
Parallelization of a Radiative

Transfer Solver

Semester Thesis

written by

Simon Härdi

Supervisor

Prof. Dr. Christoph Schwab

Advisor

Konstantin Grella

Seminar for Applied Mathematics

ETH Zürich

Spring Semester 2012

Contents

Contents

1 Introduction 2

2 Discrete Ordinates Method 3

2.1 Discretization . 3
2.2 Solution Method . 4

2.2.1 Full Tensor DOM . 4
2.2.2 Combination Technique . 5

3 Parallelization 6

3.1 Motivation . 6
3.2 Distribute Problems . 6
3.3 Divide Problems . 7
3.4 Scheduling . 7
3.5 Implementation . 8

4 Results 11

4.1 Convergence . 11
4.2 Performance . 12

4.2.1 Strong Scaling . 13
4.2.2 Weak Scaling . 16

5 Conclusion 17

1

Introduction

1 Introduction

The goal of this semester project is the parallelization of a radiative transport solver
and to leverage the parallel computing potential of the ETHZ cluster "Brutus". The
tackled problem is the stationary monochromatic radiative transfer problem without
scattering

s · ∇xu(x, s) + κ(x)u(x, s) = κ(x)Ib(x), (x, s) ∈ D × S
u(x, s) = g(x, s) x ∈ ∂D, s · n(x) < 0

(1)

where S is the dS-dimensional sphere, κ ≥ 0 the absorption coe�cient, Ib ≥ 0
the blackbody intensity, g ≥ 0 the radiation entering the domain and u(x, s) the
unknown radiative intensity.

The theoretical work is done by Konstantin Grella and Prof. Dr. Christoph Schwab [4].
To solve the problem numerically they propose a sparse discrete ordinates method, in
which the problem is divided into several discrete directions. This leads to ordinary
PDEs, where existing solvers can be applied.
This method was implemented by Konstantin Grella in C++, using the FEM library
Deal II [2]. In the existing solver it was possible to set up a radiative transfer problem
and let the code run on a single core.

To enhance this implementation and make the solution of bigger problems possible,
the code was extended to run the calculations on multiple CPUs using MPI. The
partition of the original problem into several subproblems leads to a natural paral-
lelization where every process solves one subproblem. To divide these subproblems
on the available cores, a scheduler was implemented and tested.
As some of the subproblems are noticeably bigger than others, it was necessary to
divide these problems further and solve them on more than one core. The FEM
library Deal II has built-in wrappers for the linear algebra library PETSC [7], it
suggested itself to use this functionality to divide the problems.

The code written during this thesis is available as a git repository [3]

2

Discrete Ordinates Method

2 Discrete Ordinates Method

2.1 Discretization

One possibility to discretize (1) is the discrete ordinates method. A discrete set of
directions SN = {sj}Ms

j=1 is chosen for which the parametrized RTE is to be solved:

sj · ∇xu(x, sj) + κ(x)u(x, sj) = κ(x)Ib(x), (x, sj) ∈ D × SN
u(x, sj) = g(x, sj) x ∈ ∂D, sj · n(x) < 0

(2)

To solve the resulting PDEs, a Galerkin FEM discretization in the physical domain
is applied. The solutions u = u(·, sj) of (2) are in the Hilbert space

V(j)
0 := {u ∈ L2(D) : sj · ∇xu ∈ L2(D)} (3)

with zero in�ow boundary conditions:

u|Γ− = 0, Γ− = {x ∈ D,n(x) · sj < 0} (4)

The resulting weak form is∫
D

(sj∇xu+ κu) v dx =

∫
D
fv dx ∀v ∈ V(j)

0 (5)

As the physical problem is a hyperbolic type equation, the standard Galerkin ap-
proach results in an unstable scheme. The stabilization is done with a streamline
upwind Petrov-Galerkin (SUPG) method proposed by Kanschat et. al. in [6] where
an additional di�usion term in transport direction is added:∫

D
(sj∇xu+ κu) v dx+

∫
D

(sj∇xu+ κu) δsj · ∇xv dx

=

∫
D
fvdx+

∫
D
fδsj · ∇xv dx ∀v ∈ V(j)

0

(6)

As proposed by Kanschat when using κ = 1, the SUPG parameter is chosen as
δ ≈ 0.3h, where h is the grid spacing.

The number of directions is chosen as

MS = 2N + 3 for dS = 1

MS = (N + 1)2 for dS = 2
(7)

depending on the parameter N . For a two-dimensional problem the MS directions
are distributed evenly over the angular space. In three dimensions the minimum
determinant points as proposed by Sloan et. al. in [8] are used.

3

Discrete Ordinates Method

As in [4] it is assumed that the solution uj is in H1(D). The space H1(D) is dis-
cretized by choosing a hierarchical sequence of spaces V l

D on dyadically re�ned meshes
T lD, l = 0 . . . L over the physical domain:

V l
D := Sp,1(D, T lD) ⊂ H1(D) (8)

They consist of continuous piecewise polynomial functions of degree p ≥ 1. To satisfy
the boundary conditions in a strong sense and make the function space directional

dependent again, the trial and test space is chosen as V L,j
D,0 = V L

D ∩ V
(j)
0 .

This leads to the linear variational problem: Find uj,L(x) ∈ V L,j
D,0 such that

aδ (uj,L, vj,L) = lδ (vj,L) ∀vj,L ∈ V L,j
D,0 (9)

As basis functions we use bilinear nodal functions on a quadrilateral mesh or a
hexahedral mesh for 2D and 3D respectively. The resulting complexity of a physical
subproblem for a single direction is MD = (2L + 1)d.
By selecting a basis and a maximal level L one gets a linear system of equations

Au = f (10)

for each subproblem. The evaluation of the integrals is done with a Gaussian quadra-
ture, where the degree was chosen such that the integration is exact for piecewise
linear coe�cient functions.

2.2 Solution Method

If the set of directions SN is chosen according to (7), the RTE can be solved numeri-
cally by solving the resulting MS purely physical transport subproblems. The linear
system of equations is solved with a GMRES-method. The used preconditioner is
an incomplete LU-decomposition with the �ll-in parameter k = 1.

2.2.1 Full Tensor DOM

If all of the subproblems are discretized with the same grid size, meaning the same
amount of basis functions MD, the resulting computational complexity is

M(L,N) = MD ·MS (11)

However, with such a distribution over the angular space the method su�ers from the
curse of dimensions. For real world problems with three physical and two angular

4

Discrete Ordinates Method

dimensions, an unreasonable amount of degrees of freedom is needed to achieve a
given level of error. In [4] it is proven that the convergence rate of the full tensor
DOM method is∥∥u− INS PLDu∥∥H1,dS (D×S)

. max
{

2−sL, N−t+(dS−α)
}
‖u‖

H
1+s,d

S+t (D×S)
(12)

where uL,N = INS P
L
Du is the approximation of a function u ∈ Hs+1,dS+t(D×S), s ∈

[0, p] , t ∈ N0. The parameter α ∈ R is depending on the angular dimension dS and
the set of points on the unit sphere which are needed to interpolate the solution
to the angular space. For dS = 1 it can be assumed that α ≈ 1/2 or smaller, for
dS = 2 α ≈ 1 or smaller.

2.2.2 Combination Technique

To overcome the curse of dimensionality, one can apply the combination technique
to the radiative transfer problem as proposed by Grella and Schwab [4].

To derive a sparse solution it is often assumed that the domain of the problem is a
Cartesian product domain D1 × D2 on top of which the function space is approxi-
mated by a tensor product of discrete spaces V L1

1 ⊗ V L2
2 . This discrete spaces are

assumed to consist of hierarchic families of spaces V l1
1 , V l2

2 with V l0
i ⊂ V l1

i ⊂ . . . ⊂
V Li
i , i = 1, 2. The increment between two subspaces is denoted by W li

i :

V li
i = V li−1

i ⊕W li
i (13)

A sparse approximation of the approximate full tensor solution

uL1,L2 =

L1∑
l1=0

L2∑
l2=0

Ql1,l2u (14)

can then be given by restricting the summation to a subset of the indices l1, l2:

ûL1,L2 =
∑

0<f(l1,l2)<L1,L2

Ql1,l2u (15)

where Ql1,l2 is a projection operator on the tensor product of detail spaces.

If the splitting in incrementing subspaces is not available, a sparse solution can still be
given by the combination technique. As this sparse solution is a linear combination
of the contributions from the detail spaces, it can be assembled from addition and
subtraction of di�erent full solutions. For the example of L1 = L2 = L and the
sparsity pro�le f (l1, l2) = Ll1 + Ll2 the combination formula is given by

ûL,L =
L∑
i=0

L−i∑
l1=0

i∑
l2=0

ul1,l2 −
L−1∑
i=0

L−i∑
l1=0

i∑
l2=0

ul1,l2 (16)

5

Parallelization

In general, the solution of the combination technique is

ûL1,L2 =

L∑
l1=0

ul1,lmax2 (l1) −
L−1∑
l1=0

ul1,lmax2 (l1+1) (17)

where u(l1,l2) is the solution of the full tensor subproblem. Applied to the radiation
transport problem L1 and L2 are set to L and N respectively, lmax2 (l1) is set to
2blog2(N+1)c/L(L−l1) and l1 and l2 are the physical and the angular resolution index
of the subproblem.

This solution is in general not identical to the direct sparse solution, but according
to Griebel et. al. [5] equivalent in its complexity and convergence properties.

Using this technique, the convergence rate stays up to a logarithmic factor the same:∥∥u− INS PLDu∥∥H1,dS (D×S)
. Lmax

{
2−sL, N−t+(dS−α)

}
‖u‖

H
1+s,d

S+t (D×S)
(18)

Whereas the complexity reduces to

M(L,N) . Lθ max
{

2dL, NdS
}
' (logMD)θ max {MD,MS} (19)

where θ = 1 if NdS ' 2dS and zero otherwise.

This has the advantage of reducing the scaling of the complexity to one of a problem
on a single domain while maintaining the convergence rate, both multiplied with a
logarithmic factor.

3 Parallelization

3.1 Motivation

With the combination technique the necessary number of degrees of freedom for a
two dimensional problem leads to a computational complexity that can be handled
with a single core. However, if applied to real world 3D problems the computation
time grows to an unreasonable span of time. This is the reason why the code was
adapted to run on several cores. The code was compiled and tested on a Linux
machine and the ETH-cluster Brutus.

3.2 Distribute Problems

Both the full tensor DOM and the sparse DOM via combination technique lead to
several subproblems. It was a natural choice to do the parallelization by distributing

6

Parallelization

the subproblems on the cores, each process gets its own PDE to solve.

This distribution has the advantage of a minimal required communication between
the nodes which is limited to the set-up and the evaluation of the solution.

3.3 Divide Problems

If the combination technique is used, some angular directions are resolved �ner than
others. This leads to a highly unbalanced amount of work between the subproblems
and only distributing them is no longer an option.

To get an even distribution of work between the available cores, it is necessary to
assign several cores to the biggest problems. This requires the possibility of splitting
a problem, which was implemented with the library PETSC, as Deal II provides
wrapper to the PETSC functions to parallelize the assembly and solution of a linear
system of equations.

3.4 Scheduling

To distribute and divide the subproblems on the available cores a scheduler was
implemented. Its tasks are calculating an optimal ratio of splitting and dividing the
problems to gain an optimal work distribution.

As �nding the optimal workload distribution is an NP hard optimization task, it
requires too much time to be solved exactly.
Instead, we chose the following heuristics called longest processing time (LPT) to
produce an approximation to the optimal schedule. This algorithm orders problems
according to their weight in a descending way and then assigns each problem to the
node with the currently smallest work load.
A pseudo code would look like this:

1 % Calcu la te the idea lLoad per core
2 % The l i s t problemSizes conta in s the weight o f a l l problems ,

nCores i s the number o f a v a i l a b l e co r e s
3 idea lLoad=sum(problemSizes) /nCores ;
4
5 f o r i =1:nProblems
6 % How many co r e s are a s s i gned to the cur rent problem
7 corePerProblem = c e i l (problemSizes [i] / idea lLoad)
8
9 f o r j =1: corePerProblem
10 % Find the core that has cu r r en t l y the sma l l e s t work

load

7

Parallelization

11 core = findCoreWithSmallestLoad () ;
12
13 % Assign the problem and i t s work load to t h i s core
14 core . addLoad (problemSizes [i] / corePerProblem)
15 core . ass ignProblem (i) ;
16 end
17 end

The function findCoreWithSmallestLoad checks all available cores for their
work load and returns the one with the smallest. Since the subproblem sizes of
the combination technique are factors of 2d, the LPT algorithm and static workload
splitting should be combinable quite well.

To be able to test di�erent scheduling algorithms without much e�ort, the scheduler
was implemented so that the actual algorithm could easily be exchanged. For this
end, the scheduler class delegates the actual scheduling to a scheduling algorithm
class for which a speci�c implementation can be provided by the user in a template
parameter of the scheduler class.

3.5 Implementation

The main coding work besides the implementation of the scheduling class was done
in the class DOMTransportSolver and its classes PhysicalTransportSolver
and -Solution. Their parallel versions are provided in the namespace parallel,
making the change to the parallel version as easy as writing parallel:: in front
of the declaration of the DOMTransportSolver.

To set up the RTE problem the code generates the list of subproblems inside the
DOMTransportSolver. This proceeding is the same in the serial and the parallel
version of the program and is done in the function fillCompProbList which
implements the subspace partition of the combination technique.

The used function addCompProb creates an instance of a ComputeProblem, in
which all necessary information is stored, with the given parameter and adds it to
the list.

In the parallel version, the scheduler is applied after the call of fillCompProbList.
The task of the scheduler is not only to calculate a computation plan of which CPU
calculates which problem but also to make sure this plan is followed. This is done
by giving the scheduler access to the probList, allowing it to remove all problems
that are not calculated on the current node.

The work �ow in the scheduler is therefore to �rst calculate a scheduling plan, which

8

Parallelization

is done in its function schedule() and then to modify the probList, which is
done in the function adaptProbList.

1 void Scheduler<Schedul ingAlgorithm , spacedimV >:: s chedu le () {
2 // Get number o f a v a i l a b l e co r e s
3 i n t nCores = MPI : :COMM_WORLD. Get_size () ;
4
5 // Create i n s t anc e o f s chedu l ing a lgor i thm
6 Schedul ingAlgor ithm schedulAlgo ;
7 // And c a l l i t s s chedu l ing method
8 schedulAlgo . s chedu le (
9 // number o f a v a i l a b l e co r e s
10 nCores ,
11 // L i s t with problem weights , problem i has a

computat ional complexity o f problemSizes [i]
12 problemSizes ,
13 // L i s t o f l i s t s to be f i l l e d with the schedul ing ,

problem i i s c a l c u l a t ed on a l l c o r e s conta ined in the
l i s t problemToCore [i]

14 problemToCore
15) ;
16
17 }

The scheduling itself is outsourced to an instance of the class SchedulingAlgorithm,
which gets only the number of available cores and a list with the problem weights.

1 void Scheduler<Schedul ingAlgorithm , spacedimV >:: adaptProbList () {
2 /*
3 * A l l o ca t i on o f needed va r i a b l e s
4 */
5
6 // Find rank o f t h i s p roc e s s
7 th i sCore=MPI : :COMM_WORLD. Get_rank () ;
8
9 // I t e r a t e over a l l Problems
10 f o r (i n t problem = 0 ; problem < problemToCore . s i z e () ; ++problem ,

++probL i s t I t) {
11
12 nCoresPerProblem = problemToCore [problem] . s i z e () ;
13
14 // Create new MPI group
15 temp_group = MPI : :COMM_WORLD. Get_group () . I n c l (

problemToCore [problem] . s i z e () , problemToCore [problem
] . data ()) ;

16 // Create communicator o f t h i s group
17 temp_comm = MPI : :COMM_WORLD. Create (temp_group) ;
18

9

Parallelization

19 // Add communicator to ComputeProblem
20 probL i s t I t ->communicator = temp_comm;
21
22 // Remove ComputeProblem from probLi s t i f cur rent

p roce s s i s not invo lved
23 i f (std : : f i nd (problemToCore [problem] . begin () ,

problemToCore [problem] . end () , th i sCore) ==
problemToCore [problem] . end ()) {

24 p robL i s t I t = probLi s t . e r a s e (p r obL i s t I t) ;
25 - - p r obL i s t I t ;
26 }
27 }
28 }

The MPI variables used in this function are needed to give PETSC the number and
ranks of the nodes involved in the computation of each problem. The MPI communi-
cator where these parameters are stored in is given to the ComputeProblem where
it can be retrieved by the time it is needed.

After this step, the scheduling is done and the DOMTransportSolver generates
an instance of the PhysicalSolver and the PhysicalSolution for each sub-
problem contained in probList and runs them.

The (simpli�ed) code of the modi�ed method run in the DOMTransportSolver:

1 void DOMTransportSolver<VeloGen , Method , TransApp>: : run () {
2 // Al l o ca t e needed v a r i a b l e s
3
4 // Create the problem l i s t and f i l l i t
5 std : : l i s t <transo : : ComputeProblem> p r o b l i s t ;
6 f i l lCompProbList (p r o b l i s t) ;
7
8 // Create an in s t anc e o f the s chedu l e r and g ive i t a handle to

the p r o b l i s t
9 Scheduler<Schedul ingAlgorithmSimple> schedul (p r o b l i s t) ;
10 // Run the s chedu l e r
11 schedul . run () ;
12
13 f o r (p rob i t = p r o b l i s t . begin () ; p rob i t != p r o b l i s t . end () ; ++

prob i t) {
14 // Create a Phys i ca lTranspor tSo lut ion f o r each

subproblem in schedu le
15 s o l l i s t . push_front (t ranso : : TransportSo lut ion (
16 transo : : p a r a l l e l : :

Phys i ca lTransportSo lut ion<TransApp : :
spacedimV>) ;

17

10

Results

18 // Create a Phys i ca lTranspor tSo lver f o r each subproblem
in schedu le

19 t ranso : : p a r a l l e l : : Phys i ca lTransportSo lver<Method ,
TransApp> ts (* probit , (* (* s o l i t))) ;

20
21 // Solve the problem
22 t s . run () ;
23 }
24 }

As the distribution of the problems is already done, the modi�cations in the two
classes PhysicalTransportProblem and -Solution are speci�cally to make
the problem splitting possible. To achieve this all the contained matrices and vectors
had to be changed into parallel version. This was done by using PETSC, exchanging
their classes to the corresponding Deal II PETSC wrappers.
Also, the assembly function was adapted to calculate only the contributions to the
part of the system matrix that is stored on the current process, and the solver routines
were changed to parallel ones.

To e�ciently solve the linear systems of equations, an ILU preconditioner was used.
Unfortunately, PETSC does not support a parallelized ILU preconditioner out of
the box. To circumvent this problem, PETSC was compiled with the additional
package HYPRE [1]. As this is not supported by Deal II, it is necessary to give some
command line options to PETSC to con�gure the preconditioner.

4 Results

The parallelization was tested with a model problem with a degenerate Gaussian on
the right hand side:

Ib (x) = exp

(
−8(x−

(
0.5
0.5

)
)T
(

4 −2
−2 1

)
(x−

(
0.5
0.5

)
)

)
(20)

This rhs forms a beam which is decaying like a Gaussian in all directions except the
beam direction. The problem was solved on the hyper-rectangle D = [0, 1]d, d = 2, 3
with zero in�ow boundary conditions, a constant absorption coe�cient κ = 1 and
without scattering.

4.1 Convergence

While starting some test runs with this problem, some serious convergence problems
appeared. Even for small problems the code took a long time to complete and the

11

Results

Figure 1: This plot shows how many iterations were needed until convergence de-
pending on the direction sj . The blue line is with a �ll in parameter k = 0,
the red line shows k = 1. It is easy to spot the problematic directions, and
the in�uence of the �ll in parameter.

iteration counts to reach the convergence criterion of a residuum r < 10−12 were
unreasonably high. A closer investigation showed that for certain directions the
needed iterations were considerably higher than for others.

This problem could be solved by choosing a higher �ll-in parameter for the ILU
preconditioner. Figure 1 shows the iteration numbers for each direction before and
after this adaption. The used parameters were L = 8 and N = 32.

4.2 Performance

The performance measurements were done on Brutus with the CPUmodel Opteron8380
to get consistent timings. This quad-core CPUs run on a frequency of 2.5 GHz and
have 32 GB of RAM.

The varying parameters were the spatial resolution parameter L with a complexity of
MD = (2L + 1)d for a single physical subproblem, the angular resolution parameter
N with a direction resolution of MS = 2N + 3 and the number of used CPUs C.

All timing runs were performed three times to reduce random timing e�ects.

12

Results

4.2.1 Strong Scaling

In a strong scaling test a �xed-problem size W is ran with a varying number of
processors. The speed up S is the time one processor needs to solve this problem
divided by the time C processors need:

S(W,C) =
t(W,C = 1)

t(W,C)
(21)

The e�ciency of the parallelization can then be measured by dividing the speed up
by the number of processors. The result is a percentage of how good the program
scales compared with a linear scaling:

E =
S(W,C)

C
(22)

Figure 2 shows the timing (a) and the e�ciency plot (b) for the RTE solver with
the full tensor solution method. As expected the e�ciency number decreases for
increasing number of processors, since the non-parallelizable part of the code comes
into play. Also a non-monotonic behavior can be observed. This results from the
fact that the parallelization is done in two ways, the distribution and the splitting
of the problems.

(a) Timings (b) E�ciency

Figure 2: Strong scaling of the RTE solver with the full tensor method. On the left
the timing results are shown, on the right the according e�ciency numbers
are plotted.

However, calculating the e�ciency number by comparing the runtime of the parallel
code on multiple and on one processor is some way of cheating as the parallelization

13

Results

(a) Timings (b) E�ciency

Figure 3: Strong scaling in comparison with the serial version. The red line in the
left plot shows the time needed with the serial version.

itself introduces a lot of overhead. Therefore a more honest e�ciency number is
calculated by comparing the parallel runtime to the one of a serial code. This is
done in Figure 3. In the timing plot the horizontal line indicates the runtime of the
serial code. It needs four processors to be faster than one processor with the serial
version. The e�ciency number is now down to approximately thirty percent.

The same observations can be made for the combination technique as shown in
Figure 4. Here, the e�ciency is strongly dependent on the scheduling result. This
can be seen at the e�ciency jump, where the scheduling algorithm did a bad job
in splitting up the problem on four processors, resulting in a distribution where one
processor did only half of the work of the others.

In three dimensions the parameters L = 3 is used. The results are better, as the
problem sizes are getting bigger and the parallelization is more e�ective. It only needs
two processors to outrun the serial version, and the e�ciency is near 70 percent as
shown in Figure 5.

This shows that the parallelized code works, it is possible to speed up the calculation
of a �xed problem size. But the overhead introduced by the parallelization has to
be considered, since it is possible to actually slow down the calculation by using the
parallel version with not enough processors.

14

Results

(a) Timings (b) E�ciency

Figure 4: Strong scaling of the RTE solver with the combination technique. On
the left the timing results are shown, on the right the according e�ciency
numbers are plotted. The red line indicates the time one processor needs
to run the serial version.

(a) Timings (b) E�ciency

Figure 5: Strong scaling of the RTE solver in 3D. The red line indicates the time
one processor needs to run the serial version. The results are remarkably
better than in the 2D timings.

15

Results

(a) Timings (b) E�ciency

Figure 6: The timing results from the weak scaling test. In (a) the timing stays
almost constant while an increasing number of CPUs solved an increasing
number of subproblems, �xing the amount of work per processor and the
size of the subproblems. In (b) the timing results from the weak scaling
for increasing subproblem sizes are shown. The time to solve grows with
an increasing problem size and more processors, as the communication
overhead grows.

4.2.2 Weak Scaling

Weak scaling is the measurement of how a program performs if the amount of work
per processor is �xed. For the RTE solver this can be done in two ways. Increasing
the angular level N will increase the number of subproblems whereas increasing the
discretization resolution L of the physical space will enlarge the subproblems without
changing their number.
It is clear that these two possibilities have to be considered separately as their par-
allelization works very di�erently.

Testing the weak scalability by increasing the number of subproblems was done with
the parameter L = 5 and C = 1, . . . , 10. The parameter N was chosen to keep the
workload per processor as �xed as possible. The result is shown in Figure 6(a). The
code performs very well, the execution time stays almost constant. Of course this
will get worse if not only the solving of the subproblems but also an evaluation of
the solutions is implemented.

To test the scaling with increasing subproblem sizes it turned out to be quite di�cult
to get timing data. Since the varying parameter has to be L and the complexity in
2D grows with (2L+1)2, the number of needed processors to keep the workload �xed

16

Conclusion

grows really fast. The testing was done with N = 0 and L = 1, . . . , 5, resulting in
a needed amount of processors of C = 1, 3, 9, 32 and 121. The result is shown in
Figure 6(b).

This setup scales worse than the one with an increasing amount of subproblems, but
this was expected since the parallel solving of a linear system of equations generates
overhead that is not present when just distributing independent jobs.

5 Conclusion

The implemented version of the code is able to perform in parallel and shows a decent
speed up when using an increasing number of CPUs. It is also possible to perform
faster than the serial version. The implementation is done in a very user friendly
way, allowing a fast and easy switching between the serial and parallel version of the
code.

However, the implemented scheduling algorithm is very simple and there were schedul-
ing jams observed for speci�c combinations of parameters. In a future work it must
be a goal to improve this algorithm. This applies especially when using the com-
bination technique where the parallelization e�ciency is highly dependent on the
scheduler. Also, the probList that is created inside the DOMTransportSolver
class is created on each node, and every node also has to do the whole scheduling.
It would be an improvement to do this in parallel and reduce the overhead of the
code. This would no only need an improvement of the scheduling algorithm but also
of the scheduler itself.

17

References

References

[1] CASC at Lawrence Livermore National Laboratory. Hypre is a library for solving
large, sparse linear systems of equations on massively parallel computers, July
2012. http://acts.nersc.gov/hypre/. (Cited on page 11.)

[2] Wolfgang Bangerth, Timo Heister, and Guido Kanschat. A �nite element dif-
ferential equations analysis library, July 2012. http://www.dealii.org. (Cited on
page 2.)

[3] Konstantin Grella and Simon Härdi. Git repository, July 2012.
https://git.math.ethz.ch/sam/ggrella/transport/transo.git. (Cited on page 2.)

[4] Konstantin Grella and Christoph Schwab. Sparse discrete ordinates method in
radiative transfer. Computational Methods in Applied Mathematics, pages 305�
326, 2011. (Cited on pages 2, 4 and 5.)

[5] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the
solution of sparse grid problems. In Iterative Methods in Linear Algebra, pages
263�281. IMACS, Elsevier, North Holland, 1992. (Cited on page 6.)

[6] Guido Kanschat. Solution of radiative transfer problems with �nite elements.
In Numerical Methods in Multidimensional Radiative Transfer, pages 49�98.
Springer Berlin Heidelberg, 2009. (Cited on page 3.)

[7] Mathematics and Computer Science Division Argonne National Labora-
tory. Portable, extensible toolkit for scienti�c computation, July 2012.
http://www.mcs.anl.gov/petsc/. (Cited on page 2.)

[8] Robert S. Womersley and Ian H. Sloan. How good can polynomial interpolation
on the sphere be? Advances in Computational Mathematics, 14:195�226, 2001.
(Cited on page 3.)

18

Appendix

Appendix

Installation on Linux

This is a step-by-step guide to install the library Deal II togehter with PETSC, Metis
and HYPRE on a linux operating system.
It was tested on a 64bit Ubuntu 12.04 LTS distribution.

Download and Versions

The links in this list were valid by the date of writing this thesis, Jul 23 of 2012.

� Deal II

� Version 7.1.0

� http://www.dealii.org/

� PETSC

� Version 3.2-p7

� http://www.mcs.anl.gov/petsc/

� Metis

� Version 4.0.3

� http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

� HYPRE

� Version 2.7.0b

� Downloaded with PETSC

Installation of the Libraries

� Compile Metis

� Change to metis directory, open the 'Make�le.in' and add the compiler
�ag '-fPIC'

19

Appendix

� Call 'make'

� Compile PETSC

� Make sure the environment variable 'PETSC_DIR' is set to the top level
directory of PETSC. Also set the environment variable 'PETSC_ARCH'
to some meaningful name. This variables have to be set each time PETSC
is used, so setting it in the '.bashrc' of your system may be a good idea.

� Change to the PETSC directory and call 'con�gure' with the following
options:

1 . / c on f i gu r e - - with - x=0 - - with -mpi=1 - - with=hypre=1 - -
download - hypre=1 - - with - shared - l i b r a r i e s=1

� Call 'make' with the options that are proposed by the con�guring step.

� Compile Deal II

� Change to the Deal II directory and call 'con�gure' with the following
options:

1 . / c on f i gu r e - - enable -mpi CC=mpicc CXX=mpicxx - - enable -
shared - - d i s ab l e - threads - - with - met is=/home/simon/
Documents/ETH/Semester - t h e s i s / l i b r a r i e s /metis - 4 . 0 . 3
- - with - b l a s

The path to metis has to be adjusted and if lapack\blas is not installed
in the standard directory, the path must be given.

� Call 'make all'. This step takes quite a while, it can be speeded up by
using more than one process with 'make -j x all' where x is the number
of processes.

Con�guring Cmake

After downloading the source code of the radiative transfer solver, create a directory
where you want to build the code. Change to this directory and call ccmake (CMake
has to be installed) with the path to the source code top directory as argument.
After trying to con�gure the �rst time by pressing 'c' (which will result in an error),
press 't' to show all options and change the 'CMAKE_CXX_COMPILER' and
'CMAKE_C_COMPILER' to mpic++ and mpicc respectively. It is important to
do this before you set any other options, as changing the compiler causes CMake to
throw away all other cashed options.

20

Appendix

After setting the compiler, turn o� the 'USE_TBB_LIB_FOR_DEAL_II_MT'
and the 'brutus_FLAG' and set the paths to the libraries Deal II, PETSC and
Metis. Sample paths are shown in listing TODO:MakeListingOfPaths. If everything
is set correctly, pressing 'c' and 'g' should produce a make�le that can make all
targets that are set in 'CMakeLists.txt'

Installation on Brutus

In principal the installation on Brutus is the same as the installation in the previous
section. However, there are a few changes that are described here.

The libraries available on Brutus are organized in modules. It is important that all
needed modules are loaded before starting the work. An elegant way to do this is
via the '.bash_pro�le' in the home directory.
The modules needed for this thesis were

- open_mpi

- mkl

- cmake

- gcc/4.6.1

- boost

After loading the modules and setting the environment variables for PETSC, it is
possible to compile the libraries. The used con�guration �ags were

1 . / c on f i gu r e - - with - x=0 - - with -mpi=1 - - with - hypre=1 - - download -
hypre=1 - - with - shared - l i b r a r i e s=1 - - with - blas - lapack - d i r=/
c l u s t e r /apps/ i n t e l /mkl /10 . 1 . 1 . 0 19/ l i b /em64t - - with -mpi - d i r=/
c l u s t e r /apps/openmpi /1 . 4 . 5 / x86_64/gcc_4 . 1 . 2 / l i b

for PETSC and

1 . / c on f i gu r e - - enable -mpi CC=mpicc CXX=mpicxx - - enable - shared - -
d i s ab l e - threads - - with - metis=/c l u s t e r /home/math/ shae rd i / r t e /
l i b r a r i e s /metis - 4 . 0 . 3 - - with - b l a s="mkl_intel_lp64 -Wl, - - s t a r t
- group - lmkl_intel_thread - lmkl_core -Wl, - - end - group - l gu i d e
- lp thread "

for Deal II. Make sure the paths to the mkl blas and the metis library are set correctly.
The rest of the procedure is the same, except of course the 'brutus_FLAG' which is
now to be set.

21

	Introduction
	Discrete Ordinates Method
	Discretization
	Solution Method
	Full Tensor DOM
	Combination Technique

	Parallelization
	Motivation
	Distribute Problems
	Divide Problems
	Scheduling
	Implementation

	Results
	Convergence
	Performance
	Strong Scaling
	Weak Scaling

	Conclusion

