derived from ϕ and ϕ′
is the same, i.e. e = − gradϕ − ∂a

∂t = − gradϕ′ − ∂a′

∂t . Clearly the same holds for the
magnetic field: b = curl a = curl a′ and therefore a′ and ϕ′ fulfill Eqs. (2.9) as well.

In order to assure that Eqs. (2.9) have a unique solution the Coulomb gauge condition,

div εa = 0, (2.12)

is added. If a fulfills Eq. (2.12) and a magnetic field b is given, a is well-defined up to a
constant. This can be shown by using the Helmholtz decomposition of a [Nolting, 2007,
p.36].

In conclusion Maxwell’s equations (2.6) can be expressed equivalently in the a − ϕ
formalism as

−div ε gradϕ = ρ (2.13a)

curl 1
µ

curl a + ε grad ∂ϕ
∂t

+ ε
∂2a
∂t2

= j (2.13b)

div εa = 0. (2.13c)
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2 Derivation of the variational equations

It can be shown that this system of partial differential equations equipped with appro-
priate boundary conditions defines ϕ and a uniquely.

2.4 Transformation to frequency domain

Assumption. The electric- and magnetic field are oscillating at the frequency ω ∈ R.

This assumption is often justified if the boundary conditions are oscillating at the same
frequency ω and after the system has passed an transient calibration phase. Therefore
the electric and magnetic fields can be split in a spatial and a transient part:

e(x, t) = Re [ê(x) · exp(iωt)] (2.14)

b(x, t) = Re
[
b̂(x) · exp(iωt)

]
. (2.15)

By inserting Eq. (2.14) in Ohm’s Law (2.5) it is seen that the the current density j is
also oscillating at frequency ω. By using the continuity equation (2.3) one can further
show that ρ is composed of a transient, oscillating part and a spatial part, that is:

ρ(x, t) = Re [ρ̂(x) · exp(iωt)] (2.16)

j(x, t) = Re
[̂
j(x) · exp(iωt)

]
. (2.17)

Eqs. (2.14) and (2.15) imply that the a and ϕ fields are also split in a transient and a
spatial part:

a(x, t) = Re [â(x) · exp(iωt)] (2.18)
ϕ(x, t) = Re [ϕ̂(x) · exp(iωt)] . (2.19)

In order to formulate Maxwell’s Equations in the frequency domain the above equations
are inserted in the system of equations (2.13):

−div ε grad ϕ̂ = ρ̂ (2.20a)

curl 1
µ

curl â + iεω grad ϕ̂− εω2â = ĵ (2.20b)

div εâ = 0. (2.20c)

This system of partial differential equations contains only the complex, spatial functions
ϕ̂, â, ĵ and ρ̂. Once this system, equipped with the appropriate boundary conditions, is
solved the quantities of interest can be calculated with Eqs. (2.14) - (2.19).
Remark. Maxwell’s equations in the frequency domain can also be interpreted using
Fourier theory, i.e. the potential ϕ can be written as:

ϕ(x, t) =
∫ ∞
−∞

ϕ̂(x, ω) · exp(iωt) dω.
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2.5 Variational formulation

A similar idea is used for the remaining unknowns, a, j and ρ. If this ansatz is then
inserted into the transient Maxwell’s equations (2.13) one sees that Maxwell’s equations
in the frequency domain (2.20) have to hold for all frequencies ω.

Ohm’s Law (2.5) and the continuity equation (2.3) in the frequency domain are given
by

ĵ = σê = −σ grad ϕ̂− iσωa (2.21)
iωρ̂+ div ĵ = 0. (2.22)

The last equation provides a relation between the current density ĵ and the charge density
ρ̂ if ω > 0. We can thus insert (2.21) and (2.22) into the system (2.20):

iω div ε grad ϕ̂ = −div [σ grad ϕ̂+ iσωâ] (2.23a)

curl 1
µ

curl â + iεω grad ϕ̂− εω2â = − [σ grad ϕ̂+ iσωâ] (2.23b)

div εâ = 0. (2.23c)

By taking divergence of Eq. (2.23b),

div curl 1
µ

curl â︸ ︷︷ ︸
=0

+iω div ε grad ϕ̂− ω2 div εâ︸ ︷︷ ︸
(2.23c)

= 0

= −div [σ grad ϕ̂+ iσωâ] , (2.24)

it is seen that the Gauss Law (2.23a) is contained in (2.23b) and (2.23c) for ω > 0.
Therefore Eq. (2.23a) is redundant and Maxwell’s equations can be written as

curl 1
µ

curl â + iεω grad ϕ̂− εω2â = − [σ grad ϕ̂+ iσωâ] (2.25a)

div εâ = 0. (2.25b)

Remark. In order to simplify notation the hatˆis left out in the upcoming sections. Until
now it has been used to denote variables in the frequency domain, but from now on all
variables are assumed to lie in the frequency domain unless explicitly noted.

2.5 Variational formulation

The variational equations of the strong formulation (2.25) rely on the Sobolev spaces
(see [Hiptmair et al., 2008])

V :=
{

v ∈H(curl,Ωc) : curlΓ vt = 0 on ∂Ωc,

∫
τ

v · ds = 0
}

(2.26)

H(U) :=
{
ψ ∈ H1(Ωc) : ψ|Γ0 = 0, ψΓ1 = U

}
(2.27)
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2 Derivation of the variational equations

We assume the strong form (2.20) holds in the computational domain Ωc and test it
with test functions a′ ∈ V , ϕ′ ∈ H(0):∫

Ωc

curl 1
µ

curl a · a′ + (iωε+ σ) gradϕ · a′ − (ω2ε− iσω)a · a′ dx = 0 (2.28a)∫
Ωc

div εa · ϕ′ dx = 0. (2.28b)

Stokes’s formula.∫
Ω

curl v · u− curl u · v dx =
∫
∂Ω

(u× n) · v dS ∀u ∈H(curl,Ω), v ∈H1(Ω)

(2.29)

Green’s first formula. For all vector fields j ∈
(
C1

pw(Ω)
)d

and functions v ∈ C1
pw(Ω)

holds ∫
Ω

j · grad v dx = −
∫

Ω
div j v dx +

∫
∂Ω

j · n v dS (2.30)

With the help of Stokes’s formula the first terms of Eq. (2.28a) can be rewritten as
follows:∫

Ωc

curl 1
µ

curl a · a′ dx =
∫

Ωc

1
µ

curl a · curl a′dx−
∫
∂Ωc

1
µ

(curl a × n) · a′ dS (2.31)

By using Green’s first formula the derivative in Eq. (2.28b) is shifted onto ϕ′ and the
weak formulation is obtained: Find a ∈ V, ϕ ∈ H(U) such that:( 1

µ
curl a, curl a′

)
Ωc

+
(
(iωε+ σ) gradϕ,a′

)
Ωc
−
(
(ω2ε− iωσ)a,a′

)
Ωc

−
∫
∂Ωc

1
µ

(curl a × n) · a′ dS = 0
(2.32a)

−
(
εa, gradϕ′

)
Ωc

+
∫
∂Ωc

εa · nϕ′ dS = 0 (2.32b)

for all a′ ∈ V, ϕ′ ∈ H(0). (u, v)Ω =
∫

Ω u · v dx was used to denote the L2 inner product.

2.6 Robust Maxwell Formulation

When the Eqs. (2.32) are solved numerically it is observed that the resulting linear system
becomes ill-conditioned for ω → 0. In the limiting case ω = 0 the equations of stationary
electromagnetism have to hold. They can be derived from Maxwell’s equations (2.13)
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2.6 Robust Maxwell Formulation

by setting time derivatives to zero:

−div ε gradϕ = ρ (2.33a)

curl 1
µ

curl a = −σ gradϕ (2.33b)

div εa = 0. (2.33c)

In contrast Maxwell’s equations in the frequency domain (2.25) become in the limit
ω → 0:

curl 1
µ

curl a = −σ gradϕ (2.34)

div εa = 0. (2.35)

By taking the divergence of Eq. (2.34) we get,

−div σ gradϕ = 0. (2.36)

Inside a idealized conductor without free charges (ρ = 0) in which σ, µ and ε are constant
and greater than zero Eq. (2.36) is equivalent to the Gauss Law (2.33a). However outside
the conductor the Gauss Law (2.33a) is missing which implies that Eqs. (2.25) become
unstable for ω → 0.

Hiptmair et al. [2008] describe this phenomena in more detail and propose to stabilize
the Eqs. (2.32) by splitting the scalar field ϕ in two components,

ϕ = ϕ̃+ ψ, (2.37)

where ϕ̃ ∈ H(U) and ψ ∈ H1
e (U) with

H1
e (U) :=


v ∈ H1(Ωc) : v ≡ const
on all connected components of Ωw,
v|Γ0 = 0, v|Γ1 = 0, v|Γi

= const.

 . (2.38)

The introduction of an extra unknown must be balanced by an extra equation. This can
be accomplished in two ways:

Option 1: By testing (2.25a) with gradψ: The resulting weak formulation is simply
obtained by inserting a′ = gradψ in (2.32a):

−
∫
∂Ωc

1
µ

(curl a × n) · gradψ′ dS +
(
(iωε+ σ) gradϕ, gradψ′

)
Ωc

−
(
(ω2ε− iωσ)a, gradψ′

)
Ωc

= 0 (2.39)
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2 Derivation of the variational equations

because gradψ′ = 0 inside Ωw, (σ χ, gradψ′) = 0 for any χ. With the help of the
gauge condition (2.32b), (2.39) can thus be rewritten as

−
∫
∂Ωc

1
µ

(curl a × n) · gradψ′ dS +
(
iωε grad (ϕ̃+ ψ), gradψ′

)
Ωc
−

ω2
∫
∂Ωc

εa · nψ′ dS = 0 (2.40)

Option 2: The supplementary equation is derived by testing the missing Gauss law (2.23a)
with ψ′: ∫

Ωc

iω div [ε gradϕ] ψ′ dx +
∫

Ωc

div [σ gradϕ+ iωσa]ψ′ dx = 0 (2.41)

⇔

− iω
∫

Ωc

ε gradϕ · gradψ′ dx + iω

∫
∂Ωc

εψ′ gradϕ · n dS−∫
Ωc

σ( gradϕ+ iωa) gradψ′ dx︸ ︷︷ ︸
=0

+
∫
∂Ωc

σ(( gradϕ+ iωa) · nψ′ dS︸ ︷︷ ︸
=0

= 0 (2.42)

where the last term is zero because ψ′ = 0 on Γ0 and Γ1 and σ = 0 on the remaining
boundary. Thus an alternative form of (2.40) is obtained:

−
(
ε grad (ϕ̃+ ψ), gradψ′

)
Ωa

+
∫
∂Ωc

εψ′ gradϕ · n dS = 0, (2.43)

which equals the Gauss law in the non-conducting domain.

Equivalence of form 1 and 2: One can show that the two forms (2.40) and (2.43) of
the additional equation are equivalent:∫

∂Ωc

1
µ

(curl a × n) · gradψ′ dS

(2.31)= 0−
∫

Ωc

curl 1
µ

curl a · gradψ′dx

(2.30)= 0−
∫
∂Ωc

curl 1
µ

curlA · nψ′ dS

(2.25a)=
∫
∂Ωc

(
iωε gradϕ− ω2εa + σ( gradϕ+ iωa)

)
· nψ′ dS

Hence Eq. (2.40) can be rewritten as

− iω
∫
∂Ωc

ε gradϕ · nψ′ dS −
∫
∂Ωc

σ( gradϕ+ iωa) · nψ′ dS︸ ︷︷ ︸
=0

+ω2
∫
∂Ωc

εa · nψ′ dS+

iω
(
ε grad (ϕ̃+ ψ), gradψ′

)
Ωc
− ω2

∫
∂Ωc

εa · nψ′ dS = 0, (2.44)

which equals exactly the second formulation (2.43).
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2.6 Robust Maxwell Formulation

Summary: Robust Maxwell formulation In order to derive the Robust Maxwell for-
mulation the splitting (2.37) is inserted into Eqs. (2.32) and the supplementary equa-
tions (2.40) and (2.43) are added: Find a ∈ V, ϕ̃ ∈ H(U), ψ ∈ H1

e (U) such that:

( 1
µ

curl a, curl a′
)

Ωc

−
∫
∂Ωc

1
µ

(curl a × n) · a′ dS−(
(ω2ε− iωσ)a,a′

)
Ωc

+
(
(iωε+ σ) grad ϕ̃,a′

)
Ωc

+
(
iωε gradψ,a′

)
Ωc

= 0

−
(
εa, grad ϕ̃′

)
Ωc

+
∫
∂Ωc

εa · n ϕ̃′ dS = 0

−
∫
∂Ωc

1
µ

(curl a × n) · gradψ′ dS − ω2
∫
∂Ωc

εa · nψ′ dS+(
iωε grad (ϕ̃+ ψ), gradψ′

)
Ωa

= 0

−
(
ε grad (ϕ̃+ ψ), gradψ′

)
Ωa

+
∫
∂Ωc

εψ′ gradϕ · n dS = 0

(A)

(B)

(C)

(C*)

for all a′ ∈ V, ϕ̃ ∈ H(0), ψ′ ∈ H1
e (0).

Remark. The Eqs. (C) and (C*) are equivalent and are both contained in (A) and (B)
for ω > 0. Hence the equation systems formed by
• (A), (B) and (C) or
• (A), (B) and (C*)

have not a unique solution for ω > 0. Consequently the system of linear equations is
singular and cannot be solved directly but iterative solvers work and may even converge
faster.

Remark. Consider the system (A), (B) and (C*) for ω = 0:

( 1
µ

curl a, curl a′
)

Ωc

−
∫
∂Ωc

1
µ

(curl a × n) · a′dS+(
σ grad (ϕ̃+ ψ),a′

)
Ωc

= 0
(2.46a)

−
(
εa, grad ϕ̃′

)
Ωc

+
∫
∂Ωc

εa · n ϕ̃′ dS = 0 (2.46b)

−
(
ε grad (ϕ̃+ ψ), gradψ′

)
Ωa

+
∫
∂Ωc

εψ′ gradϕ · n dS = 0. (2.46c)

Eqs. (2.46a) and (2.46b) are the variational form of Eqs. (2.33b) and (2.33c). Eq. (2.46c)
is the variational form of the Gauss Law (2.33a) outside the conductor and by setting
a′ = gradϕ in (2.46a) the Gauss Law inside the conductor Ωw is recovered. Therefore
the stationary Maxwell Equations (2.33) are contained in Eqs. (2.45) and robustness
with respect to small values of ω (cf. [Hiptmair et al., 2008]) can be expected.
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2 Derivation of the variational equations

2.7 Impedance boundary conditions

Inside the IBC conductor the so called skin effect is observed: For high frequencies ω
the electromagnetic fields decay exponentially in a thin boundary layer at the surface
with penetration depth (cf. [Jackson, 1998, p. 220])

δ :=
√

2
µσω

.

According to [Ostrowski, 2002] δ is typically in the order of [0.05mm − 6.0mm] for
steel. Hence a very high spatial resolution is needed to resolve this boundary layer
correctly with a FE method which in turn leads to high computational costs. Instead
the electromagnetic fields inside the IBC conductor are often not modeled at all and the
impedance boundary conditions (IBC) (cf. [Ostrowski, 2002, p. 16])

n× ei = η1 · n× (n× hi), (2.47)

with η1 := (1 + i)
√
µiω

2σi
,

are used to approximate the fields on the surface of the conductor. Eq. (2.47) is derived
(cf. [Jackson, 1998, p.355]) from Maxwell’s Equations by assuming
• Zero displacement current in Ampere’s Law (2.1d),
• The electrical field e outside of the conductor is perpendicular to the surface,
• The magnetic field strength h is parallel to the surface,
• Derivatives along the surface are small compared to derivatives in normal direction.

Because Eq. (2.47) is only valid inside the IBC conductor the subscript i was used to
denote fields/variables which are measured inside the conductor.

With the help of the jump conditions [Nolting, 2007, p. 295]

[n× h] = n× (hi − h) = 0,
[n× e] = n× (ei − e) = 0.

the impedance boundary conditions on the outside are expressed as

n× e = η1 · n× (n× h), (2.48)

with η1 := (1 + i)
√
µiω

2σi
. (2.49)

Next n× is applied to both sides of Eq. (2.48) and with the help of a vector identity an
expression for n× h is obtained:

n× (n× e) = η1 · n× (n× (n× h))
= η1 · [(n · (n× h))n− n× h]
= −η1 · n× h. (2.50)
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2.8 Implemented variational equations

Eq. (2.50) can also be stated in the a− ϕ formalism:

n× (n× ( grad (ϕ̃+ ψ) + iωa)) = η1
µ
· n× curl a.

Because ψ = const on Γi it holds (n× gradψ)|Γi
= 0:

curl a × n = − µ
η1
· n× (n× ( grad ϕ̃+ iωa)). (2.51)

The above equation can now be substituted into the boundary term in Eq. (A).

2.8 Implemented variational equations

This section derives the variational formulation of a concrete problem with the boundary
conditions (cf. [Hiptmair et al., 2008])

a × n = 0, ϕ = lU on Γl, l = 0, 1, U ∈ C,
curlµ−1 curl a · n = 0

curlΓ at = 0, εa · n = 0

}
on Γn,

curl a × n = − µ
η1
· n× (n× ( grad ϕ̃+ iωa)) on Γi.

Hiptmair et al. [2008] show that with this boundary conditions all boundary terms
in the robust variational formulation on Γn,Γ0,Γ1 vanish. Therefore the variational
formulation becomes:( 1

µ
curl a, curl a′

)
Ωc

+
∫

Γi

1
η1
· n× (n× ( grad ϕ̃+ iωa)) · a′ dS−(

(ω2ε− iωσ)a,a′
)

Ωc

+
(
(iωε+ σ) grad ϕ̃,a′

)
Ωc

+
(
iωε gradψ,a′

)
Ωc

= 0
(A2)

−
(
εa, grad ϕ̃′

)
Ωc

+
∫

Γi

εa · n ϕ̃′ dS = 0 (B2)

− ω2
∫

Γi

εa · nψ′ dS +
(
iωε grad (ϕ̃+ ψ), gradψ′

)
Ωa

= 0 (C2)

−
(
ε grad (ϕ̃+ ψ), gradψ′

)
Ωa

+
∫

Γi

εψ′ gradϕ · n dS = 0, (C2*)

where we have used that

−
∫

Γi

1
µ

(curl a × n) · gradψ′ dS = −
∫

Γi

1
µ

(
n× gradψ′

)
· curl a dS = 0,

because ψ′ ≡ const on Γi.
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3 Implementation in HADAPT

This compact chapter explains the main features of the numerical discretization. It is
assumed that the reader is familiar with the FE method and many technical details are
left out.

3.1 Assembling the matrices

HADAPT uses a mesh composed of second order curved tetrahedrons to describe the
geometry. Each tetrahedron is defined by 10 nodes (cf. Fig. 3.1) but only 4 locally
linear, nodal shape functions exist per element. However the mapping from the reference
element to the individual tetrahedron is second order and therefore the global shape
functions will also be second order polynomials.

Figure 3.1: Reference Tetrahedron with node numbers and coordinates

For the vector potential a 6 vector valued edge basis functions are defined along the
edges of the tetrahedron:

ϕA(ξ, η, ζ) gradϕB(ξ, η, ζ)− ϕB(ξ, η, ζ) gradϕA(ξ, η, ζ)

14



3.2 Solving the equations

where ϕA, ϕB are the nodal basis functions of the two nodes which are connected by the
edge. By convention node B is chosen to have the higher index.

The volume integrals appearing in the variational formulation (Eqs. (A2), (B2), (C2*))
are evaluated with a 4-point Gaussian quadrature rule whereas the boundary integration
is calculated by a 7-point Gaussian quadrature rule (cf. [Greenough, 2000]).

3.2 Solving the equations

HADAPT provides two strategies to iteratively solve the resulting linear equations using
BiCGStab. They only differ in the choice of the preconditioner:

The direct preconditioner first assembles a second system matrix with a σ-limiter, i.e.
the entries are calculated by allowing a maximal conductivity of 105 [Sm−1]. This leads
to a system matrix which is then inverted with a direct LU decomposition to provide a
preconditioner for the system to be solved.

BiCG Stab usually converges with this preconditioner in less than 15 steps to a solution
with insignificant error. However due to the high memory requirements this precondi-
tioner is only applicable to small systems.

The real valued preconditioner uses Operator preconditioning in conjunction with a
Schur complement technique. Ostrowski et al. [2010] describe this technique in more
detail.

This method enables the use of a larger number of unknowns and is often used in practice.
Unfortunately it was not possible to implement the IBC with this preconditioner due to
time constraints.
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4 Numerical Experiments

In total three test cases are considered to test and verify the implementation of the IBC
in HADAPT. Sec. 4.1 gives an accurate description of those test cases whereas Secs. 4.2
and 4.4 discuss the performance respectively the applicability of IBC. Sec. 4.3 compares
the results to another commercial solver, Infolytica, which also supports IBC.

4.1 Description of test cases

1 Material test case This test case is very similar to the configuration described in
Sec. 2.1: Voltage boundary conditions are placed on an (excitatory) conductor and cause
a current which in turn induces currents in the IBC conductor (cf. Fig. 2.1 and Fig. 4.1)
As the name suggests, impedance boundary conditions are used to approximate the
surface currents of the IBC conductor.

The material properties are given in Tab. 4.1.

σ [Sm−1] εr µr

Air box 0. 1. 1.
Excitatory conductor 5e6 1. 1.
IBC conductor 1e7 1. 200.

Table 4.1: Material Properties for 1 Material test case.
ε = ε0εr, µ = µ0µr

2 Materials test case This problem is almost an exact duplicate of the 1 Material
test case. The only difference is that the IBC conductor has been split into two IBC
conductors with distinct material properties (cf. Fig. 4.2). The IBC are only used
between the air box and the IBC conductors but not between the two IBC conductors.

The material properties are given in Tab. 4.2.

Short body test case In this problem we use the same setup as in the 1 Material test
case but with an IBC conductor of half the length. The material properties are the same
(cf. Tab. 4.1).
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4.2 Runtime and memory requirements

(a) With air box (b) Without air box

Figure 4.1: 1 Material test case. Blue = Air box, green = excitatory conductor, red =
IBC conductor

σ [Sm−1] εr µr

Air box 0. 1. 1.
Excitatory conductor 5e6 1. 1.
IBC conductor A 1e7 1. 200.
IBC conductor B 1e7 1. 100.

Table 4.2: Material properties for 2 Material test case.

4.2 Runtime and memory requirements

The numerical experiments were performed on a 64-bit Intel Xeon Quad core with 8Gb
RAM. The termination criteria for BiCGStab was set to 1.0 · 10−10.

The total runtimes to solve each of the three configurations (see Sec. 4.1) with IBC and
by fully resolving the boundary layer are shown in Fig. 4.4. In Fig. 4.5 the memory
requirements along with the degrees of freedom (dof) of the resulting linear system are
plotted for each configuration.

It is observed that the IBC generally lead to a decrease in the dof of each configuration
because the interior of the IBC conductor(s) is not modeled. Because many dofs are
needed to properly resolve the boundary layers IBC really reduce the number of un-
knowns which in turn results in shorter run times and less memory consumption. For
the configurations under consideration simulation time and memory consumption was
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4 Numerical Experiments

Figure 4.2: 2 Materials test case without air box. Blue = Excitatory conductor, Green
= IBC Conductor A, Red = IBC Conductor B.

reduced by 25%− 45% by using IBC as opposed to a fully resolved model.

4.3 Comparison to Infolytica

In order to verify the implementation of the IBC the first two test cases described
in Sec. 4.1 were also calculated with Infolytica. Infolytica doesn’t use the stabilized
formulation and smoothes the resulting fields to get a better visualization but it also
supports IBC.

Fig. 4.6 and Fig. 4.7 show the root mean squared (RMS) surface j and b field, respec-
tively. Qualitatively both fields look very similar and the upper and the lower value
appear to be almost exactly the same. This proves that the IBC implementation in
HADAPT is indeed giving correct results.

Potential of IBC conductor The Stabilized Maxwell Formulation is able to determine
the potential on the IBC conductor which is not possible with the usual formulation
that is used e.g. by Infolytica. Fig. 4.8 shows this for the 1 material configuration. It
is seen that the potential of the IBC conductor forms one equipotential surface that has
the value 0.5. This is exactly what is observed in an experiment.
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4.3 Comparison to Infolytica

Figure 4.3: Short body test case without air box. Blue = Excitatory conductor, Red =
IBC Conductor.

Figure 4.4: Total runtime for different configurations.

Figure 4.5: Memory consumption and degrees of freedom for different configurations
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4 Numerical Experiments

Figure 4.6: The surface current in [A] calculated with HADAPT and Infolytica for 1
material test case.
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4.3 Comparison to Infolytica

Figure 4.7: The surface B-field in [T] calculated with HADAPT and Infolytica for 1
material configuration.

Figure 4.8: Real part of the potential ϕ in [V] for the 1 Material test case.
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4 Numerical Experiments

4.4 Accuracy of the IBC

The better performance of IBC is bought by a strong approximation: the interior of the
IBC conductor is approximated by a surface model. In order to measure the approxima-
tion error the IBC solution is compared to the fully resolved model by computing the
relative L2 and L∞ norms,

‖ϕIBC − ϕfull‖relative = ‖ϕIBC − ϕfull‖
‖ϕfull‖

.

All norms are calculated over the computational domain Ωc.

Fig. 4.9 shows the L2 and L∞ norms for the computational variables ϕ and A at 50Hz.
For ϕ the relative L2 norm is in the range of 0.4% − 0.6% and for A in the order of
1%− 1.5%. The L∞ norm is higher for all test cases and lies in between 0.13%− 0.14%
and 2.5%−3%, respectively. The results show that IBC indeed approximate the physical
solution closely.

One would expect a higher norm for the short body test than for the other configurations
because the third assumption of the IBC (see Sec. 2.7) is more violated. But Fig. 4.9
shows that the difference to the fully resolved model is almost independent of the chosen
configuration. Further investigations with more complex geometries are needed to better
judge the applicability of IBC for a given configuration.

Figure 4.9: Relative norms of the difference between full and IBC solution at 50Hz.

Fig. 4.10 shows the relative norms for different frequencies. While the relative norm
of the potential ϕ increases linearly with higher frequencies, the norm of the vector
potential a decreases in a nonlinear fashion. This could result from the fully resolved
model not being able to completely resolve the boundary layer because its thickness
decreases with higher frequency. Therefore studies with more accurate, fully resolved
models are needed to better understand this effect.
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4.4 Accuracy of the IBC

Figure 4.10: Dependence of the relative norms on the frequency for 1 material test case.
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5 Conclusion

In this study IBC were successfully implemented in HADAPT and tested thoroughly.
They provide an efficient way to resolve boundary layers in conductors by reducing the
degrees of freedom. Generally IBC are advantageous to a fully resolved model at high
frequencies because the boundary layer becomes narrower with increasing frequency and
with it the DOF’s needed to resolve the boundary layer.

Usually IBC are implemented based on the standard Maxwell’s equations and the electric
potential of the IBC conductor cannot be calculated in a stable way. This study showed
that the introduction of an extra unknown (cf. Hiptmair et al. [2008]) allows for a robust
calculation of this potential.

It was also shown that for geometrically simple test geometries the runtime and memory
requirements were reduced substantially while keeping the total error at a few percents.
While the approximation error clearly depends on the frequency, it is almost independent
of the geometry which has to be confirmed for more complex, real-world configurations.

The present implementation only allows the direct preconditioner to be used with IBC.
In order to simulate more complex geometries with vastly more unknowns the code has
to be extended to work with the real valued preconditioner as well.

24



Bibliography

Chris Greenough. The Finite Element Library (Release 4.0) - Level 0 User Documenta-
tion. Rutherford Appleton Laboratory, December 2000. URL http://www.softeng.
rl.ac.uk/st/projects/felib4/Docs/PDF/Level-0.pdf. (Cited on page 15.)

Ralf Hiptmair, Florian Kramer, and Joerg Ostrowski. A robust maxwell formulation for
all frequencies. Magnetics, IEEE Transactions on, 44(6):682 –685, june 2008. (Cited
on pages c, 2, 3, 7, 9, 11, 13 and 24.)

John David Jackson. Classical Electrodynamics. Wiley, third edition, 1998. ISBN 978-
0471309321. (Cited on pages 1 and 12.)

Wolfgang Nolting. Grundkurs Theoretische Physik, volume 3: Elektrodynamik. Springer-
Verlag, eight edition, 2007. ISBN 978-3-540-71251-0. (Cited on pages 4, 5 and 12.)

Jörg Ostrowski. Boundary element methods for inductive hardening. PhD thesis, Uni-
versität Tübingen, 2002. URL http://tobias-lib.uni-tuebingen.de/volltexte/
2003/672. (Cited on page 12.)

Jörg Ostrowski, Mario Bebendorf, Ralf Hiptmair, and Florian Krämer. H-matrix-based
operator preconditioning for full Maxwell at low frequencies. IEEE Trans. Magn., 46
(8), 2010. (Cited on page 15.)

25

http://www.softeng.rl.ac.uk/st/projects/felib4/Docs/PDF/Level-0.pdf
http://www.softeng.rl.ac.uk/st/projects/felib4/Docs/PDF/Level-0.pdf
http://tobias-lib.uni-tuebingen.de/volltexte/2003/672
http://tobias-lib.uni-tuebingen.de/volltexte/2003/672

	Introduction
	Derivation of the variational equations
	Geometric description
	Maxwell's equations for linear materials
	a- formalism
	Transformation to frequency domain
	Variational formulation
	Robust Maxwell Formulation
	Impedance boundary conditions
	Implemented variational equations

	Implementation in HADAPT
	Assembling the matrices
	Solving the equations

	Numerical Experiments
	Description of test cases
	Runtime and memory requirements
	Comparison to Infolytica
	Accuracy of the IBC

	Conclusion

