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Chapter 1

Introduction

The incompressible Euler equations (1.1) model the motion of an ideal invis-
cid fluid

{
∂tv + div(v ⊗ v) +∇p = 0,

div(v) = 0.
(1.1)

The vector field v is the flow vector field, the scalar function p represents
the pressure. The solution of these equations requires the specification of
the initial data v|t=0 = v0 and, in addition, the specification of boundary
conditions. We will consider periodic boundary conditions throughout this
work. A derivation of the equations based on physical principles will be
given below in section 1.1.

From a mathematical point of view, the Euler equations have proven to be
difficult to study and many questions concerning the system (1.1) remain
open. While there are by now well-known short-time existence and unique-
ness theorems for smooth initial data [37], many problems persist, especially
in the physical case of three spatial dimensions.

For two spatial dimensions, the theory is more complete. It has been un-
derstood that the vorticity, which is closely related to turbulence, is con-
served along the flow and therefore the behaviour of solutions to (1.1) can
be controlled to a certain extent. Indeed, existence and uniqueness results
for smooth initial data were obtained not only for short times, but in the
large [37]. The vorticity formulation will be discussed in section 1.4.

While these results answer the most pressing questions from a PDE perspec-
tive in the two dimensional case, they leave open the corresponding question
for flows that lack smoothness. Among the most basic flows lacking smooth-
ness are vortexsheets. A vortexsheet is a flow that is piecewise smooth, ex-
cept for a smooth one-dimensional interface, across which the velocity field
may have a discontinuity. For such flows, system (1.1) is to be solved in the
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1. Introduction

Figure 1.1: Domain Ω and surface element d⃗σ.

sense of distributions. An existence result for the case of vortexsheets was
first obtained by Delort [17]. Delort proved that for vortexsheet initial data
with vorticity a non-negative bounded measure in H−1, there also exists a
weak solution with vorticity a non-negative bounded measure in H−1. The
question of uniqueness was left open, however. More recently, Szekelyhidi
obtained a non-uniqueness result for weak solutions to such initial condi-
tions in a larger class of functions [49]. The counterexamples constructed in
[49] are weak solutions belonging to L2 for which the vorticity possibly is
not a bounded measure. Thus, the question of uniqueness inside the class of
flows considered by Delort remains open. We will come back to vortexsheet
initial data in chapter 4, when we discuss the results of numerical experi-
ments carried out to compute a measure-valued solution for such flows.

1.1 The incompressible Euler equations

We wish to provide a derivation of the Euler equations in this section. To
this end, we fix a region Ω ⊂ Rn in space. We assume that the fluid has a
mass density distribution described by a positive function ρ(x, t) and that
the instantaneous velocity at point x and time t is given by the vector field
v(x, t).

1.1.1 Mass conservation

We make the physical assumption that mass can neither be created nor de-
stroyed. The total mass contained in the region Ω at time t is given by
´

Ω ρ(x, t) dx. Conservation of mass implies that any change of the mass con-
tained inside Ω can only come from the influx or outflux of mass through
the boundary ∂Ω.

Mass is transported by the flow of v(x, t). The flux through the boundary
at time t is thus given by −

´

∂Ω ρ(x, t) v(x, t) · d⃗σ. The negative sign stems
from the fact that a flux in the direction of the outward normal d⃗σ leads to
a decrease of the mass inside Ω. Using the divergence theorem, we thus
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1.1. The incompressible Euler equations

conclude that conservation of mass is expressed by

d

dt

ˆ

Ω

ρ(x, t) dx = −
ˆ

Ω

div(ρ(x, t)v(x, t)) dx.

This is true for an arbitrary region Ω. We can thus rewrite this integral
equation in differential form and obtain

∂tρ + div(ρ v) = 0. (1.2)

1.1.2 Momentum conservation

The second physical assumption that we will make concerns the conserva-
tion of momentum in an ideal fluid. The momentum density in the fluid
is expressed by the vector field M(x, t) = ρ(x, t)v(x, t). The total (vectorial)
momentum in Ω at time t is thus given by

´

Ω M(x, t) dx. By the same reason-
ing as above, this total momentum will change due to the flux of momentum
through the boundary, −

´

∂Ω M(x, t)⊗ v(x, t) · d⃗σ. However, in the present
case there is a second way in which the momentum in Ω may change. By
Newton’s second law, a total force FΩ acting on Ω, will induce a change of

this momentum PΩ by an amount given by dPΩ
dt = FΩ. Taking both of these

two effects into account, we arrive at the general equation

d

dt

ˆ

Ω

M(x, t) dx +
ˆ

∂Ω

M(x, t)⊗ v(x, t) · d⃗σ = FΩ.

The question now is: What is the total force FΩ acting on Ω at time t? In the
modelling of an ideal fluid, we assume that this force is only due to the (as
of yet unknown) pressure p(x, t) of the fluid. Under this assumption, the
force on Ω that is caused by the fluid element outside of Ω is obtained by
integrating the pressure field over the boundary, i.e.

FΩ = −
ˆ

∂Ω

p d⃗σ.

Using the divergence-theorem once more, we conclude that the conservation
of momentum in an ideal fluid can be written as

d

dt

ˆ

Ω

M(x, t) dx +
ˆ

Ω

div(M(x, t)⊗ v(x, t)) dx = −
ˆ

Ω

∇p dx,

for any domain Ω. Since Ω is arbitrary, this integral equation can again
be recast as a differential equation. Remembering also that M = ρv, we
conclude that

∂t(ρv) + div(ρv ⊗ v) +∇p = 0. (1.3)

3



1. Introduction

1.1.3 The incompressibility constraint

We want to model the motion of an incompressible fluid. A fluid is called
incompressible, if the flow is volume-preserving, i.e. if the fluid does neither
expand nor contract its volume locally. As is well-known, the flow associated
to a vector field v is volume-preserving if and only if (see [37])

div(v) = 0. (1.4)

This is the incompressibility constraint that we have to impose in addition
to conservation of mass and momentum. The incompressibility constraint
allows us to rewrite div(ρv) = v ·∇ρ + ρ div(v) = v ·∇ρ. The conservation
of mass equation (1.2) can thus be formally rewritten in the form

∂tρ + v ·∇ρ = 0. (1.5)

This equation expresses the fact that the density ρ must be constant along
the flow curves of v.

In many situations (e.g. if the fluid is liquid water), it is natural to make one
additional assumption on the fluid being modelled. Namely, we assume that
the fluid is homogeneous in the sense that the density ρ of the fluid has a
constant value at the initial time, ρ(x, 0) = ρ0 > 0. By (1.5), this implies that
ρ(x, t) = ρ0 at all later times t. Plugging this into the momentum equation
(1.3), we obtain

∂tv + div(v ⊗ v) +
1

ρ0
∇p = 0.

We may now either redefine the function p → 1
ρ0

p or set ρ0 = 1, to arrive at

the incompressible Euler equations:

{
∂tv + div(v ⊗ v) +∇p = 0,

div(v) = 0.
(1.6)

Remark 1.1 If the fluid to be modelled is not ideal, then the friction forces between
fluid elements have to be taken into account. This leads to the introduction of an
additional force term in the momentum balance in the form of a stress tensor σij.
We will not give a detailed derivation of this case here, but instead only indicate the
main points.

The internal friction occurs when different fluid elements move at different velocities,
so that there is a relative motion between them. Thus, σij must depend on the space
derivatives of the velocity. If the velocity gradients are small, we may assume that
the viscous momentum transfer depends only on the first derivatives of v, and in
the linear approximation that σij is actually a linear function of ∇v. The trace of
σij leads to an isotropic force and can be incorporated in the pressure term, so that
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we may assume σij to be trace-free. Taking into account also the symmetries of the
equations, it turns out that the only reasonable form of σij under these assumptions
is given by

σij = ν

(
∇v + (∇v)T −

2

3
div(v)I

)
,

where ν > 0 is a constant. We then arrive at the incompressible Navier-Stokes
equations

{
∂tv + div(v ⊗ v) +∇p = ν∆v,

div(v) = 0.
(1.7)

The parameter ν is referred to as the kinematic viscosity. For a more detailed discus-
sion we refer to [31, Chapter 2].

1.1.4 The role of the pressure

From our derivation of the incompressible Euler equations above, it might
seem as if the pressure p had remained entirely undefined. Fortunately, this
turns out not to be the case at closer inspection. To see why, we take the
divergence of the evolution equation. Clearly, the liner term in v drops out
due to the incompressibility constraint and we obtain the equation

−∆p = div div(v ⊗ v),

for p. From standard elliptic theory we know that this equation possesses
a unique solution given suitable conditions on v and given a further con-
straint such as

´

Tn p dx = 0. We conclude that p is implicitly defined by the
non-linear term. It’s job is to keep v divergence-free at all times. Or said
differently, p acts as a Lagrange multiplier to enforce the incompressibility
constraint.

Remark 1.2 This pressure term is responsible for much of the complexity of the in-
compressible Euler equations. Indeed, it is not only non-linear in v, but in addition
it is also non-local.

1.2 Classical Solutions

Before discussing more refined concepts of solutions and going into more
details concerning the numerical approximation of the incompressible Euler
equations, we make some fundamental observations about classical solu-
tions.

The most fundamental result for the ensuing discussion concerns the phys-
ical principle of conservation of energy, which we now show to be satisfied

5



1. Introduction

by any classical solution of the Euler equations. We recall that the kinetic
energy of a fluid with velocity field v is given by the expression

ˆ

Tn

1

2
|v|2 dx.

To prove conservation of energy, we (formally) differentiate the expression
above with respect to time and use the fact that v solves the Navier-Stokes
equation, (1.7), with ν = 0. This yields

d

dt

ˆ

Tn

1

2
|v|2 dx =

ˆ

Tn
v · ∂tv =

ˆ

Tn
v · [−div(v ⊗ v)−∇p + ν∆v] dx.

By the incompressibility constraint div(v) = 0, and the fact that we are as-
suming periodic boundary conditions, we have

´

Tn v ·∇p dx = −
´

Tn div(v) p dx =
0 after an integration by parts. Similarly, we obtain that

ˆ

Tn
v · div(v ⊗ v) dx =

ˆ

Tn
∑
i,j

vi∂j(v
ivj) dx

=
ˆ

Tn
∑
i,j

∂j

(
1

2
(vi)2vj

)
dx

=
ˆ

Tn
div

(
1

2
|v|2v

)
dx

= 0,

and
ˆ

Tn
v · ν∆v dx = −ν

ˆ

Tn
|∇v|2 dx.

Thus,

d

dt

ˆ

Tn

1

2
|v|2 dx = −

ˆ

Tn
v · [div(v ⊗ v) +∇p − ν∆v] dx = −ν

ˆ

Tn
|∇v|2 dx.

Integration in time from 0 to t yields
ˆ

Tn

1

2
|v|2 dx + ν

ˆ t

0

ˆ

Tn
|∇v|2 dx dt =

ˆ

Tn

1

2
|v0|

2 dx. (1.8)

The term ν
´ t

0

´

Tn |∇v|2 dx dt accounts for the energy dissipated due to fric-
tion. For classical solutions of (1.1), we can set ν = 0. This proves the
conservation of energy for classical solutions of (1.1).

The total momentum of the fluid is given by
´

Tn v dx. Again, differentiation
with respect to time yields

d

dt

ˆ

Tn
v dx = −

ˆ

Tn
[div(v ⊗ v) +∇p − ν∆v] dx = 0, (1.9)

for any classical solution v of (1.7). In particular, solutions of the Euler
equations formally satisfy the principle of conservation of momentum.

6



1.3. Elements of the Mathematical Theory

1.3 Elements of the Mathematical Theory

1.3.1 Weak solutions

The question whether solution of the incompressible Euler equations which
are smooth at an initial time will remain so for all later times, is still an
outstanding problem. It has proven useful in the study of partial differential
equations, to relax the solution concept and look for weak solutions which
need not satisfy the equations in a pointwise sense. This can allow one
to establish existence results first, and recover uniqueness and smoothness
properties later on. Let us define what we mean by a weak solution in the
context of the Euler equations.

Definition 1.3 A vector field v ∈ L2(Tn × [0,+∞); Rn) is a weak solution of the
incompressible Euler equations if

ˆ

Tn
v · ∂t ϕ + (v ⊗ v) : ∇ϕ dx = 0,

for all ϕ ∈ C∞
c (Tn × (0,+∞); Rn) with div(ϕ) = 0, and

ˆ

Tn
v ·∇ψ dx = 0,

for all ψ ∈ C∞(Tn) and all times t.

A vector field v ∈ L2(Tn × [0,+∞); Rn) is a weak solution of the incompressible
Euler equations with initial data v0, if it is a weak solution and satisfies

ˆ

Tn
v · ∂t ϕ + (v ⊗ v) : ∇ϕ dx = −

ˆ

Tn
v0 · ϕ( · , 0) dx,

for all ϕ ∈ C∞
c (Tn × [0,+∞); Rn) with div(ϕ) = 0.

1.3.2 Existence and uniqueness

The mathematical theory underlying the incompressible Euler equations in
the physical case, i.e. in three spatial dimensions, is still very incomplete.
In particular, the study of the long time behaviour of solutions is beyond
current understanding. More can be said for short time intervals. For suf-
ficiently smooth initial conditions, we have the following well-posedness
result at least for small times.

Theorem 1.4 (Existence and uniqueness) [37, Corollary 3.2] Given a divergence-
free initial data v0 ∈ Hm(Tn; Rn), m ≥

[
n
2

]
+ 2, there exists a time T depending

on the Hm-norm of v0, such that there exists a unique solution

v ∈ C([0, T); Hm(Tn; R
n)) ∩ C1([0, T); Hm−2(Tn; R

n)).

7



1. Introduction

1.3.3 Vorticity

As has already been mentioned above, the vorticity is a quantity of central
importance in the study of turbulent flows. The vorticity, which will be
denoted by η, is simply defined as the curl of the velocity field η = curl v.

To obtain the corresponding evolution equation for η, we will make use
of the following elementary identities from vector calculus, valid for any
smooth vector fields A, B and any smooth function f .

div(A ⊗ A) = A ·∇A + div(A)A, (1.10)

A ·∇A =
1

2
∇|A|2 − A × curl A, (1.11)

curl∇ f = 0, (1.12)

div(curl A) = 0, (1.13)

curl(A × B) = div(B)A − div(A)B + B ·∇A − A ·∇B. (1.14)

We take the curl of ∂tv + div(v ⊗ v) +∇p = 0. We use the vector calculus
identity (1.11)

v ·∇v =
1

2
∇|v|2 − v × η,

and the fact that by (1.10)

div(v ⊗ v) = v ·∇v,

provided that div(v) = 0. By (1.12), we have curl∇p = 0 for any p.

Taking the curl of ∂tv = −(div(v ⊗ v) +∇p), we formally arrive at

∂tη = − curl(div(v ⊗ v) +∇p)

= − curl

(
∇

(
1

2
|v|2 + p

)
− v × η

)
.

The term involving the gradient vanishes again by (1.12). Finally, by (1.14),
we have

curl(v × η) = div(η)v − div(v)η + η ·∇v − v ·∇η = η ·∇v − v ·∇η,

using also the fact that by (1.13), div curl = 0 and once more that div(v) = 0.
Thus, we arrive at the evolution equation for the vorticity η:

{
∂tη + v ·∇η = η ·∇v,

curl v = η, div v = 0.
(1.15)

8



1.3. Elements of the Mathematical Theory

The term η ·∇v is called the vortex stretching term. It acts as a source term
in the advection equation for η and can have the effect of, well, stretching
η. Since v depends on η, the vortex stretching term could potentially lead
to a fatal feed-back and cause η to blow up after a finite time, even when
starting from smooth initial data.

The vorticity equation is especially convenient to work with in the two-
dimensional case. In this case, η is a (pseudo-)scalar and the vortex stretch-
ing term vanishes. The evolution equation for η thus is simply a transport
equation. I.e. η is a solution of

∂tη + v ·∇η = 0. (1.16)

The vorticity can also be used to reconstruct the velocity field. Let ∇⊥ denote
the gradient operator, rotated by 90 degrees,

∇⊥ = (−∂x2 , ∂x1)
t,

Then v can be (formally) obtained from η as follows. Because of div(v) = 0,
we have v = ∇⊥ψ for some function ψ. This ψ then solves

η = curl v = curl(∇⊥ψ) = ∆ψ. (1.17)

On the other hand, if ψ solves (1.17), then v := ∇⊥ψ is automatically
divergence-free and solves curl v = η. The evolution equation for η is thus
formally equivalent to the incompressible Euler equations.

The fact that there is no vortex stretching term in two dimensions simplifies
the analysis of the Euler equation considerably. In fact, global existence for
smooth solutions has been proven in the two dimensional case.

Theorem 1.5 ([Corollary 3.3) , [37]] Given a 2D initial velocity field v0 ∈ C∞(T2; R2),
there exists a for all time a unique smooth solution v ∈ C∞([0,+∞)× T2; R2) of
the Euler equations.

We will encounter equation (1.16) again, when we discuss spectral schemes
in two spatial dimensions.

9





Chapter 2

Measure valued solutions

2.1 Introduction

In this section, we recapitulate the notion of measure-valued solutions for
the Euler equations. Measure-valued solutions were introduced to study
the behaviour of weakly convergent sequences of solutions, or approximate
solutions, to the Euler equations by DiPerna and Majda [19].

They address the following problem. Strong solutions of the Euler equations
conserve energy ∥v(t)∥L2 = ∥v0∥L2 . Given a sequence vn of solutions to the
Euler equations with uniformly bounded L2-norm, we can extract a weakly
convergent subsequence vn ⇀ v in L2([0,+∞) × Tn; Rn). If each vn is a
solution of the Euler equations, then for any test function ϕ ∈ C∞

c ((0,+∞)×
Tn; Rn), with divϕ = 0, we have

ˆ ∞

0

ˆ

Tn
vn∂t ϕ + (vn ⊗ vn) : ∇ϕ dx dt = 0.

We would like to pass to the limit in this equation to show that the limiting
flow vector field v is again a weak solution of the Euler equations. However,
as the vn are only known converge weakly in L2, we cannot deduce that the
non-linear term converges, i.e. we may have vn ⊗ vn ̸⇀ v⊗ v in general. This
possible lack of convergence is due to the effects of sustained oscillations and
concentrations. We illustrate the point with the following example due to
DiPerna and Majda [19].

Example 2.1 We present an example of a sequence of solutions to the incompress-
ible Euler equations which exhibit persistent oscillations. We begin with the follow-
ing remark. If v(x1, x2, t) = (v1(x1, x2, t), v2(x1, x2, t)) is a divergence free field,
then (v1(x1, x2, t), v2(x1, x2, t), v3(x1, x2, t)) will be a solution to the incompress-
ible Euler equations provided that v3 solves the transport equation

∂tv3 + v1∂x1 v3 + v2∂x2 v3 = 0.
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Let u(x1, x2) be given, such that ξ -→ u(ξ, x2) is 1-periodic and has mean zero, i.e.

such that
´ 1

0 u(ξ, x2) dξ = 0 for all x2. We consider the initial data given by

vε

∣∣
t=0

=
(

u
( x2

ε
, x2

)
, 0, w(x1, x2)

)
.

for ε > 0. Clearly, vε|t=0 defined in this way is divergence-free. The corresponding
solution of the incompressible Euler equations can be written down explicitly. It is
given by

vε(x, t) =
(

u
( x2

ε
, x2

)
, 0, w

(
x1 − t u

( x2

ε
, x2

)
, x2

))
.

We thus have obtained a one-parameter family of solutions of the Euler equations.
Evidently, vε will be uniformly bounded in L∞, hence in L2

loc. We want to consider
the limiting behaviour as ε → 0.

By the Riemann-Lebesgue lemma, it is known that for any function f (x1, x2) which
is 1-periodic in the first variable, we have

f
( x2

ε
, x2

)
⇀

ˆ 1

0
f (ξ, x2) dξ, as ε → 0, weakly in L2. (2.1)

In particular, this implies that

vε ⇀ v =

(

0, 0,

ˆ 1

0
w (x1 − t u (ξ, x2) , x2) dξ

)

as ε → 0.

The vector field v will be a solution of the incompressible Euler equations if and only
if ∂tv3 = 0, i.e. if and only if

ˆ 1

0
w (x1 − t u (ξ, x2) , x2) dξ

is independent of t. It is clear that this will not be the case for general u, w (except
if w is independent of the first variable). So v is not a solution of the incompressible
Euler equations in general.

We summarize the conclusions to be drawn from example 2.1:

There exist solutions vε to the Euler equations, such that vε converges weakly
to a limit v as ε → 0, but such that this limit v is not a solution of the Euler
equations. In particular, this shows that we cannot use simple compactness
arguments based on estimates on the kinetic energy 1

2∥vε∥2
L2 , in order to

prove the existence of weak solutions of the Euler equations.

The limiting behaviour of solution sequences of the Euler equations may be
too complex to be captured properly by a single-valued function. In order
to make sense of such limits, we must extend our notions and consider
measure-valued functions, or Young measures, instead.

12



2.2. (Generalized) Young measures

2.2 (Generalized) Young measures

The general limiting behaviour of a weakly convergent sequence including
oscillation and concentration effects can in very general terms be captured
by the notion of a generalised Young measure [1], [14], [18], [19]. Let vn ∈
L∞((0, T); L2(Tn; Rn) be a sequence of vector fields with uniformly bounded
norm supt ∥vn∥L2 ≤ C. According to the theory of Young measures, there
exists a triple (ν, λ, ν∞) such that (after extraction of a subsequence)

f (vn) dx dt
∗
⇀

(
ˆ

Rn
f dνx,t

)
dx dt +

(
ˆ

Sn−1
f ∞ dν∞

x,t

)
λ( dx dt) (2.2)

for every continuous function f ∈ C(Rn) for which f ∞(θ) = lims→∞ s−2 f (sθ)
exists. A generalised Young measure (ν, λ, ν∞) thus consists of

• the oscillation measure ν, which is a probability measure on phase
space Rn accounting for the persistence of oscillations in the sequence
vn,

• the concentration measure λ = λt ⊗ dt, where λt is a measure in phys-
ical space Tn that is singular with respect to Lebesgue measure,

• the concentration-angle measure ν∞, a probability measure on Sn−1.

We will call (ν, λ, ν∞) an associated Young measure to the sequence vn, if
we can extract a subsequence for which (2.2) holds. In particular, this allows
us to obtain a limiting object for the limiting behaviour of sequences of the
Euler equations in the nonlinear term f (v) = v ⊗ v. We will frequently use
the notation ⟨νx,t, f ⟩ :=

´

Rn f dνx,t in the following.

Definition 2.2 We denote by F the space of test functions g that are of the form
g(ξ) = g̃(ξ)(1 + |ξ|2), where g̃ is a continuous and bounded function on Rn, and
for which the recession function g̃∞(ξ) = lims→∞ g̃(sξ) exists and is a continuous
function on Sn−1.

We have the following theorem about the limiting behaviour of uniformly
bounded sequences of L2-functions.

Theorem 2.3 ([19], [1]) Let (vk) be a bounded sequence in L∞((0, T); L2(Tn; Rn)).
There exists a subsequence (not reindexed), a nonnegative Radon measure λ and
parametrized families of probability measures ν ∈ L∞

w∗(Tn × (0, T);P(Rn)), ν∞ ∈
L∞

w∗(Tn × (0, T);P(λ; Sn−1)) such that:

g(vk)
∗
⇀ ⟨ν, g⟩+ ⟨ν∞, g∞⟩λ

in the sense of measures, for every g ∈ F . The concentration measure λ is singular
with respect to Lebesgue measure dx dt.

In addition, the concentration measure λ can be disintegrated in the form λ(dx, dt) =
λt(dx)⊗ dt, where λt is a non-negative measure on Tn, parametrized by time t.

13



2. Measure valued solutions

Having introduced the concept of Young measures, we return to example
2.1.

Example 2.4 We wish to compute the limiting Young measure corresponding to
the sequence vε of example 2.1, where

vε(x, t) =
(

u
( x2

ε
, x2

)
, 0, w

(
x1 − t u

( x2

ε
, x2

)
, x2

))
.

Let g ∈ F . By the homogenization equation (2.1), we have that

g(vε(x, t)) ⇀
ˆ 1

0
g (u (ξ, x2) , 0, w (x1 − t u (ξ, x2) , x2)) dξ.

This expression does not depend on the recession function g∞ of g. We thus observe
that there is no concentration effect in this example, and the lack of convergence
in the strong L2 sense arises from the persistence of oscillations in the limit. In
particular, we have λ = 0 in this case.

The oscillation measure νx,t on the other hand satisfies

ˆ

Rn
g(ξ) dνx,t(ξ) =

ˆ 1

0
g (u (ρ, x2) , 0, w (x1 − t u (ρ, x2) , x2)) dρ

=
ˆ 1

0
g ◦ Φx,t(ρ) dρ,

where Φx,t(ρ) = (u (ρ, x2) , 0, w (x1 − t u (ρ, x2) , x2)). It follows that νx,t =
(Φx,t)∗dρ is given by the push forward of the line element dρ under the map ρ -→
Φx,t(ρ).

Note that (as was to be expected from example 2.1) the limiting Young measure
(νx,t, λt, ν∞

x,t) is non-atomic!

2.3 A Generalized Solution Concept

Measure-valued solutions (MVS) are a generalisation of the usual weak solu-
tion concept based on generalized Young measures introduced by DiPerna-
Majda [19]. We give the slightly more general definition found in [22].

Definition 2.5 A Young measure v = (ν, λ, ν∞) is a measure-valued solution of
the incompressible Euler equations (1.1) with initial data σ, if it satisfies

ˆ ∞

0

ˆ

Tn
⟨νx,t, ξ⟩∂t ϕ + ⟨νx,t, ξ ⊗ ξ⟩ : ∇ϕ dx dt

+
ˆ ∞

0

ˆ

Sn−1
⟨ν∞

x,t, θ ⊗ θ⟩ : ∇ϕ λ( dx dt) +
ˆ

Tn
⟨σx, ξ⟩ϕ(x, 0) dx = 0

(2.3)

14
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for all ϕ ∈ C∞
c ([0,+∞)× Tn; Rn) with divϕ = 0, and

ˆ ∞

0

ˆ

Tn
⟨νx,t, ξ⟩ ·∇ψ = 0 (2.4)

for ψ ∈ C∞
c ([0,+∞)× Tn).

One of the main motivations for introducing MVS in [19] was the observa-
tion that the limiting behaviour of solutions to the Navier-Stokes equations
(1.7) in the zero-viscosity limit can naturally be captured by MVS. This is rel-
evant because a general existence theorem for the Navier-Stokes equations is
already known, and real physical flows will exhibit some viscous behaviour.

In 1934, Jean Leray [34] gave a proof of the existence of weak solutions vν to
the Navier-Stokes equations with kinematic viscosity ν and for given initial
data v0. His solutions satisfy the natural energy estimate expected from the
formal identity (1.8):

1

2
∥vν(t)∥

2
L2(T3) + ν

ˆ t

0
∥∇vν(s)∥

2
L2(T3) ds ≤

1

2
∥v0∥2

L2(T3), (2.5)

for all t ∈ [0,+∞).

The Euler equations now have a natural interpretation as the zero viscosity
limit of the Naviar-Stokes equations. One would therefore like to study the
limiting behaviour of the familiy {vν}ν>0 as ν → 0.

The main problem in taking this limit is that the a priori estimate for ∇vν

obtained from (2.5) blows up as ν → 0. The only uniform estimate we can
obtain from (2.5) apparently is the L2 estimate

∥vν(t)∥
2
L2(T3) ≤ ∥v0∥2

L2(T3).

However, without any a priori control on ∇vν, we cannot use compactness
arguments to show that there exists a limit vν → v as ν → 0 in any strong
(point-wise) sense. What can be said about the limiting behaviour is a con-
sequence of the following proposition due to DiPerna-Majda [19].

Proposition 2.6 Assume vε is a sequence of functions satisfying div(vε) = 0.

(a) Weak Stability: There exists a constant C > 0 such that
ˆ

Tn
|vε|

2 dx ≤ C, (2.6)

(b) Weak Consistency: For all divergence-free test functions ϕ ∈ C∞(Tn ×
(0, T); Rn),

lim
ε→0

ˆ

Tn×(0,T)
ϕt · vε +∇ϕ : vε ⊗ vε dx dt = 0. (2.7)
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2. Measure valued solutions

If v = (ν, λ, ν∞) is the associated generalized Young measure from Theorem 2.3,
then v is a measure-valued solution of the Euler equations on Tn × (0, T).

Proof Let vε be a sequence satisfying the assumptions of proposition 2.6.
By theorem 2.3 and the weak stability assumption (a), there exists a Young
measure v = (ν, λ, ν∞) and a subsequence vε (not reindexed) converging to
it, i.e. such that for any test function ϕ ∈ C∞

c ([0,+∞)× Tn) and for g ∈ F :
ˆ

Tn×(0,T)
g(vε)ϕ dx dt →

ˆ

⟨ν, g⟩ ϕ dx dt +
ˆ

Tn×(0,T)
⟨ν∞, g∞⟩ϕ dλ∞

t dt.

We apply this component-wise to g(v) = v (so g∞(θ) = 0) and with test
function ∂t ϕ, to obtain

ˆ

Tn×(0,T)
vε∂t ϕ dx dt →

ˆ

Tn×(0,T)
⟨ν, ξ⟩ ∂t ϕ dx dt. (2.8)

On the other hand, for the vector test function ∇ψ, where ψ ∈ C∞
c (Tn ×

(0, T)), we corrispondingly have
ˆ

Tn×(0,T)
vε ·∇ψ dx dt →

ˆ

Tn×(0,T)
⟨ν, ξ⟩ ·∇ψ dx dt. (2.9)

Further, for g(v) = v ⊗ v (so g∞(θ) = θ ⊗ θ) and with test function ∇ϕ, we
obtain

ˆ

Tn×(0,T)
vε ⊗ vε : ∇ϕ dx dt →

ˆ

Tn×(0,T)
⟨ν, ξ ⊗ ξ⟩ : ∇ϕ dx dt. (2.10)

Since div(vε) = 0, all the terms on the left hand side in (2.9) are = 0. Hence,
we also have

ˆ

Tn×(0,T)
⟨ν, ξ⟩ ·∇ψ dx dt = 0.

We see that the limiting Young measure satisfies the incompressiblity con-
straint (2.4). On the other hand, summing (2.8) and (2.10) and using the
weak consistency assumption (b), we find that

ˆ ∞

0

ˆ

Tn
⟨νx,t, ξ⟩∂t ϕ + ⟨νx,t, ξ ⊗ ξ⟩ : ∇ϕ dx dt

+
ˆ ∞

0

ˆ

Sn−1
⟨ν∞

x,t, θ ⊗ θ⟩ : ∇ϕ λ( dx dt) +
ˆ

Tn
⟨σx, ξ⟩ϕ(x, 0) dx

is the limit of
´

Tn×(0,T) vε∂t ϕ dx dt +
´

Tn×(0,T) vε ⊗ vε : ∇ϕ dx dt. But, by (b)

ˆ

Tn×(0,T)
vε∂t ϕ dx dt +

ˆ

Tn×(0,T)
vε ⊗ vε : ∇ϕ dx dt → 0.
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2.3. A Generalized Solution Concept

Thus, we conclude that
ˆ ∞

0

ˆ

Tn
⟨νx,t, ξ⟩∂t ϕ + ⟨νx,t, ξ ⊗ ξ⟩ : ∇ϕ dx dt

+
ˆ ∞

0

ˆ

Tn
⟨ν∞

x,t, θ ⊗ θ⟩ : ∇ϕ λ( dx dt) +
ˆ

Tn
⟨σx, ξ⟩ϕ(x, 0) dx = 0,

and the limiting Young measure v is a also solution of (2.3). This shows that
v is a MVS of the incompressible Euler equations. !

It is now easy to prove the following theorem.

Theorem 2.7 ([19]) Let v0 be given initial data for the Euler equations. For ε >

0, let vε be a Leray solution of the incompressible Navier-Stokes equations with

viscosity ε and initial data v0. Then, up to extraction of a subsequence, vε
∗
⇀ ν

converges to a MVS of the incompressible Euler equations with initial data v0 in
the sense of Young measures.

Proof It suffices to show that vε satisfies the assumptions of proposition 2.6.
By assumption, we have div(vε) = 0 for all ε. Weak stability follows from
the estimate (2.5).

The weak consistency follows from the following estimate: For any ϕ ∈
C∞(Tn × (0, T); Rn), we have

ˆ

Tn×(0,+∞)
ϕt · vε +∇ϕ : vε ⊗ vε dx dt = ε

ˆ

Tn×(0,+∞)
vε · ∆ϕ dx dt.

Thus, by Cauchy-Schwarz,
∣∣∣∣∣

ˆ

Tn×(0,+∞)
ϕt · vε +∇ϕ : vε ⊗ vε dx dt

∣∣∣∣∣ ≤ ε∥vε∥L2∥∆ϕ∥L2

≤ C(v0, ϕ)ε,

where C(v0, ϕ) is a constant depending on v0 and ϕ, but independent of ε.
This implies that

lim
ε→0

ˆ

Tn×(0,+∞)
ϕt · vε +∇ϕ : vε ⊗ vε dx dt = 0.

We conclude that vε satisfies weak consistency. Now we apply proposition
2.6 to conclude. !

In particular, this proves global existence of solutions to the Euler equations
in the measure-valued sense, using the corresponding result for weak Leray so-
lutions. However, even assuming that Leray solutions to the Navier-Stokes
equations are unique – based on the a priori estimate (2.5), there is no rea-
son to assume that the zero-viscosity limit will necessarily be an atomic
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2. Measure valued solutions

MVS. It is also unknown, whether there is a unique MVS obtained in the
zero-viscosity limit, or whether different subsequences might converge to
different MVS.

In general, measure-valued solutions have a large scope for non-uniqueness.
One reason for this is the moment closure problem: Equation (2.3) is an
evolution equation for the first moment of ν, only. Nothing is prescribed
for the evolution of higher order moments. The lack of uniqueness becomes
very clear upon rewriting (2.3) in terms of the mean ν(x, t) = ⟨νx,t, ξ⟩ and
the covariance matrix ⟨νx,t, (ξ − ν)⊗ (ξ − ν)⟩. Namely, ν is a MVS to (1.1),
provided that

∂tν + ν ·∇ν +∇p = −div(⟨νx,t, (ξ − ν)⊗ (ξ − ν)⟩), div(ν) = 0.

Since ⟨νx,t, (ξ − ν)⊗ (ξ − ν)⟩ is independent of ν, we see that the notion of
MVS can encompass not only the classical Euler equations, corresponding
to a complete lack of variance

⟨νx,t, (ξ − ν)⊗ (ξ − ν)⟩ = 0,

but also the Navier-Stokes equations, in which the fluctuations are modelled
by

⟨νx,t, (ξ − ν)⊗ (ξ − ν)⟩ ≈ −
1

2 Re

(
∇ν +∇νT −

2

3
div(ν) id

)
.

In view of this, additional criteria are required to filter out the physically
correct solution.

What these additional criteria should be, remains an open problem that we
cannot answer at the present time. Energy admissibility is an obvious phys-
ical constraint. Other constraints might for example be motivated by the
study of the hydrodynamic limit of more fundamental physical theories, no-
tably the Boltzmann equation. It has also been suggested that a unique
weak solution might be obtained by a principle of maximal energy dissipa-
tion. For arguments in support of this idea, we refer to [11]. In the context of
scalar conservation laws, such a minimizer is unique and known to coincide
with the usual Kruskov entropy solution.

2.4 Admissibility Criteria

2.4.1 Energy admissibility

To remedy this lack of uniqueness for MVS, one can try to impose additional
constraints on physically relevant solutions. This procedure for filtering
out unphysical weak solutions to recover uniqueness is well-known in the
theory of scalar conservation laws. There, one imposes so-called entropy
constraints on solutions, which reflect the fact that physical conservation
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laws describe the zero-viscosity limit of slightly diffusive processes. In the
context of the incompressible Euler equations, one such physical constraint
should clearly come from the principle of conservation of energy. In the
weak formulation, we might need to relax the equality ∥v(t)∥L2 = ∥v0∥L2 ,
valid for classical solutions to an inequality.

In accordance with [16], we give the following definition.

Definition 2.8 A MVS v = (ν, λ, ν∞) with initial data σ, is called admissible, if

ˆ

Tn
⟨νx,t, |ξ|

2⟩ dx + λt(T
n) ≤

ˆ

Tn
⟨σx, |ξ|2⟩ dx

for almost all t ∈ [0,+∞).

2.4.2 Weak-strong uniqueness

Although it is known that admissibility by itself does not recover uniqueness
of MVS [16], [14], we nevertheless have the following weak-strong unique-
ness result which implies in particular that if a classical solution exists, this
classical solution is the only admissible MVS [5].

Theorem 2.9 Let v ∈ C([0, T]; L2(Tn; Rn)) be a weak solution of (1.1) with

ˆ T

0
∥∇v +∇vT∥L∞ dt < ∞

and let (ν, λ, ν∞) be an admissible measure-valued solution with atomic initial data
σ = δv(x,0). Then νx,t = δv(x,t) and λ = 0, i.e. v is the unique admissible MVS in
this situation.

Proof To illustrate the basic idea, we will give a proof of the theorem under
an additional smoothness assumption on ν and leave the less illuminating
proof of the general case for the appendix.

Let us assume that the measure-valued solution ν is smooth both in space
and time, in the sense that (x, t) -→ ⟨νx,t, g⟩ is smooth for every g ∈ C∞(Rn),
|g(ξ)| ≤ C(1 + |ξ|2). Assume also that λ = 0.

If this is the case, then the equation ∂tνx,t + div⟨νx,t, ξ ⊗ ξ⟩ = 0 holds in the
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strong sense and, making use of the admissibility condition, we obtain

d

dt

ˆ

⟨νx,t,
1

2
|ξ − v|2⟩ dx =

d

dt

ˆ

⟨νx,t,
1

2
|ξ|2⟩ dx +

d

dt

ˆ

1

2
|v|2 dx

−
ˆ

∂t (ν · v) dx

≤ −
ˆ

∂t (ν · v) dx

= −
ˆ

(∂tν) · v + ν · (∂tv) dx

=
ˆ

div (⟨νx,t, ξ ⊗ ξ⟩) · v dx +
ˆ

ν · (v ·∇v) dx

= −
ˆ

⟨νx,t, ξ ⊗ ξ⟩ : ∇v dx +
ˆ

v ·∇v · ν dx.

Due to the incompressibility constraint on both ν and v, we have
´

ν ·∇v ·
v dx = 0 and −

´

v · ∇v · v dx = 0. Adding these two terms yields the
estimate

d

dt

ˆ

⟨νx,t,
1

2
|ξ − v|2⟩ dx ≤ −

ˆ [
⟨νx,t, ξ ⊗ ξ⟩ : ∇v − (v ⊗ ν) : ∇v

− (ν ⊗ v) : ∇v + (v ⊗ v) : ∇v
]

dx

= −
ˆ

⟨νx,t, (ξ − v)⊗ (ξ − v)⟩ : ∇v dx

= −
ˆ

⟨νx,t,
1

2
(ξ − v)⊗ (ξ − v)⟩ :

(
∇v +∇vT

)
dx

≤ ∥∇v +∇vT∥L∞

ˆ

⟨νx,t,
1

2
|ξ − v|2⟩ dx

By Gronwall’s inequality, this implies that
ˆ

⟨νx,t,
1

2
|ξ − v|2⟩ dx ≤ e

´ T
0 ∥∇v+∇vT∥L∞ dt

ˆ

⟨σx,
1

2
|ξ − v0|

2⟩ dx.

Since σx = δv0(x), the right hand side vanishes and we must have νx,t = δv(x,t)

and the claim follows for this special case. !

Owing to the local existence and smoothness theorem 1.4 for solutions of
(1.1), Theorem 2.9 guarantees in particular the existence and uniqueness
of admissible MVS with smooth initial conditions at least on a finite time
interval.

2.5 Non-uniqueness, non-well-posedness

The first results on measure-valued solutions, due to DiPerna and Majda,
have been known since the 80’s. More recent results due to DeLellis, Szeke-
lyhidi and co-workers have shed a new light on this solution concept. A
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(a) Complete flow v. (b) Coarse-grained flow v. (c) Fine-str. flow v′.

Figure 2.1: Illustration of the splitting of v = v+ v′ into a coarse-grained part
v and a fine-structure part v′. The illustrated splitting is based on splitting
by high/low Fourier modes.

detailed discussion of their results is definitely beyond the scope of this
Master’s thesis. We will contend ourselves with the (rough) underlying idea
and the statements of two of their main results.

The starting point is the following observation concerning the coarse-grained
portion of the flow. We split the velocity field v into two parts v = v + v′, as
illustrated by figure 2.1c

The component v represents the coarse-grained flow and is obtained by
some averaging procedure. The averaging map v -→ v is hereby supposed
to be linear and satisfy v = v (i.e. it is a projection). We obtain the evolution
equation satisfied by v by averaging the evolution equation for v:

∂tv + div(v ⊗ v) +∇p = −div((v − v)⊗ (v − v)), div(v) = 0.

The tensor

R = (v − v)⊗ (v − v) = v ⊗ v − v ⊗ v = v′ ⊗ v′

is commonly called the Reynolds stress tensor. It expresses the effect of the
local fluctuations v′ on the coarse-grained flow v.

Remark 2.10 This Reynolds averaging is very relevant in the engineering context.
In many situations, one is not interested in the smallest scale features of the flow,
but rather in the average values, so that e.g. the pressure of the fluid on a built
structure can be estimated. In such situations, it might be advisable to consider the
Reynolds averaged version of the Euler equations instead of the full system (1.1).
One can then try to find a model for the Reynolds tensor as a function of v, in
order to close the evolution equation. In this way, the coarse-grained flow v can be
approximately computed, without having to resolve all the small-scale features. This
is called large-eddy simulation (LES). For a detailed discussion of LES, see [44].

From the perspective of MVS, we observe that every MVS corresponds to a
Reynolds averaged solution, where

v(x, t) = ⟨νx,t, ξ⟩, R(x, t) = ⟨νx,t, (ξ − v(x, t))⊗ (ξ − v(x, t))⟩ .
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The idea of Szekelyhidi and DeLellis is now to start from a Reynolds av-
eraged version of the Euler equations with a Reynolds stress R, and then
to reintroduce local fluctuations step by step. Thus, given v satisfying an
equation

∂tv + div(v ⊗ v) +∇p = −div(R), div(v) = 0.

with suitable R, they show how to construct v′ via the introduction of local
fluctuations. These fluctuations are constructed so that the resulting v =
v + v′ is closer to being a solution of the original Euler equations in the
sense that v solves

∂tv + div(v ⊗ v) +∇p = −div(R), div(v) = 0.

with R < R. After an infinite number of such perturbation steps, it is shown
that R → 0 and that the limit (obtained by adding up all perturbations) is
a weak solution of the incompressible Euler equations. Their construction
involves infinitely many arbitrary choices, which ultimately lead to the non-
uniqueness of the limit.

We cite two theorems. The first shows that non-uniqueness is generic in L2.

Theorem 2.11 ([14]) Let n ≥ 2. There exist initial data v0 ∈ L∞ ∩ L2 for
which there are infinitely many bounded solution of (1.1) which are strongly L2-
continuous and satisfy the admissibility constraint. Furthermore, the set of such
wild initial data is dense in the space of L2 solenoidal vector fields.

The second theorem shows that weak solutions and measure-valued so-
lutions satisfying the admissibility constraint are, in a very precise sense,
equally badly behaved.

Theorem 2.12 ([48]) Let (ν, λ, ν∞) be a measure-valued solution of the incom-
pressible Euler equations. There exists a sequence of weak solutions vk with bounded
energy converging to (ν, λ, ν∞) in the sense of Young measures.

In particular, we can interpret this result as saying that a solution concept
based on Young measures is just as good or bad as the more commonly
accepted weak solution concept, at least from a mathematical point of view.

2.6 Discussion

In this chapter, we have reviewed the concept of measure-valued solutions
for the incompressible Euler equations which was introduced by DiPerna-
Majda [19]. We have given a proof, which first appeared in [19], that Leray
solutions to the incompressible Navier-Stokes equations converge to measure-
valued solutions of the Euler equations in the zero viscosity limit. In par-
ticular, this provides a global existence result for the incompressible Euler
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equations in the measure-valued sense. We have also discussed, how the
known a priori estimates for the Navier-Stokes equations could indicate that
measure-valued solutions are a natural concept in the context of turbulence.
Uniqueness questions for measure-valued solutions have also been consid-
ered. In particular, we provided a proof that energy admissibility implies
weak-strong uniqueness. This result is due to Brenier-Szekelyhidi-DeLellis
[5].

We finished this chapter with a very brief discussion of recent non-uniqueness
results due to Szekelyhidi, De Lellis and coworkers, as well as their connec-
tion to measure-valued solutions.
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Chapter 3

Spectral Method

3.1 A Numerical Scheme

In this section, we are going to describe a semi-discrete spatial discretisation
scheme based on spectral methods and we prove convergence to an energy
admissible measure-valued solution of the incompressible Euler equations.
We will restrict our attention to flows with periodic boundary conditions
throughout.

3.1.1 The Euler equations in Fourier space

Let (v, p) be a solution of the Euler equations (where we formally write
div(v ⊗ v) = v ·∇v, since div(v) = 0):

{
∂tv + v ·∇v +∇p = 0,

div(v) = 0.
(3.1)

defined on Tn × [0,+∞) (i.e. n space dimensions, with periodic boundary
conditions).

Consider the spatial Fourier expansion v(x, t) = ∑k v̂k(t)eikx of v, with coef-
ficients given by

v̂k(t) =
1

(2π)n

ˆ

Tn
v(x, t) e−ikx dx.
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If v is a solution of (3.1), then the above expression yields

d

dt
v̂k =

1

(2π)n

ˆ

Tn
∂tv e−ikx dx

= −
1

(2π)n

ˆ

Tn
(v ·∇v +∇p) e−ikx dx

= −
1

(2π)n

ˆ

Tn
∑
ℓ,m

(v̂ℓ · im)v̂mei(ℓ+m−k)x

−
1

(2π)n

ˆ

Tn
∑
ℓ

p̂ℓiℓei(ℓ−k)x dx

= (−i) ∑
ℓ,m

ℓ+m−k=0

(v̂ℓ · m)v̂m − i p̂kk.

We note that div(v) = i ∑k(v̂k · k)eikx = 0 is equivalent to v̂k ⊥ k for all k.
Using m = k − ℓ and v̂ℓ ⊥ ℓ for all terms in the summation, we can rewrite
the last equation in the form

d

dt
v̂k = (−i) ∑

ℓ,m
ℓ+m−k=0

(v̂ℓ · k)v̂m − i p̂kk. (3.2)

This is the Fourier space version of the Euler equations (1.1). It becomes
evident that the pressure term −i p̂kk, which is collinear to k, serves as the
orthogonal L2 projection of the non-linear term

(−i) ∑
ℓ,m

ℓ+m−k=0

(v̂ℓ · k)v̂m

to the orthogonal complement of k, thus keeping v divergence-free.

For the coefficient v̂k with k = 0, equation (3.2) yields d
dt v̂0 = 0. This cor-

responds to conservation of momentum. Using Galilean invariance for the
incompressible Euler equations, we can without loss of generality assume
that v̂0 = 1

(2π)n

´

Tn v dx = 0, in the following.

3.1.2 Semi-discretization in Space

To obtain a discretized approximation to system (3.2), we restrict our at-
tention to only the Fourier modes below some threshold N. We thus con-
sider divergence-free fields of the form v(x, t) = ∑|k|≤N v̂k(t) eikx, and we
have to project the non-linear term to this space. We denote the correspond-
ing projection operator by PN . The projection operator is a combination of
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3.2. Convergence to MVS

both Fourier truncation and projection to the space of divergence-free fields.
More explicitely, PN is given by

PN

(

∑
k∈Z2

ŵkeikx

)

= ∑
|k|≤N

(
ŵk −

ŵk · k

|k|2
k

)
eikx,

yielding a divergence-free vector field with Fourier modes |k| ≤ N. We
also add a small amount of numerical viscosity to ensure the stability of the
resulting scheme.

This idea results in the following scheme: For given initial data v0(x), we ob-
tain an approximate solution vN(x, t) ≈ v(x, t) by solving the finite-dimensional
problem

{
∂tvN + PN (vN ·∇vN) = ν∆vN ,

vN(x, 0) = PNv0(x).
(3.3)

In this scheme, the small number ν > 0 is an artificial numerical viscosity
that depends on N and ν → 0 as N → ∞.

A refined version of this basic scheme was introduced by Tadmor [50]. In
that version, we choose a small number ε > 0 and an integer m ≤ N. The
integer m serves as a threshold between small and large Fourier modes.
We apply a viscous regularization only to the large Fourier modes. With a
judicious choice of ε = ε(N), m = m(N), the resulting method can be shown
to be spectrally accurate [51], [2]. We obtain the corresponding approximate
system

{
∂tvN + PN (vN ·∇vN) = ε div (QN∇vN) ,

vN(x, 0) = PNv0(x),
(3.4)

where QN = I − Pm, denotes the projection onto the higher modes. System
(3.4) includes (3.16) for the special choice m = 0, ε = ν.

3.2 Convergence to MVS

Multiplying equation (3.4) by vN and integrating over space, we obtain after
an integration by parts, and using also the fact that all boundary terms
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vanish due to the periodic boundary conditions,

d

dt

1

2

ˆ

T2
|vN |

2 dx =
ˆ

T2
−vN · PN (vN ·∇vN) + vN · ε div ((I − Pm)∇vN) dx

=
ˆ

T2
−PNvN · (vN ·∇vN)− ε∇vN : (I − Pm)∇vN dx

=
ˆ

T2
−vN · (vN ·∇vN)− ε(I − Pm)∇vN : (I − Pm)∇vN dx

=
ˆ

T2
−div

(
1

2
|vN |

2vN

)
− ε|(I − Pm)∇vN |

2 dx

= −ε

ˆ

Tn
|(I − Pm)∇vN |

2 dx,

i.e. we have

d

dt

ˆ

Tn

1

2
|vN |

2 dx + ε

ˆ

Tn
|(I − Pm)∇vN |

2 dx = 0. (3.5)

Integrating in time from 0 to t, we obtain

Lemma 3.1 If vN is the solution of the semi-discrete system (3.4), then

1

2
∥vN∥

2
L2 + ε

ˆ t

0
∥(I − Pm)∇vN∥

2
L2 dt =

1

2
∥PNv0∥

2
L2 ≤

1

2
∥v0∥

2
L2 . (3.6)

In particular, we have ∥vN∥L2 ≤ ∥v0∥L2 , independently of N, m, ε.

The simple estimate of Lemma 3.1 is already the main step towards prov-
ing convergence of our semi-discretized scheme to a MVS. To finish our
proof, we use the result of Proposition 2.6 about convergence to MVS due
to DiPerna, Majda [19, Proposition 5.1].

Let us check that the conditions of Theorem 2.3 are satisfied for the sequence
generated by the spectral scheme. We have already seen in Lemma 3.1 that

ˆ T

0

ˆ

Tn
|vN(x, t)|2 dx dt ≤ T∥v0∥

2
L2 .

Thus, condition (A), equation (2.6), is satisfied for all N. It remains to
show that (B), equation (2.7), is also satisfied. Rewriting (3.4) and using
that div(vN) = 0, we have

∂tvN +div (vN ⊗ vN)+∇pN = div ((I − PN)(vN ⊗ vN))+ ε div ((I − Pm)∇vN) .
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3.2. Convergence to MVS

Hence, for any divergence-free test function ϕ ∈ C∞
c (Tn × (0, T); Rn) we

obtain after an integration by parts

ˆ

Tn×(0,T)
∂t ϕ · vN +∇ϕ : vN ⊗ vN dx dt = −

ˆ

Tn×(0,T)
ϕ · (∂tvN + div(vN ⊗ vN)) dx dt

= −
ˆ

Tn×(0,T)
ϕ · div ((I − PN) (vN ⊗ vN)) dx dt

− ε

ˆ

Tn×(0,T)
ϕ · div ((I − Pm)∇vN) dx dt

= (A) + (B).

Now

(A) = −
ˆ

Tn×(0,T)
ϕ · div ((I − PN) (vN ⊗ vN)) dx dt

=
ˆ

Tn×(0,T)
∇ϕ : ((I − PN) (vN ⊗ vN)) dx dt

=
ˆ

Tn×(0,T)
∇(I − PN)ϕ : (vN ⊗ vN) dx dt

We notice that for a constant Cn depending on the space dimension n only:

|vN |L∞ ≤ ∑
|k|≤N

|(̂vN)k| ≤ CnNn/2
(

∑
|k|≤N

|(̂vN)k|
2
)1/2

= CnNn/2∥vN∥L2 ≤ CnNn/2∥v0∥L2 .

Thus we can continue to estimate the term (A) as

|(A)| ≤
ˆ T

0
∥vN∥L∞

x
∥vN∥L2

x
∥∇(I − PN)ϕ∥L2

x
dt

≤ CnNn/2∥v0∥
2
L2

ˆ T

0
∥∇(I − PN)ϕ∥L2

x
dt

≤ Cn∥v0∥
2
L2

ˆ T

0
∥(I − PN)ϕ∥Hn/2+1

x
dt

Since ϕ is smooth, it follows that
´ T

0 ∥(I − PN)ϕ∥Hn/2+1
x

dt → 0 as N → ∞.

Hence, we obtain that (A) → 0.
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The term (B) is handled similarly. We have

(B) = −ε

ˆ

Tn×(0,T)
ϕ · div ((I − Pm)∇vN) dx dt

= ε

ˆ

Tn×(0,T)
div ((I − Pm)∇ϕ) · vN dx dt

= ε

ˆ

Tn×(0,T)
((I − Pm)∆ϕ) · vN dx dt.

This yields

|(B)| ≤ ε

ˆ T

0
∥(I − Pm)ϕ∥H2

x
∥vN∥L2 dt ≤ ε∥v0∥L2

ˆ T

0
∥(I − Pm)ϕ∥H2

x
dt,

and again we see that the right hand side again converges to 0, if either
ε → 0 or m → ∞.

We conclude that

Theorem 3.2 Let v0 ∈ L2(Tn; Rn) be a given divergence-free vector field. Let vN,
N ∈ N, be obtained by solving (3.4). Let ε = ε(N) → 0, m = m(N) → ∞. Then,
up to extraction of a subsequence, vN converges in the sense of Young measures to
an admissible measure-valued solution v = (µ, ν, ν∞) of the Euler equations with
initial data v0, in the sense of Definitions 2.5, 2.8.

Proof By our discussion above, the assumptions of Theorem 2.3 are fulfilled.
Furthermore, we observe that, by construction, vN(x, 0) = PNv0(x) → v0(x)
in L2. Admissibility follows from the fact that ∥vN∥L2 ≤ ∥v0∥L2 for all N.
The result follows. !

Remark 3.3 The arguments used in the derivation of the estimates for Theorem 3.2
also yield uniform Lipschitz continuity vN ∈ Lip([0, T]; H−n/2−1(Tn; Rn)) for
n ≥ 2. Indeed, we have

∂tvN = −PNdiv(vN ⊗ vN) + εdiv((I − Pm)∇vN). (3.7)

The H−n/2−1-bound for the first term is essentially obtained in the estimate for
(A), while the estimate for (B) implies an upper bound on the H−2-norm. From
the inclusion H−2 ⊂ H−n/2−1, we obtain an upper bound for the right hand side
of (3.7), and upon integration in time, the claimed Lipschitz continuity of vN in
H−n/2−1 with respect to time. This shows that the spectral scheme (3.4) produces
an approximate-solution sequence in the sense of DiPerna, Majda [20].

We should point out that there is some evidence to indicate that the measure-
valued solution obtained from Theorem 3.2 could depend on the particular
choice of ε(N) → 0, m(N) → ∞. Frisch et al. [30] have observed reso-
nance phenomena in the solutions of the purely Fourier truncated Euler
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3.2. Convergence to MVS

system (3.4) (corresponding to the choice ε = 0), which occur after some
finite time. An analogous effect is also observed to occur when solving the
purely Fourier truncated Burgers equation after shock formation. In the
Burgers case, these spurious oscillations are due to the fact that the entropy
solution exhibits anomalous energy dissipation in the shocks, which is not
reflected in the energy-conservative truncated Fourier approximation. Thus,
the purely Fourier truncated can not converge to the entropy solution in the
limit. For an analytical discussion of the Burgers case and the importance
of a sufficient amount of energy dissipation in the numerical approximation
using the spectrally vanishing viscosity method, see also [2].

The fact that this same effect occurs for both systems is intriguing. In the
Burgers case it is due to the formation of shocks, whereas in the case of the
incompressible Euler equations it occurs because of the turbulent motion
of the fluid and the corresponding formation of small scale features. Both
effects are also associated with anomalous energy dissipation [42]. This
might be seen as an indication that there should indeed a close analogy
between the two phenomena of shock formation and the generation of small
scale features in turbulence.

Using the weak-strong uniqueness result obtained in Theorem 2.9, we obtain
the following convergence result for the spectral scheme.

Corollary 3.4 Let v be a classical solution of the Euler equations on [0, T] × Tn

with initial data v0, such that
´ T

0 ∥∇v+∇vT∥L∞ dt < ∞. Then any approximating
sequence vN solving (3.4), where ε = ε(N) → 0, m = m(N) → ∞, converges to v
strongly in L2.

Proof By Theorem 3.2, for any subsequence of {vN} we can extract a further
subsequence converging to an admissible MVS of (1.1). By the weak-strong
uniqueness result of Theorem 2.9, the associated Young measure is atomic
and concentrated on v. It follows that each subsequence contains a further
subsequence converging strongly in L2 to v. This implies that also vN → v
strongly in L2. !

Remark 3.5 Combining Corollary 3.4 with classical existence, uniqueness and reg-
ularity results for the Euler equation in the two-dimensional case yields the conver-
gence of the spectral scheme in L2 for Lipschitz continuous initial data.

We can also give a proof of global existence of MVS to the incompressible Eu-
ler equations that is independent of the proof that follows from combining
the global existence result for Leray solutions of the Navier-Stokes equations
and the convergence result for the zero-viscosity limit, theorem 2.7.

Corollary 3.6 Let v0 ∈ L2(Tn; Rn) be divergence-free initial data for the incom-
pressible Euler equations. There exists a global measure-valued solution (ν, λ, ν∞)
with initial data given by δv0(x).
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3. Spectral Method

Proof For each N ∈ N, let vN(x, t) be the approximate solution obtained
from the spectral scheme (3.4). By theorem 3.2, the sequence vN converges
up to extraction of a subsequence to a MVS (ν, λ, ν∞) with initial data given
by v0. In particular, a MVS (ν, λ, ν∞) with initial data given by v0 exists. !

3.2.1 An ensemble based algorithm to compute admissible mea-
sure valued solutions

Next, we will combine the spectral (viscosity) method with the ensemble
based algorithm of the paper [22] in order to compute admissible measure
valued solutions of the incompressible Euler equations. First, we assume
that the initial velocity field is an arbitrary Young measure i.e, v(x, 0) = σx,
which satisfies the divergence constraint in a weak sense. Then, an algo-
rithm for computing measure valued solutions is specified with the follow-
ing steps:

Algorithm 3.7

Step 1: Let v0 : Ω -→ L2(Tn; Rn) be a random field on a probability space
(Ω,F , P) such that the initial Young measure σ is the law of the random
field v0. The existence of such a random field can be shown analogous to [22,
proposition A.3].

Step 2: We evolve the initial random field v0 by applying the spectral (viscosity)
scheme (3.4) for every ω ∈ Ω to obtain an approximation vN(ω), to the
solution random field v(ω), corresponding to the initial random field v0(ω).

Step 3: Define the approximate measure-valued solution νN as the law of vN.

Then from proposition A. 3. 1 of the paper [22], νN is a Young measure.
Next, we show that these approximate Young measures will converge in the
appropriate sense to an admissible measure valued solution of the incom-
pressible Euler equations (1.1).

Theorem 3.8 Let the (kinetic) energy of the initial Young measure σ be finite i.e,
ˆ

Tn
⟨σx, |ξ|2⟩dx ≤ C < ∞,

then the approximate Young measure νN
x,t, generated by the algorithm 3.7 converges

(upto a subsequence) to an (admissible) measure valued solution (ν, λ, ν∞) of the
incompressible Euler equations (1.1).

Proof Given the initial bound on the energy and the fact that the energy
estimate (3.6) holds for every realization ω, it is straightforward to see that
for all T ∈ (0,+∞), we obtain

ˆ

D
|vN(ω)|2dxdt ≤ C(D), ∀ω ∈ Ω.
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3.2. Convergence to MVS

Here we have set D = Tn × (0, T). Given the fact that νN is the law of the
random field vN , the above estimate translates to

ˆ

D
⟨νN

x,t, |ξ|
2⟩dxdt ≤ C(D).

Therefore, by a straightforward modification of the Young measure theorem
of [1] (see recent paper [23]), we obtain as N → ∞, that (upto a subsequence),
νN converges (narrowly) to a (generalized) Young measure (ν, λ, ν∞), such
that

ˆ

D
⟨νN , g⟩ϕ dx dt →

ˆ

D
⟨νx,t, g⟩ϕ dx dt +

ˆ

D
⟨ν∞

x,t, g∞⟩ϕ λ( dx dt),

for all ϕ ∈ C∞
0 (D).

In particular, we can apply this to the particular choice g(ξ) = ξ with g∞ ≡ 0
and test function ∂t ϕ (for each component) to obtain,

ˆ

D
∂t ϕ · ⟨νN

x,t, ξ⟩ dx dt →
ˆ

D
∂t ϕ · ⟨νx,t, ξ⟩ dx dt.

Similarly, with g(ξ) = ξ ⊗ ξ, g∞(θ) = θ ⊗ θ and test function ∇ϕ, we obtain
ˆ

D
∇ϕ : ⟨νN

x,t, ξ ⊗ ξ⟩ dx dt →
ˆ

D
∇ϕ : ⟨νx,t, ξ ⊗ ξ⟩ dx dt+

ˆ

D
∇ϕ : ⟨ν∞

x,t, θ ⊗ θ⟩ λ( dx dt).

Furthermore, the consistency property (2.7) also holds for every ω ∈ Ω,
therefore,

lim
N→∞

ˆ

D
∂t ϕ · vN(ω) +∇ϕ : vN(ω)⊗ vN(ω) dx dt = 0, ∀ω ∈ Ω. (3.8)

In terms of the Young measure νN , the above consistency is expressed as,

lim
N→∞

ˆ

D
∂t ϕ · ⟨νN

x,t, ξ⟩+∇ϕ : ⟨νN
x,t, ξ ⊗ ξ⟩ dx dt = 0. (3.9)

Thus, we obtain,
ˆ

D
∂t ϕ · ⟨νx,t, g⟩ dx dt +

ˆ

D
∇ϕ : ⟨νx,t, ξ ⊗ ξ⟩ dx dt +

ˆ

D
∇ϕ : ⟨ν∞

x,t, θ ⊗ θ⟩ λ( dx dt)

= lim
N→∞

ˆ

D
∂t ϕ · ⟨νN

x,t, ξ⟩+∇ϕ : ⟨νN
x,t, ξ ⊗ ξ⟩ dx dt = 0.

Similarly, we obtain for any ψ ∈ C∞
0 (D) that

ˆ

D
∇ψ · ⟨νx,t, ξ⟩ dx dt = lim

N→∞

ˆ

D
∇ψ · ⟨νN

x,t, ξ⟩ dx dt = 0,

since div(vN(ω)) = 0, ∀ω ∈ Ω. Thus, we prove that νN is a measure valued
solution of the incompressible Euler equations (1.1). Admissibility follows
as a straightforward consequence of the energy estimate (3.6). !

33



3. Spectral Method

3.2.2 Approximate measure valued solutions for atomic initial data

The case of atomic initial data i.e σ = δv0 with a divergence free velocity
field v0 ∈ L2 is particularly interesting for applications as it represents the
zero uncertainty (in the initial conditions) limit. To compute the measure
valued solutions associated with atomic initial data, we use the following
algorithm,

Algorithm 3.9 Let (Ω,F , P) be a probability space and let X : Ω → L2(Tn; Rn)
be a random field satisfying ∥X∥L2(Tn) ≤ 1 P-almost surely.

Step 1: Fix a small number ε > 0. Perturb v0 by defining vε
0(ω, x) := v0(x) +

εX(ω, x). Let σε be the law of vε
0.

Step 2: For each ω ∈ Ω and ε > 0, let vε
N(ω) be the solution computed by the

spectral method (3.4), corresponding to the initial data vε
0.

Step 3: Let νN,ε be the law of vε
N.

Theorem 3.10 Let {νN,ε} be the family of approximate measure valued solutions
constructed by algorithm 3.9. Then there exists a subsequence (Nn, εn) → 0 such
that

νNn,εn → (ν, λ, ν∞),

with (ν, λ, ν∞) being an admissible measure valued solution of the incompressible
Euler equations (1.1) with atomic initial data v0.

The proof of this theorem is a straightforward extension of the proof of
theorem 3.2 and we omit it here.

Remark 3.11 There is an analogy between the zero viscosity limit and the zero un-
certainty limit considered above. It is commonly argued that in real-world systems,
viscosity effects are unavoidable. In order to obtain the correct solution in e.g. the
context of conservation laws, a small amount of viscosity should therefore be added
to the equations. In situations where viscosity effects are assumed to play a sec-
ondary role, the zero viscosity viscosity limit must then be considered and will lead
to the correct physical solution.

Along the same lines it can be argued that in real-world systems, uncertainties in
the initial data, arising e.g. from uncertainties in measurements, are unavoidable.
To account for this fact a small amount of uncertainty should be introduced. If the
uncertainties are assumed to be negligible, the correct solution should correspond-
ingly be obtained in the zero uncertainty limit as described in algorithm 3.9 and
theorem 3.10.
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3.2. Convergence to MVS

Figure 3.1: Illustration of the ‘zero uncertainty limit’ in the initial data.

3.2.3 Computation of space-time averages

The algorithms 3.7 and 3.9 compute space-time averages with respect to the
measure νN ,

ˆ

Tn

ˆ

R+

ϕ(x, t)⟨νN
x,t, g⟩dxdt, (3.10)

for smooth test functions ϕ and for admissible functions g, i.e. g ∈ C∞(Rn)
for which g∞(θ) = limr→∞ g(rθ)/r2 exists and g∞ ∈ C(Sn−1) is continuous.

Following [22], we will compute space-time averages (3.10) by using a Monte-
Carlo sampling procedure To this end, we utilize the equivalent representa-
tion of the measure νN as the law of the random field vN :

⟨νN
x,t, g⟩ :=

ˆ

Rn

g(ξ) dνN
(x,t)(ξ) =

ˆ

Ω

g(vN(ω; x, t)) dP(ω). (3.11)

We will approximate this integral by a Monte Carlo sampling procedure:

Algorithm 3.12 Let N > 0 and let M be a positive integer. Let σ be the initial
Young measure and let v0 be a (spatially divergence free) random field v0 : Ω ×
Tn → Rn such that σ is the law of v0.

Step 1: Draw M independent and identically distributed random fields vk
0 for k =

1, . . . , M.

Step 2: For each k and for a fixed ω ∈ Ω, use the spectral method (3.4) to numeri-
cally approximate the incompressible Euler equations with initial data vk

0(ω).
Denote vN,k(ω) as the computed solution.

Step 3: Define the approximate measure-valued solution

νN,M :=
1

M

M

∑
k=1

δvN,k(ω).

For every admissible test function g, the space-time average (3.10) is then
approximated by

ˆ

Tn

ˆ

R+

ϕ(x, t)⟨νN
x,t, g⟩dxdt ≈

1

M

M

∑
k=1

ˆ

R+

ˆ

Tn
ϕ(x, t)g

(
vN,k(ω; x, t)

)
dxdt.

(3.12)
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The convergence of the approximate Young measures νN,M to a measure
valued solution of the incompressible Euler equations (1.1) as N, M → ∞

follows as a consequence of the law of large numbers. The proof is very
similar to that of theorem 4.9 of [22].

3.3 Simplifications in 2D

Let us now specialize our discussion to the case of fluid flow in two dimen-
sions. We recall that the divergence-free condition div(v) = 0 is equivalent
to the requirement that v̂k ⊥ k for all Fourier coefficients v̂k of v. In two
spatial dimensions, this implies that we can write v̂k = ak Jk for scalar coeffi-
cients ak and where J denotes the rotation matrix

J =

(
0 −1
1 0

)
.

The corresponding evolution equations for the coefficients ak are found by
taking the inner product of d

dt v̂(k) with J k/k2. This yields the following
equivalent form of (3.2):

dak

dt
=

(−i)
k2 ∑

ℓ,m
ℓ+m−k=0

(Jk · ℓ)(k · m) aℓam. (3.13)

It is now natural to define a (real-valued) function ψ by

ψ(x, t) = (−i)∑
k

ak(t)e
ikx.

This function is usually referred to as the stream function.

If ∇⊤ denotes the operator (−∂x2 , ∂x1)
T = J∇ acting on functions, then v

is given by v = ∇⊤ψ. Thus, ψ determines v uniquely. On the other hand,
given v, we can recover ψ by solving ∆ψ = curl v. This equation has a unique
solution for sufficiently smooth v if we require in addition that

´

ψ dx = 0.

We can now rewrite the equations of fluid motion in terms of ψ. If v solves
(1.1), then ψ = ∆−1 curl v solves

∂tψ + ∆−1 curl(v ·∇v) + ∆−1 curl∇p = 0.

Clearly, curl∇ = 0, and the pressure term drops out. Let us consider the
nonlinear term in more detail. A short (formal) calculation reveals that

curl(v ·∇v) = ∇⊤ψ ·∇(∆ψ).

We thus obtain

∂tψ + ∆−1∇⊤ψ ·∇(∆ψ) = 0.
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or the equivalent formulation

∂t(∆ψ) +∇⊤ψ ·∇(∆ψ) = 0.

This last equation is actually an equation for the vorticity η = curl v = ∆ψ.
According to these calculations, we once again arrive at the vorticity formula-
tion of the Euler equations (1.16), which we reproduce here for convenience.

{
∂tη + v ·∇η = 0,

curl v = η, div v = 0.
(3.14)

Corresponding to (3.4), we also obtain the semi-discretized version for to the
vorticity formulation.

{
∂tηN + PN (vN ·∇ηN) = ε div ((I − Pm)∇ηN) ,

ηN(x, 0) = curl PNv0(x).
(3.15)

The system of equations (3.14) is formally equivalent to (1.1).1 The important
observation for us is the following: Even though the two full systems of
equations might not be strictly speaking equivalent, their Fourier truncated
versions are equivalent.

Lemma 3.13 The truncated systems with spectrally small vanishing viscosity (3.4)
for vN and (3.15) for ηN are equivalent.

Proof Let vN and ηN be solutions of (3.4) and (3.15), respectively. Since vN

is smooth and because the projection operators PN commute with differenti-
ation, we can take the curl of (3.4) to obtain

{
∂t curl vN + PN (curl(vN ·∇vN)) = ε div ((I − Pm)∇ curl vN) ,

curl vN(x, 0) = curl PNv0(x).
(3.16)

We note that curl(vN ·∇vN) = vN ·∇ curl vN . Hence, both ηN and curl vN

satisfy system (3.15). By classical uniqueness results for ODEs, we must
have ηN = curl vN and the two systems are seen to be equivalent. !

In particular, by Lemma 3.13 we may use the apperently simpler system
(3.15) for our numerical computations, rather than the larger system (3.4).
This reduces the computational cost and was furthermore observed to lead
to better stability properties of the resulting fully discretized numerical
scheme. In particular, in the vorticity formulation there is no need to project
to the space of divergence-free fields after each time step, which would in-
volve the solution of a Poisson equation.

1The two equations are strictly equivalent only if the flow is sufficiently smooth.
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3. Spectral Method

We would like to point out one subtlety concerning the previous discus-
sion. Numerically, we obtain the initial conditions vN(x, 0) not by truncat-
ing the exact Fourier series of v0 (which is usually not available), but rather
by sampling v0 on the numerical grid and finding the unique trigonomet-
ric polynomial which coincides with v0 at these points. Let us denote the
corresponding pseudo-spectral truncation-projection by P̃N . Projection with
P̃N introduces an aliasing error which is usually very small for smooth v0,
but may not necessarily be negligible otherwise. In particular, we numeri-
cally would not get the same initial conditions for the coefficients v̂k = ak Jk,
|k| ≤ N, if we simply took ωN(x, 0) = P̃Nω0(x) = P̃N∇⊥ · v0(x) as our ini-
tial value, because the resulting aliasing error ∥(PN − P̃N)(∇⊥ · v0)∥L2 might
be very large.

This problem will not occur if we take ωN(x, 0) = ∇⊥ · P̃Nv0(x), instead. In
the latter case, the two discretizations are entirely equivalent.

3.4 Time stepping.

In the previous sections, we have discussed schemes for the spatial dis-
cretization of the incompressible Euler equations, and based on this, the
computation of MVS. To obtain a fully discretized scheme, we also need a
time-stepping procedure.

Our preferred time-stepping scheme is a strong stability preserving (SSP)
Runge-Kutta scheme of order 3, a discussion of which can be found in [27].
It approximates v(n∆t), n = 0, 1, . . . , of the ODE v′ = L(v), with initial data
v0, by v0 := v0 and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṽn = vn + ∆tL(vn),

˜̃vn =
3

4
vn +

1

4
ṽn +

1

4
∆tL(ṽn),

vn+1 =
1

3
vn +

2

3
˜̃vn +

2

3
∆tL( ˜̃vn).

(3.17)

This scheme can be shown to be formally of 3rd order.
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Chapter 4

Numerical experiments

In this section, we will provide numerical experiments that demonstrate the
theory developed in the previous section (particularly the convergence of
algorithm 4.2).

4.1 Rotating vortex patch

The rotating vortex patch can be simulated by consider the two-dimensional
Euler equations with initial data with piecewise constant vorticity

η0(x) =

{
1, (x1 − π)2 + (x2 − π)2 ≤ π/2,

0, otherwise.

Since our objective is to test the algorithm 4.2, we consider a perturbed
version of the rotating vortex patch (see step 1 of algorithm 4.2). The per-
turbation is achieved as follows. In radial coordinates about the center
(x1, x2) = (π, π), we define a random perturbation

pδ(θ) = 1 +
K

∑
k=1

ak sin(bk + (20 + k)θ),

with a1, . . . , aK ∈ [0, 1], b1, . . . , bK ∈ [0, 2π] i.i.d. random variable chosen
according to a uniform distribution with renormalization ∑

K
k=1 |ak|2 = δ. In

our computations, we made the choice K = 20. The perturbed initial data
depending on the perturbation parameter δ > 0 are given by their vorticity
ηδ

0(r, θ) = η0(r − pδ(θ), θ). The corresponding velocity field vδ
0 is obtained

from the Biot-Savart law.

First, we fix a realization of the random field vδ
0(ω) by setting δ = 0.0128.

This initial data is evolved using the spectral (viscosity) method with ε =
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4. Numerical experiments

(a) N = 128 (b) N = 256

(c) N = 512 (d) N = 1024

Figure 4.1: Rotating vortex patch: Illustration of the sample convergence
with respect to the number of Fourier modes N.

10−5, m = 0. The resulting system of ODE’s is approximately solved using
the SSP Runge-Kutta scheme (3.17) with time step ∆t = 1/(2N).

The results are then presented in figures 4.1 and 4.2. In figure 4.1, we present
the vorticity as the number of modes N is increased. We see that the vortex
patch is well resolved with increasing resolution. Next, we compute the
differences between successive resolutions,

∥vδ
N(t)− vδ

N/2(t)∥
2
L2 (4.1)

at different time levels. This difference, shown in figure 4.2 (left) clearly
converges as N → ∞. Consequently, the sequence of approximations (for a
single realization) forms a Cauchy sequence and hence converges.

Since, the algorithm 4.2 is based on setting the perturbation amplitude δ → 0,
we fix the number of approximating Fourier modes N = 512 and decrease δ.
The corresponding difference between two successive values of δ is shown
in figure 4.1 (right) and shows that the approximations clearly converge
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4.1. Rotating vortex patch

(a) Cauchy rates with respect to N at
constant perturbation magnitude δ =
0.0128.

(b) Cauchy rates with respect to δ at
constant grid size N = 512.

Figure 4.2: Convergence behaviour of the rotating vortex patch for a single
sample.

Figure 4.3: Rotating vortex patch: PDF with respect to time t = 0, 0.5, 1, 2, 4
at two different delta values δ = 0.512 (top), δ = 0.0064 (bottom) at x =
2π · (0.65, 0.55) illustrating atomicity

as the perturbation amplitude is reduced. Thus, for each fixed realization
(sample), we already observe convergence of the spectral method as well as
stability of the computed solutions with respect to perturbations in initial
data. Although the initial data is not smooth (the vorticity is discontinuous),
this convergence and stability are not surprising as the solution does not
possess any fine scale features. Consequently, the computed measure valued
solution ν is atomic as shown in figure 4.3.
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4. Numerical experiments

4.2 Flat vortex sheet

Next, we consider a flat vortex sheet as a prototype for two-dimensional
Euler flows with singular behavior. To this end, the underlying initial data
is,

v0(x) =

{
(−1, 0), if π/2 < x2 ≤ 3π/2,

(1, 0), if x2 ≤ π/2 or 3π/2 < x2,
(4.2)

on a periodic domain [0, 2π]2. The initial vorticity in this case is a bounded
measure.

It is straightforward to check that the initial data for the flat vortex sheet
(4.4) is a weak solution of the two-dimensional Euler equations. In fact, it
is a steady state (stationary) solution. However, this datum also belongs to
the class of wild initial data in the sense of Szekelyhidi [49]. Thus, infinitely
many admissible weak solutions were constructed in [49], corresponding to
this initial datum. See theorem 2.11.

Our objective is to compute the (admissible) measure valued solution, cor-
responding to this atomic initial data, by employing the algorithm 4.2. To
this end, we mollify the initial data v0 to obtain a smooth approximation

v0
ρ =

(
π1v0

ρ, π2v0
ρ

)
of (4.4). Concretely, we used

π1v0
ρ(x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

tanh

(
x2 − π/2

ρ

)
, (x2 ≤ π)

tanh

(
3π/2 − x2

ρ

)
, (x2 > π)

⎫
⎪⎪⎬

⎪⎪⎭
, π2v0

ρ(x1, x2) = 0.

with a small parameter ρ. The parameter ρ controls the sharpness of the tran-
sition from −1 to +1 across the interfaces. A small value of ρ corresponds
to a very sharp transition.

To obtain a random field (as required by Step 1 of algorithm 4.2, we further
introduce perturbations of the two interfaces by making a perturbation ansatz
for each interface of the form

pδ(x) =
K

∑
k=1

αk sin(kx1 − βk),

for randomly chosen numbers α1, . . . , αK ∈ R, β1, . . . , βK ∈ [0, 2π) with
∑

K
k=1 |αk|2 = δ. For our computations, we used a fixed value of K = 10

perturbation modes.

The result of this ansatz is a random field v0
ρ(x1, x2 − pδ(x1)) depending

on two parameters ρ and δ. The parameter δ controls the magnitude of
the permutation, while ρ determines the smoothness across the interfaces.
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4.2. Flat vortex sheet

Figure 4.4: Perturbation with δ = 0.0512.

Projecting this random field back to the space of divergence-free vector fields
(using the Leray projection), we obtain our initial random perturbation X0

ρ,δ,

as illustrated in Figure 4.4. For a fixed number of Fourier modes N, we aim

to compute the corresponding approximate Young measure ν
ρ,δ
N (Step 2 of

algorithm ). Then, the measured valued solution of (1.1) will be realized as

a limit of ν
ρ,δ
N as N → ∞, ρ, δ → 0.

First, we fix a single realization of the random field v0(ω). To visualize the
resulting approximate solutions, we show a passive tracer (advected by the
velocity field) in figure 4.5, at time t = 2 and with (δ, ρ) = (0.01, 0.001), at
different Fourier modes N. We see from the figure that as the resolution
is refined, finer and finer scale feature emerge, indicating that the tracer is
getting mixed by the fluid at smaller and smaller scales. Furthermore, this
indicates that the underlying velocity field may not emerge as the number of
Fourier modes is increased. This is indeed verified in figure 4.6 (left), where
we show the successive differences (4.1) of the approximate solution in L2

(for a single sample). The differences do not seem to converge, indicating
the approximate solutions may not form a Cauchy sequence. Hence and
in contrast with the vortex patch example, the approximate solutions for a
single realization (sample) do not converge.

Next, we consider the stability of the approximate solutions (for a single
realization) with respect to the perturbation parameter δ. For a fixed N =
512 and time t = 2, we show a passively advected tracer, for different values
of δ in figure 4.7. Again, the fine scale structure of the solutions is very
different for each value of δ. As shown in figure 4.6 (right), the difference
(in L2) for successive values of δ does not decrease as δ decreases. This
indicating that the perturbed solutions do not converge as the perturbation
tends to zero, indicating instability of the flat vortex sheet (4.4) with respect
to perturbations.
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4. Numerical experiments

Figure 4.5: Flat vortex sheet (sample): Non-convergence with respect to N.
A passive tracer (advected by the velocity field) is shown at time t = 2 for
different Fourier modes. Top left N = 128, Top right N = 256, Bottom left
N = 512, Bottom right N = 1024.

(a) Cauchy rates with respect to N. (b) Cauchy rates with respect to δ.

Figure 4.6: Flat vortex sheet (sample): (left) Cauchy rates with respect to
N at fixed δ, (right) Cauchy rates with respect to δ at fixed N for a single
sample. Convergence is not observed.
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4.2. Flat vortex sheet

Figure 4.7: Passively advected tracer at t = 2 for δ = 0.0512, 0.0256, 0.0128,
0.0064.

Having seen the lack of convergence (and stability) for single realizations of
the perturbed vortex sheet, we apply the algorithm 4.2 to compute the ap-
proximate Young measure. To this end, we use the Monte Carlo algorithm
3.12 with M = 400 samples. We compute the mean of the approximate
Young measure by setting g(ξ) = ξ in (3.11). Similarly, the second moments
are computed by setting g(ξ) = ξ ⊗ ξ in (3.11). The mean of the first com-
ponent and variance of the second component at time t = 2, for different
number of Fourier are shown in figures 4.8 and 4.9, respectively. In complete
contrast to figure 4.5 (single sample) and as predicted by Theorem 3.10, both
the mean as well as the variance seem to converge as the number of Fourier
modes is increased. This convergence is further verified in figure 4.10, where
successive L2 differences of the mean velocity field and the second ξ2ξ2 mo-
ment are displayed. The convergence in the second moment is slower than
than that of the mean. This is not unexpected as we use the same number of
samples for the computation of both the mean and the second-moment. Fur-
thermore, from figure ??, we observe that small scale features are averaged
out in the statistical quantities such as the mean of the passive tracer. In
contrast, computations of single realizations (samples) revealed increasing
fine small scale features as the number of Fourier modes was increased.
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4. Numerical experiments

Figure 4.8: Flat vortex sheet: Convergence of mean of the first component of
the velocity field at time t = 2 with respect to N (number of Fourier modes).
Top left N = 128, Top right N = 256, Bottom left N = 512, Bottom right
N = 1024.

As we are approximating atomic initial Young measure concentrated on the
flat vortex sheet (4.4) by the perturbation based algorithm 4.2, we will let
the perturbation parameter δ → 0. For this purpose, we fix N = 512 and

consider approximate Young measures ν
ρ,δ
N for successively smaller values of

δ. The results for the mean of the first component of the velocity field and the
variance of the second component of the velocity field are plotted in figures
4.8 and 4.9 and show that these statistical quantifies also converge with
decreasing perturbation amplitude. This convergence is verified in figure
4.11, where successive differences of the mean and the second moment in L2

are displayed.

The convergence results for statistical quantities such as the mean and the
variance, with respect of the resolution as well as the perturbation parameter,
are consistent with the prediction of narrow convergence in Theorem 3.10.
Is the convergence even stronger than the predicted narrow convergence ?
To test this assertion, we follow [22] and compute the Wasserstein distance

for ν
δ,ρ
x,t as probability measures in phase space. Again, we have computed

the 1-Wasserstein distance between successive approximations δ vs. δ/2, as

46



4.2. Flat vortex sheet

Figure 4.9: Flat vortex sheet: Convergence of second moment ξ2ξ2 of the
velocity field at time t with respect to N (number of Fourier modes). Top left
N = 128, Top right N = 256, Bottom left N = 512, Bottom right N = 1024.

(a) Mean (b) Second moment

Figure 4.10: Flat vortex sheet: Cauchy rates with respect to N left (mean)
right (second moment).

47



4. Numerical experiments

(a) Mean (b) Second moment

Figure 4.11: Flat vortex sheet: Cauchy rates with respect to δ left (mean)
right (second moment ξ2ξ2).

δ → 0. The results are shown in Figure 4.14. (A) displays the pointwise

values W1(ν
δ,ρ
x,t , νδ/2,ρ), while (B) is a plot of the mean rates

ˆ

W1(ν
δ,ρ
x,t , ν

δ/2,ρ
x,t ) dx,

at different times t = 0, 1, 2, 4.

Unexpectedly, We observe convergence even in the much stronger Wasser-
stein metric. This type of strong convergence was also observed in the con-
text of compressible Euler equations of gas dynamics in [22].

4.3 Further properties of the vortex sheet

The numerical experiments for the flat vortex sheet initial data (4.4) show
that single realizations (samples) do not show any convergence with respect
to the numerical resolution or stability with respect to the perturbation pa-
rameter. On the other hand, the computed Young measures do converge
(even strongly in the Wasserstein metric) with respect to both the number of
Fourier modes as well as the perturbation parameter.

In this section, we will investigate the computed (admissible) measure val-
ued solution of the Euler equations, corresponding to the flat vortex sheet
data (4.4) in considerable detail. To begin with, we can fix the smoothing
parameter ρ > 0 and the perturbation parameter δ and let the number of
Fourier modes N → ∞. Numerical results, presented in figures 4.10, show
that the approximation converge to a Young measure νρ,δ. In fact, one can
also realize νρ,δ as the law of the random field Xρ,δ which corresponds to
the solution of the Euler equations with initial data X0

ρ,δ. Note that we can

construct a unique Xρ,δ(ω) for every fixed ω ∈ Ω as the two-dimensional
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4.3. Further properties of the vortex sheet

Figure 4.12: Flat vortex sheet: Convergence of mean of the first component
of the velocity field at time t = 2 wrt δ (perturbation parameter). Top left
δ = 0.1024, Top right δ = 0.0512, Bottom left δ = 0.0256 and Bottom right
δ = 0.0128.

Euler equations are well-posed as the initial data X0
ρ,δ(ω) is smooth [37]. We

summarize this fact and some other interesting analytical properties of the
limit measure νρ,δ below.

Theorem 4.1 For all values of ρ, δ, the measure-valued solution νρ,δ has the follow-
ing properties.

1. νρ,δ is translationally invariant with respect to the x1-direction, i.e. we have

ν
ρ,δ
x1,x2,t = ν

ρ,δ
x1+h,x2,t

for any h ∈ R and (x1, x2, t) ∈ T2 × R+.

2. The mean νρ,δ = ⟨νρ,δ, ξ⟩ has vanishing second component.

3. If νρ,δ is atomic, then it is stationary.

4. For each fixed ω ∈ Ω, the Xρ,δ(ω) are smooth solutions to the Euler equations
with X0

ρ,δ(ω) smooth initial data, such that X0
ρ,δ(ω) → v0 in L2 as ρ, δ → 0.

Moreover, we have a uniform bound on the vorticity in the H−1 norm.
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4. Numerical experiments

Figure 4.13: Flat vortex sheet: Convergence of second-moment of the second
component of the velocity field at time t = 2 wrt δ (perturbation parameter).
Top left δ = 0.1024, Top right δ = 0.0512, Bottom left δ = 0.0256 and Bottom
right δ = 0.0128.

(a) distribution in space, t = 4, δ → 0 (b) Cauchy rates in the mean

Figure 4.14: Cauchy rates in the Wasserstein distance W1

50



4.3. Further properties of the vortex sheet

All of these properties – except for the smoothness of the random fields Xρ,δ – also

hold for any limiting measure ν
ρ,δ
x,t

∗
⇀ νx,t, obtained in the limit ρ, δ → 0, i.e. we

are allowed to formally set δ = ρ = 0.

Proof We start with the proof of property (1). The statistics of the perturba-
tion ansatz for each interface

pδ(x) =
N

∑
k=1

αk sin(kx1 − βk)

is invariant with respect to translation in the x1-direction. For any h ∈ R,
the values β1 − h/1, . . . , βN − h/N have the same probability of occuring
as β1, . . . , βN . Hence

Prob[pδ(x + he1) ∈ A] = Prob[pδ(x) ∈ A]

for any measurable set A and any h ∈ R. We obtain equality of the law

L(v0
ρ(x1, x2 − pδ(x1))) = L(v0

ρ(x1 + h, x2 − pδ(x1 + h)))

and hence of the initial data

L(X0
ρ,δ(x1, x2)) = L(X0

ρ,δ(x1 + h, x2)).

Finally, because the Euler equations are translation-invariant, it follows that

ν
ρ,δ
x1,x2,t = L(Xρ,δ(x1, x2)) = L(Xρ,δ(x1 + h, x2)) = ν

ρ,δ
x1+h,x2,t.

To prove (2), we proceed as follows. Let ηρ,δ be the vorticity corresponding to
the random field Xρ,δ. Taking the mean and interchanging integration and

differentiation, we see that ηρ,δ is the vorticity corresponding to the mean
νρ,δ. By property (1), the mean is independent of x1. The same must be true
of the mean vorticity ηρ,δ, i.e. we have ∂x1 ηρ,δ = 0. It follows that also for the
second component of νρ,δ, we have

ν
ρ,δ
2 = ∆−1∂x1 ηρ,δ = 0.

We come to property (3). Assume that ν
ρ,δ
x,t = δv(x,t). By property (2), the sec-

ond component of the mean ν
ρ,δ
x,t = v(x, t) vanishes, i.e. v2 = 0. Furthermore,

v is independent of x1 by property (1). It is straightforward to check that
these two observations imply that v is a stationary solution.

We recall that the Leray projection is an orthogonal L2 projection (∗) and
that X0

ρ,δ(ω) is obtained in three steps (∗∗): In the first step, the intital

datum v0 is mollified to obtain a smooth field v0
ρ. In a second step, we
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4. Numerical experiments

determine a random perturbation of the interfaces pδ(x), which yields a
field v0

ρ,δ(x) = v0
ρ(x − pδ(x)). In the last step, we project this field to the

space of divergence-free vector fields using the Leray projection to obtain
X0

ρ,δ(ω). In particular, we find that

∥v0 − X0
ρ,δ∥L2

(∗)
≤ ∥v0 − v0

ρ,δ∥L2

(∗∗)
≤ ∥v0 − v0

ρ∥L2 + ∥v0
ρ − v0

ρ,δ∥L2

Next, note that we have uniform L∞ bounds ∥v0∥L∞ , ∥v0
ρ∥L∞ , ∥v0

δ∥L∞ ≤ 1
and that all of these fields are pointwise = ±e1, except in a region with
width of order O(δ + ρ). We conclude that ∥v0 − X0

ρ,δ∥L2 ≤ O(ρ + δ). Finally,

a uniform L2 bound on a vector field implies a uniform H−1 bound on its
vorticity. This concludes the proof. !

4.4 Non-atomicity of the limit measure valued solution

4.4.1 Non-zero variance

One of the most important questions concerning the measure valued solu-
tion realized as a limit of the approximations computed using Algorithm 4.2
applied to the flat vortex sheet initial data (4.4) is whether this measure is
atomic or not, i.e. whether the limit measure valued solution is a weak solu-
tion of the Euler equations (1.1)? To answer this question, we focus on the
variance of the computed approximations. By property (2) of theorem 4.1,
we see that for a fixed ρ, δ, the computed Young measures will be invariant
in the x1-direction. We fix N = 512, and present a x1 = const slice of the
mean and the variance of the velocity field v1 in the x2 direction for different
values of δ. The results shown in figure 4.15 show that there is convergence
as δ → 0. Furthermore, the mean as δ is reduced does not coincide with the
initial velocity discontinuity. The variance is also very different from zero,
at least at two patches (symmetric with respect to x2 = π). We can denote
these two patches as the turbulence zones. This is the first indication that
the computed measure valued solution is not atomic.

4.4.2 Spread of the turbulence zone in time

To further test the issue of atomicity of the limit measure, we use property
(3) of theorem 4.1. This property provides a clear criterion for atomicity
i.e, if the limit measure is atomic, then it must be stationary (coincide with
the initial flat vortex sheet (4.4)). We investigate the stationarity of the limit
measure by considering the time dependent map for (the spatial mean of)
the variance,

t -→
ˆ

T2
Var

(
ν

ρ,δ
x,t

)
dx,
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4.4. Non-atomicity of the limit measure valued solution

(a) mean (b) variance

Figure 4.15: 1-D slices of the mean and the variance computed with different
values of δ

as δ → 0. Given the fact that the variance is non-zero, only in the turbulence
zone, we can interpret the above quantity as the mean spreading rate (in
time) of the turbulence zone. In figure 4.16, we show how the zone spreads
in time with respect to different values of δ. We observe that

• The spread rate of the turbulence zone converges as δ → 0.

• The limiting spread rate is non-zero, implying that the turbulence zone
spreads out at a linear rate in time.

Thus, the limit Young measure is not stationary and hence, non-atomic.

Although, we do not have a rigorous proof of the linear spread rate of the
turbulence zone and of the consequent non-atomicity of the limit measure,
we can give a rigorous upper bound on the rate at which variance increases.
To see this, we let (ν, ν∞, λ) be an (admissible) measure valued solution
(MVS) with atomic initial data, concentrated on v0. Then (ν, ν∞, λ) satisfies

ˆ T

0

ˆ

T2
⟨νx,t, ξ⟩χ′(t)ϕ(x) + ⟨νx,t, ξ ⊗ ξ⟩ : ∇ϕ(x)χ(t) dx dt (4.3)

+
ˆ T

0

(
ˆ

T2
⟨ν∞

x,t, θ ⊗ θ⟩ : ∇ϕ(x)χ(t) λt(dx)

)
dt = −

ˆ

T2
v0(x) · ϕ(x) dx,

for all ϕ ∈ C∞(T2; R2), and χ ∈ C∞
c ([0, T)) with χ(0) = 1.
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4. Numerical experiments

If we take ϕ ∗ ρε as a test function, where ρε = ε−2ρ(x/ε), ρ ∈ C∞
c (T2) is a

standard mollifier on T2 and ∗ denotes convolution, then we obtain
ˆ T

0

ˆ

T2
⟨(ρε ∗ ν)x,t, ξ⟩χ′(t)ϕ(x) + ⟨(ρε ∗ ν)x,t, ξ ⊗ ξ⟩ : ∇ϕ(x)χ(t) dx dt

+
ˆ T

0

ˆ

T2

( ˆ

T2
ρε(x − y)⟨ν∞

x,t, θ ⊗ θ⟩ λt(dx)
)

: ∇ϕ(y)χ(t) dy dt

= −
ˆ

T2
(v0 ∗ ρε)(x) · ϕ(x) dx

(4.4)

after an application of Fubini’s theorem in (4.3). In the following, we will
denote

⟨νε
x,t, f (ξ)⟩ := ⟨(ρε ∗ ν)x,t, f (ξ)⟩, ⟨λε

y,t, f (θ)⟩ :=
ˆ

T2
ρε(x − y)⟨ν∞

x,t, f (θ)⟩ λt(dx).

Similarly, we will write vε
0(x) := (ρε ∗ v0)(x) for the mollified initial data.

With this notation, equation (4.4) takes the form
ˆ T

0

ˆ

T2
⟨νε

x,t, ξ⟩χ′(t)ϕ(x) + ⟨νε
x,t, ξ ⊗ ξ⟩ : ∇ϕ(x)χ(t) dx dt

+
ˆ T

0

ˆ

T2
⟨λε

x,t, θ ⊗ θ⟩ : ∇ϕ(x)χ(t) dx dt = −
ˆ

T2
vε

0(x) · ϕ(x) dx

(4.5)

for all ϕ ∈ C∞(T2; R2), and χ ∈ C∞
c ([0, T)) with χ(0) = 1. Thus, (νε, λε dx)

is seen to be a MVS with mollified initial data given by vε
0. 1

At this point, let us observe that for any suitable function f , we have
ˆ

T2
⟨νε

x,t, f (ξ)⟩ dx =
ˆ

T2
⟨νx,t, f (ξ)⟩ dx,

ˆ

T2
⟨λε

y,t, f ∞(θ)⟩ dx =
ˆ

T2
⟨ν∞

x,t, f ∞(θ)⟩ λt(dx),
(4.6)

as follows from an application of Fubini’s theorem.

Fix ε > 0 for the moment. In the spirit of [5], we define

F(t) =
ˆ

T2
⟨νx,t,

1

2
|ξ − vε

0|
2⟩+ λt(T

2) (4.7)

Fε(t) =
ˆ

T2
⟨νε

x,t,
1

2
|ξ − vε

0|
2⟩+

(
|λε

x,t| dx
)
(T2), (4.8)

E(t) =
ˆ

T2
⟨νx,t,

1

2
|ξ|2⟩+

1

2
λt(T

2) (4.9)

Eε(t) =
ˆ

T2
⟨νε

x,t,
1

2
|ξ|2⟩+

1

2

(
|λε

x,t| dx
)
(T2). (4.10)

1We will have no need to bring the concentration measure ⟨λε
x,t, ·⟩ dx into the sliced form

⟨ν̃∞, ·⟩λ̃t(dx). Though, this could certainly be done.
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4.4. Non-atomicity of the limit measure valued solution

By our observation (4.6), we have F(t) = Fε(t) and E(t) = Eε(t) for all t ≥ 0.

It is shown in Lemma A.1, following the proof of [5, Theorem 2], that for
any MVS (admissible or not) with sufficiently smooth initial data vε

0(x), and
with corresponding (strong) solution vε(x, t), the following inequality holds:

Fε(t) ≤ Eε(t)−
1

2

ˆ

T2
|vε

0|
2 dx +

1

2

ˆ t

0
∥∇vε

0 + (∇vε
0)

T∥∞Fε(τ) dτ. (4.11)

Assume now that (ν, ν∞, λ) is in fact an admissible solution, so that E(t) ≤
1
2

´

T2 |v0|2 dx for all t. Then

F(t) = Fε(t)

≤ Eε(t)−
1

2

ˆ

T2
|vε

0|
2 dx +

1

2

ˆ t

0
∥∇vε

0 + (∇vε
0)

T∥∞Fε(τ) dτ

≤
1

2

ˆ

T2
|v0|

2 dx −
1

2

ˆ

T2
|vε

0|
2 dx +

1

2

ˆ t

0
∥∇vε

0 + (∇vε
0)

T∥∞F(τ) dτ.

Note that the first difference is of order ε, while (for a suitable mollifier)
∥∇vε

0 + (∇vε
0)

T∥∞ can be bounded by ε−1. Gronwall’s inequality thus im-
plies that

F(t) ≤
1

2

(
ˆ

T2
|v0|

2 − |vε
0|

2 dx

)
e

1
2

´ t
0 ∥∇vε

0+(∇vε
0)

T∥∞ dτ ≤ Cε e
t

2ε ,

where C ≥ 0 satisfies 1
2

´

T2 |v0|2 − |vε
0|

2 dx ≤ Cε.

The particular choice ε = t/2 now gives the bound
ˆ

T2
⟨νx,t,

1

2
|ξ − v(t/2)

0 |2⟩ dx + λt(T
2) ≤

Ce

2
t, (4.12)

for t > 0.

Corollary 4.2 The mea ν̄x,t
t→0
−→ v0(x) converges strongly in L2(T2; R2) for any

admissible MVS with initial data the vortexsheet v0. Furthermore, we see that the
spatially averaged variance cannot grow more than linearly for such solutions.

Proof This is an immediate corollary of estimate (4.12). We have
ˆ

T2
|ν − v0|

2 dx ≤ 2

ˆ

T2
|ν − v(t/2)

0 |2 dx + 2

ˆ

T2
|v0 − v(t/2)

0 |2 dx

≤ 2

ˆ

T2
⟨νx,t, |ξ − v(t/2)

0 |2⟩ dx + 2

ˆ

T2
|v0 − v(t/2)

0 |2 dx

→ 0,

as t → 0, and
ˆ

T2
Var(νx,t) dx =

ˆ

T2
⟨νx,t,

1

2
|ξ − ν|2⟩ dx ≤

ˆ

T2
⟨νx,t,

1

2
|ξ − v(t/2)

0 |2⟩ dx ≤
Ce

2
t,!
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4. Numerical experiments
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(a) Spreading at different values of time
for varying values of δ.

(b) Mean spreading rate against δ over
the time interval [2, 4].

Figure 4.16: Spreading of the turbulence zone in time.

For the particular choice of a piecewise linear function vε
0

vε
0(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

+e1, x2 < π/2 − ε or x2 > 3π/2 + ε,
π/2 − x

ε
e1, |π/2 − x2| ≤ ε,

−e1, π/2 + ε ≤ x2 < 3π/2 − ε,
x − 3π/2

ε
e1, |3π/2 − x2| ≤ ε,

we obtain a value of C = 4π/3, and the argument implies a bound on the
spreading with constant Ce

2 = 2πe
3 ≈ 5.7.

The results of our computation as presented in figure 4.16 are consistent
with the above corollary in establishing that mean variance (concentrated in
the turbulence zone for the flat vortex sheet initial data) does spread out at a
rate that is linear in time but at a rate of approximately 1.8 (or about a third
of the rigorous upper bound).

4.4.3 Probability distribution functions

As a further test of the non-atomicity of the computed limit measure, we
plot the empirical histogram at a point in space and different values of the
perturbation parameter δ over time, in figure 4.17. The histograms serve
as approximation of the probability density function (pdf), corresponding
to the measure valued solution [22]. The figure shows that the pdfs con-
verge as δ → 0. Furthermore, we observe that even if the initial measure is
atomic (for small values of the perturbation parameter δ), the resulting pdf
is non-atomic at points in the turbulent zone. Thus, we provide considerable
evidence that the limiting measure valued solution is non-atomic.
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4.5. Possible non-uniqueness of Delort solutions

Figure 4.17: PDFs at a point x = 2π · (0.25, 0.77) and different times t =
0, 0.5, 1, 2, 4, for different values of δ = 0.0512 (top), δ = 0.0064 (bottom).

Remark 4.3 The samples from which the computed measure-valued solution is ob-
tained appear to be bounded in L∞. Hence, by theorem 2.3, the corresponding Young
measure does not exhibit any concentration effects.

4.4.4 Contrast between incompressible Euler and incompressible
Navier-Stokes

We have also investigated the effect that the introduction of a small amount
of viscosity ν > 0 has on the spreading rate as δ → 0. To this end we
consider the solutions to the incompressible Navier-Stokes equations in the
fully resolved case. The results on the spreading rate which were obtained
from these computations are shown in 4.18.

In contrast to the situation encountered for the incompressible Euler equa-
tions, there is a clear slowing down in the growth of variance as δ → 0 in the
fully resolved Navier-Stokes case. The limiting spreading rate is expected to
be 0 because of the smoothing effect of the viscosity term.

In particular, we do not expect the zero viscosity and zero uncertainty limits
to be interchangeable.

4.5 Possible non-uniqueness of Delort solutions

As mentioned in the introduction, Delort in [17] showed the first rigorous
existence results for vortex sheets in two space dimensions provided that the
vorticity belonged to a certain class defined below,

Definition 4.4 A vector field v ∈ L∞([0, T]; L2(T2; R2)) will be said to belong to
the Delort class, if the vorticity η = curl v is a bounded measure of distinguished
sign i.e, η ∈ H−1(T2) ∩ BM+.

57



4. Numerical experiments

(a) Spreading of the variance for differ-
ent values of δ.

(b) Limiting behaviour of spreading rate
as δ → 0.

Figure 4.18: Spreading of the turbulent zone for the case of the Navier-Stokes
equations with constant viscosity. In contrast to the observed behaviour for
the Euler equations, a slowing down of the spreading is clearly visible in the
limit δ → 0.

Delort proved the following celebrated result,

Theorem 4.5 [17]: Under the assumption that the initial vorticity η0 = curl(v0)
is in the Delort class, as defined above there exists a weak solution v of the 2-D
incompressible Euler equations (1.1), corresponding to the initial data v0, that also
belongs to the Delort class 4.4.

The proof is based on mollifying the initial data, resulting in the generation
of a sequence of approximate (smooth) solutions to the Euler equations. The
resulting vorticity will be of a definite sign as it satisfies a maximum princi-
ple. The strong compactness of the approximating sequence is based on a
localized L1 control of the vorticity and uses the fact that the vorticity is of
definite sign in a crucial manner, see also [47].

The uniqueness of the solution constructed by Delort is still open. It turns
out that we can use property (4) of theorem 4.1 to numerically investigate
this interesting question of uniqueness of solutions of (1.1) in the Delort
class. However, as we analyze the Euler equations with periodic boundary
conditions in this article, we cannot restrict ourselves to the Delort class of vor-
ticity being a bounded measure with a distinguished sign. We need to extend to
the following class of solutions,

Definition 4.6 A vector field v ∈ L∞([0, T]; L2(T2; R2)) will be said to belong
to the extended Delort class, if the vorticity η = curl v is a bounded measure i.e,
η ∈ H−1(T2) ∩ BM.

The existence proof of Delort in [17] can be readily extended to the case of
extended Delort class initial data in the sense of definition 4.6 provided that
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4.5. Possible non-uniqueness of Delort solutions

vortices of opposite sign do not interact with each other (at least for a finite
time period). We formalize this argument in the following theorem,

Theorem 4.7 Let the initial velocity field v0 belong to the extended Delort class as
defined above. Further, assume that there exists a constant c > 0 and a terminal
time T > 0, such that the time-dependent regions

D±(t) = {x ∈ T
n; ∃N ∈ N, ηN(x, t) ≷ 0},

satisfy

dist(D+(t),D−(t)) ≥ c, ∀t ∈ [0, T], (4.13)

then there exists a weak solution v of the incompressible Euler equations (1.1) that
belongs to the extended Delort class 4.6.

The proof follows from a straightforward repetition of the arguments of the
proof of theorem B.1 in [17] and [47], while replacing the distinguished sign
of the resulting vorticity field with assumption (B.1). A proof is given in
appendix B.

Here, we will investigate the uniqueness of weak solutions of (1.1) that be-
long to the extended Delort class. To this end, we return to the flat vortex
sheet initial data (4.4) and consider the perturbed random field initial data
X0

ρ,δ and the resulting solutions Xρ,δ. We collect some properties of this set

of solutions below,

Lemma 4.8 The solutions Xρ,δ of the 2-D Euler equations (1.1) with randomly
perturbed flat vortex sheet data X0

ρ,δ satisfy for every realization ω ∈ Ω: There exist

ρk, δk → 0 such that

• Xρk ,δk
(ω) → X(ω) in C([0, T]; L2

w(T
2; R2)),

•
´

|ηρk ,δk
(ω)| dx ≤ C uniformly for some constant C with ηρ,δ = curl Xρ,δ

• Under the further assumption that vortices of distinguished sign are separated
i.e, ηρ,δ(ω) satisfies (B.1) (uniformly) for all ω, we have a uniform lack of
concentration of vorticity, in the sense that

lim
r→0

sup
0≤t≤T

sup
N

ˆ

Br(x)
|η(ω)ρk ,δk

| dx = 0, ∀ x ∈ T
2,

Then for each ω ∈ Ω, X(ω) is a weak solution of the Euler equations that belongs
to the extended Delort class 4.6. Furthermore,

lim
t→0

X(t, ω) = v0, in L2(T2; R
2),
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4. Numerical experiments

(a) δ = .0512 (b) δ = .0256

(c) δ = .0128 (d) δ = .0064

Figure 4.19: Illustration of the strict spatial separation of the vorticities of
different signs for different values of δ at t = 4.

The first and second assertions of the above lemma are straight forward con-
sequences of energy conservation and the maximum principle on vorticity
for the smooth solutions Xρ,δ. Once, we assume (B.1), the compactness of
the approximating sequence is established by repeating the arguments of
the proof of Theorem B.1 as presented in [17] and [47].

We are unable to provide a rigorous proof for the assumption (B.1) for the
case of perturbed flat vortex sheet initial data. However, this assumption can
be readily verified a posteriori in our numerical computations. As an example,
we fix a single sample (realization) and present the vorticity, obtained with
spectral method with N = 512 nodes and ρ = 0.008 for different values of
δ at time T = 4 in figure 4.19. The figure clearly shows that the vortices of
positive and negative sign for any value of the perturbation parameter δ are
well separated even at this relatively late time T = 4. In fact, we observe that
the time of separation as required by the assumption (B.1) is T ≥ 4 for all
tested ω ∈ Ω. Hence, we can assert that each of our realizations (samples)
converges (upto a subsequence) to a weak solution of (1.1) that belongs to
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4.5. Possible non-uniqueness of Delort solutions

the extended Delort class. This in turn, results in the following statement
about the mean of the (admissible) measure valued solution νρ,δ constructed
by the ensemble based algorithm 4.2 applied to the vortex sheet initial data
(4.4),

Lemma 4.9 Let v0 be the flat vortex sheet initial data (4.4) and νρ,δ be an (admis-
sible) measure valued solution of the Euler equations (1.1), corresponding to this
atomic initial data δv0 . Further, if we assume that the solutions of the Euler equa-
tions that belong to the extended Delort class 4.6 are unique, then

⟨νx,t, ξ⟩ = v0(x), in L2(T2; R
2).

Proof Clearly, the flat vortex sheet v0 is a stationary weak solution of the
Euler equations that belongs to the extended Delort class 4.6 for all time
T ∈ [0, ∞). Under our assumption of uniqueness, v0 is the unique weak
solution in this class. Therefore, for every ω ∈ Ω, we can extract a fur-
ther subsequence of Xρk ,δk

(ω)converging weakly to the unique solution v0.
The uniqueness of the weak limit in turn implies that we in fact must have
limρ,δ→0 Xρ,δ(ω) = v0 in the weak L2 sense. From this, and the fact that
the Xρ,δ are uniformly bounded in the L2 norm, we obtain that for any test
function ϕ, we have

ˆ

T2×[0,∞)
⟨νx,t, ξ⟩ϕ(x, t) dx dt = lim

ρ,δ→0

ˆ

T2×[0,∞)
⟨νρ,δ

x,t , ξ⟩ · ϕ dx dt

= lim
ρ,δ→0

ˆ

Ω

(
ˆ

T2×[0,∞)
Xρ,δ(ω) · ϕ dx dt

)

dP(ω)

=
ˆ

Ω

lim
ρ,δ→0

(
ˆ

T2×[0,∞)
Xρ,δ(ω) · ϕ dx dt

)

dP(ω)

=
ˆ

Ω

ˆ

T2×[0,∞)
v0 · ϕ dx dt dP(ω)

=
ˆ

T2×[0,∞)
v0 · ϕ dx dt.

We have used the uniform bound on
ˆ

T2×[0,∞)
|Xρ,δ(ω) · ϕ| dx dt ≤ ∥Xρ,δ∥∥ϕ∥ ≤ C∥ϕ∥,

to justify passing to the limit inside of the dP-integral. Hence ⟨νx,t, ξ⟩ =
v0(x) for any possible limiting measure-valued solution. !

We use the admissibility of measure valued solutions to show the following,
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4. Numerical experiments

Lemma 4.10 Let ν be an admissible measure-valued solution to the Euler equations
(2.3) with atomic initial data. If the barycenter ν(x, t) = ⟨νx,t, ξ⟩ is an energy
conserving weak solution to (1.1), then νx,t = δν(x,t) is atomic.

Proof We have the following decomposition of the energy E(t) at time t:

E(t) =
1

2

ˆ

Tn
|ν(x, t)|2 dx +

1

2

ˆ

Tn
⟨νx,t, |ξ − ν(x, t)|2⟩ dx + λt(T

n)

=
1

2

ˆ

Tn
|ν(x, t)|2 dx +

1

2
Vart(ν) + λt(T

n).

The admissibility assumption E(t) ≤ E(0) combined with the assumption
of energy conservation for ν(x, t) now yields

E(0) =
1

2

ˆ

Tn
|ν(x, 0)|2 dx =

1

2

ˆ

Tn
|ν(x, t)|2 dx ≤ E(t) ≤ E(0).

Thus, all inequalities in these estimates are equalities. In particular, this
implies that Var(ν) = 0 and λ = 0, hence νx,t = δν(x,t) a.e.. !

We combine the above two lemmas to obtain the following theorem about
the measure valued solutions corresponding to the flat vortex sheet initial
data,

Theorem 4.11 If the stationary solution v0 is unique in the extended Delort class
of flows with vorticity ω ∈ H−1(T2) ∩ BM, then the (admissible) measure valued
solutions νρ,δ, constructed by applying algorithm 4.2, then we have νρ,δ ⇀ δv0

(narrowly) as ρ, δ → 0.

The main conclusion of all the above arguments is that if the week solutions
of the Euler equations were unique in the extended Delort class, then the
measure valued solution, computed using algorithm 4.2 would be an atomic
measure concentrated on the initial flat vortex sheet. However, we provided con-
siderable numerical evidence in sub-section 4.4 that the computed solutions
are non-atomic. In fact, the turbulence zone (region where the variance is non-
zero) increases linearly in time. Thus, we conclude that the weak solutions
in the extended Delort class are not unique.

Comparison with the admissible weak solutions of Szekelyhidi.

In [49], Szekelyhidi was able to construct infinitely many admissible (finite
kinetic energy) weak solutions to the 2-D Euler equations for the flat vortex
sheet (4.4). Although admissible, these weak solutions are highly oscillatory.
Hence, they may not belong to the (extended) Delort class as the resulting
vorticity is no longer a bounded measure.

The single samples that we consider lie in the (extended) Delort class but con-
verge to non-unique weak solutions. Furthermore, the computed measure
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4.5. Possible non-uniqueness of Delort solutions

(a) Sample ω1 at t = 0 (b) Sample ω1 at t = 2 (c) Sample ω1 at t = 4

(d) Sample ω2 at t = 0 (e) Sample ω2 at t = 2 (f) Sample ω2 at t = 4

Figure 4.20: Comparison of the vorticity distribution η(ωi) of two different
samples ω1 and ω2 for (ρ, δ) = (0.008, 0.0064), illustrating the possible non-
uniqueness in the evolution of extended Delort solutions.

valued solution has a turbulence zone (patches of non-zero variance) that
spreads linearly in time. This is remarkably analogous to the construction
of Szekelyhidi in [49] where a well defined turbulence zone is also defined
and spreads linearly in time. Moreover, the empirical spread rate obtained
by us is within the bounds provided by [49].

4.5.1 Stability (uniqueness) of the computed measure valued solu-
tion.

Admissible (weak) solutions of the Euler equations are not unique [12, 49].
Furthermore, the numerical evidence in the last subsection shows that even
weak solutions, restricted to the considerably narrower Delort class, may not
be unique. Since, every weak solution is also a measure valued solution, we
cannot expect any uniqueness (stability) in the class of (admissible) measure
valued solutions. However, the measure valued solution that we compute by
application of algorithm 4.2 is not a generic measure valued solution but is
one that is obtained with a very specific construction. Is this solution unique
in a suitable sense? Is it stable? We explore these questions in this section.

4.5.2 Stability with respect to different perturbations

After having demonstrate the robustness of algorithm 4.2 with respect to
choice of the numerical method in Step 2, we investigate if the algorithm
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4. Numerical experiments

is sensitive with respect to the type of perturbations in step 1. To do this,
we consider the most general perturbation to the initial data (4.4) by adding
a random field that is constant on local patches, and which exhibits uncor-
related fluctuations of equal strength in all of space. More precisely, we
considered random fields of the form X0 = ∑i,j X0

i,j1Ci,j
, where the patches

Ci,j = {(x, y) ∈ T
2 : ik∆x ≤ x < (i + 1)k∆x, jk∆y ≤ y < (j + 1)k∆y}

with k = 16 comprise 16 × 16 mesh cells, and the X0
i,j are independent, iden-

tically distributed [−1, 1]2-valued random variables. We obtain our initial
perturbations Z0

δ as the projection of v0 + δX0 to the space of divergence
free vector fields. We refer to the results obtained from this perturbation
procedure as ‘uncorrelated’, below.

Note that we can rewrite the evolution equation for the mean ν of the MVS
as,

∂tν + ν ·∇ν +∇p = −div⟨ν, (ξ − ν)⊗ (ξ − ν)⟩.

If the fluctuations of the mean ν in the neighborhood of any given point are
an indication of the fluctuations of ν, then we should expect the relevant
contributions to the evolution of ν to originate at the two interfaces, where
ν has a large jump. Hence, we localize the above uncorrelated perturbation
to the initial data by multiplying it with cutoff functions that are supported
around the two interfaces. We refer to the results from these localizations as
‘uniform’ or ‘Gaussian’ according to the corresponding distribution the val-
ues of the X0

i,j were chosen from. The results of applying algorithm 4.2 with

these perturbations, with amplitude δ = .5 and at time T = 4 are shown in
figures 4.21 (mean) and 4.22 (variance). Clearly the computed solutions are
very similar to those computed with the sinusoidal perturbations. The re-
sults are also shown in figure 4.21 and 4.22. Again, the nature of underlying
distribution does not seem to affect the computed measure valued solution
(at least with respect to mean and the second moment).

Summarizing the results of this subsection, we remark that the measure val-
ued solution of the two-dimensional Euler equations, computed with the
algorithm 4.2, are stable with respect to perturbations as well as robust vis
a vis the choice of numerical method used to approximate them. This indi-
cates that the computed measures may have MV stability, a weaker stability
concept introduced in [22]. Although stability (uniqueness) does not hold
for generic (admissible) measure valued solutions, the solutions computed
by algorithm 4.2 do belong to a subset of admissible MVS, within which a
suitable notion of stability (uniqueness) may hold. Further elaboration of
these ideas is envisaged to be the subject of forthcoming articles.
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4.5. Possible non-uniqueness of Delort solutions

(a) interfaces (b) uniform

(c) uncorrelated (d) Gaussian

Figure 4.21: Mean for different types of perturbations

4.5.3 The effects of smoothing

The computations presented in figure 4.16 have been carried out at a small,
but fixed value of ρ > 0 with the goal of approximating the limit δ → 0.
However, for fixed ρ, the unperturbed initial data is smooth. According to
theorem 2.9 it then follows that limδ→0 νρ,δ must be atomic, if we were to
take this one-sided limit in full, while keeping ρ > 0 fixed.

Numerical experiments show that indeed, a corresponding sudden drop in
the spreading rate is observed for values δ ≪ ρ. In particular, we expect that
the particular order of taking the limits ρ → 0, δ → 0 will be important. Our
computed measure-valued solution corresponds to the limit

ν = lim
δ→0

lim
ρ→0

νρ,δ.

To provide further evidence for a limiting measure-valued solution with
constant spreading rate, we now consider the behaviour limρ→0 νρ,δ for fixed
δ > 0. A representative plot of the resulting spreading of the variance for
the case of uncorrelated perturbations with grid size N2 and ρ = 12/N is
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4. Numerical experiments

(a) interfaces (b) uniform

(c) uncorrelated (d) Gaussian

Figure 4.22: Second moments for different types of perturbations

shown in figure 4.23. The asymptotic behaviour indicated by 4.23 as ρ → 0
and for fixed perturbation magnitude δ is clearly linear.

4.6 Discussion

Well-posedness results for the incompressible Euler equation (1.1) in two
space dimensions are restricted to smooth initial data and exclude such
physically interesting flows like vortex sheets. Although Delort [17] was
able to show the existence of weak solutions for vortex initial data in 2D,
uniqueness of such solutions is still open. Similarly, many different types of
numerical schemes are available but rigorous convergence results exist only
for special cases.

The starting point of the current chapter was the observation that even a
well established numerical method, like the spectral (viscosity) method may
not converge, even in 2D. Finer and finer scale oscillations are uncovered as
the resolution is increased. Furthermore, the same numerical experiments
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4.6. Discussion

Figure 4.23: Spreading of the turbulent zone in the limit ρ → 0 for fixed
δ > 0.

indicated the instability of some set of initial data with respect to perturba-
tions.

Given the appearance of structures at smaller and smaller scales on in-
crease of numerical resolution, we follow a recent paper [22] and investigate
whether (admissible) measure valued solutions, introduced by DiPerna and
Majda [19] might be an appropriate solution framework for the incompress-
ible Euler equations, particularly with regard to the stability of initial data
and the convergence of approximation schemes.

Our main aim was to design an algorithm to compute measure valued so-
lutions of the Euler equations in a robust and efficient manner. To this end,
we modified the ensemble based algorithm proposed in the paper [22] by
combining it with the spectral (viscosity) method. The resulting approxi-
mate Young measures converge to an admissible measure valued solution
of the Euler equations as the number of Fourier modes increases and the
perturbation parameters converge to zero.

We present a wide variety of numerical experiments to illustrate the theo-
retical results on the proposed algorithm. In particular, we focus on an ex-
tensive case study for the two-dimensional flat vortex sheet. The numerical
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4. Numerical experiments

(a) interfaces (b) uniform

(c) uncorrelated (d) Gaussian

Figure 4.24: Different perturbations – distribution of x1-velocity at a point
near the interface, t = 4

experiments reveal that

• Single realizations (samples) may not converge as the number of Fourier
modes is increased. Furthermore, there is no convergence as the per-
turbation amplitude is reduced indicating instability of the flat vortex
sheet, at least at realistic numerical resolutions.

• Statistical quantities of interest such as the mean and variance do con-
verge as the predicted by the theory.

• Furthermore, the approximate Young measure convergence with re-
spect to the Wasserstein metric, indicating a considerably stronger
form of convergence of the approximate Young measures than the pre-
dicted narrow convergence.

• The computed measure valued solution is robust with respect to the
nature of the initial perturbations, suggesting stability of the computed
measure valued solution in a suitable sense, for instance in the sense
of MV stability of [22].
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4.6. Discussion

• The computed measure valued solution is non-atomic. The variance
is concentrated (spatially) into two patches, symmetric with respect to
line line x2 = π. This turbulence zone spreads in time at a linear rate
and is consistent with our theoretical upper bound.

We show analytically that if the weak solutions of the Euler equations are
in the (extended) Delort class, i.e, the vorticity is a bounded measure, then
the resulting measure valued solution, corresponding to the flat vortex sheet,
will be atomic and concentrated on the initial data. However, given the ob-
served non-atomicity of the measure, we conclude that the weak solutions
belong to the Delort class may not be unique. This numerical evidence provides
a new perspective on an interesting open question and calls for further the-
oretical investigation.
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Chapter 5

Conclusion

In this chapter, we will give a quick summary of the main points discussed
in this thesis, discuss its strengths and weaknesses and point out some open
problems and possible future directions.

5.1 Summary

In chapter 1, a brief introduction to the incompressible Euler equations is
given, as well as references for further reading. We show how the equations
can be derived based on physical principles of mass and momentum con-
servation, incompressibility and the assumption that the fluid is ideal, i.e.
frictionless. We also touch upon the corresponding situation for non-ideal
fluids, which leads to the incompressible Navier-Stokes equations. Further-
more, the special role of the pressure as a Lagrange multiplier, enforcing
the incompressible constraint, is pointed out. Well-known existence results
from the mathematical theory of the Euler equations are then cited. A for-
mal derivation of the Euler equations in terms of the vorticity is given. The
resulting simplified form of the Euler equations in terms of the vorticity are
essential for our numerical simulations described in chapter 4; all of them
were carried out using the vorticity formulation.

Chapter 2 discusses the problems encountered when trying to pass to a
weak limit in a non-linear equation. This is first illustrated using an explicit
example. Then, it is shown how the notion of generalized Young measures
can be employed to overcome this obstacle. The price one has to pay for this
luxury in return is that weaker notions of solutions must be considered –
namely measure-valued solutions (MVS). It is shown that the zero-viscosity
limit of Leray solutions to the Navier-Stokes equations gives rise to a MVS.
In particular, this can be combined with known existence results for the
Navier-Stokes equations to show existence of MVS for L2 initial data. The re-
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mainder of chapter 2 focusses on uniqueness questions for measure-valued
solutions. Points of particular interest are

• the energy admissibility criterion,

• the resulting weak-strong uniqueness result, proving that admissible
MVS coincide with classical solutions if they exist,

• the non-uniqueness results due to DeLellis, Szekelyhidi and co-workers,
showing that non-uniqueness of weak solutions is generic [16],

• and finally the result due to Szekelyhidi and Wiedemann [48], which
shows that the non-uniqueness encountered for MVS vs. the usual
notion of weak solutions is equally bad. In particular, there seems
to be no a priori mathematical reason to prefer (single-valued) weak
solutions over MVS. On the other hand, MVS have the benefit that they
allow us to pass limits more naturally.

In Chapter 3, we derive our numerical scheme based on spectral methods.
This chapter contains a new convergence result for these schemes. We show
that, in the limit of infinite grid size, an energy admissible MVS is obtained.
As a first consequence, we obtain convergence of the scheme in L2 in the
presence of a strong classical solution. As a second consequence, we obtain
a general existence result for MVS with given L2 initial data. The algorithm
for the concrete computation of MVS from [22] is cited with the necessary
minimal adaptions to the case of incompressible flows. Another novel result
of chapter 3 is the proof of equivalence of the 2D incompressible Euler equa-
tions and their vorticity formulation on the discrete level. This justifies our use
of the vorticity formulation for all of our numerical experiments in chapter 4.
The vorticity formulation has the important benefit that the incompressibil-
ity constraint does not have to be taken into account explicitely. This leads to
faster algorithms which, in addition, we have found to be much more stable
than solving the original system formulated in terms of the fluid velocity
vector, directly.

Chapter 4 finally contains a description of numerical experiments that were
carried out in 2D. We start out by illustrating the convergence of our algo-
rithm for vortex patch initial data. This is in agreement with the weak-strong
uniqueness result discussed in chapter 2, and was to be expected. The re-
sulting MVS is atomic. In the remainder, we consider the particular case
of vortex sheet initial data. This data is interesting in the present context,
because it has been proved that infinitely many wild solutions in the sense
of DeLellis, Szekelyhidi exist for flat vortex sheet initial data. In this case,
the numerical scheme does not converge on the level of single samples. It
is therefore necessary to consider approximate MVS, instead. On the level
of these computed MVS, the situation is drastically different. Computed
statistical quantities such as the mean and variance are shown to converge.
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This is consistent with our results from chapter 3. More surprisingly, the
convergence actually is seen to be much stronger. Our scheme appears to
converge not only on the level of individual statistical quantities, but even
with respect to the 1-Wasserstein metric. Another astonishing result of our
experiments of chapter 4 is that the limiting MVS seems to be non-atomic.
Our main argument for non-atomicity in the limit comes from the behaviour
of the variance. It is argued that the variance grows linearly in time – even af-
ter taking the zero-uncertainty limit – at a finite, non-zero limiting spreading
rate. Experiments based on varying different numerical parameters (such as
grid-size, smoothing, perturbation magnitude, numerical viscosity, ...) are
all consistent with such a finite, limiting spreading rate. Based on this obser-
vation, a link to the weak solutions constructed by Delort is made. For this,
a class of extended Delort solutions is introduced. Delort’s existence result
is carried over to this class under an additional assumption of separation
of regions of positive and negative vorticity. This additional assumption is
found to be satisfied in all of our computations. It is then shown that non-
atomicity of the limiting MVS implies non-uniqueness of weak solutions in
the extended Delort class. This non-uniqueness is illustrated at the hand
of two samples at the smallest computed perturbation magnitude. Finally,
we also ask whether the computed MVS is stable with respect to different
perturbation mechanisms. A visual comparison indicates that this is indeed
the case.

5.2 Open problems

In our view, the most important points that have either not been established
beyond any reasonable doubt, or have not been touched upon at all, are the
following.

Convergence with respect to the Wasserstein metric: Our experiments indi-
cate that the computed MVS converges in the 1-Wasserstein metric. The the-
ory described in chapters 1-3 give no indication whatsoever that this should
be the case. Judging from the theory described in chapter 2 alone, there
seems to be no good reason for the convergence of the entire measure in
such a strong sense. No attempt has been made to explain this observation
in this thesis. This point is under current investigation.

Instability vs. non-wellposedness for the flat vortex sheet: Our result
for the non-uniqueness of extended Delort solutions ultimately hinges on
the fact that even the smallest perturbation of a flat vortex sheet will lead
to an instantaneous, steadily expanding turbulent zone (effecting the linear
increase of the variance of the computed MVS even in the zero-uncertainty
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limit). It has been known for a long time that the linear stability analysis
indicates that the flat vortex sheet is unstable in the sense that perturba-
tions should be expected to grow at least exponentially in time. Such an
exponential instability would not be enough to prove a non-uniqueness re-
sult – rather, we need a stronger non-wellposedness result. Our evidence
for such a non-wellposedness result is rather circumstantial. It would there-
fore be desirable to either give an analytical proof of the non-atomicity of
our computed MVS, settling the matter once and for all, or at least to have
a quantitative measure that can be efficiently computed and which can be
used to distinguish between exponential instability and non-wellposedness,
numerically.

Delort class vs. extended Delort class: Due to obvious technical reasons
(Fourier expansion), we have restricted our attention to flows in a doubly
periodic geometry. Because of this, we had to consider a flat vortex sheet
which had both positive and negative signs in the vorticity (separated in
space). In consequence, this required the introduction of the extended De-
lort class. It would be interesting to carry out similar experiments for vortex
sheets of distinguished sign. This has been done in the forthcoming paper
[33]. The results appear to be similar.

Strict separation of the regions D±(t): In our proof of the possible non-
uniqueness of extended Delort solutions we had to introduce an additional
assumption that d(D+(t), D−(t)) ≥ c > 0, uniformly for all approxima-
tions.1 We have not been able to establish such a separation rigorously, al-
though it seems to be very clearly satisfied in our computations. It would
be interesting to find an analytical proof. This would not only make our
non-uniqueness argument more rigorous, but it would also allow one to
establish the existence result of Delort in greater generality.

Stability of the computed MVS: We have presented some visual evidence
that the computed MVS is stable with respect to different perturbation mech-
anisms. This opens up two possible directions for future work. On the one
hand, it would be interesting to compare not only the results of different per-
turbation mechanisms, but also the results of different numerical schemes,
which have been shown to converge to an admissible MVS. If MVS are a suit-
able solution concept, then clearly we would want stability also with respect
to other schemes. An approach based on finite difference schemes [33] does
indeed show similar results. On the other hand, our comparisons between
different perturbation mechanisms and numerical schemes have only been
done by visual comparison of plots of the mean, variance and distribution
functions, as of yet. A more quantitative study of these stability proper-

1We recall that D±(t) denotes the set of points of vorticity with sign ± at time t.
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ties would be advisable. Can we establish converge to the same limit in a
quantitative way by numerical experiments?

5.3 Contributions

Many of the results on which this thesis is based, have been known for at
least twenty years [1, 17, 19, 20, 38, 47, 50, 52]. Some are more recent [4, 5,
12, 13, 14, 15, 16, 22, 48]. To the best of our knowledge, novel contributions
of this work include:

• the proof of convergence of spectral schemes to MVS,

• the proof of equivalence between the 2D incompressible Euler equa-
tions and the vorticity formulation on the discretized level,

• extensive experiments for the computation of a MVS in the case of the
flat vortex sheet in 2D, using our spectral scheme,

• the observed non-atomicity of the computed MVS for the incompress-
ible Euler euqations even for atomic initial data,

• a link between non-atomicity of our computed MVS for the flat vortex
sheet and non-uniqueness in the extended Delort class.

We would finally like to mention that parts of this work have been submitted
for publication. A pre-print is already available [32].
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Appendix A

Weak-Strong Uniqueness

We provide the general proof for the weak-strong uniqueness theorem 2.9.
It will be a straight forward consequence of the following lemma.

Lemma A.1 Let ν be any (admissible or not) MVS with atomic initial data given
by the divergence-free vector field v0 ∈ C∞(Tn; Rn). Assume that there exists a
smooth solution v ∈ C∞([0, T]× Tn; Rn) of the Euler equations with initial data
given by v0. Denote

F(t) =
1

2

ˆ

Tn
⟨νx,t, |ξ − v(x, t)|2⟩ dx +

1

2
λt(T

n),

and let

E(t) =
1

2

ˆ

Tn
⟨νx,t, |ξ|

2⟩ dx +
1

2
λt(T

n).

Then the following estimate holds

F(t) ≤ E(t)−
1

2

ˆ

Tn
|v0|

2 dx +
1

2

ˆ t

0
∥∇v + (∇v)T∥L∞ F(τ) dτ.

Proof Let χ ∈ C∞([0, T]), χ ≥ 0. Then

ˆ T

0
χ′F dt =

1

2

ˆ T

0

ˆ

Tn
χ′⟨ν, |ξ|2⟩ dx dt +

1

2

ˆ T

0
χ′λt(T

n) dt

−
ˆ T

0

ˆ

Tn
χ′ν̄ · v dx dt +

1

2

ˆ T

0

ˆ

Tn
χ′|v|2 dx dt.

Since v is a strong solution, the second term on the second line vanishes.
The expression on the first line can be rewritten using E(t). Hence

ˆ T

0
χ′F dt =

ˆ T

0
χ′E dt −

ˆ T

0

ˆ

Tn
χ′ν̄ · v dx dt (A.1)
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The second term can be rewritten

ˆ T

0

ˆ

Tn
χ′ν̄ · v dx dt =

ˆ T

0

ˆ

Tn
ν̄ · ∂t(χv) dx dt −

ˆ T

0

ˆ

Tn
χν̄ · ∂tv dx dt.

Using the fact that ν is a MVS, we have

ˆ T

0

ˆ

Tn
ν̄ · ∂t(χv) dx dt =

ˆ T

0

ˆ

Tn
⟨ν, ξ ⊗ ξ⟩ : ∇(χv) dx dt

+
ˆ T

0

ˆ

Tn
⟨ν∞, θ ⊗ θ⟩ : ∇(χv) λt(dx) dt

=
ˆ T

0
χ

ˆ

Tn
⟨ν, ξ ⊗ ξ⟩ : ∇v dx dt

+
ˆ T

0
χ

ˆ

Tn
⟨ν∞, θ ⊗ θ⟩ : ∇v λt(dx) dt.

Using the fact that v is a classical solution and the incompressibility con-
straint on ν̄, we obtain

−
ˆ T

0

ˆ

Tn
χν̄ · ∂tv dx dt =

ˆ T

0

ˆ

Tn
χν̄ · [v ·∇v +∇p] dx dt

=
ˆ T

0
χ

ˆ

Tn
v ·∇v · ν̄ dx dt

On the other hand, we also have

ˆ

Tn
ν̄ ·∇v · v dx =

ˆ

Tn
ν̄ ·∇

(
1

2
|v|2
)

dx

= 0,

again by the incompressibility constraint on ν̄. Similarly, we see that

ˆ

Tn
v ·∇v · v dx = 0.
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Adding all of these terms together and substituting in (A.1), we obtain

ˆ T

0
χ′F dt =

ˆ T

0
χ′E dt −

ˆ T

0

ˆ

Tn
χ′ν̄ · v dx dt

=
ˆ T

0
χ′E dt +

ˆ T

0
χ

ˆ

Tn
⟨ν, ξ ⊗ ξ⟩ : ∇v dx dt

+
ˆ T

0
χ

ˆ

Tn
⟨ν∞, θ ⊗ θ⟩ : ∇v λt(dx) dt

+
ˆ T

0
χ

ˆ

Tn
v ·∇v · ν̄ dx dt +

ˆ T

0
χ

ˆ

Tn
ν̄ ·∇v · v dx dt

+
ˆ T

0
χ

ˆ

Tn
v ·∇v · v dx dt

=
ˆ T

0
χ′E dt +

ˆ T

0
χ

ˆ

Tn
⟨ν, (ξ − v) ·∇v · (ξ − v)⟩ dx dt

+
ˆ T

0
χ

ˆ

Tn
⟨ν∞, θ ⊗ θ⟩ : ∇v λt(dx) dt

Now, choose χ to be a sequence of smooth approximations of χ[s,t] for 0 <

s < t < T. Then, for almost all such s, t we have that
´ T

0 χ′F dt → −[F(t)−

F(s)],
´ T

0 χ′E dt → −[E(t)− E(s)]. Thus, for any such s, t, we obtain

F(t) = E(t) + [F(s)− E(s)] +
ˆ t

s

ˆ

Tn
⟨ν, (ξ − v) ·

1

2
[∇v + (∇v)T] · (ξ − v)⟩ dx dt

+
ˆ t

s

ˆ

Tn
⟨ν∞, θ ⊗ θ⟩ :

1

2
[∇v + (∇v)T] λt(dx) dt.

Next, observe that

F(s)− E(s) = −
ˆ

Tn
ν̄(x, s) · v(x, s) dx +

1

2

ˆ

Tn
|v(x, s)|2 dx.

The expression on the right hand side converges to

−
ˆ

Tn
v0 · v0 dx +

1

2

ˆ

Tn
|v0|

2 dx = −
1

2

ˆ

Tn
|v0|

2 dx,
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as s → 0. Letting s → 0, we obtain

F(t) = E(t)−
1

2

ˆ

T2
|v0|

2 dx +
ˆ t

0

ˆ

Tn
⟨ν, (ξ − v) ·

1

2
[∇v + (∇v)T] · (ξ − v)⟩ dx dt

+
ˆ t

0

ˆ

Tn
⟨ν∞, θ ⊗ θ⟩ :

1

2
[∇v + (∇v)T] λt(dx) dt

≤ E(t)−
1

2

ˆ

T2
|v0|

2 dx +
ˆ t

0

(
ˆ

Tn
⟨ν, |ξ − v|2⟩ dx

)
1

2
∥∇v + (∇v)T∥L∞ dt

+
ˆ t

0
λt(T

n)
1

2
∥∇v + (∇v)T∥L∞ dt

= E(t)−
1

2

ˆ

T2
|v0|

2 dx +
1

2

ˆ t

0
∥∇v + (∇v)T∥L∞ F(t) dt.

This is the claimed estimate. !

We finally finish the general proof of weak-strong uniqueness.

Proof (Theorem 2.9) By energy admissibility,

E(t) ≤
1

2

ˆ

T2
|v0|

2 dx,

for all t ≥ 0. Lemma A.1 thus implies that

F(t) ≤
1

2

ˆ t

0
∥∇v + (∇v)T∥L∞ F(τ) dτ.

By Gronwall’s inequality, this implies that

F(t) ≤ e
1
2

´ T
0 ∥∇v+∇vT∥L∞ dt F(0).

Since F(0) = 0, the right hand side vanishes and we must have νx,t = δv(x,t),
λ = 0. This proves weak-strong uniqueness. !
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Appendix B

Vortex sheets

In [17], Delort gave the first existence proof of solutions for the incompress-
ible Euler equations in 2D with vortex sheet initial data. The main theorem
of [17] is the following.

Theorem B.1 [17]: Under the assumption that the initial vorticity η0 = curl(v0)
is in the Delort class, as defined above there exists a weak solution v of the 2-D
incompressible Euler equations (1.1), corresponding to the initial data v0, that also
belongs to the Delort class 4.4.

The uniqueness of the solutions constructed by Delort was not addressed in
[17] and remains an open problem. The purpose of this section is to review
the proof of theorem B.1. In fact, we shall need a slight (but straight forward)
extension of this theorem. We have to extend the class in definition 4.4. We
recall Definition 4.6.

Definition B.2 A vector field v ∈ L∞([0, T]; L2(T2; R2)) will be said to belong
to the extended Delort class, if the vorticity η = curl v is a bounded measure i.ef,
η ∈ H−1(T2) ∩ BM.

The existence proof of Delort in [17] can be readily extended to the case of
extended Delort class initial data in the sense of definition 4.6 provided that
vortices of opposite sign do not interact with each other (at least for a finite
time period). We formalize this argument in the following theorem,

Theorem B.3 Let the initial velocity field v0 belong to the extended Delort class as
defined above. Further, assume that there exists a constant c > 0 and a terminal
time T > 0, such that the time-dependent regions

D±(t) = {x ∈ T
n; ∃N ∈ N, ηN(x, t) ≷ 0},

satisfy
dist(D+(t),D−(t)) ≥ c, ∀t ∈ [0, T], (B.1)
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B. Vortex sheets

then there exists a weak solution v of the incompressible Euler equations (1.1) that
belongs to the extended Delort class 4.6.

Our proof will be based on the following fundamental lemma concerning
the limiting behaviour of approximate solutions of the Euler equations.

Lemma B.4 Let vN be an approximate solution sequence. Let ηN = curl vN. If

• vN → v in C([0, T]; L2
w),

•
´

|ηN | dx ≤ C uniformly for some constant C,

• and we have a uniform lack of concentration of vorticity, in the sense that

lim
r→0

sup
0≤t≤T

sup
N

ˆ

Br(x)
|ηN | dx = 0, ∀ x ∈ T

2,

then v is a weak solution of the Euler equations.

This result is implicitly proved in the original article [17]. The more explicit
statement is taken from [47].

Proof Following Delort [17], given vortexsheet initial data v0 with vorticity
η0 ∈ H−1 ∩ BM, we can produce an approximating solution sequence vN

satisfying the assumptions of lemma B.4 as follows.

We start by mollifying v0 to obtain a smooth approximation. To this end, let
ρ be a standard smooth mollifier with compact support and define ρN(x) =
N2ρ(x/N). The mollified initial data vN(x, 0) := (ρN ∗ v0)(x) will have
vorticity ηN(x, 0) with controlled L1 norm,

∥ηN(·, 0)∥L1(T2) ≤ ∥η0∥BM.

By Theorem 1.5, we can solve the Euler equations for these smooth approx-
imating initial data to obtain a smooth solution vN . The L1-bound is con-
served in time, so that

ˆ

T2
|ηN(x, t)| dx = ∥ηN(·, t)∥L1(T2) = ∥ηN(·, 0)∥L1(T2) ≤ ∥η0∥BM

uniformly in N.

The uniform L2-bound on vN provides a weakly convergent subsequence
vNk

⇀ v in L2(T2). The uniform L1-control on ηN together with the negative
Sobolev regularity in time implies that we can find a subsequence such that

also ηN
∗
⇀ η in BM, where η = curl v in the distributional sense. The

crucial missing part of the argument then consists in proving that

lim
r→0

sup
0≤t≤T

sup
N

ˆ

Br(x)
|ηN | dx = 0, ∀ x ∈ T

2.
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This is where the uniform separation in space of the negative and positive
parts of the vorticity ηN is used. In this case, the following bound can be
established, [37]. We have

ˆ

Br(x)
|ηN | dx =

ˆ

Br(x)
ηN dx ≤ C| log(2r)|−1/2,

for 0 < r < c and all x ∈ T2. The constant C depends only on the initial
data and can be chosen independent of N for the sequence obtained from
our construction.

The argument is based on the conservation of the pseudo-energy

HN(t) =
ˆ

T2×T2
K(x − y)ηN(x, t)ηN(y, t) dx dy

for smooth flows. The function z -→ K(z) is the fundamental solution of the
Laplace equation (with singularity K(z) ∼ −(2π)−1 log(z) as z → 0). We
can estimate (for small r > 0)

(
ˆ

Br(x0)
ηN dx

)2

=
ˆ

Br(x0)×Br(x0)
ηN(x, t)ηN(y, t) dx dy

≤ C| log(2r)|−1
ˆ

|x−y|<2r
K−(x − y)ηN(x, t)ηN(y, t) dx dy,

where K−(z) = max(0,−K(z)). The integral term on the right hand side can
be estimated by

| log(2r)|−1
ˆ

|x−y|<2r
K(x − y)ηN(x, t)ηN(y, t) dx dy = | log(2r)|−1HN(t).

On the other hand, we have HN(t) = HN(0). Combining these facts, we
obtain the required bound to conclude

lim
r→0

sup
0≤t≤T

sup
N

ˆ

Br

|ηN | dx ≤ lim
r→0

C| log(2r)|−1/2 = 0.

This shows that Lemma B.4 applies to the present situation. Therefore, the
weak limit vNk

⇀ v is a weak solution of the Euler equations. Furthermore,
we have the bound ∥η∥BM ≤ ∥η0∥BM. This proves the existence of a weak
solution in the Delort class for vortexsheet initial data with distinguished sign;
the proof also works under the assumption of a strict separation of regions
D+ and D−. !
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[49] L. Székelyhidi. Weak solutions to the incompressible Euler equations
with vortex sheet initial data. C. R. Math. Acad. Sci. Paris, 349 (19-20),
2011, 1063–1066.

[50] E. Tadmor. Convergence of spectral methods for nonlinear conservation
laws. SIAM Jl. Num. Anal., 26 (1), 1989, 30–44.

[51] E. Tadmor. Total variation and error estimates for spectral viscosity
approximations Math. Comput., 60, 1993, 245–256.

[52] L. Tartar. Compensated compactness and applications to partial differ-
ential equations. Nonlinear analysis and mechanics: Heriot-Watt Sympo-
sium, Vol. IV, Pitman, 1979, 136–212.

88


	Contents
	Introduction
	The incompressible Euler equations
	Mass conservation
	Momentum conservation
	The incompressibility constraint
	The role of the pressure

	Classical Solutions
	Elements of the Mathematical Theory
	Weak solutions
	Existence and uniqueness
	Vorticity


	Measure valued solutions
	Introduction
	(Generalized) Young measures
	A Generalized Solution Concept
	Admissibility Criteria
	Energy admissibility
	Weak-strong uniqueness

	Non-uniqueness, non-well-posedness
	Discussion

	Spectral Method
	A Numerical Scheme
	The Euler equations in Fourier space
	Semi-discretization in Space

	Convergence to MVS
	An ensemble based algorithm to compute admissible measure valued solutions
	Approximate measure valued solutions for atomic initial data
	Computation of space-time averages

	Simplifications in 2D
	Time stepping.

	Numerical experiments
	Rotating vortex patch
	Flat vortex sheet
	Further properties of the vortex sheet
	Non-atomicity of the limit measure valued solution
	Non-zero variance
	Spread of the turbulence zone in time
	Probability distribution functions
	Contrast between incompressible Euler and incompressible Navier-Stokes

	Possible non-uniqueness of Delort solutions
	Stability (uniqueness) of the computed measure valued solution.
	Stability with respect to different perturbations
	The effects of smoothing

	Discussion

	Conclusion
	Summary
	Open problems
	Contributions

	Weak-Strong Uniqueness
	Vortex sheets
	Bibliography

