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Abstract

In this Bachelor thesis, the problem of determining the coefficient q ∈ Q := {q ∈ L∞(Ω) :
0 < q ≤ q(x) ≤ q a.e. in Ω} such that it satisfies the Poisson equation

−∇ · (q∇u) = f in Ω
u = 0 on ∂Ω

for given inexact data uδ (instead of exact data u) with ‖u−uδ‖H1(Ω) ≤ δ is analyzed and
solved numerically. It is implemented in c++ using the Distributed and Unified Numerics
Environment (DUNE).

The origin of the ill-posed nature of this inverse problem is illustrated in 1D. In order
to remedy this ill-posedness, Tikhonov regularization is applied together with Morozov’s
Discrepancy Principle and, instead of trying to minimize the non-convex least-squares
Tikhonov functional, the new convex energy functional found in [1] is used.

Experiments performed with this implementation agree with the theory found in [5]: For
smooth coefficients a convergence rate of O(

√
δ) in the L2(Ω)-Norm is observed and for

non-smooth coefficients the reconstruction and the convergence rates are found to be much
worse.
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Chapter 1

Introduction

1.1 Problem formulation

Let f ∈ L2(Ω) be the load function for the Poisson problem and let U(q) ∈ H1
0 (Ω) denote

the forward solution for a given coefficient q ∈ Q := {q ∈ L∞(Ω) : 0 < q ≤ q(x) ≤
q a.e. in Ω}, i.e. U(q) satisfies

−∇ · (q∇U(q)) = f in Ω

U(q) = 0 on ∂Ω

in a weak sense. Then the coefficient identification problem at hand can be rewritten as
follows: Given inexact data uδ with ‖U(q) − uδ‖Y bounded by the noise level δ ≥ 0, i.e.
‖U(q)− uδ‖Y ≤ δ, find q ∈ Q such that

q ∈ arg min
q̃∈Q
‖U(q̃)− uδ‖2Y

1.1.1 Ill-posedness (in 1D)

To see that this problem is ill-posed (not well-posed) in the sense of Hadamard (see e.g.
[4, Definition 1.5.2]), consider the Poisson equation on Ω = [0, 1]:

−(q(x)u′(x))′ = f ∀x ∈ (0, 1)

u(0) = u(1) = 0

Solving for its coefficient yields

q(x) = −F (x)

u′(x)
(1.1.1.1)

where F (x) denotes the indefinite integral of the load function f(x).

Since it is assumed that the noise can be controlled in the H1
0 (Ω)-Norm, there are only

small perturbations in u′(x) almost everywhere. Nevertheless, this causes big changes in
q(x) w.r.t. the L2(Ω)-Norm, resulting from neighborhoods where u′(x) is small. From
u(0) = u(1) = 0 it follows that u′(x) = 0 somewhere, and, in a neighborhood of this x,
u′(x) is small.

Note that, in the absence of noise, the constant of the indefinite integral can (and must)
be chosen such that the singularity cancels.

1



1.1 Problem formulation 2

Example. Let f(x) = 1 and q(x) = 1. Then

(q(x)u′(x))′ = −f
u′(x) = −x+B

u(x) = −1

2
x2 +Bx+ C

Using that u(0) = u(1) = 0, one finds that D = 0 and C = 1
2 . Applying the solution

formula (1.1.1.1) to this u(x) = 1
2x(1− x) yields

q(x) =
F (x)

u′(x)
=
−x+A

−x+ 1
2

where A = 1
2 in order to have that q(x) ∈ Q ⊂ L∞(Ω).

There is only one constant that can be chosen such that a singularity is canceled, but
when noise is introduced there may be several zeros of u′(x), which implies ill-posedness.

1.1.2 Regularization

Since the problem at hand is an (ill-posed) inverse problem, regularization is needed in
order to get useful results. In this thesis, the functional to be minimized is regularized by
applying Tikhonov regularization, as discussed in [1] and [4, Section 7.4]. The resulting
minimization problem looks as follows:

Find q ∈ Q such that

q ∈ arg min
q̃∈X

1

2
‖U(q̃)− uδ‖2Y +

α

2
‖q̃ − q?‖2Q (1.1.2.1)

where q? is a guess for q, 0 < α ∈ R is the regularization parameter. Since the measurement
error can be controlled in the H1(Ω)-Norm, (1.1.2.1) is valid for Y := H1

0 (Ω).

The mapping
Rα : Y → Q

which maps a given uδ ∈ Y to q ∈ Q, such that (1.1.2.1) is minimized, defines a recon-
struction operator.

1.1.3 Morozov’s Discrepancy Principle

Determining the regularization parameter α of a reconstruction operator Rα correctly is
crucial in order to get good reconstruction results. One way to do so is called Morozov’s
Discrepancy Principle found in [4, Section 3.5]:

Let τ > 1 be a safety parameter, δ the noise-level i.e. ‖U(q)− uδ‖Y ≤ δ, and A the set of
valid parameters. Then

αd.p. := sup{α ∈ A : ‖U(Rα(uδ))− uδ‖Y ≤ τδ}

where U : Q→ Y denotes the forward operator.

In this thesis, Tikhonov regularization together with the Discrepancy Principle is used to
solve the inverse coefficient problem.



Chapter 2

Theory

2.1 Forward Operator (Poisson Equation)

The mapping U : Q→ Y , which maps a given coefficient q ∈ Q := {q ∈ L∞(Ω) : 0 < q ≤
q(x) ≤ q a.e. in Ω} to a weak solution u ∈ Y of

−∇ · (q∇u) = f in Ω
u = 0 on ∂Ω

(2.1.0.1)

is called the forward operator. The weak formulation of the problem looks as follows:

−〈∇ · (q∇u), v〉L2(Ω) = 〈f, v〉L2(Ω) ∀v ∈ V := H1
0 (Ω)

where V denotes the test function space. When applying Greens First Identity and making
use of the fact that v = 0 on ∂Ω, the integral over the boundary vanishes, yielding the
following reformulated problem:

Find u ∈ Y := H1
0 (Ω) such that

a(u, v) :=

∫
Ω
q(x)∇u∇v dx =

∫
Ω
fv dx =: l(v) ∀v ∈ V := H1

0 (Ω) (2.1.0.2)

Clearly, the bilinear form a : H1
0 (Ω) × H1

0 (Ω) → R is symmetric and positive definite.
Assuming that f ∈ L2(Ω) and q ∈ Q,

|l(u)|2 =

∣∣∣∣∫
Ω
fu dx

∣∣∣∣2
≤
∫

Ω
f2 dx

∫
Ω
u2 dx (Cauchy-Schwarz)

= ‖f‖2L2(Ω)‖u‖
2
L2(Ω) ≤ C‖∇u‖

2
L2(Ω) (Poincaré-Friedrichs)

≤ C

q
a(u, u)

Therefore, l(u) is a continuous linear functional on Ω with respect to the norm induced
by a(·, ·). According to Theorem 2.3.13 in [2], this implies existence and uniqueness of the
solution.

3



2.2 Minimization of the functional: Adjoint method 4

2.2 Minimization of the functional: Adjoint method

Finding the solution of the inverse coefficient problem at hand can be recast into the form
of an equality constrained minimization problem found in [3, Section 1.6]

min
(u,q)∈Y×Q

J(u, q)

s.t. e(u, q) = 0

where e(u, q) := −∇ · (q(x)∇u(x))− f and q ∈ Q for the Poisson equation.

The numerical solution of such a problem requires the gradient of the functional J(u, q)
with respect to the model parameter q. One method for computing this gradient is the
adjoint-state method, which will be discussed here. In [3, Section 1.6.2], the derivation of
the adjoint problem and the computation of the gradient is given as follows:

Let Ĵ(q) := J(U(q), q) denote the reduced functional, Q? the dual space of Q, and e(u, q)?

the adjoint of e(u, q). Then

〈Ĵ ′(q), s〉Q?,Q = 〈JU (U(q), q), U ′(q)s〉Y ?,Y + 〈Jq(U(q), q), s〉Q?,Q

= 〈U ′(q)?JU (U(q), q), s〉Q?,Q + 〈Jq(U(q), q), s〉Q?,Q

Making use of the linearity of 〈·, ·〉, this yields

Ĵ ′(q) = U ′(q)?JU (U(q), q) + Jq(U(q), q)

Using that e(U(q), q) = 0 by construction and differentiating one gets

eU (U(q), q)U ′(q) + eq(U(q), q) = 0

Therefore, U ′(q) = −eU (U(q), q)−1eq(U(q), q) and

Ĵ ′(q) = eq(U(q), q)?eU (U(q), q)−? (−JU (U(q), q)) + Jq(U(q), q)

By defining p(q) as the solution to the equation

eU (U(q), q)?p = −JU (U(q), q) (2.2.0.3)

the authors of [3] arrive at

Ĵ ′(q) = eq(U(q), q)?p(q) + Jq(U(q), q)

where (2.2.0.3) is called the adjoint problem.

2.3 Adjoint Problem and Gradient Computation

2.3.1 Adjoint Problem

As can be seen above, the adjoint problem reads

eU (U(q), q)?p = −JU (U(q), q)
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where, in this case,

e(u, q) := −∇ · (q(x)∇u(x))− f

J(u, q) :=
1

2
‖u− uδ‖2Y +

α

2
‖q − q?‖2Q

and the weak formulation for e(u, q) is

〈e(u, q), v〉L2(Ω) = 〈q(x)∇u,∇v〉L2(Ω) − 〈f, v〉L2(Ω) = 0 ∀v ∈ H1
0 (Ω)

Using that the derivative of e(U(q), q) w.r.t. U is eU (U(q), q)h = −∇ · (q(x)∇h) and since

〈eU (U(q), q)h, v〉L2(Ω) = 〈−∇ · (q(x)∇h), v〉L2(Ω)

= 〈q(x)∇h,∇v〉L2(Ω)

= 〈h, eU (U(q), q)v〉L2(Ω) ∀v ∈ H1
0 (Ω)

one sees that it is self-adjoint.

For the second term, one gets

J(U(q), q) =
1

2
〈U(q)− uδ, U(q)− uδ〉Y +

α

2
〈q − q?, q − q?〉Q

JU (U(q), q)h = 〈U(q)− uδ, h〉Y

In summary, the adjoint problem reads: Find p ∈ H1
0 (Ω) such that∫

Ω
q(x)∇p∇v dx = −〈U(q)− uδ, v〉Y ∀v ∈ H1

0 (Ω) (2.3.1.1)

2.3.2 Gradient Computation

In order to calculate Ĵ ′(q), two more terms are required: eq(u, q)
? and Jq(u, q).

eq(u, q)h = −∇ · (h∇u)

Jq(u, q)h = α〈q − q?, h〉X

The adjoint of the first term is found as follows

〈eq(u, q)?h, v〉L2(Ω) = 〈h, eq(u, q)v〉L2(Ω)

= 〈∇h, v∇u〉L2(Ω)

= 〈∇h∇u, v〉L2(Ω)

In summary, the following two subproblems have to be solved in order to calculate the
gradient of the functional:

1. Solve the adjoint problem (2.3.1.1), i.e. find p(x)

2. Calculate Ĵ ′(q)h = 〈∇p∇u, h〉L2(Ω) + α〈q − q?, h〉X
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2.4 Energy Functional

Since the task of minimizing a non-convex functional is difficult, a convex alternative to the
standard least-squares functional is used, namely the energy functional from [1] together
with Tikhonov regularization:

Ĵ(q) =
1

2

∫
Ω
q(x)|∇(U(q)− uδ)|2dx+

α

2
‖q − q?‖2L2(Ω) (2.4.0.1)

In [1], Háo and Quyen prove that the energy functional is convex on the set Q := {q ∈
L∞(Ω) : 0 < q ≤ q(x) ≤ q a.e. on Ω}. Furthermore, they prove that the Tikhonov
functional (2.4.0.1) is strictly convex and has a unique minimizer on Q. They even give a
proof for the following theorem (Theorem 2.3 in [1]):

Theorem 2.4.0.1. Assume that there exists a function w? ∈ H−1(Ω) such that q − q? =
U ′(q)?w?. Then

‖qδα − q‖L2(Ω) = O(
√
δ) and ‖U(qδα)− uδ‖L2(Ω) = O(δ)

as α→ 0 and α ∼ δ.

stating that under the source condition above, a convergence of the regularized solution
with noisy data uδ to the real solution q is guaranteed to occur at a rate of O(

√
δ) as

δ → 0.

Using this functional (instead of the least-squares functional) introduces a small change
in the gradient computation; namely from using the H1(Ω)-Norm for the right-hand side
of the adjoint problem to using the Energy norm, defined as

‖u‖2a := a(u, u)

where a(·, ·) is the bilinear form of the weak formulation of the forward problem (2.1.0.2).
Therefore, the adjoint problem now reads

Find p ∈ H1
0 (Ω) such that

a(p, v) = −a(U(q)− uδ, v) ∀v ∈ H1
0 (Ω)

and the adjoint solution is simply p = uδ − U(q).



Chapter 3

Implementation

3.1 Forward Operator

The discrete forward operator UN : Q→ YN , which maps a given coefficient q ∈ Q to the
solution uN ∈ YN satisfying the weak formulation (2.1.0.2) of the Poisson equation, was
implemented using P1 finite elements on a triangular mesh MN . Let BN = {b1N , ..., bNN}
denote the basis. Together with the weak formulation one gets the stiffness matrix A ∈
RN×N :

Aij =

∫
Ω
q(x)∇bjN (x)∇biN (x)dx

and the right-hand side vector ϕ ∈ RN :

ϕi =

∫
Ω
f(x)biN (x)dx

Instead of looping over the nodes and integrating over all adjacent entities of co-dimension
0, the loop is done over the co-dimension 0 entities. When the integration over one element
is done, the contributions are distributed to the corresponding nodes, making the assembly
much more efficient since each element is considered only once.

This way of doing the assembly is why one needs the local matrix for entity K ∈ MN ,
which was found in [2, Section 3.6]

AKij =

∫
K̂
DΦ−1q(Φ(x̂))DΦ−T∇b̂jN∇b̂

i
N |detDΦ|dx̂

where (̂·) denotes (·) on the reference element and Φ : K̂ → K defines the mapping from
the reference triangle K̂ to K.

This mapping and the underlying mesh are accessed through the Dune interface, allowing
for a flexible use of different grid implementations. The resulting linear system of equations
is solved using the Pardiso linear solver (PARDISO 5.0.0 Solver Project: http://www.

pardiso-project.org/).

3.2 Coefficient estimation

The coefficient q ∈ Q was discretized using a P1 finite element approximation as well. Let
qN (x) ∈ QN denote the finite dimensional approximation of q(x) and biN (x) ∈ BN , i =

7

http://www.pardiso-project.org/
http://www.pardiso-project.org/
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1, ..., N the P1 finite element basis functions. Then

qN (x) =
N∑
i=1

νib
i
N (x), νi ∈ R

Therefore, the N coefficients νi ∈ R have to be found by minimizing the Tikhonov func-
tional with the correct Tikhonov parameter αd.p. satisfying the Discrepancy Principle.
This is done by choosing α0 = 1 as an initial value and then, in each iteration i, minimiz-
ing the Tikhonov functional with αi = ρ · αi−1, ρ ∈ (0, 1), until the Discrepancy Principle
is fulfilled for αi = αd.p..

The minimization of the Tikhonov functional is done using a nonlinear conjugate gradient
method using the Armijo-Goldstein rule for the inexact line search algorithm. Since it may
happen that qN /∈ QN during the iteration procedure, the method found in [3, Section
2.2.2] is used: qN is projected onto QN prior to evaluating the functional to be minimized.
This guarantees a valid forward solution for all iterates.

Solving this problem directly on a fine mesh is not feasible without having a good a priori
guess of the Tikhonov parameter α available, since finding the minimizer of the Tikhonov
functional for a given α > 0 is very time consuming and the search for αd.p. requires many
converged CG runs. Therefore, an iterated mesh-refinement approach is used: The full
problem (finding αd.p. and the corresponding minimizer qN ∈ QN ) is solved on a coarse
mesh MN . Then the solution qN is projected onto the refined mesh (using the embedding
of the finite element spaces). If necessary, the Tikhonov parameter is adapted until the
Discrepancy Principle is satisfied again. This process is carried out repeatedly, until a
sufficiently fine mesh has been reached.

The basic outline of the program (in pseudo-code) looks as follows:

1 function q = f i n d C o e f f i c i e n t ( no i s e l e v e l , u measured )
2 alpha =1;
3 q=qguess ;
4 for r e f i n e d =1: tota lRe f inementSteps
5 Mesh . r e f i n e ( ) ;
6 # p r o j e c t q onto the new ( f i n e r ) mesh ; s t a r t minimizat ion the re
7 q=projectToMesh (q , Mesh) ;
8

9 while ! ( r e s i d u a l ∼ tau∗de l t a )
10 # s t a r t i t e r a t i o n with q from prev ious s tep and minimize

the f u n c t i o n a l :
11 [ r e s i d u a l , q]= minimizeFunct ional (Mesh , q , alpha , u

measured , qguess ) ;
12 # adjus t r e g u l a r i z a t i o n parameter based on r e s i d u a l
13 alpha∗=alphaFactor ( r e s i d u a l , tau∗de l t a ) ;
14 end
15 end
16 return q ;
17 end

Listing 3.1: Program in pseudo-code

Where u measured := uδ is found by adding noise to the exact solution U(qexact) on the
finest mesh and then projecting it onto the coarser meshes.



Chapter 4

Experiments

In order to test the implementation, several experiments were performed. The performance
of the Discrepancy Principle (τ = 2.5) with respect to convergence in the noise level will be
analyzed next. Furthermore, the quality and convergence of reconstructions of coefficients
of different smoothness will be assessed in a quantitative and qualitative manner. Finally,
the effect of using an H1(Ω)-Tikhonov term instead of the L2(Ω)-term is studied.

In the following experiments f = 1 is used as a load function for the Poisson problem
unless stated otherwise.

4.1 Convergence in the noise level

One expects a convergence rate of O(
√
δ) in the L2(Ω)-Norm as δ → 0 if the assumption

in (2.4.0.1) is satisfied. To determine the regularization parameter α > 0, the Discrepancy
Principle is used, which, according to [5], can give a convergence rate of O(

√
δ) if the

sought coefficient satisfies a smoothness assumption. The following two experiments were
conducted in order to demonstrate this.

4.1.1 High-regularity coefficient

Firstly, a coefficient with high regularity, namely

q(x) = 0.5 + 0.2 · cos(4π‖R‖), where R := (x1 − 0.3, x2 − 0.5)T

with an initial guess qguess(x) = 0.6 shall be considered on Ω = [0, 1]2 using a triangular
mesh with N = 33′025 nodes. The program was run at different noise levels δ in order to
investigate the convergence of qδα to the exact solution q in the L2(Ω)-Norm.

9
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Figure 4.1: High regularity: Convergence in L2(Ω)

The convergence is exactly as expected. Also, even with 5% of noise added to the forward
solution, the qualitative reconstruction of the coefficient is quite good:
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Figure 4.3: Exact and reconstructed solutions for different noise levels

4.1.2 Low-regularity coefficient

Next, convergence to a solution with less regularity is investigated. This time, the following
coefficient is used:

q(x) =


0.8 , if x ∈ [0.5, 0.7]2

or x ∈ [0.1, 0.3]2

or x ∈ [0.1, 0.2]× [0.8, 0.9]
0.5 , else

The calculations are performed on the same mesh as before, in order to be able to com-
pare the reconstruction process of a low-regularity coefficient to one of a high-regularity
coefficient. Also, the same noise levels δ are used.

The L2(Ω)-convergence in this case looks as follows:
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Figure 4.4: Low regularity: Convergence in L2(Ω)

One can clearly see that the low regularity of the solution has a big impact on the conver-
gence rate in the noise level. The rate went from 0.5 down to 0.33, which is quite drastic.
This can also be observed qualitatively in the following 3D plots of the reconstructed
solutions:
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Figure 4.5: Exact and reconstructed solutions for different noise levels

With noise levels greater than 1%, the reconstruction is very bad and the guess of qguess(x) =
0.6 dominates. This is due to the large reconstruction parameter α chosen by the Discrep-
ancy Principle.

The reason for the poor performance of Morozov’s Discrepancy Principle in this case is
that the smoothness assumption on the solution of the inverse problem is violated.
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4.1.3 Localized slow convergence of the CG method

The reconstructions showed very slow convergence in the middle of the domain for both
coefficients. Even for small noise levels, there is an intersection of rays near the center.
Along these rays, the CG method converges very slowly.
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(b) Non-smooth coefficient

Figure 4.6: Both coefficients at δ = 1.e− 4

The nonlinear conjugate gradient method needs many more steps before these rays get
smaller. Requiring this small additional accuracy would result in a very long runtime with
little benefit.

A possible reason for this behavior was already mentioned in the introduction: In the 1D
problem, the coefficient was given by

q(x) = −F (x)

u′(x)

and therefore, even small noise can make it impossible to find q(x) where u′(x) ≈ 0.
Looking at the exact forward solutions U(q), one sees that there is a maximum near
the center in both cases, resulting in |∇u(x)| ≈ 0 in that neighborhood. It could be a
coincidence that the peaks in the coefficients and the maxima of the forward solutions
both appeared near the center. Therefore, this is investigated further.
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Figure 4.7: Exact forward solutions for both coefficients
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In order to verify the hypothesis above, a different load function is used. The function
f(x) = 1 is replaced by

f(x) =

{
3 if x ∈ [0.5, 1]2
1
3 else

The goal being to relocate the maximum of the forward solutions U(q), which now look
as follows:

0

0.210212

0.1

0.2

u(x)

(a) u(q) for smooth coeff.
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(b) u(q) for non-smooth coeff.

Figure 4.8: Forward solutions for the new load function

It is of interest to see, whether this has an influence on the location of the intersection of
the rays in the reconstructed coefficients, which look as follows:
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Figure 4.9: Both coefficients at δ = 1.e− 4 (new load function)

Now, the rays intersect more to the top-right. The intersections are again located at
the maximum of their corresponding forward solution, where |∇u(x)| ≈ 0. This strongly
suggests that the rays and peaks result from the fact that the coefficient cannot be recon-
structed where the gradient of u vanishes.

4.1.4 Choice of Tikhonov parameter using the Discrepancy Principle

It is interesting to see whether there is an analytic relationship between the noise level δ
and the Tikhonov parameter α chosen by the Discrepancy Principle in the experiments
above and also, whether there is a difference between the smooth and the non-smooth
coefficient.
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The Tikhonov parameter α plotted against the corresponding noise level δ looks as follows:
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Figure 4.10: Reconstruction parameter chosen by the D.P. as a function of δ

For the smooth coefficient the choices of α behave like a power law in δ. The reconstruction
parameters chosen in the non-smooth case do not show this behavior and they are always
greater than the corresponding α for the smooth coefficient. This already shows that a
good qualitative reconstruction cannot be expected for the low-regularity coefficient.

Also, the non-smooth coefficient with a noise level of 5% illustrates quite well that the
continuous dependence of the solution on the data is not given: Despite the comparatively
large reconstruction parameter, the residual is already small enough to fulfill the Discrep-
ancy Principle, resulting in a reconstructed coefficient that is still very close to the initial
guess (and far from the actual solution).

4.2 H1(Ω)-Tikhonov term

In this experiment, the L2(Ω)-Norm of the Tikhonov term is replaced by the H1(Ω)-Norm.
This change of (2.4.0.1) results in the following new functional to be minimized by the
nonlinear CG method:

Ĵ(q) =
1

2

∫
Ω
q(x)|∇(U(q)− uδ)|2dx+

α

2
‖q − q?‖2H1(Ω) (4.2.0.1)

The idea behind using this new functional is that, due to the smoothing property of the
H1-term, the peaks and rays observed in the previous experiments should become less
pronounced or even disappear altogether.

The problem with this functional is that it seems to be much harder to minimize, as the
CG method takes much longer to converge. Therefore, the calculations were carried out
on a mesh of Ω = [0, 1]2 with N = 8′321 instead of N = 33′025. In order to be able to
compare the results, the experiments using the L2(Ω)-Tikhonov term are carried out on
this mesh as well.

Since the H1(Ω) regularization is much stronger than L2(Ω), the Discrepancy Principle
parameter τ is adjusted to τ = 1.2. For the L2-case, it is still set to 2.5.
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The convergence rates in the L2(Ω)-Norm for this new functional with respect to the noise
level δ looks as follows:
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Figure 4.11: New functional: Convergence in L2(Ω)

The striking difference to the previous experiments is that for very low noise levels, the
low regularity reconstruction gets worse. This is most likely due to the fact that the
reconstructed coefficients are smooth, unlike the exact solution in this case. For the
smooth coefficient one observes even better convergence, since the additional smoothening
introduced by the new Tikhonov term works in favor of the reconstruction.

Although these convergence plots do not look very promising, the quantitative and qual-
itative reconstructions are actually better, even for the non-smooth coefficient: The con-
vergence rates may be about equal, but the errors are smaller over all, which can be seen in
a direct comparison between the two functionals (2.4.0.1 and 4.2.0.1) and their respective
convergence fits:

0.001

0.01

0.1

0.0001 0.001 0.01 0.1

L
2
-E

rr
or

δ

H1-Tikhonov
L2-Tikhonov
H1-Tikhonov
L2-Tikhonov

Figure 4.12: Convergence in L2(Ω): Comparison between the two functionals

This can be observed qualitatively by comparing the following 3D plots of the reconstructed
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coefficients for both functionals. First, the high-regularity coefficient:
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Figure 4.13: Comparison of the two functionals for the high-regularity coefficient

The reconstructions for the low-regularity coefficient also look a lot better when using the
H1(Ω)-Tikhonov term:
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Figure 4.14: Comparison of the two functionals for the low-regularity coefficient

The solutions associated with the L2(Ω)-Tikhonov term show strong oscillations, which
result from the high-frequency measurement-noise. The smoothing property of the H1(Ω)-
Norm takes care of these, allowing to choose the Discrepancy Principle parameter τ much
smaller, without getting solutions that are dominated by these oscillations. This results
in more accurate reconstructions both quantitatively and qualitatively.



Chapter 5

Summary

The inverse coefficient problem of determining q ∈ Q ⊂ L∞(Ω) such that the Poisson equa-
tion is satisfied in a weak sense was implemented successfully in c++ using the Distributed
and Unified Numerics Environment (DUNE) and the Pardiso linear solver.

The search for the minimizer of the energy functional from [1] was implemented using a
nonlinear conjugate gradient method. The gradient of the functional was determined with
the adjoint-state method. A disadvantage of using CG is the slow convergence on rays
from the boundary to where ∇u(x) ≈ 0, which could be solved by requiring more accuracy
or by using an H1(Ω)-Tikhonov term, both resulting in longer run times. An advantage
of CG is that it does not require the Hessian, which allows solving much bigger problems
since no dense matrix operations are required.

The experiments performed with the resulting code were in good agreement with the theory
of nonlinear ill-posed operator equations: Good convergence in the noise level was observed
for smooth coefficients, i.e. O(

√
δ), and slow convergence for non-smooth coefficients. This

was expected since the discrepancy principle, which was used as a parameter choice rule,
requires a certain degree of smoothness to be order-optimal. Also, when using an H1(Ω)-
Tikhonov term (instead of L2(Ω)), the reconstructions got better, at the cost of longer
run times.
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