
MPI-Based Tensor Network Library

Semester Thesis by Simon Etter

Advisors: Robert Gantner, Vladimir Kazeev
and Prof. Dr. Christoph Schwab

6 May 2014

ETH Zürich

Contents

1 Introduction 3

2 Software Design 5
2.1 Extensible Classes . 5

2.1.1 Considerations . 5
2.1.2 Solution . 5

2.2 The full tensor Class . 7
2.3 The Tensor Network Classes . 8

2.3.1 Considerations . 8
2.3.2 The edge port Class . 8
2.3.3 Organization Of The Classes . 9

3 Performance 13
3.1 Theoretical Scaling . 13

3.1.1 Introduction . 13
3.1.2 Optimal Scaling Of Tree Parallel Algorithms 14
3.1.3 Optimized Vertex Distribution . 17

3.2 Experimental Results . 18
3.2.1 Empirical Scaling . 18
3.2.2 Sine Series Example . 21

4 Conclusion 25

2

1 Introduction

In many fields of computational science and engineering, the need arises to work with
tensors A ∈ Cn1×...×nd whose dimension d is “large”, i.e. larger than the well-known
special cases d = 1 (vectors) and d = 2 (matrices). Explicitly handling such high-
dimensional objects is very difficult as both memory requirements and computational
complexity scale with at least

∏d
i=1 ni ≤ nd, where n is an upper bound on the ni. This

exponential scaling is called the curse of dimensionality as it renders explicit tensor algo-
rithms unaffordable in more than three dimensions. In recent years, an approach based
on so-called tensor decompositions has been developed to the point where it allows to
trade accuracy for computational efficiency both theoretically as well as algorithmically.
The common idea of these decompositions is the separation of variables, i.e. the rep-
resentation of a single high-dimensional tensor as a product of several tensors of small
dimensions. This product of tensors can be depicted as a tensor network [1]. The corre-
sponding representations of the data are called tensor network formats. The two most
essential examples of tensor network formats are the Tensor Train (TT) format [2, 3]
and the Hierarchical Tensor Representation (HTR) [4, 5] illustrated in Figure 1.1. A far
more detailed introduction to tensor networks can be found in the book by Hackbusch
[1]. A literature survey with a strong emphasis on applications is given in [6].

Depending on the structure of the data, tensor network formats can dramatically
reduce the data complexity of tensors while losing only very little in accuracy. Never-
theless, such compressed tensors may still require memory on the order of 10 GB and
more, and basic operations like addition, dot products or truncation can take several
minutes to complete. There is thus the need to speed up computations by making the
most out of today’s hardware. Tensor network algorithms typically spend the most time
in calls to BLAS functions, thus their single-core optimization reduces to linking against
an optimized BLAS library. The next level of optimization is then to parallelize the
algorithms over multiple CPUs. As it turns out, not all tensor network formats lend
themselves for parallelization. For example, important algorithms on TT-formatted ten-
sors cannot be efficiently parallelized because they require the vertices to be processed

(a) TT format

(b) HTR

Figure 1.1: A six-dimensional tensor in the TT format and the HTR.

3

in a strict left-to-right or right-to-left order. On the other hand, HTR algorithms require
only that parent vertices must be processed before their children or vice versa, but they
don’t impose any order on vertices which are not ancestors/descendants of each other.
This leaves a certain degree of freedom to distribute the vertex processing over multiple
processing units.

The main objective of this semester thesis is to pioneer the high-performance parallel
implementation of the orthogonalization and truncation of high-dimensional tensors in
the HTR. For that purpose, we developed basic data structures and functionality for a
C++ library based on MPI. In Chapter 2, we discuss the software design considerations
underlying the library. In Chapter 3, we analyze the scaling of tensor network algorithms
on tree-structured networks. First, we provide a theoretical analysis. Then, we match
our conclusions against experimental results obtained with our library.

The extensible classes idiom and the full tensor class were developed by the author
already before the start of this semester thesis. For completeness of presentation, we
nevertheless present these two topics here.

4

2 Software Design

2.1 Extensible Classes

2.1.1 Considerations

In object-oriented programming, one associates algorithms (functions) with the data
structures (classes) they operate on by making the functions members of the classes.
Usually, the set of class member functions is rather small and fixed at an early stage in
the software development process. It is a peculiarity of linear algebra that we have a few
data structures which have a large number of algorithms operating on them. Consider
matrices as an example: They are associated with algorithms for various arithmetic
operations, solving linear systems of equations, determining matrix decompositions, etc.
When translating such a many-algorithms data structure into a class, new issues arise
that are not present in the usual class design process:

• We want the set of algorithms to be extensible.

As there are many algorithms, we must expect them to be implemented at different
times by different developers. It is therefore important to have a good scheme for
adding new functions.

• We want to split the functions into different modules.

Apart from operating on the same data structure, the algorithms are not related.
We therefore would like to keep their implementations as cleanly separated as
possible.

• We want to have a clean interface between data structure and algorithms.

Since the amount of code written on top of the basic data structure code will
be fairly large, we should abstract away the implementation details of the data
structure and provide a clean interface to the algorithms instead.

2.1.2 Solution

The classic way of solving the above problems is to implement a class data structure

and implement the algorithms as functions taking data structure objects as argument.
However, for syntax reasons we wanted the algorithms to be member functions, i.e.
alg(data) should better be written as data.alg(). The latter syntax is used extensively
in the Eigen library [7], which served as a role model for our project. Unfortunately,
in C++ it is not possible to make the algorithms member functions of data structure

5

and at the same time satisfy the above objectives. We therefore need a new idiom which
is illustrated below.

// ----------------

// data_structure.h

// ----------------

class data_structure_implementation {

public:

// Public interface

protected:

// Algorithms-specific interface

private:

// Implementation details

};

#define BEFORE_CLASS

#include "extensions.h"

#undef BEFORE_CLASS

class data_structure : public data_structure_implementation {

#define IN_CLASS

#include "extensions.h"

#undef IN_CLASS

}

#define AFTER_CLASS

#include "extensions.h"

#undef AFTER_CLASS

// ------------

// extensions.h

// ------------

#include "algorithm1.h"

#include "algorithm2.h"

// etc

// ------------

// algorithm1.h

// ------------

#ifdef BEFORE_CLASS

// Includes, non-member function declarations, helper structs, etc.

#endif /* BEFORE_CLASS */

#ifdef IN_CLASS

// Member functions

#endif /* IN_CLASS */

6

#ifdef AFTER_CLASS

// Non-member function definitions

#endif /* AFTER_CLASS */

The trick here is to use the preprocessor to assemble the class declaration at compile
time. All algorithms are implemented in their own file, cleanly separated from each
other. Once the preprocessor runs through data structure.h, it reads each algorithm
file three times, but due to the macro definitions it copies a different section of the files to
data structure.h in each run. This allows to add or remove member functions to/from
data structure by simply adding or removing a line in extensions.h.

Introducing a class data structure implementation allows the data structure to
hide its implementation details from the extensions.

2.2 The full tensor Class

The first actual example of a data structure with many associated algorithms in our
project are the full tensors. All the operations on them can be formulated easily and
efficiently according to the following pattern:

• Reshape the tensor to a matrix

• Perform some operations on the matrix

• (Reshape the result back into a tensor)

The advantage of this pattern is that it allows us to forward most performance-critical
operations to a highly optimized BLAS library. We thus organize the full tensor

class according to the extensible classes idiom, and provide matricization as the basic
interface for the algorithms to access the data structure. By matricization we mean the
reformulation of the tensor in a format understandable by the BLAS.

It remains to decide on a storage format for efficient handling of matricization re-
quests. The straightforward solution is to store a d-dimensional tensor A with mode

sizes n0, . . . , nd−1 in a long vector a of size
∏d−1
j=0 nj such that a

[∑d−1
j=0

∏j−1
k=0 nkij

]
=

A(i0, . . . , id−1). However, such a storage format does not support matricization requests
very well, as we will show next.

Assume we are given a three-dimensional tensor and need to return a ((1), (0, 2))-
matricization, i.e. the second mode should be viewed as the row mode and the com-
bination of the first and third mode as the column mode. All existing BLAS libraries
require the input matrices to have constant strides in both row and column direction,
i.e. given a pointer p pointing to A(i, j), there have to exist two numbers row stride

and column stride independent of i, j such that p + row stride points to A(i+ 1, j)
and p + column stride to A(i, j + 1). In our example, row stride is equal to n1 and

7

thus meets the requirements. On the other hand, column stride is given by

column stride =

{
1 j mod n0 < n0 − 1

n0n1 otherwise

i.e. it depends on the position j. Therefore, to return the requested matricization we
first have to permute the data.

It is clear that for d > 2 there is no storage format which can serve all matriciza-
tion requests without permuting the data. But to keep the number of permutations
low, we use the following generalization of the naive format: We introduce a permu-
tation π : [d] → [d] with [d] := {0, . . . , d − 1}. The elements of A are then stored in

a according to a
[∑d−1

j=0

∏j−1
k=0 nπ(k)iπ(j)

]
= A(i0, . . . , id−1). When the user asks for a

(µ, ν)-matricization, we update π to either of (µ, ν) or (ν, µ) and update the data in a

accordingly. In the former case, we then have row stride = 1 and column stride =∏|µ|
j=1 nµ(j), in the latter row stride =

∏|ν|
j=1 nν(j) and column stride = 1. Like this,

if the user asks for n equal matricizations in a row, we have to permute at most once,
whereas the naive format requires up to n permutations.

2.3 The Tensor Network Classes

2.3.1 Considerations

In tensor networks, both the data as well as the computational workload are naturally
associated to single vertices of the network. We therefore parallelize our code by dis-
tributing the vertices over the MPI processes. As we will see later, finding a good
distribution is not a trivial task even when assuming uniform costs for each vertex. If
additionally the vertex costs could become unbalanced, we might need to adapt the
distribution accordingly to achieve good performance. It is thus best to implement the
graph data structure and the algorithms on them such that they can work with a general
vertex distribution.

Another aspect in which we want to maintain generality is the graph structure. Despite
our primary focus lying on tree-type and, in particular, HTR networks, our code can
be extended to work with any kind of network. If at some point in the future new
promising types of tensor networks appear, it will thus be easy to implement them
within our library.

2.3.2 The edge port Class

In tensor network algorithms, the flow of data is constrained to the edges of the network.
Since vertices are distributed over the processes, we can distinguish between edges having
both endpoint vertices on the same process or on two different processes. While the
forwarding of the data has to be handled differently for these two kinds of edges, all
we care about when implementing the algorithms is that the data eventually appears
on the other side. We therefore introduce an edge port class to abstract away the

8

(a) The left vertex pushes a piece of data into its end of the edge.

(b) The data is stored within the edge. If the edge is between vertices on
different processes, the data is passed asynchronously between the pro-
cesses.

(c) The vertex to the right retrieves the data from its side of the edge.

Figure 2.1: Illustration of message passing through edge ports.

implementation detail of how the data is transferred. Since the sender and receiver
could be the same process, these edge ports have to work much like a service hatch: if
you need to pass data from the “kitchen” to the “dining room”, you push it into your
end of the edge represented by a local edge port. There, it waits until the receiver
(which may be the same process as the sender) is ready to retrieve the data from its side
of the edge. This process is illustrated in Figure 2.1.

2.3.3 Organization Of The Classes

An easy and efficient format for distributed graphs are adjacency lists. In this format,
each process stores a list of its local vertices and each vertex stores a list of the edges
to which it belongs. The Parallel Boost Graph Library [8] is an example of an existing
library implementing adjacency lists. To represent such a format in C++, we use five
classes whose relationships are depicted in Figure 2.2.

When implementing a specific tensor network format, we might need to add new
functions and fields to the tensor network classes, or redefine the behaviour of some
functions. For example, if the network is a rooted tree we might need to mark one edge
per vertex as the edge to the parent vertex, and rewrite the dot operation which can
be implemented easier and more efficiently in this special case. The promoted object-
oriented solutions to this problem are inheritance and polymorphism. In order to add or
modify members of a class base, we introduce a new class derived inheriting from base

and implement the changes there. The use of the built-in polymorphism mechanism in

9

C++ (i.e. the virtual keyword) is problematic, however, due to at least the following
two reasons.

• Performance overhead

If a function foo() is declared virtual, each call to foo() is resolved at run time
even if we could already tell at compile time which version of foo() has to be
called. This overhead can significantly decrease performance.

• Limited interoperability with templates

A virtual function cannot be a template. This can become a problem, e.g. if
we want to have an overwritable base implementation of the addition between
operands of different numeric types.

The Curiously Recurring Template Pattern (CRTP) is a C++ programming idiom which
can serve as a substitute to polymorphism in many cases while avoiding the above
problems. The basic idea of CRTP is to pass the type of the derived class as a template
parameter to the base, which can then resolve the function calls already at compile time.

template<class Derived>

struct base {

void foo() {

// Emulate polymorphism by forwarding calls

// to base<>::foo() to Derived::foo()

static_cast<Derived*>(this)->foo();

}

};

struct derived : base<derived> {

void foo() {

// Actual implementation of base<>::foo()...

}

};

We face the exceptional situation that we don’t have just one inheritance graph, but
rather we have five inheritance graphs which are highly interdependent. For illustra-
tion, imagine we have a tensor network base class and want to derive a tree tensor

network base class from it. In general, only modifying tensor network base will not
be enough since we might also want to add new features to other classes, e.g. the
vertex base class. Therefore, we derive a tree vertex base class from vertex base.
At this point, however, we must have a way to tell the tensor network base class to use
tree vertex base instead of vertex base, as it is the tensor network base class which
manages the vertices. To be precise, it is actually up to the vertex container base

class to manage the vertices, but for simplicity we ignore that intermediate step.
To resolve this problem, we introduce proxy classes for all five tensor network classes

which are templated on a class parameter NetworkType. We then have a tensor network

10

tensor network

vertex container

vertex

edge port container

edge port

remote edge port

edge port

vertex

edge port container

edge port

vertex

edge port container

edge port edge port edge port

remote edge port

Figure 2.2: Composition of objects of different tensor network classes. Arrows indicate
the ownership of the source object by the destination object. The dashed
lines symbolize the links between the edge ports.

<general> and a tensor network<tree> class and likewise proxy classes for all other
tensor network classes. Additionally, all of the above * base get templated on Network

Type as well. Eventually, we let the proxy classes inherit from the corresponding base
classes. So tensor network<general> inherits from tensor network base<general>,
whereas tensor network<tree> inherits from tree tensor network base<tree> which
in turn inherits from tensor network base<tree>. An instantiation of tensor network

base therefore knows whether it stores a general network or a tree network and can ref-
erence the appropriate vertex class through vertex<NetworkType>. See also Figure 2.3
for a schematic representation of the relations described above. Note that our scheme
is identical in functionality and very similar in spirit to the CRTP, while the actual
implementation differs in that we let the derived classes serve as proxies and forward
function calls to these proxies implicitly through inheritance.

11

tensor network base<NetworkType> tensor network<general>

tensor network tree base<NetworkType> tensor network<tree>

tensor network<NetworkType>

vertex base<NetworkType> vertex<general>

vertex tree base<NetworkType> vertex<tree>

vertex<NetworkType>

Figure 2.3: Excerpt of the inheritance diagram for the tensor network classes. The arrows
always connect classes with the same template parameter NetworkType.

12

3 Performance

3.1 Theoretical Scaling

3.1.1 Introduction

All tree tensor network algorithms naturally deal with one vertex at a time, but they
impose different constraints on the order in which the vertices have to be processed.
Based on these constraints, we can split the algorithms into two classes:

• Perfectly parallel algorithms

The vertices can be processed in arbitrary order.
Examples: addition, truncation (after the gramians have been computed)

• Tree parallel algorithms

Child vertices have to be processed before the parent vertices (leaves-to-root algo-
rithms) or vice versa (root-to-leaves algorithms).
Examples: the dot product, orthogonalization, computation of the gramians

For sufficiently large numbers of vertices (i.e. sufficiently fine granularity of the job
sizes compared to the overall workload), the runtime of perfectly parallel algorithms
obviously scales with 1

p where p is the number of processes. On the other hand, for tree
parallel algorithms such perfect scaling is not possible. In the remainder of this section,
we derive a formula for the optimal speedup achievable with a tree parallel algorithm in
a model situation satisfying the following assumptions.

Assumption 1. d denotes the number of leaf vertices, p the number of processors
available. We assume blog2 dc ≥ dlog2 pe.

Assumption 2. The tensor represented by the network has exactly d modes. All of
them have the same mode size n, and there is exactly one such free mode per leaf vertex.

Assumption 3. All ranks have the same size k.

Assumption 4. The tree is a balanced binary tree, i.e. the longest branch is at most
one vertex longer than the shortest one.

Assumption 5. Processing a leaf or root vertex takes no time. Processing an interior
vertex takes one time unit.

Assumption 6. Processing a vertex is an atomic operation, i.e. it cannot be split into
smaller steps.

13

n

k

n

k

k

n

k

k

n

k

n

k

k

n

k

k

Figure 3.1: A tensor network satisfying the assumptions of Subsection 3.1.1. The edge
labels indicate the ranks (k) and mode sizes (n).

A tensor network satisfying all the above assumptions is depicted in Figure 3.1. In-
terior vertices store third order tensors of size k3, whereas the leaves and the root store
matrices of size nk or k2, respectively. The relative runtime costs in Assumption 5 are
thus approximately correct for large ranks k. Assumption 6 is violated in the current
implementation: The processing of a vertex v is split into smaller operations, namely
the preparation and consumption of messages sent over the edges incident to v. Un-
fortunately, this discrepancy between the model and the implementation can produce
non-negligible differences in the results one obtains. On the other hand, it is clear that
predictions based on the more coarse-grained model give a lower bound on the more
fine-grained reality, and we will see in Subsection 3.2.1 that the bound is sharp in most
cases. Finally, a model without Assumption 6 is much more difficult to treat, and it is
not clear whether such a more complicated model would be worth the effort given that
other assumptions are not realistic either.

3.1.2 Optimal Scaling Of Tree Parallel Algorithms

Given Assumptions 1 to 6, we can visualize the execution of a parallel algorithm in a
table where the entry in the qth row and ith column denotes which interior vertex is
processed by process q in time step i. We call such a table a vertex schedule. The
overall runtime of the algorithm is given by the rightmost non-empty entry in the vertex
schedule. A root-to-leaves algorithm requires that every parent vertex appears to the
left of all its child vertices, and a leaves-to-root algorithm likewise requires the opposite
order. The following theorem justifies that we merge root-to-leaves and leaves-to-root
algorithms in the more general class of tree parallel algorithms:

Theorem 1 (Equivalence of leave-to-root and root-to-leaves algorithms). The optimal
runtime of a leaves-to-root algorithm on p processes is equal to the optimal runtime of a
root-to-leaves algorithm on the same number of processes.

Proof. Let R(p) be the optimal runtime of a root-to-leaves algorithm, and L(p) the
optimal runtime of a leaves-to-root algorithm, and assume R(p) < L(p). Then, we can
construct a leaves-to-root schedule with runtime R(p) by flipping all rows in the optimal
root-to-leaves schedule which contradicts the optimality of L(p). We therefore have
L(p) ≤ R(p). The similar argument in the opposite direction yields R(p) ≤ L(p), thus
L(p) = R(p).

14

Serial section

Parallel section

dlog2 pe − 1

dlog2 de

Figure 3.2: Splitting of the tree into serial and parallel sections.

To derive the optimal runtime of a tree parallel algorithm, it is useful to split the tree
into a serial section and a parallel section as depicted in Figure 3.2. The serial section
contains the vertices on all complete levels with fewer than p vertices, and the parallel
section the vertices on the remaining levels. We compute the optimal runtime of a tree
parallel algorithm for both sections, and eventually combine the results to the overall
runtime.

1

2

3 3

2

3 3

Figure 3.3: Execution history of a tree parallel algorithm in the serial section. Every
vertex label indicates the step at which the vertex is processed; the colors
distinguish between the processes.

Theorem 2 (Serial section runtime). The optimal runtime of a tree parallel algorithm
in the serial section is given by dlog2 pe − 1.

Proof. Clearly, we cannot do better than parallelizing the vertex processing level-wise.
The runtime is then given by the number of levels in the serial section, which is dlog2 pe−
1.

1

2 2

1

3 3

1

3 4

2

4 4

Figure 3.4: Execution history of a tree parallel algorithm in the parallel section. Every
vertex label indicates the step at which the vertex is processed; the colors
distinguish between the processes.

15

Figure 3.5: Optimal scaling of tree parallel algorithms.

Theorem 3 (Parallel section runtime). The optimal runtime of a tree parallel algorithm

in the parallel section is given by dd−2dlog2 pe

p e.

Proof. The whole tree contains d − 2 interior vertices, 2dlog2 pe − 2 of which are in the
serial section. There are thus d− 2dlog2 pe interior vertices to be processed in the parallel
section. We see that the above runtime is the same as the runtime of a perfectly parallel
algorithm, therefore it is surely a lower bound on the optimum. We prove that this
runtime is indeed achievable for a tree parallel algorithm by showing that we can keep
all p processes busy for all but the last time steps.

By Theorem 1, it is enough to consider a root-to-leaves algorithm. In the first step,
we process p vertices from the first level in the parallel section (note that there have to
be at least p vertices in the first level due to the definition of the parallel section). In
the second step, we process the remaining 2dlog2 pe − p vertices in the first level, and let
the leftover processes work on the vertices from the second level. Since we processed p
vertices from the first level in the first step, there are 2p vertices ready for processing on
the second level, i.e. we can occupy all p processes in the second step. In the third step,
we process p vertices from the second level. Finally, the arguments can be iterated until
the last step.

Theorem 4 (Runtime and scaling of tree parallel algorithms). The optimal runtime of

16

a tree parallel algorithm on p processes is

T (p) = dlog2 pe − 1 +

⌈
d− 2dlog2 pe

p

⌉
= O

(
log2 p+

d

p

)
The best possible speedup obtainable with a tree parallel algorithm is

T (1)

T (p)
=
d− 2

T (p)
= O

(
d

log2 p+ d
p

)

Proof. Consider a root-to-leaves algorithm. Clearly, it takes the algorithm at least
dlog2 pe − 1 steps to finish a vertex on the bottom level of the serial section. From
the proof of Theorem 2 we conclude that all vertices in the serial section can be pro-
cessed within that time but no vertex on the last level can be processed before the last
time step. Therefore, by the time we start processing the first vertex in the parallel
section, we can directly use the schedule of Theorem 3, and thus the optimal overall
runtime is the sum of the optimal runtimes of the two sections.

3.1.3 Optimized Vertex Distribution

Since sending data between processes is expensive and the vertices can be up to k3 in
size, we distribute the vertices to the processes once and then stay with that distribution
throughout the computations. This raises the need to to find a distribution which
allows all algorithms to be executed with reasonable performance. In particular, such a
distribution should satisfy the following conditions.

Condition 1. The interior vertices should be distributed evenly over the processes
(necessary condition for optimal scaling of perfectly parallel algorithms).

Condition 2. The interior vertices in the parallel section should be distributed evenly
over the processes (necessary condition for optimal scaling of tree parallel algorithms).

Condition 3. Each parent vertex should have at least one child vertex on the same
process. This allows to benefit from the asynchronous communication between a parent
and its children in the presence of latency.

By evenly distributed, we mean that the process owning the most interior vertices
owns at most one more than the process owning the least.

It turns out that the above conditions cannot be satisfied all at the same time: Con-
ditions 1 and 2 together imply that the interior vertices in the serial section also have
to be evenly distributed up to a maximal imbalance of two interior vertices. Since there
are 2dlog2 pe − 2 < 2p− 2 interior vertices in the serial section, this means that a process
can receive at most 3 interior vertices from the serial section. But, to satisfy Condition
3, we need to place at least dlog2 pe − 2 (depth of the serial section minus root vertex)
interior vertices from the serial section onto the same process. A similar argument shows
that in fact already Conditions 1 and 3 are mutually contradicting.

17

Violating Condition 1 increases the runtime of perfectly parallel algorithms to the
one of tree parallel algorithms, i.e. it introduces an additional O(log2 p) term. On the
other hand, violating Condition 3 means that on each level we may have to wait some
additional time for the inter-process communication to occur, thus on the whole tree
we have again an O(log2 p) term. We therefore expect that it doesn’t make much of a
difference whether we choose to satisfy Conditions 1 and 2 or 2 and 3. We devised and
implemented an algorithm which given a d and p constructs a balanced binary tree and
a vertex distribution such that 2 and 3 are satisfied. An example vertex distribution
produced by it is depicted in Figure 3.6.

Figure 3.6: Example vertex distribution for d = 12 and p = 3.

3.2 Experimental Results

All benchmarks were carried out on four Quad-Core AMD OpteronTM 8356 processors
(2.3 GHz).

3.2.1 Empirical Scaling

To verify the theoretical predictions from the previous section, we show the scaling of the
addition and dot product in Figure 3.7. We would like to make the following comments
on the obtained results.

• Even though the addition is a perfectly parallel algorithm, the fact that we dis-
tribute the vertices in a way optimized for tree parallel algorithms reduces its
scaling to the one of tree parallel algorithms (see the discussion in 3.1.3). This
justifies that we compare the scaling of the addition with the optimal scaling of
tree parallel algorithms.

• For high processor counts, the algorithms scale notably worse than the theoretical
predictions. In the case of the addition, this can be justified by noting that tensor
network addition is a strongly memory-bound algorithm, and memory bandwidth
does not scale linearly with the number of processors. In the case of the dot
product, the suboptimal scaling is probably due to the fact that we use Boost.MPI
[9] inefficiently: Currently, each send and receive does an unnecessary local copy
of all the transmitted data. Benchmarks showed that these copies reduce the
communication performance by up to a factor 10. We therefore aim to resolve this
problem in the future.

18

(a) Addition, d = 20 (b) Dot product, d = 20

(c) Addition, d = 50 (d) Dot product, d = 50

(e) Addition, d = 300 (f) Dot product, d = 300

Figure 3.7: Strong scaling of addition (left) and dot product (right) on binary trees with
d leaves, uniform mode sizes and ranks n = k = 64 and random initial data.
The dashed lines denote the optimal scaling of a tree parallel algorithm as
stated in Theorem 4. The solid lines show the median speedups over 10 runs,
and the error bars the 20% and 80% quantiles.

19

(a) Vertex distribution for d = 20 and p = 7.

(b) Vertex distribution for d = 20 and p = 8.

Figure 3.8

• For d = 20 and p = 8, 9, the speedup is larger than what is predicted by theory.
To explain this, consider the corresponding vertex distributions shown in Figure
3.8. Even though the outcome is similar for both the addition and dot product,
we have to look at the two cases separately:

Addition: For p = 7, the process with the most interior vertices and thus the
bottleneck is the red one with four interior vertices. In the case when p = 8, the
red process has one interior vertex less which makes the addition run faster.

Dot product: The mismatch between theory and experiment is due to the wrong
model assumption that the vertex processing is an atomic operation (see Assump-
tion 6 in Subsection 3.1.1). In the case when p = 8, the model assumes that the
orange process first has to process its two interior vertices before the green one
can start processing the vertex indicated by the arrow, which gives a total of three
time steps for this subtree. What actually happens in the implementation is that
the green process consumes the message from the right son of the marked vertex
already while the orange process is still working. Once the orange process is done,
the green process then only has to consume the message from the left son and
prepare the message to the parent, which is one consume operation less than what
the model assumes. For the dot product, it is reasonable to expect that the prepa-
ration and consumption of messages each take 1

3 time units. The indicated subtree
is then processed in only 2 + 2

3 time units, and the overall speedup is 18
3+ 2

3

≈ 4.91,

while the model predicts a speedup of 18
4 = 4.5.

For p = 7, a similar effect does not occur because the green process has enough

20

work to do on its own and never waits for the message from the red process.
Therefore, in this case the model prediction is exact.

3.2.2 Sine Series Example

We also test the performance of our code in the more realistic example of evaluating the
truncated sine series of a d-dimensional analytic function on [0, 1]d,

f(x1, . . . , xd) =
∑

(i1,...,id)∈∆(d,m)

α(i1, . . . , id)
d∏

k=1

sin(2πikxk)

We set α(i1, . . . , id) = b d−
∑d

k=1 ik ω(i1, . . . , id) with some fixed b > 1 and ω(i1, . . . , id)
uniformly distributed in [−1, 1]. ∆(d,m) denotes the d-dimensional discrete simplex

∆(d,m) :=

{
(i1, . . . , id) ∈ Z≥1 |

d∑
k=1

ik ≤ m

}

One can show that |∆(d,m)| =
(
m
m−d

)
. We choose m such that ∆(d,m) contains exactly

the points (i1, . . . , id) for which b d−
∑d

k=1 ik > ε
b with some target accuracy ε > 0, i.e.

m = d − blogb(ε)c (b·c denotes rounding towards −∞). For d = 1, this bounds the
L2-norm of the dropped terms in the infinite sine series by ε√

2 (1−b−2)
. If we use the

same definition of m in higher dimensions, the prefactor of ε in the error due to the
truncation of the series grows rapidly with d, so in principle we should compensate for

that by increasing m. On the other hand, the number of terms to sum grows as O
(
md

d!

)
which quickly renders the summation effectively impossible. We therefore use the same
definition of m for all d, even though this means that ε does not correspond to a bound
on the series truncation error.

We represent a d-dimensional function g(x1, . . . , xd) by its point values on an equidis-
tant tensor-product mesh on the unit hypercube [0, 1)d using 2l grid points in each dimen-
sion, l ∈ Z≥0. This transforms g(x1, . . . , xd) into a tensor G(i1, . . . , id) := g(xi1 , . . . , xid)
with xi := 2−l i and ik ∈ {0, . . . , 2l − 1}. We further quantize the physical dimensions
ik, i.e. we interpret each ik, k = 1, . . . , d, as a long index made up of the so-called vir-
tual dimensions jk,κ ∈ {0, 1}, κ = 1, . . . , l. The idea of quantization in the context of
tensor-structured representations was introducted in [10, 11, 12, 13]. G then becomes a
tensor with d× l modes defined by

G(j1,1, . . . , j1,l ; . . . ; jd,1, . . . , jd,l) := g

(
l∑

κ=1

2κ−l−1j1,κ, . . . ,

l∑
κ=1

2κ−l−1jd,κ

)

This G is stored in a tensor network based on a balanced binary tree with one leaf
for each jk,κ. If we traverse through the leaves from left to right, we encounter the
modes in the following order: j1,1, j1,2, . . . , j1,l ; j2,1, j2,2, . . . , j2,l ; . . . ; jd,1, jd,2, . . . , jd,l.

Throughout this example, we use l = 10. If g(x1, . . . , xd) =
∏d
k=1 sin(2πikxk), the ranks

21

of G in this format are bounded by 2 iff d is a power of 2 and by 4 for general d. This
result (namely, the former bound) was shown in [14] for TT networks and is easy to
adapt to the HTR networks considered here.

If we naively add two tensor networks, the ranks of the resulting tensor network are
the sums of the ranks of the two summands. In our case, this means that the ranks of F
(i.e. the tensor network representing f) grow linearly in the number of terms which we
add. Since memory consumption and the runtime of the addition scale cubically in the
rank sizes, we truncate F after every 10 terms added to it with a relative error tolerance
of 10 ε/

(
m
m−d

)
. Once we summed up all terms, we truncate F once more with a relative

accuracy of ε. For the tree tensor network truncation to be numerically stable, the
square of the relative error tolerance has to be larger than the machine precision eps. The
commonly used C++ double floating point type is 8 byte wide and has eps ≈ 2.2×10−16

on the machine and compiler we use. We therefore cannot prescribe tolerances < 10−8

and, to be on the safe side, we had better choose the tolerances one or two order of
magnitudes above this limit. As we want to truncate with tolerances 10 ε/

(
m
m−d

)
ranging

down to 10−3 ε, this condition can be rather restrictive on ε. We therefore run the entire
benchmark using the 16 byte long double type with eps ≈ 1.1× 10−19.

In Table 3.1, we report on the outcome of the above procedure. We observe that
the ranks are much smaller than the theoretical bound of 2 |∆(d,m)|, even though they
do grow monotonically with |∆(d,m)| (see Figure 3.9). Regarding the performance, we
observe similar patterns as in Subsection 3.2.1. In order for the problem to be reasonably
parallelizable, we need sufficiently high dimensionality d, and the scaling gets worse for
larger processor counts p. In addition, there is also one new issue: contrasting to the
model assumptions from Section 3.1, the ranks increase towards the top of the tree,
see Figure 3.10. This further limits parallelizability as the vertex processing can be
distributed over fewer processes the closer we get to the root.

22

d b ε |∆(d,m)| kmax keff T (1) [s] T (2) [s] S(2) T (4) [s] S(4) T (8) [s] S(8) T (16) [s] S(16)

2 2 10−4 120 22 5.58 16.17 9.38 1.7 8.52 1.9 8.19 2.0 9.67 1.7
2 4 10−4 36 11 4.29 2.55 2.36 1.1 2.17 1.2 2.10 1.2 2.17 1.2
2 10 10−4 15 7 3.58 0.72 1.46 0.5 1.39 0.5 1.38 0.5 1.42 0.5

2 2 10−6 231 31 7.29 48.00 25.64 1.9 23.46 2.0 22.95 2.1 23.14 2.1
2 4 10−6 66 17 5.14 6.95 4.63 1.5 4.14 1.7 4.02 1.7 4.09 1.7
2 10 10−6 28 10 4.31 1.92 2.04 0.9 1.88 1.0 1.83 1.0 1.88 1.0

4 2 10−4 3060 49 9.41 2478.23 1287.25 1.9 989.35 2.5 962.38 2.6 955.03 2.6
4 4 10−4 330 15 5.16 84.78 45.09 1.9 27.18 3.1 24.98 3.4 24.14 3.5
4 10 10−4 70 9 3.86 10.59 6.55 1.6 4.07 2.6 3.65 2.9 3.60 2.9

4 4 10−6 1001 26 6.96 414.94 215.65 1.9 141.79 2.9 134.99 3.1 132.34 3.1
4 10 10−6 210 13 5.00 48.13 26.38 1.8 15.46 3.1 14.03 3.4 13.46 3.6

8 4 10−4 6435 69 11.22 12880.05 7005.80 1.8 5922.95 2.2 5486.87 2.3 5423.43 2.4
8 10 10−4 495 17 4.98 203.85 108.15 1.9 62.56 3.3 42.38 4.8 39.20 5.2

8 10 10−6 3003 45 8.60 3108.04 1668.23 1.9 1248.24 2.5 1080.97 2.9 1060.46 2.9

16 10 10−4 4845 53 8.82 8531.14 4660.81 1.8 3393.91 2.5 2909.77 2.9 2689.30 3.2

Table 3.1: Ranks and runtimes of the sine series example. kmax denotes the largest rank in the final approximation to F , keff

the effective rank computed as 3

√
s

d−2 where s is the total number of coefficients stored in all interior vertices of

the tree. T (p) is the runtime on p processors, S(p) := T (1)
T (p) the speedup compared to the single core runtime.

23

Figure 3.9: Ranks as a function of |∆(d,m)|

(a) d = 8, b = 4, ε = 10−4

(b) d = 8, b = 10, ε = 10−4

Figure 3.10: Illustration of the vertex tensor sizes for two cases from Table 3.1. The area
of each square is proportional to the number of coefficients stored in the
corresponding vertex.

24

4 Conclusion

We devised and implemented a framework for distributed-memory parallel computations
on tensor networks. Among the algorithms provided so far are the copying and addition
of general networks, and the dot product, orthogonalization and truncation of tree-
structured networks.

We also studied the scaling of tensor network algorithms from the theoretical point
of view as well as experimentally. We observed that some tensor formats like the TT
one cannot be parallelized due to their inherently linear structure. On the other hand,
networks based on balanced trees like the HTR are good candidates for parallelization.
We have seen that even though tree network algorithms do not scale perfectly, their
scaling approaches the perfect one for large dimensions d compared to the processor count
p. Currently, the scaling of our implementation falls behind the theoretical predictions,
but we hope to improve on this in future.

25

Bibliography

[1] Wolfgang Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Vol. 42.
Springer Series in Computational Mathematics. Springer, 2012.

[2] I. V. Oseledets and E. E. Tyrtyshnikov. ‘Breaking the curse of dimensionality, or
how to use SVD in many dimensions’. SIAM Journal on Scientific Computing 31.5
(Oct. 2009), pp. 3744–3759.

[3] I. V. Oseledets. ‘Tensor-Train Decomposition’. SIAM Journal on Scientific Com-
puting 33.5 (2011), 2295–2317.

[4] W. Hackbusch and S. Kühn. ‘A New Scheme for the Tensor Representation’. Jour-
nal of Fourier Analysis and Applications 15.5 (2009). 10.1007/s00041-009-9094-9,
pp. 706–722.

[5] L. Grasedyck. ‘Hierarchical Singular Value Decomposition of Tensors’. SIAM Jour-
nal on Matrix Analysis and Applications 31.4 (2010), 2029–2054.

[6] Lars Grasedyck, Daniel Kressner and Christine Tobler. A literature survey of low-
rank tensor approximation techniques. arXiv preprint 1302.7121. Feb. 2013.

[7] The Eigen Linear Algebra Library. url: http://eigen.tuxfamily.org (visited
on 14/04/2014).

[8] N. Edmonds, D. Gregor and A. Lumsdaine. Parallel Boost Graph Library. url:
http://www.boost.org/doc/libs/1_55_0/libs/graph_parallel/doc/html/

index.html (visited on 29/03/2014).

[9] D. Gregor and M. Troyer. Boost.MPI. url: http://www.boost.org/doc/libs/
1_55_0/doc/html/mpi.html (visited on 27/04/2014).

[10] E. E. Tyrtyshnikov. ‘Tensor approximations of matrices generated by asymptoti-
cally smooth functions’. Sbornik: Mathematics 194.5 (2003), pp. 941–954.

[11] I. Oseledets. ‘Approximation of matrices with logarithmic number of parameters’.
Doklady Mathematics 80.2 (Apr. 2009), pp. 653–654.

[12] Boris N. Khoromskij.O (d logN)-Quantics Approximation of N -d Tensors in High-
Dimensional Numerical Modeling. Preprint 55. Max-Planck-Institut für Mathe-
matik in den Naturwissenschaften, Sept. 2009, pp. 1–21.

[13] I. V. Oseledets. ‘Approximation of 2d × 2d matrices using tensor decomposition’.
SIAM Journal on Matrix Analysis and Applications 31.4 (2010), pp. 2130–2145.

[14] I. V. Oseledets. ‘Constructive representation of functions in tensor formats’. Con-
structive Approximation 37 (1 2013), pp. 1–18.

26

http://eigen.tuxfamily.org
http://www.boost.org/doc/libs/1_55_0/libs/graph_parallel/doc/html/index.html
http://www.boost.org/doc/libs/1_55_0/libs/graph_parallel/doc/html/index.html
http://www.boost.org/doc/libs/1_55_0/doc/html/mpi.html
http://www.boost.org/doc/libs/1_55_0/doc/html/mpi.html

	Introduction
	Software Design
	Extensible Classes
	Considerations
	Solution

	The full_tensor Class
	The Tensor Network Classes
	Considerations
	The edge_port Class
	Organization Of The Classes

	Performance
	Theoretical Scaling
	Introduction
	Optimal Scaling Of Tree Parallel Algorithms
	Optimized Vertex Distribution

	Experimental Results
	Empirical Scaling
	Sine Series Example

	Conclusion

