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supervised by
Prof. Dr. Schwab

Seminar for Applied Mathematics
ETH Zürich
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Abstract
In this work, we present a numerical pricing scheme for American options with
two underlying assets for an exponential bivariate Lévy model. We consider a
specific model structure that is constructed by a linear transformation of a Lévy
process with independent components through a matrix-vector multiplication.
We derive characteristics of the model such as the martingale property for each of
its components and we examine how the jumps are correlated. Furthermore, we
derive a system of inequalities that is solved by the American option price without
the use of complicated Lévy copulas resulting in highly complicated and not
tensorable stiffness matrices for the finite element discretisation. Well-posedness
is proven for a variational formulation of the American option partial integro-
differential inequality (PIDI) and the continuous Galerkin finite element method
is used for the discretisation of the pricing inequality. As a consequence of the
linear transformation in the bivariate Lévy model we may completely tensorise the
finite element matrices. This is a favourable feature for the implementation of the
pricing scheme. Thereafter, we examine the semi-smooth Newton algorithm which
solves the linear complementary problems (LCPs) arising from the continuous
Galerkin finite element discretisation. We discuss the uniqueness of solutions to
LCPs and analyse the convergence of the semi-smooth Newton algorithm. This
is supported by numerical experiments that show the convergence of the semi-
smooth Newton algorithm for different elliptic and parabolic variational problems
with closed form solutions. Moreover, we test the convergence for the American
basket put option using the overkill method as no closed form solution is available
and observe a convergence rate of order O(Ñ−1) in L2 where Ñ are the number
of inner spatial grid points. The smooth pasting condition for the American put
option with single underlying is also discussed and these conditions are applied to
the numerical convergence tests of the American basket put option. In this case
we observe no convergence. Additional to numerical convergence experiments,
we analyse the speed of the semi-smooth Newton algorithm and compare results
to the projective successive over-relaxation (PSOR) algorithm. We find that
the semi-smooth Newton algorithm is faster than the PSOR algorithm using
the MATLAB R© implementations. Finally we present two numerical examples
of American options with two underlying assets, i.e. the American basket put
option and the best-of American put option and depict their value surface, free
boundary and the argument Greeks; theta, delta and gamma.
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INTRODUCTION ix

Introduction

The first notion of option-like contracts was in the story of the mathematician
and philosopher Thales of Miletus in the book of Aristotle [2, Book I (Chapter
XI)] who during the winter hired all olive-presses in Chios and Miletus for the
next harvesting session at a low cost since no one bid against him. The next
olive harvest was so abundant and many farmers demanded olive-presses which
Thales leased at a very high rate. Since that time options have become a very
common type of financial derivative and during the last decades many kinds of
options have been introduced, e.g. European, American, Asian, Bermuda, Israeli
(options of game type), et cetera. Options are widely traded in many exchanges
and in the over-the-counter (OTC) market. In 1973, exchange traded options
became standardized contracts due to the opening of the Chicago Board Options
Exchange (CBOE). In the year 2005, the volume of option contracts traded on
the CBOE alone was approximately half a billion with a total notional value of
more than $12 trillion U.S. Dollar, see CBOE [8]. In simple terms, an option
gives the buyer the right, but not the obligation, to perform a previously defined
financial transaction within a set period of time. In this work we concentrate
on one specific kind of option; American style options. These options give the
holder the right to execute a financial transaction from the time of purchase
until the expiration date, or maturity T > 0.

Since the 1970’s options have been priced using financial models. Black and
Scholes [4] and Merton [37] developed a model in 1973, known as the Black-
Scholes model, which opened a new era of financial modelling. Within this
model, closed-form solutions for the price of European options can be derived,
see Black and Scholes [4]. In general, however, closed-form solutions are rarely
available. In the past decades, extensions to the Black-Scholes model and more
general Lévy models have been proposed to better mimic the characteristics
of financial assets, e.g. Carr, et al. [7], Cox and Ross [11], Heston [23], Kou
[32] and Merton [38]. For these complex models, closed-form solutions for gen-
eral American options have, to our knowledge, not been established. For this
reason, we analyse a numerical technique to approximate the price of Amer-
ican options in general bivariate Lévy models. We establish a pricing scheme
based on the continuous Galerkin finite element method and propose a bivariate
Lévy model to circumnavigate the use of elaborate Lévy copulas which result
in highly complex stiffness matrices which do not tensorise. This is achieved
by a matrix-vector multiplication in the exponent of the stock price process
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S = (St)t≥0 =
(
(S1
t )t≥0, (S

2
t )t≥0

)>
,

(
S1
t

S2
t

)
:=

exp
(
(r + w1)t+

∑2
j=1 Σ1jX

j
t

)
exp

(
(r + w2)t+

∑2
j=1 Σ2jX

j
t

),
where r ∈ R+, Σ ∈ R2, X = (Xt)t≥0 =

(
(X1

t )t≥0, (X
2
t )t≥0

)>
is a Lévy process

with independent components and w1, w2 are constants subject to the martin-
gale condition of S1 and S2, respectively. However, this comes at a cost of the
dependence structure of the resulting asset price processes. We stress the fact
that the dependence structure of the model proposed here is limited and should
not be adopted without statistically significant arguments. Another result of
the model above is that we have to deal with time-dependent obstacle g̃(t, x) for
the partial integro-differential inequality (PIDI) of the American option price.
Though this has already been dealt with in the existing theory on variational
inequalities. We use continuous Galerkin finite elements for the discretisation
of the American option pricing problem with products of piecewise linear hat
functions as basis for the finite element space VN . That is,

VN = span {bl(x1)bk(x2) : 1 ≤ l, k ≤ N} ,

where bl(xj) := max
(
0, 1− h−1|xj − xlj |

)
, (xl1 , xl2)> with 1 ≤ l1, l2 ≤ N ∈ N

are the inner nodes of the partition of the bounded domain G ⊂ R2 and h > 0
is the spatial mesh size. The dimension of VN is Ñ = N2. Moreover, we employ
Lagrangian multipliers to avoid the inequality resulting from the American PIDI
in the discrete pricing scheme, see Hager, et al. [20, Section 3]. To solve this
discrete pricing scheme numerically we utilize the primal dual active set strategy
which is equivalent to a semi-smooth Newton algorithm, see Hintermüller, et
al. [25, Chapter 2]. We analyse the convergence of the semi-smooth Newton
method to solve the following linear complementary problems,

Find x, λ ∈ Rn such that,

Bx− λ = b,

C (x, λ) := λ−max (0, λ− ω (x− c)) = 0,

where B ∈ Rn×n, b, c ∈ Rn, ω > 0 is a penalty constant and C(x, λ) is called
the complementary function where the maximum is taken componentwise. For
the general discrete American option pricing scheme we prove the existence
of a unique solution and local convergence of the solution. Moreover, we in-
fer conditions on the Lévy process X for the global convergence of the unique
solutions. Additionally, we conduct numerical experiments of one-dimensional
elliptic and parabolic variational inequalities with a non-degenerate linear op-
erator of order two and in presence of a closed-form solution. We conclude
that in these cases the convergence rates of the semi-smooth Newton method
are optimal under some regularity conditions on the obstacle and the linear
operator. For the parabolic problem we distinguish between two cases. First,
we analyse the case where the obstacle g̃(x) ∈ VN , i.e. the non-continuously
differentiable point of the obstacle g̃(x) is part of the spatial grid. Second, we
consider the case where g̃(x) 6∈ VN . In the latter case the convergence rate
in H1 drastically decreases whereas the convergence rates in the L∞- and L2-
error estimators remain identical. As we do not have a closed-form solution
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for the American option problem, we exploit the overkill method to measure
the convergence of the pricing scheme. For the American basket option with
time-dependent obstacle g̃(t, x) 6∈ VN we procure a convergence rate of almost
O(Ñ−1) in L2 where Ñ ∈ N is the number of inner nodes. This convergence rate
is in line with the numerical experiments in one dimension taking into account
the ‘curse of dimension.’ However the convergence rates in L∞ and H1 are of
order 1

2 in terms of Ñ . Further, we analyse the recent findings of Lamberton
and Mikou [34] on the smooth pasting property of the plain vanilla American
put option and compute the convergence of the American basket put option
under the violation of the the smooth pasting property as given in Lamberton
and Mikou [34, Theorem 4.2]. We find that the finite element solution does not
converge under these circumstances. Thereafter, we compare the speed of the
semi-smooth Newton algorithm to the well-known projective successive over-
relaxation (PSOR) algorithm and find that the MATLAB R© implementation of
the semi-smooth Newton algorithm is much faster than the PSOR algorithm for
the same accuracy.

This paper is structured as follows. In Chapter 1, we lay out the prelimi-
naries that are needed for the analysis of American option pricing in a bivariate
Lévy model. We give an introduction to multidimensional Lévy processes and
discuss important properties such as the Lévy-Itô decomposition and the Lévy-
Khinchin representation. Moreover, we present the specific bivariate Lévy model
for the asset price processes in Section 1.3.1 and give two concrete examples of
the underlying Lévy processes used for the asset pricing model, namely the Kou
and the CGMY process. Thereafter we shortly discuss Lévy copulas and semi-
groups of Lévy processes. In Chapter 2 we derive the continuous Galerkin finite
element pricing scheme. First, we formally derive the system of inequalities for
general American options with two underlying assets. Thereafter, we formulate
the variational inequalities for the weak solution of the American option price
and discuss the well-posedness of the variational problem. In the last section of
Chapter 2 we deduce the fully discrete pricing scheme using continuous, linear
finite elements in space and finite difference in time and reformulate the prob-
lem using Lagrangian multipliers. In Chapter 3 we delineate the semi-smooth
Newton algorithm and cover some general characteristics of the convergence and
the uniqueness of solutions to linear complementary problems. In Section 3.3,
we give some a priori error estimates for elliptic and parabolic variational in-
equalities. In addition, we numerically test the convergence of the semi-smooth
Newton algorithm for different elliptic and parabolic variational problems in
one and two dimensions in Section 3.4. The last section of Chapter 3 is devoted
to a speed analysis of the semi-smooth Newton algorithm. We compare it to
the well-known PSOR algorithm. In the last chapter (Chapter 4), we depict
two numerical examples. First, we consider the American basket put option
and second, the best-of American put option. We display the value as well as
the free boundary of these options and show their argument Greeks, i.e. delta,
gamma and theta.
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1

Chapter 1

Preliminaries

In this chapter, we discuss some preliminaries about financial modelling with
Lévy processes. First, we lay out the concept of Lévy processes itself. Thereafter
we present the model for introducing correlation among stock price processes
driven by independent Lévy processes applying a matrix-vector multiplication.
Further, we discuss the martingale property of each of the stock price processes
and calculate the necessary drift term. Moreover, we consider two different
Lévy processes within the model, the CGMY process in Carr, et al. [7] and
the process proposed in Kou [32]. Finally, we cover some properties of Lévy
copulas and make a connection between Lévy processes and Markov processes
through semigroups. This is necessary for the derivation of the partial integro-
differential equation (PIDE) for American options in Chapter 2. Let us first
introduce some notation.

1.1 Notation

In this section, we introduce some notation that we use throughout this paper.
The extended real line is denoted by R := R ∪ {+∞} = (−∞,∞]. We write

the Euclidean norm in Rd with d ∈ N as ‖x‖2l2 =
∑d
i=1 |xi|2 and the supremum

norm as ‖x‖l∞ = supi |xi| for x = (x1, . . . , xd)
> ∈ Rd. We denote the inner

product on R2 by
〈
x, y
〉

=
∑d
i=1 xiyi for x, y ∈ Rd. For φ, ψ ∈ L2(G) the

inner product on L2(G) is denoted by (φ, ψ) =
∫
G
φ(x)ψ(x) dx where G ⊂

Rd is bounded in Rd. Moreover, we denote the support of a function ψ(x)
as suppψ. If V is a Hilbert space with dual V∗ then we denote the pairing
of V and V∗ with (·, ·)V∗,V . Furthermore, we write for x ∈ Rd that xI =

(xi)i∈I for I ⊂ {1, . . . , d} and 0 = (0, . . . , 0)
>

is a vector of zeros. Matrices
are bold and M(I,J ) = (Mij)i∈I,j∈J with I,J ⊂ {1, . . . , d} and M ∈ Rd×d.
Mi = (Mi1, . . . ,Mid) denotes the ith row of the matrix M ∈ Rd×d and |M|
denotes the determinant of matrix M. The Kronecker product to two matrices
is define in Definition C.1. Also we use the convention,

z = x+ yI then zi =

{
xi + yi, if i ∈ I,
xi, if i 6∈ I,
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1.2. INTRODUCTION TO LÉVY PROCESSES 2

where x, y, z ∈ Rd and I ⊂ {1, . . . , d}. If I = {i} ⊂ {1, . . . , d} then we simply

write z = x+yi. Moreover, for a vector x ∈ Rd2 we use xj = xj1(d−1)+j2 =: xj1,j2
for j = j1(d− 1) + j2 with 1 ≤ j1, j2 ≤ d. We denote the number of elements in
a set I by #I. If we have a set A ⊂ Rd then we denote Ac = Rd \ A ⊂ Rd its

complement in Rd. Orthotopes are defined as (a, b] = (a1, b1]×· · ·×(ad, bd] ⊂ Rd.
Finally, proofs and definitions are ended by � and ⊥, respectively.

1.2 Introduction to Lévy Processes

In this section, we discuss some properties of general Lévy processes. We mostly
follow the work of Sato [46] and Applebaum [1]. In the course of this paper, we
work on a complete probability space (Ω,F ,F,P) satisfying the usual condition
in Delbaen and Schachermayer [12, Chapter 7] with filtration F = {Ft : t ≥ 0}.
Moreover, a stochastic process (SP) L = (Lt)t≥0 is called adapted if Lt is Ft-
measurable, i.e. {Lt ≤ x} ∈ Ft for all t ≥ 0 and x ∈ Rd. A specific kind of
stochastic process is a Lévy process (LP).

Definition 1.1 (Lévy Process). An adapted, càdlàg Rd-valued SP L = (Lt)t≥0

on (Ω,F ,F,P) as above with d ≥ 1 is a Lévy Process if it possesses the following
properties:

(L1) L0 = 0 a.s.

(L2) Independent increments: For any sequence t0 < · · · < tn the Rd-valued
random variables (rv) Lt0 , Lt1 − Lt0 , . . . , Ltn − Ltn−1

are independent.

(L3) Stationary increments: the law of Lt+h − Lt does not depend on t, i.e.
L(Lt+h − Lt) = L(Lh) where L(Lt) is the law of Lt for t ≥ 0.

(L4) Stochastic continuity: ∀ε > 0, limh→0 P(|Lt+h − Lt| ≥ ε) = 0.

⊥

This definition can also be found in Applebaum [1, Section 1.3]. The following
two theorems are extremely useful tools for calculations with Lévy processes.

Theorem 1.2 (Lévy-Itô Decomposition). Let L = (Lt)t≥0 be a d-dimensional
LP. Then there is a drift γ ∈ Rd, an Rd-valued Brownian motion (BM)

W = (Wt)t≥0 with covariance matrix Q with Q = Q
1
2

(
Q

1
2

)>
and an inde-

pendent Poisson random measure, also called jump measure, JL on [0, T ]× Rd
such that,

dLt = γ dt+ Q
1
2 dWt +

∫
‖z‖l2≥1

z JL(dt, dz) + lim
ε↓0

∫
ε≤‖z‖l2≤1

z (JL(dt, dz)− ν(dz)dt)

= γ dt+ Q
1
2 dWt + ∆Lt1[‖∆Lt‖l2≥1] + lim

ε↓0

∫
ε≤‖z‖l2≤1

z J̃L(dt, dz),

where J̃L(dt, dz) := JL(dt, dz)− ν(dz) dt is the compensated jump measure and
the measure ν(dz) is called the Lévy measure defined in Sato [46, Definition
8.2].
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1.2. INTRODUCTION TO LÉVY PROCESSES 3

Proof. The proof to this theorem is given in Applebaum [1, Theorem 2.4.11].

The drift γ, covariance matrix Q and Lévy measure ν(dz) are called the char-
acteristic triplet of the Lévy process, denoted as (γ,Q, ν). The Lévy measure

satisfies
∫
Rd1 ∧ ‖z‖2l2 ν(dz) <∞.

Theorem 1.3 (Lévy-Khinchin Representation). Let L = (Lt)t≥0 be a d-
dimensional LP with characteristic triplet (γ,Q, ν). Then for t ≥ 0 and ξ ∈ Rd,

E[ei〈ξ,Lt〉] = etψ(ξ), where

ψ(ξ) = i
〈
γ, ξ
〉
− 1

2

〈
ξ,Qξ

〉
+

∫
Rd\{0}

(
ei〈z,ξ〉 − 1− i

〈
z, ξ
〉
1[‖z‖l2≤1]

)
ν(dz).

Proof. The proof to this theorem is given in Applebaum [1, Theorem 1.3.3].

Another characteristic of LPs is finite and infinite activity. As in some of the
proofs throughout this paper we distinguish between finite and infinite activity
LPs let us give the definition here.

Definition 1.4. Let L = (Lt)t≥0 be a d-dimensional LP with characteristic
triplet (γ,Q, ν). If ν(Rd) <∞, then we say that L is of finite activity. On the

other hand, if ν(Rd) =∞ the process L is said to be of infinite activity. ⊥

Another characteristic of LPs is finite variation. The definition of finite variation
can be found in Sato [46, Section 4.21].

Definition 1.5. Let L = (Lt)t≥0 be a d-dimensional LP with characteristic
triplet (γ,Q, ν) and Ω1 ⊂ Ω with P(Ω1) = 1. Then L is a finite variation
process if and only if,

sup
ΠN∈ΠT

N∑
i=1

‖Lti(ω)− Lti−1
(ω)‖l2 <∞ ∀ω ∈ Ω1 and T > 0,

where the supremum is taken over all partitions,

ΠT := {ΠN = (0 = t0 < · · · < tN = T ) : N ∈ N and T > 0} ,

of the interval [0, T ]. ⊥

Proposition 1.6. Let L = (Lt)t≥0 be a d-dimensional LP with characteris-
tic triplet (γ,Q, ν). Then L is of finite variation if and only if Q = 0 and∫
‖z‖l2≤1

‖z‖l2ν(dz) <∞.

Proof. The proof may be found in Applebaum [1, Theorem 2.4.25].

One of the direct consequences of Proposition 1.6 is stated in the following
corollary.

Corollary 1.7. Let L = (Lt)t≥0 be a d-dimensional LP of finite variation with
characteristic triplet (γ,0, ν). Then we can write,

Lt =

∫ t

0

γ
0
ds+

∫ t

0

∫
Rd\{0}

z JL(ds, dz).
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and,

ψ(ξ) = i
〈
γ

0
, ξ
〉

+

∫
Rd\{0}

(
ei〈z,ξ〉 − 1

)
ν(dz),

where γ
0

= γ −
∫
‖z‖l2≤1

z ν(dz).

Proof. Using Theorem 1.2 and Proposition 1.6 we get,

dLt = γ dt+ Q
1
2 dWt +

∫
‖z‖l2≥1

z JL(dt, dz) + lim
ε↓0

∫
ε≤‖z‖l2≤1

z (JL(dt, dz)− ν(dz)dt)

= γ dt+

∫
Rd\{0}
z JL(dt, dz)−

∫
‖z‖l2≤1

z ν(dz)dt

= γ
0
dt+

∫
Rd\{0}
z JL(dt, dz).

Furthermore, Theorem 1.3 and Proposition 1.6 yield,

ψ(ξ) = i
〈
γ, ξ
〉
− 1

2

〈
ξ,Qξ

〉
+

∫
Rd\{0}

(
ei〈z,ξ〉 − 1− i

〈
z, ξ
〉
1[‖z‖l2≤1]

)
ν(dz)

= i
〈
γ, ξ
〉

+

∫
Rd\{0}

(
ei〈z,ξ〉 − 1

)
ν(dz)−

∫
Rd\{0}

i
〈
z, ξ
〉
1[‖z‖l2≤1] ν(dz)

= i
〈
γ

0
, ξ
〉

+

∫
Rd\{0}

(
ei〈z,ξ〉 − 1

)
ν(dz),

by the definition of γ
0
.

To make sure that the LP has finite pth moments with p ≥ 1 we use the following
proposition.

Proposition 1.8. Let L = (Lt)t≥0 be a d-dimensional LP with characteristic
triplet (γ,Q, ν). Then L has finite pth moment, i.e E[|Lt|p] <∞, if and only if∫
‖z‖l2≥1

‖z‖pl2ν(dz) <∞ for p ≥ 0.

Proof. The proof can be found in Sato [46, Theorem 25.3].

A direct consequence of Proposition 1.8 for an LP with finite first moment is
given in the next corollary.

Corollary 1.9. Let L = (Lt)t≥0 be a d-dimensional LP with characteristic
triplet (γ,Q, ν) and suppose L has finite first moment. Then we can write L as
follows,

Lt =

∫ t

0

γc ds+

∫ t

0

Q
1
2 dWs +

∫ t

0

∫
Rd\{0}

z J̃L(ds, dz)

and the Lévy exponent can also be represented differently,

ψ(ξ) = i
〈
γc, ξ

〉
− 1

2

〈
ξ,Qξ

〉
+

∫
Rd\{0}

(
ei〈z,ξ〉 − 1− i

〈
z, ξ
〉)

ν(dz),

where γc = γ +
∫
‖z‖l2≥1

z ν(dz).

Proof. Idem to proof of Proposition 1.7. Employing Proposition 1.8 instead of
Proposition 1.6.
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Inter alia, it is crucial for option pricing to have finite exponential moment,
i.e. E

[
eLt
]
< ∞. We elaborate on this in Assumptions 1.14. One important

consequence of this is that finite exponential moment is equivalent to a inte-
grability condition on the Lévy measure ν(dz). We formulate this in the next
proposition.

Proposition 1.10. Let L = (Lt)t≥0 be a d-dimensional LP with characteristic
triplet (γ,Q, ν). Then L has finite exponential moment, i.e. E[eLt ] <∞ for all
t ≥ 0 if and only if

∫
‖z‖l2>1

ez ν(dz) <∞.

Proof. The proof is given in Sato [46, Theorem 25.17].

Remark. In subsequent sections and chapters we work with specific Lévy pro-
cesses X which always have finite first moment. Therefore, in the remainder of
this paper we refer to (γc,Q, ν) as the characteristic triplet where γc is called
the center of the process given by γc = γ +

∫
‖z‖l2≥1

z ν(dz). We also remain

using the notation for the Lévy exponent as in Corollary 1.9 if not explicitly
stated otherwise.

1.3 Bivariate Lévy Models

This section introduces the bivariate Lévy model for dependence among stock
price processes discussed in this paper. First, we give the general setup for any
two-dimensional Lévy process X with independent components on the complete
probability space (Ω,F ,F,P) as above. Second, we give some properties of the
dependence structure within the model setup and point out some limitations
of dependent jumps. Further, let Q be an equivalent martingale measure with
respect to P. Under Q we state the martingale condition that has to be satis-
fied such that each discounted stock price process is a martingale. Third, we
describe two specific Lévy processes which are employed for numerical examples
throughout this paper as well as state the specific martingale condition for the
model in terms of each of the two underlying Lévy processes. Finally, we review
some of the theory of Lévy copulas which we need in subsequent chapters.

1.3.1 The General Bivariate Model and Dependence Prop-
erties

To introduce dependence in the bivariate Lévy model we use a matrix-vector
multiplication of the form

Yt := ΣXt. (1.1)

Thus let the stock price process S = (St)t≥0 =
(
(S1
t )t≥0, (S

2
t )t≥0

)>
be defined

as follows(
S1
t

S2
t

)
:=

(
exp

(
(r + w1)t+ Y 1

t

)
exp

(
(r + w2)t+ Y 2

t

))=

exp
(
(r + w1)t+

∑2
j=1 Σ1jX

j
t

)
exp

(
(r + w2)t+

∑2
j=1 Σ2jX

j
t

), (1.2)

where r ∈ R+, Xj = (Xj
t )t≥0 for j = 1, 2 are independent Lévy processes

on (Ω,F ,Ft,Q) with center zero, i.e. the Lévy triplet of X = (X1, X2)> is
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1.3. BIVARIATE LÉVY MODELS 6

(0,Q, νX) where Q =

(
σ2

1 0
0 σ2

2

)
∈ R2×2 with σ1, σ2 ≥ 0 and νX(dz) is the two-

dimensional Lévy measure. The constants w1, w2 are to be determined. They
are closely related to the martingale property as we will observe in Theorem
1.15. By the Lévy-Itô decomposition we have the following general expression
for Xj

t ,

Xj
t = σjW

j
t +

∫ t

0

∫
R\{0}

zj J̃Xj (ds, dzj) for j = 1, 2,

where J̃Xj (dt, dzj) = JXj (dt, dzj)− νXj (dzj) dt and W = (Wt)t≥0 is a two-
dimensional BM. An equivalent model can be found in Eberlein and Madan
[13].

Remark. For Lévy processes Xj where
∫
|zj |≤1

|zj | vXj (dzj) <∞ for j = 1, 2 we

take γj0 to be zero and write

Xj
t = σjW

j
t +

∫ t

0

∫
R\{0}

zjJXj (ds, dzj). (1.3)

To analyse the dependence created by the model in (1.2), let us state some
characteristics of the two-dimensional process Y = (Yt)t≥0 in (1.1). Due to the
result in Cont and Tankov [10, Theorem 4.1] for n = d = 2 we know that Y is
a Lévy process. We derive its characteristic triplet in the next theorem.

Theorem 1.11. Let X = (Xt)t≥0 be a two-dimensional Lévy process with inde-
pendent components and characteristic triplet (γc

X
,QX , νX) where

QX =

(
σ1 0
0 σ2

)
with σ1, σ2 ≥ 0 and γc

X
= 0. Further, let Σ ∈ R2×2 be

a constant matrix then Y = (Yt)t≥0 := (ΣXt)t≥0 is again a Lévy process with
characteristic triplet (γc

Y
,QY , νY ) given by,

QY =

(
σ2

1Σ2
11 + σ2

2Σ2
12 σ2

1Σ11Σ21 + σ2
2Σ12Σ22

σ2
1Σ11Σ21 + σ2

2Σ12Σ22 σ2
1Σ2

21 + σ2
2Σ2

22

)
, (1.4a)

νY (B) = νX
({
x ∈ R2 : Σx ∈ B

})
for B ⊂ R2, (1.4b)

γc
Y

= 0. (1.4c)

Proof. The drift of the process X is given by γ
X

= −
∫
‖z‖l2≥1

z νX(dz) < ∞.

By Cont and Tankov [10, Theorem 4.1] for n = d = 2 we have to following
expression for the drift of Y ,

γY =Σγ
X

+

∫
R2\{0}

y
(
1[‖y‖l2≤1] − 1[y∈SΣ]

)
νY (dy)

=−
∫
AΣ

y νY (dy) +

∫
R2\{0}

y
(
1[‖y‖l2≤1] − 1[y∈SΣ]

)
νY (dy)

=

∫
R2\{0}

y
(
1[‖y‖l2≤1] − 1[y∈SΣ∪AΣ]

)
νY (dy),

where AΣ = {Σx : ‖x‖l2 > 1} and SΣ = {Σx : ‖x‖l2 ≤ 1} is the transformation
of the unit sphere in R2 under Σ. Since Σ is positive definite we have that
SΣ ∪ AΣ = R2 and γ

Y
= −

∫
‖y‖l2≥1

y νY (dy) < ∞. Hence Y is also a centered
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LP with finite first moment and we get the following expression for the Lévy
exponent of Y ,

ψY (ξ) = −1

2

〈
ξ,QY ξ

〉
+

∫
R2\{0}

(
ei〈y,ξ〉 − 1− i

〈
y, ξ
〉)

νY (dy).

This gives us the characteristic triplet (γc
Y
,QY , νY ) stated in Theorem 1.11.

In the Brownian motion case we can deduce the dependence structure from
(1.4a). From Glasserman [18, Section 3.1.2], we know that the linear transfor-
mation of a two-dimensional BM is again a BM. Hence Y is a two-dimensional
BM with covariance matrix QY and the matrix QY fully determines the depen-

dence structure of Y , as Yt − Ys ∼ N(0,Q
1
2

Y (t − s)) for t ≥ s ≥ 0. However, in
presence of jumps this is not the case. To characterise the dependence of the
jumps of Y through the expression of its Lévy measure νY (dy) in terms of the
Lévy measure νX(dz) we state the next proposition.

Proposition 1.12. Let X = (Xt)≥0 and Y = (Yt)≥0 be two-dimensional
LPs defined as in Theorem 1.11 with corresponding Lévy measures νX(dz) and
νY (dy) and constant matrix Σ ∈ R2×2 with Σij > 0 for i, j = 1, 2. Further, let

B = [a, b] = [a1, b1]× [a2, b2] ⊂ R2 be a compact subset of R2, then we have the
expression νY (B) = νX1(B̃1) + νX2(B̃2) where,

B̃j =

[
a1

Σ1j
,
b1

Σ1j

]
∩
[
a2

Σ2j
,
b2

Σ2j

]
. (1.5)

Proof. Since the components of X are independent, we know that the set
A :=

{
z ∈ R2 : z1z2 6= 0

}
has measure zero under νX , i.e. νX(A) = 0, by Cont

and Tankov [10, Proposition 5.3]. Using this and Theorem 1.11 we have,

νY (B) =νX
({
z ∈ R2 : Σz ∈ B

})
=νX

({
z ∈ R2 : Σi1z1 + Σi2z2 ∈ [ai, bi] for i = 1, 2

})
=νX

{z ∈ R2 : Σi1z1 + Σi2z2 ∈ [ai, bi] for i = 1, 2
}
∩Ac︸ ︷︷ ︸

(∗)


Since the set in (∗) is a subset of Ac =

{
z ∈ R2 | z1z2 = 0

}
we know that at least

one of the two components of z must be zero. Therefore, the sum Σi1z1 +Σi2z2

is always equal to one of its summands. Define the sets B̃j for j = 1, 2 as,

B̃j := {zj ∈ R : Σijzj ∈ [ai, bi] for i = 1, 2} =

[
a1

Σ1j
,
b1

Σ1j

]
∩
[
a2

Σ2j
,
b2

Σ2j

]
.

Then we have,

νY (B) =νX

([
B̃1 × {0} ∪ {0} × B̃2

]
∩Ac

)
=νX

([
B̃1 × B̃2

]
∩Ac

)
=νX(B̃1 × B̃2) = νX1(B̃1) + νX2(B̃2),

since νX(Ã) = νX(Ã ∩ Ac) for all set Ã ⊂ R2. The last equality follows from
Cont and Tankov [10, Proposition 5.3].
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Remark. Proposition 1.12 also holds if the matrix Σ has negative entries, i.e.
Σij < 0 for i, j = 1, 2. However, the consequence of this would be that we have
to reverse the upper and lower bounds of the intervals in (1.5).

Finally, let us rewrite the expression for the characteristic function of LP Y in
terms of ψXj (ξj) the Lévy exponent of Xj for j = 1, 2.

Proposition 1.13. Let X = (Xt)≥0 and Y = (Yt)≥0 be two dimensional LPs
defined as in Theorem 1.11 and ψXj (ξ) be the Lévy exponents of Xj for j = 1, 2.
Then we have,

E
[
ei〈ξ,Yt〉

]
= etψY (ξ), with,

ψY (ξ) = ψX1 (Σ11ξ1 + Σ21ξ2) + ψX2 (Σ12ξ1 + Σ22ξ2) .

Proof. By Theorem 1.11 we know that Y is a Lévy process and by the Lévy-
Khinchin representation (Theorem 1.3) we have,

etψY (ξ) =E
[
ei〈ξ,Yt〉

]
=E

[
ei{ξ1(Σ11X

1
t+Σ12X

2
t )+ξ2(Σ21X

1
t+Σ22X

2
t )}
]

=E
[
ei{(Σ11ξ1+Σ21ξ2)X1

t+(Σ12ξ1+Σ22ξ2)X2
t }
]

=E
[
ei(Σ11ξ1+Σ21ξ2)X1

t

]
E
[
ei(Σ12ξ1+Σ22ξ2)X2

t

]
=et[ψX1 (Σ11ξ1+Σ21ξ2)+ψX2 (Σ12ξ1+Σ22ξ2)].

The properties in Proposition 1.12 and 1.13 show that the jumps of the compo-
nents of Y are only co-linearly dependent. Therefore, a note of caution is ap-
propriate. Modelling of the dependence structure of two assets with the model
in (1.2) is a severe simplification and one should be careful assuming such a
dependence structure for financial assets. Further research is needed to assess
the limitations of the dependence structure created by the model in (1.2). One
has to examine the geometric interpretation of the set B̃1 × B̃2 in Proposition
1.12 and the exact consequences of the simple expression of the Lévy exponent
ψY (ξ) in Proposition 1.13. However in the next chapter, we perceive the fea-
tures of the model in (1.2) to be a great advantage for the efficiency of the
numerical implementation for the option pricing scheme, as it is not necessary
to use complicated Lévy copulas that result in large stiffness matrices which
cannot be tensorised.

1.3.2 Market Model Assumptions and the Martingale Prop-
erty

For the subsequent chapters we need some assumptions on the Lévy measure
of X to ensure uniqueness and existence of the solution to the option price
problem. We list these assumptions here.

Market Model Assumptions 1.14. Let X be a two-dimensional LP with
characteristic triplet (0,Q, νX) such that νX(dz) = kX(z) dz. Further let νXj (dzj) =
kXj (zj) dzj for j = 1, 2 be the marginal Lévy measures of X.
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(A1) There are constants ζj− > 0, ζj+ > 1 and Cj > 0 such that for j = 1, 2,

kXj (zj) ≤

{
Cje−ζ

j
−|zj |, if zj < −1,

Cje−ζ
j
+|zj |, if zj > 1.

(A2) There exist constants αj ∈ (0, 2) and Cj+ > 0 such that for j = 1, 2,

kXj (zj) ≤
Cj+

|zj |1+αj
where 0 < |zj | < 1.

(A3) If σj = 0 for j = 1, 2 there additionally exists a constant Cj− > 0 such
that,

1

2
(kXj (zj) + kXj (−zj)) ≥

Cj−
|zj |1+αj

where 0 < |zj | < 1.

Models satisfying these assumptions are admissible market models. Note also
that all these assumptions are strictly on the marginal Lévy measures.

The martingale condition for the model in (1.2) is stated in the next theorem.

Theorem 1.15. The processes e−rtSi are martingales if and only if for i = 1, 2,

wi := −
2∑
j=1

σ2
jΣ

2
ij

2
+

∫
R

(
eΣijzj − 1−Σijzj

)
νXj (dzj). (1.6)

Remark. Theorem 1.15 is given for general Lévy processes X. In the case the
processes Xj for j = 1, 2 have finite variation jump parts, as in (1.3), we may
state a different martingale condition which we will employ in Section 1.3.4 for
the Kou process. This condition is,

wi = −
2∑
j=1

σ2
jΣ

2
ij

2
+

∫
R

(
eΣijzj − 1

)
νXj (dzj),

for i = 1, 2.

Proof. To show that e−rtSi are martingales for i = 1, 2, we must have,

E[e−rtSit |Fs] = E[ewit+
∑2
j=1 ΣijX

j
t |Fs] = ewis+

∑2
j=1 ΣijX

j
s = e−rsSis,

or equivalently, since Xj
s are Fs-measurable and Xj are independent for j = 1, 2,

E[ewi(t−s)+
∑2
j=1 Σij(X

j
t−Xjs)|Fs] = ewi(t−s)

2∏
j=1

E[eΣijX
j
t−s ] = 1. (1.7)

By Sato [46, Theorem 25.17(iii)] we have for ξ = −iΣij and j = 1, 2,

E[eΣijX
j
t−s ] = E[eiξX

j
t−s ] = eψj(ξ)(t−s), (1.8)
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Values of α Properties
α < 0 Finite variation and finite activity
0 ≤ α < 1 Finite variation and infinite activity
1 ≤ α < 2 Infinite variation and infinite activity

Table 1.1: Properties for the CGMY process for different values of the
parameter α. For details see Carr, et al. [7, Theorem 2].

with,

ψj(ξ) = −
σ2
j ξ

2

2
+

∫
R

(
eiξzj − 1− iξzj

)
νXj (dzj) (1.9a)

=
σ2
jΣ

2
ij

2
+

∫
R

(
eΣijzj − 1−Σijzj

)
νXj (dzj). (1.9b)

By using the expression of ψj(ξ) in (1.9b) and plugging (1.8) into (1.7) proves
the theorem.

1.3.3 CGMY Process

The CGMY process is a pure jump process presented by Carr, Geman, Madan
and Yor in Carr, et al. [7]. For this reason, the covariance matrix Q of the
Lévy triplet is zero. The CGMY Lévy process belongs to the class of tempered
stable LPs, since it has an additional exponential term in its Lévy measure with
respect to stable Lévy processes. The definition and further details about stable
LPs can be found in Sato [46, Chapter 3] or Applebaum [1, Example 1.3.14].
The Lévy measure of a one-dimensional CGMY process reads as follows,

νCGMY(dz) =

(
c
e−β+|z|

|z|1+α
1[z>0] + c

e−β−|z|

|z|1+α
1[z<0]

)
dz, (1.10)

where c > 0, β+ ≥ 1, β− ≥ 0 and α ∈ (0, 2). We need β+ ≥ 1 in order to have
finite exponential moment. In Table 1.1, we list the properties of the CGMY
process for different values of α. The proof for this can be found in Carr, et
al. [7, Theorem 2]. Furthermore, the CGMY process satisfies the conditions in
Assumptions 1.14; see Appendix A. For the martingale property to hold in the
case of a CGMY process we need to compute the integral in (1.6) for which the
expression strongly depends on the value of α. The result is stated in the next
proposition.

Proposition 1.16. Let S = (St)t≥0 be defined as in (1.2), where X is a two-
dimensional CGMY process where the Lévy measure νCGMY

Xj of each independent
component is defined as in (1.10) then for i = 1, 2, e−rtSi is a martingale if

and only if |Σij | < βj+ for i, j = 1, 2 and wi := −
∑2
j=1 w

j
αj , where for j = 1, 2,
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αj ∈ (0, 1) ∪ (1, 2) implies,

wjαj = cjΓ(−αj)

[
(βj+)αj

{(
βj+ −Σij

βj+

)αj
+
αjΣij − βj+

βj+

}

+(βj−)αj

{(
βj− + Σij

βj−

)αj
−
αjΣij + βj−

βj−

}]
,

and for αj = 0 or αj = 1,

wj0 = cj

{
ln

(
βj+

βj+ −Σij

)
+ ln

(
βj−

βj− + Σij

)
+

Σij

βj+β
j
−

(
βj+ − β

j
−
)}

,

or,

wj1 = cj

{(
βj+ −Σij

)
ln

(
βj+ −Σij

βj+

)
+
(
βj− + Σij

)
ln

(
βj− + Σij

βj−

)}
,

must hold, respectively.

Proof. See Appendix B.

1.3.4 Kou Process

The Kou process is a finite activity process that has been proposed in Kou [32].
A general one-dimensional Kou process reads XKou = (XKou

t )t≥0 with,

XKou
t = γ t+ σ Wt +

Nt∑
k=1

Yk,

where k ∈ N, γ ∈ R, σ > 0, W = (Wt)t≥0 is a R-valued BM, N = (Nt)t≥0

is a Poisson process with intensity λ > 0 and {Yk}k∈N are asymmetric double
exponentially distributed with density,

fKou
Y (y) = pη+e

−η+|z|1[z≥0] + qη−e
−η−|z|1[z<0],

with p, q > 0, p + q = 1, η+ > 1 and η− > 0. Again we need η+ > 1 to have
finite exponential moment. Further, we have the Lévy measure,

νKou(dz) = λ
(
pη+e

−η+z1[z≥0] + qη−e
η−z1[z<0]

)
dz. (1.11)

Also here one can show that the Kou process fulfills the conditions in Assump-
tions 1.14; see Appendix A. Note that the Kou process has a finite variation
jump part, i.e.

∫
|z|≤1

|z| νKou(dz) <∞. This gives us the opportunity to rewrite

the process for the model in (1.2). For the Kou process we do this as follows,

Xj
t = σjW

j
t +

∫ t

0

∫
R\{0}

zjJXj (ds, dzj). (1.12)

Recall that the martingale condition in (1.6) changes as well.
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1.4. LÉVY COPULAS 12

Proposition 1.17. Let S = (St)t≥0 be defined as in (1.2), where X is a two-
dimensional Kou process where the Lévy measure νKouXj (dzj) of each independent
component is defined as in (1.11) then for i = 1, 2, e−rtSi is a martingale if
and only if,

wKou
i := −

2∑
j=1

σ2
jΣ

2
ij

2
+ λj

[
pjη

j
+

ηj+ −Σij

+
qjη

j
−

ηj− + Σij

− 1

]
.

Proof. Since the jump part of Xj
t has finite variation, we can split Xj

t into two
parts; a BM and a finite variation pure jump part. Using Corollary 1.7 for the
jump part and the Lévy-Khinchin representation for (1.12) we get the following
Lévy exponents for Xj ,

ψj(u) = −1

2
σ2
ju

2 +

∫
R\{0}

(
eiuzj − 1

)
νXj (dzj), (1.13)

where by Sato [46, Theorem 25.17(iii)] we may set u = −iΣij and we get,∫
R\{0}

(
eΣijzj − 1

)
νXj (dz) = λj

[
pjη

j
+

∫ ∞
0

(
eΣijzj − 1

)
e−η

j
+zj dz

+qjη
j
−

∫ 0

−∞

(
eΣijzj − 1

)
eη
j
−zj dz

]
= λj

[
pjη

j
+

ηj+ −Σij

− pj +
qjη

j
−

ηj− + Σij

− qj

]

= λj

[
pjη

j
+

ηj+ −Σij

+
qjη

j
−

ηj− + Σij

− 1

]
. (1.14)

The martingale property in (1.7) then prescribes that wKou
i =−

∑2
j=1ψj(−iΣij).

The proposition follows by plugging u = −iΣij and (1.14) into (1.13).

1.4 Lévy Copulas

In this section, we review some results concerning Lévy copulas which we need
for proofs and further analysis throughout the course of this paper. Lévy copulas
are mathematical tools that “couple” the marginal LPs to form a multivariate
LP. Arguably the most important result in the field of copulas is Sklar’s the-
orem which we do not state here. For details about Sklar’s theorem for Lévy
processes see Kallsen and Tankov [27, Theorem 3.6]. The theorem allows us
to find a (unique) Lévy copula for each multivariate LP and vice versa. This
makes Lévy copulas an extremely beneficial tool for modelling and simulating
multidimensional LPs. A useful reference for copulas in general is Nelson [41],
where a detailed proof of Sklar’s theorem can be found for general copulas. In
this section, we follow the work of Winter [49] and Kallsen and Tankov [27].
First, we review some results on increasing functions. Let R := (−∞,∞] and

(a, b] ⊂ Rd with (a, b] = (a1, b1]× · · · × (ad, bd] with ak ≤ bk. The F -volume of

the orthotope (a, b] for a function F : S → R with S ⊂ Rd is defined by

VF ((a, b]) :=
∑

u∈{a1,b1}×···×{ad,bd}
(−1)N(u)F (u),
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1.4. LÉVY COPULAS 13

where N(u) := #{k ∈ {1, . . . d} : uk = ak} is the number of k ∈ {1, . . . d} such
that uk = ak. This and the following two definitions can be found in Kallsen
and Tankov [27, Definition 2.1, 2.2 and 2.4].

Definition 1.18 (d-increasing). A function F : S → R with S ⊂ Rd is called d-
increasing if the F -volume of any interval (a, b] ⊂ S with ak ≤ bk for k = 1, . . . , d
and (a, b] ⊂ S is non-negative. ⊥

Now we can define the margins of the copula F which we need in the main
theorem (Theorem 1.21) of the section.

Definition 1.19. Suppose F : Rd → R is a d-increasing function satisfying
F (u) = 0 if uk = 0 for at least one k ∈ {1, . . . , d}. For I ⊂ {1, . . . , d} a

non-empty index set, the I-margin of F is a function F I : R#I → R defined by,

F I(uI) := lim
a→∞

∑
uIc∈{a,∞}#I

c

∏
j∈Ic

sgn(uj)

F (u),

where uI := (uj)j∈I and Ic := {1, . . . , d} \ I. ⊥

Next we give the definition of a Lévy copula.

Definition 1.20 (Lévy copula). A function F : Rd → R is a Lévy copula if it
satisfies the following properties for u = (u1, . . . , ud),

(C1) F is d-increasing,

(C2) F (u) 6=∞ for u 6=∞,

(C3) F (u) = 0 if ∃i ∈ {1, . . . , d} : ui = 0,

(C4) For any i ∈ {1, . . . , d} : F i(u) = u with u ∈ R. ⊥

The definition of Lévy copulas can be found in Winter [49, Definition 2.2.3]. In
the next theorem we elaborate on the integration of a function with respect to
a multivariate Lévy measure.

Theorem 1.21. Let X be a d-dimensional LP and νX its Lévy measure with
Lévy copula F and marginal Lévy measures νXj . Then, we have for a bounded
function f ∈ C∞(Rd) that vanishes on a neighbourhood of the origin,∫

Rd
f(z) νX(dz) =

d∑
j=1

∫
R
f(0 + zj) νXj (dzj)

+

d∑
j=2

∑
|I|=j

I1<···<Ij

∫
Rj
∂zIf(0 + zI)F I

(
(Uk(zk))k∈I

)
dzI ,

where Uk(zk) := sgn(zk) νXk(Izk) and Izk :=

{
(zk,∞), if zk ≥ 0,

(−∞, zk), if zk < 0.

Proof. The theorem and its proof can be reviewed in Winter [49, Lemma 2.2.7].
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One explicit copula is exhibited in the example below. The independent Lévy
copula is employed at a later stage to simplify the system of inequalities for the
option pricing problem.

Example 1.22 (Independent copula). The independent copula function for an
LP with independent components reads,

F (u) =

d∑
j=1

uj
∏
i 6=j

1[{∞}](ui). (1.15)

In this section, we have presented some properties of Lévy copulas. These
properties are useful at a later stage of this paper to derive the system of in-
equalities for the American option pricing problem with two underlying assets.

1.5 Lévy Processes as Markov Processes and their
Semigroups

In this section, we introduce Markov processes and to some extent the connec-
tion to Lévy processes. The class of Markov processes is a generalisation of
the class of Lévy processes. Markov processes are SPs which are characterised
by the Markov property, which informally states that the future value of the
process depends only on the past through its current value. Let Bb(Rd) denote
the set of all bounded Borel-measurable functions on Rd.

Definition 1.23 (Markov Process). An adapted SP M = (Mt)t≥0 on a proba-
bility space (Ω,F ,F,P) is a Markov process if for all f ∈ Bb(Rd) and
0 ≤ s ≤ t <∞,

E [f(Mt)|Fs] = E [f(Mt)|Ms] . (a.s.) (1.16)

⊥

This definition can be found in Applebaum [1, Definition 3.1.1]. In Definition
1.23 we call (1.16) the Markov property.

Proposition 1.24. Every Rd-valued Lévy Process L = (Lt)t≥0 is a Markov
process.

Proof. For the proof we refer to Sato [46, Theorem 10.5(i)].

Definition 1.25 (Strong Markov Property). Let Y = (Yt)t≥0 be an adapted
SP on the probability space (Ω,F ,F,P). Then Y satisfies the strong Markov
property if for each stopping time τ with τ < ∞ a.s., Yτ is independent of
Fτ = {A ∈ F|A ∩ {τ ≤ t} ∈ Ft ∀t ≥ 0} and L(Yτ+t − Yτ ) = L(Yt) for all t ≥ 0.

Theorem 1.26. Let L = (Lt)t≥0 be a d-dimensional LP then L satisfies the
strong Markov property.

Proof. See Applebaum [1, Theorem 2.2.11].

Now let us introduce the semigroups of Markov processes. The following defi-
nition can be found in Applebaum [1, Section 3.2].
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Definition 1.27 (One-parameter Semigroup). Let B be a Banach space and
L(B) the algebra of all bounded linear operators on B with identity operator
I. Then the family of bounded, linear operators (Tt|t ≥ 0) is a one-parameter
semigroup of contraction if for x ∈ B and 0 ≤ s ≤ t <∞,

(T1) T0 = I

(T2) Tt+s = (Ts ◦ Tt),

(T3) ‖Tt(x)‖B ≤ 1, ∀x ∈ B

(T4) ‖Tt(x)− x‖B −→ 0 as t→ 0, ∀x ∈ B. ⊥

The semigroup TMt of Markov process M is given by conditioning the ex-
pected value, i.e. TMt : B → B with (TMt f)(y) = E

[
f(Mt)|M0 = y

]
, where

f ∈ B = Bb(Rd), M = (Mt)t≥0 is a Markov process, y ∈ Rd. By (L1) of Def-

inition 1.1 we have the following semigroups TLt associated with an Rd-valued
Lévy process L = (Lt)t≥0,

(TLt f)(x) = E [f(Lt + x)] ,

with f ∈ Bd(Rd) and x ∈ Rd. These results can be found in Applebaum [1,
Section 3.1].

In this chapter, we described a bivariate Lévy model for the spot price pro-
cess S, partially analysed the dependence structure of the model and reviewed
some of the preliminary theory of LPs and Lévy copulas. We proved which
form the drift wi must have in order for the discounted asset price to be a
martingale and gave explicit expressions for the two LP discussed in this paper,
i.e. the CGMY and the Kou process. Moreover, we introduced the concept of
semigroups associated with Lévy processes.
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Chapter 2

Option Pricing in a
Bivariate Setting with
Dependent Asset Price
Processes

In this chapter, we derive a pricing scheme for American style options with two
underlying assets. The asset price process is given by the model in Section 1.3.1.
Firstly, we deduce the system of inequalities for the option pricing problem in
terms of the LP X. The advantage is that the integro-differential operator A
in terms of X has a nice form and the resulting finite elements matrices can
all be tensorised, however, we will be dealing with a time-dependent obstacle.
Secondly, we rewrite the PIDI in variational form and discuss the localised solu-
tion and the error due to the localisation. Thirdly, we discretise the variational
formulation using finite elements and account for the inequality satisfied by the
American option price by the Lagrangian multiplier method. Our final outcome
is a fully-discretised scheme to price American style options within model (1.2).

Let us first give the definition of the optimal stopping time for American
options. This can be reviewed in Cont and Tankov [10, Section 11.4].

Definition 2.1 (Optimal stopping). The value of an American option with
payoff g(s) at time t as an optimal stopping problem is given by,

V (t, s) := ess sup
τ∈Tt,T

E
[
e−r(τ−t)g(Sτ )|St = s

]
,

where s = (s1, s2)> and Tt,T is the set of all stopping times in the interval
J := [t, T ]. ⊥

Remark. The essential supremum in Definition 2.1 over an uncountable set of
stopping times takes the smallest stopping time dominating all stopping times in
Tt,T such that the set

{
τ̃ ∈ Tt,T |E

[
e−r(τ̃−t)g(Sτ̃ )|St = s

]
> V (t, s)

}
has measure

zero.

As we have already mentioned above, we derive the PIDI in terms of the LP X
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in (1.2). For this reason, we introduce the following notation.

ū(t, x) := V

(
t,

(
e(r+w1)t+Σ1x

e(r+w2)t+Σ2x

))
, (2.1a)

ḡ(t, x) := g

((
e(r+w1)t+Σ1x

e(r+w2)t+Σ2x

))
, (2.1b)

where Σi = (Σi1,Σi2) for i = 1, 2 and x = (x1, x2)>.

2.1 Derivation of the System of Inequalities for
the American Option Pricing Problem

Here, we deduce the system of inequalities for the American option pricing prob-
lem using the model described in Section 1.3.1. We adopt some of the theories
from El Karoui, et al. [15]. However, the model discussed here is different in
that it has a sum of two LP in the exponent. This requires us to prove the
following lemma to be able to use the results in El Karoui, et al. [15].

Lemma 2.2. Let f ∈ C1,2(J×R2)∩C0(J̄×R2) with bounded derivatives and A
denote the infinitesimal operator of a two-dimensional LP Xt with independent
components, given by,

(Af)(t, x) := (ABSf)(t, x) + (AJf)(t, x) (2.2)

with

(ABSf)(t, x) =
1

2

2∑
j=1

σ2
j∂xjxjf(t, x) (2.3a)

(AJf)(t, x) =

2∑
j=1

∫
R\{0}

[
f(t, x+ zj)− f(t, x)− ∂xjf(t, x)zj

]
νXj (dzj).

(2.3b)

Then the process Pt = e−rtf(t,Xt) is a super-martingale for t ∈ J if and only
if ∂tf(s,Xs) + (Af)(s,Xs)− rf(s,Xs) ≤ 0 for all s ∈ J .

Remark. Lemma 2.2 is given for processes with infinite variation jump part. If
the process X has components with finite variation jump part, we may use a
different expression for AJ . That is, we would have,

(AJf)(t, x) =

2∑
j=1

∫
R\{0}

[f(t, x+ zj)− f(t, x)] νXj (dzj).

Since we would have a process with γ
0

= 0 as in the remark in Section 1.3.1 for
the model in (1.2).
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Proof. Let Zt = e−rt, then by the product rule and Itô’s formula we have,

dPt
Zt

=− rf(t,Xt) dt+ df(t,Xt) (2.4a)

= (∂tf(t,Xt)− rf(t,Xt)) dt+

2∑
j=1

∂xjf(t,Xt) dX
j
t (2.4b)

+
1

2

2∑
j,k=1

∂xjxkf(t,Xt) d〈Xj , Xk〉ct + ∆f(t,Xt)−
2∑
j=1

∂xjf(t,Xt) ∆Xj
t

(2.4c)

Resulting from the fact that Xj for j = 1, 2 are independent, we get,

dXj
t = σjdW

j
t +

∫
R\{0}

zj J̃Xj (dt, dzj)

d〈Xj , Xk〉ct = δjkσjσk dt.

Hence (2.4) becomes,

dPt
Zt

=

∂tf(t,Xt) +
1

2

2∑
j=1

σ2
j∂xjxjf(t,Xt)− rf(t,Xt)

 dt

+

∫
R2\{0}

f(t,Xt + z)− f(t,Xt)−
2∑
j=1

∂xjf(t,Xt)zj

 JX(dt, dz)

+

2∑
j=1

σj∂xjf(t,Xt) dW
j
t +

2∑
j=1

∂xjf(t,Xt)

∫
R\{0}

zj J̃Xj (dt, dzj),

where z = (z1, z2)>. Using (2.3a) and rewriting JX(dt, dz) = J̃X(dt, dz) +
νX(dz) dt gives,

dPt
Zt

=
(
∂tf(t,Xt) + (ABSf)(t,Xt)− rf(t,Xt)

)
dt (2.5a)

+

∫
R2\{0}

f(t,Xt + z)− f(t,Xt)−
2∑
j=1

∂xjf(t,Xt)zj

 νX(dz) dt

(2.5b)

+

2∑
j=1

∂xjf(t,Xt)

∫
R\{0}

zj J̃Xj (dt, dzj)−
2∑
j=1

∂xjf(t,Xt)

∫
R2\{0}

zj J̃X(dt, dz)

(2.5c)

+

2∑
j=1

∂xjf(t,Xt)σj dW
j
t +

∫
R2\{0}

(f(t,Xt + z)− f(t,Xt)) J̃X(dt, dz).

(2.5d)

Let us now focus on the terms in (2.5c) in order to simplify the expression for the
differential dPt. We can rewrite R2\{0} = I1∪I2∪I3 with I1 = R\{0}×R\{0},
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I2 = R \ {0}× {0} and I3 = {0}×R \ {0} such that Il ∩ Ik = ∅ for l, k = 1, 2, 3.
Then we have for j = 1,∫

R2\{0}
z1 JX(dt, dz) =

∫
I1

z1JX(dt, dz) +

∫
I2

z1 JX(dt, dz) +

∫
I3

z1 JX(dt, dz) (2.6a)

=

∫
R\{0}

z1

∫
R\{0}

JX(dt, dz) +

∫
R\{0}

z1 JX(dt, dz1 × {0}) (2.6b)

+

∫
{0}
z1 JX(dt, dz1 × R \ {0}) (2.6c)

=

∫
R\{0}
z1 JX(dt, dz1 × R\{0}) +

∑
s∈dt

1[∆Xs∈R\{0}×{0}] (2.6d)

=

∫
R\{0}

z1 JX1(dt, dz1), (a.s.) (2.6e)

where the second term in (2.6d) vanishes a.s. since,

P [∆Xs ∈ I2] = P
[
∆X1

s ∈ R\{0},∆X2
s ∈{0}

]
= P

[
∆X1

s ∈ R\{0}
]
P
[
∆X2

s ∈{0}
]
= 0.

An equivalent reasoning holds for j = 2 and also for the remaining terms∫
R2\{0}zj νX(dz)dt for j = 1, 2. Hence the terms in (2.5c) cancel out. By The-

orem 1.21, we know that for φt,x(z) := f(t, x+ z)− f(t, x)−
∑2
j=1 ∂xjf(t, x)zj

and independent copula function F in (1.15),∫
R2

φt,x(z) νX(dz) =

2∑
j=1

∫
R
φt,x(0 + zj) νXj (dzj) (2.7a)

+

∫
R2

∂z1z2φt,x(z)F (U1(z1), U2(z2)) dz (2.7b)

For (2.7b) we use the formula for the independence copula,

F (U1(z1), U2(z2)) = sgn(z1)νX1(Iz1)1[{∞}] (sgn(z2)νX2(Iz2))

+ sgn(z2)νX2(Iz2)1[{∞}] (sgn(z1)νX1(Iz1))

=


sgn(z1)νX1(Iz1)1[z2=0]

+sgn(z2)νX2(Iz2)1[z1=0], for infinite activity models,

0, for finite activity models.
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Thus in the case of the infinite activity we have,∫
R2

φt,x(z) νX(dz) =

2∑
j=1

∫
R
φt,x(0 + zj) νXj (dzj)

+

∫
R

∫
R
∂z1z2φt,x(z)sgn(z1)νX1(Iz1)1[z2=0] dz1dz2

+

∫
R

∫
R
∂z1z2φt,x(z)sgn(z2)νX2(Iz2)1[z1=0] dz1dz2

=

2∑
j=1

∫
R
φt,x(0 + zj) νXj (dzj)

+

∫
R
∂z1z2φt,x(0 + z1)sgn(z1)νX1(Iz1) dz1

+

∫
R
∂z1z2φt,x(0 + z2)sgn(z2)νX2(Iz2) dz2

=

2∑
j=1

∫
R
φt,x(0 + zj) νXj (dzj),

since ∂z1z2φt,x(0 + zj) = 0 for j = 1, 2. By the fact that the two terms in (2.5d)
are martingales we have,

Pt =P0 +

∫ t

0

Zs
(
∂tf(s,Xs) + (ABSf)(s,Xs)− rf(s,Xs)

)
ds

+

∫ t

0

Zs

2∑
j=1

∫
R\{0}

(
f(s,Xs + zj)− f(s,Xs)− ∂xjf(s,Xs)zj

)
νXj (dzj)ds

+

∫ t

0

Zs dMs

=

∫ t

0

Zs

∂tf(s,Xs) + (ABSf)(s,Xs) + (AJf)(s,Xs)︸ ︷︷ ︸
=(Af)(s,Xs)

−rf(s,Xs)

 ds

+

∫ t

0

Zs dMs

For Pt to be a super-martingale it suffices that the integrand of the first integral
is non-positive on J . The fact that Zt is positive and bounded on J gives the
result,

Pt is a super-martingale⇔ (∂tf(s,Xs) +Af(s,Xs)− rf(s,Xs)) ≤ 0 ∀s ∈ J.
(2.8)

Remark. If the inequality sign in (2.8) is an equality then Pt is a martingale
and vice versa.

Now, we can prove the following theorem.
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Theorem 2.3. Let v(t, x) ∈ C1,2(J ×R2)∩C0(J̄ ×R2) be a sufficiently smooth
solution to the following system of inequalities,

∂tv +ABSv +AJv − rv ≤ 0 on J × R2 (2.9a)

v(t, x) ≥ ḡ(t, x) on J × R2 (2.9b)

(∂tv +ABSv +AJv − rv)(v − ḡ) = 0 on J × R2 (2.9c)

v(T, x) = ḡ(T, x) on R2, (2.9d)

where J = [0, T ] for T > 0. Then v(t, x) = ū(t, x) is as in (2.1a) and V (t, s)
is the value of an American option with payoff ḡ(T, x) as defined in Definition
2.1.

Proof. ⇐: By the definition of ū(t, x) the conditions in (2.9b) and (2.9d) are
satisfied. Since X satisfies the strong Markov property by Theorem 1.26, we
have that (Ttḡ)(t, x) = E [ḡ(t,Xt + x)] is the semigroup associated to X. More-
over, assuming ḡ(t, ·) is Borel-measurable on R2 for eacht t ∈ J , we can ap-
ply the result from El Karoui, et al. [15, Theorem 3.4] such that the process
U := (e−rtū(t, x))0≤t≤T is the Snell envelope with time horizon T of Z ḡ = (ḡ(t,Xt + x))0≤t≤T .
By definition of the Snell envelope we know that U is the smallest supermartin-
gale larger than or equal to the process Z ḡ, see El Karoui, et al. [15, Intro-
duction]. By Lemma 2.2 we can conclude that ū(t, x) satisfies (2.9a). From
the fact that the optimal stopping time τ∗1 for the American option is given
by τ∗1 = inf{t ≥ 0 : ū(t, x) = ḡ(t, x)}, we can deduce from Karoui [14, Theorem
2.31] that the stopped process (Ut∧τ∗1 )0≤t≤T is a martingale and therefore, ū(t, x)
satisfies (2.9c).
⇒: Conversely, v(t, x) satisfies (2.9a) then by Lemma 2.2, V := (e−rtv(t, x))0≤t≤T

is a supermartingale. Since the Snell envelope E = (Et)0≤t≤T of Z ḡ is the small-
est supermartingale dominating Z ḡ we have V t ≥ Et ≥ Z ḡ for all (t, x) ∈ J × R2.
By (2.9c) we know that (V t∧τ∗2 )0≤t≤T with τ∗2 = inf{t ≥ 0 : v(t, x) = ḡ(t, x)} is
a martingale and hence v(t, x) = ū(t, x).

Corollary 2.4. Define the functions ũ : J × R2 → R and g̃ : J × R2 → R as
follows,

ũ(t, x) := e−r(T−t)ū(T − t, x), (2.10a)

g̃(t, x) := e−r(T−t)ḡ(T − t, x), (2.10b)

where x = (x1, x2)>. Then ũ(t, x) satisfies the following set of conditions,

∂tũ−ABS ũ−AJ ũ ≥ 0 on J × R2 (2.11a)

ũ(t, x) ≥ g̃(t, x) on J × R2 (2.11b)

(∂tũ−ABS ũ−AJ ũ)(ũ− g̃) = 0 on J × R2 (2.11c)

ũ(0, x) = g̃(0, x) on R2, (2.11d)

Proof. Differentiating ũ(t, x) towards t gives,

∂tũ(t, x) = e−r(T−t) (−rū(T − t, x)− ∂tū(T − t, x)) (2.12)

Plugging (2.12) and (2.10a) into (2.11a) and (2.11c) gives (2.9a) and (2.9c),
respectively. Moreover using the definitions in (2.10), (2.11b) and (2.11d) follow
directly from (2.9b) and (2.9d), respectively.
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2.2 Variational Formulation

Let V ⊂ H be two Hilbert spaces with a continuous, dense embedding. The
variational setting is founded on the real Gelfand triplet,

V ⊂ H ≡ H∗ ⊂ V∗,

where H∗ is the dual space of H. The choice of the spaces V and H depends on
the operator A defined in (2.2) and the parameters of the model. The bilinear
forms associated with ABS and AJ are obtained by multiplying a smooth test
function w ∈ C∞0 (R2) with the respective operator and integrate over x. In this
section we adopted some of the outlines in Reich, et al. [43].
Next we deduce the bilinear form aBS(·, ·) associated with ABS . Let
φ, ψ ∈ C∞0 (R2),

aBS(φ, ψ) = −
(
(ABSφ)(x), ψ(x)

)
V∗,V (2.13a)

= −1

2

2∑
j=1

σ2
j

∫
R2

∂xjxjφ(x) ψ(x) dx (2.13b)

=
1

2

2∑
j=1

σ2
j

∫
R2

∂xjφ(x)∂xjψ(x) dx, (2.13c)

where in (2.13c) we used integration by parts. For the bilinear form aJ(·, ·)
associated to the jump part, we assume νXj (dzj) = kXj (zj) dzj where kXj (zj)
satisfies the (A1)−(A3) in Assumptions 1.14 for j = 1, 2 and use the antideriva-
tives of the one-dimensional Lévy densities kXj (zj) for j = 1, 2 given by,

k
(−n)
Xj (zj) =

{∫ zj
−∞ k

(−n+1)
Xj (ζ)dζ, if zj < 0,

−
∫∞
zj
k

(−n+1)
Xj (ζ)dζ, if zj > 0.

The nth antiderivative k
(−n)
Xj (zj) vanishes at ±∞. To obtain the bilinear form

associated to the jump part we separate the integrals in the jump operator AJ
for j = 1, 2. Let φ ∈ C∞0 (R2) then,∫ ∞

0

(
φ(x+ zj)− φ(x)− ∂xjφ(x)zj

)
kXj (zj)dzj

=
[(
φ(x+ zj)− φ(x)− ∂xjφ(x)zj

)
k

(−1)
Xj (zj)

]∞
0

−
∫ ∞

0

(
∂xjφ(x+ zj)− ∂xjφ(x)

)
k

(−1)
Xj (zj)dzj

= −
[(
∂xjφ(x+ zj)− ∂xjφ(x)

)
k

(−2)
Xj (zj)

]∞
0

+

∫ ∞
0

∂xjxjφ(x+ zj)k
(−2)
Xj (zj)dzj .

The same holds for the integral over negative half of the real line since the
antiderivatives also vanish at −∞. Let φ, ψ ∈ C∞0 (R2) then the bilinear form
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aJ(·, ·) is given by,

aJ(φ, ψ) = −
(
(AJφ)(x), ψ(x)

)
V∗,V (2.14a)

= −
2∑
j=1

∫
R2

∫
R\{0}

∂xjxjφ(x+ zj)k
(−2)
Xj (zj) dzj ψ(x) dx. (2.14b)

=

2∑
j=1

∫
R2

∫
R\{0}

∂xjφ(x+ zj)∂xjψ(x) k
(−2)
Xj (zj) dzj dx. (2.14c)

Remark. For processes X with finite variation jump part we may write for
φ, ψ ∈ C∞0 (R2),

aJ(φ, ψ) =

2∑
j=1

∫
R2

∫
R\{0}

∂xjφ(x+ zj)ψ(x) k
(−1)
Xj (zj) dzj dx.

For the spaces H and V we take L2(R2) and,

Dρ =

{
H1(R2), if ρ = (1, 1),

Hρ(R2), if ρ 6= (1, 1),

respectively, where ρ = (ρ1, ρ2) ∈ (0, 1]2. The space H1(R2) is an isotropic
Sobolev space defined by,

H1(R2) =
{
v ∈ L2(R2) : ∂xjv(x) ∈ L2(R2) for j = 1, 2

}
,

and the space Hρ(R2) is an anisotropic Sobolev space of fractional order defined
as follows,

Hρ(R2) :=

v ∈ L2(R2) : ‖v‖2Hρ =

∫
R2

2∑
j=1

(1 + ξ2
j )ρj |v̂(ξ)|2 dξ <∞

 ,

where v̂(ξ) is the Fourier transform of v(x). We denote the dual space of Dρ by

D−ρ. Moreover, the dual space of Hρ(R2) is denoted by H−ρ(R2) =
(
Hρ(R2)

)∗
and equivalently, H−1(R2) =

(
H1(R2)

)∗
is the dual space of H1(R2). Before we

specify ρ, for which the entries are closely related to the infinitesimal operator

of Xj for j = 1, 2, let us exploit the intersection property of the space Hρ(R2)
in the next proposition.

Proposition 2.5. Let s = (s1, s2) ∈ R+. The space Hs(R2) is an anisotropic
Sobolev space that admits the following intersection structure,

Hs(R2) =
⋂
j=1,2

H
sj
j (R2),

where for j = 1, 2,

H
sj
j (R2) :=

{
v ∈ L2(R2) : ‖v‖2

H
sj
j

:=

∫
R2

(1 + ξ2
j )sj |v̂(ξ)|2 dξ <∞

}
.
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Remark. Proposition 2.5 also holds for the space H1(R2) such that
H1(R2) =

⋂
j=1,2H

1
j (R2).

Proof. See Nikol’skĭi [42, Section 9.2] for details of the result in Proposition
2.5.

Using Proposition 2.5 we have for ρ ∈ (0, 1]2,

Dρ =
⋂
j=1,2

H
ρj
j (R2), (2.15)

as in Reich,et al. [43, Remark 4.9]. Now, the entries of ρ can be given as,

ρj =

{
1, if σj > 0,
αj
2 , if σj = 0,

(2.16)

where αj ∈ (0, 2) is the order of the infinitesimal operator of Xj given in As-
sumptions 1.14, that is, if Xj is a pure jump process, i.e. σj = 0.

Remark. For the CGMY process described in Section 1.3.3, the order of the
infinitesimal operator is given by the parameter αj of the process. The Kou
process, on the other hand, has a diffusion part implying D(1,1) = H1(R2).

Remark. We require g̃(t, ·) ∈ L2(R2) for the existence of a solution. This con-
dition can be relaxed in localised form in the next section and eventually puts
a growth condition on the payoff g(s).

Due to (2.11b) we can narrow the set of admissible functions for the solution of
the variational form of (2.11) to the following set,

Kg̃(t,·) := {v ∈ Dρ|v(x) ≥ g̃(t, x) a.e. x} ⊂ Dρ a.e. t ∈ J.

Furthermore to attain the variational formulation of (2.11), we multiply (2.11a)
with w ∈ Dρ such that w(x) ≥ 0 a.e. and integrate over x to obtain,

(∂tũ, w)D−ρ,Dρ + a(ũ, w)︸ ︷︷ ︸
:=aBS(ũ,w)+aJ (ũ,w)

≥ 0, (2.17)

where aBS : Dρ × Dρ → R is given in (2.13c) and aJ : Dρ ×Dρ → R is stated
in (2.14c). Subsequently, from (2.11c) we acquire,

(∂tũ, ũ− g̃)D−ρ,Dρ + a(ũ, ũ− g̃) = 0. (2.18)

By subtracting (2.18) from (2.17), we obtain the following variational formula-
tion of (2.11),

Find ũ ∈ L2(J ;Dρ) ∩H1(J ;D−ρ) s.t. ũ(t, ·) ∈ Kg̃(t,·) and (2.19a)

(∂tũ, w − ũ)D−ρ,Dρ + a(ũ, w − ũ) ≥ 0, ∀w ∈ Kg̃(t,·) a.e. t ∈ J, (2.19b)

ũ(0, x) = g̃(0, x). (2.19c)

Let us now define the function u(t, x) := ũ(t, x)− g̃(t, x) and the convex set
K := {v ∈ Dρ|v(x) ≥ 0 a.e. x} with indicator function,

IK(v) :=

{
0, if v ∈ K,
+∞, if v 6∈ K.

(2.20)
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Then we can rewrite (2.19) as follows, similar to Reich, et al. [43, Section 2.3],

Find u ∈ L2(J ;Dρ) ∩H1(J ;D−ρ) such that u(t, ·) ∈ Dρ and (2.21a)

(∂tu,w − u)D−ρ,Dρ + a(u,w − u)

+ IK(w)− IK(u) ≥ ft(w − u), ∀w ∈ Dρ, (2.21b)

u(0, x) ≡ 0, (2.21c)

where,
ft(w − u) := −(∂tg̃, w − u)D−ρ,Dρ − a(g̃, w − u).

The subscript t in ft(w − u) indicates the time-dependence of the right hand
side of (2.21b). It is not to be confused with the derivative with respect to t.
Another theoretical result which is of great importance is given in the following
theorem. This theorem ensures that there is a unique solution to the variational
formulation in (2.21) under some regularity assumptions. First the following
lemma.

Lemma 2.6. The bilinear form a : V × V → R with a(·, ·) = aBS(·, ·) + aJ(·, ·)
where aBS(·, ·) and aJ(·, ·) are given in (2.13) and (2.14), respectively, is con-
tinuous and satisfies the G̊arding inequality, i.e. for all ψ, φ ∈ V,

|a(ψ, φ)| ≤C1‖ψ‖V‖φ‖V (2.22a)

a(ψ,ψ) ≥C2‖ψ‖2V − C3‖ψ‖2H (2.22b)

Proof. Here we refer to the proof of Reich et al. [43, Theorem 4.8].

Remark. In Section 3.2 we need that the bilinear form is coercive, i.e. C3 = 0
in (2.22b). We may achieve this by shifting the solution u(t, x) to e−C3tu(t, x)
where C3 > 0 is the same constant as in (2.22b). We refer to Winter [49, Remark
1.3.3].

Theorem 2.7. Let X be an LP with characteristic triplet (0,Q, νX) where the
Lévy measure νX satisfies the assumptions (A1)-(A3). Then the variational
formulation in (2.21) admits a unique solution u(t, x) ∈ L2(J ;V) ∩ L∞(J ;H)
for H = L2(R2) and V = Dρ given in (2.15) with ρ as in (2.16) under the
following regularity assumptions,

∂tg̃(t, x)|t=0 ∈ L2(R2),

−∂tg̃(t, x)− (Ag̃) (t, x) ∈ L2(J ;D−ρ)
and − ∂t (∂tg̃(t, x) + (Ag̃) (t, x)) ∈ L2(J ;D−ρ).

Proof. We know that for v ∈ L2(J ;K) we have |
∫ T

0
IK(v(t, x)) dt| = 0 < ∞,

where IK(v(t, x)) is defined in (2.20). Now using the result in Lemma 2.6 and the
fact that ḡ(0, x) ∈ K, we can apply the result in Glowinski, et al. [19, Theorem
6.2.1].

Remark. The well-posedness of a weaker form of (2.21) is provided by Savaré
[47] under less restrictive regularity assumptions on ft(φ) and ḡ(t, x).
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2.3 Localisation

We truncate the domain R2 of the variational problem in (2.19) to a bounded
domain G = (−R,R)2 ⊂ R2 for R ∈ R+. This localisation is achieved by
installing an artificial boundary condition as follows,

ūR(t, x) := sup
τ∈Tt,T

E[e−r(τ−t)ḡ(τ,Xτ )1[τ<τG]|Xt = x],

where τG := inf{t ≥ 0|Xt ∈ R2 \G} is the first hitting time of X to hit the set
R2 \ G. In financial terms, we can view ūR(t, x) as the price of an American
knock-out barrier option with zero rebate and payoff ḡ(t, x). The price of this
option is zero for x ∈ R2 \ G and for |xj | with either j = 1, 2 approaching
R, ūR(t, x) will decrease towards zero. This is intuitive for a knock-out barrier
with zero rebate, but different for general American options. Their value process
does not become zero, when the process X hits the set R2 \ G, meaning that
we incur an error when only considering the bounded domain G. We define
the localised function uR(t, x) := e−r(T−t)ūR(T − t, x)− g̃(t, x)|x∈G which is the
excess of ūR(t, x) to the time-dependent obstacle g̃(t, x)|x∈G on G. Let us now
state the localised variational formulation in terms of uR(t, x).

Find uR ∈ L2(J ;Dρ(G)) ∩H1(J ;D−ρ(G)) s.t. uR(t, ·) ∈ D and (2.23a)

(∂tuR, w − uR)D−ρ(G),Dρ(G) + a(uR, w − uR) + IK(G)(uR)

− IK(G)(w) ≥ ft(w − uR), ∀w ∈ Dρ(G), (2.23b)

uR(0, x) = 0, for x ∈ G, (2.23c)

where ft is given by,

ft(w − uR) := −(∂tg̃, w − uR)D−ρ(G),Dρ(G) − a(g̃, w − uR), (2.24)

for w ∈ Dρ(G) and for ρ ∈ (0, 1]2 defined in (2.16) we have,

Dρ(G) :=

{
H1

0 (G), if ρ = (1, 1)

H̃ρ(G), if ρ 6= (1, 1)

with,

H̃ρ(G) :=
{
v|G : v ∈ Hρ(R2) and v|R2\G = 0

}
,

H1
0 (G) :=

{
v|G : v ∈ H1(R2) and v|R2\G = 0

}
,

and,

K(G) := {v ∈ Dρ(G)|v(x) ≥ 0 a.e. x ∈ G} ,

IK(G)(v) :=

{
0, if v ∈ K(G),

+∞, if v 6∈ K(G).
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The bilinear form in 2.23 is given by,

a(ψ, φ) =
1

2

2∑
j=1

σ2
j

∫
G

∂xjψ(x)∂xjφ(x) dx

+

2∑
j=1

∫
G

∫
R\{0}

(
∂xjψ(x+ zi)∂xjφ(x)k

(−2)
Xj (zj)

)
dzjdx, (2.25)

with ψ, φ ∈ Dρ(G). We note that the dual space of H̃ρ(G) is(
H̃ρ(G)

)∗
= H−ρ(G) with ρ ∈ (0, 1]2 \ {(1, 1)} for j = 1, 2. The tilde re-

sults from the fact that we force v(x) = 0 for all x ∈ R2 \G if v ∈ H̃ρ(G). The
dual space of H1

0 (G) is denoted by H−1(G) =
(
H1

0 (G)
)∗

. For the localised form
(2.23) the condition on g(s) can be weakened to the growth condition,

g(s) ≤ C

(
2∑
i=1

si + 1

)q
∀s ∈ R2

+, (2.26)

with q ≥ 1 and some constant C > 0 as in Reich, et al. [43, Section 4.5]. The
well-posedness of (2.23) is ensured by Theorem 2.7. The next theorem gives us
an estimate of the localisation error.

Theorem 2.8. Suppose g : R2 → R satisfies the growth condition in (2.26) for
some q ≥ 1. Further, let X be a two-dimensional Lévy process with Lévy measure
νX(dz) such that for j = 1, 2 the marginal Lévy measures
νXj (dzj) = kXj (zj) dzj satisfy (A1) in Assumptions 1.14 with ζj+, ζ

j
− > q. Then

for some constant C > 0,

|u(t, x)− uR(t, x)| ≤ Ce−γ1R+γ2‖x‖l∞ ,

with −q < γ2 < minj=1,2 min(ζj+, ζ
j
−) and γ1 = γ2 − q.

Proof. The theorem and proof can be found in Reich, et al. [43, Theorem 4.15].

Theorem 2.8 states that the localisation error decreases exponentially in R. As
mentioned above the value of the approximation uR(t, x) of u(t, x) will decrease
to zero as |xj | approaches the artificial barrier R for j = 1, 2 whereas the value
of u(t, x) may not decrease to zero for |xj | close to R. Therefore the localisation
error might be large for |xj | close to R and it is wise to choose R large enough,
such that the area of interest for u(t, x) is bounded away from ∂G. However,
keep in mind that to have a grid with mesh size h for a large R requires more
gird points then a grid with the same mesh size h for a small R. Thus choosing
R is a trade-off between accuracy and computational time.

2.4 Discretisation and Lagrangian Multiplier Form

In this section we discretise the variational formulation in (2.23) using the con-
tinuous Garlakin method. First we will discretise in space using finite elements
and then reformulate the problem using Lagrangian multipliers. We will in-
troduce the Lagrangian multiplier space and some of its properties. Finally,
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we discretise the semi-discrete form in time using finite difference obtaining a
fully discrete representation of the variational problem (2.21) using Lagrangian
multipliers. In this section, we denote the inner product in L2(G) by (·, ·).

2.4.1 Space Discretisation

Let us first introduce the notation for the discretisation in space. We denote
N as the number of inner nodes in each dimension, that is we work with an
equidistant grid in both dimensions resulting in a total number of Ñ := N2

inner nodes. Furthermore, we define h := 2R
N+1 as the mesh size and the finite

dimensional finite element space VN as follows,

VN := span
{
ψj(x) | 1 ≤ j ≤ N2

}
(2.27)

where we ulilize products of two hat functions as basis for VN , that is
ψj(x) = bj1(x1)bj2(x2) with j = (j1 − 1)N + j2 for 1 ≤ j1, j2 ≤ N . The hat
functions are given by bjl(xl) = max

(
0, 1− h−1|xl − xjl |

)
for l = 1, 2. We de-

pict the one-dimensional hat functions in Figure 2.1. Moreover, the dimension
of VN is Ñ . We approximate the solution u(t, x) to (2.21) with a piecewise linear
function uN ∈ VN . Hence, the approximation uN (t, x) can be represented as,

uN (t, x) =

N∑
j1,j2=1

uN,j1,j2(t)bj1(x1)bj2(x2),

with x = (x1, x2)> and uN (t) = (uN,j1,j2(t))1≤j1,j2≤N is the coefficient vector

in RÑ dependent on time t. By plugging this expression into the localised vari-
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Figure 2.1: One-dimensional hat functions bj(x) for j = 1, . . . , N on domain
G = (−R,R) ⊂ R.

ational formulation (2.23), we obtain for w(x) =
∑N
i1,i2=1 wi1,i2bi1(x1)bi2(x2)

the following semi-discretised form where v̇(t) represents the derivative towards
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time t and a(·, ·) is defined in (2.25),

N∑
i1,i2=1

(wi1,i2 − uN,i1,i2(t))

 N∑
j1,j2=1

u̇N,j1,j2(t) (bj1(x1)bj2(x2), bi1(x1)bi2(x2))

+

N∑
j1,j2=1

uN,j1,j2(t)a (bj1(x1)bj2(x2), bi1(x1)bi2(x2))


≥

N∑
i1,i2=1

(wi1,i2 − uN,i1,i2(t)) f (bi1(x1)bi2(x2)) , (2.28)

uN,j1,j2(0) = 0 for j1, j2 = 1, . . . , N.

This results in the following matrix representation. Define,

KN := {v ∈ VN : vj1,j2 ≥ 0 for j1, j2 = 1, . . . , N} ⊂ VN ,

then the semi-discrete problem can be stated as:

Find uN (t, ·) ∈ KN such that for a.e. t ∈ J, (2.29a)

(w − uN (t))
>

[Mu̇N (t) + AuN (t)] ≥ (w − uN (t))
>
F (t),∀w ∈ VN (2.29b)

uN (0) = 0, (2.29c)

where from (2.28) it follows that the mass and stiffness matrix in RÑ×Ñ are
given by,

M(i1,i2),(j1,j2) := (bj1(x1)bj2(x2), bi1(x1)bi2(x2)) , (2.30a)

A(i1,i2),(j1,j2) := a (bj1(x1)bj2(x2), bi1(x1)bi2(x2)) , (2.30b)

respectively, and F i1,i2(t) := ft(bi1bi2) ∈ RÑ with ft given in (2.24) for
1 ≤ i1, i2, j1, j2 ≤ N . The matrices defined in (2.30) have the following ten-
sor structure for which the precise calculations can be found in Appendix C,

M = M1⊗M2 and A =
σ2

1

2
S1⊗M2+

σ2
2

2
M1⊗S2+A1⊗M2+M1⊗A2, (2.31)

where for l = 1, 2,

Ml
il,jl

=

∫ R

−R
bjl(xl)bil(xl) dxl Slil,jl =

∫ R

−R
b′jl(xl)b

′
il

(xl) dxl

Al
il,jl

=

∫ R

−R

∫ R

−R
b′jl(yl)b

′
il

(xl)k
(−2)

Xl
(yl − xl) dyl dxl.

Equation (2.29) is called the semi-discrete form resulting from the discretisation
in space.
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2.4.2 Semi-Discrete Form using Lagrangian Multiplier

In this section we reformulate (2.29) utilizing Lagrangian multipliers. The La-
grangian multiplier space MN denotes the set of admissible functions for the
Lagrangian multiplier applicable to the finite dimensional problem in (2.29).
For the analysis in this section we refer to some of the results from Hager, et al.
[20, Section 3]. The Lagrangian multiplier space is spanned by the dual basis of
VN ,

MN :=

µN (t, x) =

Ñ∑
j=1

µ
N,j

(t)ψ∗j (x) : µ
N,j
≥ 0

 ,

where ψ∗j (x) is the dual function of ψj(x) defined by,

ψ∗j (x) := 3ψj(x)− 1

3
1[supp ψj ](x) for j = 1, . . . , Ñ . (2.32)

We notice that supp ψ∗j = supp ψj for j = 1, . . . , Ñ . Another crucial property
is shown in the following lemma.

Lemma 2.9. Let {ψj}Ñj=1 be the basis of VN and {ψ∗j }Ñj=1 be the basis of MN

defined in (2.32) then we have,∫
G

ψj(x)ψ∗i (x) dx = δij

∫
G

ψj(x) dx for i, j = 1. . . . , Ñ ,

where δij is the Kronecker’s delta.

Proof. We know that
∫
G
ψj(x) dx = h2. Further, we can infer that,∫

G

ψj(x)ψ∗i (x) dx =3

∫
G1

bj1(x1)bi1(x1) dx1

∫
G2

bj2(x2)bi2(x2) dx2

− 1

3

∫
G1∩{supp bi2}

bj1(x1) dx1

∫
G2∩{supp bi2}

bj2(x2) dx2

=

{
h2, if ik = jk for k = 1, 2,

0, otherwise.

Due to the work in Kikuchi and Oden [28, Chapter 3.4] the semi-discrete for-
mulation in (2.28) can be rewritten as:

Find (uN (t, ·), λN (t, ·)) ∈ KN ×MN s.t. for a.e. t ∈ J, (2.33a)

(u̇N , wN ) + a(uN , wN )− (λN , wN ) = ft (wN ) ∀wN ∈ VN , (2.33b)

(uN , µN − λN ) ≥ 0 ∀µN ∈MN , (2.33c)

uN (0, x) = 0, (2.33d)

where ft(wN ) = −(∂tg̃, wN )− a(g̃, wN ) and a(·, ·) is given in (2.25). If (2.33b)
holds for all basis functions wN (x) = ψi(x), then it holds for all functions in

VN . Thus we get for λN (t, x) =
∑Ñ
j=1 λN,j(t)ψ

∗
j (x):
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Find (uN , λN ) ∈ KN×MN with uN (t) ≥ 0 and λN (t) ≥ 0 ∀t ∈ J s.t., (2.34a)

Ñ∑
j=1

u̇N,j(t)(ψj , ψi) +

Ñ∑
j=1

uN,j(t)a(ψj , ψi)−
Ñ∑
j=1

λN,j(t)(ψ
∗
j , ψi) = Fi(t),

(2.34b)

Ñ∑
j=1

uN,j(t)

Ñ∑
i=1

(µN,i(t)− λN,i(t))(ψj , ψ∗i ) ≥ 0 ∀µN ∈MN (2.34c)

uN (0) = 0, (2.34d)

where Fi(t) = ft(ψi) for i = 1, . . . , Ñ . Using Lemma 2.9, we can acquire the
following matrix representation of (2.34b) and rewrite (2.33c) as,

Mu̇N (t) + AuN (t)−DλN (t) = F (t), (2.35a)

Ñ∑
i=1

uN,i(t)(µN,i(t)− λN,i(t)) ≥ 0 ∀µN ∈MN (2.35b)

where D ∈ RÑ×Ñ is a diagonal matrix given by Dij := δijh
2. We may also

rewrite (2.35b) into a nonlinear complementary condition. This is done in the
next lemma.

Lemma 2.10. Equation (2.35b) is equivalent to the complementary condition,

C(uN (t), λN (t)) := DλN (t)−max(0,DλN (t)−cuN (t)) = 0, ∀t ∈ J (2.36)

for any c > 0 and where the maximum is taken component-wise.

Proof. Let us prove that each condition is equivalent to the fact that for each
i = 1, . . . , Ñ either λN,i(t) or uN,i(t) is equal to zero for all t ∈ J . Let us
fix an arbitrary t ∈ J . Since λN (t, ·) ∈ MN we know that λN,i(t) ≥ 0 for

all i = 1, . . . , Ñ . Assuming (2.36) holds and h2λN,i(t) > cuN,i(t) for some

i ∈ {1, . . . , Ñ} then the ith component of C(uN (t), λN (t)) is equal to cuN,i(t)
and thus, we must have uN,i(t) = 0. Equivalently, 0 ≤ h2λN,i(t) ≤ cuN,i(t)

implies λN,i(t) = 0. Conversely, if for every i = 1, . . . , Ñ either uN,i(t) = 0 or
λN,i(t) = 0 then (2.36) holds. Therefore, (2.36) holds if and only if for each

i = 1, . . . , Ñ either uN,i(t) = 0 or λN,i(t) = 0.
Now suppose uN,i(t) = 0, then the ith term in the sum in (2.35b) is zero. If

λN,i(t) = 0, we have that µN,iuN,i(t) ≥ 0 for all µN,i ≥ 0 by (2.34a). Hence,
the sum in (2.35b) is non-negative if either uN,i(t) = 0 or λN,i(t) = 0 for

i = 1, . . . , Ñ . Conversely, if there is an i ∈ {1, . . . , Ñ} such that uN,i(t) > 0 and
λN,i(t) > 0, we may choose µN,j = λN,j for all j 6= i and µN,i = 0 implying a
violation of (2.35b).

Finally, we can state the full problem in semi-discrete Lagrangian form as fol-
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lows:

Find (uN , λN ) ∈ KN×MN with uN (t) ≥ 0 and λN (t) ≥ 0 ∀t ∈ J s.t., (2.37a)

Mu̇N (t) + AuN (t)−DλN (t) = F (t), (2.37b)

C(uN (t), λN (t)) = 0, (2.37c)

uN (0) = 0. (2.37d)

The advantage of this conversion from an inequality to an equality is that it
facilitates the implementation of a semi-smooth Newton algorithm in Chapter
3.

2.4.3 Time Discretisation

In the present section, we discretise the semi-discrete problem in time to obtain
a fully discretised version of (2.23). We partition J = [0, T ] in M+1 equidistant
grid points with,

tm = mk, m = 0, 1, . . . ,M ; k := T/M.

We define umN := uN (tm), λmN := λN (tm) and equivalently Fm := F (tm). Ap-
plying the finite difference and the θ-scheme to (2.37) yields,

M
um+1
N − umN

k
+ A

(
θum+1

N + (1− θ)umN
)
−Dλm+1

N = θFm+1 + (1− θ)Fm.

Consequently, we obtain the fully discretised formulation of the American option
pricing problem:

Find (umN , λ
m
N ) with umN ≥ 0 and λmN ≥ 0 s.t. for m = 0, . . . ,M − 1, (2.38a)

(M + kθA)um+1
N − kDλm+1

N = (M− k(1− θ)A)umN

+ kθFm+1 + k(1− θ)Fm (2.38b)

C(umN , λ
m
N ) = 0 (2.38c)

u0
N = 0. (2.38d)

Starting from the optimal stopping problem for the American options in model
(1.2) we have established a system of inequalities that the American option
price satisfies. We have derived that variational formulation and ensured that
the variational inequality is well-posed and has a unique solution. Thereafter,
we discretised the variational formulation using Lagrangian multipliers in space
and time. In the fully-discretised formulation (2.38) we encounter a so-called
linear complementary problem (LCP) for each time step m = 1, . . . ,M . In the
next chapter, we go into more detail about the semi-smooth Newton algorithm
used to solve these LCPs.
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Chapter 3

Convergence of the
Semi-smooth Newton
Algorithm

In this chapter, we describe the semi-smooth Newton algorithm that is needed
to solve the LCPs arising in the fully discrete pricing scheme developed in
the previous chapter. Moreover, we state some convergence results for ellip-
tic and parabolic variational inequalities and check numerical convergence rates
on different problems. We analyse convergence behaviour of the elliptic vari-
ational inequality for one-dimensional perpetual American options. For the
one-dimensional Kou model there exists a closed-form solution, see Kou and
Wang [33, Theorem 3]. For this elliptic problem we observe optimal conver-
gence of order O(N−2) for the semi-smooth Newton algorithm. Thereafter,
we adopt the one-dimensional tent problem from Moon, et al. [39, Section 5.2
and 5.3]. The obstacle in this parabolic problem is not differentiable in one
particular point. In the case where the spatial grid matches this singularity,
meaning there is an i ∈ N such that the obstacle g̃(x) has its singularity at xi,
we can achieve optimal convergence. However, when the spatial grid does not
incorporate the singularity, we notice that the convergence reduces to an order
of O(N−

1
2 ) similar to the findings in Moon, et al. [39, Section 5.2 and 5.3].

Finally, we employ the so-called overkill method to check convergence of the
two-dimensional American basket put option using the model in Section 1.3.1.

3.1 The Semi-smooth Newton Algorithm

In this section, we present the semi-smooth Newton algorithm and delineate its
procedure to solve LCPs. Here, we follow the outline of Hager, et al. [20, Section
4.1]. For notational simplicity we examine more general LCPs in this section.

Linear Complementary Problem 3.1. Find x ∈ Rn such that,

Bx ≥ b,
x ≥ c,
(x− c)>(Bx− b) = 0,
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for B ∈ Rn×n and b, c ∈ Rn. ⊥

Although the well-established projected successive over-relaxation (PSOR) algo-
rithm is a widespread method for solving LCPs we proceed with the semi-smooth
Newton algorithm to solve the LCP for each time step of the fully discretised
formulation of the American option pricing problem in (2.38). One of the advan-
tages of the semi-smooth Newton method is its faster convergence, see Section
3.4.1. More details about the PSOR method can be found in Cryer [9]. The
semi-smooth Newton method exploits the so-called primal-dual active set strat-
egy (PDASS). Hintermüller, et al. [25, Chapter 2] proved that the PDASS is
equivalent to a semi-smooth Newton algorithm. The PDASS splits the space
domain into several parts and, hence, divides the computational work to these
parts. In our case, the stopping and continuation region decouple the space
domain into two disjoint sets. To use appropriate terminology we denote the
set of grid points i ∈ N for which

∑n
j=1 Bijxj = bi and where xi = ci by I

(inactive set) and A (active set), respectively. Hence N = I ∪A where N is the
set of all grid points. Reformulating the Linear Complementary Problem 3.1 in
terms of the Lagrangian multiplier λ ∈ Rn+ reads:

Find x, λ ∈ Rn such that, (3.1a)

Bx− λ = b, (3.1b)

C (x, λ) = λ−max (0, λ− ω (x− c)) = 0, (3.1c)

where ω > 0 is a penalty constant and the constraint C is the resulting semi-
smooth equation where the maximum is taken component-wise. The function
C(x, λ) is depicted in Figure 3.1 where we observe that the red line is the
constraint in (3.1c). Using the complementary function C(x, λ) in (3.1c) and
the decomposition of all the grid points N = I ∪A with I ∩A = ∅, we can state
the problem separately on the active and inactive set and using the knowledge
of the values of either xA := (xi)i∈A or λI := (λi)i∈I , that is xA = cA and
λI = 0, to solve the problem on the complementary set. Hence, the idea is
to compute xI by applying the information about λ on I and λA using the
information about x on A. This is described in Table 3.1 where #I denotes the
number of elements in set I.

In Figure 3.1, we observe that the function C(x, λ) is not continuously
differentiable on the line λ − ω(x − c) = 0 for x, λ ∈ R. For this reason, we
use the generalized derivative to explain the variation of the complementary
function C(x, λ). Let DC denote the generalised derivative of C(x, λ) in (3.1c)
then the variation of C at point (x, λ) in direction (∆x,∆λ) is given by,

DC(x,λ)(∆x,∆λ) = ∆λ− χA (∆λ− ω∆x) ,

where ∆x,∆λ denote small variations in x and λ, respectively, and χA is defined
as the characteristic function of the set A,

χA :=

{
1, if λ− ω(x− c) > 0,

0, if λ− ω(x− c) ≤ 0.

For the semi-smooth Newton algorithm, we denote the kth Newton step by
the iteration (xk, λk) = (xk−1, λk−1) + (∆xk−1,∆λk−1) for k ∈ N such that
DC(xk−1,λk−1)(∆x

k−1,∆λk−1) = 0 where (∆xk−1,∆λk−1) is the change from
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Steps Inactive set Active set

1. Apply the ∀i ∈ I: λi = 0 ∀i ∈ A: xi = ci
definition

∑
j∈NBijxj=bi.

∑
j∈IBijxj−λi=bi−

∑
j∈ABijcj .

of I and A
to the LCP

Resulting in #I equations Resulting in #A equations
to solve for #N unknowns. to solve for #N unknowns.

2. Apply the ∀i ∈ I: λi = 0
definition

∑
j∈IBijxj=fi

of set A with
to the LCP fi=bi−

∑
j∈ABijci.

on set I.
Resulting in #I equations
to solve for #I unknowns.

3. Apply the ∀i ∈ A: xi = ci
solution xII λi=fi
on set I with
to the LCP fi=

∑
j∈IBijx

I
j +
∑
j∈ABijcj−bi

on set A.
Resulting in #A equations
to solve for #A unknowns.

Table 3.1: Primal-Dual Active Set Strategy for Linear Complementary
Problem 3.1.
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Figure 3.1: Complementary Function C(x, λ) = λ−max(0, λ− ω(x− c)) with
ω = .9 and c = 2. The red line delineates the constraint in (3.1c).
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the (k − 1)th to the kth iterate. More about this can be found in Hintermüller,
et al. [25, Chapter 2] and Hager, et al. [20, Section 4.1]. The detailed description
of the semi-smooth Newton algorithm is displayed in Table 3.2 where we use
the following notation, B(Ak,Ak) := (Bij)i,j∈Ak .

Choose initial guess x0 ≥ c and λ0 ≥ 0,
Choose ω > 0.
For k = 1, 2, ... do:

Ak = {i ∈ N : λk−1 − ω
(
xk−1 − c

)
≥ 0}

Ik = {i ∈ N : λk−1 − ω
(
xk−1 − c

)
< 0}

If k ≥ 2 and Ak = Ak−1 and Ik = Ik−1 → stop. Else:

λkIk = 0
xkAk = cAk
xkIk = B−1

(Ik,Ik)

(
bIk −B(Ik,Ak)cAk

)
λkAk = B(Ak,Ik)x

k
Ik + B(Ak,Ak)cAk − bAk

Next k.

Table 3.2: Semi-smooth Newton Algorithm for Linear Complementary
Problem 3.1.

Remark. Within the PDASS, the free boundary is a direct outcome of the al-
gorithm whereas with the well-known PSOR algorithm this is not the case.

Remark. The PDASS can also be applied to European style options by enforcing
A = ∅ for all iterations k ∈ N and all time steps m = 1, . . . ,M . Therefore, only
one algorithm is needed to price American as well as European style options.

In the next section, we focus on the uniqueness of the solution to the Linear
Complementary Problem 3.1 and the convergence of the semi-smooth Newton
algorithm in Table 3.2.

3.2 Solution Uniqueness and Convergence

In this section, we address the convergence of the semi-smooth Newton algo-
rithm. First, we give some theoretical facts and then apply these results to the
LCPs for the American option pricing problem solved by the semi-smooth New-
ton algorithm in Table 3.2. The following definition can be found in Berman
and Plemmons [3, Section 10.2].

Definition 3.2. An n × n matrix is a P-matrix if all its principal minors are
positive.

A subset of all P-matrices are M-matrices for which the definition can be found
in Berman and Plemmons [3, Definition 6.1.2].

Definition 3.3. An n× n matrix is an M-matrix if it is a P-matrix and all its
off-diagonal entries are non-positive.
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The following theorem characterises the uniqueness of a solution to the LCP
above.

Theorem 3.4. The LCP in (3.1) has a unique solution if and only if B is a
P-matrix.

Proof. For the proof we refer to Murty [40, Theorem 3.1].

Imposing the condition that the matrix B in (3.1) is a P-matrix does not only
imply uniqueness of the solution but also local convergence as we can observe
from the following theorem.

Theorem 3.5. Let B be a P-matrix, then the semi-smooth Newton method
given in Table 3.2 converges superlinearly to (x∗, λ∗), provided that ‖x0 − x∗‖l2
and ‖λ0 − λ

∗‖l2 are sufficiently small.

Proof. The theorem and proof is given in Hintermüller, et al. [25, Theorem
3.1].

Global convergence can be achieved by imposing the M-matrix condition on
matrix B.

Theorem 3.6. If B is an M-matrix, then the semi-smooth Newton method
converges to (x∗, λ∗) for arbitrary initial data x0 and λ0.

Proof. The theorem can be found in Hintermüller, et al. [25, Theorem 3.2] and
the proof is given in Hintermüller, et al. [25, Appendix A].

Now that we have established the groundwork for the uniqueness and conver-
gence of the LCP in (3.1), we turn to the specific LCP that we need to solve for
every time step m = 0, . . . ,M − 1 to obtain the price of the American option.
For this we recall the fully discretised formulation in (2.38). First, we need the
following lemma.

Lemma 3.7. Let wN (x) =
∑Ñ
i=1 wiψi(x) ∈ VN where VN is the finite element

space given in (2.27). Then there exist constants Cmin, Cmax > 0 such that,

Cminw
>w ≤ ‖wN‖2L2(G) ≤ Cmaxw

>w.

Proof. First let us rewrite ‖wN‖2L2(G) using wN (x) =
∑Ñ
j=1 wjψj(x) as follows,

‖wN‖2L2(G) =

Ñ∑
i=1

Ñ∑
j=1

wiwj

∫
G

ψj(x)ψi(x) dx

=

Ñ∑
i=1

Ñ∑
j=1

wiwjMi,j

=w>Mw,

where M = M1 ⊗M2 is given in (2.31). Furthermore by Gershgorin’s Theo-
rem, we know that all eigenvalues λ̃il of Mi lie in some disc D(Mi

ll, R̃
i
l) with
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radius R̃il :=
∑
k 6=l |Mi

lk| for l, k = 1, . . . , N and i = 1, 2. As we know Mi

explicitly from (C.2), we have Mi
ll + R̃il = h and Mi

ll − R̃il = h
3 > 0 for all

l = 1, . . . , N and i = 1, 2. Hence, all eigenvalues λil of Mi are positive. By
Magnus and Neudecker [35, Theorem 2.3.1], the eigenvalues of M are given by

λ̃l(N−1)+k := λ̃1
l λ̃

2
k ∈ [h

2

9 , h
2] for l, k = 1, . . . , N and thus for all w ∈ RÑ ,

Cminw
>w ≤ λ̃minw

>w ≤ w>Mw ≤ λ̃maxw
>w ≤ Cmaxw

>w,

where,
λ̃min = min

j∈{1,...,Ñ}
λ̃j , λ̃max = max

j∈{1,...,Ñ}
λ̃j ,

Cmin := h2

9 and Cmax := h2.

Turning to the LCP in the discretised option pricing scheme in (2.38), we can
use Lemma 3.7 to prove uniqueness and local convergence.

Proposition 3.8. Let B = M+kθA with k ∈ R+ the time mesh size, θ ∈ [0, 1]
the θ-scheme parameter and M,A the matrices given as in (2.31). Further
assume that the bilinear form a(·, ·) given in (2.25) associated to the matrix A
is coercive, then B is a P-matrix.

Proof. By Theorem 3.4, it is equivalent to show that the LCP has a unique so-
lution. Using Stampacchia’s Theorem (e.g. Kinderlehrer and Stampacchia [29,

Theorem 2.2.1]) we need to show that the bilinear form b : RÑ ×RÑ → R with
b(v, w) := (vN , wN ) + kθa(vN , wN ) is continuous and coercive for vN , wN ∈ VN
and a(·, ·) given in (2.25) with VN defined in (2.27). Since we have

vN (x) =
∑Ñ
j=1 viψj(x) for vN ∈ VN with v ∈ RÑ it follows that,

b(v, w) =

Ñ∑
j=1

Ñ∑
i=1

vjwi [(ψj , ψi) + kθa(ψj , ψi)] = v>Bw.

Hence, continuity of the bilinear form b(·, ·) follows from

v>Bw =v>Mw + kθv>Aw (3.2a)

=‖vN‖L2(G)‖wN‖L2(G) + kθa(vN , wN ) (3.2b)

≤‖vN‖L2(G)‖wN‖L2(G) + kθC1‖vN‖H̃ρ(G)‖wN‖H̃ρ(G) (3.2c)

≤‖vN‖L2(G)‖wN‖L2(G) + kθC1‖vN‖H1
0 (G)‖wN‖H1

0 (G) (3.2d)

≤‖vN‖L2(G)‖wN‖L2(G)(1 + kθ
C1C̃

2

h2
) (3.2e)

≤Cmax(1 + kθ
C1C̃

2

h2
)‖v‖l2‖w‖l2 = (h2 + kθC1C̃

2)︸ ︷︷ ︸
=:C̄1>0

‖v‖l2‖w‖l2 , (3.2f)

where a(·, ·) is given in (2.25). In (3.2c) we use the continuity property of a(·, ·)
in (2.22a), (3.2d) follows from the fact that ρj ≤ 1 for j = 1, 2, for (3.2e) we use
the inverse norm inequality in Brenner and Scott [6, Lemma 4.5.3] and (3.2e)
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results from Lemma 3.7. Assuming that the bilinear form a(·, ·) is coercive we
derive in a similar way to (3.2),

w>Bw ≥‖wN‖2L2(G) + kθ
(
C2‖wN‖2H̃ρ(G)

)
≥‖wN‖2L2(G) (1 + kθC2)

≥Cmin (1 + kθC2)w>w =
h2

9
(1 + kθC2)︸ ︷︷ ︸
=:C̄2>0

‖w‖2l2 .

Under the assumption that the bilinear form a(·, ·) is coercive, the result of
Proposition 3.8 does not only ensure a unique solution but also convergence
of the semi-smooth Newton algorithm for specific initial data due to Theorem
3.5. In order to achieve convergence for arbitrary initial data we need B to be
an M-matrix. By Definition 3.2, it only remains to show that all off-diagonal
entries are non-positive. This, however, will prove to be a non trivial task for
the matrix B = M + kθA. For the one-dimensional case we refer to Reichmann
[44, Lemma 11.2.7] where it is proven that the one-dimensional stiffness matrix
is an M-matrix.

Let us now look at the stiffness matrix A = ABS + AJ defined in (2.31).

Proposition 3.9. Let A = ABS + AJ defined in (2.31). Assume that the
bilinear form a(·, ·) given in (2.25) associated to the matrix A is coercive and
that the following inequalities hold,[

σ2
1 − 2σ2

2 +
(
2k1

0 − k1
1,+ − k1

1,−
)

+ 4
(
2k2

1,− − k2
2,− − k2

0

)]
≤ 0, (3.3a)[

σ2
1 − 2σ2

2 +
(
2k1

0 − k1
1,+ − k1

1,−
)

+ 4
(
2k2

1,+ − k2
2,+ − k2

0

)]
≤ 0, (3.3b)[

−2σ2
1 + σ2

2 + 4
(
2k1

1,− − k1
2,− − k1

0

)
+
(
2k2

0 − k2
1,+ − k2

1,−
)]
≤ 0, (3.3c)[

−2σ2
1 + σ2

2 + 4
(
2k1

1,+ − k1
2,+ − k1

0

)
+
(
2k2

0 − k2
1,+ − k2

1,−
)]
≤ 0, (3.3d)

where the definitions of kjl,± for j = 1, 2 and l = 0, 1, 2 can be found in Appendix
C. Then A is an M-matrix.

Proof. Since a(·, ·) is continuous by Lemma 2.6 and we assume that a(·, ·) is
coercive it follows that A is a P-matrix by Kinderlehrer and Stampacchia [29,
Theorem 2.2.1] and Theorem 3.5. Now it only remains to show that the off-
diagonal entries of A are non-positive by Berman and Plemmons [3, Theorem
6.2.4(A1)]. By (C.3) and Reichmann [44, Lemma 11.2.7] we know that Sl and
Al are M-matrices for l = 1, 2. This gives us the following positive off-diagonal
entries of each of the Kronecker products in (2.31),

S1 ⊗M2 : S1
i1i1M

2
i2+1i2 , S1

i1i1M
2
i2i2+1 > 0,

M1 ⊗ S2 : M1
i1+1i1S

2
i2i2 , M1

i1i1+1S
2
i2i2 > 0,

A1 ⊗M2 : A1
i1i1M

2
i2+1i2 , A1

i1i1M
2
i2i2+1 > 0,

M1 ⊗A2 : M1
i1+1i1A

2
i2i2 , M1

i1i1+1A
2
i2i2 > 0,
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where i1, i2 = 1 . . . , N − 1. These individual entries compose the following
entries of matrix A,

A(i1,i2+1)(i1,i2) =
σ2

1

2
S1
i1i1M

2
i2+1i2 +

σ2
2

2
M1

i1i1S
2
i2+1i2 + A1

i1i1M
2
i2+1i2 + M1

i1i1A
2
i2+1i2 ,

A(i1,i2)(i1,i2+1) =
σ2

1

2
S1
i1i1M

2
i2i2+1 +

σ2
2

2
M1

i1i1S
2
i2i2+1 + A1

i1i1M
2
i2i2+1 + M1

i1i1A
2
i2i2+1,

A(i1+1,i2)(i1,i2) =
σ2

1

2
S1
i1+1i1M

2
i2i2 ,+

σ2
2

2
M1

i1+1i1S
2
i2i2 + A1

i1+1i1M
2
i2i2 ,+M1

i1+1i1A
2
i2i2 ,

A(i1,i2)(i1+1,i2) =
σ2

1

2
S1
i1i1+1M

2
i2i2 +

σ2
2

2
M1

i1i1+1S
2
i2i2 + A1

i1i1+1M
2
i2i2 + M1

i1i1+1A
2
i2i2 ,

From the results in Appendix C we can retrieve the following four inequalities
that are the conditions for A to be an M-matrix,[

σ2
1 − 2σ2

2 +
(
2k1

0 − k1
1,+ − k1

1,−
)

+ 4
(
2k2

1,− − k2
2,− − k2

0

)]
≤ 0,[

σ2
1 − 2σ2

2 +
(
2k1

0 − k1
1,+ − k1

1,−
)

+ 4
(
2k2

1,+ − k2
2,+ − k2

0

)]
≤ 0,[

−2σ2
1 + σ2

2 + 4
(
2k1

1,− − k1
2,− − k1

0

)
+
(
2k2

0 − k2
1,+ − k2

1,−
)]
≤ 0,[

−2σ2
1 + σ2

2 + 4
(
2k1

1,+ − k1
2,+ − k1

0

)
+
(
2k2

0 − k2
1,+ − k2

1,−
)]
≤ 0.

Remark. To prove that B is an M-matrix the validity of the four inequalities
in (3.3) must be verified. That is, one has to show for which parameters of the
model the four inequalities in (3.3) hold. Since for the Kou and the CGMY
model we have ten and eight parameters, respectively, we cannot solve this
explicitly. Finding bounds for these parameters is a focus of further research.

For the Brownian motion case, i.e. A = ABS we can prove that A is an
M-matrix for specific values of the constant volatilities σj of the processes Xj

for j = 1, 2.

Corollary 3.10. Let A =
σ2
1

2 S1 ⊗M2 +
σ2
2

2 M1 ⊗ S2 and assume that aBS(·, ·)
in (2.13) is coercive, then A is an M-matrix if and only if σ1

σ2
∈
[

1√
2
,
√

2
]

for

σ1, σ2 > 0.

Proof. With the same reasoning as in Proposition 3.9 we obtain the following
two inequalities similar to those in (3.3), namely,

σ2
1 − 2σ2

2 ≤ 0,

−2σ2
1 + σ2

2 ≤ 0.

This gives 1√
2
≤ σ1

σ2
≤
√

2.

The next proposition finds conditions on k, h ∈ R+ such that B = M + kθABS

is an M-matrix.

Corollary 3.11. Suppose aBS(·, ·) in (2.13) is coercive and that σ1

σ2
∈
(

1√
2
,
√

2
)

with σi > 0 for i = 1, 2. If the following two conditions hold for k, h ∈ R+ and
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θ ∈ [0, 1],

h2 ≤ 3kθ

2
(2σ2

1 − σ2
2),

h2 ≤ 3kθ

2
(2σ2

2 − σ2
1).

Then B = M + kθABS is an M-matrix.

Remark. Observe that the minimum and the maximum of the interval for σ1

σ2
in

Proposition 3.10 are not feasible anymore since h > 0.

Proof. By Proposition 3.8, we know that B is a P-matrix. Hence it remains
to show that all off-diagonal entries of B are non-positive. The matrix M has
several positive values M(i1,i2)(j1j2) where for l = 1, 2, |il − jl| ≤ 1. This gives
us the following conditions for the off-diagonal entries,

M1
i1j1M

2
i2j2 + kθ

(
σ2

1

2
S1
i1j1M

2
i2j2 +

σ2
2

2
M1

i1j1S
2
i2j2

)
≤ 0,

where |il− jl| ≤ 1 except for |i1− j1| = |i2− j2| = 0. From this, we retrieve the
following three conditions,

|i1 − j1| = 1 and |i2 − j2| = 1 gives
h2

3
≤ kθ(σ2

1 + σ2
2), (3.5a)

|i1 − j1| = 1 and |i2 − j2| = 0 gives
h2

3
≤ kθ

2
(2σ2

1 − σ2
2), (3.5b)

|i1 − j1| = 0 and |i2 − j2| = 1 gives
h2

3
≤ kθ

2
(2σ2

2 − σ2
1). (3.5c)

By adding (3.5b) to (3.5c) we infer that (3.5a) is obsolete. Since σ1

σ2
6∈
{

1√
2
,
√

2
}

we have that h > 0.

This concludes the section on the convergence of the semi-smooth Newton
algorithm. We found that for the general matrix B = M + kθA where M
and A are defined in (2.31), we can only prove that the semi-smooth Newton
method converges for specific initial data. In the Brownian motion case, we
found conditions for σj with j = 1, 2 such that B = M+kθABS is an M-matrix
and thus the semi-smooth Newton algorithm in Table 3.2 converges for arbitrary
initial data x0 and λ0 by Theorem 3.6.

3.3 A Priori Error Estimates

In this section we state some of the a priori error estimates for elliptic and
parabolic variational inequalities. First we discuss the optimal L2 convergence
for a particular class of elliptic variational inequalities. Thereafter, we discuss
a priori error estimates for parabolic variational inequalities in two space di-
mensions presented in Johnson [26], Fetter [17] and Vuik [50]. Finally, we give
the a priori error estimates for the American option pricing problem for one-
dimensional Lévy models discussed in Matache, et al. [36]. For this we introduce
isotropic Sobolev spaces of fractional order defined by,

Hs(R2) :=

{
v ∈ L2(R2) : ‖v‖2Hs =

∫
R2

(1 + ‖ξ‖l2)2s|v̂(ξ)|2 dξ <∞
}
,
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for s ∈ R+, see Winter [49, Section 1.2].

3.3.1 Elliptic Variational Inequalities

For the a priori error estimates of discretised elliptic variational inequalities
with a non-degenerate linear operator A : V → V∗ of order two we refer to Falk
[16]. The following localised elliptic variational inequality is treated in Falk [16,
Section 3],

Find u ∈ K(G) = {v ∈ H1
0 (G) : v(x) ≥ g̃(x) a.e. x ∈ G} such that, (3.6a)

a(u, u− v) ≥ (f, u− v)H−1
0 (G),H1

0 (G), ∀v ∈ H1
0 (G), (3.6b)

where a(φ, ψ) :=
∑2
i,j=1

∫
G
aij(x)∂xiφ(x)∂xjψ(x) dx+

∫
G
c(x)φ(x)ψ(x) dx with

x = (x1, x2)>, f(x) ∈ L2(G), g̃(x) ∈ H2(G) and G ⊂ R2 is bounded. For the
bilinear form a(·, ·) to be continuous and coercive we assume that c ∈ L∞(G),
a(x) is symmetric , i.e. aij(x) = aji(x), aij(x) ∈ C1(G) for i, j = 1, 2 and that
there exists a constant C > 0 such that,

2∑
i,j=1

aij(x)ξiξj ≥ C‖ξ‖2l2 ∀ξ ∈ R2.

Falk [16, Lemma 3] then states that if u ∈ H2
0 (G) is a solution to (3.6) and

uI(x) =
∑Ñ
i=1 u(xi)ψi(x) is its linear interpolation where xi = (xi1, x

i
2)> and

ψi(x) are piecewise linear continuous functions, e.g. product of hat functions
(see Figure 2.1), then,

‖u(x)− uI(x)‖L2(G) ≤ Ch2‖u‖H2(G),

where C > 0 is a constant independent on the mesh size h. This indicates O(h2)
is the optimal convergence order for continuous, linear finite elements in L2.

3.3.2 Parabolic Variational Inequalities

A priori error estimates of fully discretised parabolic variational inequalities with
elliptic, non-degenerate operator A of order two have been studied in, amongst
others, Johnson [26], Fetter [17] and Vuik [50]. The parabolic variational in-
equality focused on in these papers is of the form,

Find u(t, ·) ∈ K(G) such that on J ×G, (3.7a)

(∂tu, u− v)H−1
0 (G),H1

0 (G) + a(u, u− v) ≥ (f, u− v)H−1
0 (G),H1

0 (G), (3.7b)

u(0, x) = u0(x) on G, (3.7c)

with a(φ, ψ) =
∫
G
∂x1φ(x)∂x1ψ(x) + ∂x2φ(x)∂x2ψ(x) dx for φ, ψ ∈ H1

0 (G) with
G ⊂ R2 and J = [0, T ]. Johnson [26] uses continuous, linear finite elements in
space and the implicit Euler scheme in time. He imposes regularity conditions on
f and u0 to ensure a unique solution and enforces a condition on the propagation
of the free boundary through time, namely,

M−1∑
m=0

µ(Dm) ≤ C, (3.8)
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where C > 0 is a constant, Dm :=
⋃
t∈(tm,tm+1)

(
Itm+1

∪ It
)
\
(
Itm+1

∩ It
)
,

It := {x ∈ G : u(t, x) > 0} is the inactive set at time t ∈ J and µ is the Lebesgue
measure on R2. Under these conditions Johnson [26] proves the following error
estimate. First define,

W 2,∞(G) :=
{
v(x) ∈ L∞(G) : ∂xiv(x), ∂xixjv(x) ∈ L∞(G) for i, j = 1, 2

}
.

Theorem 3.12. Let u(t, x) be a solution to (3.7) and (umN (x))m=0,...,M be a
solution to the fully discretised scheme using continuous, linear finite elements
in space and the implicit Euler scheme in time, i.e. θ = 1. Further suppose
that,

f(t, x) ∈ C(J ;L∞(G)), ∂tf(t, x) ∈ L2(J ;L∞(G)), u0(x) ∈W 2,∞(G) ∩ K(G),
(3.9)

and that there exists a constant C > 0 such that (3.8) holds then,

max
m=1,...,M

‖u(tm, x)− umN (x)‖L2(G)

+

(
M∑
m=1

k‖u(tm, x)− umN (x)‖2H1
0 (G)

) 1
2

≤ C̃
{(

ln(k−1)
) 1

4 k
3
4 + h

}
,

for some constant C̃ > 0 independent of temporal mesh size k > 0 and spatial
mesh size h > 0.

Proof. For the proof of the above result we refer to Johnson [26, Section 2].

Without the assumption (3.8) on the free boundary, Johnson [26] remarks that

the above error can be bounded by C̃(h+ k
1
2 ). Vuik [50, Theorem 5.1] extends

the result of Johnson [26] in Theorem 3.12 for general θ-schemes where the
constant C̃ in Theorem 3.12 now depends on θ. However the error bound is

of the same order in terms of k and h, namely O
((

ln(Tk )
) 1

4 k
3
4 + h

)
. From

the numerical experiments in Vuik [50, Chapter 6] one notices that the error
estimates in Theorem 3.12 or Vuik [50, Theorem 5.1 6] are not optimal since the

convergence rate of their experiment behaves like O(h2 + k
3
4 ) for the backward

Euler scheme and O(h2 + k) for the Crank-Nicolson scheme. In Fetter [17,
Section 3] an error estimate in the L∞-norm is proved. Fetter [17, Section 1]
also employs continuous, linear finite elements in space and the implicit Euler
scheme in time for the discretisation of (3.7). The result in Fetter [17, Section
1] is given in the next theorem.

Theorem 3.13. Let u(t, x) be a solution to (3.7) and (umN (x))m=0,...,M be a
solution to the fully discretised scheme using linear, continuous finite elements
in space and the implicit Euler scheme in time, i.e. θ = 1. Suppose that the
conditions in (3.9) hold and additionally assume ∂ttu ∈ L2(J ;L2(G)). More-
over, let c1, c2 > 0 be constants such that no angle of each element of the spatial
domain G exceeds π/2 − c1 and k ≥ c2h. Then for every ε > 0 there exists a
constant C̃ > 0 such that,

max
m=1,...,M

‖u(tm, x)− umN (x)‖L∞(G) ≤ C̃k−εh−ε
(
h2 + k

)
.
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Proof. The proof can be found in Fetter [17, Section 2 and 3].

A priori error estimates for parabolic variational inequalities with a linear
operator of order α = (α1, α2) ∈ (0, 2)2 in two dimensions have to our knowledge
not yet been established. However for the one-dimensional case, the parabolic
variational inequality for the American option pricing problem with one un-
derlying is treated in Matache et al. [36], there the a priori error estimates
for a general one-dimensional exponential jump diffusion model are analysed.
The error estimates contain not only the truncation and discretisation errors
but also an error stemming from the matrix compression; see Matache et al.
[36, Section 4.5]. For the discretisation continuous, linear finite elements is
used in space and the finite difference and implicit Euler scheme in time. Let
u(t, x) be the exact solution to the variational inequality in Matache et al.
[36, Section 3.4] and (umN )m=1,...,M the finite elements approximation such that

u ∈ C0(J ; H̃ρ(G) ∩ H̃s(G)) and ∂tu ∈ Cγ(J ;L2(G)) with G ⊂ R, ρ < s ≤ 2,
γ ∈ (0, 1] and

ρ =

{
α
2 , if σ = 0,

1, if σ > 0,

where α is the order of the linear operator and σ is the volatility term; see Mat-
ache et al. [36, Assumtions in Section 2.1 and Section 3.1]. Then the following
error estimate is established in Matache et al. [36, Section 4.6],

max
m=1,...,M

‖u(tm, x)− umN (x)‖L2(G)

+

(
M∑
m=1

k‖u(tm, x)− umN (x)‖2
H̃ρ(G)

) 1
2

≤ C
(
kγ + σhs−1 + hmin( s2 ,s−α2 )

)
,

where k and h are the temporal and spatial mesh sizes and C > 0 is a constant
independent of h and k. Now that we have analysed the a priori error estimates
of various variational inequalities we proceed in the subsequent section with
numerical convergence tests of the semi-smooth Newton method for elliptic and
parabolic variational inequalities.

3.4 Numerical Experiments

In this section we discuss some numerical experiments for the convergence anal-
ysis of the semi-smooth Newton method. First, we treat the perpetual American
option which is an elliptic problem as discussed in Section 3.3.1. For this problem
we obtain optimal convergence rates. Second, we consider the one-dimensional
tent problem where we investigate the convergence of the algorithm with re-
spect to an obstacle that is not continuously differentiable in a specific point.
In the case where this singularity is absorbed by the spatial grid we achieve an
optimal convergence, however, if the singularity does not lie on the spatial grid
the order of convergence in H1 is significantly lower, namely O(N−

1
2 ). This

problem is adopted from Moon, et al. [39, Section 5.2 and 5.3]. Third, we de-
pict the convergence rates of the two-dimensional problem covered in Chapter
2 using the model in Section 1.3.1. Here the overkill method is employed, as a
closed-form solution is not available. For this problem we analyse three different
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cases. In the first case we modify the obstacle such that it is time-independent
by removing the time-dependent terms (r − wi)(T − t) for i = 1, 2 from the
model described in Section 1.3.1. Further we take g̃(x) ∈ VN . The second case
deals with the American basket put option where the time-dependent obstacle
g̃(t, x) is not in VN . In the third case, we analyse the effect of the violation
of the smooth pasting condition discussed in Lamberton and Mikou [34] on the
convergence of the American basket put option. Finally, we give an analysis of
the speed of the semi-smooth Newton method by comparing the algorithm to
the well-known PSOR method adopting the one-dimensional tent problem from
Moon, et al. [39, Section 5.2 and 5.3]. For the numerical experiments in this
chapter we use a 16 x Quad-Core AMD OpteronTM processor with MATLAB R©
version 7.14.0.739 (R2012a).

3.4.1 Elliptic Problem with Order Two Differential Oper-
ator

For the elliptic problem we consider the perpetual American put option. Under
the Kou model, also known as the double exponential jump diffusion model, Kou
and Wang [33, Theorem 3] proved that a closed-form solution can be derived.
It is also shown that the value of the perpetual American option satisfies an
elliptic PIDI in Kou and Wang [33, Lemma 5]. If (St)t≥0 := (ert+Xt)t≥0 is the
underlying asset price process with (Xt)t≥0 a one-dimensional Kou process as
in Section 1.3.4 or Kou and Wang [33, Section 2.1] then the PIDI reads,

Av(x)− rv(x) ≤ 0,

v(x) ≥ (K − ex)+ ,

(Av(x)− rv(x))
(
v(x)− (K − ex)+

)
= 0,

and v(x) = supτ E[e−rτ
(
K − eXτ

)
+

] where the supremum is taken over all stop-

ping times τ ∈ [0,∞); see Kou and Wang [33, Section 4.4].
For the discretisation we use finite elements (FE) with piecewise linear ba-

sis functions, i.e. the hat functions as in Figure 2.1 on a bounded domain
G = (−R,R). We consider a range of levels L for the discretisation to test the
convergence. This means the number of hat functions is given by N = 2L − 1
where L ∈ {7, . . . , 10}. This implies that we have N + 2 = 2L + 1 grid points
and that h = 2R

N+1 is the mesh size. The parameters for the convergence test
are set equal to,

σ = .15, λ = .5, p = .35, η+ = η− = 5, r = .05,K = 1, R = 7 and L ∈ {5, . . . , 11}.
(3.10)

The convergence results and the finite elements approximation of the perpetual
American put option value are depicted in Figure 3.2. Notice that we procure
a convergence rate of order O(N−2) in the L2(I) and the L∞(I) norm where
I := {s ∈ R+ : |s−K| < .85K}. Since h = 2R

N+1 we observe that this convergence
is optimal due to Falk [16, Lemma 3] stated in Section 3.3.1.
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Figure 3.2: Value (upper) and convergence (lower) of a perpetual American
put option under the Kou model with parameters given in (3.10).

3.4.2 Parabolic Problem with Order Two Differential Op-
erator

In this section we analyse the convergence of the semi-smooth Newton algorithm
for a parabolic problem. We consider the one-dimensional tent problem in Moon
et al. [39, Section 5.2 and 5.3]. The system of inequalities is given by,

(Bw) (t, x) := ∂tw(t, x)− ∂xxw(t, x) ≥ f(t, x), for (t, x) ∈ J × R, (3.11a)

w(t, x) ≥ g̃(x), for (t, x) ∈ J × R, (3.11b)

(Bw) (t, x) (w(t, x)− g̃(x)) = 0, for (t, x) ∈ J × R, (3.11c)

w(.5, x) = w0(x), for x ∈ R, (3.11d)

where J := [.5, 1], g̃(x) := 1− 3|x| and the forcing function f is given by,

f(t, x) =

{
−72t−2, if x ∈ At,
−12t−2

(
6t−1x2 − |x|+ 6

)
, if x ∈ It,

where At and It denote the active and inactive set, respectively. The exact
solution to (3.11) is,

w(t, x) =

{
1− 3|x|, if x ∈ At,
36t−2x2 −

(
3 + 12t−1

)
|x|+ 2, if x ∈ It,

where the exact active and inactive sets are given by At =
{
x ∈ G : |x| ≤ t

6

}
and It =

{
x ∈ G : |x| > t

6

}
, respectively. From this we can inquire the initial

condition w0(x) at time t = .5,

w0(x) =

{
1− 3|x|, if x ∈ [− 1

12 ,
1
12 ],

144x2 − 27|x|+ 2, otherwise.
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For the numerical computation we discretise (3.11) using finite elements in space
with piecewise linear hat functions as basis for VN = span {bi(x) : i = 1, . . . , N}
where bi(x) is defined in Section 2.4.1 and the θ-scheme in time. As in Section
3.4.1, we consider a range of levels L for the discretisation to test the conver-
gence. Moreover, we take k = O(h) where k = T

M is the mesh size in time. For
the finite element method we use the following parameters,

θ = .5, R = 7 and L ∈ {9, . . . , 12}. (3.12)

We investigate the convergence in two scenarios. One where the obstacle g̃(x)
is not continuously differentiable in one particular point on the spatial grid,
meaning g̃(x) = g̃h(x) ∈ VN and where this point is not absorbed by the spatial
grid, meaning g̃h(x) 6= g̃(x) or g̃(x) 6∈ VN . The function g̃h(x) is the projection
of g̃(x) to the finite element space VN .

One-dimensional Tent Problem with g̃(x) ∈ VN
Here the point x = 0, where the tent function g̃(x) = 1−3|x| is not continuously
differentiable, is part of the partition of the spatial domain G = (−R,R). The
domain G is symmetric around the singularity and we have N + 2 = 2L + 1
grid points, placing x = 0 on the grid at xN+1

2
= 0. In this case, we procure an

optimal convergence rate of order O(N−2) as seen in the middle two plots in
Figure 3.3. In this case the area of interest I is defined as I := {x ∈ R : |x| ≤ 1}.
Moreover, we show the finite elements and the exact solution with the initial
condition and the tent function g̃(x) in the upper left plot of Figure 3.3. On
the top right, we observe the free boundary plot, which in this case is two-
sided. The lower plots are the log-log plots of the L2(J)- and L∞(J)-errors
of the free boundary on the set J = [.5, 1]. Notice that the convergence of
the free boundary is in both norms of order O(N−1). In Moon et al. [39,
Section 5.2 and 5.3], the optimal convergence of order O(N−1) for the implicit
Euler scheme is obtained using the PSOR algorithm. Moon et al. [39] separate
the space error in three different parts and find that two error estimators show
super convergence, i.e. convergence rates larger than optimal, and one estimator
exhibits an optimal convergence rate. This kind of detailed error analysis for
the semi-smooth Newton algorithm remains a topic of further research.

One-dimensional Tent Problem with g̃(x) 6∈ VN
As in Moon, et al. [39, Section 5.3], we shift the problem to achieve g̃(x) 6= g̃h(x)
and do not change the partition of the spatial domain G = (−R,R). There-
fore, we define v(t, x) := w(t, x − 1

3 ) and g̃v(x) := g̃(x − 1
3 ) for x ∈ G which

places the singularity at x = 1
3 . Moreover, the exact active and inactive sets

are described by At =
{
x ∈ G : |x− 1

3 | ≤
t
6

}
and It =

{
x ∈ G : |x− 1

3 | >
t
6

}
,

respectively, and I :=
{
x ∈ R : |x− 1

3 | ≤ 1
}

. In Figure 3.4, we observe that the
convergence rate in H1(I) has drastically decreased. In the H1(I)-norm we only

procure a convergence of order O(N−
1
2 ). The other rates of convergence remain

identical to the results in the previous experiment. Also the convergence rates
of the free boundary remains of order O(N−1) as seen in the two lower plots of
Figure 3.4.
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O(N ¬2 )

10
1

10
2

10
3

10
−4

10
−3

10
−2

Convergence of the free boundary

Convergence L2(J ): -1 and -1

 

 

L2(J )

O(M ¬1 )

10
1

10
2

10
3

10
−3

10
−2

10
−1

Convergence of the free boundary

Convergence L∞(J ): -0.95 and -0.95

 

 

L∞(J )
O(M ¬1)

Figure 3.3: Convergence of the semi-smooth Newton algorithm for the
one-dimensional tent problem with g̃(x) ∈ VN . The upper left plot shows the
finite element solution and the exact solution. The upper right plot shows the
corresponding free boundaries. The middle plots are the convergence plots of
the solution for different norms and the lower plots are the convergence plots
of the free boundaries. The parameters are given in (3.12).

3.4.3 Parabolic Problem with Order α Integro-differential
Operator

In this section, we discuss the numerical convergence of the finite element so-
lution of the parabolic variational problem in (2.21). For the Lévy process X
in (1.2) we employ a two-dimensional GGMY process with independent com-
ponents. Therefore, the integro-differential operator in (2.2) then has order
α := (α1, α2)>, where αj are the parameters for the LPs Xj with j = 1, 2. We
do not have an exact solution to the PIDI in (2.11), consequently we exploit the
overkill method to proceed with the numerical convergence tests. For the overkill
solution we set the total number of inner grid points equal to Ñ = (2L − 1)2

with level L = 10. Since we are now dealing with a multidimensional problem,
the discussion about the ‘curse of dimensionality’ arises. The optimal conver-
gence for the scheme proposed in Section 2.4 is O(Ñ−

2
d ) with d = 2 dimensions

and Ñ = N2 since the degrees of freedom for the equidistant mesh size h in
dimension d grows with rate O(h−d) as h → 0. The ‘curse of dimensionality’
can be avoided by using a spline wavelet basis for the finite elements discretisa-
tion, however this is beyond the scope of this paper and we refer to Hilber [22,
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Figure 3.4: Convergence of the semi-smooth Newton algorithm for the
one-dimensional tent problem with g̃(x) 6∈ VN . The upper left plot displays the
finite element solution and the exact solution. The upper right plot shows the
corresponding free boundaries. The middle plots are the convergence plots of
the solution for different norms and the lower plots are the convergence plots
of the free boundaries. The parameters are given in (3.12).

Section 4.2]. Although the solution u(t, x) in this case only belongs to Hρ, we
do estimate the H1-error of the finite element solution to say something about
the derivative of u(t, x). As in Section 3.4.2, we first establish the numerical
convergence results when g̃ ∈ VN and then for the case g̃ 6∈ VN , where VN is
defined in (2.27). In both types of problems we observe the ‘curse of dimen-
sionality’ whereas in the latter case the convergence rate in H1 is additionally
reduced by the fact that the singularities are not absorbed by the spatial grid.
Finally, we briefly examine the smooth pasting condition given in Lamberton
and Mikou [34] and report on the convergence rates under the violation of the
smooth pasting property in Lamberton and Mikou [34, Theorem 4.2] for the
model (1.2).

Problem with g̃(x) ∈ VN
In order to achieve that g̃h(x) = g̃(x) we remove the time-dependent terms
(r − wi)(T − t) for i = 1, 2 from the model in (1.2) and use the identity matrix
I2 for Σ. The consequence of this is that the discounted stock price processes
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e−rtSit for i = 1, 2 do not fulfil the martingale property any longer, however, for
the numerical experiment this is not necessary. We use the following expression
for g̃(x),

g̃(x) =
(
K − e

∑2
j=1 Σ1jxj

)
+
, (3.13)

where x = (x1, x2)
>

and set the parameters equal to,

c1 = 0.8, β1
− = 4, β1

+ = 5, α1 = 1.1, c2 = 1.2, β2
− = 5, β2

+ = 8, α2 = 1.1,

T = 1,K = 1, a = .5, b = .5, r = .03, R− = R+ = 7, θ = .5, L ∈ {4, . . . , 8} and

Σ =

(
1 0
0 1

)
.

(3.14)
Additionally, we define the set I as follows where x = (x1, x2)>,

I :=
{
s = (ex1 , ex2)>∈R2

+ | ln(0.25)≤ x1 ≤ ln(2.75) and ln(0.6)≤ x2 ≤ ln(2.4)
}
.

In Figure 3.5, we observe that the optimal convergence rate ofO(Ñ−
2
d ) = O(Ñ−1)

for d = 2 in L2(I) and L∞(I). The convergence in H̃1(I) is slightly below the ex-
pected convergence rate of order O(Ñ−1). The reason for this might be the low
regularity of the solution u(t, x) ∈ H̃ρ(G). In Figure 3.6, we exhibit the number
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Figure 3.5: Convergence of the semi-smooth Newton algorithm for the
two-dimensional parabolic variational problem using the overkill method for
time-independent obstacle g̃(x) in (3.13) where all singularities of g̃(x) are
absorbed by the space grid. The parameters are given in (3.14).

of iterations for level L = 5, . . . , 8. We observe that for each level the number
of iterations is larger for the first time steps. This can perhaps be avoided by
properly graded time meshes, however, this is not further investigated here.

Problem with g̃(t, x) 6∈ VN
Here, we audit the convergence of the American basket put option with payoff
g(s) = (K − (as1 + bs2))+ where a, b ∈ [0, 1] such that a+ b = 1. The parabolic
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Figure 3.6: Number of iterations for the GMRES solver on active (Aset) and
inactive (Iset) sets and the number of while iterations for the semi-smooth
Newton algorithm for the finite element solution of the problem in (2.38) with
time-independent obstacle g̃(x) in (3.13). The maximum while iteration is set
to 50. The parameters are given in (3.14) with Σ = I2.

PIDI for this problem is treated in Chapter 2. By (2.10b) the time-dependent
obstacle is given by,

g̃(t, x) =

e−r(T−t)
(
K −

(
ae(r+w1)(T−t)+∑2

j=1 Σ1jxj + be(r+w2)(T−t)+∑2
j=1 Σ2jxj

))
+
,

(3.15)
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and for this experiment we specify the following parameters,

c1 = 0.8, β1
− = 4, β1

+ = 5, α1 = 1.1, c2 = 1.2, β2
− = 5, β2

+ = 8, α2 = 1.1,

T = 1,K = 1, a = .5, b = .5, r = .03, R− = 7, R+ = 2, θ = .5, L ∈ {4, . . . , 8} and

Σ =

(
1 0.048

0.048 1

)
.

(3.16)
Moreover we define the area of interest I as,

I :=
{
s(0, x) ∈ R2

+|0.3 ≤ s1(0, (x1,−R)>), s2(0, (−R, x2)>) ≤ 2.7 with x ∈ G
}
,

where si(0, x) := exp
(∑2

j=1 Σijxj

)
for i = 1, 2. In this case we are dealing not

only with the ‘curse of dimension’ but also with the fact that the obstacle is time-
dependent and hence the spatial grid does not incorporate the non-continuously
differentiable points of g̃(t, x) for all t ∈ J . From the experiments in the
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Figure 3.7: Convergence of the semi-smooth Newton algorithm for the
American basket put option value using the overkill method. The parameters
are given in (3.16).

previous section we expect a convergence of order O(Ñ−1) in L2(I) and L∞(I)
and in H1(I) a convergence of order less than one in terms of Ñ . In Figure
3.7, we observe the convergence rates. In L2(I) the convergence is indeed of
order O(Ñ−1), however, in H1(I) as well as in L∞(I) we observe an order of

O(Ñ−
1
2 ). In Figure 3.8 we exhibit the number of iterations the semi-smooth

Newton algorithm uses to converge for the levels L = 5, . . . , 8. We observe
that the GMRES function constantly needs more iterations on the inactive set
solving for u(t, x) than on the active set solving for the Lagrangian multiplier
λ(t, x). This is a result of the nice characteristic of the matrix D explained in
Lemma 2.9.

Plots for the value and the free boundary of the American basket put option
can be found in the last chapter, Chapter 4.
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Figure 3.8: Number of iterations for the GMRES solver on active and inactive
sets and the number of while iterations for the semi-smooth Newton algorithm
for the finite element solution of the American basket option. The maximum
while iteration is set to 50. The parameters are given in (3.16).

Convergence under Marginal Violation of the Smooth Pasting Con-
ditions

In a one-dimensional setting the smooth pasting property of the American op-
tion price problem is the continuous differentiability of the option price with
respect to the spot price s at the free boundary s∗(t), i.e. if V (t, s) is the value
of an American option with a single underlying and free boundary s∗(t), the
smooth pasting property is equivalent to,

lim
s↑s∗(t)

∂sV (t, s) = lim
s↓s∗(t)

∂sV (t, s), ∀t ∈ J = [0, T ], (3.17)
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where s ∈ R+. Sufficient conditions such that the smooth pasting property fails
for a plain vanilla American put option in a one-dimensional exponential Lévy
model can be found in Lamberton and Mikou [34, Theorem 4.2]. We state it
here as a proposition.

Proposition 3.14. Let X = (Xt)t≥0 be a one-dimensional Lévy process with
Lévy measure νX(dz). If d+ := r −

∫
R (ez − 1)+ νX(dz) ≥ 0 and X is of finite

variation then the value of the plain vanilla American put option V (t, s) does
not satisfy the smooth pasting property in (3.17).

Proof. See Lamberton and Mikou [34, Theorem 4.2].

We restate the above proposition for a CGMY process in the following corollary.

Corollary 3.15. Let X = (Xt)t≥0 be a one-dimensional CGMY process with
parameters c, β− > 0, β+ > 1 and α ∈ (0, 2) as in Section 1.3.3. If for r ∈ R+

such that r − c
α

(
βα+ − (β+ − 1)

α)
Γ (1− α) ≥ 0 and α ∈ (0, 1) then the smooth

pasting property for the plain vanilla American put is violated.

Proof. Let νCGMY
X (dz) be the Lévy measure of a one-dimensional LP as in (1.10)

then,∫
R

(ez − 1)+ νX(dz) =c

∫ ∞
0

e−(β+−1)z − e−β+z

z1+α
dz

=c

[
e−(β+−1)z − e−β+z

−αzα

]∞
0

− c

α
(β+ − 1)

∫ ∞
0

e−(β+−1)z

zα
dz

+
c

α
β+

∫ ∞
0

e−β+z

zα
dz

=− c

α
(β+ − 1)

α
∫ ∞

0

e−z

zα
dz +

c

α
βα+

∫ ∞
0

e−z

zα
dz

=
c

α

(
βα+ − (β+ − 1)

α)
Γ (1− α) ,

and d+ = r − c
α

(
βα+ − (β+ − 1)

α)
Γ (1− α). From Table 1.1, we know that

X is of finite variation if α ∈ (0, 1). Consequently, the corollary follows from
Proposition 3.14.

In Figure 3.9, we show for which parameter values β+, α, the smooth pasting
property fails in case of a plain vanilla American put option according to Corol-
lary 3.15. The parameter values above each surface imply a violation of the
smooth pasting property. To our knowledge, sufficient conditions for a two-
dimensional Lévy model have not been established yet. Here we will examine
numerically the convergence of the American basket option when each compo-

nent of the process X =
(
X1, X2

)>
in (1.2) fulfils the conditions in Proposition

3.14. For this we use the following parameters for the CGMY process X,

c1 = .5, β1
− = 10, β1

+ = 12, α1 = .4, c2 = .25, β2
− = 8, β2

+ = 10, α2 = .3,

T = 1,K = 1, a = .5, b = .5, r = .2, R− = 7, R+ = 2, θ = .5, L ∈ {4, . . . , 8} and

Σ =

(
1 0.048

0.048 1

)
.

(3.18)
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Figure 3.9: Parameter values of β+ and α for which the CGMY process does
not satisfy the smooth pasting conditions in Corollary 3.15 for c = 1 (upper)
and c = 7 (lower).
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Moreover we define the set I as follows,

I :=
{
s(0, x) ∈ R2

+|0.3 ≤ s1(0, (x1,−R)>), s2(0, (−R, x2)>) ≤ 2.7 with x ∈ G
}
,

where si(0, x) = exp
(∑2

j=1 Σijxj

)
for i = 1, 2.
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Figure 3.10: Convergence of the semi-smooth Newton algorithm for the
American basket put option value using the overkill method where the
components of the process X fulfil the conditions in Corollary 3.15. The
parameters are given in (3.18).

In Figure 3.10, we depict the numerical convergence rate for the American basket
put option as in the previous subsection, however the parameters of the model
(1.2) and the CGMY process X are now adjusted such that the smooth pasting
property fails. We notice that the finite element solution does not converge
using the overkill method. Regarding the number of iterations of the semi-
smooth Newton algorithm, we observe that the number of iterations of the
GMRES solver for u on the inactive set are substantially larger than in the
above experiments. This is depicted in Figure 3.11.

3.4.4 Speed of the Semi-smooth Newton Algorithm

In this section we want to delineate the difference in speed between the semi-
smooth Newton method and the well-established PSOR algorithm to solve
LCPs. For this we again adopt the one-dimensional tent problem analysed
in Section 3.4.2 such that g̃(x) = 1 − 3|x| ∈ VN with x ∈ G = (−R,R) is the
time-independent obstacle. We use the following parameters in this section,

R = 7, θ = .5, L ∈ {6, . . . , 11}. (3.19)

In terms of convergence, the PSOR algorithm performs almost identically to the
semi-smooth Newton, i.e. in all the numerical examples above the convergence
rates of both algorithms are indistinguishable. For the one-dimensional tent
problem this is depicted in Figure 3.12. In the first two plots of Figure 3.12 the
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Figure 3.11: Number of iterations for the GMRES solver on active and
inactive sets and the number of while iterations for the semi-smooth Newton
algorithm for the finite element solution of the American basket option where
the components of the process X fulfil the conditions in Corollary 3.15. The
parameters are given in (3.18).

L∞(I)- and L2(I)-error of both algorithms are identical. The set I is defined
as I = {x ∈ G : |x| ≤ 1}. Moreover, the absolute value of the difference of the
L∞(I)- and L2(I)-error is displayed in the last plot of Figure 3.12. We see that
these differences decay with increasing number of inner grid points N and that
it is less than 8 × 10−5 for all discretisation levels L in (3.19). In Figure 3.13,
we show the speed of both algorithms measured in seconds. In this first plot of
Figure 3.13, we depict the MATLAB R© implementation of both algorithms and
observe that the semi-smooth Newton algorithm is much faster than the PSOR
algorithm obtaining the same accuracy as seen in Figure 3.12. The semi-smooth
Newton algorithm stays under 15 seconds for L ≤ 10 whereas the MATLAB R©

Robbin Tops 2012 c©



3.4. NUMERICAL EXPERIMENTS 58

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

L2 Convergence of the FE solution

SSN Convergence L2(I): -1.87
PSOR Convergence L2(I): -1.87

 

 

SSN L2(I )
PSOR L2(I )
O(N ¬2 )

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

L∞ Convergence of the FE solution

SSN Convergence L∞(I): -1.88
PSOR Convergence L∞(I): -1.88

 

 

SSN L∞(I )
PSOR L∞(I )
O(N ¬2 )

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8
x 10

−6 Difference of Errors of the FE solutions

Number of Inner nodes N

E
rr

o
r

D
if
fe

re
n
c
e

 

 

L∞ Error Difference

L2 Error Difference

Figure 3.12: Convergence of the semi-smooth Newton and the PSOR
algorithm solving the one-dimensional tent problem with time-independent
obstacle g̃(x) = 1− 3|x| ∈ VN as in Section (3.4.2).

implementation of PSOR takes almost 200 seconds for level L = 9 and 2000 sec-
onds for L = 10. However, if we use the mex-file implementation of the PSOR
algorithm we observe that the PSOR algorithm is faster than the semi-smooth
Newton method for the one-dimensional tent problem as we can see in the sec-
ond plot of Figure 3.13. Here the PSOR algorithm stays below 5 seconds for all
discretisation levels in (3.19). Although, this is not a fair comparison since one
can also create a mex-file implement for the semi-smooth Newton method. This,
however, if beyond the scope of this paper and subject to further research.

In this chapter, we have discussed the semi-smooth Newton algorithm to
solve the American option pricing problem. We have analysed the uniqueness
and convergence of the solution for the LCP in (3.1) using the semi-smooth
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Figure 3.13: Time in seconds of the semi-smooth Newton and the PSOR
algorithm solving the one-dimensional tent problem with time-independent
obstacle g̃(x) = 1− 3|x| ∈ VN as in Section 3.4.2.

Newton algorithm. Thereafter, we have applied this to the case of the Ameri-
can option pricing problem covered in Chapter 2. We found that there exists a
unique solution and that we have local convergence, that is if for each time step
m = 0, . . . ,M−1, the initial guess uN (tm, x) is close enough to the unique solu-
tion u(tm+1, x) then the semi-smooth Newton method converges. Additionally,
we have laid out conditions for global convergence of the semi-smooth Newton
algorithm. However, further analysis of these conditions is beyond the scope
of this paper. Also we have treated various numerical experiments to assess
the convergence of the semi-smooth Newton algorithm numerically. In the next
chapter we give numerical examples for the pricing scheme developed in Chapter
2.
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Chapter 4

Numerical Examples and
Conclusion

In this chapter, we present some numerical examples of American options with
two underlying assets using the bivariate Lévy model for dependent assets in
(1.2). In particular, we cover the American basket put option and the best-of
American put option. For the American basket option we use the model in
1.2 with an underlying Kou process X and in the case of the best-of option
the process X follows a CGMY process. Additional to approximating their
option value and free boundary, we calculate their argument Greeks, i.e. Θ,∆
and Γ. We apply the finite difference method for the computation of these
Greeks. This method is discussed in Appendix D. In this chapter, we perform
all the numerical computations on 2.7 GHz Intel CoreTM i7 with 8 GB 1333
MHz DDR3 and MATLAB R© version 7.12.0.635 (R2011a).

4.1 American Basket Put Option

As already mentioned above the payoff of the American basket put option is
given by g(s) = (K − (as1 + bs2))+ where K ∈ R+ is the strike and a, b ∈ [0, 1]

with a+ b = 1 are the weights for each asset and s = (s1, s2)>. The expression
of the time-dependent obstacle can be found in (3.15). For the numerical ex-
ample in this section, the process X is a Kou process and we use the following
parameters,

σ1 = .45, λ1 = .75, p1 = .35, η1
+ = 2.9, η1

− = 2.6,

σ2 = .25, λ2 = .5, p2 = .25, η2
+ = 2.6, η2

− = 2.2,

T = 1,K = 1, a = .75, b = .25, r = 0.03, R = 5, θ = .5, L = 7,

and Σ =

(
.8 .0675

.0675 .65

)
.

(4.1)

4.1.1 Price and Free Boundary

In this section, we present the value and free boundary of an American basket
put option for two dependent assets. In Figure 4.1 we show the values of the

Robbin Tops 2012 c©



4.1. AMERICAN BASKET PUT OPTION 61

0
0.5

1
1.5

2
2.5

3
3.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spot s
1

Value of a American Basket Put Option

Spot s
2

O
p

ti
o

n
 p

ri
c
e

Figure 4.1: Value of an American basket put option. The parameters are given
in (4.1).

option at time t = 0. We observe that the free boundary in Figure 4.1 is
downward sloping in terms of the option price from s2 ≈ 0 to s2 ≈ 3. This is
the result of the low volatility term σ2 and the low fraction of X2 represented
in the matrix Σ. From the off-diagonal entries in the matrix Σ in (4.1), we
identify the positive correlation among the assets and this gives us the oval
ordering of the grid points, see (1.2). In the subsequent example we consider
negative correlation among the assets which results in a different shape. In
Figure 4.2, we show the entire free boundary of the American basket options.
We display the free boundary in three dimensions as a ‘hill-shaped’ boundary
between the exercise and continuation region. The z-axis represents the time-
to-maturity and the space underneath the boundary is the exercise region. We
observe that the range of s2 is much wider than that of s1. This is the result of
the high weight of s1 in our portfolio, or ‘basket’.

In the next two tables, we compare the price of the American basket option
at time t = 0 solved by two algorithms; the PSOR and the semi-smooth Newton
algorithm. In Table 4.1, we give values of the option price at specific points s
where the PSOR algorithm is employed to solve the LCP for each time step.
Due to the transformation of the grid from x to s, the values of s1 and s2 in the
first row and column of Table 4.1 are not on the spatial grid. That is, there do
not exist indices i1, i2 ∈ {1, . . . , N} such that the grid points si1,i2 = (si1 , si2)>

are equal to the values (s̃1, s̃2) where s̃i ∈ {0, .5, 1, 1.5, 2, 2.5, 3, 3.5} for i = 1, 2.
For this reason we take the value of the option at the closed grid point in the
Euclidean norm. That is,∥∥∥∥(s1

s2

)
−
(
s̃1

s̃2

)∥∥∥∥
l2

= inf
si1 ,si2 for 1≤i1,i2≤N

∥∥∥∥(si1si2
)
−
(
s̃1

s̃2

)∥∥∥∥
l2

where (si1 , si2) for 1 ≤ i1, i2 ≤ N are points on the spatial grid. The exact values
of s = (s1, s2)> at the grid points is depicted underneath each option value in
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Figure 4.2: Free boundary for an American put basket option. The parameters
are given in (4.1).

s̃1 \ s̃2 0 .5 1 1.5 2 2.5 3
0 .943 .788 .665 .529 .362 .264 .168

(.055, .060) (.107, .526) (.095, 1.055) (.100, 1.584) (.149, 2.107) (.105, 2.632) (.084, 3.157)

.5 .600 .486 .313 .193 .143 .058 .047
(.504, .089) (.505, .543) (.576, 1.056) (.601, 1.585) (.514, 2.115) (.633, 2.633) (.504, 3.159)

1 .275 .190 .121 .069 .040 .016 .011
(1.007, .099) (1.010, .605) (1.011, 1.107) (1.049, 1.579) (1.017, 2.131) (1.177, 2.638) (1.061, 3.199)

1.5 .115 .077 .043 .025 .012 .008 .004
(1.513, .138) (1.539, .539) (1.557, 1.092) (1.526, 1.630) (1.668, 2.112) (1.511, 2.694) (1.739, 3.171)

2 .054 .032 .018 .012 .007 .003 .002
(2.014, .110) (2.019, .675) (2.020, 1.234) (2.074, 1.591) (2.011, 2.146) (2.187, 2.643) (2.098, 3.222)

2.5 .029 .020 .011 .006 .004 .002 .001
(2.519, .087) (2.525, .534) (2.554, 1.082) (2.515, 1.700) (2.583, 2.192) (2.638, 2.686) (2.531, 3.273)

3 .017 .012 .007 .004 .002 .001 .001
(3.022, .084) (3.046, .543) (3.080, 1.100) (3.018, 1.642) (3.099, 2.117) (3.182, 2.728) (3.037, 3.161)

3.5 .009 .007 .004 .003 .002 .001 .001
(3.522, .367) (3.525, .672) (3.527, 1.230) (3.622, 1.586) (3.530, 2.250) (3.605, 2.757) (3.663, 3.211)

Table 4.1: Values of the American Basket put option using the PSOR
algorithm at specified grid points. The free boundary lies between the red
coloured values and the black coloured values of the option. The parameters
are given in (4.1). CPU time: 53.79 seconds.
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s̃1 \ s̃2 0 .5 1 1.5 2 2.5 3
0 .943 .788 .665 .529 .362 .264 .168

(.055, 0.060) (.107, 0.526) (.095, 1.055) (.100, 1.584) (.149, 2.107) (.105, 2.632) (.084, 3.157 )

.5 .600 .486 .313 .193 .143 .058 .047
(.504, 0.089) (.505, 0.543 ) (.576, 1.056) (.601, 1.585) (.514, 2.115) (.633, 2.633) (.504, 3.159)

1 .275 .190 .121 .069 .040 .016 .011
(1.007, 0.099) (1.010, 0.605 ) (1.011, 1.107 ) (1.049, 1.579 ) (1.017, 2.131) (1.177, 2.638) (1.061, 3.199 )

1.5 .115 .077 .043 .025 .012 .008 .004
(1.513, 0.138) (1.539, 0.539) (1.557, 1.092) (1.526, 1.630) (1.668, 2.112) (1.511, 2.694) (1.739, 3.171)

2 .054 .032 .018 .012 .007 .003 .002
(2.014, 0.110 ) (2.019, 0.675) (2.020, 1.234) (2.074, 1.591) (2.011, 2.146) (2.187, 2.643) (2.098, 3.222)

2.5 .029 .020 .011 .006 .004 .002 .001
(2.519, 0.087 ) (2.525, 0.534) (2.554, 1.082) (2.515, 1.700) (2.583, 2.192) (2.638, 2.686) (2.531, 3.273)

3 .017 .012 .007 .004 .002 .001 .001
(3.022, 0.084) (3.046, 0.543) (3.080, 1.100) (3.018, 1.642) (3.099, 2.117) (3.182, 2.728) (3.037, 3.161)

3.5 .009 .007 .004 .003 .002 .001 .001
(3.522, 0.367) (3.525, 0.672) (3.527, 1.230) (3.622, 1.586) ( 3.530, 2.250) (3.605, 2.757) (3.663, 3.211)

Table 4.2: Values of the American Basket put option using the semi-smooth
Newton algorithm at specified grid points. The free boundary lies between the
red coloured values and the black coloured values of the option. The
parameters are given in (4.1). CPU time: 7.14 seconds.

the table. The red coloured values indicate the exercise region and show that the
free boundary lies between the red coloured values and the next black coloured
values. In Table 4.2, we present the option values that are computed by the
semi-smooth Newton method. Comparing Tables 4.1 and 4.2 we cannot identify
the differences between the prices engendered by either algorithm. Calculating
the L∞-distance and L2-distance of the two prices at time t = 0 on the set,

I :=
{
s(0, x) ∈ R2

+|0.05 ≤ s1(0, (x1,−R)>), s2(0, (−R, x2)>) ≤ 2.95 with x ∈ G
}
,

where si(0, x) := exp
(∑2

j=1 Σijxj

)
for i = 1, 2 we find that,

‖V SSN(0, s)− V PSOR(0, s)‖L∞(I) ≈ 7.8010× 10−11,

‖V SSN(0, s)− V PSOR(0, s)‖L2(I) ≈ 2.1711× 10−11,

where V SSN(0, s) and V PSOR(0, s) are the prices computed by the semi-smooth
Newton and the PSOR, respectively. Finally, we want to point out the difference
in computational time of both methods. The PSOR algorithm produces a price
in approximately 54 seconds and the semi-smooth Newton in approximately 7
seconds as we can see in the captions of Table 4.1 and 4.2.

4.1.2 Greeks

In the present section, we depict the argument Greeks for the American basket
put option for two dependent assets. In Figure 4.3 we have the
Θ(t, s) := ∂tV (T − t, s) of the option. We present two plots; one for s1 = K and
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Figure 4.3: Theta for an American basket put option. The parameters are
given in (4.1).

the other for s2 = K. In the left plot of Figure 4.3, we observe that for each time
t ∈ J the Θ(t, (K, s2)>) is much steeper with respect to s2 than Θ(t, (s1,K)>)
with respect to s1 in the right plot. This is caused by the large volatility term
σ1. In Figure 4.4, we illustrate the ∆i(t, s) = ∂siV (T − t, s) for i = 1, 2 where
time t = T . Here, we notice that the delta for s1 give larger negative values
than the delta for s2. Implying that we need to sell more of s1 and less of s2 to
∆-hedge the American basket put option. This is intuitive since our portfolio
is strongly overweight in s1. Furthermore in both plots of Figure 4.4, we can
see the exercise region where ∆i(T, s) are constant for i = 1, 2. The fact that
∆i(T, s) is constant results from the fact that the value V (0, s) is a linear func-
tion in terms of s1 and s2. One should be careful using these deltas for ∆-hedge
since the values in the exercise region are non zero. If the option is exercised
there is no further need for any hedging position. Thus for hedging purposes the
short position in the assets should be neutralised if the option hits the exercise
barrier, or free boundary. In Figure 4.5, we show Γlk(t, s) := ∂slskV (T − t, s)
for l, k = 1, 2 at time t = 0.

4.2 Best-of American Put Option

The payoff of the best-of American put option is given by
g(s) = (K −min (s1, s2))+ with K ∈ R+. This implies that we have the fol-
lowing time-dependent obstacle

g̃(t, x) = e−r(T−t)(
K −min

(
e(r+w1)(T−t)+∑2

j=1 Σ1jxj , e(r+w2)(T−t)+∑2
j=1 Σ2jxj

))
+
.
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Figure 4.4: Delta for an American basket put option. The parameters are
given in (4.1).

In this section, we utilize the CGMY process as underlying process X to the
model in (1.2). The parameters used for this numerical example are,

c1 = 0.8, β1
− = 8, β1

+ = 10, α1 = 1.1, c2 = 1.2, β2
− = 16, β2

+ = 17, α2 = 1.2,

T = 1,K = 1, r = .03, R = 5, θ = .5, L = 7 and

Σ =

(
.8 −.14
−.14 .65

)
.

(4.2)
The components of X do not satisfy the conditions in Proposition 3.14 which
imply the violation of the smooth pasting property for the plain vanilla American
put option.

4.2.1 Price and Free Boundary

In this section, we show the value and free boundary of a best-of American put
option for two negatively dependent assets. In Figure 4.6 we exhibit the value of
the option. We notice that, unlike in the previous example, the grid no longer
has an oval shape. This is due to the negative correlation among the assets.
Moreover, it seems that the payoff is curved, however, this is only an optical
illusion created by the transformation of the grid from x to s using Σ. In Figure
4.7, we depict the free boundary for the best-of American put option. Here we
exercise for low values for either underlying.

In Table 4.3 and 4.4, we find the specific option values of the best-of Amer-
ican put option solved by the PSOR and the semi-smooth Newton algorithm
in Table 3.2. As in the previous example, the red option values belong to the
exercise region and the black option values to the continuation region. The
free boundary thus lies in between the red and black coloured values. Notice
that the exact grid points for the option values now differ from the example in
Section 4.1. This results from the fact that we used a different matrix Σ for
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Figure 4.5: Gamma for an American basket put option. The parameters are
given in (4.1).
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Figure 4.6: Value of a best-of American put option. The parameters are given
in (4.2).
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Figure 4.7: Free boundary of a best-of American put option. The parameters
are given in (4.2).
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s̃1 \ s̃2 0 .25 .5 .75 1 1.25 1.5
0 .913 .909 .934 .939 .939 .945 .940

(.094, 0.094) (.091, 0.264) (.066, 0.527) (.061, 0.792) (.061, 1.063) (.055, 1.316) (.060, 1.579)

.25 .912 .780 .751 .723 .723 .750 .728
(.249, 0.088) (.253, .273) (.249, .544) (.277, .792) (.277, 1.063) (.250, 1.316) (.272, 1.579)

.5 .921 .734 .580 .525 .501 .487 .501
(.496, 0.079) (.526, 0.267 ) (.517, 0.533) (.507, 0.792) (.508, 1.063 ) (.514, 1.356) (.499, 1.579)

.75 .914 .722 .519 .379 .314 .278 .284
(.745, 0.086) (.750, 0.278) (.744, 0.527) (.770, 0.816) (.771, 1.096) (.788, 1.329) (.757, 1.628)

1 .933 .692 .488 .300 .202 .177 .147
(.996, 0.067) (.994, 0.308) (1.007, 0.527) (1.041, 0.816) (1.043, 1.096 ) (1.002, 1.342 ) ( 1.024, 1.628)

1.25 .925 .656 .423 .280 .164 .102 .074
(1.241, 0.075) (1.238, 0.344) (1.254, 0.590) (1.256, 0.792) (1.258, 1.063) (1.273, 1.356) (1.301, 1.645)

1.5 .862 .666 .405 .251 .128 .075 .045
(1.486, 0.138) (1.493, 0.334) (1.498, 0.602) (1.500, 0.808) (1.502, 1.085) (1.536, 1.316) (1.570, 1.596)

1.75 .914 .719 .306 .205 .105 .054 .030
(1.733, 0.086) (1.744, 0.281) (1.735, 0.715) (1.773, 0.867) (1.794, 1.107) (1.834, 1.342) (1.761, 1.645)

Table 4.3: Values of the best-of American put option using the PSOR
algorithm at specified grid points. The free boundary lies between the red
coloured values and the next black coloured values of the option. The
parameters are given in (4.2). CPU time: 56.71 seconds.

this example. To compute the L∞- and L2-distance between the two prices for
t = 0, we use a different region as before, namely,

I :=
{
s(0, x) ∈ R2

+|0.1 ≤ s1(0, (x1,−R)>), s2(0, (−R, x2)>) ≤ 4.9 with x ∈ G
}
,

where si(0, x) := exp
(∑2

j=1 Σijxj

)
for i = 1, 2. Subsequently we find that,

‖V SSN(0, s)− V PSOR(0, s)‖L∞(I) ≈ 5.8426× 10−11,

‖V SSN(0, s)− V PSOR(0, s)‖L2(I) ≈ 3.6277× 10−11,

where V SSN(0, s) and V PSOR(0, s) are the prices computed by the semi-smooth
Newton and the PSOR, respectively. Comparing the computational time of
both methods we see in Table 4.3 and 4.4 that the semi-smooth Newton’s com-
putational time is approximately 1

10 of that of the PSOR algorithm.

4.2.2 Greeks

Here we illustrate the Greeks for the best-of American put option. In Figure
4.8, we display the Θ(t, s) of the option where in the left plot we set s1 = K
and in the left plot s2 = K. The Θ(t, s) is related to the time value of the
option. For this reason, we have the lowest value of Θ(t, s) for each t ∈ J at
s = (K,K)>. Furthermore, in Figure 4.9 we exhibit the two deltas, i.e. ∆i(t, s)
for time t = 0 with i = 1, 2. We observe a symmetry property which results
from the symmetric payoff function g(s).

In Figure 4.10, we display the Γlk(t, s) for l, k = 1, 2 at time t = 0. We only
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s̃1 \ s̃2 0 .25 .5 .75 1 1.25 1.5
0 .913 .909 .934 .939 .939 .945 .940

(.094, .094) (.091, .264) (.066, .527) (.061, .792) (.061, 1.063) (.055, 1.316) (.060, 1.579)

.25 .912 .780 .751 .723 .723 .750 .728
(.249, .088) (.253, .273) (.249, .544) (.277, .792) (.277, 1.063) (.250, 1.316) (.272, 1.579)

.5 .921 .734 .580 .525 .501 .487 .501
(.496, .079) (.526, .267) (.517, .533) (.507, .792) (.508, 1.063) (.514, 1.356) (.499, 1.579)

.75 .914 .722 .519 .379 .314 .278 .284
(.745, .086) (.750, .278) (.744, .527) (.770, .816) (.771, 1.096) (.788, 1.329) (.757, 1.628)

1 .933 .692 .488 .300 .202 .177 .147
(.996, .067) (.994, .308) ( 1.007, .527) (1.041, .816) (1.043, 1.096) (1.002, 1.342) (1.024, 1.628)

1.25 .925 .656 .423 .280 .164 .102 .074
(1.241, .075 ) (1.238, .344) ( 1.254, .590) (1.256, .792) ( 1.258, 1.063) ( 1.273, 1.356 ) (1.301, 1.645)

1.5 .862 .666 .405 .251 .128 .075 .045
(1.486, .138) (1.493, .334) ( 1.498, .602) (1.500, .808) (1.502, 1.085) ( 1.536, 1.316) (1.570, 1.596)

1.75 .914 .719 .306 .205 .105 .054 .030
( 1.733, .086) (1.744, .281) (1.735, .715) ( 1.773, .867) ( 1.794, 1.107) ( 1.834, 1.342) (1.761, 1.645)

Table 4.4: Values of the best-of American put option using the semi-smooth
Newton algorithm at specified grid points. The free boundary lies between the
red coloured values and the next black coloured values of the option. The
parameters are given in (4.2). CPU time: 5.22 seconds.
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Figure 4.8: Theta of a best-of American put option. The parameters are given
in (4.2).
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Figure 4.9: Delta of a best-of American put option. The parameters are given
in (4.2).

show three plots since Γ12(t, s) = Γ21(t, s); see Appendix D.
This concludes the numerical examples. We have seen two options, i.e.

the American basket put option and the best-of American put option and their
argument Greeks. We have discussed the effect of the transformation of the
grid from x to s using the matrix Σ. Moreover, we have compared the value
of the options computed by the semi-smooth Newton algorithm to the values
reproduced by the PSOR algorithm and concluded that there is only a small
difference between them, however, the semi-smooth Newton method is much
faster for each example.

4.3 Conclusion and Outlook

In this section, we give an overview of possible further research. We have pro-
posed a bivariate Lévy model for dependent asset price processes in Section
1.3.1. A special feature of the model is that the dependence is created by
a matrix-vector multiplication of a constant matrix Σ and a two-dimensional
Lévy process X = (Xt)t≥0 with independent components. We presented the
necessary theoretical results on Lévy processes and gave two examples for the
process X, namely the CGMY and Kou process in Section 1.3.3 and 1.3.4, re-
spectively. Thereafter, we developed a pricing scheme for American options
with two underlying assets using model (1.2) by using the continuous Galerkin
finite element method with products of piecewise linear hat functions as basis
for the finite element space. The resulting scheme is equivalent to solving linear
complementary problems for each time step m = 0, . . . ,M − 1. We explored
the primal-dual active set strategy, which is equivalent to a semi-smooth New-
ton method, to solve these linear complementary problems. We established the
uniqueness and local convergence of the solutions by showing that B = M+kθA
as defined in (2.31) is a P-matrix. In order to achieve global convergence we need
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Figure 4.10: Gamma of a best-of American put option. The parameters are
given in (4.2).
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to show that B to be an M-matrix, however, this is non-trivial and we only state
sufficient conditions in Proposition 3.9 such that A is an M-matrix. Proposition
3.9 places restrictions on the volatility terms σj and the Lévy densities kXj (zj)
of the LPs Xj for j = 1, 2. Further research is needed to find parameter bounds
of specific LPs, such as the Kou or CGMY process. In Section 3.3, we stated an
a priori error estimate for elliptic and parabolic variational inequalities. For the
parabolic case we give error estimates for a two-dimensional case with a non-
degenerate differential operator of order two and for a one-dimensional case with
integro-differential operator of order α ∈ (0, 2]. However these error estimates
do not seem to be sharp, see Matache, et al. [36]. In Section 3.4, we numer-
ically tested the convergence of the semi-smooth Newton algorithm in various
variational problems. First, we treated the elliptic variational inequality of the
perpetual American put option in the one-dimensional Kou model. Here the
non-degenerate integro-differential operator is of order two. Our results show
that optimal convergence in L2 and L∞ can be achieved for this problem using
the semi-smooth Newton algorithm. Thereafter, we discuss a one-dimensional
parabolic case with a non-degenerate operator of order two. We found an opti-
mal convergence rate of order O(N−2) for the Crank-Nicolson scheme under the
condition that the obstacle is in the finite element space. The convergence tests
for the pricing scheme developed in Chapter 2 we find a convergence rate of al-
most order O(N−1) in L2 and of order O(N−

1
2 ) in L∞ and H1 for the American

basket put option with underlying CGMY process for X. Under the violation
of the smooth pasting property for plain vanilla American puts described in
Lamberton and Mikou [34] the pricing algorithm does not converge. In the last
section of Chapter 3, we discuss the speed of the semi-smooth Newton algo-
rithm and compare it to the PSOR algorithm. We found that the semi-smooth
Newton algorithm is faster than the MATLAB R© implementation of the PSOR
algorithm.
As already mentioned in Section 1.3.1, further research has to be devoted to
the assessment of the dependence structure created by the model in (1.2). We
have already analysed the two-dimensional LP Y in (1.1) and its Lévy mea-
sure νY (dy) to some extent in Section 1.3.1. However, the limitations of the
dependence structure created by the LP Y must be discussed further and a
proper analysis of the model’s ability to mimic the dependence among assets
is important. Nevertheless, the model in (1.2) also yields very nice properties
for numerical option pricing as we have seen in Chapter 2. There is no need
for complicated Lévy copulas and we may completely tensorise the stiffness
matrix in the finite elements discretisation due to the independence of the com-
ponents of X as seen in (2.31). Furthermore, the smooth pasting property for
American option with two underlying assets is subject to further examination.
Lamberton and Mikou [34] provide a good understanding of the univariate case.
Similarly, a priori error estimates for two-dimensional variational inequalities
with integro-differential operator of order α = (α1, α2)> have, to our knowl-
edge, not been derived yet. Matache, et al. [36] give a priori error estimates for
the one-dimensional case, but the two-dimensional case also remains a topic of
further research.
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Appendix A

Market Model Assumptions

Here we check if the two processes underlying the bivariate model are consistent
with the conditions in Assumptions 1.14. First, we validate the CGMY model
and then the Kou model. The models fulfilling the properties in Assumptions
1.14 are called admissible market models. Since all the conditions are in terms
of the one-dimensional Lévy measures, we only treat one-dimensional Lévy pro-
cesses in this appendix.

A.1 CGMY Process

Let us recall the Lévy measure of the CGMY process in (1.10) in Section 1.3.3,

νCGMY(dz) =

(
c
e−β+|z|

|z|1+α
1[z>0] + c

e−β−|z|

|z|1+α
1[z<0]

)
dz,

where c > 0, β+ > 1, β− > 0 and α ∈ (0, 2).

(A1) Let ζ− = β− > 0, ζ+ = β+ > 1 and C := c then,

kCGMY(z) ≤

{
ce−β−|z|, if z < −1,

ce−β+|z|, if z > 1,

since |z|−1−α ≤ 1 for z ∈ R \ (−1, 1) and α ∈ (0, 2).

(A2) Since e−β±|z| < 1 for 1 > |z| > 0 we have for C+ := c,

kCGMY(z) ≤ C+

|z|1+α
for 1 > |z| > 0.

(A3) Let C− := c
2

(
e−β+ + e−β−

)
. Since e−β±|z| ≥ e−β± for 0 < |z| < 1 we

have,

1

2
(kXj (zj) + kXj (−zj)) =

c

2

(
e−β+|z|

|z|1+α
1[z>0] +

e−β−|z|

|z|1+α
1[z<0]

)
=

c

2|z|1+α

(
e−β+|z| + e−β−|z|

)
1[z∈R\{0}]

≥ C−
|z|1+α

.
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A.2 Kou Process

The Lévy measure of the Kou process in (1.11) is given by,

νKou(dz) = λ
(
pη+e

−η+z1[z≥0] + qη−e
η−z1[z<0]

)
dz,

where λ > 0, η+ > 1, η− > 0 and p, q ∈ (0, 1) such that p+ q = 1.

(A1) Let ζ− = η− > 0, ζ+ = η+ > 1 and C := λmax(pη+, qη−) then,

kKou(z) ≤

{
Ce−η−|z|, if z < −1,

Ce−η+|z|, if z > 1.

(A2) Since e−η±|z| < 1 and |z|−1−α > 1 for 1 > |z| > 0 with α ∈ (0, 2) we have
for C+ := λmax(pη+, qη−),

kKou(z) ≤ C+ ≤
C+

|z|1+α
for 1 > |z| > 0.

(A3) The Kou process does not have to satisfy this condition since we have
σj > 0 for j = 1, 2.
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Appendix B

Martingale Property for the
CGMY Process

Here we calculate the drift term wi needed for the martingale condition in
Theorem 1.15 in case the LP X follows a CGMY process. As the CGMY
process is a pure jump process, we set σj = 0 for j = 1, 2. Further we remark
that by (1.6), we then have,

wCGMY
i = −

2∑
j=1

∫
R

(
eΣijz − 1−Σijz

)
νXj (dz) = −

2∑
j=1

wjαj

We distinguish three cases of parameter values for αj to calculate wjαj as in
Cont and Tankov [10, Proposition 4.2].
Case I: αj ∈ (0, 1) ∪ (1, 2)

Using ex =
∑∞
k=0

xk

k! and the Gamma function Γ(x) =
∫∞

0
e−yyx−1 dy we have,∫ ∞

0

(
eΣijz − 1−Σijz

)
νXj (dz)

=cj

∫ ∞
0

(
eΣijz − 1−Σijz

) e−βj+z
z1+αj

dz

=cj

∞∑
k=2

(Σij)
k

k!

∫ ∞
0

zk−1−αje−β
j
+z dz

=cj

∞∑
k=2

(Σij)
k

k!

(
βj+

)αj−k
Γ(k − αj)

=cj

(
βj+

)αj
Γ(2− αj)

 1

2!

(
Σij

βj+

)2

+
(2− αj)

3!

(
Σij

βj+

)3

+
(2− αj)(3− αj)

4!

(
Σij

βj+

)4

+ . . .



Robbin Tops 2012 c©



76

=cj

(
βj+

)αj Γ(2− αj)
αj(αj − 1)

αj(αj − 1)

2!

(
Σij

βj+

)2

− αj(αj − 1)(αj − 2)

3!

(
Σij

βj+

)3

+
αj(αj − 1)(αj − 2)(αj − 3)

4!

(
Σij

βj+

)4

+ . . .


=cj

(
βj+

)αj Γ(2− αj)
αj(αj − 1)

αj
(

Σij

βj+

)
− 1 + 1− αj

(
Σij

βj+

)
+
αj(αj − 1)

2!

(
Σij

βj+

)2

−αj(αj − 1)(αj − 2)

3!

(
Σij

βj+

)3

+
αj(αj − 1)(αj − 2)(αj − 3)

4!

(
Σij

βj+

)4

+ . . .


=cj(β

j
+)αj

Γ(2− αj)
αj(αj − 1)

{(
βj+ −Σij

βj+

)αj
− 1 +

αjΣij

βj+

}

where the last equality follows from the Binomial power series representation
found in Knopp [30, Section 5.8],

(1− x)q = 1− qx+ q(q − 1)
x2

2!
− q(q − 1)(q − 2)

x3

3!
+ . . . ,

for which we set x =
Σij

βj+
and q = αj . For the series to converge, we need |x| < 1

or |Σij | < βj+ for i, j = 1, 2. In an equivalent way,∫ 0

−∞

(
eΣijz − 1−Σijz

)
νXj (dz)

= cj

∫ ∞
0

(
e−Σijz − 1 + Σijz

) e−βj−z
z1+αj

dz

= cj(β
j
−)αjΓ(−αj)

{(
βj− + Σij

βj−

)αj
− 1− αjΣij

βj−

}

Hence the drift imposed by the martingale condition is,

wjαj := cjΓ(−αj)

[
(βj+)αj

{(
βj+ −Σij

βj+

)αj
+
αjΣij − βj+

βj+

}

+(βj−)αj

{(
βj− + Σij

βj−

)αj
−
αjΣij + βj−

βj−

}]
.
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Case II: αj = 0
For αj = 0 we have as above using integration by parts,∫ ∞

0

(
eΣijz − 1−Σijz

)
νXj (dz)

= cj

∞∑
k=2

(Σij)
k

k!

∫ ∞
0

zk−1e−β
j
+z dz

= cj

∞∑
k=2

(Σij)
k

k!

(k − 1)!

(βj+)(k − 1)

∫ ∞
0

e−β
j
+z dz

= cj

∞∑
k=2

(
Σij

βj+

)k
k−1

= cj

[
−Σij

βj+
− ln

(
1− Σij

βj+

)]

= cj

[
ln

(
βj+

βj+ −Σij

)
− Σij

βj+

]
,

where note that ln(1 − x) = −
∑∞
k=1

xk

k which follows from integrating the
Binomial series above with q = −1, see in Königsberger [31, Example 6.1].
Here we also need the condition that |Σij | < βj+ for i, j = 1, 2 to ensure the
convergence of the series. Finally we get,

wj0 := cj

{
ln

(
βj+

βj+ −Σij

)
+ ln

(
βj−

βj− + Σij

)
+

Σij

βj+β
j
−

(
βj+ − β

j
−
)}

.

Case III: αj = 1
Here, we obtain using the same steps as above,∫ ∞

0

(
eΣijz − 1−Σijz

)
νXj (dz)

= cjβ
j
+

∞∑
k=2

(
Σij

βj+

)k
1

k(k − 1)

= cjβ
j
+


∞∑
k=2

(
Σij

βj+

)k (
1

k − 1
− 1

k

)
= cjβ

j
+

Σij

βj+

∞∑
k=1

(
Σij

βj+

)k
k−1 −

∞∑
k=2

(
Σij

βj+

)k
1

k


= −cjΣij ln

(
βj+ −Σij

βj+

)
+ cjβ

j
+ ln

(
βj+ −Σij

βj+

)
+ cjΣij

= cjΣij + cj

(
βj+ −Σij

)
ln

(
βj+ −Σij

βj+

)
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Thus,

wj1 := cj

{(
βj+ −Σij

)
ln

(
βj+ −Σij

βj+

)
+
(
βj− + Σij

)
ln

(
βj− + Σij

βj−

)}
.
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Appendix C

Finite Element Calculations

Here we depict the calculations for the finite element matrices resulting from
the discretisation of variational formulation (2.23). First we give the definition
of a Kronecker product.

Definition C.1. Let A ∈ Rn×m and B ∈ Rp×q be matrices then its Kronecker
product reads,

A⊗B =


A11B A12B . . . A1mB

A21B
. . .

...
...

. . . An−1mB
An1B . . . Anm−1B AnmB

 ∈ Rnq×mp.

⊥

Due to the structure of VN , we can split the integrals resulting from the
variational formulation (2.34) in each dimension, therefore the mass matrix in
(2.31) consists of the Kronecker product of two matrices M = M1 ⊗M2. Let
G = (−R,R)2 and Gl = (−R,R) ⊂ R for l = 1, 2 then,

M(i1,j1),(i2,j2) =

∫
G

bj1(x1)bj2(x2)bi1(x1)bi2(x2) dx

=

∫
G1

bj1bi1(x1) dx1

∫
G2

bj2(x2)bi2(x2) dx2

= M1
i1j1M

2
i2j2 .

(C.1)

Moreover the matrices Ml with l = 1, 2 can be specified as,

Ml
iljl

=

∫
Gl

bjl(xl)bil(xl) dxl =


2h
3 , if il = jl,
h
6 , if |il − jl| = 1,

0, if |il − jl| > 1.

(C.2)

In general, the stiffness matrix can be separated into two parts, one part result-
ing from the diffusion and one jump part. Let us first look at the diffusion part
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which corresponds to the bilinear form aBS(·, ·) in (2.13),

ABS
(i1,j1),(i2,j2) := aBS (bj1(x1)bj2(x2), bi1(x1)bi2(x2))

σ2
1

2
S1 ⊗M2 +

σ2
2

2
M1 ⊗ S2,

where we employed the same approach as in (C.1). By calculating the integral
we get,

Sliljl =

∫
Gk

b′jl(xl)b
′
il

(xl) dxl =


2
h , if il = jl,

− 1
h , if |il − jl| = 1,

0, if |il − jl| > 1,

(C.3)

for l = 1, 2. Let us continue with the jump part of the stiffness matrix. By the
definition of aJ(·, ·) and the substitution yl = xl + zl for l = 1, 2 we acquire,

AJ
(i1,j1),(i2,j2) : = aJ (bj1(x1)bj2(x2), bi1(x1)bi2(x2))

=

∫
G

∫
R\{0}

b′j1(x1 + z1)bj2(x2)b′i1(x1)bi2(x2)k
(−2)
X1 (z1) dz1 dx

+

∫
G

∫
R\{0}

bj1(x1)b′j2(x2 + z2)bi1(x1)b′i2(x2)k
(−2)
X2 (z2) dz2 dx

=

∫
G1

∫
G1

b′j1(y1)b′i1(x1)k
(−2)
X1 (y1 − x1) dy1 dx1M

2
i2j2

+ M1
i1j1

∫
G2

∫
G2

b′j2(y2)b′i2(x2)k
(−2)
X2 (y2 − x2) dy2 dx2

= A1
i1,j1M

2
i2j2 + M1

i1j1A
2
i2j2 .

Hence, AJ = A1 ⊗M2 + M1 ⊗A2. Let us denote the inner grid points of Gl
by xlil for il = 1, . . . , N then we get for the matrices Al with l = 1, 2,

Al
iljl

=
1

h

[∫ xlil

xlil−1

∫ xljl

xljl−1

k
(−2)

Xl
(yl − xl) dyl dxl −

∫ xlil

xlil−1

∫ xljl+1

xljl

k
(−2)

Xl
(yl − xl) dyl dxl

= −
∫ xlil+1

xlil

∫ xljl

xljl−1

k
(−2)

Xl
(yl − xl) dyl dxl +

∫ xlil+1

xlil

∫ xljl+1

xljl

k
(−2)

Xl
(yl − xl) dyl dxl

]
.

(C.4)

The antiderivative k
(−2)

Xl
(xl) might still have a singularity at 0 as we can see

in Figure C.1. Let us first introduce a change of variables. Let us define for
l = 1, 2 and jl = 0, 1, . . . , N − 1,

kljl,+ :=

∫ h

0

∫ (jl+1)h

jlh

k
(−2)

Xl
(yl − xl) dyl dxl, (C.5a)

kljl,− :=

∫ (jl+1)h

jlh

∫ h

0

k
(−2)

Xl
(yl − xl) dyl dxl. (C.5b)

In the expression (C.5) we only integrate over the singularity for jl = 0 for
which kl0,+ = kl0,− =: kl0. We proceed by separating the inner integral at xl and
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Figure C.1: 2nd Antiderivative of the CGMY (upper) and the Kou (lower)
Lévy densities for parameter values: C = .5, G = 2,M = 15, Y = 1.2 and
λ = 1.2, p = .35, q = .65, η+ = 10, η− = 7.

integrating from 0 to xl and from xl to h. Then we take the limit from either
below or above approaching zero as follows, then we have for jl = 0,

kl0 :=kl0,+ = kl0,− =

∫ h

0

∫ h

0

k
(−2)

Xl
(yl − xl) dyl dxl (C.6a)

=

∫ h

0

∫ xl

0

k
(−2)

Xl
(yl − xl) dyl +

∫ h

xl

k
(−2)

Xl
(yl − xl) dyl dxl (C.6b)

=

∫ h

0

k
(−3)

Xl
(0−)− k(−3)

Xl
(−xl) + k

(−3)

Xl
(h− xl)− k(−3)

Xl
(0+) dxl (C.6c)

=
(
k

(−3)

Xl
(0−)− k(−3)

Xl
(0+)

)
h

− k(−4)

Xl
(0−) + k

(−4)

Xl
(−h)−k(−4)

Xl
(0+) + k

(−4)

Xl
(h), (C.6d)

where k
(−3)

Xl
(0−) = limxl↑0 k

(−3)

Xl
(xl) and k

(−3)

Xl
(0+) = limxl↓0 k

(−3)

Xl
(xl). More-

over, for jl = 1, . . . , N − 1 we have,

kljl,+ =

∫ h

0

k
(−3)

Xl
((jl + 1)h− xl)− k(−3)

Xl
(jlh− xl) dxl, (C.7a)

=− 2k
(−4)

Xl
(jlh) + k

(−4)

Xl
((jl + 1)h) + k

(−4)

Xl
((jl − 1)h), (C.7b)

kljl,− =

∫ (jl+1)h

jlh

k
(−3)

Xl
(h− xl)− k(−3)

Xl
(−xl) dxl, (C.7c)

=− 2k
(−4)

Xl
(−jlh) + k

(−4)

Xl
(−(jl − 1)h) + k

(−4)

Xl
(−(jl + 1)h). (C.7d)
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Using (C.6) and (C.7) the expression for (C.4) can be further simplified as,

Al
ilil

=
1

h

(
2kl0 − kl1,+ − kl1,−

)
,

Al
ilil+j

=
1

h

(
2klj,+ − klj+1,+ − klj−1,+

)
, j = 1, . . . , N − il

Al
ilil−j =

1

h

(
2klj,− − klj+1,− − klj−1,−

)
, j = 1, . . . , il − 1

where il = 1, . . . , N . The results for the one-dimensional case can be found in
Hilber, et al. [24, Section 10.6].
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Appendix D

Computation of Greeks

To compute the Greeks we apply finite differences as discussed in Braess [5,
Section 1.3]. The aspect of finite difference is based on the Taylor expansion
of a function. The approximation of the first and second derivatives of a func-
tion f(x) using Taylor expansions can be found in Smith [48, Section 1.3 and
1.4]. We give the approximation of the partial derivative ∂xyf(x, y) in the next
proposition.

Proposition D.1. Let f ∈ C4(R2) then,

∂xyf(x, y) =
1

2h2
[f(x+ h, y + h)− f(x+ h, y)− f(x, y + h) + 2f(x, y)

+f(x− h, y − h)− f(x− h, y)− f(x, y − h)] +O(h2),

as h→ 0.

Proof. The Taylor expansion of f in (x+ h, y + h) around (x, y) reads,

f(x+ h, y + h) =f(x, y) + h [∂xf + ∂yf ] +
h2

2!
[∂xxf + 2∂xyf + ∂yyf ]

+
h3

3!
[∂xxxf + 3∂xxyf + 3∂xyyf + ∂yyyf ]

+
h4

4!

[
∂xxxxf(ξ1

1 , ξ
2
1) + 4∂xxxyf(ξ1

1 , ξ
2
1) + 6∂xxyyf(ξ1

1 , ξ
2
1)

+4∂xyyyf(ξ1
1 , ξ

2
1) + ∂yyyyf(ξ1

1 , ξ
2
1)
]
,

and,

f(x− h, y − h) =f(x, y)− h [∂xf + ∂yf ] +
h2

2!
[∂xxf + 2∂xyf + ∂yyf ]

− h3

3!
[∂xxxf + 3∂xxyf + 3∂xyyf + ∂yyyf ]

+
h4

4!

[
∂xxxxf(ξ1

2 , ξ
2
2) + 4∂xxxyf(ξ1

2 , ξ
2
2) + 6∂xxyyf(ξ1

2 , ξ
2
2)

+4∂xyyyf(ξ1
2 , ξ

2
2) + ∂yyyyf(ξ1

2 , ξ
2
2)
]
,

with (ξ1
1 , ξ

2
1) ∈ (x, x+h)×(y, y+h) and (ξ1

2 , ξ
2
2) ∈ (x−h, x)×(y−h, y). Adding

up the two expressions above and dividing by 2h2 gives Proposition D.1.
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Due to the discretisation we only use specific values for the option price, i.e.

those on the grid
{(
x1
p1 , x

2
p2

)}N+1

p1,p2=0
and {tm}Mm=0. Thus, using the results in

Smith [48, Section 1.3 and 1.4] and Proposition D.1 above for the discretised

solution ump1,p2 = u(tm, xp) where xp =
(
x1
p1 , x

2
p2

)>
and p = (N − 1)p1 + p2 with

1 ≤ p1, p2 ≤ N , we have the following approximations of the first derivatives,

∂xju(t, x)|(t,x)=(tm,xp) ≈
u(tm, xp + hj)− u(tm, xp − hj)

2h
=:
(
δxju

)m
p
,

∂tu(t, x)|(t,x)=(tm,xp) ≈
u(tm+1, xp)− u(tm, xp)

k
=:
(
δ+
t u
)m
p
,

and second derivatives,

∂xjxju(t, x)|(t,x)=(tm,xp) ≈
u(tm, xp + hj)− 2u(tm, xp) + u(tm, xp − hj)

h2

=:
(
δ2
xjxju

)m
p
,

∂xjxlu(t, x)|(t,x)=(tm,xp) ≈
1

2h2

[
u(tm, xp + h)− u(tm, xp + hj)

−u(tm, xp + hl) + 2u(tm, xp) + u(tm, xp − h)

−u(tm, xp − hj)− u(tm, xp − hl)
]

=:
(
δ2
xjxl

u
)m
p
,

where j, l = 1, 2 and h = (h, h)>. Now we have to account for the change in
variable to obtain the Greeks. We rewrite x = (x1, x2)> as follows,

x = |Σ|−1

(
Σ22(ln(s1)− (r − w1)(T − t))−Σ12(ln(s2)− (r − w2)(T − t))
Σ11(ln(s2)− (r − w2)(T − t))−Σ21(ln(s1)− (r − w1)(T − t))

)
.

(D.1)
Using (D.1) we find the following expression for ∆i(t, s) := ∂siV (T − t, s) with
i = 1, 2,

∆1(tm, s(tm, xp)) ≈ er(T−tm)
(
|Σ|s1(tm, xp)

)−1
[
Σ22 (δx1u)

m
p −Σ21 (δx2u)

m
p

]
,

∆2(tm, s(tm, xp)) ≈ er(T−tm)
(
|Σ|s2(tm, xp)

)−1
[
Σ11 (δx2u)

m
p −Σ12 (δx1u)

m
p

]
,

where si(tm, xp) = e(r+wi)(T−tm)+Σixp with Σi = (Σi1,Σi2). Moreover, for

Γil(t, s) := ∂sislV (T − t, s) with i, l = 1, 2 we get,

Γ11(tm, s(tm, xp)) ≈ er(T−tm)
(
|Σ|s2(tm, xp)

)−2
{

Σ2
22

(
δ2
x1x1

u
)m
p

−Σ22Σ21

(
δ2
x1x2

u
)m
p

+ Σ2
21

(
δ2
x2x2

u
)m
p

}
−
(
s1(tm, xp)

)−1
∆1(tm, s(tm, xp)),

Γ22(tm, s(tm, xp)) ≈ er(T−tm)
(
|Σ|s2(tm, xp)

)−2
{

Σ2
12

(
δ2
x1x1

u
)m
p

−Σ12Σ11

(
δ2
x1x2

u
)m
p

+ Σ2
11

(
δ2
x2x2

u
)m
p

}
−
(
s2(tm, xp)

)−1
∆2(tm, s(tm, xp)),

Γ21(tm, s(tm, xp)) ≈ er(T−tm)|Σ|−2
(
s1(tm, xp)s2(tm, xp)

)−1{
−Σ12Σ22

(
δ2
x1x1

u
)m
p

+ [Σ11Σ22 + Σ12Σ21]
(
δ2
x1x2

u
)m
p
−Σ21Σ11

(
δ2
x2x2

u
)m
p

}
.
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The same holds for Γ12(tm, s(tm, xp)) since Γ21(tm, s(tm, xp)) = Γ12(tm, s(tm, xp)).
The theta Θ(t, s) := ∂tV (T − t, s) is approximated by,

Θ(tm, s(tm, xp)) ≈ er(T−t)
{
−ru(tm, xp) +

(
δ+
t u
)m
p

}
+

2∑
i=1

(r + wi)si(tm, xp)∆
i(tm, s(tm, xp)),

for m = 0, . . . ,M − 1. From these finite difference approximation we can con-
clude that the cases where |Σ| = 0 are problematic since for instance we cannot
calculate the Greeks with finite difference. More about the errors that we incur
with this finite difference approximation of the derivatives of the option value
can be found in Hilber, et al. [21] and Reiss and Wyst [45], where additionally
closed-form solutions for Greeks of European style options in the Black-Scholes
model can be found.
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[20] Hager, C., Hüeber, S., Wohlmuth, B. Numerical Techniques for the Val-
uation of Basket Options and their Greeks, In: Journal of Computational
Finance, 13(4), pp. 3–33, 2010.

[21] Hilber, N., Schwab, C., Winter, C., Variational Sensitivity Analysis of Para-
metric Markovian Market Models, In: Stettner, L. (editor), Advances in
Mathematics and Finance, Vol. 85, pp. 85–106, Banach Center Publ., 2008.

[22] Hilber, N., Kehtari, S., Schwab, C., Winter, C., Wavelet Finite Elements
Method for Option Pricing in Highdimensional Diffusion Market Model,
Research Report No. 2010-10, ETH Zürich, 2010.

[23] Heston S. L., A Closed-Form Solution for Options with Stochastic Volatility
with Applications to Bond and Currency Options, In: Review of Financial
Studies, 6, pp. 327–343, 1993.

[24] Hilber, N.,Schwab, C., Winter, C., Computational Methods for Quantita-
tive Finance, Lecture Notes, ETH Zürich, 2011.
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