ETH Ziirich
Seminar for Applied Mathematics

Master Thesis

Parallel Tensor-Formatted Numerics for the
Chemical Master Equation

Simon Etter

25™ February, 2015

Supervised by Robert Gantner
and Prof. Dr. Christoph Schwab



Contents

1. Introduction

1.1. The Chemical Master Equation . . . . . . .. .. ... ... ........
1.2. Tensor Networks . . . . . . . . . . . . . ..
1.3. Solvers for Tensor-Network Structured Linear Systems . . . . . ... ...
2. Tensors
2.1. Cartesian Product and Tuples . . . . . . . .. ... .. ... ... ... ..
2.2. Tensors and Matrices . . . . . . . .. ... L
2.3. Mode Multiplication and Squared Modes . . . . . . . .. .. .. ... ...
2.4. Further Tensor Notation . . . . . . . . . ... .. ... ... ... .....
2.5. Low-Rank Tensor Representation . . . . . ... ... ... ... ......
2.6. The Tensor Singular Value Decomposition . . . . . . ... ... ... ...
2.7. Quantization . . . . . .. L
3. Tensor Networks
3.1. General Networks . . . . . . . . . . . .
3.2. Hierarchical Tucker Representation . . . . . . . .. .. ... ... .....
3.3. HTR Orthogonalization . . . . . ... ... ... ... ... ... ....
3.4. HTR Expressions . . . . . . . . . . . ittt h e
3.5. Parallelization of HTR Algorithms . . . . . . ... ... ... ... ....
4. ALS-Type Algorithms for Linear Systems in HTR
4.1. The ALS Algorithm . . . . . . . ... ... .. ..
4.2. The HTR ALS Algorithm . . . . . . . . . .. .. ... ... ... .....
4.3. Cost of the HTR ALS Algorithm . . . . . ... ... ... ... ... ...
4.4. The Parallel HTR ALS Algorithm . . . . ... ... ... ... ......
4.5. The HTR ALS(SD) Algorithm . . . . . ... ... ... .. ........
5. Case Study: The Poisson Equation
5.1. Problem Statement . . . . . . . . ...
5.2. HTR Expression for the Discrete Laplace Operator . . . . . . . . ... ..
5.3. Common Details for Numerical Experiments . . . . . . ... ... ... ..
5.4. Comparison of Serial and Parallel ALS Algorithm . . . . . . ... ... ..
5.5. Comparison of Serial and Parallel ALS(SD) Algorithm . . . . . ... ...
5.6. Convergence Criterion . . . . . . . . .. ...
5.7. Parallel Scaling of the ALS(SD) Algorithm . . . ... ... ... .....

11
13
14
18
20

22
22
24
28
31
33

37
37
38
42
44
49



6. The Chemical Master Equation

6.1. Introduction . . . . . . . . . . . ...
6.2. Finite State Projection . . . . . . . .. .. oo o
6.3. Discontinuous Galerkin Time-Stepping Scheme . . . . . . . ... ... ..
6.4. Chemical Notation and the CME Operator . . .. ... ... ... ....
6.5. Common Details for the Numerical Experiments . . . . . ... .. .. ..
6.6. Independent Birth-Death Processes . . . . . . . . ... ... ... .....
6.7. Toggle Switch . . . . . . . ..
6.8. Enzymatic Futile Cycle . . . . ... .. ... .. o

. Conclusion

7.1. Acknowledgements . . . . . . . . ... o

. Splittings for Common Tensors

A1, All-Omnes Tensor . . . . . . . ... o
A2, Delta Tensor . . . . . . . . . e
A.3. Shift Operator . . . . . . . ..
A.4. Diagonalization . . . . . . . .. L
A.5. Flipping Operator . . . . . . . . . . . . o ittt e e
A6. Counting Tensors . . . . . . . . .. o

61
61
62
64
66
67
68
73
81

87
87



1. Introduction

1.1. The Chemical Master Equation

Chemical reaction networks are becoming an increasingly important tool to study the
functioning of cells at the molecular level. If such a network involves d chemical species
X1,...Xg, its dynamics are typically modelled by a set of d continuous-valued functions
c(t, X;) describing the concentration of species X; at time ¢, and the evolution of these
concentrations is assumed to be governed by nonlinear ordinary differential equations

(ODEs) of the form

%(t, Xi) = fle(t, X1),...,c(t, Xaq)).

The key assumption underlying these models is that each species is present in such
abundance that the in principle discrete and stochastic nature of the modelled system
can be ignored.

In many biologically relevant cases, the assumption of large copy numbers and aver-
aged fluctuations is not satisfied. In fact, many key constituents of a cell, e.g. proteins
or genes, are present only in very small numbers and leverage the noise inherent in all
biological system, leading to very different behaviour from the one predicted by determ-
inistic models even on the macroscopic level. Under such circumstances, we must give
up on the idea that we could predict the evolution of the studied system with perfect
certainty and pursue the humbler goal of estimating the probability of finding a certain
system state instead. The dynamics of this probability is again described by an ordinary
differential equation, the so-called chemical master equation (CME), but instead of the
concentrations it is formulated in terms of the probabilities p(t, z(X1),...,2(Xy)) to
count exactly z(X;) copies of species Xj.

Assume we want to compute the probabilities up to a largest copy number n for
each of the d species. Then, the number of unknowns p(t, 2(X1),...,2(Xy)) is n? and
solving an ODE of this size is effectively impossible using a standard numerical integrator
for biologically interesting values of n and d. A large number of alternative methods
have been proposed instead, a survey of which is given in [1]. The oldest and most
well-known among them is the Gillespie or stochastic simulation algorithm (SSA) [2],
a Monte Carlo method based on generating a large number of sample trajectories from
which the quantities of interest are estimated. This algorithm is conceptually simple and
has a favourable scaling with respect to the number of species, thereby allowing to study
fairly large and complicated systems. On the other hand, achieving sufficient accuracy,
in particular when studying rarely occurring events, may require an excessively large
number of realisations leading to very long computation times.
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(a) TT format (b) HTR

Figure 1.1.: A six-dimensional tensor in the TT format and the HTR.

In [1], a novel approach for this problem was presented which directly tackles the CME.
Computational feasibility is achieved by not storing and updating each element of the
high-dimensional probability density function p(t,...) individually but rather exploiting
its overall structure by using a compression scheme known as the tensor-train (TT)
format [3, 4]. In the numerical examples presented in [1], already a serial implementation
of this ansatz proved to be highly effective and outperformed the Gillespie algorithm
running on 1500 cores in terms of wall-clock time. This efficiency is brought about by a
much more complicated algorithm, however, with the important consequence that while
the SSA is straightforward to parallelize, no truly scalable parallelization scheme has
been proposed for computations in the TT format to date. In our time of massively
parallel supercomputers, this is a heavy limitation, and it is the purpose of the present
thesis to investigate how this limitation may be overcome.

1.2. Tensor Networks

The TT format compresses a tensor - a numerical array a(iy, . . ., iq) indexed by d integers
- by separating its indices one after the other. That is, in a first step it determines two
tensors uq (i1, 1) and vy (o, da,...,44) such that

T1
a(z’l, ‘e ,id) ~ Z ul(il,al) Ul(al,’ig, con ,id).
a1=1
The integer r; is called rank and the =~ indicates that this separation may be either exact
or involve an explicitly controllable approximation error. Next, we similarly separate
index i2 and continue iteratively until we have a final representation of the form (see [4]
for details)

71 Td—1
a(il,...,id) 7 Z Z ul(il,al)UQ(Oq,iQ,Oég) udfl(adfl,id). (1.1)
Oélil ad—1:1

This sequential separation leads to the linear structure depicted in Figure 1.1a.

Alternatively, we may separate the dimensions recursively as follows. Assume we have
a family of tensors a(a,i1,...,iq) parametrized by a € 1,...,r (with r = 1, initially).
We pick some dimension 1 < k < d and separate, in a first step, according to

'L TR
a(o, iy, ... iq) = Z Z clo,ap,ar)ur(ar, i1, ... ik—1) ur(aR, ik, - - -, id).
ar=1ar=1



Then, we recurse for both vy, and ug and finally obtain the tree-structured representation
shown in Figure 1.1b, known as the hierarchical Tucker representation (HTR) [5, 6].
Because of representations like the ones in Figure 1.1, we summarize both formats under
the name tensor networks [7].

1.3. Solvers for Tensor-Network Structured Linear Systems

Following [1], we will use an implicit time-stepping scheme to solve the CME. The
key algorithmic step will therefore be to solve linear systems, and for computational
feasibility it must be carried out directly in the compressed tensor network form. The
density matriz renormalization group (DMRG) [8] is an algorithm towards this end which
has been known in computational quantum physics for more than 20 years and which
has recently been introduced to the numerical linear algebra community in [9, 10]. We
briefly outline its key steps assuming the notation for TT network from (1.1). Instead
of determining all vertex tensors uy at once, the DMRG algorithms iteratively updates
them by repeatedly carrying out the following three steps:

e Pick two neighbouring vertex tensors uy, ux+1 and combine them to a supercore

Tk

W1, ik Tk 1, k1) 1= Y (a1, ik, k) wlan, kg, okg). (1.2)
Ozk::l

e Solve a local problem which delivers an updated supercore w*.

e Separate the new supercore into the two factors uy, uz, as in (1.2) and let them
replace the old vertex tensors, uy := uj, ugs1 := uj_ ;. This step allows to adapt-
ively choose a new rank r7}.

The idea is that after sufficiently many of these steps, the tensor a represented by the
ug, through (1.1) will eventually converge to the exact solution of the linear system. The
DMRG algorithm turned out to be highly effective in practice, yet it has the drawback
of being targeted mainly at the T'T format which, as we motivate in the next paragraph
in a fairly general manner, severely limits its parallelizability.

Any non-trivial algorithm, in particular the solution of linear systems, requires gath-
ering some information from all vertices of the network, and it turns out that this step
can only be carried out efficiently if the information is passed on from one vertex to
its neighbour like the baton in a relay race. Examples for such information gathering
steps are the orthogonalization and, in case of the HTR, computation of the Gramians
for truncation [4, 6], and the computation of the projected operators and right-hand
sides for the DMRG algorithm [9, 10]. In the TT case, the longest distance between two
vertices is O(d) and it is therefore not possible to reduce the runtime of the information
gathering step below O(d) through parallelization. In contrast, the longest distance in
the HTR is only O(log(d)) (assuming a balanced representation) and all basic algorithms
(addition, dot product, orthogonalization and truncation) achieve the resulting optimal



parallel runtime of O(log(d)) out of the box. The HTR is therefore intrinsically better
suited for parallelization than the TT format, see also [6, 11] where similar arguments
are given, and any truly parallel tensor network framework must be based on the former.

Nevertheless, it is possible to parallelize the TT DMRG algorithm to some extent.
In [12, 13, 14], different schemes were proposed to parallelize the local problems of
the DMRG algorithm. This approach faces the problem that the parallel fraction does
not scale with the overall workload and is therefore not suitable for massively parallel
hardware. Quite a different road, inspiring to a large extent the algorithm we present
here, has been taken in [15]. In the mental picture given above, the parallelization
scheme proposed there exploits that information needs to be exchanged repeatedly in
the DMRG algorithm, and by pipelining up to O(d) such exchange rounds one can obtain
an algorithm scaling up to O(d) processors after some initial phase. The fundamental
problem of the TT format remains, however, and expresses itself in that the first ex-
change round, requiring O(d) computational effort, cannot be parallelized beyond two
processors (further details will be given in Section 4.4. The parallelization scheme from
[15] can therefore be expected to perform well for hard problems requiring many DMRG
iterations, but will perform rather poorly in an implicit time-stepping scheme where we
need to solve many but fairly easy systems of equations. To illustrate this point, we
remark that the maximal iteration count for the DMRG algorithm was set to at most
5 in [1]. We may therefore expect that at least a fifth of the computational effort was
spent in a section which would be hardly parallelized by this scheme.

In principle, it is possible to overcome the aforementioned problem by reformulating
the DMRG algorithm for HTR networks as has been done in [16] for the case of eigenvalue
problems. Such an HTR DMRG algorithm has a number of disadvantages, however, the
most important being that the supercore resulting from two interior vertices is O(r?) in
size which is typically much larger than the O(n?r?) encountered with the TT format.
Here, r € N denotes some bound for the local ranks and n € N denotes the range of a free
index i which can often be chosen fairly small by means of quantization [17, 18, 19, 20].
Also, the fact that its local problems involve two vertices at the time complicates the
implementation in a parallel framework where data for different vertices may be stored
on different processes.

The main reason for combining neighbouring vertices in the DMRG algorithm is to
allow for adapting the ranks during the course of the computations. In [21], a variant of
the DMRG called the ALS(SD) algorithm has been proposed which, despite being rank-
adaptive, only updates one vertex at a time and therefore avoids the aforementioned
problems. Rank-adaptivity is achieved by combining the one-site DMRG algorithm
(also known as the alternating least squares (ALS) algorithm [10, 9]) with a steepest
descent (SD) and a truncation step. Both of the latter steps are both efficient as well as
parallelizable in the HTR.

Based on the above considerations, we conclude that an HTR version of the ALS(SD)
algorithm is the most promising candidate for a parallel, tensor-network-based solver for
the CME. Developing such an algorithm and analysing its properties is therefore the key
topic of this thesis.



2. Tensors

We introduce the tensor-related notation required in later chapters, and recall the con-
cepts of quantization and low-rank tensor representation.

2.1. Cartesian Product and Tuples

Given sets A, B, C, the Cartesian product A x B x C is commonly defined as the set of
all tuples (a, b, c) such that a € A, b € B, ¢ € C. An important point in this definition
is that the Cartesian product and the tuples are ordered: A x B x C is not the same
set as C' x A x B, and so are (a,b,c) and (c,a,b) not the same tuples. Considering a
tuple ¢t := (a,b,c) € A x B x C, the orderedness allows to refer to its elements more
easily through t; := a, to := b, t3 := c¢. Effectively, we thus define ¢ to be a function
t:4{1,2,3} - AUBUC,iw t; such that t; € A, t; € B and t3 € C.

In this document, we often want to define a set as the “combination” of some other sets,
but any ordering on these sets would be arbitrary. An example for such a situation are the
French playing cards. Each card is the combination of a rank R := {2,...,10,J,Q,K, A}
and a suit S := {hearts, diamonds, spades, clubs}. It is therefore natural to define the set
of cards as either R x .S or S x R, but there is no objective reason to prefer one definition
over the other. In this simple example involving only two sets, we could introduce
a convention on what order should be used, but this approach becomes inconvenient
once the number of involved sets becomes variable. Instead, we prefer to generalize the
concept of the Cartesian product as follows.

Definition 2.1.1 (Cartesian Product and Tuples). Let D be some finite set and (Sk)kep
a family of sets parametrized by D. The Cartesian product of (Sk)kep, denoted by
Xep Sk, is defined as the set of all functions D — UkeD Sk, k +— s such that s € Si.
Such a function is called a tuple and is denoted by (s)keD-

Since the parameter k is usually not of interest, we define the abbreviations Sp :=
(Sk)kep and sp := (sp)rep. We use the shorthand notation S := X, _, S in case
Sy = S forall k € D. If D = {k} is a singleton, we do not distinguish between the
set Sk and the trivial Cartesian product X, Sk nor between the element s; and the
1-tuple sp as long as it is clear what the index k is.

For the playing card example, we may now define D := {R, S} such that the set of
all cards becomes C := Xke{R,S} k and a specific card ¢ € C' is given by e.g. cg = A,
cs = spades. The above definition is a proper generalization of the standard Cartesian
product since the ordered tuples are retained as the special case D :={1,...,d}.



Having to write X (RS} k for the Cartesian product of only two sets is clumsy, and
so far we have no notational means to construct a ¢ € C from its constituting elements
cRr, ¢s. These problems are tackled next.

Definition 2.1.2 (Concatenation). Let DM D® be two disjoint finite sets, and Sg()l),

Sj(jz()Q) two corresponding families of sets. The concatenation of the cartesian products

Xee D) S,il) and X pe) S,(f), denoted by (XkeD(l) S,gl)) X (XkeD(g) S,(f)), is defined

as
1 .
( < S}il)) " ( < S}gz)) - X S, S {515;) if k e DU

2 . 2)
keD) keD(®) keDOUD2) S if k€ D®

Similarly, we define the concatenation of 5%21) € Xpep S,il), 5%?2) € Xpep® S,(f)

(1) (2)
D X Spe

N - SD<1>UD@>G< % s,<;>> ( % s,52>),

keD™) keD(®)
. [s) ifkeDW
CTS? ke D@

denoted by s ) as

The set of all cards can thus be more conveniently defined as C' := R x S, and an
element in this set may be specified as e.g. A x spades. In both notations, we use the
rule from Definition 2.1.1 of not distinguishing between families / tuples of length 1 and
their single element.

Remark 2.1.3. Concatenation is both associative and commutative.

2.2. Tensors and Matrices

Tensors are arrays with d € N indices and elements from K € {R,C}. They thus
straightforwardly generalize vectors (columns of numbers, therefore d = 1 tensors) and
matrices (tables of numbers or d = 2 tensors).

Definition 2.2.1 (Tensor). Let D be some finite set and Ip a family of finite sets
parametrized by D. An element x € KXrepx is called a tensor. The elements of D
are called modes and its size d := #D dimension. For notational convenience, we write
x (ip) instead of z;,, to denote the evaluation of x at ip € Xiep k- The Iy are called
indez sets, their size ny := #1Ij; mode size and their elements i, mode indices. If D := {}
is the empty set, we define KXrep/k := K and formally set z(ip) := z for z € K and
ip € Xpep 1.
We define the element-wise addition and scalar multiplication of tensors,

(z+y) (ip) =2 (ip) +y (ip),



(ax) (ip) := ax (ip)

for all 2,y € KXkep !k and o € K. The inner product and norm on K*rep’x are the
standard Euclidean inner product and norm [22, Example 4.126],

(@y):= Y zlip)ylip), llz]:=(zx),

iDEXkeD Iy,
where z denotes the complex conjugate if z € C and is to be ignored for z € R.

The tensors defined above differ from objects of the same name found in the literature
(e.g. [22, §1.1.1]) in that we use the unordered tuples from Section 2.1 to index a tensor.
This allows using any symbols k& and i to reference a mode and a specific entry along
that mode, in contrast to the usual definitions which enforce the integers 1,...,d and
1,...,ng, respectively. The new freedom has a number of advantages which will become
clear as we proceed.

We will generalize a large part of the well-known matrix terminology to tensors. Before
we can do so, we first have to clarify the definition of “matrix” being used, however.

Definition 2.2.2 (Matrix). A two-dimensional tensor z € K/2*/¢ is called a matriz if
one of its modes is qualified as row mode and the other as column mode. In an abuse of
notation, we define K/#*1¢ to imply that R (i.e., the first mode) is the row mode and C
(the second mode) the column mode. We emphasize the special roles of the modes by
writing z(ig, i¢) instead of z(ig X ic).

Also, it will be useful to have some map which bridges between tensors and matrices.
We establish it in two steps.

Definition 2.2.3 (Long Mode [3]). Let D be some finite mode set and Ip the cor-
responding index sets. The symbol D defines a new mode with associated index set
I5:=Xcp Ix- We call D a long mode. 1f ky, ..., kq are some modes, we write k1, ..., kq

instead of {ki,...,kq}.

Definition 2.2.4 (Matricization). Let R, C be two disjoint finite sets and & € KXkeruc I
a tensor. The symbol Mg o(x) refers to the matrix in K/=*/c whose entries are given
by

Mg c(x)(ig ig) = z(if X ia).
Mg c(x) is called a matricization of x. If either R or C'is a singleton {k}, we also allow
using k directly as a subscript to M.

Alternative names for matricization [6] are matriz unfolding [3] or flattening. See also
22, §5.2].

10



2.3. Mode Multiplication and Squared Modes

The most important operation for vectors and matrices is matrix multiplication. We
now define its appropriate generalization for tensors.

Definition 2.3.1 (Mode Multiplication'). Let 2 € KXremur Ik 4 ¢ KXkexun Ik he two
tensors such that M, K and N are pairwise disjoint. The expression zy, called the mode
product of x and vy, defines a new tensor z € KXremun Ik whose entries are given by

2(ivy xin) =Y a(in xix) y(ix X in).

iKGXkEK Iy

K may also be empty. In that case, the mode product is also called tensor product [22,
§1.1.1].

If M, K and N are singletons, the above expression is exactly the matrix product.
Not surprisingly, mode multiplication inherits many properties of the matrix product.

Remark 2.3.2. The mode product z = xy with x, y and z as above is equivalent to the
matrix product M,y (2) = M,k (2) Mg N (y). It therefore costs O ([Tpenorun #1k)-

Remark 2.3.3. Mode multiplication is associative, i.e. for any three tensors z, y and z
we have (zy)z = z(yz). We may thus drop the parentheses and simply write xyz.

Remark 2.3.4. Mode multiplication is distributive over tensor addition, i.e. we have
x(y+2) = zy+ 2z and (x + y) z = zz + yz for any three tensors x, y and z where x
and y are taken from the same tensor space.

Remark 2.3.5. The inner product (x,%) of two tensors z,y € K*<kep % is given by the
mode product Ty, where T denotes the conjugate tensor defined in Definition 2.4.4.

As stated earlier, we may use any symbol to reference a mode. Each symbol may refer-
ence at most one mode per tensor, however, since there would be no way of distinguishing
between multiple modes (i.e., indices) of the same mode symbol. Yet there are cases
where we would like some modes to appear “twice” in a tensor in some suitable sense,
the most prominent example being the linear operators from a tensor space K*ker I to
another tensor space K*ker Ik Linear operators on vectors are usually identified with
matrices. Likewise, we would like to identify the aforementioned mappings with tensors
from a third tensor space of dimension d := #FE + #F. If E and F are disjoint, this is
straightforward: the operator space in question can be identified with KXrerur Ik such
that the application of an operator A € KXrerur Ik to a tensor z € K*ker Ik is given by
the mode product Az. However, if E and F' overlap, this identification no longer works
since in E'U F we “lose” some modes in the sense that #(F U F) < #FE + #F.

We resolve the problem in two steps. First, we introduce a new notation which allows
us to easily generate two new mode symbols out of one.

! An operation of the same name has been defined in [23] which, in our terminology, corresponds to the
special case when one of the multiplied tensors is a matrix.

11



Definition 2.3.6 (Tag). Let k£ be a mode. A tag T introduces a new mode T'(k) with
the same index set as k.

Definition 2.3.7 (Squared Mode). Let D be a finite mode set and Ip the corresponding
index sets. We introduce the row tag R and the column tag C and we define D? :=
R(D) U C(D). If both R(k) and C(k) appear in the mode set of a tensor, k is called a
squared mode. R(k) is called k’s row mode and C(k) k’s column mode.

We define I,f = Ipk) X Ic)- 1f a tensor = € K*rep2 I has only squared modes, we
further define M(x) := Mg p),c(p)(T)-

In our example, we would like the linear operators to have two modes for each k €
E N F, namely one for the mode in the range tensor space and one for the mode in the
domain tensor space. We can achieve this by setting Oy := ENF, O1 :== (EUF)\ O

I
and identifying the operator space with K ke01u03 (note how Os contains the squared

Operator modes, and O the non-squared ones). The notation for applying A to x does
not yet work out, however. The common modes of A and z are only F \ F, thus Az

I
results in a tensor in K *€FU03U02 * instead of the desired KXer I What is still needed
are special rules for mode products involving row and column modes such that Ax indeed
corresponds to the application of A to xz. This is tackled next.

Definition 2.3.8 (Mode Multiplication and Squared Modes). Let x € K™ ken@) Iﬁ Yy €
K kep® ¢ he two tensors. We define:

e Let k be a mode such that C(k) € D@ and k € DWW, In the expression zy, the
C(k)-mode of = is multiplied with the k-mode of y. The R(k)-mode of the result
is set to k.

e Let k be a mode such that k € D) and R(k) € DW. In the expression zy, the
k-mode of z is multiplied with the R(k)-mode of y. The C(k)-mode of the result
is set to k.

e Let k be a mode such that C(k) € D@ and R(k) € D). In the expression zy,
the C'(k)-mode of x is multiplied with the R(k)-mode of y.

In this new notation, the expression Az implies mode multiplication of all modes of
Ain (E\ F)UC(O2) with all the modes of z. We thus get an intermediate result in
K**ke\mur©2) Ik in which the R(Os)-modes are then relabelled to Oy = F N E. In
conclusion, we have Az € KXver Ik as desired. Note how the above notation generalizes
the common notation for matrix products: the column modes of a tensor x are multiplied
with the corresponding untagged or row modes of another tensor y if x stands to the left
of y. This is exactly the same rule as the one used for the matrix product except that
for matrices we may drop the plural as we multiply over only one mode.

Remark 2.3.9. Unlike the matrix product, mode multiplication is also commutative
unless one of the multiplied modes is a row or column mode.

12



Mode multiplication always multiplies over all matching modes. Sometimes, we would
like to explicitly exclude some modes from being multiplied, however. We introduce a
new notation to enable this.

Definition 2.3.10 (Exclusive Mode Multiplication). Let x € K™ ken(®) I’“, y € K*kep® Ik
be two tensors and M some mode set such that M C D®) N DW . The expression z (M) Y

excludes the modes in M from mode multiplication. Instead, the M-modes of x become
R(M)-modes and the M-modes of y become C'(M)-modes in the result. If M = {k} is a

singleton, we also write x (k) y instead of = ({x})y. If there is a third tensor z € KX ren() Ik
with D& N M = {} between x and y, we split (M) into two parts as in T\ 2 Y-

The picture to be associated with expressions of the form x; is that the angle bracket
( pushes the M-modes out of = towards the left.

2.4. Further Tensor Notation

Definition 2.4.1. Let n € N. We define [n] :={0,...,n —1}.

Definition 2.4.2 (Slice). Let + € KXk’ be a tensor, M C D a mode set and
iv € Xpep Ir @ tuple of indices. The symbol z (iy), called an M-slice of x, denotes

the tensor in K*kep\m Ik whoge entries are given by
x (ing) (ip\ar) = @ (ing X ip\r) -

Definition 2.4.3 (Induced Subspace). Let R, C' be two disjoint mode sets. A tensor
x € KXkeruc Ik induces the subspace

Sk(x) := span {ﬂc(ic) lic e X Ik} C K*ker Tk,
kel
If R = {k} is a singleton, we also write Sy(z) instead of Sy ().

Definition 2.4.4 (Conjugate Tensor). Let x € CXvep !k be a tensor. The symbol T
denotes the element-wise conjugate of x, i.e.

E(ZD) = (ZD)
For a tensor z € RXken Ik T is equal to .

Definition 2.4.5 (Transposed Tensor). Let A € K (Xkep 1) ¥ (Xies2 It) be a tensor
with some squared modes S. The symbol AT denotes the tensor in the same space
K (Xkep 1) *(Xkes 12) where the R(k)- and C(k)-modes are interchanged for each k € S.
The non-squared modes D are not modified.

Definition 2.4.6 (Diagonal Tensor). Let z € KXrep2 It be a tensor. z is called diagonal
if its matricization M(x) is diagonal.
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Definition 2.4.7 (Identity Tensor). Let D be some finite set. The identity tensor,
denoted by Ip, is the tensor in K*kep? Ik whose entries are given by

Ip (irp) * Z'C(D)) = H Oi gy ic ()
keD

where the J; ; on the right denotes the standard Kronecker symbol. If D = {k} is a
singleton, we also write [ instead of Igzy.

Definition 2.4.8 (Inverse Tensor). Let © € K*vep2k be a tensor such that its mat-
ricization M(z) is invertible. The symbol 2! refers to the unique tensor in KXrep2 x
such that zz ! 1

=z x=1Ip.

Definition 2.4.9 (Orthogonal Tensor). Let € K*kep !k be a tensor and M C D some
mode set. z is called M-orthogonal if its matricization Mp\yy, v (z) has orthonormal
columns. If M = {k} is a singleton, we also write k-orthogonality instead of {k}-
orthogonality.

Theorem 2.4.10. Let x € K*Xkep !k be a tensor and M C D some mode set. M-
orthogonality of x is equivalent to T (M) x = Ipy.

Proof. The claim follows trivially from M(Z (M) 2) = M p\arar(2)* Mp\ar (7). O

Definition 2.4.11 (Tensor Orthogonalization). Let x € K*tep I be a tensor and k € D
some mode such that [Jjep\ ey #Ie = #1k. The symbol Qk(z) denotes a pair (¢ €
K(X%D\{k}[‘*)x[r’“}, r € KIs>Ik) of tensors with rj, := #I,. We treat the mode pair
[ri] x I, of r as a squared mode with R(k) referring to [rg], and C(k) referring to Ij.
The tensors ¢, r are such that x = ¢r and ¢ is k-orthogonal.

Remark 2.4.12. Tensor orthogonalization can be implemented by computing the QR
decomposition QR := Mp\(x}{x}(z) and setting Mp\ (i1 11 (q) = @ and M(r) := R.

This procedure costs O ((#Ik)2 [ee iy #Ig) floating-point operations [24, §5.2.1].

2.5. Low-Rank Tensor Representation

Let z € KXvep !k be a tensor and assume some modes M C D can be separated from
the others, i.e. there exist tensors x € Kl (Xiear Ik), Y€ KX (Xeepar ) guch that
z = zy. The common mode of z and y, denoted by the symbol M, is called a rank mode,
and its mode size ry; € N is called rank. While storing z requires storing [[,cp #1k
floating-point numbers, storing the two tensors z, y containing the same information
requires

r [] #0+ru ] #1

keM keD\M

floating-point numbers, which is much less if the rank rj; is small. Assuming that also
the factors x and y are separable with low ranks, we can further increase the compression
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rate by recursively writing these tensors as the mode product of a number of other tensors
of even smaller dimensions. Eventually, we obtain a family of tensors zy indexed by
some set V such that z = [] .y #,. Identities of this type are called low-rank tensor
representations, and tensor families xy are called tensor networks.

We give a precise definition of tensor networks and introduce the associated notation
and data structures in Chapter 3. Here, we gather some basic results regarding low-rank
representability of tensors. We start with an auxiliary result concerning the separability
of tensors from so-called tensor product spaces.

Definition 2.5.1 (Tensor Product Space). Let D) DW be two disjoint mode sets and
S@) C K*ken(@) I‘“, S C KXrep® I tywo subspaces. The tensor product space

s @ sW ¢ KXkep@upw) I

is defined as
S@ @ 8W .= span{zy | z € S®,y e SW}.

Lemma 2.5.2. Let D@, DWW be two disjoint mode sets, S&) C K kep@ I’“, NN
KXken® T a0 subspaces and z € S®) @ SW ¢ tensor. There exist tensors

+ e K (Xpen@ Ik)’ y € K (X )
with rank v < min {dim S@ dim S(y)} such that z =z y.
Proof. Let & € Kl (Xkenr 1) with ry = dim S be a tensor such that
{2(ia) | ia € [r2]}

provides a basis for S®), and ¢ € K (Xkepvar 1) with ry 1= dim S®a tensor providing
a basis for S in the same manner. There exists a tensor @ € K#/X["s] gathering the
coefficients of the linear combination implied by

z € spanf{(iz) §(iy) | o € [re], iy € [ry]}
such that z = wZy. Setting
_Jz it r, <ry _Jwy ity <my
v {uﬁ:& otherwise ’ v= {@ otherwise
proves the result. O

Our aim is to prove separability of any tensor z € KXrep !k with respect to any
mode set M C D. Thanks to the above result, it only remains to prove tensor-product
structure of KXxen Ik,

Theorem 2.5.3. Let KXxep Ik pe g tensor space and M C D a mode set. We have

KXkem Ik g KX¥kep\m Ik — KXkep I
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Proof. The inclusion KXrem Ik @ K*kep\m Ik C KXkenk is obvious. By [22, Lemma
3.11(b)], the two spaces have the same dimension. O

Corollary 2.5.4. Let z € KXkep !k be a tensor and M C D a mode set. There exist
tensors z € KIrmlx(Xeem Ik); y € KIrmx Ohepvm I6) apith rank

™M S min H #Ik, H #Ik

keM keD\M
such that z = xy.

The separations asserted by the above corollary are not very useful because in the
worst case rj; = min {erM #1, erD\M #Ik}, either x or y has as many entries as
z. The following theorem indicates how we may find separations of lower rank.

Theorem 2.5.5. Let z € KXken Ik be q tensor, M C D a mode set and x € K[TM]X(X%M Ik)

a tensor with some rank ry; € N. There exists a tensor y € Kl (eepne ) sych that
2z = xy if and only if Spr(2) C Sy ().

Proof. (=): Sp(z) = span{my(iD\M) lipwwr € X Ik}
keD\M

=span{ Y a(ipy) y(ipny X ipw) lipr € X I

i(ary €l keD\M

C span {x(z{M}) ‘ Z{M} S [’I”M]} = SM((E)
(«=): Since z(ip\apr) € Sm(x), there exists a y(ip\ar) € K] such that 2(ip\m) =
ry(ip\a) for every ip\p € Xyep\M Iy,.  Grouping the y(ip\ys) into a tensor y €
KUl x (Xkepae 1) yields the result. O

The first conclusion from Theorem 2.5.5 is that only the subspace Sy;(x) induced by
x is relevant, not x itself. To minimize the ranks, we should therefore choose the x (i)
such that they provide a basis for Sy;(x). Additionally, we may optimize Sy;(x) to be of
smallest possible dimension, which by the above result means choosing Sys(z) = Sps(2).
This justifies the following definition.

Definition 2.5.6 (Optimal Rank). Let z € KXtepk be a tensor and M C D a mode
set. The optimal rank rankys(z) is defined as ranky/(z) := dim Sy (z). If M = {k} is a
singleton, we also write ranky () instead of ranky, (z).

%In situations where a set of modes M C D is also used as a label for a single mode (typically a rank
mode) and it is not clear which interpretation is meant, we give preference to the set interpretation.
Here, Sas(z) is thus a subspace of K*kem Tk and the subspace of K™ induced by = would have to
be denoted by S;pry ().
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In more mathematically oriented texts (e.g. [22, Definition 3.32]), the term rank always
denotes the optimal rank defined above. We therefore emphasize that we use rank in a
much more relaxed manner to denote any mode size related in some sense to a separation
of dimensions, irrespective of whether it is the optimal (i.e. smallest possible) rank or
not.

We will repeatedly face the situation where we are given a separation z = xy and want
to check its optimality. One way to proceed would be to check whether the {M }-slices
of = are a basis of Sys(z), but the following theorem provides an easier and more elegant
alternative.

Theorem 2.5.7. Let z € KXken Ik be a tensor, M C D a mode set and x € Kl (Xeenr [’“),

NS KX (Keepr 1) tensors with rank ry € N such that z = xy. Linear independence
of the sets

{z(ipany) Ligy € [ral}, {wligny) i € [rul}
implies Spyr(z) = Spyr(x) and ryp = rankys(z).

Proof. The first implication is proven in [22, Lemma 6.5]. Since the x(iys) are linearly
independent, they are a basis of Sy;(z) = Sps(2z) which proves the second implication. [J

We now focus on splitting a tensor z € K*kep !k into more factors than the binary
case z = xy considered above. For illustration, assume we partition D into three sets
MO MO M) and want to determine three tensors

20 ¢ K[“]X<XkeM<0) Ik), = K[TI}X[TQ]X(X%M(” Ik), z? e KVQ]X(XkeMZ) Ik)

such that z = z@2MWz®  We can obtain such a ternary splitting using two binary
splittings as in z = (0 (z(Mz®) or z = (22122, In the first case, the optimal rank
71 is rank ;) (2) Whereas in the second case it is rank,, o) (2(®2(1)). At this point, it is
therefore not clear whether the order in which we separate the modes influences the final
rank structure we obtain. This question is settled in the following theorem by showing
that the order does not matter.

Theorem 2.5.8. Let z € KXken Ik pe a tensor, MY < D, M@ c MY two mode sets

and 2V ¢ KM <Xk€M(1) Ik) a tensor with rank r1 € N such that Sy, (M) = S,,00(2).

Proof. [22, Remark 11.14]. O

Finally, we discuss a special case related to the HTR networks introduced in Sec-
tion 3.2. We want to split a mode set D into three parts, namely a single mode k£ and
two disjoint mode sets M®) M® c D\ {k} such that D = {k} U M® U M® . We
propose the following scheme to find ranks 7,7, € N and tensors

= K[Ik]><[rgg]><[ry]7 = K[Tz}X<XkEM(z) Ik>, y € K[Ty]X<XkGM(y) Ik>

such that z = wry, with z € KXkep Ik,
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e For each iy € Iy, determine optimal separations z(ix) = (i) §(ix) with
i(iy,) € K[rz(ik)]x (XkeM(z) Ik;)’ J(iy) € K[ry(ik)}x (XkGM(y) Ik)

and 74 (i) 1= rank, ;@) (2(ig)), 7y (ik) = rank, o) (2(ig)).

e Determine two bases

{2(iz) | iz € [rz]} C span{Z(ix)(iz) | ix € Ik, ia € [rz(ix)]},
{y(iy) iy € [ry]} C span{y(ix)(iy) | ix € Ix, iy € [ry(ix)]}

of size ry,ry, € N for the right-hand side spaces, and group them into tensors

x € K[T“”]X<XkeM(m> I’“), (RS K[ry}x(xkeM(y) I’“).

Tk X[rz] x|

e Determine a tensor w € K! "] such that z = wzxy.

By Theorem 2.5.5 and treating 7,7, as a long mode, the last step is well-posed if and
only if
Sy@unw (2) € Sy () @ Sy (9)- (2.1)

We prove this inclusion in two steps.

Proposition 2.5.9. Let z € K*kep !k be q tensor, k € D a mode and M C D\ {k} a
mode set. We have

Sar(z) = span | ] Sar(z(ix))-

ikelk
Proof. [22, Proposition 6.10]. O

Proposition 2.5.10. Let z € KXven Ik be o tensor, and M@ MW < D two disjoint
mode sets. We have

Sar@unrm (2) € Sy (2) @ Sy (2)-

Proof. [22, Corollary 6.18]. O

Proposition 2.5.9 shows that S;;@.) () = S (2) and Sy, (y) = Sy (2), and thus
Proposition 2.5.10 proves (2.1). Furthermore, the first part ascertains that the ranks
found in this manner are optimal.

2.6. The Tensor Singular Value Decomposition

The last section introduced and motivated low-rank tensor representations. Computa-
tionally, such low-rank representations are almost always determined by the singular
value decomposition (SVD) defined next.
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Definition 2.6.1 (Tensor SVD [23]). Let 2 € K*rep !k be a tensor and k € D some
mode such that [[cpy 5} #1¢ = Ir- The symbol Sy (x) denotes a triplet

<u S K(XZGD\{k} IZ)X[Tk]’ sc K[Tk]Q’U c K[rk]xlk)

with 7 1= #I. We treat the mode pair [rg] x I of v as a squared mode with R(k)
referring to [rg], and C(k) referring to I. The tensors u, s and v are such that x = usv,
s is diagonal and u and v are k- and R(k)-orthogonal, respectively. The diagonal entries
of s are real and non-negative. They are called singular values and denoted by s;,,
i € [rg]). We assume the singular values to be sorted in decreasing order, i.e. s;, > Sit
for iy, < 4.

Remark 2.6.2. The tensor SVD can be implemented by computing the matrix SVD
UXV™ := Mp\ (i1 (7) and setting M py (py 1 (u) := U, M(s) := X and M(v) := V* (note
the adjoint). This procedure costs O ((#Ik)2 HEGD\{,C} #Ig) floating-point operations
24, §5.4.5].

The above version of the SVD is not very useful because it always returns a repres-
entation of the largest possible rank r, := #1I;. Assuming that some singular values
are zero, however, we may define the reduced rank ), as the smallest integer such that
s;,, = 0 for i, > ’I“;ﬂ, and the reduced tensors

2
u/ c K(XZED\{k} Ig)X[’I’;C]’ S/ c K[r;c] , U/ c ]1<[7';€]><I]c

obtained by removing the last r; — r} slices in the k-mode of u, the k2-modes of s and
the R(k)-mode of v. Since

rg—1 T;C_l
usv = sy u(in) v(iy) = > sy uliy) v(iy) = u's",
z‘k:O ik:O

we have © = usv = u/s'v/, i.e. the reduced tensors provide a low-rank representation
of x with rank r;, < r,. In fact, by the k- and R(k)-orthogonality of u and v and
Theorem 2.5.5, the reduced rank 7} is the optimal ranky(z).

In cases where even the optimal rank r is too large to store the factors u, s and v, we
may further compress = by setting the smallest r} — 7} non-zero singular values to zero,
with 7}/ < r} the new rank of the (now approximate) representation. This procedure is
called truncation, and the error it introduces is estimated by the following theorem.

Theorem 2.6.3 (Truncation Error). Let 1y, € N be an integer and
w e KXeeormy T)xIrl gy e RIn<di g e KInl® | 5 ¢ Klrel®

tensors such that u and v are k- and R(k)-orthogonal. Then, ||lusv — usv|| = ||s — §||.

Proof. This result is a special case of Theorem 3.1.5 which we will prove later. O
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iz

Denoting by u”, s”, v" the reduced tensors after truncation, the above theorem yields

||CC _ u//S//U//H —

2.7. Quantization

Quantization as introduced in [17, 18, 19, 20] denotes the splitting of a single mode k
of size ny, into [ modes j € [I] of size n; such that k may be interpreted as the joint

long mode of the j € [l], i.e. k = [I[]. This condition implies that the nj have to be
a factorization of ng, i.e. ng = Hé;% n;. The original mode £ typically has a natural
interpretation in the given application and is therefore called physical, while the new
modes j € [I] are called virtual.

This section introduces a notation to make working with quantized tensors more con-

venient. We begin by defining generic labels for the virtual modes.

Definition 2.7.1 (Virtual Mode Labels). Let k£ be a physical mode split into [, € N
virtual modes. The jth virtual mode of k is denoted by (k, j) for all j € [lx]. The set of
all virtual modes of k is denoted by (k, [lx]) .= {(k,7) | j € [lx]}

Let D be a set of physical modes where each k € D is split into {; € N virtual modes.
The set of all virtual modes of all physical modes is denoted by (D, [1]) := Upcp (K, [lx])-

While we allow a general mode k to be indexed by an arbitrary index set [, we
restrict this freedom for quantized modes. Specifically, we require the index set of a
physical mode k to be the integers [ng], and its jth virtual mode must have the index
set [n(x, )] where ng, 1) is some factorization of ny. This structure allows for a generic
map between physical and virtual indices.

Definition 2.7.2 (Quantized Index). Let (k, [lx]) be a quantized mode. We define the
bijection

lp—1 j—1
Foo X0 gl = Il i) = Y St kg Sy = L1 Pk

Typically, the physical modes k£ are more convenient to work with whereas the virtual
modes (k, [lx]) enable us to exploit important additional structure in the tensors. With
the intent to make switching between the quantized and non-quantized views as easy as
possible, we introduce the following conventions.

Definition 2.7.3. Let (k,[l]) be a quantized mode. The quantized index iy ,)) €
X(k,j)e(k,[lk])[n(k:j)] implicitly also defines the non-quantized index ix := f (i(k,[lk])), and
vice versa.
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Definition 2.7.4. Let (k, [lx]) be a quantized mode and i, i ;,]) an index pair from
Definition 2.7.3. We define the expression x (i(k,[lk])) := x (ig) for any tensor z € Kl

and likewise z(ig) := z (i(kﬂk])) for any tensor x € KX ketk i) o],

The idea behind quantization is to increase the dimension of a tensor and thereby open
up new possibilities for low-rank representations. This is demonstrated in the following
example, which at the same time also illustrates the new notation developed in this
section.

Example 2.7.5 (Proposition 1.1 in [19]). Consider the tensor z € K[! given by z(iz,) :=
exp(ig). Assume k is quantized into [ virtual modes, i.e. k = (k, [I]). We have

-1 -1
exp(ik) = exp Z S(k,j) i(k,j) = H exp (S(k,j) i(k,j)) . (2.2)
Jj=0 j=0

Therefore, defining z; € Kl 25 (i, 5)) = exp (S(kyj) i(k,j)) for all j € [I], we obtain

-1
x = H zj. (2.3)
§j=0
Storing x explicitly amounts to storing ny = Hé-_:% n(k,;) floating-point numbers, whereas
storing it as the mode product Hé;}) x; requires only Zé;% n(k,;) floating-point numbers.

Note how (2.2) and (2.3) make use of Definitions 2.7.3 and 2.7.4, respectively.
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3. Tensor Networks

Matrix decompositions are well-known tools to simplify certain operations. Examples
include the LU decomposition for solving linear system, the eigenvalue decomposition
for computing functions of matrices or the singular value decomposition for compression.
Their higher-dimensional analogues are tensor networks, which represent a single tensor
as the mode product of several tensors. This chapter introduces the associated data
structures and notation and recalls basic algorithms and results.

3.1. General Networks

Definition 3.1.1 (Tensor Network). Let V be a finite set and Ey, Dy families of finite
sets parametrized by V. Define E := (J, ¢y Ev, D := U, ey Dv. Assume E and D are
disjoint, the Dy are pairwise disjoint and #{v € V | e € E,} = 2 for each e € E.
Additionally, let 7 € N¥ be a tuple of integers and Ip a family of finite sets.

A tensor network is a tuple of tensors xy € Xoev K(XeeEv [re]) x (Xkep, I’“). It defines a
tensor x € K*kep Ik given by x := [loev 2o The v € V are called wertices, the e € E
edges and the k € D free modes. The rg are called ranks.

We use the symbol z to denote both the tensor x defined above and the tuple of tensors
xzy. Likewise, we do not distinguish notationally between E and Ey nor between D and
Dy, and we define r := rg and I := Ip. We will use the abbreviation

TN(V, E, 7, D, 1) := X Keerolre])x (Xueny 1)
veV
to denote the space of all tensor networks with network structure V., E and D, ranks r
and index sets I.

Free modes may appear in pairs of row and column modes, i.e. R(k),C(k) € D for
some object k. Edge modes e € E are assumed to be non-squared.

Edge modes of two networks 2z € TN(V, E, r(®), D& 1)) 4 ¢ TN(V, E,r®), DW) 1)
are considered distinct. In particular, in expressions of the form z, vy, with v € V', the
modes e € F, are not multiplied. If it is not clear that a mode e belongs to the network
x, we clarify by tagging e as in z(e).

The last rule will become important once we multiply vertex tensors from different

networks. This is illustrated in the following example.

Example 3.1.2. Let V := {1,2}, By = {e}, B2 := {e}, D1 := {k}, D2 := {}, and
x,y € TN(V,E,r, D, I). The expression z1 y; denotes multiplication of z1, y; over mode
k but not e. The result is thus in K[Tx(@]x[fy(e)}, where we clarified that we have one
e-mode coming from = and one from y by tagging these modes accordingly.
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V= {1,2,3,4} ’9

El = {a>b}aE2 = {a> c, d}vE?) = {b7 C}>E4 = {d} g e “ld
Dy = {a}, Dy = {}, Dy := {8}, Dy = (1) >

~
(a) Tensor network (b) Diagram

Figure 3.1.: Example tensor network diagram.

As implied by the terminology, tensor networks are closely related to graphs. We
can use this relationship to visualize tensor networks as shown in Figure 3.1. Such
visualizations are called tensor network diagrams.

In matrix decompositions, we are often interested in how errors in one of the factors
influence the overall error. For example, it is crucial for SVD-based compression of a
matrix A with singular value decomposition UXV* := A that

IS-%<e = [A-USV*|<e (3.1)

for any matrix 3. In order to do a similar analysis for tensor networks, we need some
quantity which captures the effect of a single vertex tensor on the tensor represented by
the network.

Definition 3.1.3 (Environment Tensor). Let x € TN(V, E,r, D, I) be a tensor network
and v € V a vertex. We define the complement DS := D\ D,, of D,. The environment

tensor
Uy(x) € K (Xeen, [re]) x (Xiepg Ik)

is defined as

ueV\{v}

Informally, the environment tensor is the contraction of what is left after removing a
single vertex v from the network. As promised, it captures the influence of x, on z since
we have x = Uy(z) x,.

The stability property (3.1) of the SVD is due to the fact that U and V' are orthogonal.
The appropriate generalization of matrix orthogonality is defined next.

Definition 3.1.4 (Orthogonal Tensor Network). Let @ € TN(V, E,r, D,I) be a tensor
network and v € V' a vertex. x is called v-orthogonal if the environment tensor U, (x) is
E,-orthogonal.

This generalization preserves the stability property of orthogonal matrices:

Theorem 3.1.5. Let x € TN(V, E,r, D, I) be a tensor network and v € V' a vertex such
that x is v-orthogonal. Let & € TN(V, E,r, D,I) be another tensor network such that
Ty = xy for allu € V \ {v}. We have

12 =zl = |7y — 20|
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1,....7

P N
(1,....4} {5} (6,7}
/N |
{13 {23} {7}

Figure 3.2.: Example dimension partition tree for D = {1,...,7}.

Proof. v-orthogonality of x implies U, (z) (E.,) Uy(x) = Ig,. Therefore,

17—l = G —2) (2~ 2) = (o — ) (D) (B) Un(@)) (G0 — )
= (Ty — @) (Tp — 0) = || — va2- =

If we use the same symbol to reference a vertex and a set of free modes, Definition 3.1.4
collides with Definition 2.4.9. In such situations, we give preference to the concept
defined in this section.

3.2. Hierarchical Tucker Representation

The Hierarchical Tucker Representation (HTR) [5] is a specific tensor network based on
a hierarchical splitting of the free modes D. To construct such a splitting, we first split

D into some number ¢ € {0,...,#D} of pairwise disjoint, non-empty subsets D;. We do
not require this splitting to be complete, i.e. | J;_; D; = D is not required. Next, we split
each D; again into ¢; € {0,...,#D;} disjoint, non-empty but not necessarily complete

subsets D;;, and we continue recursively until we are satisfied with the splitting. The

set
TD:{D, Dy,...,D¢, D11,...,Di1¢yy ..oy Dea, ..o, Dee,, }

of all the sets constructed in this manner is called a dimension partition tree (see also
Figure 3.2).

Definition 3.2.1 (Dimension Partition Tree). Let D be some finite set and P (D) its
power set, i.e. the set of all improper subsets of D. A set Tp C P(D) is called a dimension
partition tree if it satisfies D € Tp, {} € Tp and aN #{} = a C BV [ C « for all
a, 8 € Tp. The last condition establishes the hierarchical structure of Tp.

D is called the root of Tp. We define the following terms for o« € Tp and o/ € Tp\{D}:

descendant(a) := {8 € Tp | B C a},
ancestor(a) := {8 € Tp | o C B},
child(a) := {3 € descendant(a)\ {a} | Ay € Tp: B C v C a},
parent(c’) := 8 € Tp such that o’ € child(3),

child(ov) U {parent(c)} if a # D
child(«) ifa=D

J

neighbour(a) := {
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sibling(a’) := child(parent(a’)) \ {a'},
level(a) := # ancestor(a),
inv level(a) := max{level(3) | 8 € descendant(a)} — level(a).!

The dimension partition tree Tp on which these terms depend is implicitly given as the
tree from which a or o were taken. Furthermore, we define the sets

leaf(Tp) := {a € Tp | child(a) = {}},
interior(Tp) :=Tp \ ({D} Uleaf(Tp)),
levely(Tp) := {a € Tp | level(a) = ¢}.

Definition 3.2.2 (HTR Network). Let Tp be a dimension partition tree. A tensor
network © € TN(Tp, E,r,D,I) with E, = {a} Uchild(«) for all & € Tp \ {D} and
Ep = child(D), and Dy = a \ (Uﬁechﬂd(a) 5) is called an HTR network. We define the
abbreviation

HTR(Tp,r,I):=TN(Tp,E,r,D,I)

to denote the space of all HTR networks with given dimension partition tree Tp, ranks
T=7r7, € N”p and index sets I = Ip. Note that for notational convenience, we subscript
r with Tp instead of the actual domain of definition Tp \ {D}.

In the existing literature (e.g. [22, Definition 11.2]), dimension partition trees are
required to satisfy two additional conditions. We call such a dimension partition tree
standard.

Definition 3.2.3 (Standard Dimension Partition Tree). A dimension partition tree Tp
is called standard if it satisfies

#a > 2 = #child(a) =2 A Dy ={}
for each o € T.
In text form, the constraints introduced by standardness are the following:
e Tp has to be a proper binary tree, i.e. child(a) = 0 V child(«) = 2 for all a € Tp.

e Only the leaf vertices a € leaf(Tp) have free modes, and each such leaf vertex has
exactly one free mode.

We will assume standardness whenever the form of a result depends on the specific
shape of the tree. Typically, these results are complexity estimates like the following.

Theorem 3.2.4. Let Tp be a standard dimension partition tree, x € HTR(Tp,r,I) an
HTR network and d := #D, n := maxgep #1, v := maxXecgr.. The storage cost of x
is dnr + (d — 2)r® + 12,

'Put differently, invlevel(a) is the longest distance from « to any leaf in descendant(c). Tt is “inverse”
to level(a) in that it increases in leaves-to-root direction.
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Proof. The following table specifies the storage cost of z, for a € leaf(Tp), a €
interior(a) and o« = D, and indicates how many such « exist. The complexity estimate
then follows from multiplying and adding its elements.

Number of vertices ‘ Cost per vertex

leaves d nr
interior d—2 r3
root 1 r?

Another tree property, important for parallelization, is balancedness.

Definition 3.2.5 (Balanced Dimension Partition Tree). A dimension partition tree T
is called balanced if it satisfies

max level(a) — min level(a) < 1.
a€leaf(Tp) a€leaf(Tp)

Finally, we introduce an abbreviation to square all modes of a dimension partition
tree.

Definition 3.2.6 (Squared Dimension Partition Tree). Let T be a dimension partition
tree and o € Tp a vertex. We define T3 := {a? | a € Tp}.

We constructed HTR networks by first constructing the dimension partition tree Tp
and then deriving the vertices, edges and free modes from Tp. One can also proceed
the other way around: we first specify a tree-structured graph, attach the free modes to
its vertices, choose one of its vertices as the root and then construct the vertex labels
« € Tp as the set of all free modes in the subtree of the vertex to be labelled. The latter
approach shows more clearly that dimension partition trees are to some extent arbitrary.
If we choose two different vertices as the root, we obtain two trees Tp and TD which
are different but in some sense equivalent. The following function maps between such
equivalent dimension partition trees.

Definition 3.2.7 (Tree Rerooting). Let Tp be a dimension partition tree and o € Tp
a vertex. We define for all g € Tp:

D\ {v €child(8) |« C v} if B € ancestor(a)
Ra(B) =4 D if =«

B8 otherwise

We refer to Figure 3.4 for an example of the action of R,. With the notation in place,
we can precisely specify what we mean by “equivalent”.

Theorem 3.2.8. Let Tp be a dimension partition tree and «, B € Tp vertices. We have:
o Ro(a) =D (a becomes the new root.)

e Dr, 3 = Dp (The free modes are preserved.)
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{1,2}

{1,2} Rz} !
/N — {1}

{1} {2} \ )?
{1}

Figure 3.3.: Two different vertices are mapped to the same vertex under tree rerooting.

e neighbour(Rq(5)) = Ra(neighbour(s)) (The network structure is preserved.)

The proof of Theorem 3.2.8 is irrelevant to the exposition here. We therefore omit it.

Sometimes we would like to use the terminology for rooted trees defined in Defini-
tion 3.2.1 in a rerooted version Ry (Tp) of Tp. In order to keep the notation concise, we
define the following abbreviations.

Definition 3.2.9 (Relative Tree Terms). Let Tp be a dimension partition tree and
a, B € Tp two vertices. We define the terms

(8| @) = RgH (1(Ra(8)))
where 7 is a template for any element of the set {descendant, ancestor, child, parent, sibling}.

A technical difficulty of tree rerooting is that different vertices «, 3 € Tp may be
mapped to the same set R, (a) = R(8), see Figure 3.3. We will not introduce a new
notation to resolve this problem, however, because we use R only as a tool to formulate
Definition 3.2.9 whose intended meaning is clear even with this flawed notation.

In Definition 3.2.2, we assigned the same label 8 both to a vertex in Tp \ {D} as
well as to the edge which connects this vertex to its parent. Given a non-root vertex
B € Tp, it is therefore very easy to refer to this parent edge of 5. We would like to make
it similarly easy to refer to the parent edge of 3 relative to a vertex o € Tp, i.e. the edge
which points from g8 towards «. This is achieved with the following definition.

Definition 3.2.10 (Relative Parent Edge). Let Tp be a dimension partition tree and
a, B € Tp two vertices. We define

15} otherwise

B | Q) = {parent(ﬂ | @) if § € ancestor(a)

Example 3.2.11. Consider the left dimension partition tree from Figure 3.4. We
have

descendant({1,...,4} | {2,3}) = {{1,...., 4}, {1}, {1,...,7},{5},46,7}, {7} }.
ancestor( {6,7} | {2,3}) ={{1,...,7},{1,...,4}, {2,3} },
child({1,...,4} | {2,3}) ={{1,...,7}, {1} },
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,...,7} (1,4,...,7}

P N R{2,3} AN
(,....4 {5 o 29— 0y B
/ N\ | VAN
{1} {2,3} {7} {5} {6,7}

\
{7}

Figure 3.4.: Example of tree rerooting.

parent({1,...,7} | {2,3}) ={1,...,4},
sibling({1,...,7} | {2,3}) = {{1} }.

For the parent edges, we have

T({l} | {273}):{1}7 T({la"'v’?} | {2’3}):{1""74}'

We did not color the right-hand sides to emphasize that they are edge labels and not
vertex labels.

In the HTR case, the environment tensor (Definition 3.1.3) has a little sibling.

Definition 3.2.12 (Subtree Tensor). Let x € HTR(Tp,r,I) be an HTR network and
a, 8 € Tp two vertices. The subtree tensor

K1 (eera@) k) if § 4 o
SB‘Q(CL') S { % T .
KXkep Ik it f=a

is defined as

Spla(T) = H Ty

~yE€descendant(S|c)
As before, we define Ss(x) := Sgp().

3.3. HTR Orthogonalization

Section 3.1 introduced the meaning of tensor network orthogonality and motivated why
it is a useful concept. One advantage of the HTR is that we can orthogonalize any
x € HTR(Tp, r, I) with respect to any a € Tp, meaning that there exists an algorithm
which finds a new network & € HTR(Tp, r, I) representing the same tensor, || aeTp Ta =
I1 aeTp Tas but which has the additional property of being a-orthogonal. This algorithm
is based on a related but different concept of orthogonality which is specific to HTR
networks.
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Definition 3.3.1 (Strongly Orthogonal HTR Network). Let z € HTR(Tp,r,I) be an
HTR network and o € Tp a vertex. = is called strongly a-orthogonal if Sg,(z) is
{1(58 | @) }-orthogonal for each g € Tp \ a.

As suggested by the name, strong a-orthogonality is a stronger form of a-orthogonality.

Theorem 3.3.2. Let x € HTR(Tp,r,n) be an HTR network and o € Tp a vertex such
that x is strongly a-orthogonal. Then, x is a-orthogonal.

Proof. The environment tensor at « is given by

Usz)= J]  Sgal@).

B€neighbour(a)

Since x is strongly a-orthogonal, we have

Spja (@) (1B} (Sppa(@)) = Lig

for each f € neighbour(a). Therefore,

Ua(x) (Ea) Ua(fﬁ) = H Sﬁ|a(x) (Ea) H Sﬁ\a(x)

Beneighbour(a) BéE€neighbour(a)

= I  Ssa@) @@ Spalz)
B€neighbour(a)

= Il Tneen =Ie
Beneighbour(a)

which by Theorem 2.4.10 implies E,-orthogonality of U, (x) and thus a-orthogonality of
T. O

We present an algorithm from [6] which establishes strong D-orthogonality. Following
the discussion in Section 3.2, this algorithm could be generalized to establish strong
a-orthogonality for any a € Tp, but the general algorithm is more difficult to formulate
and will not be used in this thesis. Some authors, e.g. [6], call a strongly D-orthogonal
HTR network simply orthogonal. Following this terminology, we call the algorithm to
strongly D-orthogonalize a network HTR orthogonalization. Its basic building block is
the following vertex-wise operation.

Definition 3.3.3 (Vertex Orthogonalization). Let z € TN(V,E,r,D,I) be a tensor
network, e € E an edge and v,u € V the two vertices such that e € E, A e € E,.
Orthogonalization of x, with respect to e is defined as the following operation:

1: (q,7) := Qe(xy)
2: Ty = q
3. Ty =TIy,
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Theorem 3.3.4. Let x € TN(V,E,r,D,I) be a tensor network, e € E an edge and
v,u € V the two vertices such that e € E, A e € E,,. Denote by & € TN(V,E,r,D,I) the
network resulting from orthogonalizing x, with respect to e. Then, [],cy v = [[,ey Zo-

Proof. The claim is a direct consequence of Ty, T, = q(ry) = Ty Ty- ]

The trick to orthogonalize an HTR network is to orthogonalize its vertices in the
correct order, which is leaves-to-root.

Definition 3.3.5 (HTR Orthogonalization [6, Algorithm 3]). Let € HTR(Tp,r,I) be
an HTR network. Orthogonalization of x is defined as the following operation:

1: RECURSE(D)
2: function RECURSE(«)
3: for § € child(a) do

4 RECURSE(S)

5 end for

6: Orthogonalize z, with respect to «
7: end function

Let us prove correctness of this algorithm.

Lemma 3.3.6. Let v € HTR(Tp,r,I) be an HTR network and o € Tp a vertex such
that xo is {a}-orthogonal and Sg(x) is {B}-orthogonal for each B € child(«). Then,
Sa(x) is {a}-orthogonal.

Proof.

Sa(7) o)) Sa(x) =Tagay | I Ss@) 081 S5(2) | {apy2a
Béechild(a)

= Ta ({a}) Ta = Liqy -

Theorem 3.3.7. Let x € HTR(Tp,r,I) be an HTR network. After running HTR
orthogonalization on x, x is strongly D-orthogonal.

Proof. Apply Lemma 3.3.6 inductively in leaves-to-root direction. O

Theorem 3.3.8. Let Tp be a standard dimension partition tree, z € HTR(Tp,r,I) an
HTR network and d := #D, n := maxgep #1i, 7 := maxecpre. 1The cost of HTR
orthogonalization of x is O(dnr? 4 dr?).

Proof. We have to compute the orthogonalization (g, 7) := Q, () and the mode product
TTparent(a) fOr each vertex a € Tp \ {D}. At the d leaves, these operations cost O(nr?)
and O(r?), respectively. At d — 2 interior vertices, both operations cost O(r4).

A slightly more precise result on the cost of HTR orthogonalization is given in [6,
Lemma 4.8]. O
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One of the reasons why we only need an algorithm to strongly D-orthogonalize an
HTR network x is that once x is strongly orthogonal with respect to any vertex a € T,
we can move this orthogonal centre around using the following theorem.

Theorem 3.3.9. Letx € HTR(Tp,r,I) be an HTR network and o € Tp, 8 € neighbour(a)
two vertices such that x is strongly a-orthogonal. After orthogonalizing x. with respect
to (B | ), x is strongly [3-orthogonal.

Proof. The proof is very similar to the one of Lemma 3.3.6. We therefore omit it. O

3.4. HTR Expressions

Assume we are given a tensor € KXtep s and a dimension partition tree Tp, and we
wish to find ranks r7,, € NP and an HTR network z7, € HTR(Tp,r,I) such that x
is the tensor represented by z7,, i.e. z =[] Zq. Solutions xr,, of this problem are
called HTR expressions for x.

We present a formalism to easily derive and write down HTR expressions for families of
tensors xp € K*Xkep Ik parametrized by their mode sets D. For ease of exposition, we as-
sume Tp to be a standard dimension partition tree, but the formalism straightforwardly
generalizes to more general tree structures.

The essential ingredient is the following definition.

acTp

Definition 3.4.1. Let L, R be two disjoint finite sets and r € N. A basis family is a
set of tensor families {sp(ip) | ip € [r]} € KXkep Ik parametrized by their mode sets D

satisfying
r—1 r—1

scur(icur) = Y Y cpur (inur X ip % ig) sp(ip) sr(ig) (3:2)
i,=0ip=0
for some cpup € Klrzor=rixtro:=rixrr:=r] anq all i; g € [r]. As implied by the slice-
notation, sp may also be interpreted as a tensor in KIro=r1x(Xken It) quch that the above
equation becomes sy r = crur Sp.Sr- Equations of the form (3.2) are called splittings.

Assume {sp(ip) | ip € [r]} is a basis family such that sp(ip = 0) = xp. We define
an HTR network Z7, € HTR(Tp, 7, I) with uniform rank 7, = r for all a € Tp \ {D}
by setting

e Zp :=cp(ip = 0) for the root,
® I, := ¢4 for all interior vertices « € interior(7p), and
® Qg = sqpy for the leaves {k} € leaf(Tp).

It is easily verified by induction in leaves-to-root direction that the {a}-slices {Sq(Z)(ia)}
of the subtree tensors S, (Z) are exactly the basis family {s4(iq)} for all « € Tp \ {D},
and that Sp(#) = sp(ip = 0) at the root. Since [[ 7, o = Sp(2) = sp(ip = 0) = Zp,
it follows that Z7,, is an HTR expression for xp.
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To specify an HTR expression, it is thus sufficient to specify a basis family for xp.
In general, the uniform ranks 7, = r are not the smallest possible ranks, however, since
not every s, (ia) is needed at every vertex a. Once all the splittings of a basis family
S :={sp(ip) | ip € [r]} have been determined, we will therefore also specify a bases
tree, which is a map from the vertices o € Tp to a subset {s/,(ia) | ia € [ra]} € S
of the basis family such that the relation s, = c[,s} s}, is still satisfiable by some

tensor ¢, € KrelxIralx[rsy]l for all non-leaf vertices a € Tp \ leaf(Tp) with children
child(a) = {B1,P2}. The actual HTR expression may then be derived as explained
above.

By Theorems 2.5.5 and 2.5.8, the smallest possible ranks of an HTR expression z7,, €
HTR(Tp,r,I) for a tensor x € K*keplk are r, = rank,(x). All bases trees given
in this document are optimal in this sense, i.e. they lead to HTR expressions of the
aforementioned smallest possible ranks, which may easily be verified using the results
from Section 2.5. Since these proofs are fairly technical, we will not carry them out
explicitly.

Example 3.4.2. Let Ap, Bp,Cp € K*kep Ik be families of tensors parametrized by
their mode sets D, and assume they satisfy the splittings

Arur = aALBr+ BBrLCRr, Brur = BrLBr (3.3)

with «, 8 € K\ {0}. Without loss of generality, we assume {Ap, Bp,Cp} to be linearly
independent for any D. If they were not, we could reformulate (3.3) in terms of only the
linearly independent tensors, see also [22, Lemma 3.13]. We would like to find an HTR
expression for Ay 1 9} based on the dimension partition tree

{0,1,2}
{97 1\} {2}
{0} {1}

with 0,1,2 arbitrary modes. Clearly, {Ap, Bp,Cp} provides a basis family for Ap, thus
a possible bases tree would be

{A}
- ~
{A,B,C} {A,B,C}
- ~
{A,B,C} {A,B,C}
where for brevity we have omitted the subscripts of the tensors. This bases tree is not
optimal, however, and can be improved as follows. No term in (3.3) involves Ag or C7p,

thus we can remove A from the right and C' from the left subtree. Similarly, we do not
need either A or C at the middle leaf. Summarizing, the optimized bases tree is

/{A}\
{A,B} {B,C}
(4.8} {B)
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Since all the involved tensors are linearly independent, it follows from Section 2.5 that
this bases tree is optimal in the sense that the resulting ranks

are the smallest possible.
Finally, we mention that the vertex tensor at the root would be given by

B C
Afa 0
B\0 g
where the rows represent the edge mode towards the left child and the columns the edge
mode towards the right child.

3.5. Parallelization of HTR Algorithms

To discuss the parallelization of HTR algorithms, it is useful to treat the vertices of a
dimension partition tree as independent units and the edges between them as commu-
nication channels. Many important HTR algorithms can then be reformulated according
to a common pattern.

Definition 3.5.1 (Tree Traversing Algorithm). An HTR algorithm running on a di-
mension partition tree Tp is called a tree traversing algorithm if there exists a partially
ordered set S of ordered pairs («, 3) involving neighbouring vertices «, 5 € Tp such that
the algorithm can be formulated as follows.

1: for each (o, 3) € S do

2: On «: Prepare a message m
3: Transfer m to 8

4: On £: Consume m

5: end for

The for-loop on line 1 traverses through the pairs such that if a pair p € S is visited
before another pair p’ € S, then either p < p’ or p and p’ are incomparable in the partial
order of S.

The parallelizability of a tree traversing algorithm depends crucially on the set S and
the partial order defined thereon. Of particular importance are the following two types
of algorithms.

Definition 3.5.2 (Root-to-Leaves Algorithm). A tree traversing algorithm is called
root-to-leaves if S is the set

S :={(parent(a),a) |« € Tp \ {D}},
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and the partial order on S is given by
(parent(), ) < (parent(5), ) <=  « € ancestor(5)U {f5}.

Definition 3.5.3 (Leaves-to-Root Algorithm). A tree traversing algorithm is called
leaves-to-root if S is the set

S :={(a,parent(a)) | « € Tp \ {D}},
and the partial order on S is given by
(v, parent(a)) < (B, parent(f)) <=  « € descendant(5).

For illustration, we show how the HTR orthogonalization from Definition 3.3.5 can be
formulated as a tree traversing algorithm.

Example 3.5.4. HTR orthogonalization is a leaves-to-root algorithm given by

1: for each (o, parent(a)) € S do
2: On a: Compute (q,7) = Qu(xq), set zo :=q

3: Transfer r to parent(«)
4: On parent(a): Set Tparent(a) = T Tparent(a)
5: end for

An algorithm can only be sped up through parallelization if at least some part of its
operations can be executed concurrently. The following definition describes the typical
setting encountered with HTR algorithms.

Definition 3.5.5 (Tree Parallel Algorithm). An algorithm consisting of one or more
root-to-leaves and/or leaves-to-root parts is called tree parallel if the loop iterations not
ordered by the respective partial order on S can be executed concurrently in each part.

Ideally, an algorithm run on p processors finishes p times faster than the same al-
gorithm run on a single processor. For a tree parallel algorithm, such perfect speedup is
not possible, however, because edges lying on the same branch must always be processed
consecutively, irrespective of the compute power we invest. To quantify the effect of this
serial part on the parallel scaling, we make the following simplifying assumptions.

Assumption 3.5.6. Let A be a tree parallel algorithm consisting of a single root-to-
leaves/leaves-to-root part running on a balanced standard dimension partition tree Tp.
We assume:

e The operations on a vertex a € Tp can only be run once all incoming messages
have been received. These local operations cannot be further parallelized, and the
outgoing messages can only be sent once all operations on vertex a have finished.

e It takes A one time unit to process an interior vertex a € interior(7p), and no time
to process the root D or a leaf o € leaf(Tp).
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e Transferring messages takes no time.

The first assumption simplifies the model in that it allows to associate all operations
with vertices instead of endpoints of edges. The second assumption is derived from the
fact that for a standard dimension partition tree, the interior vertex tensors are three-
dimensional and therefore typically have many more elements and require much more
effort than the root or leaf tensors which are only two-dimensional. Neither of these as-
sumptions are perfectly satisfied in practice, yet they greatly simplify the model analysis
and the resulting predictions turn out to be sufficiently accurate for our purposes.

Theorem 3.5.7. Let A be an algorithm satisfying Assumption 3.5.6 and set d := #D
such that the dimension partition tree Tp has d—2 interior vertices. The optimal runtime
of A on p processors is given by

d — 21082 p] d
T(p) := [logyp] — 1+ {pw =0 (log2p+ p) ,

and the optimal parallel speedup is

T _d-2_(_d
T~ T) (10g2p+ ;‘j) ' (3.4)
Proof. [11, Theorem 3]. -

If a tree parallel algorithm consists of more than one root-to-leaves/leaves-to-root part,
we assume that the parts must be run one after the other and cannot overlap. Again,
this assumption is not necessarily satisfied in practice, but it simplifies the argument and
provides a reasonable approximation to reality. The optimal runtime of the algorithm
on p processors is then given by > 7" | ¢; T(p), where n denotes the number of such parts
and the ¢; take into account that each part may require a different unit time per interior
vertex. When computing the optimal parallel speedup, the ¢; factor out and cancel,
therefore formula (3.4) is still valid even in this more general setting.

In our implementation, we assign each vertex of the dimension partition tree to a
process and let this process store all the data and execute all the operations associated
with the vertex. The resulting map from the vertices to the processes is called a vertex
distribution, and we depict it graphically in a tree where the color of each vertex denotes
the process on which it is placed, e.g.

(3.5)

Each process manages a list of ready jobs, i.e. a list of messages which are ready to be
prepared or consumed. Once it finishes a job, the process waits until this list becomes
non-empty and then chooses the job to work on next according to either of the following
rules, depending on the type of the algorithm.
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Root-to-leaves: Pick any ready job on one of the vertices a € Tp which maximize

max{inv level() | § € descendant(a) A § is on a different process than a}.

Leaves-to-root: Pick any ready job on one of the vertices « € Tp which maximize

max{level(S) | B € ancestor(a) A § is on a different process than a}.

With the vertex distribution from (3.5) and in a root-to-leaves algorithm, the red
process thus works first on the left vertex on the penultimate level before descending
into the right subtree, and in a leaves-to-root algorithm, the blue process first finishes
the single vertex on the left before starting on the right branch.

Consider a leaves-to-root algorithm and assume o € Tp \ {D} is a vertex located on
process ¢ such that parent(«) is located on a different process ¢’. We call such a vertex a
local root. Under Assumption 3.5.6, the algorithm can only finish by time T if ¢ sends the
message from « to parent(a) at or before time T' — level(a). Requiring the algorithm to
achieve the optimal runtime 7'(p) from Theorem 3.5.7 thus imposes a number of deadlines
by which each process must have finished its local roots, and the above scheduling rule
implies that the processes always work towards the local root with the earliest deadline.
This earliest deadline first (EDF) scheduling algorithm was introduced in [25] and it has
been proven in [26] that if any scheduling algorithm meets all deadlines, then EDF is one
of them. We therefore conclude that if the vertex distribution is such that the optimal
parallel runtime for a leaves-to-root algorithm is attainable, our scheduling algorithm
will indeed achieve it. The same statement applies also for root-to-leaves algorithms,
and it can be proven with an argument analogous to the above.
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4. ALS-Type Algorithms for Linear Systems
in HTR

Consider the problem of finding an z € KXkep Ik such that Az = b with A € K¥kep2 Ik
and b € K*rep Tk, The problem is equivalent to the linear system of equations (LSE)
M(A)Mp 1 (z) = Mp 3(b), therefore the “only” new difficulty is that the number of
unknowns n := [],cp #I grows exponentially in #D. Already for moderate dimension
#D and mode sizes #I;, n can become so large that we could not store the solution x
even if it were given to us for free. To avoid this curse of dimensionality, we represent x
as a tensor network xy which for the moment we assume to have any arbitrary structure,

e.g.
-

Of course, if we cannot afford to store the solution x, then the same also applies to the
parameters A and b. We postpone defining their representations, however, and assume
for the moment that they are given as a black box linear operator and vector

a=e b=
respectively.

Substituting the tensor network ansatz for x into Az = b, we get

3>

Note that this is a nonlinear equation in terms of the zy/, and even though the number of
unknowns is greatly reduced, it is still large. Therefore, iterative approaches are needed
to solve (4.1).

4.1. The ALS Algorithm

The iterative approach we are aiming for is called the Alternating Least Squares (ALS)
algorithm [10, 9]. Its key idea is to replace the difficult equation (4.1) with a sequence
of much smaller and linear equations which we define next.

Definition 4.1.1 (Local LSE). Let zy € TN(V,E,r,D,I) be a tensor network and
v € V one of its vertices. Additionally, let A € K<kep2lk and b € K*kep !k be two
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tensors. The problem of determining x,, € K (Xeem, Irel)x(Xken, k) guch that
Uv(x)(Ev AEU>Uv<x) Ty = Uv(x) b (4'2)

is called the local LSE at v. As indicated by the notation, the local LSE is solved
in-place, i.e. z, will be updated to the solution of (4.2).

The equivalent formulation of (4.2) in terms of a tensor network diagram is

@@@

where the grouped vertices denote U,(x) and the stars denote complex conjugation of
the left-sided U, (x).

The ALS algorithm consists in repeatedly solving the local LSE, see Algorithm 1.
Here, we assume for simplicity that the number of iterations n;s., is specified a priori,
but adaptive choices are also possible and will be discussed in Section 5.6.

If M(A) is symmetric and positive definite (spd), the ALS algorithm can be interpreted
as an iterative scheme for minimizing the energy norm of the error ||z —2*||} = (z, Az) —
2Re(z,b) + (z*,b) with 2* := A~!b the exact solution [9, 10]. In this case, it is also
easily seen that || —2*|| 4 decreases monotonically each time we solve the local problem.
If A is not spd, however, we no longer have an associated energy norm and it is not
clear whether ALS is still an optimization method. In [9], it is proposed to interpret the
non-spd ALS algorithm as a projection method on the subspaces Spe(Uy(x)) instead.

Algorithm 1 ALS Algorithm
1: fori=1,...,nje do
2: for v € V do
3: Solve the local LSE // Equation (4.2)
4: end for
5: end for

4.2. The HTR ALS Algorithm

The ALS algorithm as presented in the last subsection only requires x to be a tensor
network, but it makes no assumptions on either the network structure of x or the rep-
resentations of A and b. This is because we left out two important aspects of the ALS
algorithm:

e The local LSE (4.2) can only be solved numerically if the condition number

K <./\/l (M(EU AEU>UU(5E)))

of the local matrix is reasonably small.
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Figure 4.1.: Contracted subtrees.

e The ALS algorithm is only computationally feasible if the local matrix and right-
hand side can be assembled efficiently.

It turns out that both of these problems can be solved if we require A, x and b to be in
HTR.
Regarding the first point, we have the useful result that

p (M (T@)im, ApyUnl@)) ) < 5 (M(4))

if U, (z) is E,-orthogonal [10, Theorem 4.1] or equivalently that x is v-orthogonal. If z is
an HTR network, a-orthonormality can be established for each o € Tp using the HTR
orthogonalization procedure (Definition 3.3.5). Furthermore, if we traverse through the
network such that consecutive vertices are neighbours, we can use Theorem 3.3.9 to move
the orthogonal centre from one vertex to the next. Ignoring the initial orthogonalization,
we therefore need to orthogonalize only one vertex per local LSE.

The key to the second point are the contracted subtrees defined next. We remark
already here that these quantities will be the HTR analogues of the tensors ¥y, @, in
[9] and Gl‘, Hi in [10].

Definition 4.2.1 (Contracted Subtree (z|y)(«)). Let
x € HTR(TD,T‘(I),H), Y€ HTR(TD,r(y),n)

be two HTR networks and o € Tp a vertex. The contracted subtree

() (v)
(2ly)(a) € KF e *Foie)

is defined as

(x‘y)(a) = Soz(m) Sa(y) = H % Yps-

B€descendant ()

Remark 4.2.2. The contracted subtrees (z|y)(a) can be computed recursively in leaves-
to-root order as follows:

@y) (@) =Taya | [ B |- (4.3)

Bechild(a)
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Definition 4.2.3 (Contracted Subtree (z|y)¢(a)). Let
z € HTR(Tp, ™, n), ye HTR(Tp,r™ n)

be two HTR networks and € Tp \ {D} a vertex. The contracted subtree

(=) (v)
(2]y)°(a) € Ko@)

is defined as

(x‘y)c(a) = Sparent(a)\a(x) Sparent(a)|a(y) = H T3 Yg-

B€descendant(parent(a)|a)

Remark 4.2.4. The contracted subtrees (z|y)¢(«) can be computed recursively in root-
to-leaves order as follows:

(x‘y>c(a) ‘= Tparent(a) Yparent(a) (:J:\y)c(parent(oz)) H (l“y) (5) : (44)
Besibling(a)
Definition 4.2.5 (Contracted Subtree (z|A|y)(«)). Let
x € HTR(Tp, r(x),n), Ae HTR(T,%,T(A),n), y € HTR(Tp, r(y),n)

be HTR networks and o« € Tp a vertex. The contracted subtree

@) A @)
(2] Aly) (@) € K st X Xy

is defined as

(z[Aly)(a) = Sa(z) Sa(A) Saly) = I[I w450

Bedescendant ()
Definition 4.2.6 (Contracted Subtree (z|A|y)¢(«)). Let
x € HTR(Tp,r™® n), A e HTR(T?,rW n), yeHTR(Tp,rY), n)

be HTR networks and a € Tp \ {D} a vertex. The contracted subtree

@) (A 1)
(2] Aly)° (@) € KVt XXy

is defined as

(l‘|A|y)C(Oz) = Sparent(a)|a(x) Sparent(oz)\cx(A) Sparent(a)|a(y) = H @Aﬁyﬁ

B€descendant(parent(a)|a)

Remark 4.2.7. The contracted subtrees (z|Aly)(«) and (x| A|y)¢(a) can be computed
recursively using recursion formulas very similar to (4.3) and (4.4).
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&

Figure 4.2.: The local LSE if all involved tensors are given in HTR. The vertices denote
An, Tay b, (2, Ay x)(a), (2, A, 2)(B) for each B € child(«), and the analog-
ous contracted subtrees for (z,b), respectively. The grouped vertices denote
the local matrix and right-hand side, respectively.

Using the contracted subtrees, the local matrix and the local right-hand side can be
expressed as

Un(@) (s, ApyUs(e) = Aa ([Al2) () []  (al4l2)(8),
Bechild(a)

Up(x)b:=ba (zb)(a) ] (2Ib)(B),

Bechild(a)

(4.5)

see Figure 4.2. Thus, if the involved contracted subtrees are available, we can assemble
the local LSE using only one tensor per neighbouring vertex. The trick to make the HTR
ALS algorithm computationally feasible is to precompute and cache these contracted
subtrees, and to update them on the fly whenever the constituting vertex tensors change.
This procedure is outlined in Algorithm 2.

Algorithm 2 HTR ALS Algorithm

1. Orthogonalize x // Definition 3.5.5

2: Compute (z|A|z)(a) and (x|b)(a) for all @« € Tp\ D // Remarks 4.2.2 and 4.2.7
3: fOI‘iZl,...,’rLiter do

4: RECURSE(D)

5: end for

6: function RECURSE(«)

7: for /5 € child(«) do

8: Solve the local LSE // Equations (4.2) and (4.5)
9: Orthogonalize x,, with respect to 3 // Definition 3.3.3

10: Compute (z|Alx)¢(8) and (z]b)°(B) // Remarks 4.2.4 and 4.2.7
11: RECURSE(f)

12: end for

13: Solve the local LSE // Equations (4.2) and (4.5)
14: if « # D then

15: Orthogonalize x,, with respect to « // Definition 3.3.3

16: Compute (z|A|z)(a) and (z|b)(c) // Remarks 4.2.2 and 4.2.7

17: end if
18: end function
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4.3. Cost of the HTR ALS Algorithm

In this subsection, we assume Tp to be a standard dimension partition tree and = €
HTR(Tp, ), [n]), A € HTR(T3,7), [n]), b € HTR(Tp,r®, [n]) with np € NP and
[n] == ([nk])pep- We define d := #D, n 1= maxgep ng, 7 1= maXqer,\ (D} r&'”), R =
maXqeTp\{D} T&A) and Rp := maxX,er,\ (D} r&b).

The ranks of z are usually larger than the ranks of A or b. In the following, we will
therefore assume R%® < R¥r? if a4+b=a’ +b and b < ¥/, and the analogous inequality
for Rp. At the leaves, we redefine the rank quantity r to refer to the maximum rank
of x at the leaves, which guarantees that in this case r < n. Since in the below terms
involving both n as well as r the rank symbol r refers to the ranks at the leaves, we can
again order such terms according to

V' ifatb=d +V ANa<d.

n? < nr
The HTR ALS algorithm consists of three types of operations: orthogonalization,
contracted subtree computation and solution of local LSE. In the following, we analyze
the computational cost per iteration for each type. The initial orthogonalization and
contracted subtree computation (lines 1 and 2) scale like the corresponding operations
in the iteration. The costs at the root will always be negligible, therefore we do not
discuss this special case.
The cost of the ALS algorithm in the TT case has already been analyzed in [9] and
[10], and the discussion below largely follows the expositions given there.

4.3.1. Orthogonalization

Orthogonalization requires some constant number of tensor orthogonalizations and mode
multiplications per vertex, both of which cost O(nr?) for leaves and O(r*) for interior
vertices. We thus spend O(dr* + dnr?) floating-point operations on orthogonalization.
See also Theorem 3.3.8 and [6, Lemma 4.8].

4.3.2. Contracted Subtrees

The recursive computation of (z|A|z)(«) with « € interior(Tp) and child(«) = {8, Br}
requires evaluating
Ao

T a8 P e . (4.6)
($\A|$)(5LW$1A@(5B)

The computational cost of this step depends on the order in which the mode multiplica-
tions are carried out, which is called a contraction sequence. We propose the contraction
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sequencel

@ Rr# YW B R3¢3 Ll _i Rt
\ —_— . — — =0 — O,
\ 1 N ‘9 T

g 4 .

S =

which costs O(R?r*) operations.

If we replace (z|A|z)(8r) with (z|A]x)(a) in (4.6), we obtain the formula for com-
puting (z|A|z)°(81). Since both (z]|A|z)(a) and (z|A|z)() are elements of K> [T,
we conclude that the recursion step for (z|A|z)¢(«) can be executed with the same cost.

At the leaf vertices, the formula for computing (x|A|z)(«) is much simpler:

x?p} ‘—‘—. l’{p} .
Afpy

This contraction takes O(n2Rr) floating-point operations. In total, computing the con-
tracted subtrees (z|A|z)() and (z|A|z)(a) thus costs O (dR*r* + dn*Rr).

The costs for computing (x|b)(a) and (x|b)°(a) are obtained similarly. We only state
the final result, which is O (de7“3 + anbr).

4.3.3. Local LSE

The number of unknowns in the local LSE at an interior vertex is 73, thus solving the
local LSE using Gaussian elimination has a cost of O(rY). With r ranging up to O(100),
such an algorithm is not feasible.

If we can start the ALS iteration with a good initial guess x (e.g. once the algorithm
has almost converged), we may expect that z, is already a good initial guess for the
local LSE. The vertex tensor x, then only needs a small correction which can be ob-
tained cheaply through a few steps of an iterative method like the conjugate gradient or
GMRES algorithm [28]. The performance bottleneck of these algorithms is the matrix-
vector product which takes O(r®) floating-point operations for a generic LSE in O(r3)
unknowns. However, at an interior vertex the matrix-vector product has the form

(z]Afz)(a)

(@[Alz)(Br)  (z[Alx)(Br)

)

see also Figure 4.2. This allows to reduce its cost to O(R?r?) by evaluating it in the
following order:

I~|
. . R3r24Rrt =\ R2y4 A Rr*
s _— _— 8)
I’ S /I .
‘__/‘__I

!The Matlab script from [27] was of great use to determine such contraction sequences.
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The cost of the matrix-vector product at the leaves is O(n?Rr). The right hand side
can be computed in O(R,r?®) (interior vertex) and O(nRyr) (leaf), respectively. The
total cost of solving the local LSE is thus

O (dp (R2r4 +n*Rr) +d (Ryr® + nRyr))

where p denotes the number of steps required by the iterative local solver.

4.3.4. Summary
Collecting all the results, we find the overall complexity of a single ALS iteration to be
O (d(p+1) (R*r* +n*Rr) +d (Ryr® + nRyr)) .

In practice, the terms involving p describing the effort spent on solving the local LSEs
dominate. We therefore compute precisely how many such LSEs we solve.

Theorem 4.3.1. Let Tp be a standard dimension partition tree, d := #D and x €
HTR(Tp,r,I). The HTR ALS Algorithm 2 solves 4 (d — 1) local LSEs per iteration.

Proof. We count for o € leaf(Tp), o € interior(a) and o« = D how many such « exist
and how often we solve a local LSE on vertex a.

‘ Number of vertices ‘ # local LSE solves per vertex

leaves d 1
interior d—2 3
root 1 2

4.4. The Parallel HTR ALS Algorithm

An important feature of the local LSE (4.2) is that its matrix and right-hand side
depend on all vertex tensors of z. We therefore must not modify x while one local solve
process is running, and in particular we cannot solve several local LSEs concurrently. In
Algorithm 2, this is expressed by the fact that we must run the loop over the children
(line 7) sequentially, because the computations for the local LSE and the contracted
subtrees on lines 8 and 10 depend on the contracted subtrees computed on line 16 in the
subordinate calls to RECURSE.

If we insist on parallelizing the ALS algorithm, we must get rid of this dependency
between loop iterations. Since we have cached values for all (z|Alx)(5), (x]|b)(5), 8 €
child(«), we may use those instead of waiting for the updated values. Put differently,
we may compute all contracted subtrees (z|A|z)¢(5) and (x|b)¢(/3) before we recurse
into any subtree. When solving local LSEs or recursively computing further contracted
subtrees in the calls to RECURSE(f3), we then use the precomputed values for (z|A|z)¢(«)
and (x[b)°(«). This implies that once the first child tensor xg, has been updated, the
contracted subtrees actually used in the local LSE at later children j; € child(«) \ {51}
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or any of their descendants will differ from the ones we would obtain if we computed
them anew. The parallel algorithm thus produces a different result than the serial one.
Numerical evidence indicates that their convergence properties are very similar, however,
see Section 5.4.

A new technical difficulty introduced in the parallel ALS algorithm is that we have to
ensure orthonormality of all environment matrices Ug(z), 8 € child(c), at the same time.
Sequentially orthogonalizing x, with respect to all 8 € child(«) as we did in Algorithm 2
cannot achieve this, because after orthogonalizing z, with respect to the first child 51,
x is not a-orthogonal anymore. Therefore, orthogonalizing z, with respect to some
other By € child(c) will not ensure orthonormality of Ug,(z). Instead, we propose the
following algorithm.

Definition 4.4.1 (Simultaneous Vertex Orthogonalization). Let x € HTR(Tp,r,I) be
an HTR network and o € Tp a vertex. Orthogonalization of x, with respect to its
children is defined as the following operation:

1: for 8 € child(«) do

2: (U5, 58, vg) = Sﬁ(l‘a)
3: To 1= UBSH

4: Tg 1= 1v3Tp3

5: end for

6: for 8 € child(a) do

7 To = o, sEl

8: TR = S3TpB

9: end for

Simultaneous vertex orthogonalization has similar properties as the edge-wise vertex
orthogonalization we have introduced in Definition 3.3.3.

Theorem 4.4.2. Let v € HTR(Tp,r,I) be an HTR network and o € Tp a vertex.
Denote by £ € HTR(Tp,r, I) the network resulting from orthogonalizing x, with respect

to its children. Then, [[,er, Toa = [laer, Ta-

Proof. We prove that the tensor = represented by x7,, is not changed by the line pairs
3,4 and 7,8, respectively. In the first case, the claim follows from ugsgvg xg = rox3, in
the second it follows from .xasng@l‘lg = Talg. ]

Theorem 4.4.3. Let v € HTR(Tp,r,I) be an HTR network and oo € Tp a vertex such
that Sgjo(z) is {1(8 | a)}-orthogonal for each B € neighbour(a). After orthogonalizing
To with respect to its children, S, () is {B}-orthogonal for all B € child(a).

Proof. While the statement holds for any a € Tp, we only prove it for « € Tp \ {D} in
order to avoid conditioning on the existence of parent(a). The modifications needed for
o = D will be obvious.

We denote by x the original network, by x’ the network that is obtained after the
first loop (lines 1 to 5) has been executed and by x” the final network. We define
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Bi,. .., Be € child(a), ¢ := # child(«), to be the children of « in the order in which they
appear in the first loop, and denote by (), i = 1,..., ¢ the state of the network after
the iteration 8 = 3; of the first loop has been executed.

The proof splits into two parts.

1. We have

& vg,Sp,(x) otherwise

for i,j = 1,...,c. Since vg, and Sg,(z) are {R(5;)}- and B;-orthogonal, respect-
ively, Sg,(z1)) is {B;}-orthogonal for any i,5 = 1,...,c.

2. Let v € child(a). From the proof of Theorem 4.4.2 it follows that S, () is not
modified by lines 3,4 unless v is equal to the loop variable 5. This proves

Sa\ﬁi(x/) = Uup,;Sp; Sparent(a) (z) H S'y(x(i)) (4.7)
~€sibling(8;)

forall ¢ =1,...,c. Arguing similarly for the second loop, we obtain

Sa|ﬂz (gj//) = uﬂz Sparent(oz) (ﬂf) H S,Y(x(z)) (48)
~yéesibling(8;)

ug, is fi-orthogonal, Sparent(a)(z) is {a}-orthogonal and the S, (2)) are {y}-
orthogonal by part 1. Therefore, S, g, (2") is {8;}-orthogonal. O

So far, we have silently assumed that sg is invertible, i.e. that no singular value is
exactly 0. In our code, we ensure this condition by transforming the singular values
(58)ig, ip € [rp] with

(35)2'/3 = maX{(Sﬁ)isv € (35)0} (4'9)

where ¢ denotes the machine precision and (sg)o the largest singular value. We now
analyse how this rounding effects the above results.

Theorem 4.4.2 relies on the identities ugsgvg = 7, and sg 351 = H{g}. With the
singular values from (4.9), both identities are satisfied up to machine precision, thus also
the statement in Theorem 4.4.2 is valid up to machine precision.

In Theorem 4.4.3, the rounding in the singular values and numerical noise implies that
(4.7) is satisfied up to a relative error of O(eg). Multiplication with 851 may then blow
this error up such that the relative error in (4.8) is O(1). Therefore, in finite machine
precision the S, g(z) may not be {3}-orthogonal at all.

Luckily, we can limit the impact of the rounding errors by interleaving orthogonaliz-
ation and subtree computation as follows.

Definition 4.4.4 (Combined Orthogonalization and Contracted Subtree Computation).
Let z € HTR(Tp,r,I) be an HTR network and a € T a vertex. Combined orthogonal-
ization and contracted subtree computation at x, is defined as the following operation:

1: for € child(«) do
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2: // Orthogonalize x, with respect to 3

3: (u5,55,v5) = S@(l‘a)

4: To 1= UB

5: TB = S3U3TpB

6: // Compute subtrees

7: Compute (z|A|z)¢(8) and (x|b)°(5) // Remarks 4.2.4 and 4.2.7
8: // Temporarily move the non-orthogonal factor to x,
9: To 1= Ta SB

10: xg = s/gl xg // (%)
1. // Update (21A4]2)(8) and (]b)(8)

2 (@|Al0)(8) i= 75 (2] A2)(8) v

13 (@]b)(8) = 7 (xlb)(3)

14: end for

15: for g € child(«) do

16: // Move the non-orthogonal factor to xg again
17: To = g sg

18:  Tg:=8p7p /7 (%)
19:  // Update (z|Alz)(B) and (x|b)(5)

20: (o] Al2)(8) = s5 (2] Al2)(B) 55 // (+)
21 (2[b)(B) := s (x[b)(B) /) (+)
22: end for

The two lines marked with (*) may be omitted since the second undoes the effect of
the first. The two lines marked with (+) may be dropped if (z|A|z)(3) and (x|b)(5) are
updated anyway before being used again, as is the case in Algorithm 3.

It is easily verified that the modifications applied to z7,, in Definition 4.4.4 are equi-
valent to the ones in Definition 4.4.1, therefore Theorems 4.4.2 and 4.4.3 are also valid for
combined orthogonalization and subtree computation. The key point in Definition 4.4.4
is that we compute the contracted subtrees (line 7) at a point where S, () is {5}-
orthogonal up to errors of order O(e). Since the local LSE are assembled based on these
cached (z|A|r)°(8), (x|b)°(B) capturing accurately {3}-orthogonal S, 5(z), it no longer
matters that the final S, 3(x) are not accurately {3}-orthogonal.

We remark that the updates to the contracted subtrees on lines 12, 13 and 20, 21
are a consequence of the modifications done to xg on lines 5, 10 and 18. In the serial
Algorithm 2, such updates are not necessary because (z|A|z)¢(53), (x|b)¢(8) are updated
anyway on line 16 before being used again.

Compared to the orthogonalization and subtree computation in the serial ALS Al-
gorithm 2, we replace the QR-based orthogonalization with SVD-based orthogonaliza-
tion and do some additional mode products in Definition 4.4.4. One verifies that neither
of these changes increases the asymptotic computational costs, therefore the asymptotic
complexity results from Section 4.3 are valid also for the parallel HTR ALS Algorithm 3.
However, the prefactors change. For the orthogonalization and subtree computation,
they increase since the SVD is more costly than the QR decomposition and we need
more mode products than in the serial case. On the other hand, the number of solved
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Algorithm 3 Parallel HTR ALS Algorithm

e
Wy P2

14:
15:
16:
17:

We assume an implicit cache of contracted subtrees. This cache is initialized on
line 2 and only updated when we explicitly say so, namely on lines 8 and 15. Each
time contracted subtrees are needed (i.e. when computing new contracted subtrees and
when solving the local LSE), their values are read from the cache.
Orthogonalize x // Definition 3.3.5
Compute (z|A|z)(«) and (z]b)(«) for all « € Tp\{D} // Remarks 4.2.2 and 4.2.7
fori=1,...,n do
RECURSE(D)
end for
function RECURSE(«)
Solve the local LSE // Equations (4.2) and (4.5)
Orthogonalize and compute contracted subtrees at x, // Definition 4.4.4
parallel for § € child(«)
RECURSE(f)
end parallel for
Solve the local LSE // Equations (4.2) and (4.5)
if @« # D then
Orthogonalize x,, with respect to « // Definition 3.3.3
Compute (z|A|z)(a) and (z|b)(c) // Remarks 4.2.2 and 4.2.7
end if
end function
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i i

(a) Serial

(b) Parallel

Figure 4.3.: Tree traversal orders of the serial and parallel HTR ALS algorithm. The
red vertices denote the ones on which we currently solve local LSEs.

local LSE decreases as shown next.

Theorem 4.4.5. Let Tp be a standard dimension partition tree, d := #D and x €
HTR(Tp,r,I). The parallel HTR ALS Algorithm 8 solves 3d—2 local LSEs per iteration.

Proof. We count for o € leaf(Tp), o € interior(e) and @ = D how many such « exist
and how often we solve a local LSE on vertex a.

‘ Number of vertices ‘ # local LSE solves per vertex

leaves d 1
interior d—2 2
root 1 2

O

The parallelization and the orthogonalization strategies outlined above are based on
similar propositions for the TT DMRG algorithm in [15]. The parallelized algorithm
developed there requires the initial orthogonalization and computation of contracted
subtrees to be carried out on at most two processors (one for each end of the T'T chain,
assuming we pick the central vertex as root), and then the parallelizability gradually
increases during the first DMRG sweep. The serial workload thus scales linearly with
the number of dimensions d := # D, which is again proportional to the overall workload.
By Amdahl’s law [29], this limits the parallel scaling of the TT algorithm to some
constant irrespective of d. In contrast, our algorithm falls into the category of tree
parallel algorithms and therefore reduces the serial part to being proportional to the
depth of the tree. Assuming a balanced standard dimension partition tree, the parallel

scaling is thus bounded by only O (@) which is optimal up to the logarithmic factor.

4.5. The HTR ALS(SD) Algorithm

The major drawback of the ALS algorithm is that it cannot adapt the ranks of z. Thus,
if the initial ranks are too small, the approximations produced by the ALS algorithm will
never approximate the exact solution well because no such approximation exists with

49



the given ranks. On the other hand, if the initial ranks are too large, the iterations are
unnecessarily costly and compute power is wasted.

Decreasing the ranks can be done using the HTR truncation procedure introduced
in [6]. It has recently been proposed in [21] to increase the ranks by adding some
approximation z ~ r := b — Az of the current residual to z. If we assume M(A)
to be spd and treat the original LSE as an optimization problem, this corresponds to a
steepest descent (SD) step, and the resulting Algorithm 4 is therefore called the ALS(SD)
algorithm. We call it serial if the algorithm used on line 4 is the serial Algorithm 2, and
parallel if we use Algorithm 3.

We settle with only an approximation z of the exact residual » because the ranks of r
are in general only bounded by R, := R, + Rr [22, §13.1.4 & §13.5.3], which is too large
to be handled efficiently (see Section 4.3 regarding the notation). The approximation z
can be obtained in two ways:

1. We form r explicitly and apply the HTR truncation procedure to it.

2. We employ the fixed rank ALS procedure to approximately solve the trivial LSE
Iz = b — Az, starting from a random tensor in the first and the previous z in all
subsequent iterations.

The latter method has the advantage that the residual need not be formed explicitly (only
the contracted subtrees (z|b) and (z|A|x) are needed) and thus tensors of large ranks can
be avoided. Under the assumptions from Section 4.3, this reduces the computational
cost from O (dR; + dnR?) for the truncation based residual approximation to

O (d (RR.r* + R*R2r® + n®RR. + RyRS + nRyR.))

for the ALS based method where R, denotes the rank of z which is chosen by the user
and for which we assume R, < r.

In the numerical experiments reported in [21] as well as in our own experiments, we
find that the somewhat cruder approximation of the residual delivered by the ALS based
method has no negative impact on the overall convergence of the ALS(SD) algorithm.
In the experiments reported below, we therefore always use the asymptotically faster
ALS based residual approximation, and the ALS algorithm employed therein is always
the parallel one (Algorithm 3) even when the actual ALS step on line 4 is performed
using the serial algorithm. The truncation step on line 5 is performed by choosing the
ranks adaptively such that the truncated network Z satisfies |z — z|| < ¢|z|| with = the
network before truncation and & € Ry a user-specified parameter.

The parallel ALS algorithm and the truncation are both tree parallel, and the addition
is perfectly parallel, i.e. it can process all vertices simultaneously when given enough
compute power. Since a perfectly parallel algorithm is in particular tree parallel, the
parallel ALS(SD) is tree parallel as well.

20



Algorithm 4 ALS(SD) Algorithm

1: fori=1,...,nie do

2 Compute residual approximation z ~ b — Ax
3 Update z :=xz + z

4: Run a single ALS iteration (Algorithm 2 or 3)
5 Truncate x

6: end for
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5. Case Study: The Poisson Equation

We apply the algorithms from Chapter 4 to the well-known linear system of equations
arising from the finite difference discretization of the Poisson equation. This allows to
compare the performance of the newly proposed parallel algorithms with respect to their
serial counterparts, and investigate the parallel scaling.

5.1. Problem Statement

We consider the Poisson equation on the d-dimensional hypercube [0, 1]¢ with homogen-
eous Dirichlet boundary conditions,

—Au=f onQ:=][0,1]",

5.1
uw=0 on JN. (5-1)

Following the usual finite difference scheme, we replace continuous functions f : [0, 1] (4 —
R with tensors g € R*¥eal™] guch that

. — ik
9 (ita) = f ((nk+1>k€[d]> 7

and we approximate the continuous Laplacian with the following operator.

Definition 5.1.1 (Discrete Laplace Operator). Let D be some finite set and np € NP,
We define the discrete Laplace operator Ap € R*kep? [r] through its action on a tensor
f € R*kenlm] which is given by

(Ap f) (ip) = ...
= e+ 1) (—f (ipvgay % (i — 1) + f (ip) = f (ipyy x (i +1))) - (5:2)

keD

In (5.2) as well as in the remainder of this chapter, we assume the convention that
tensors are padded with zeros outside their actual domain of definition, see Defini-
tion A.0.1.

The finite difference approach thus reduces the partial differential equation (5.1) to the
discrete Poisson equation Ajgu = f with u, f € R¥reta™] Tn the examples considered
below, we choose the dimension d = 16 and use n; = 64 spatial grid points in all
directions k € [d]. We quantize each mode k into [ = 6 virtual modes with mode sizes
nj) = 2 forall j € [lx], and we use the dimension partition tree obtained by creating a
balanced binary tree for all physical dimensions [d], and then replacing each leaf {k} of

92



{0, 1,2}
on——

/{0}\/ \/{1}\ (0.1} {22)
(00,00} {02} (L0} {02} {20} {(21)
(0.0} {(0,1)} (o) {11}

Figure 5.1.: Dimension partition tree for d = 3 and I, = 3, k € [3].

this tree with a balanced binary tree for the virtual modes (k, [lx]). See Figure 5.1 for
an example of such a tree with smaller d and l;. f will always be the all-ones tensor 14
defined in Definition A.1.1.

5.2. HTR Expression for the Discrete Laplace Operator

The ALS-type algorithms from Chapter 4 require the operator and right-hand side to
be given in HTR. We therefore derive HTR expressions for Ap and 1p.

The expression for 1p follows trivially from Theorem A.1.2. For Ap, we note that
the multidimensional Laplacian can be written as the direct sum of one-dimensional

Laplacians,
Ap = Z Arlp\ry
keD
which proves the splitting
Aror = Aplp + 1 Ag.

for a partition L, R of D. For the non-quantized Laplacian, we therefore obtain the
bases tree
{A}

s N
an  {an. (5.3

Here and in the following, the dotted edges indicate that the rest of the bases tree is
easily derived from the given part.

To account for quantization, we derive a quantized bases tree for each leaf { Ay, I} of
(5.3). Using the operators from Appendix A.3, we obtain the quantization splitting

Ap=— 1k +20,— 1%
= (0 e+ Mo dan) + 210w — Two) Ikt o Tkn)
= (= ko) ¥2Lr0)— T,0) Ie,)— Tr0)+ k1) — $(r,0) T (k1)
= A0 L) = M0y b k1) — Y0 Tk -
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A bases tree for {Ay, I} is therefore

{A T}
{A LA, U} {L1,4}
e AN e AN
{ALM UV I Lm0 LU LT (5.4)

A quantized bases tree for the multi-dimensional Laplacian is obtained by attaching a
copy of this tree at every leaf of (5.3).

In the one-dimensional case D = {k}, the optimal bases tree for the Laplace operator
Ay is given by a modification of (5.4) where the identity is removed from every vertex
on the branch from the root to the leftmost leaf. Since the largest ranks appear in
the inner part (as opposed to the left-most and right-most branch) of Equation (5.4),
it follows that the ranks of both the one-dimensional as well as the multi-dimensional
Laplace operator range up to five. This result is to be compared with [30] where it was
found that the ranks of the discrete Laplacian in the QTT format are bounded by three
(#D = 1) and four (#D > 1), respectively.

5.3. Common Details for Numerical Experiments

All benchmarks were run on four Quad-Core AMD Opteron™ 8356 processors (2.3
GHz), of which only a single core was used in Sections 5.4 and 5.5. Floating-point
numbers are represented in the long double type of the C++ programming language,
which is 16 bytes long and delivers the machine precision eps ~ 1.1 x 107! on the
compiler and architecture we use.

Unless explicitly stated otherwise, we use the following parameters. We solve the local
LSEs using the conjugate gradient (CG) algorithm, terminating the iterations once the
relative local residual drops below 10710 or the iteration count reaches the dimension of
the LSE. In the ALS(SD) algorithms, the rank of the residual approximation z is chosen
as R, = 4 and the truncation step is carried out using ¢ = 1078, The initial guess is a
random tensor of the indicated ranks for the ALS method, and the rank-one right-hand
side 1jg for the ALS(SD) algorithm.

In the following plots, “Time per local LSE” denotes the total time of the iteration
divided by the number of local LSEs solved, i.e. it includes the time spent on orthogon-
alization and subtree computation, and for the ALS(SD) method also the time spent on
residual approximation, summation and truncation. “Error* refers to the relative error
in the energy norm and “Residual“ to the relative residual in the Euclidean norm, i.e.

If — Apgull
(2 —

where u denotes the current approximation and u* the exact solution of the discrete
Poisson equation.

Hu - U*HA[d]

" , Residual :=
[[w ”A[d]

Error :=
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Figure 5.2.: Convergence of the serial and parallel ALS algorithm applied to the 16-
dimensional discrete Poisson equation. 7 denotes the rank of the random
initial tensor.

5.4. Comparison of Serial and Parallel ALS Algorithm

In Figure 5.2, we compare the convergence of the serial and parallel ALS Algorithms 2
and 3 starting from random HTR tensors of rank r = 7 and » = 10. We note that
the convergence measured as a function of solved local LSEs (Figure 5.2a) is almost
indistinguishable for the two methods, and the same applies to the convergence measured
as a function of compute time (Figure 5.2b). We also note that the increased prefactors
for orthogonalization and subtree computation in the parallel algorithm are barely visible
in Figure 5.2d. Finally, we remark that both methods show monotone convergence, even
though such convergence is only theoretically guaranteed for the serial ALS method.
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5.3.: Convergence of the serial and parallel ALS(SD) algorithm applied to the 16-
dimensional discrete Poisson equation. s denotes the number of ALS steps
(line 4 in Algorithm 4) per ALS(SD) step. All methods return results of the
same ranks 77, with max,cr,, ro = 13.
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5.5. Comparison of Serial and Parallel ALS(SD) Algorithm

We repeat the above convergence comparison, this time for the serial and parallel version
of the ALS(SD) algorithm. Focussing on Figure 5.3a and ignoring the dashed lines for
the moment, we conclude as before that the convergence as a function of solved local
LSEs is the same for both the serial as well as the parallel algorithms. With respect to
compute time, however, the parallel algorithm is significantly slower (Figure 5.3b). Since
both methods require comparable numbers of CG steps (Figure 5.3¢), we conclude that
this slow-down must come from the increased cost per CG iteration due to the faster
rank growth in the parallel algorithm (recall from Theorems 4.3.1 and 4.4.5 that the
serial algorithms increases the ranks once every 4 (d — 2) local LSE solves compared to
once every 3d — 2 solves in the parallel case).

To study the effect of the ratio between the number of local LSE solves and rank
updates, we rerun the experiment doing s = 2 ALS iterations in each ALS(SD) step
instead of s = 1 as in the original method. The quantities measured in this way are shown
by the dashed lines in Figure 5.3. We note that while the serial ALS(SD) algorithm with
s = 1 still reaches the final accuracy the fastest in terms of compute time, the parallel
algorithm with s = 2 is almost as fast.

5.6. Convergence Criterion

Iterative solvers for linear systems commonly use a termination criterion based on the
residual norm because it is asymptotically proportional to the error in the solution and
thus the best accuracy measure available. Furthermore, the residual is computed anyway
by many methods and checking this convergence criterion is therefore very cheap.

These statements apply to the ALS(SD) algorithm as well, however with the small
but important caveat that the residual employed by the algorithm is an approximate one
obtained from fixed-rank ALS iterations, cf. Section 4.5. In Figure 5.4, we compare the
norm of this approximate residual with the exact norm in the case of the discrete Poisson
equation. We note that the approximate norm slightly underestimates the actual error
but should be reasonably accurate for most practical purposes.

5.7. Parallel Scaling of the ALS(SD) Algorithm

We analyze the scaling of the parallel ALS(SD) Algorithm 4 using the following two
vertex distributions:

e Optimized vertex distribution. We distribute the vertices such that as many
neighboring vertices as possible are located on the same process under the con-
straint that the optimal runtime from Theorem 3.5.7 must be achievable.!

LOur algorithm to produce such distributions is heuristic and may not find the optimal solution in every
case. We expect the remaining difference to be irrelevant for the purposes of this section, however,
and we checked that each solution used here permits optimal scaling under Assumption 3.5.6.

o7



10*
10°
102
10t -
100
101
102}
103 L
104}
1051
10%}
107

108 | | | I | | | |
0 500 10001500200025003000350040004500

Number of local LSEs solved

+—+ Actual residual, eps = 1e-8 g
o—o Estimated residual, eps = 1e-8 4
+ + Actual residual, eps = 1le-4
o o Estimated residual, eps = le-4 ||

~
~

Residual

g Ry Ay 1

Figure 5.4.: Comparison of actual and estimated residual norm. eps denotes the accur-
acy € in the truncation step. Both runs use s = 2, cf. Section 5.5.

e Round-robin vertex distribution. We enumerate the vertices in breadth-first
order starting at the root and assign the ¢th vertex in this order to process ¢ mod p,
assuming the set of processes is {0,...,p — 1}.

Examples of the resulting vertex distributions are given in Figure 5.6. Both distributions
balance the number of vertices per process level-wise, i.e. they satisfy

r;lealg( c(l,q) Erg]rgl c(lq) <1
for each level ¢ with P denoting the set of processes and ¢(¢, ¢) the number of vertices on
level ¢ assigned to process ¢ € P. The round-robin distribution also balances the overall
number of vertices per process, whereas in the optimized vertex distribution the process
with the heaviest load accommodates O(log, p) more vertices than the process with the
lightest load.

The parallel speedup of the ALS(SD) algorithm is shown in Figure 5.5. In the first
iteration, the rank of the iterand u at an edge o € Tp \ {D} is given by min{2#®, 5},
therefore all vertex tensors u, with o € interior(Tp) and level(a) < 4 contain 5% =
125 elements whereas the remaining vertices have < 40 entries each. In the light of
Section 3.5, we therefore expect the speedup to follow roughly the optimal speedup
stated in Theorem 3.5.7 with d = 32. In the final iteration, the ranks connecting the
first four levels are relatively uniform (between 11 and 13) and significantly larger than
the remaining ranks (smaller or equal to 8), thus the empirical speedup should follow the
optimal speedup for d = 16, and for the intermediate iterations the speedup should lie in
between those two extremes. As can be seen in Figure 5.5b, these theoretical predictions
are met with reasonable accuracy.

The rationale behind the optimized vertex distribution is that inter-process commu-
nication is more costly than intra-process communication, thus we distribute the vertices
such that the largest possible fraction of exchanged messages falls into the latter cat-
egory. One therefore expects the optimized distribution to perform at least as good as
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Figure 5.5.: Parallel scaling of the ALS(SD) solver with s = 2 applied to the 16-
dimensional discrete Poisson equation. Cumulative parallel speedup is com-
puted as %, where T'(p) is the wall clock time up to the indicated iteration
step on p processors. The dashed lines denote perfect speedup, the dash-
dotted lines the optimal speedup for d = 32 and the dotted lines the optimal

speedup for d = 16, cf. Theorem 3.5.7.

the round-robin one, in contrast to the empirical findings shown in Figure 5.5. The
reasons for this discrepancy remain unclear.
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(a) Optimized.

(b) Round-robin.

Figure 5.6.: Illustration of the two vertex distributions for p = 6 processes. The edge widths are proportional to the final
ranks of the ALS(SD) solution for the 16-dimensional discrete Poisson equation, cf. Section 5.5.



6. The Chemical Master Equation

6.1. Introduction

Consider an experiment involving a set of chemical species D subject to R € N reactions
of the form

Zezk—> Zpik:, s=0,...,R—1.
keD keD

Here, e; € N denotes the number of copies of species k consumed in a single occurrence
of the sth reaction (the educts), and pj € N denotes the number of copies produced
thereby (the products). We would like to know how many copies ix(t) € N of species
k € D are present in the experiment at any moment ¢ € R. Clearly, if we knew the initial
copy numbers ix(0) and could count the number of occurrences z(t) € N of reaction s
in the interval [0,¢], we could compute the copy numbers at any time ¢t € R by

R—-1
i(t) = ik (0) + > mi 2s(t),  nj = pi — ei (6.1)
s=0

The problem is that we typically cannot predict the occurrence of reactions with
absolute confidence. We must therefore treat the z4(¢) and as a consequence of (6.1)
also the iy(t) as time-dependent random variables Z4(t) and Ij(t), respectively. These
random variables are assumed to satisfy the following properties.

Definition 6.1.1 (Markov Process [31, §IV.1]). A time-dependent random variable
X(t) € Q is called a Markov process if for any distinct time points t[,1 € R+
n € N, sorted in ascending order, i.e. tg < t1 < ... <, it holds

Pr[X(tn) =2n | X(th-1) = Tn-1,...,X(to) = x()] = Pr[X(tn) =Zn | X(th1) = xnfl]
for all xzg,...,z, € Q.

Definition 6.1.2 (Homogeneity [31, §IV.4]). A time-dependent random variable X (t) €
Q is called homogeneous if for any two time points ¢1,t2 € R and offset At € R it holds

Pr(X(t; + At) =2’ | X(t1) = 2] = Pr[X(to + At) = 2’ | X (¢2) = 7]
for all z, 2" € Q.

Assuming Z,(t) is a homogeneous Markov process, one can conclude (see [31, 32] for
detailed derivations) that there exist functions wy : NP — R>q such that the probability
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for z € N occurrences of reaction s € [R] in the interval [0, At] is given by

1 —ws(ip)At z=0
Pr[Zs(At) = z | Ip(0) = ip] = o(At) + < ws(ip)At z=1
0 z>1

with At € R the (small) length of the interval and ip € NP the known initial state of
the system. The function ws(ip) is called the propensity of the sth reaction and can be
interpreted as the probability density for the occurrence of a single reaction of this type.
Note that in this model, all information about the current system state is contained
in the copy number vector ¢p. We will therefore use the two terms “state” and “copy
numbers” interchangeably, and similarly we will sometimes call the set of all possible
copy numbers NP or its finite replacement introduced in Section 6.2 the state space.
Since we cannot obtain the exact copy numbers ix(t), we instead would like to compute
the probability density function p(t,ip) := Pr[Ip(t) = ip] specifying the likelihood to
count ip € NP copies at time ¢t € R. Clearly, the copy numbers remain unchanged until
some reaction s € [R] occurs and changes the copy number vector from ip to ip + 1.
The probability for this event to occur in the interval [t,¢ + d¢] is given by the product
of the probability p(t,ip) to be in state ip at time ¢ and the conditional probability
ws(ip)dt of moving from ip to ip + 1, given that we are in state ip. We therefore
expect our quantity of interest p(¢,ip) to satisfy the chemical master equation (CME)

R
D 1,in) =3 (wilio ~mb)pltin ) ~wilin)pltin))  (62)

s=1 (4) (B)

for all ip € NP, In this equation, term (A) denotes the probability that we enter state
ip over reaction s and term (B) is the probability that reaction s moves us out of state
ip. Note that for some values of ip and s, the shifted copy number vector ip — 1}, may
not lie in the physically feasible region, i.e. there may be a species k whose copy number
i, — 1}, is negative. For such ip and s, we assume p(t,ip —n7j,) = 0 (the probability to be
in an infeasible state is zero) and ws(ip) = 0 (the probability to move into an infeasible
state is 0) such that the corresponding terms in (6.2) vanish. More rigorous derivations
of the CME can be found in either [31] or [32].

From a mathematical point of view, equation (6.2) is a system of linear ordinary
differential equations (ODE) in infinitely many unknowns p(¢,ip). In order to make
this problem amenable to numerical simulation, we must reduce the system to a finite
number of unknowns, and we must discretize the time dimension. These two tasks are
tackled next.

6.2. Finite State Projection

In most applications, the probability p(t,ip) decays to zero as one or more copy numbers
ip tend to infinity, which can be physically explained by noting that this extreme case
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would correspond to a blow-up of the chemical system. This property forms the basis
for the finite state projection (FSP) ansatz [33], which in our case reads: replace the
function p(t,ip) of infinite support with a finitely sized, time dependent tensor p(t) €
RXvenl™] np e NP such that p(t,ip) satisfies (6.2) for all ip € Xyeplnk] under the
zero-padding convention from Definition A.0.1. The FSP ansatz thus replaces p(t,ip)
with an approximation

p(t,’il)) —I—€(t,iD) ifip € XkeD[nk]

) (6.3)
0 otherwise

p(t,ip) = {

where £(t,ip) € R denotes the error in the tracked part X, [nz] of the state space and
is hoped to be small (a more precise statement will be given below).
An important consistency condition for the CME is that it preserves the total prob-
ability mass, i.e.
d dp
- tip) | = ~(t,ip)=0 6.4
G| X i) = 3 Fwin) (6:4)
ipEND ipEND
must hold for any probability density function p(¢,ip). Inserting (6.2) into the above
equation, this is easily seen to be satisfied: there is a one-to-one correspondence mapping
each (B)-term with ip = i}, in (6.2) to an (A)-term with ip = i}, + 1, such that these
two terms cancel. Let us check whether this condition is still satisfied in the finite state
projection, i.e. if we replace p with p and NP with Xyeplnk]. We distinguish four cases:

e The reaction causes a transition within the finite state space, i.e.

ip € X [m], ip+npe X [n.
keD keD

The same arguments as in the untruncated case apply.

e The reaction moves us out of the finite state space, i.e.

ip € X [nk], ip+np & X [ngl
keD keD

In general, the corresponding (B)-term is nonzero whereas the (A)-term is not
present in (6.4).

e The reaction moves us into the finite state space, i.e.

ip &€ X [n], ip+npe X [ng.
keD keD

The (B)-term is not present in (6.4) and the (A)-term is zero.

e The reaction causes a transition completely outside of the finite state space, i.e.

ip € X [nk], ip+np & X [ngl

keD keD

Neither term is present in (6.4).
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Figure 6.1.: Illustration of the discontinuous Galerkin scheme applied to f(t) = —f(t).

In conclusion, we get that % <ZiD€Xk€D[nk] p(t, Z'D)> may be negative, i.e. probability
mass may flow out of the monitored domain. It turns out that this is precisely the error
e(t,ip) from (6.3).

Theorem 6.2.1. Let p(t,ip) be the exact solution of the CME and p(t,ip) the FSP
approzimation as defined above. We define the probability deficiency € € [0,1] as

D

i,DEXkeD[nk]

g:=1- p(t,ip).

The probability deficiency provides a hard error bound, namely it holds
p(t,ip) < p(t,ip) < p(t,ip) +¢
for all ip € Xy cplng.
Proof. [33, Theorem 2.2]. O

The above theorem allows to numerically bound the error incurred by the FSP, and
in the experiments reported below we made sure that this bound is not larger than the
errors stemming from other sources. In the remainder of this chapter, we will therefore
no longer distinguish between the exact solution p(¢) and its FSP approximation p(t).

6.3. Discontinuous Galerkin Time-Stepping Scheme

The last section reduced the CME (6.2) to a finite system of linear ODEs

d
& _ App on (0,7),

- (6.5)

p(()) = Po,
with unknown p(t) € RXrep[™l prescribed final time 7' € Rsq and initial state py €

R*keplmr] and the linear operator Ap € R*rep2™! defined by the right-hand side of
(6.2) under the zero-padding convention from Definition A.0.1. We discretize these
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equations in time using the discontinuous Galerkin scheme proposed in [34], which reads
as follows.

Let Py, (to x t1) be the space of all polynomials on the interval (¢o,t1), to,t1 € R,
to < t1, up to some degree n; — 1 € N with coefficients from RXkeD["k], i.e.

P, (to x t1) i= { p: (o, tr) — RX%enlml ¢y N g(iy) £ | 2 € R% (Xneplne)
it €[Nt

and let P, (t[ M+1]) be the space of piecewise polynomials on the interval (0,7),
P (t[M+1]) = {p :(0,T) — RXkep k] |Vm=1,....,M :plt,_, tm) € Pny(tm-1 X tm)}

with ¢ar41) € (0, )M+ such that 0 = tg < t; < ... < tyy = T. The discontinu-
ous Galerkin scheme approximates the solution p(t) of (6.5) with the element p(t) €
Pr. (t[M—i-l]) satisfying

/ttn: <q(t)7 %(t) —A ﬁ(t)) dt + (q(tm_l), Aﬁ(tm_1)> -0 (6.6)

for all q(t) € Pp,(tm—1 X ti) and m = 1,..., M. Here, Ap(t;,—1) denotes the jump of
p(t) at an interior interval boundary t,,—; with m =2,... M,

Aﬁ(tm_l) = iiﬁloﬁ(tm_l + At) - ﬁ(tm_l - At),

and we set Ap(to) := limasjo P(At) — po for the initial jump. Since (6.6) depends on the
solution p(t) in the prior interval (¢,,—2,t,—1) or the initial conditions pg, respectively,
p(t) is most easily determined interval-wise starting on (o, 1) and proceeding iteratively
towards larger times.

We briefly recapitulate the key properties of the discontinuous Galerkin method from
[34]. For this purpose, let At := max{t,, — tm—1 | m = 1,... M} denote the maximal
step size, and

e:= sup |[p(t) —pt)]
te(0,T)

be a bound for the error. Then:

e The discontinuous Galerkin solution is well-defined if ||A|| At < 1 [34, Theorem
2.6).

e The method converges with order n; in the step size [34, Corollary 3.15] and
exponentially in the polynomial degree [34, Theorem 3.18], i.e. ¢ € O (At™) for
At — 0, and € € O (exp(—bmny)) for ny — 0o, b € Ryp.

We next reformulate (6.6) as a tensor-structured linear system of equations amen-
able to the ALS-type solvers from Chapter 4. The same endeavour has already been
undertaken in [35], and our exposition proceeds along the same lines.
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Let {¢ ( ) | it € [nd]} be a basis for Py, (tm—1 X tm), m = 1,..., M. Expanding
P|[tm Lotm] accordmg to

Bty =Y p™) 60 (1), € (bt tm), (6.7)

it=[n¢)

with some tensor p(™ € R[nt]X(XkGD[”’“]), (6.6) can be recast as the tensor-formatted
linear system

(Dt Ty — M, AD> p™ = F, pm=1) (6.8)

with operators Dy, M;, F} € RIne] given by
(m)

. . tm (m) déic(t) (m) (m
Dy(iggy X icw) = t Py () —qp (O dt+ &5, (tmt )d%c(t) (tm—1),
m—1

-
Mi(ir@y X icw) = ) @Rm( ) ¢§ZZ> () dt,

m—

. . m 1
Fi(ire) X icw) = ¢1R<t)( )¢§C(t (tm-1),

The basis functions are chosen as ngZ(.Zn) (t) := Li, (f'(t)), where L;,(t) : (—1,1) = R are
the Legendre polynomials normalized such that L;, (1) = 1, and f: (—=1,1) = (tm—1,tm)
is the affine linear map

~

1
~(tm — tm_1)t.

1
*(tm + tmfl) + 9

n(® =3

Note that in contrast to [35] we do not normalize the basis functions, because we empiric-
ally found that the GMRES solver used in the local problems delivers better performance
for the unnormalized basis.

Below, we will use a slightly different notation in that we let p(¢) denote the discon-
tinuous Galerkin solution (the p(¢) from above) and denote the exact solution by p*(t)
instead. p(™ will always denote the coefficient tensor from (6.7) on the mth interval.

6.4. Chemical Notation and the CME Operator

Following the usual chemical notation, we denote a reaction consuming e, € N5 copies
of the educt species E C D and producing p; € Nsq copies of the product species P C D

by
S ek 22 S k. (6.9)
keE keP

The formal function a : D — R>q is called the stochastic reaction rate constant [32] and
is related to the propensity w(ip) of this reaction by

wiin) = a(ip) [[ (”“) (6.10)

(&
keE \°F
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The intended interpretation of a(ip) is that each occurrence of the symbol k € D in the
a(D) from (6.9) is to be replaced with the corresponding copy number iy in the a(ip)
from (6.10). Physically, the reaction rate constant is the probability density of a specific
combination of copies of the educt species to undergo this reaction. If a reaction involves
no educts, E = {}, or delivers no products, P = {}, we denote this by putting the null
species & on the respective side of the reaction arrow [32, §2.1].

Using the shift and counting operators S ,(:) and Cy from Appendix A, the term in the
CME operator Ap resulting from reaction (6.9) can be written as

(—pw) (ex) [ Ck () — C), "
(;gask )(,gs’“ <€k>)d 8la) (g(ek»d g(a), (6.11)

or, by factoring out the propensity part,

((H Sff“) (H S,i”“) - HEUP) (H (C’“)> diagla).  (6.12)
kEE keP kee Nk

Here, (g:) denotes the binomial coefficient

<Ck> — i' 6ﬁ1 (Cx — nlly)

ek 2

and a is the tensor in RXkep[™] containing the values of the reaction rate constant.
Starting from either (6.11) or (6.12), the formulas for concrete CME operators given
below are easily derived.

6.5. Common Details for the Numerical Experiments

In the remainder of this chapter, we reproduce the numerical experiments from [1], using
the more general and parallelizable HTR instead of the T'T format which was used there.
Besides investigating the parallel potential of these problems, we will also be interested
in whether the more general dimension partition trees supported by the HTR allow to
achieve smaller ranks and thereby possibly shorter execution times. We remark, however,
that besides different formats we also use different hardware (2.7 GHz vs. 2.3 GHz) and
different programming environments (MATLAB vs. C++) compared to [1], therefore we
will base our comparison mostly on the ranks rather than the runtime.

All benchmarks were run on four Quad-Core AMD Opteron™ 8356 processors (2.3
GHz). Floating-point numbers are represented in the double type of the C++ program-
ming language, which is 8 bytes long and delivers the machine precision eps ~ 2.2x 10716
on the compiler and architecture we use.

The tensor-formatted LSE (6.8) arising in each time step is solved using the parallel
ALS(SD) solver from Section 4.5. In the first time interval, we take p™) = §(i; = 0) po
corresponding to p(t) = po as initial guess for the solver, in later intervals we take the
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previous solution p(™) = p(m=1) The ALS(SD) iterations are terminated once the estim-
ated relative residual (c.f. Section 5.6) drops below 1075 or the iteration count reaches
3. Except for the At = 1072 run for the toggle switch problem, the accuracy criterion
was already met in the first iteration, typically with at least an order of magnitude of
slackness.

The local problems are solved using the GMRES algorithm with restarts every 60 iter-
ations for the birth-death problem and every 120 iterations for the other two problems.
The iterations are terminated once the iteration count reaches the dimension of the LSE
or the relative residual drops below @ -10~7 with § = /2d — 3. Here, d denotes the total
number of free modes (including the time dimension), and the prefactor # makes sure
that the accuracy in the local LSEs scales with the tolerance used in the subsequent
truncation step, see [6, Theorem 3.18]. The rank of the residual approximation z is
chosen as R, = 4 and the truncation step is carried out using € = 1075, Only one ALS
iteration is performed per ALS(SD) step, i.e. s = 1 in the notation from Section 5.5.

We construct the temporal mesh as in [1]. Given the final time 7" € R and user-
specified parameters At,T; € Ry, we define

1 Ty

T
= —Q M = |— My = |1 — M =11+ M M. 1
g 1_%7 1 ’VAt-‘a 2 \‘Og‘7<T1>J’ + 1+ 2+

and choose the interval boundaries ¢, € RIM] a5

0 if m=0

At 211-m if1<m<11

tm = < At (m — 10) if 11 <m < 11+ M, .
Ty om=Mi=10) 5 11 4 My < m < 11+ M, + M,
T if m =114 M; + M,

The rationale of this mesh is to gradually build up p™) on (0,At) (m = 1,...,11)
by starting with very small but geometrically increasing step sizes. Then, on (At,T7)
(m =12,...,10 + M;) where there are strong fluctuations in p(t) we use an equidistant
mesh and finally let the solution converge to the steady state on (7T7,7) (m = 11 +
My, ..., M —1) using again a geometrically graded mesh but with the fairly small grading
factor o.

6.6. Independent Birth-Death Processes

Consider d € N chemical species D := {Xy, ..., X4_1} each of which is produced and
destroyed at constant rates b, dr € R~q, i.e. we have 2d reactions of the form

b
o= X, keD. (6.13)

dy,
The simple structure of (6.13) as well as the availability of an analytical solution of
the corresponding CME, see [36], allow us to investigate the scaling of our ansatz with

respect to d.
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6.6.1. Dimension Partition Tree

We use a dimension partition tree obtained as follows. First, construct a balanced binary
tree for the set of species D, then replace each leaf {k} of this tree with a balanced binary
tree for the virtual modes (k, [lx]) (c.f. Figure 5.1 for the construction so far), and finally
attach an additional vertex for the (non-quantized) time dimension at the root.

6.6.2. HTR Expression for the CME Operator

Since each reaction involves only a single copy of a single species, the CME operator in
this case is very similar to the discrete Laplace operator from Chapter 5, namely

Ap = Aclpyyiy (6.14)
keD

with one-dimensional operators
A = by bx — (b + dpC) Iy + di; Tk Cy.-

The upper, inter-species part of the bases tree is therefore as in (5.3) with A replaced
by A, and with the splitting relations given in the appendix, the intra-species part is
straightforwardly found to be

{A, 1}
{A L4, I+ 1} {I,1,C,1C}
— ™~ — ™~

ALRE T+ AL 5C1CH L1 L1 L,C1C) {1,1,6,1C}

6.6.3. Parameters

Time-stepping: At = 1073, Ty = 107!, T'= 10 (M = 569 time steps),
ns = 4 or ny = 20, as indicated
FSP: I =12, ng ;) =2 for all k € D, (k,7) € (k,[lg])
Reaction: b, = 1000, di, = 1 for all k € D

Initial conditions: py = & (X, p(ix = 0))

6.6.4. Results

In the first batch of runs, we use the same time stepping parameters as in [1], i.e. n; = 4.
As shown in Table 6.1, the HTR scales more favourably for this particular problem than
the T'T format, allowing us to more easily investigate the scaling for larger d than what
has been shown in [1]. Before discussing these empirical findings, however, we would
first like to highlight an important theoretical property of this problem.
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TT HTR

T T"max T Tmazx

87 | 11 29 | 10
704 | 21 70 | 10
1548 | 21 112 | 11
2516 | 21 158 | 11
3544 | 21 204 | 14

QU W N &

Table 6.1.: Independent birth-death processes. Comparison of runtimes 7" (in seconds)
and maximal ranks 7,4, for the TT-based approach from [1] and the HTR-
based approach (with n; = 4) considered here. The maximum in 7,4, is
taken over all edges of p(™) for all m =1,..., M.

The initial conditions py = 8 (Xcp(ix =0)) = [lrepd(ix = 0) imply statistical
independence of the initial copy numbers and since the species do not interact, we
expect their copy numbers at later times to be statistically independent as well, i.e.
p(t,ip) = [lpepp(t,ix) should hold for #D univariate probability density functions
p:(0,T) x [ng] — [0, 1] which satisfy the one-dimensional CME

%(f,ik) = A p(t.ig), p(0)=d(ix = 0).

Given the structure (6.14) of the CME operator, this is straightforward to verify:

if(t ip) = Z H p(t,i¢) % (t iK)

keD \teD\{k}

— Z H p(t,ip) | Axp(t,ix) = App(t,ip).

keD \teD\{k}

In the terminology of linear algebra, p(t,ip) = [[,cp p(t, i) implies that p(¢,ip) is rank-
one separable with respect to any M C D. At any single time point t € (0,7, p(t,ip)
can thus be represented in an HTR network with all physical ranks! equal to one, and
even though the virtual ranks may be larger they should be constant with respect to d.

As is shown in Figure 6.2¢, the same does not hold for the ranks of p(™ which may be
explained as follows. Assume the one-dimensional p(t,ix) can be accurately represented
on the interval (t,,—1,tm) by

p(t,ix) Z p\m zt X 1)) qb(m)(t).

ZtG[’nt]

YA rank r, with a € Tp is called physical if it only contains complete physical modes, i.e. (k,j) €
a = (k,[lx]) C «, and virtual otherwise.
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Figure 6.2.: Independent birth-death processes. Various quantities as a function of the

simulation time ¢. Each time step required only a single ALS(SD) iteration,
thus “number of GMRES step per local LSE” is directly proportional to the
effort in that time step.
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*=x nt=4

Compute time / d [sec]

Figure 6.3.: Independent birth-death processes. Compute time T'(d) divided by the
dimension d. The dashed lines show linear scaling fitted to T'(d) on
d=1,...,10.

Then, the corresponding outer-product representation for the bivariate function reads

p(tio < in) = | D p™(is xio) o (t) > p™ x i) ) o (t)

Z’tE[TLt} ZtE[nt]

= 37 ST P x i) p™ (i x in) 65 (2) ¢§;m>(t>

it €[ne] iy €ny]

m)

and involves the product gbl(tm) (t) gbz(, (t) of temporal basis functions. To get back to
t
the discontinuous Galerkin ansatz (6.7), we have to approximate these products in

span{¢§tm) (t) | i € [ng} which is in general not possible with reasonable accuracy
as is shown in Figure 6.2a. It seems plausible that once we deviate from the exact
solution of known low rank by more than the truncation tolerance, we will not find
another low-rank tensor within this (small) tolerance, which is exactly what we observe
in Figure 6.2c. This finding is a particular example of the general rule that truncation
procedures are only effective when carried out with a tolerance € which lies above the
noise in the tensor stemming from other sources (the time-stepping, in this case). A
similar empirical observation has already been made in [37, §5.1].

Clearly, the aforementioned problem can be overcome by increasing the temporal ap-
proximation space P, (t[ M +1})~ It is a particular merit of the tensor network approach
that overestimating the dimension of this space is very cheap, because basis functions
¢§:n) (t) whose associated coefficients p(™ (i;) are small will be removed from the repres-
entation in the sense that the time rank r; - the rank of the edge which connects the
time to the remaining modes - can be smaller than n;. We therefore present a second
batch of runs in which we increase the number of basis functions per interval from n; = 4
to ny = 20. The error and correspondingly also the ranks remain much smaller in this
case (Figures 6.2b and 6.2d), and the method scales more favourably with respect to d
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(Figure 6.3). The somewhat higher computational costs for small d can be explained by
noting that the runs with n; = 20 need more GMRES iterations than the n; = 4 runs
(Figures 6.2e and 6.2f), which may be because of the somewhat worse condition number
due to the increased problem size.

As a corollary of the above discussion, we note that we can use the time rank r; as a
(heuristic) indicator for the suitability of the step sizes: if 7, is smaller than n, we may
assume that the solution is sufficiently smooth to allow for a low-order expansion of p(t)
on the current interval. In the remaining runs, we therefore always use an overestimated
n; to make sure that we do not commit substantial time-stepping errors.

6.6.5. Parallel Scaling

In [36] it is shown that the exact univariate probability density function p(t,i) is a
Poisson distribution with parameter A(t) := Z—i (1 — e_dkt). Given the above values for
br and dg, the standard deviation of p(t,ix) is thus bounded by /1000 ~ 32 meaning
that p(t,ip) is fairly localized for all times ¢. In a quantized representation, locality
implies that the ranks associated with the small virtual indices (the ones which capture
the small-scale variations) are much larger than the ranks of the large virtual indices,
see Figure 6.5. This special structure of the ranks must be taken into account when
distributing the vertices as we will see next.

The standard round-robin vertex distribution from Section 5.7 performs worse for even
numbers of processors than for odd ones, see Figure 6.4. The reason for this is illustrated
in Figure 6.6: for an odd number of processes, the “heavy” vertices, say the ones with
more than 50 elements in this example, are distributed evenly among the processes (red
has three such vertices, green and blue have two each). For an even number, however,
it is possible that some processes host a larger fraction of heavy vertices than others
(yellow has three, green two and blue and red one), which undermines the purpose of
parallelization. In an attempt to overcome this problem, we introduce the randomized
round-robin distribution which deals the ith vertex in breadth-first order to process
i+ ¢ mod p where ¢ € [p] is a random integer chosen anew after every p dealt processes.
As we can see in Figure 6.4, this modification indeed smoothes out the irregular scaling
of the round-robin distribution, but it does not improve the overall scaling. The best
distribution for this particular problem is the optimized one because it assigns entire
physical modes to the same process whenever possible. Unfortunately, our algorithm
to produce optimized distributions works only for balanced dimension partition trees,
which prohibits its application if d is not a power of two.

6.7. Toggle Switch

In the context of biological reaction networks, a toggle switch is a network which possesses
two stable steady states. A synthetic construction of such a network inside a living
organism has been presented in [38] together with a deterministic, concentration-based
mathematical model to describe its behaviour. This model involves two chemical species
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Figure 6.4.: Independent birth-death processes. Parallel scaling on p processors (n; = 20).
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Figure 6.5.: Independent birth-death processes. Virtual ranks of p(™ for d = 16, n; = 20,
tm = 0.003 and species k = Xj3 (for other species, the ranks may be one
less).

Tt

(a)p=3 (byp=4

Figure 6.6.: Independent birth-death processes. Round-robin vertex distribution for d =
2 and number of processes p as indicated. The edge weights are obtained
by duplicating the tree from Figure 6.5 and connecting the dangling edges
from the two old roots to the new root. The time vertex, which would be
attached to the root, is not shown.
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D := {U,V} each of which gets produced at a rate inversely proportional to the copy
number of the other and degrades at a constant rate, i.e. we have the four reactions
ay (V) ay (U)

b
O —=U, @=—=V, al): b

= 6.15
du dy 1+ (E)ek ’ ( )

with parameters by, e, dr € R for k, ¢ € D.

This system is a toggle switch with the two steady states informally described by
“high copy number of U, low copy number of V” and “low copy number of U, high
copy number of V7. In a deterministic setting, knowing the initial state of a trajectory
allows to predict with perfect certainty the steady state it will eventually end up in, and
once this steady state has been reached the trajectory will remain there for all times.
The system thus provides an elementary biological memory unit (a biological bit) which
could e.g. be used as a basic building block of a biocomputer [38]. Biological systems
are intrinsically noisy, however, which causes a number of complications. Not only can
trajectories from the same initial state end up in different steady states, the system
can also toggle repeatedly from one steady state to the other. While such behaviour is
clearly not desirable for a memory unit, it is encountered in nature as a strategy used
by pathogens to evade the defense mechanisms of the host [39, 40].

6.7.1. Dimension Partition Tree

We use a dimension partition tree constructed as described in Section 6.6.1.

6.7.2. Obtaining the CME Operator
The CME operator for the reactions (6.15) is

Ap = (v —ly) diag(ay) + (lv —Iv) diag(av) + dy(tv —Iv) Cu + dv (Tv —Iv) Cy.

HTR expressions for the last two operators describing the destruction of species can be
derived straightforwardly from the splittings given in Appendix A. The splitting at the
root for the first term is given by

{Ap}

/N

v —Iv} {diag(av)} .

The left part of this bases tree can again be filled in straightforwardly. For the right
part, we assemble ay; as a full tensor and truncate it to HTR using [6, Algorithm 2] with
a relative truncation tolerance ¢ = 107!4. The second term is obtained analogously.
Finally, we assemble Ap by summing all terms and truncating once more with a relative
tolerance of 107, The resulting ranks of the time-stepping operator are shown in
Figure 6.10a.
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| At=10"° TT | SSA |

At=10"2 ][ 1.64-107* [ 2.22-107° | 8.35-10~*
At=10"3 1.56-107% | 8.62-10°*
TT 8.34-107*

Table 6.2.: Toggle switch. Differences in the ¢1-norm at the final time ¢t = 100. “TT”
and “SSA” denote the respective solutions from [1].

6.7.3. Parameters

Time-stepping: At =10"2or At =103, T, =1, T = 100, n; = 20
(M =576 or M = 5620 time steps)

FSP: lU = 13, lV = 12,
nw,j) = v, = 2 for all j € [ly] and j € [ly], respectively

Reaction: by = 5000, by = 1600, ey = 2.5, ey = 1.5, dy =dy =1
Initial conditions: py = d((iy = 0) x (iv = 0))

6.7.4. Results

Figure 6.8 presents numerical data for two runs, one carried out with At = 1072 and
the other with At = 1073, We observe that the smaller time step leads to smaller ranks,
and the reduced cost of solving an LSE at smaller ranks makes more than up for the
increased number of LSEs that we have to solve in this case. In numbers, running the
benchmark with At = 1073 takes 7.5h compared to 14h for At = 1072

In [1], it was found that the largest ranks encountered with the TT format range
up to over 90 and are thus significantly higher than what we report here. Neverthe-
less, the runtime observed there is lower, namely 2.8h. A possible explanation for this
phenomenon is the different scaling of the TT-DMRG (O(r?)) and the HTR ALS(SD)
(O(r*)) solver with respect to the rank 7, but major contributions from other sources
cannot be rule out such that this finding should not be overrated.

6.7.5. Parallel Scaling

For this particular problem, the ALS(SD) algorithm exhibits very poor parallel scaling
as shown in Table 6.3. To some extent, this can be explained by noting that the ranks are
heavily skewed towards the root (see Figure 6.10b) where the potential for parallelization
is low. The by far heaviest vertices, however, appear on level £ = 2 with # level,(Tp) = 2
such that the algorithm should scale fairly reasonably at least for p = 2. The reason why
this is not the case is shown in Figure 6.7: the local LSEs in the left subtree require many
more GMRES iterations than the ones in the right such that the main computational
burden is assigned to very few vertices all located on the same branch.
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p=1 |p=2|p= p=1 |p=2|p=
Default 982 sec 1.09x | 0.89x Default 390 sec 1.16x | 0.97x
Round-robin T 1.12x | 1.09x Round-robin T 1.16x | 1.25x%
(a) At =102 (M = 20). (b) At =103 (M = 110).

Table 6.3.: Toggle switch. Serial runtime up to t = 10~! for p = 1 processor and parallel
speedup for p > 1 processors.

600 20000 120 — . . : . —— 12000
Bl Time
500 L 100 L I lterations 110000
115000
400 80t {8000
) '] =) 9]
3 g 8 g
= 300} {10000 2 3 60| {6000 2
£ 5} E 53
= = = =
200 400 14000
45000
100 201 {2000
0
L L O R RL Rest L L O R RL Rest
(a) At =10"2 (M = 20 time steps). (b) At =1073 (M = 110 time steps).

Figure 6.7.: Toggle switch. Runtime and number of iterations of the GMRES algorithm
up to t = 107! separated by the vertex on which they are spent. “O” de-
notes the root vertex of the physical dimensions, and each “L” /“R” encodes
making one step to the Left/Right starting from “O”.
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Figure 6.8.: Toggle switch. Various quantities as a function of the simulation time. In
(a), “time rank“ denotes the rank on the edge separating the time from the

other dimensions. In (b), we show Xt(znnz) where n(m) denotes the number of

GMRES iterations carried out and At(m) := t,, — t;p—1 the interval length
in the mth time step. In (e), the error is estimated as the difference between
the solutions for At = 1072 and At = 1073.
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Figure 6.9.: Toggle switch. Evolution of the probability density function. Grid lines are
omitted for copy numbers larger 10. We show max{p(t), 107}, where p(t)
is the numerical solution obtained with At = 1073,
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Figure 6.11.: Enzymatic futile cycle. Figure taken from [1].

6.8. Enzymatic Futile Cycle

Futile cycles (also known as substrate cycles) are reaction networks resulting only in
the dissipation of heat but no net mass flux [41]. Reaction networks of this type are a
common motif in nature [42], and despite the pejorative name it is assumed that this
seemingly wasteful mechanism can serve a number of different purposes, see [41] and the
references therein. To illustrate one such purpose, we consider an abstract futile cycle
network taken from [43]. This model involves two substrate species X, X* which may
be converted between each other with the help of forward and backwards enzymes E.
and E_, respectively. We thus have the six species D = {X, X*,E_{, Ei, E{, E®} (the
superscript f and b distinguish between free and bound enzymes) and the six reactions

PR L . ¥
X+E,=F,, E} 2 X"+E,
k.+
: (6.16)
* f kl) b b kg f
X*+Fpl = Fgt  E' 25 X+E.
ky

A schematic view of the model is given in Figure 6.11.

Interpreting the total forward enzyme count iEiot =1 B + in as input and the
equilibrium copy number ix of one of the substrate species as output, it has been shown
in [43] that this system maps a continuously varying input signal to an almost binary
output, assuming suitably chosen reaction parameters. This step-function-like behaviour
is further enhanced if the input ¢ EBiot is subject to noise, and one can even tune the system
to become bistable with a characteristic frequency of oscillation between the two steady
states by choosing the probability distribution of ¢ Eiot appropriately. The binarity of
the output is proposed as an effective control mechanism for cell functions [44], and the
bistability could be used as an additional communication channel for signaling [43].
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Figure 6.12.: Futile cycle. Marginal probability density (summed over the enzyme
modes) at t = 1072, The black lines delimit the states reachable from
the initial conditions.

6.8.1. Dimension Partition Tree

Our aim here is to show that the tensor-network-based approach allows for the efficient
simulation of futile cycle networks, and investigating the stochastic effects mentioned
in the previous paragraph lies beyond the scope of this thesis. We therefore consider
a model where the total copy numbers of both enzymes as well as the substrate are
constant such that we have the three conservation relations

Tgtot := 1 ¢ +ipy = cONSst
EY Bl TUEL ’
Lptot 1= 1lpf + gy = const,
Xy 7= X +ix* +igy +igy = const. (6.17)

We use the first two relations to reduce the numbers of unknowns from six to four by
keeping track of only the free enzyme counts i s and obtaining the bound enzyme counts
+

through ¢ B, = ) Bt — ipr when needed. We emphasize, however, that we only do so
+

because this simplifies the following discussion as well as the implementation of the CME
operator. For a suitable dimension partition tree, tensor network anséatze readily exploit
such structure without additional input from the user, as we show next by means of the
last conservation relation.

An immediate consequence of the conservation of substrate species (6.17) is that any
slice p(t,i Bl X it ) of the probability density function has at most ix,,, — i Bl ipf
nonzero entries which are located along one of the anti-(off-)diagonals. See also Fig-
ure 6.12, where we delimit these anti-diagonals by black lines for the parameter values

specified below. Due to this diagonal structure, the optimal rank of separating the sub-

strate modes, r := ranky (p(t, ipf Xips )), is exactly equal to the number of nonzero
+ —
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Figure 6.13.: Natural versus transposed dimension partition tree.

entries in this slice, and clearly this number provides a lower bound on ranky (p(t)).
Physically, » measures the spread of the probability density function (we have e.g. r ~ 40
in Figure 6.12) and in general we cannot expect this quantity to be small. We therefore
conclude that the X-mode (or, likewise, the X*-mode) is not well separable from the
remaining modes, and the natural dimension partition tree from Section 6.6.1 will not
lead to small ranks. This has been demonstrated experimentally in [1].

The authors of [1] proposed to transpose the quantized modes instead, which means
to separate the virtual before the physical modes as illustrated in Figure 6.13. When
applied to d = 2 physical modes, the resulting representation is almost equivalent to the
HTR for linear operators, the only difference being that we do not separate the squared
modes of operators while we do separate the modes (k,j) with the same virtual index
j under transposition. From Appendices A.3 to A.5 it follows that such a transposed
representation leads to almost optimal compression in the sense that the ranks of the
diagonal tensor are at most twice the ranks of the tensor generating it, which has been
demonstrated in [1, S1.2] by means of an example. We thus use the transposed dimension
partition tree shown in Figure 6.16 for this problem.

6.8.2. Obtaining the CME Operator
The CME operator for (6.16) reads
it L , + _ / + . _ 1
Ap =k (1xtyy 1) CxCpy +h (bxbgy —1) Oy 4k (b 1) Oy ..
kT (TX*TEf —]I) Cx-Cpr +ky (iX*iEf —]I) C;ﬂ + k3 (iXiEf —H) C%{
where for brevity we left out the subscripts of the identity operator In;, M C D. We

assemble this operator in three steps:

e Assemble each factor Orlp\(ry With k € D and O € {1, |}, C, C'} separately based
on the dimension partition tree from Figure 6.16.

e Evaluate the above expression as the product and sum of operators in the HTR.
e Truncate Ap to remove excess ranks.

Since Ap involves only tensors of finite ranks, the last step can be carried out without
incurring any error (apart from numerical noise). The final ranks of the time-stepping
operator are shown in Figure 6.16a.
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p=1 |p=2|p=3|p=4

Default 1.04x | 0.93x | 1.13x
Round-robin 1.03x | 1.17x | 1.16x

270 sec.

Table 6.4.: Futile cycle. Serial runtime for p = 1 processor and parallel speedup for p > 1

Processors.

100 . . : : 16000
Hl Tme
B (terations [{14000
80 L
-12000
= 60| -10000
8 5
g - 8000 E
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F A0 {6000 =
44000
20 +
42000
0 0

Figure 6.14.: Futile cycle. Runtime and number of iterations of the GMRES algorithm
separated by the vertex on which they are spent. “0O” denotes the root
vertex of the physical dimensions, and “L”, “R” its Left and Right child,
respectively. “T” denotes the time vertex.

6.8.3. Parameters
Time-stepping:
FSP:

Reaction:

Initial conditions:

6.8.4. Results

At=5-10"% Ty =0.3, T =1 (M = 1332 time steps), n; = 10

I, =17, N(k,j) = 2 for k € {X,X*}, (/{,j) € (k‘, [Zk]),
Mgl =Nl = 3 (not quantized)

ki =40, ki = 10’000, k3 = 10'000,
k=200, ky = 100, k3 = 5000

po = ((ix =30) x (ix+ = 90) x (i =2) % (is = 2))

The numerical results are presented in Figure 6.15. We again note that the HTR delivers
smaller ranks than the TT format (maximal rank of ~ 30 compared to ~ 50), and this
time also the runtime of the HTR-based approach is smaller (5 minutes vs. 62 minutes).

6.8.5. Parallel Scaling

As shown in Table 6.4 and Figure 6.14, the parallel scaling is again poor for this example
due to the same reasons as in Section 6.7.5.
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Figure 6.15.: Futile cycle. Various quantities as a function of the simulation time. In
(a), “time rank” denotes the rank of the edge separating the time from the
other dimensions. In (d-f), “HTR” denotes the solution presented here and
“TT” and “SSA” the respective solutions from [1].
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(b) Coefficient tensor p(™).

Figure 6.16.: Futile cycle. Ranks of the time-stepping operator D;Ip — M; Ap (top) and of the coefficient tensor p™ m =30
(tsp = 0.1).



7. Conclusion

We described the HTR ALS algorithm and showed how its complexity can be reduced
through clever evaluation of the mode products appearing throughout the algorithm.
We then highlighted the modifications required for parallelization and indicated how
they must be implemented to obtain a numerically stable algorithm. At the example
of the high-dimensional Poisson equation, we demonstrated that these modifications
have virtually no impact on the numerical properties of the algorithm but allow for a
parallel scaling which we believe to be only limited by the problem size. All of the
presented algorithms have been implemented in an MPI-based C++ framework which, to
the authors’ knowledge, is the first software package for massively parallel computations
on tensor networks.

In the second part of this thesis, we applied the new solver to the chemical master
equation, a fundamental but very high-dimensional problem from systems biology, by
reproducing the numerical experiments from [1]. We found that some care must be taken
when scaling this ansatz to large dimensions, i.e. d > 10, and we pointed out in Sec-
tions 6.7 and 6.8 why our parallel algorithm may not scale well in certain circumstances.
There is reason to assume, however, that the effects found there are an artefact of the
essentially two-dimensional nature of the problems and may become irrelevant for larger
d.

Finally, as a side product of this work we presented a formalism to easily derive HTR
expressions and prove their optimality.
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A. Splittings for Common Tensors

We define a number of tensors and derive splitting relations for them. In this chapter
as well as in the remainder of this report, we assume the following convention.

Definition A.0.1 (Zero-Padding Convention). Let 2 € K*ken[™] be a tensor. We define
the expression z (ip) for all ip € ZP through

T (’LD) =

{:c (ip) ifip € Xyep|n]

0 otherwise

A.1. All-Ones Tensor

Definition A.1.1 (All-Ones Tensor). Let D be a finite mode set with associated index
sets Ip. The all-ones tensor 1p is the tensor in K*kep !k whose entries are given by
1p(ip) := 1.

Theorem A.1.2. Let L, R be two disjoint finite mode sets. We have 1pur = 11, 1g.

PT’OOf. 1LUR(7;LUR):1:1'1:1L(iL>'1R<iR)- D

A.2. Delta Tensor

Definition A.2.1 (Delta Tensor). Let D be a finite mode set with associated index sets
Ip, and let i}, € X,.cp Ix. The delta tensor 6 (ip = i},) is the tensor in KXkep Ik whose
entries are given by

1 ifip =%

6 (ip =ip) (ip) = {

0 otherwise

Theorem A.2.2. Let L, R be two disjoint finite mode sets and 17,5 € Xycrup Ik We
have

6 (irur = i1ur) = 0 (ip = 17) 0 (ir = ip) .

Proof. The right-hand side is one if and only if i; = i} and ig = i, which is equivalent
to iLUR:iZUR' ]
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Tk = Tk,0) Lk, 1) + $k,0)T k1)

Figure A.1.: Tllustration of the splitting Tx="(.0) Ik, 1)+ $k,0) T (k1) for ng =9, nu o) =
3, n(k71) = 3.

A.3. Shift Operator

Definition A.3.1 (Shift Operator). Let k£ be a mode, n; € N its mode size and s € Z.

We define the shift operator S ,(f) € Kl through its action on a tensor z € K™ which
is given by

(s,g%) (i) := 2(iy, + ).
Additionally, we define 1= S\, J,= S0, = 507 = g+,
Theorem A.3.2. Let (k,[2]) be a quantized mode, sy € £[ng o], s1 € £[ny,1) and

8= 80 + n,0)51- We have

(&) olo0) qlon) | ol50Fn00) glsr1)
Sy = ShoySun T Sy Sty -

Proof. For brevity, we denote (k,j) by only j, j = 0,1. By Definition 2.7.2, we have
i+ 8 =1+ So + no(ip + s1 )
:Z'o—i-SQ?:no—i-no(Z'l —I—Slzlzl).

Applying the zero-padding convention, we obtain with iy € [ng], i1 € [n1]

l’((lo + So ) X (il + 81 )) =

)

x(igx +s) if ig+ so € [no
0 if i + so & [no
0 if ig + so € [no
[

x(zk —i—S) if 49 + so € [no

]

]
$((i0+80:Fn0)X(i1+81i1)):{ }
The two cases are complementary and we obtain

.T(’ik—l—s):x((io—FSo )X(i1+81 ))—i—
.Z‘((io—{—So:l:n()) X (il +81:|:1)). O

90



Corollary A.3.3. Let (k,[2]) be a quantized mode. We have

e =10 Le,n+ dr,0) Tk, 1) ke =M (k,0) M (k1)
e =4k,0) Lo,y + T k,0)d (1) e =bk,0) k1) -

Remark A.3.4. Analogous splittings for the shift operator in the QTT format have
been derived in [50].

A.4. Diagonalization

Definition A.4.1 (Diagonalization). Let 2 € K*kep v be a tensor. We define its
diagonalization diag(z) € K**epli through its action on another tensor y € KXken Ik
given by

(diag(m) y) (ip) =z(ip)y(ip).

Theorem A.4.2 (Remark 13.10 in [22]). Let z € K*ven !k g € KIraadx (Xeen 1) gpd

Yy € Kl x (eepar ) qpith M C D and rpr € N be tensors such that z = xy is a
splitting of z. Then, we have

diag(z) = Z diag (z(iany)) diag (y(igary))-

iy €lrml

Proof. Let w € KXkep Ik be arbitrary. Then,

(diag(z)w)(ip) = > a(itany X inr) y(igary X ipyar) wlin)

iy €lrm]

_ > diag (z(igary)) diag (y(igary)) w | (ip)- H

iy €lrml

A.5. Flipping Operator

Definition A.5.1 (Flipping Operator). Let k& be a mode and ny, € N its mode size. We
define the flipping operator Ji€ K7 through its action on a tensor z € K[! which is
given by

Tk @) (ir) = w(ng — ip — 1)

Theorem A.5.2. Let (k,[2]) be a quantized mode with virtual mode sizes ny o)) €
N®RD . We have
Te=Tk0) Tty -
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Proof. We abbreviate (k, j) by only j, j = 0,1. By Definition 2.7.2, it holds

(ik x) (ix,) = x(non1 — to —no i — 1)
=x(ng —ip — 1 +no(n1 — i1 — 1))

= (i@ il x) (io X il). O

A.6. Counting Tensors

Definition A.6.1 (Counting Tensors). Let k& be a mode and ng € N its mode size.
The counting tensor c is the tensor in K[ whose entries are given by c(iy) = ig.
Additionally, we define the counting operator C} := diag(c) and the inverse counting
tensor / operator ¢, :={j ¢; and Cj, = diag(c},), respectively.

Theorem A.6.2. Let (k,[2]) be a quantized mode with virtual mode sizes ny, (o)) €
N®R2D - We have

Ck = C(k0) L(k,1) + N(k0) L(k,0) C(h1)5
¢ = €0y L) T 100) Lk0) 1)

Proof. We abbreviate (k, j) by only j, j = 0,1. By Definition 2.7.2, it holds
Ck(lk) =149+ ngt1 =coli +nglgcy,

which proves the claim for the counting tensor. For the inverse counting tensor, we have

cﬁc :ioil (coly + nglocy) :io coly +nplp il c1 = 66 11 +ng 1o Cll. ]

Remark A.6.3. Theorem A.6.2 implies that any linear function can be represented in
HTR(Tp, I,r) with r, < 2 for all &« € Tp. Through recursive application of this theorem
one can more generally show that any polynomial of order p has HTR ranks bounded
by p + 1, which has already been proven in [19] and [51].
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