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Abstract

The most popular methods for computing the force acting on a body in a finite elements context
are the Maxwell stress tensor, the virtual work and the eggshell methods. In this project we
study and compare these three methods analytically and numerically. We derive the algorithm
of the methods and we compare the procedures to proof the equivalence between them. In the
second part of the project we develop some procedure for building a more efficient shell for
improving the efficiency of the original procedures.
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1
Introduction

1.1. Electric potential

In a capacitor the electrostatic potential u is a solution of the Laplace equation with the Dirichlet
boundary conditions. In this project we normally use a configuration of the domain Ω with an
inner body ∂Ω1 with a Dirichlet potential f1(x) and an external boundary ∂Ω2 set to zero.

∇2u = 0 (1.1)
u |∂Ω1 = f1(x) (1.2)
u |∂Ω2 = 0 (1.3)

The two boundary ∂Ω1 and ∂Ω2 can have any arbitrary shape. In some case we add a second
inner body.

Figure 1.1.: The generic problem configuration

1



1. Introduction

1.1.1. Computing the force

The computation of the electrostatic force in a finite elements context has been discussed in
several papers. Normally they describe the different methods separately. In this work we have
done a direct comparison between the three and most popular methods.

We have worked with some two dimensional problems. With the linear finite elements and
triangular meshes.

Given the FEM solution computing the force acting on a movable rigid object ∂Ω1 can be
performed in several ways. The most classical method is the Maxwell stress tensor. This
method consists in integrating the Maxwell stress tensor over a surface S around the body.
The Maxwell stress tensor procedure it is easy to implements but the reliability of the result is
low and also the convergence rate is not very good. Thus some people have developed news
and more powerful procedures. The second procedure is the virtual work method, described
by J.L. Coulomb in his paper [Cou83]. The method is based on application of virtual work
principle. The virtual work method is equivalent to the Maxwell stress tensor method in his
basic implementation. But can be easily extended with a dramatic improvement of the results.
The third method is the eggshell procedure described for the fist time by F. Hernotte [Hen04].
The main idea, also in this case, is based on the virtual shifting of the object in a vector field.
From the work expression we straightforwardly derive the expression for the force. Also this
method offers a very good flexibility.
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2
Procedures for computig the force

2.1. Maxwell Stress Tensor

The total force acting on a rigid body may be obtained by integrating the Maxwell Stress Tensor
over an arbitrary surface S in the empty space that include only the rigid object ∂Ω1.

F = ε

∫
S

MndΩ (2.1)

where n is the outer unit normal vector of the surface S and M is the Maxwell Stress Tensor
on the electrostatic potential that is defined as follow:

M :=
−1

2
(E · E) I + EET (2.2)

thus, if we expand the preview formula, we have:

F = ε

∫
S

(En)E− 1

2
E2ndS (2.3)

Witch is the Maxwell Stress Tensor formula for computing the force.

In an electrostatic potential u the electric field E can be directly computed with the gradient of
u:

E = −∇u (2.4)

The Maxwell stress tensor procedure has the following advantages:

3



2. Procedures for computig the force

1. Only one computation of the potential u is needed.

2. It is easy to compute the surface integral given a linear FEM solution.

3. The surface S can be arbitrary chosen in the empty space.

4. It is a very fast procedure.

But has the following disadvantages:

1. The convergence rate of the solution is slow: for obtaining a good result we must perform
a lot on refinement.

2. The algorithm for building the surrounding surface S in some cases it is not easy (concave
body or very irregulars meshes).

3. In a finite element context optimum choice of S depends on the type of elements. Thus
the integration is not surface independent.

4. In a FEM context the shape of the optimal surface S depend on the mesh, so the quality
of the solution is strongly influenced from the mesh structure.

In the next sections we describe the virtual work and the eggshell methods, that own all the
advantage of the Maxwell stress tensor and solve the disadvantages.

2.2. Virtual Work Method

The virtual work procedure for computing the force F is based on the concept, from the basic
physics, that the force is the gradient of the work. So if we perform a virtual translation of the
rigid object ∂Ω1 in the electric potential it is possible to compute the force F.

The electrostatic coenergy is given by

W =
ε

2

∫
ΩV

|E|2dΩV (2.5)

where E is the electric field (2.4) and ΩV ⊆ Ω is the virtually distorted empty area (or shell)
around ∂Ω1. We use the shell as measure of the virtual displacement.

The global force acting on the movable rigid object ∂Ω1 in the p direction can be calculated by
performing the derivative of the coenergy along the virtual direction p

Fp =
∂

∂p
W (2.6)

The resulting force is the projection of the global force F on the vector p. For computing the
global force we must compute the force Fp in two orthogonal directions (normally x and y).

4



2.3. EggShell Method

If we combine the formulae 2.6 with 2.5, one can write:

Fp =
ε

2

∂

∂p

∫
ΩV

|E|2dΩV (2.7)

Finally by using the chain rule we can write the preview expression like this

Fp = ε

∫
ΩV

E
∂

∂p
EdΩ +

ε

2

∫
ΩV

|E|2 ∂

∂p
(dΩV ) (2.8)

which is the virtual work expression for the force. This integral will be solved in the FEM space
in the section 2.6.

2.3. EggShell Method

The eggshell method has been described for the first time by F. Hernotte in the paper [Hen04].
In this we section we give an intuitive idea of the egg shell approach, you can find the full
algebraic derivation in the paper of F. Hernotte [Hen04]. The main idea of the egg shell method
is very similar to the one of virtual work. It is based on the idea to computing the change of the
energy (the work) in an electrostatic field by moving the body ∂Ω1.

The work ∂Ω1 received by the body in an electric field is the change of the energy Ẇ if we
move the rigid body ∂Ω1 with a given velocity.

As firs we define the vector field v that describe the virtual shifting of ∂Ω1.

The time derivative of W (see also [Hen04]) can be written as follow:

∂W

∂t
= Ẇ =

∫
ΩS

M : ∇vdΩS (2.9)

where : is the tensor product A : B =
∑

ij AijBij . If we perform the integration by part (by
using the rules described in [Hen04]) we can write 2.9 as follow

Ẇ = −
∫

ΩS

(divM) · vdΩS +

∫
∂Ω1

nMv d (∂Ω1) (2.10)

where n denote the outward normal of ∂Ω1. Now from this formula it is possible to derive
an expression for computing the force if we shift the body of an infinitesimal amount δu. For
computing the time derivative of the energy W we must define the vector field v as a function
of δu. We describe the deformation v only in a surrounding empty area ΩS ⊆ Ω (the shell)
around ∂Ω1 with a smooth function γ whose values is 1 on the boundary of ∂Ω1 and 0 on the
outer surface of the shell. So we can write:

v = γδu̇ ∇v = ∇γδu̇ (2.11)

5



2. Procedures for computig the force

Now, from the elementary physics, we can write the work received from ∂Ω1 as the multiplica-
tion between the force on ∂Ω1 and the shifting v . So the expression 2.10 become:

Ẇ = −Fδu̇ =

∫
ΩS

M : ∇vdΩS (2.12)

Finally if we simplify the term δu̇ (for more details see [Hen04]) we have the expression for
computing the force acting on F:

F = −
∫

ΩS

M∇γdΩS (2.13)

Which is the egg shell formula for computing the force on ∂Ω1. Only the Maxwell stress tensor
of empty space is required here.

2.4. Finite Elements settings

In this project we have used the triangular linear finite elements in a 2D domain. But the work
described in this report can be easily implemented with the quadrilateral finite elements or in
3D with tetraedical elements.
In a finite elements context the approximate solution uN of the laplace equation is a weighted
sum of the local shapes functions λi:

uN =
∑

i

µiλi (2.14)

Where the shapes functions λi are the barycentric coordinates functions on each triangular
element K = (a1; a2; a3), they are defined as follow:

λ1 (x) =
1

2AK

(
x−

(
a2

1

a2
2

))
·
(

a2
2 − a3

2

a3
1 − a2

1

)
(2.15)

λ2 (x) =
1

2AK

(
x−

(
a3

1

a3
2

))
·
(

a3
2 − a1

2

a2
1 − a3

1

)
(2.16)

λ3 (x) =
1

2AK

(
x−

(
a1

1

a1
2

))
·
(

a1
2 − a2

2

a2
1 − a1

1

)
(2.17)

where AK is the area of the element K and ai
j are the vertices of the triangular element (see also

figure 2.6).

The gradient of the FEM solution is directly derived from the gradients of the barycentric coor-
dinates functions. Then the gradient of uN is:

6



2.5. Maxwell Stress Tensor implementation

∇uN =
∑

i

µi∇λi (2.18)

therefore the electric field E in the FEM space is E = −∇uN . Where the gradients of the
barycentric coordinate functions are:

∇λ1 =
1

2AK

(
a2

2 − a3
2

a3
1 − a2

1

)
(2.19)

∇λ2 =
1

2AK

(
a3

2 − a1
2

a2
1 − a3

1

)
(2.20)

∇λ3 =
1

2AK

(
a1

2 − a2
2

a2
1 − a1

1

)
(2.21)

In the virtual work implementation, we need a mapping function Φ(x̃) : R2 → R2 between the
reference element K̃ and the global element K.

The mapping can be directly defined with the barycentric coordinates function:

Φ(x̃) =
3∑

i=1

λ̃i(x̃)ai (2.22)

Where ai are the vertices coordinates of the global element, λ̃i are the barycentric coordinates
function on the reference element and x̃ is a point in the reference mesh.

2.5. Maxwell Stress Tensor implementation

The Maxwell stress tensor can be easily implemented in a FEM context by performing a piece-
wise integration on the closed surface S around ∂Ω1.

With the triangular mesh the optimum result is obtained when S cross the triangle on the middle
of the edges.

The generic procedure is the following:

1. Generate the surface S.

2. On each segment compute the local contribution to the force.

7



2. Procedures for computig the force

Figure 2.1.: A portion of a surrounding surface S in a FEM context

2.5.1. Generating the surface S

The optimal surface cross the edges in the middle point of the segments. So we need one
segment on each element.

The simplest way for building the surface is computing the middle points on the segments and
sorting these points in counter clockwise order respect to the center of the object.

This algorithm is very simple but unstable if the mesh is irregular or the object ∂Ω1 is concave.

2.5.2. Itegration

Given the segment on an element the Maxwell Stress Tensor can be straightforwardly integrated.
With the linear FEM the gradient of uN is constant on the element. The normal of the surface
can be computed with the rotation of the segment. On each element we have:

Ee = −∇ue = −
3∑

i=1

µi∇λi (2.23)

which is clearly constant on the element.

If we have the two midpoints P1 and P2 in counter clockwise order the normal ne on the surface
can be computed by rotating of −π/2 the segment:

ne =

 0 1

−1 0

 · (P2 − P1)

|P2 − P1|
(2.24)

Thus on each element the integral can be easily computed by multiplying the integrand by the
distance between P1 and P2. So the local contribution to the force is:

Fe = ε|P2 − P1| ·
(

(Eene)ne −
1

2
E2

ene

)
(2.25)

8



2.6. Virtual Work Implementation on a triangular mesh

The global force is the sum over the local forces: FN =
∑

e Fe

2.6. Virtual Work Implementation on a triangular mesh

In this section we derive the analytical integration of 2.8 on a triangular element. This method
can be easily derived also for quadrilateral meshes or in 3D cases.

The generic algorithm for computing the force with the virtual work principle in a finite element
context is the following:

1. Compute the solution of the problem with the finite element procedure.

2. Compute the derivative of the coordinates of the virtual displaced nodes.

3. Compute the volume integral of the virtual distorted area (2.27).

Given the finite elements solution, the first problem is computing the derivative of the displaced
nodes. This derivative can be expressed on each node [xi, yi] in the finite elements domain. For
example if we are interested, to the derivative of [xi, yi] versus x and y directions we have:

∂
∂px

xi = pi
∂

∂py
xi = 0

∂
∂px

yi = 0 ∂
∂py

yi = pi

(2.26)

where pi = 1 if the node lie on the boudary ∂Ω1 of the virtual moved rigid object. pi can be
0 or rescaled (0 ≤ p < 1 ) with some interpolation procedures on the virtual distorted empty
space of the domain ΩM (see also the chapter 4) and must be 0 on the others boundary (∂Ω2...).
In a practical implementation of the virtual work procedure we assign to each node the value pi.
So for the triangle K = (a1; a2; a3) we have the values (p1; p2; p3).
The procedure can be also generalized to all directions p but we must known the mapping
function between the original domain and the virtual distorted domain.

Given the virtual distorted area we compute the volume integral (2.8) by summing up the local
contribution to the force of each elements that lie in the distorted volume. So we have:

FN =
∑

Ke∈MD

[
ε

∫
Ke

Ee
∂

∂p
EedKe +

ε

2

∫
Ke

|Ee|2
∂

∂p
(dKe)

]
(2.27)

where MD is the set of the virtually distorded elements and Ee is the local electic field on a
single element:

Ee =

Ex

Ey

 (2.28)

9



2. Procedures for computig the force

Figure 2.2.: An element where: a1 = (a1
1 a1

2)
> a2 = (a2

1 a2
2)
> a3 = (a3

1 a3
2)
>

Figure 2.3.: A portion of the virtual distorted area. We compute the local cotribution to the force
on each element

Now for implement the virtual work principle in a finite element context we work with a ref-
erence element on the coordinates system [v, w]. The transformation between the reference
coordinates and the global coordinates is calculated with a Mapping function Φ(x̃). Where
Φ(x̃) is:

Φ(x̃) :=
3∑

i=1

λi (v, w) ai (2.29)

Where λi (v, w) are the local shape functions on the reference element and ai are the vertices co-
ordinates of the meshes expressed in the global coordinates. In this case, we use the barycentric
coordinates functions.

Now we have the means to implement the Virtual Work method in a FEM context.
The integral over an element is expressed in term of reference coordinates:

10



2.6. Virtual Work Implementation on a triangular mesh

∫
K

f(x)dx =

∫
K̃

f(Φ(x̃))|G|dx̃ (2.30)

where K̃ is the reference element and |G| is the determinant of the Jacobian matrix of the
mapping function Φ(x̃):

|G| = det ((DΦ(x̃))) (2.31)

From the gradient transformation formula, the electric field Ee on the element Ke can be also
written according to the mapping function:

Ee = −∇
3∑

i=1

µiλi = −G−>
3∑

i=1

µi∇x̃λ̃i(x̃) (2.32)

Now the derivative of E versus p become (by using the derivative of the identity G> ·G−> = I):

∂Ee

∂p
= −G−>

∂G>

∂p
G−>

3∑
i=1

µi∇x̃λ̃i(x̃) (2.33)

From the equations 2.32 and 2.33 we can derive the derivative of Ee:

∂Ee

∂p
= G−>

∂G>

∂p
∇ue (2.34)

where ∇ue = (∂xue ∂yue)
> is the gradinet on the element.

Now we define

∂

∂p
(dKe) =

∂|G|
∂p

|G|−1dKe (2.35)

Finally the integration for the local force expression 2.27 (on a single element) is:

Fe = εAK

(
Ee

∂Ee

∂p
+

1

2
E2

e

∂|G|
∂p

|G|−1

)
(2.36)

where AK is the area of the element Ke.

For completing the integration of the virtual work, we must derive the Jacobian matrix G of the
mapping function Φ(x̃), that can be easily derived using the the gradient of the shapes functions
λi (see also 2.19 2.20 2.21).

G> =

a2
1 − a1

1 a2
2 − a1

2

a3
1 − a1

1 a3
2 − a1

2

 ≡

a b

c d

 (2.37)
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2. Procedures for computig the force

For computing the derivative of G> we use the values pi assigned to each vertex ai
j . As described

in the formula 2.26.

The derivative versus the x direction of G> is

∂G>

px

=

p2 − p1 0

p3 − p1 0

 (2.38)

and likewise the derivative of G> versus the y direction is

∂G>

py

=

0 p2 − p1

0 p3 − p1

 (2.39)

finally the derivative of the determinat of the Jacobian |G| = ad − cb can be easily computed
with the common derivations rules. The derivative of |G| versus an arbitrary direction p is:

∂|G|
∂p

=
∂a

∂p
d + a

∂d

∂p
− ∂c

∂p
b− c

∂b

∂p
(2.40)

if we are interested to the derivatives of |G| versus x we have:

∂|G|
∂px

= (p2 − p1)d− (p3 − p1)b (2.41)

and the derivative of |G| versus y is

∂|G|
∂py

= a(p3 − p1)− c(p2 − p1) (2.42)

Now we can compute the local contribution to the force of each element with 2.27. The total
force, acting on ∂Ω1, is calculated by adding all local forces contribution.

2.7. Eggshell implementation

The implementation of the eggshell method it is very easy. We must simply define the gradient
of γ, the Maxwell stress tensor and integrating over the element.

At first we define a smooth function γ on the element. The easiest way is using the barycentric
coordinates function. Thus γ on each triangular element can be written:

γ =
3∑

i=1

riλi(x) (2.43)
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2.7. Eggshell implementation

where λi are the baricentric coordinates funtions (see also equations 2.15, 2.16 and 2.17) and
0 ≤ ri ≤ 1 is an arbitrary value that describe the shell ΩS (see also the chapter 2.3).

The gradient of γ can be found by using the gradient of λi (see the formulae 2.19, 2.20 and
2.21):

∇γ =
3∑

i=1

ri∇λi(x) (2.44)

The Maxwell stress tensor on a 2D FEM context M can be found with the definition of E (2.23).

Me =

E2
x −

1

2
E2 ExEy

ExEy E2
y −

1

2
E2

 (2.45)

finally the local contribution to the force is:

Fe = −AKM∇γ(x) (2.46)

which Is the eggshell formula 2.13 integrated over an element.
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2. Procedures for computig the force
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3
Equivalence between methods

After the first tests we have observed that the virtual work method, with the one on the boundary
interpolation and the Maxwell stress tensor returns always the same results. In a second time
we have also observed that the eggshell and the virtual work methods returns the same results if
the shells are equivalents. Thus we have decided to proof analytically the equivalence between
the three methods in a FEM context.

In the followings proofs we start from the main formula and we develop and simpilify the
expressions up to the equivalence between the methods is manifest.

3.1. Equivalence between Maxwell Stress Tensor and
Virtual Work

3.1.1. Virtual Work

Now, we consider the case of a triangular element Ke = (a1; a2; a3) with the verticies (a1; a2

that lie on the boudary ∂Ω1. In this case we consider the one on the boudary interpolation, thus
the virtual displacements derivatives p on the verticies are:
1 on the verticies a1 and a2.
0 on the vetex a3.

The translated jacobian G> of the mapping function Φ(x̃) is:

15



3. Equivalence between methods

G> =

a2
1 − a1

1 a2
2 − a1

2

a3
1 − a1

1 a3
2 − a1

2

 ≡

a b

c d

 (3.1)

and the inverse of the jacobian G−>

G−> =
1

ad− bc

 d −b

−c a

 (3.2)

The derivatives of G> versus the x and y directions can be calculated by using the analytical
derivatives 2.38, 2.39 and the values of pi on the element (defined in this section).

Then the derivative of G> versus x is

∂G>

∂px

=

 0 0

−1 0

 (3.3)

and versus y is

∂G>

∂py

=

0 0

0 −1

 (3.4)

The area AK of the element can be calculated using the definition of cross product and the
coordinates of the vertices of the element (see also 2.6):

AK =
(a2

1 − a1
1)(a

3
2 − a1

2)− (a2
2 − a1

2)(a
3
1 − a1

1)

2
≡ ad− bc

2
(3.5)

If we assume that ε = 1 the local contribution to the force is

Fe = AK

(
Ee

∂Ee

∂p
+

1

2
E2

e

∂|G|
∂p

|G|−1

)
(3.6)

First part

Now we develop the first part of the formula 3.6: AKEe
∂Ee

∂p
as a function of the x and y

directions.

By using the formula 2.34 we can write

AKEe
∂Ee

∂p
= AKEeG

−>∂G>

∂p
∇ue (3.7)
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3.1. Equivalence between Maxwell Stress Tensor and Virtual Work

where ∇ue = (∂xue ∂yue)
> is the gradient of uN in an element.

If we replace the definition of 3.2 in the preview formula we have

AKEe
∂Ee

∂p
=

AK

ad− bc
Ee

 d −b

−c a

 ∂G>

∂p
∇ue (3.8)

By using the the definition of AK (3.7) it can be simplified to

AKEe
∂Ee

∂p
=

1

2
Ee

 d −b

−c a

 ∂G>

∂p
∇ue (3.9)

To obtain the expressions as a function of the x and y directions we use the for:derGynum and
for:derGynum.

Thus with a pair of simple steps we derive the two expression for the x direction:

AKEe
∂Ee

∂px

=
1

2

[
(a1

2 − a2
2)(∂xue)

2 + (a2
1 − a1

1)(∂xue)(∂yue)
]

(3.10)

and also for y

AKEe
∂Ee

∂py

=
1

2

[
(a1

2 − a2
2)(∂xue)(∂yue) + (a2

1 − a1
1)(∂yue)

2
]

(3.11)

Second part

The second part of the expression 3.6:
1

2
E2

e

∂|G|
∂p

|G|−1 can be easly derived as follow:

At first, we must derive the derivatives of the determinant of the Jacobian G versus x and y.

|G| = ad− cb (3.12)

the derivatives of |G| versus the x and y directions can be found by using the formula 2.42 and
the values of pi on the element:

∂|G|
∂px

= b (3.13)

∂|G|
∂py

= −a (3.14)

so the expression in x and y diretions becomes:
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3. Equivalence between methods

AK

2
E2

e|G|−1∂|G|
∂px

=
E2

e

4
(a2

2 − a1
2) (3.15)

AK

2
E2

e|G|−1∂|G|
∂py

=
E2

e

4
(a1

1 − a2
1) (3.16)

Result

if we collect the preview results of the first and second part in a single formula we obtain the
full expression for the local force:

Fx =
1

2

[
(a1

2 − a2
2)(∂xue)

2 + (a2
1 − a1

1)(∂xue)(∂yue)
]
+

E2
e

4
(a2

2 − a1
2) (3.17)

Fy =
1

2

[
(a1

2 − a2
2)(∂xue)(∂yue) + (a2

1 − a1
1)(∂yue)

2
]
+

E2
e

4
(a1

1 − a2
1) (3.18)

Witch is the simplified expression for computing the local contribution to the force with the
virtual work method and the one on the boudary interpolation. Note that this expression is a
particular case of the full expression derived in section 3.2.1.

3.1.2. Maxwell Stress Tensor

In this section we analize the integrtion of the maxwell stress tensor on an element K =
(a1; a2; a2) where a1 and a2 lie on the boudary and a3 is free. The segment P1P2 is a por-
tion of the surface S.

Figure 3.1.: The element configuration used in this chapter

Given the middles points P1 and P2 of the edges (a1; a3) and (a2; a3). The distance between
P1 and P2 is d = |P2 −P1|.
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3.1. Equivalence between Maxwell Stress Tensor and Virtual Work

The integration of the maxwell stress tensor along the segment is siply:

Fe = d ·
(

(Eene)Ee −
1

2
E2

ene

)
(3.19)

The unit normal n on the surface segment is:

ne =
1

2d

a1
2 − a2

2

a2
1 − a1

1

 (3.20)

If we expand and observe the first part of the equation 3.19:

(Ee · ne)Ee =
1

2

(
∂xue(a

1
2 − a2

2) + ∂yue(a
2
1 − a1

1)
) ∂xue

∂yue

 (3.21)

we immediately conclude that is equivalent to the equation 3.10 and 3.11.

By expandinng the send part of the maxwell stress tensor equation we have:

1

2
E2

ene =
1

4
E2

e

a1
2 − a2

2

a2
1 − a1

1

 = −1

4
E2

e

a2
2 − a1

2

a1
1 − a2

1

 (3.22)

thus if we collect the partial results, the resulting locals forces in x and y direction are:

Fx =
1

2

[
(a1

2 − a2
2)(∂xue)

2 + (a2
1 − a1

1)(∂xue)(∂yue)
]
+

E2
e

4
(a2

2 − a1
2) (3.23)

Fy =
1

2

[
(a1

2 − a2
2)(∂xue)(∂yue) + (a2

1 − a1
1)(∂yue)

2
]
+

E2
e

4
(a1

1 − a2
1) (3.24)

that they are clearly equvalent to the virtial work expressions (3.17 3.18).

We can conclude that the Virtual work procedure and the Maxewell Stress Tensor procedure are
equvalents.

3.1.3. Proof the equvalence between the different mesh
configurations

In a real world application we must also consider all the possible configurations of the element
K = (a1; a2; a2):

The first case is where 2 nodes lie on the boundary but the enumeration of the vertices is
different. For example a3 and a1 lie on the boundary and a2 is free. In this case we simply switch
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3. Equivalence between methods

the names of the vertices and the proof is the same. Note that these different enumerations
produces different derivatives of the Jacobians matrix G if we use the formalism proposed in
the preview section.

The second is the case where only one vertex lie on the boudary. For example a1 lie on the
boudary and a2, a3 are free. In the maxwell stress tenson procedure the unit normal n to the
segment become:

ne =
1

2d

a2
2 − a3

2

a3
1 − a2

1

 (3.25)

In the virtual work case the derivatives of the Jacobian matrix are:

∂G>

∂px

=

−1 0

−1 0

 (3.26)

∂G>

∂py

=

0 −1

0 −1

 (3.27)

For completing the proof, we need for the matrix product G−>
∂G>

∂p
in x and y directions and

the derivatives of the |G|. Then we immediately observe the equivalence of the new formulae.

3.2. Equivalence between EggShell and Virtual Work

In this section, we proof that the virtual work procedure and the eggshell procedure are equiva-
lent if the shell (or the virtually distorted area) is the same.

we must consider that the shell around ∂Ω1 can have an arbitrary shape involving a lot of layers
around the body. Thus, the development of the equations must be generic.

For obtaining this result, we have used a generic element K: Given a triangular mesh K =
(a1; a2; a3) we assign an arbitrary value 0 ≤ ri ≤ 1 to each vertex of K then for each element
we have the triplet (r1; r2; r3).

3.2.1. Virtual Work

In this case, we use the values of ri as a virtual displacement derivative (ri ≡ pi).

We define the Jacobian matrix as:
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3.2. Equivalence between EggShell and Virtual Work

G> =

a2
1 − a1

1 a2
2 − a1

2

a3
1 − a1

1 a3
2 − a1

2

 ≡

a b

c d

 (3.28)

and his translated inverse:

G−> =
1

ad− bc

 d −b

−c a

 (3.29)

The derivatives of G> versus the x direction become

∂G>

∂px

=

ax 0

cx 0

 ≡

r2 − r1 0

r3 − r1 0

 (3.30)

and the derivative versus y

∂G>

∂py

=

0 by

0 dy

 ≡

0 r2 − r1

0 r3 − r1

 (3.31)

First part

now, by using the definition of the element area AK (3.5) and the equations 2.34, 3.30. The first
part of the virtual work expression 3.6 derived versus x become:

AKEe
∂E

∂px

= AKEeG
−>∂G>

∂px

(3.32)

= Ee

 AK

ad− bc

 axd− cxb 0

−cax + acx 0

∇ue

 (3.33)

= Ee

1

2

 axd− cxb 0

−cax + acx 0

∇ue

 (3.34)

and the derivative versus y is:

21



3. Equivalence between methods

AKEe
∂E

∂py

= AKEeG
−>∂G>

∂py

(3.35)

= Ee

 AK

ad− bc

0 byd− dyb

0 −cby + ady

∇ue

 (3.36)

= Ee

1

2

0 byd− dyb

0 −cby + ady

∇ue

 (3.37)

second part

For developing the second part of the virtual work expression 3.6: we must define the derivatives
of |G|:

Given the derivatives 2.38 2.39, at first we define the derivative of |G| versus x:

∂|G|
∂px

= axd− cxb (3.38)

and the derivative of |G| versus y

∂|G|
∂py

= ady − cby (3.39)

so the expression as a funtion of x become

1

2
AKE2

e|G|−1∂|G|
∂px

=
1

4
E2

e(axd− cxb) (3.40)

and respect to y

1

2
AKE2

e|G|−1∂|G|
∂py

=
1

4
E2

e(ady − cby) (3.41)

resulting force

Finally we can collect the first and the second part of the expression.

If we consider that ∇ue = −Ee the resulting force computed with the wirtual work method is:

Fx =
1

2

[
E2

x(−axd + cxb) + ExEy(cax − acx)
]
+

1

4
E2

e(axd− cxb) (3.42)
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3.2. Equivalence between EggShell and Virtual Work

Fy =
1

2

[
ExEy(−byd + dyb) + E2

y(cby − ady)
]
+

1

4
E2

e(ady − cby) (3.43)

For simplifying the comparison with the eggsell formulae (3.52, 3.52) we reorganize the equa-
tion in this way:

Fx = (axd− cxb)

(
1

4
E2

e −
1

2
E2

x

)
+

1

2
ExEy(cax − acx) (3.44)

Fy = (ady − cby)

(
1

4
E2

e −
1

2
E2

y

)
+

1

2
ExEy(−byd + dyb) (3.45)

3.2.2. EggShell

The local contribution to the force in the eggshell method is:

Fi = −
∫

K

M∇γdx (3.46)

where γ is a function over K defined as follow:

γ =
3∑

i=1

riλi(x) (3.47)

where λi are the baricentric coordinates functions ( 2.15 2.16 2.17)

the analitical integration over the mesh K become:

Fe = −AKM∇γ (3.48)

and the gradinet of γ can be easly found with the gradients of the baricentric coordinates func-
tions on K ( see also 2.19 2.20 2.21 ). We define: ∇γ = (∂xγ ∂yγ)>.

The maxwell stress tensor M is

M =

E2
x −

1

2
E2 ExEy

ExEy E2
y −

1

2
E2

e

 (3.49)

then the force computed with the eggshell method become:

The x component of the force is:

Fx = AK

{
−

[
∂xγE2

x + ∂yγExEy

]
+

1

2
∂xγE2

}
(3.50)
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3. Equivalence between methods

and the y compunent:

Fy = AK

{
−

[
∂xγExEy + ∂yγE2

y

]
+

1

2
∂yγE2

}
(3.51)

Now, as done in the previous section, we symplify the expression in the following way:

The x component:

Fx = AK

[
∂xγ

(
1

2
E2 − E2

x

)
− ∂yγExEy

]
(3.52)

and the y component

Fy = AK

[
∂yγ

(
1

2
E2 − E2

y

)
− ∂xγExEy

]
(3.53)

If we compare these two last expressions to the virtual work expression (3.45 3.43) we imme-
diately observe the similarity.

Equivalence

If we expand the two gradients of γ by using the definition of the barycentric coordinates func-
tions and their gradients 2.19 2.20 2.21 we have:

∂xγ =
1

2AK

(
r1(a

2
2 − a3

2) + r2(a
3
2 − a1

2) + r3(a
1
2 − a2

2)
)

(3.54)

∂yγ =
1

2AK

(
r1(a

3
1 − a2

1) + r2(a
1
1 − a3

1) + r3(a
2
1 − a1

1)
)

(3.55)

for completing the proof, we need only to show the equvalence between ∂xγ , ∂yγ and the
equvalents factor in the virtual work expressions 3.45, 3.43:

Then we must proof these two equivalences:

AK∂xγ = (axd− cxb) = −(−byd + dyb) (3.56)

AK∂yγ = (ady − cby) = −(cax − acx) (3.57)

Now we develop these four expressions by using the definitions 3.28, 3.30 and 3.31; then, we
finally proof the equivalence between the two methods:

At first we expand the expression in 3.56

(axd− cxb) = (r2 − r1)(a
3
2 − a1

2)− (r3 − r1)(a
2
2 − a1

2) (3.58)
= r1(a

2
2 − a3

2) + r2(a
3
2 − a1

2) + r3(a
1
2 − a2

2) (3.59)
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3.2. Equivalence between EggShell and Virtual Work

(−byd + dyb) = −(r2 − r1)(a
3
2 − a1

2) + (r3 − r1)(a
2
2 − a1

2) (3.60)
= r1(a

3
2 − a2

2) + r2(a
1
2 − a3

2) + r3(a
2
2 − a1

2) (3.61)

we expand also the expression in 3.56

(ady − cby) = −(r2 − r1)(a
3
1 − a1

1) + (r3 − r1)(a
2
1 − a1

1) (3.62)
= r1(a

3
1 − a2

1) + r2(a
1
1 − a3

1) + r3(a
2
1 − a1

1) (3.63)

(cax − acx) = (r2 − r1)(a
3
1 − a1

1)− (r3 − r1)(a
2
1 − a1

1) (3.64)
= r1(a

2
1 − a3

1) + r2(a
3
1 − a1

1) + r3(a
1
1 − a2

1) (3.65)

Now the relations 3.56 and 3.57 are clearly equivalents. Then the eggshell and the virtual work
methods are equivalents.

3.2.3. Conclusion

After these proof we conclude that the eggsell and the virtual work methods are equivalents if
the shell is the same. We can also conclude that the maxweel stress tensor method is a particular
case of the virrtual work method.
Then the only realistic comparison between these three methods is the velocity of the code and
the implementaton.

25



3. Equivalence between methods

26



4
Intepolations procedures

In this chapter we describe some procedure for generating the surrounding volume around the
rigid body ∂Ω1. These interpolations values can be equivalently used as surrounding shell if
we use the Eggshell method or as a virtual distorted area if we use the virtual work method.
The main goal of this chapter and the next one (5) is to investigate the quality of the algorithms
if we work with different interpolations procedures and problems configurations.

We can divide these procedures into two big classes:

• Mesh based interpolations: In this case the value assigned to the node is based on his
position in the graph of the mesh grid.

• Geometric interpolations: The value is a function of the Cartesian coordinates of the node.

4.1. One on the boundary

This is the simplest and the most direct method. We simply assign 1 to the nodes that lie on the
boundary ∂Ω1 and zero on all others nodes.
This method offers the advantage that it works with any shapes of ∂Ω1. It is , also, very simple
to implement.
The big disadvantage is that it converges very slowly. So for obtaining a good result we must
perform a big numbers of refinements.
As described in chapter 3 the result derived with this interpolation is equivalent to the result
derived by Maxwell Stress Tensor procedure (2.1).
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4. Intepolations procedures

4.2. Boundary Layers

This is a Mesh based interpolation and can be considered as an extension of the One on the
boundary interpolation.

The main idea is to set to 1 the values on the boudary. The values of the nodes in a sigle layer
aroud the body ∂Ω1 are constant.

The algorithm for building the interpolation is:

L := Number of Layers.
B := Get all nodes on the boundary ∂Ω1

Set to 1 the value of ri on the nodes ∈ B
For i := 1 ... L-1

S := Get all nodes adjacent to B where the value of ri is 0

Set to 1− i ∗ 1

L
the values of ri on the nodes ∈ S

B := S
end For

The force computed with this method and the one on the boudary interpolation are asymptoti-
cally equivalent.

4.3. Harmonic Interpolation

In this case we use the solution of the Laplace equation for interpolating the values of the
solution uN as ri on the nodes.

We set to 1 the Dirichlet boundary conditions on the rigid body ∂Ω1 and to 0 on all others
boundaries and we use the on the nodes.

With this method we obtain good resuls with and a good convergence rate. It is easy to im-
plement. In a real application we must only change the boundary conditions in the original
problem or, if it is possible, we can uses the solution of the original problem by simply rescal-
ing the values.

4.3.1. Partial Harmonic

In this case we set to 1 the B.C. on the rigid body ∂Ω1 and to −a (where a is normally set to 1)
on the others boundaries. For interpolating the values ri on the nodes we use the values of the
solution if they are positive and 0 otherwise.
This method guarantees a very good solutions and convergence rate. In ours tests it is the best.
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4.4. Interpolation Around a generic shape

4.4. Interpolation Around a generic shape

With this procedure we generate a generic interpolation around an arbitrary shape (the boundary
∂Ω1). The value RLim is the size limit of the shell (If the distance between ∂Ω1 and the node
is greater than RLim ri is set to 0).
The pseudo code of the procedure is:

N := Set of all nodes in the Meshes
For Each ni ∈ N

d := Minimal distance between ni and ∂Ω1

v := f(d)
if v > 0 then

ri := v
else

ri := 0
end if

end For Each

Generic exponetial

If we desire an exponential interpolation around the boundary we use the following definition
of f(d):

The value RI > 0 is an user defined parameter

f(d) :=
exp ((d + RI)/RI)− 1)− exp ((RLim + RI)/RI)− 1)

1− exp ((RLim + RI)/RI)− 1)
(4.1)

Generic linear

The linear interpolation can be simply implemented with this definition of f(d) :

f(d) := 1− dR−1
Lim (4.2)

4.5. Interpolation around a circle

If ∂Ω1 is a circle the values ri can be directly interpolate with the procedures described above.
d is the distance between the centre of ∂Ω1 and the node.
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4. Intepolations procedures

(a) (b)

Figure 4.1.: Two examples of interpolations: (a) Generic Exponential. (b) Partial harmonic

The two following procedures can be implemented in a very efficient code and returns good
results with a good convergence rate.

Generic Exponential

ri :=
exp (d/R1 − 1)− exp (R2/R1 − 1)

1− exp (R2/R1 − 1)
(4.3)

if ri < 0 then ri := 0.

where R1 is the radius of ∂Ω1 and R2 is the radius of the shell and d is the distance between the
center of ∂Ω1 and the node.

Clearly we consider only the positives values.

Linear Conic Interpolation

In this case we interpolate the values in the shell with a cone that is defined with two cir-
cles: The first one is ∂Ω1 with radius R1 and center C1 := [x1; y1] the second is R2 and center
C2 := [x2; y2] where R2 > R1 .

At first we define the parametric equation of the cone:

x(t, θ) = (R2 + t ∗ (R1 −R2)) ∗ cos(θ) + (x1 − x2) ∗ t (4.4)
y(t, θ) = (R2 + t ∗ (R1 −R2)) ∗ sin(θ) + (y1 − y2) ∗ t (4.5)
z(t, θ) = t (4.6)
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4.6. Coarsed displacement Interpolation

The apex of the cone is found where t has the value of tv =
−R2

R1 −R2

.

Now the problem is, find the value of the parameter t on the node [Nx; Ny] coordinates.

The value ri on each node is ri =
t− 1

t
∗ tv.

4.6. Coarsed displacement Interpolation

This procedure is based on the refinement process. The main idea is to perform an interpolation
on a mesh structure after a little number on refinement (normally two or three). After this
process we continue the refinement, on the modified mesh, up to the desired level:
The procedure is:

Given the basic mesh structure and the refined structure. 1) Perform some refinement on the
basic mesh data structure.
2) Move the nodes along an arbitrary direction according with some interpolation rules.
3) Continue the refinement process up to the desired level.
4) Use the difference between the coordinates in the refined structure and the news coordinates
of the node for generating the interpolations vales.

In the point 2 we can use a harmonic interpolation or any others rules described in this chapter.
The big disadvantage of this method is that it requires a second mesh data structure and it is
slow. It returns good results and it has a good convergence rate.
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5
Test And Results

5.1. Test procedure

The main goal of the tests is to study the evolution of the error as a function of the DOF (degree
of freedom) with different interpolations procedures.

As first we define the relative error:

Relative Error =
|Fn| − |Fbest|

|Fbest|
(5.1)

Where Fn is the force estimated after n refinements and the Fbest is the force estimated with
the analytical solution if it is known, or a reference force estimated after a big number of refine-
ments iterations.

Another interesting parameter is the evolution of the slope of the error curve and the average
slope. With the slope we measure the convergence rate of the tested procedures.

If the analytical solution u is known the force can be calculated by integrating analytically the
Maxwell stress tensor over the inner surface ∂Ω1.

The degree of freedom (DOF) parameter of a mesh structure is defined by

DOF := Number Of Edges + Number Of Nodes (5.2)

In the followings tests we never report the egg shell method, but as proofed in the chapter 3 the
virtual work procedure and Egg Shell procedure are equivalents so all the conclusions about the
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5. Test And Results

virtual work are the same that we could have with the eggshell method. We have observed only a
very little (ca. 10−15 ) difference between the two methods, due to the numerical approximation.

5.2. Virtual Work results compared with an analytical
result

The first, and the most obvious, test is to compare an analytical result with the numerical result.
With this kind of test we can do a reliable comparison between the different interpolations
methods and decide which is the better.

5.2.1. Problem

The problem is a Dirichlet boundary value problem: The domain Ω is defined by two concentric
circles ∂Ω1 and ∂Ω2. The radius of ∂Ω1 is 1 and of ∂Ω2 is 2.

∇2u = 0 (5.3)
u |∂Ω1 = 1 + cos θ + cos3θ on ∂Ω1 (5.4)
u |∂Ω2 = 0 on ∂Ω2 (5.5)

With the solution:

u = A0 + B0 log r + rA1 cos θ +
1

r
C1 cos θ + r3A3 cos 3θ +

1

r3
C3cos3θ (5.6)

Where

A0 =
a0 log R2

2(log R2 − log R1)
(5.7)

B1 =
a0 log R2

2(log R2 − log R1)
(5.8)

A1 =
−R1a1

R2
2 −R2

1

(5.9)

C1 =
(R1R2)(R2a1)

R2
2 −R2

1

(5.10)

A3 =
−R3

1a3

R6
2 −R6

1

(5.11)

C3 =
(R1R2)

3(R3
2a3)

R6
2 −R6

1

(5.12)

where a0 = 2 , a1 =
7

4
and a3 =

1

4
are the fourier coefficients of u |∂Ω1 .
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5.2. Virtual Work results compared with an analytical result

The analytical solution of the force has been calculated by performing the surface integral of
the Maxwell stress tensor (2.1) on ∂Ω1. For obtaining this result we have used the well known
symbolic manipulation software Maple.
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5. Test And Results

(a) (b)

Figure 5.1.: Solution (a) and mesh structure (b) of the problem

Settings

We have repeated the same test with the different interpolations. For each test we report two
charts.

In the first chart we report the evolution of the relative error as a function of the DOF, in the
second chart we report the evolution of the slope. We use always a log-log scale.

With these two measures, we can examine the the behaviour of the algorithms.
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5.2. Virtual Work results compared with an analytical result

5.2.2. Result for One on the boudary

(a)

(b)

Figure 5.2.: Comparison between Virtua Work (with 1 on the boudary) and Maxell Stress Tensor
(a) Relative Error. (b) Slopes

In the direct comparison between the maxwell stress tensor and one on the boudary interpolation
the two results are clearly identical (see also chapter 3).
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5. Test And Results

5.2.3. Results for Harmonic interpolation

(a)

(b)

Figure 5.3.: Comparison between Virtua Work (harmonic interpolation) and Maxell Stress Ten-
sor

(a) Relative Error (b) Slopes

The harmonic interpolation guarantee a good and stable convergence rate.
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5.2. Virtual Work results compared with an analytical result

5.2.4. Results for Partial Harmonic interpolation

(a)

(b)

Figure 5.4.: Comparison between Virtua Work (partial harmonic interpolation) and Maxell
Stress Tensor

(a) Relative Error (b) Slopes

In this test we have used 1 on the virtual moved boundary and −1 on the other boundary (see
also 4.3). The partial harmonic interpolation procedure has produced the best convergence rate
in our tests.
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5. Test And Results

5.2.5. Results for Partial Exponential interpolation

(a)

(b)

Figure 5.5.: Comparison between Virtua Work (partial exponential interpolation) and Maxell
Stress Tensor

(a) Relative Error (b) Slopes

In this test we have used 1.3 as external radius.
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5.2. Virtual Work results compared with an analytical result

5.2.6. Results for Boudary Layers interpolation

(a)

(b)

Figure 5.6.: Comparison between Virtua Work (boudary layers interpolation) and Maxell Stress
Tensor

(a) Relative Error (b) Slopes

In these charts we observe that the force obtained with the Maxwell stress tensor and the
boudary layers interpolations, asymptotically converge to the same solution.
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5. Test And Results

5.2.7. Results for Linear interpolation

(a)

(b)

Figure 5.7.: Comparison between Virtua Work (linear interpolation) and Maxell Stress Tensor
(a) Relative Error (b) Slopes
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5.2. Virtual Work results compared with an analytical result

5.2.8. Results for Partial Linear interpolation

(a)

(b)

Figure 5.8.: Comparison between Virtua Work (partial linear interpolation) and Maxell Stress
Tensor

(a) Relative Error (b) Slopes

In this experiment the radius of the external interpolation circle is 0.9 ∗R2 (see laso 4.5).
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5. Test And Results

5.2.9. Results for Coarsed Virtual displacement interpolation

(a)

(b)

Figure 5.9.: Comparison between Virtua Work (coarsed displacement interpolation) and Maxell
Stress Tensor

(a) Relative Error (b) Slopes

5.2.10. Commets and observation

By observing the results, we can conclude that the best convergence rate has been obtained with
the partial harmonic interpolation.

If we examine the charts of the slopes we observe that the slope of all method asymptotically
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5.2. Virtual Work results compared with an analytical result

converge to −1 in any case. So the procedures, from this point of view, become equivalent
with a big number of DOF. An intuitive explanation of this phenomenon is that with a very big
number of DOF the numerical integration of the Maxell stress tensor converges to the analytical
solution. Thus the convergence rate improves with the number of DOF.

All methods based on a geometric interpolation (4) normally have an average slope of∼ 1. They
have a very good convergence rate with a little numbers DOF that decrease with the growing of
the DOF. Instead the Mesh based interpolations starts with a low convergence rate that grows
with the number DOF. But in any case the result obtained with the geometric are better.
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5. Test And Results

5.3. Virtual Work results compared with the best result

5.3.1. Tests with the translation of the inner object

For performing the tests, we have translated the inner rigid body ∂Ω1 of 0.05, 0.1, 0.2 and
0.3 along the x axis and we have estimated the force on each configuration by refining (h-
refinement) the mesh from 1 to 8 times.

We have repeated the full test with two concentric circles.

In the resulting charts we report the errors for each translation of the object.

In the figure 5.3.1 we clearly observe the distortion of the mesh structure after the translation.

(a) (b)

Figure 5.10.: Example with the inner object diplaced of 0.3. (a)Solution. (b) Mesh

With this sets of tests we can observe the evolution of the error as a function of the mesh
distortion. In the charts we report the evolution of the error of each translation.

We do not know the analytical solution of this problem. So we perform n + 1 refinement and
we use the resulting force Fbest obtained with n + 1 refinement as a reference value. Thus the
slopes and convergence rate are different respect to the test in the preview section (5.2).
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5.3. Virtual Work results compared with the best result

5.3.2. Results

(a)

(b)

Figure 5.11.: (a) One on the bondary (b) Partial Harmonic
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5. Test And Results

(a)

(b)

Figure 5.12.: (a) Harmonic (b) Linear

48



5.3. Virtual Work results compared with the best result

(a)

(b)

Figure 5.13.: (a) Partial Linear (b) Boubdary layers
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5. Test And Results

Figure 5.14.: Coarsed interpolation

5.3.3. Conclusion

In these tests, we observe that the mesh structure influence the result in any case. Thus the
virtual work and the Maxwell stress tensor procedures are influenced by the mesh structure. We
also observe that with a logarithmic scale the difference between the different errors curve stay
constant, this effect is due to the regularity of the mesh and distortion.
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5.3. Virtual Work results compared with the best result

5.3.4. Tests with the double circle configuration

In this section we have done some experiments with a configuration with a double inner circle.
In this case as a reference result we use, in the firsts charts, the force computetd with a partial
harmonic intepolation. In the second chart we use the force computed after n+1 refinements
steps.

(a) (b)

Figure 5.15.: Example of a solution and the mesh data strucyure of the double inner circle
(a)Solution. (b) Mesh
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5. Test And Results

Results for One on the boudary

(a)

(b)

Figure 5.16.: Results of the double circle configuration conpared with the partial harmonic and
itself (a) Partial hamonic (b) itself
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5.3. Virtual Work results compared with the best result

Results for Partial Harmonic

(a)

(b)

Figure 5.17.: Results of the double circle configuration conpared with the partial harmonic and
itself (a) Partial hamonic (b) itself
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5. Test And Results

Results for partial exponential

(a)

(b)

Figure 5.18.: Results of the double circle configuration conpared with the partial harmonic and
itself (a) Partial hamonic (b) itself

Conclusion

We observe a very little difference between the two comparison methods. The interpolations
procedures produce a similar results with respect to the results obtained in the preview section.
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5.4. Tests with the Aposteriori adaptive refinement

5.4. Tests with the Aposteriori adaptive refinement

In this section we study the effect of an adaptive and irregular refinement on the results. The
irregularity of the mesh introduce a pseudo random behaviour in the convergence rate, but on
the other hand, the adaptivity perform the refinement where the discretization error is big. Also
in this case we do not know the analytical solution so we use a reference result.

(a) (b)

Figure 5.19.: Example of a solution and the mesh data strucyure of the LM data structure
(a)Solution. (b) Mesh

Figure 5.20.: The effect of the A Posteriori adaptive refinement on the ’LM’ structure

The advantage of the adaptivity is that it refines the mesh only in the problematic region of Ω.
Normally around the angle or where the magnitude of the gradient of u is big. We can obtain a
good discretization error with a little number of DOF.

The goal of the experiment is to understand if the advantage of the adaptivity, counterbalanced
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5. Test And Results

(a) (b)

Figure 5.21.: The original mesh(a) and the effect of the adaptivity (b) of the SQ data structure

with the disadvantages introduced by the irregularity of mesh, produce some benefit in the force
computation.

Method

For performing these tests we use two meshes structure: the first one (named LM) is a complex
concave object ∂Ω1 with a constant Dirichlet boundary condition.
The second configuration (named SQ) consists of two off centred squares.

The reference force in both cases has been obtained with the partial harmonic interpolation
after 8 regular refinements.

In the followings charts we report the direct comparison between the error of the regular refine-
ment and the error of the adaptive refinement, with the same interpolation method.

5.4.1. Effect of the angles in the computation

With the ’LM’ test we have a non smooth (with angles) object in the computation. The first
analytical effect is that the (unknown) solution u is described by an infinite Fourier series. As
consequence, in the numerical solution, we have a big approximation error around the angles.
This error directly influence the computation of the force with the Maxwell Stress Tensor with a
very slow convergence rate. This effect is attenuated by the use of a large shell (or virtually dis-
torted area) that involve also the regions where the ’high frequency’ components of the solution
u have a low influence.
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5.4. Tests with the Aposteriori adaptive refinement

[h] Force 5 ref. Force 6 ref. Force 7 ref.

Maxwell Stress Tensor 18.649 18.197 17.792

Partial Harmonic 16.050 15.984 15.935

Harmonic 15.813 15.863 15.873

Exponential 15.785 15.823 15.8438

In the table 5.4.1 we observe the effect (on the LM mesh) described above, where the conver-
gence rate of the Maxwell Stress Tensor procedure is very slow and the error is big.
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5. Test And Results

5.4.2. One on the boundary

(a)

(b)

Figure 5.22.: Comparison between Adaptive and regular refinement with the maxwell stress
tensor on the LM (a) and SQ (b) structures

58



5.4. Tests with the Aposteriori adaptive refinement

5.4.3. Partial Harmonic

(a)

(b)

Figure 5.23.: Comparison between Adaptive and regular refinement with the partial harmonic
interpolation on the LM (a) and SQ (b) structures
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5. Test And Results

5.4.4. Harmonic

(a)

(b)

Figure 5.24.: Comparison between Adaptive and regular refinement with the harmonic interpo-
lation on the LM (a) and SQ (b) structures
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5.4. Tests with the Aposteriori adaptive refinement

5.4.5. Generic Exponential

(a)

(b)

Figure 5.25.: Comparison between Adaptive and regular refinement with the harmonic interpo-
lation on the LM (a) and SQ (b) structures

5.4.6. Conclusions and observations

If we observe the comparison we see that the adaptive refinement normally returns better results
than the results obtained with a regular refinement. We also observe that the error has a big
fluctuation in the first 3 or 4 refinements and only after some steps the convergence rate is about
stabilized.
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5. Test And Results

In the SQ structure we also observe a fluctuation of the error with a big number of DOF, and
also an apparent lost of precision.

The big disadvantage of the a posteriori refinement is the slowness of the computation. Practi-
cally for computing the force with n refinements levels we must solve the full FEM solution of
all previews levels.
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6
Conclusion and Outlook

The first, and the most important, result of this work is the equivalence between the three meth-
ods. So the only comparison meter between these procedures is the efficiency and the simplicity
of the code. From this point of view the better choice is the eggshell method. In our Matlab
implementation the eggshell code is normally faster than the virtual work code and it is also
very simple to implement. So the better choose in a linear finite element context is the eggshell
algorithm.

In the study of the interpolation we have concluded that the interpolation procedure in any case
is the partial harmonic interpolation and in general the procedures that return the better results
are the ones that generate a sufficiently large shell that involve only a limited area around the
rigid object.

We have also seen that the force estimated after an adaptive refinement is normally better than
the result obtained after a regular refinement with the same number of DOF.

Porting the eggshell and the virtual work procedure in a 3D finite element context it is very easy
so all the procedure are good methods for computing the force in a real world application.
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A
Matlab functions

In the above chapter we describe the main functions used in the Matlab implementation of the
virtual work, eggshell and Maxwell stress tensor procedures:

Given a Mesh with M nodes, N elements and V virtually distorted elements (or the elements
included in the shell):

A.1. Force Computation

Virtual Work

function Fs = eval_Force_VirtualWork(Mesh,U,epsilon)

This function computes the force acting on the body with the virtual work procedure:

the arguments are:
Mesh: The mesh data structure.
U: M by 1 column vector that store the solution of the FEM problem.
epsilon: permittivity of the medium.

The data structure MESH should at least contain the following fields:
Mesh.VirtualEl: V by 1 vector specifying the indices of all virtually distorted elements.
Mesh.DispDerivative: M by 4 or M by 1 (sparse) matrix storing the displacements derivatives
of each node.
If we use an M by 4 the first column is the derivative of xi versus x, the second xi versus y„the
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A. Matlab functions

third yi versus x and the fourth yi versus y. The values of pi must be assigned to the first and
last column. With this code we should compute the force in any arbitrary direction if we known
the derivatives. If we use an M by 1 simply assign the values of pi on each node.
Mesh.Elements: N by 3 matrix specifying the elements of the mesh.
Mesh.Coordinates: M by 2 matrix specifying the vertices of the mesh.

Eggshell

function Fs = eval_Force_EggShell(Mesh,U,epsilon)

Compute the force with the eggshell procedure
the arguments are:
Mesh: The mesh data structure.
U: M by 1 column vector that store the solution of the FEM problem.
epsilon: permittivity of the medium.

The structure Mesh should at least contain the following fields:
Mesh.VirtualEl: V by 1 vector specifying the indices of all elements in the shell.
Mesh.DispDerivative: M by 1 (sparse) matrix storing the coefficients ri for interpolating the
shell.
Mesh.Elements: N by 3 matrix specifying the elements of the mesh.
Mesh.Coordinates: M by 2 matrix specifying the vertices of the mesh.

Maxwell stress tensor

function [F T] = eval_Force_MaxwellStressTensor(Mesh,U,epsilon,varargin)

Compute the force F and the torque T with the Maxwell stress tensor procedure.
the arguments are:
Mesh: The mesh data structure.
U: M by 1 column vector storing the solution of the FEM problem.
epsilon: permittivity of the medium.
varargin: should store an alternative center for the torque (the default center is [0 1]).

The strut MESH should at least contain the following fields:
Mesh.BdSurface: B by 2 matrix storing the x an y coordinates of the surface S in counter
clockwise order. Mesh.EdSurface: B by 2 matrix storing all edges intersected by the surface.

function Mesh = build_bound_Surface(BdFlags,Mesh,varargin)
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A.2. Interpolation procedures

Build the surface S around the body marked with the boundary flag BdFlags.
Mesh: The mesh data structure.
BdFlags: Boundary flag of the body
varargin: should store an user defined center of the body.

For computing the force with the Maxwell stress tensor we must call the two previews functions
with this sequence:

Mesh = build_bound_Surface(BdFlags,Mesh) ;
[F T] = eval_Force_MaxwellStressTensor(Mesh,U,epsilon) ;

A.2. Interpolation procedures

In this section we describe the functions for interpolating the virtually distorted area or the
equivalent eggshell. These function add to the Mesh structure the field DispDerivative and
VirtualEl.

Mesh.DispDerivative: is an M by 4 or an V by 1(sparse) matrix that store the virtual displace-
ments derivatives of the nodes.

Mesh.VirtualEl : is an N by 1 vector that store the indices of the elements involved in the
interpoletion (in the virtually distorted area or shell).

The varargin: optional arguments should store a character string made from one or all of the
following elements:
s: Use a sparse matrix for allocating the field Mesh.DispDerivative.
o: Generate an M by 1 matrix in the Mesh.DispDerivative.
c: Plot the interpolation.

For using these functions the mesh data structure should requires at least the following field:
Mesh.Coordinates: The coordinates of the nodes.
Mesh.Edges: The edges of the mesh.
Mesh.BdFlags: The flags of the edges.
Mesh.Elements: The list of all elements.
Mesh.Edge2Elem: Associate the edges with the elements.

One on the boundary

function Mesh = virtual_Translation_BD(Mesh,BdFlags,varargin)

Gnerate the one on the boundary interpolation. Where the arguments are:
Mesh: The mesh data structure.
BdFlags: The flags of the virtually moved boundary.
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A. Matlab functions

varargin: The options described above.
It returns the updated Mesh data structure.

Interpolation with the solution

function Mesh = virtual_Translation_grad( BdFlags , U , Mesh , varargin )

This procedure uses the solution U for interpolating the virtual distorted area. The values of
the solution are rescaled from 0 to 1. It forces to 1 the values on the boundary marked with
BdFlags and to 0 the others boundary. This function can be used for performing a harmonic
interpolation.

The arguments are:
BdFlags: The flags of the virtually moved boundary.
U: The solution.
Mesh: The Mesh data structure.
varargin: The options described above (If we use a sparse matrix this procedure become very
slow).

Harmonic Interpolation

function Mesh = eval_Displacement_Harmonic_Generic( Mesh , ...
VM_BdFlag , VM_BdVal , BdVal , ...
F_HANDLE , GD_HANDLE , varargin )

Perform a harmonic interpolation by defining and computing a new FEM problem. This func-
tion can be also used for the partial harmonic procedure.

This function assign an user defined Dirichlet boundary condition (VM_BdVal) to the virtu-
ally moved boundary (marked with VM_BdFlag) and another Dirichlet boundary conditions
(BdVal) to the others boundary. It interpolate only the positives values of u.

The arguments are:
Mesh: The Mesh data structure.
VM_BdFlag: The flags of the virtually moved boundary.
VM_BdVal: The Dirichlet boundary conditions of the virtually moved boundary.
BdVal: The Dirichlet boundary conditions of the fixed boundary.
F_HANDLE: Right hand side source term (use: @f_LShap)
GD_HANDLE: Dirichlet boundary function (use: @g_D_LShapGeneric)
varargin: The options described above.

Boundary Layers

function Mesh = eval_Displacement_BDLayers(Mesh,BdFlags,L,varargin)
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A.2. Interpolation procedures

Perform the boundary layers interpolation described in the chapter 4.2.

The arguments are:
Mesh: The Mesh data structure.
BdFlags: The flags of the virtually moved boundary.
L: The numbers of layers involved in the interpolation.
varargin: The options described above.

Exponential around a circle

function Mesh = eval_Displacement_Exp(Mesh,R1,C1,R2,varargin)

Execute the exponential interpolation described in the chapter 4.5. The procedure set to 1 the
values that lie on the circle with radius R1 and center C1 and rescale the others values with the
procedure described in 4.5. The arguments are:
Mesh: The Mesh data structure.
R1: The radius of the inner circle.
C1: The center of the inner circle.
R2: Trhe radius of the outer circle.
varargin: The options described above.

Linear around a circle

function Mesh = eval_Displacement_Linear_Generic( Mesh , R1 , C1 , R2 , C2 , varargin )

Perform the conic interpolation described in the chapter 4.5. The values on the R1 are set to 1
and the others values are rescaled with the algorithm described in the chapter 4.5.

The arguments are:
Mesh: The Mesh data structure.
R1: The radius of the inner circle.
C1: The center of the inner circle.
R2: The radius of the outer circle.
C2: The center of the outer circle.
varargin: The options described above.

Exponential around a generic shape

function Mesh = eval_Displacement_Exp_Generic( Mesh , BdFlags , RI , RLim , varargin )
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A. Matlab functions

Perform the exponential interpolation procedure described in the chapter 4.4.

The arguments are:
Mesh: The Mesh data structure.
BdFlags: The flags of the virtually moved object.
RI: An user defined parameter.
RLim: The size of the shell.
varargin: The options decribed above.

Linear around a generic shape

function Mesh = eval_Displacement_Linear_Generic_Shape( Mesh , BdFlags , RLim , varargin )

Perform the exponential interpolation procedure described in the chapter 4.4.

The arguments are:
Mesh: The Mesh data structure.
BdFlags: The flags of the virtually moved object.
RI: An user defined parameter.
RLim: The size of the shell.
varargin: The options described above.

Coarsed displacement interpolation

function Mesh = virtual_Translation_MultiLevel(S,U,BdFlags,n,nref,MeshStart,Mesh,options,varargin)

Perform the coarsed displacement interpolation described in the chapter 4.6. Given the initial
Mesh data structure (MeshStart) it refine the Mesh for n steps.
Displace the nodes along the vector S by rescaling the values in U .
Continue the refinement process up to nref.

The arguments are:
S: The direction of the displacement. The magnitude of S is used as a maximal translation.
U: The interpolation rule, for example a solution.
BdFlags: The flags of the virtually moved object.
n: The number of refinement after which the displacement process is performed. nref : The
maximal number of refinement.
MeshStart: The original mesh data structure.
Mesh: The mesh data structure.
options: The option described above. In the others functions are stored in the ’varargin’ argu-
ment.
varargin: Should store the handler to the functions for projecting the new edges in MeshStart
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to the boundary:

Mesh = virtual_Translation_MultiLevel(S,[],-2,3,...
NREFS,MeshStart,Mesh,’sc’, ...
DHANDLE,{Center R},-1 , DHANDLE,{Center2 R2},-2, ...
DHANDLE,{Center R},-1 , DHANDLE,{Center2+S R2},-2) ;

The first set of functions is used before the displacement and the second set after.
Each function is described by three arguments: DHANDLE,Center R,-1
DHADLE are the handler to the functions, the list ... are the arguments and the last number is
the flag of the boundary.

A.3. Others functions

function New_Mesh = refine_REG_SB(Old_Mesh,varargin)

It performs one regular red refinement step on the MESH structure. During red refinement the
signed distance functions DHANDLE (function handle/inline object) are used to project the new
vertices on the boundary edges onto the boundary of the domain marked with the BDFLAG.
This function accept any arbitrary number of DHANDLE,DPARAMS,BDFLAG triples.

Example:

Mesh = refine_REG(Mesh,@dist_circ,{[0 0] 1},-1);
Mesh = refine_REG(Mesh, ...

@dist_circ,{[0 0] 1},-1,...
@dist_circ,{[0 1] 1},-2);

function U = Test_Solution( Mesh )

Compute the analytical solution of the problem described in the chapter 5.2.

A.4. Start a test

The followings routines run a single test on a configuration:

main_LFE_DQUAD.m
main_LFE_D_CIRCLES.m
main_LM.m
main_LFE_NSq.m
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A. Matlab functions

For changing the number of refinements and the intepolation procdedure see the first lines of
the code.

For starting a full test we must use the test functions:
These functions write all possible charts and information in a directory specified with the vari-
able ’dir_name’ (as a default log directory we use ’esp’). If you want to organize the test in a
subdirectory structure comment out the line ’dir_name = ’esp’ ;’ and the results will be
written in a subdirectory structure where the main directory is the ’testname’ and the subdirec-
tory is the name of the interpolation (for the maximal number of ref. and the test procedure see
the firsts lines of the code).

The test function are:
Test_VirtualWork_2.m: Start the comparison with the analitical solution.
Test_VirtualWork.m: Start the test with the translated inner circle.
Test_VirtualWorkLM.m: Start the a test with the LM structure.
Test_VirtualWorkLM_APosteriori.m: Start the a test with the LM structure by per-
forming an adaptive refinement.
Test_VirtualWork_Duo.m: Perform the test on the structure with two inner circles.
Test_VirtualWork_SQ.m: Test with an inner off-centres square.
Test_VirtualWork_SQ_APosteriori.m: Test with an inner off-centred square and a
posteriori refinement.
Test_VirtualWork_NSq_APosteriori.m: Perform the with two nested squares and
the BC described the new problem sheet.
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