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Abstract

This thesis studies the regularity property of the stationary incompressible Navier-Stokes equation (NSE)
with various homogeneous boundary conditions in a polygonal domain Ω ⊂ R2 and examines the per-
formance of mixed hp-discontinuous Galerkin finite element method (hp-DGFEM) on the equation with
only Dirichlet boundary condition. We will show that given sufficiently small and weighted analytic data
there will be a unique and weighted analytic solution to the equation. Also, we justify that with the ana-
lyticity of the solution and with geometrically refined meshes following corresponding linearly increasing
polynomial orders, hp-DGFEM leads to exponential convergence of the numerical solution.



Freedom does not consist in any dreamt-of independence from natural laws, but in the knowledge of these laws,
and in the possibility this gives of systematically making them work towards definite ends.



Contents

1 Introduction 1
1.1 The stationary incompressible Navier-Stokes equation, analytic regularity . . . . . . . . . 1
1.2 The hp-DGFEM method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I Analytic regularity of the solution 4

2 Preliminaries 5
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Underlying domain, function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Weak formulation of stationary incompressible NSE in Ω 8
3.1 The incompressible NSE with homogeneous boundary conditions . . . . . . . . . . . . . . 8

4 Stokes problem in the sector S∞ 13
4.1 Polar-coordinate form in the sector S∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Parametric boundary value problem on the strip D and the interval (0, ω) . . . . . . . . . 18
4.3 Parametric Norms |‖ · ‖|2Hk(I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 A priori estimate on the entire line R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 A priori estimate on R+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 A priori estimate on the interval I = (0, ω) . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Analysis on the operator pencil [L̂, B̂] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8 Regularity of the Stokes problem in the infinite sector . . . . . . . . . . . . . . . . . . . . 26

5 Analytic regularity of the incompressible stationary NSE 29
5.1 Auxiliary Stokes problem in a truncated sector . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Analytic regularity over Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II hp-DGFEM Discretization 58

6 hp-DGFEM Discretization of the stationary incompressible NSE 59
6.1 Meshes and finite element space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Trace operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Corner elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Lifting operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5 Discretization on the variational problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Existence and uniqueness of the discrete solution 64
7.1 Properties of discrete forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Existence and uniqueness of discrete solutions . . . . . . . . . . . . . . . . . . . . . . . . . 65

5



8 Error analysis 66
8.1 Weak residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2 Quasioptimality of the discontinuous Galerkin method . . . . . . . . . . . . . . . . . . . . 68

9 Exponential rate of convergence 72
9.1 Geometrical meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.2 Exponential convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10 Discussion on main results 76
10.1 Discussion on Theorem 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.2 Discussion on Theorem 9.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Eigenvalues and eigenvectors of the operator pencil [L̂, B̂] 78
A.1 Determination of the eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . 78



Chapter 1

Introduction

This chapter serves as an introduction to the topics discussed after and to the structure of the thesis.

1.1 The stationary incompressible Navier-Stokes equation, an-
alytic regularity

In Part 1(Chapter 2-5) of this thesis, we study the following stationary incompressible Navier-Stokes
equation (NSE) in a 2-dimensional polygon domain Ω with homogeneous Dirichlet, slip and(or) Neumann
boundary conditions (details of those conditions will be introduced in Chapter 3):

−ν∆u + (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in ∂Ω.

In this thesis we always assume that Dirichlet condition is on at least one side of the boundary ∂Ω. This
equation is frequently used in the modelling of viscous, incompressible flow.

The following Stokes equation, which can be considered as a linearized version of stationary NSE, is
also of interest:

−ν∆u +∇p = f in Ω,

∇ · u = 0 in ∂Ω.

One of the central topics in this thesis is to investigate on the (analytic) regularity of the solution to the
stationary incompressible NSE in a polygon given analytic data. This is very important in the study of
numerical methods (e.g. hp-DGFEM which will be studied later in this thesis) to this equation as higher
regularity of the solution usually implies higher order of convergence with carefully chosen numerical
methods and in the case of analytic regularity, exponential rate of convergence (See, for example, [15]).
A systematic treatment of the NSE or Stokes problem could be found in [27, 43, 14, 12].

For the regularity of the solution to the stationary incompressible NSE or the Stokes equation, if the
underlying domain Ω has smooth boundary ∂Ω, then we have classical interior and boundary regularity-
shift results for both equations, see [12, Chapter IV and IX] and the references therein. Moreover,
analyticity in interior area or regular part of boundaries for both equations are possible given analytic
data, see [31, Chapter 6]. We also refer to [29, 20, 13] for analyticity of the solution to the stationary
incompressible NSE.

Things become more complicated when we deal with the polygonal domain Ω as standard regularity
results of elliptic equations do not work even if data is regular (f ∈ L2(Ω)2 does not imply (u, p) ∈
H2(Ω)2 ×H1(Ω)) and the key reason for that is about the corner singularities. This issue triggered the
study about the regularity theory of incompressible stationary NSE or Stokes equations in polygons (or
polyhedral domains in 3-dimensional case) over the past several decades.

1



2 CHAPTER 1. INTRODUCTION

Some studies were conducted in the standard Sobolev spaces: In [22] it was shown that for the Stokes
equation in convex polygon with only zero Dirichlet boundary condition (u, p) ∈ H2(Ω)2 × H1(Ω) can
be ensured given f ∈ L2(Ω)2. [8] studies the Hs-regularity of the solution to Stokes equation with zero
Dirichlet boundary condition where s is possibly a non-integer. See also [25] for the regularity results of
the Stokes equation or NSE in 3-dimension.

For elliptic problems, the singularities near the corner usually contain power-logarithm form[24].
Therefore, it is easy to understand that a powerful tool to remedy the singularities is the weighted
Sobolev spaces, which weights the derivatives with powers of the distance to the singular points. The
Kondrat’ev spaces W k

β (Ω), introduced in the pioneer work [23], are applied to Stokes equation and
stationary incompressible NSE in [33, 32]. For the application of the Kondrat’ev spaces to other elliptic
problems with corner singularities, see [30, 7].

Another type of weighted Sobolev spaces Hk,l
β (Ω), which was introduced in [4], has more flexibility

in weighting derivatives than Kondrat’ev spaces and thus is a better choice for describing the regularity
for elliptic problems. The weighted analytic function spaces Blβ(Ω) was also defined in this reference

based on Hk
β (Ω). These spaces were used to study the stationary Stokes problem in [17] and regularity-

shift theorem as well as analyticity of the solution were obtained using Hk,l
β (Ω) and Blβ(Ω) here. The

analyticity of the solution to stationary incompressible NSE with zero no-slip boundary condition was
justified recently in [28] using the weighted spaces K$,sγ (Ω) with s > 2, which can be regarded as the

non-Hilbertian version of Blβ(Ω). See also [16] for the usage of these spaces in elastic problem and [7] for
general elliptic problems.

In Chapter 2-5, we try to extend the result in [17, 28] to the stationary incompressible NSE with

mixed homogeneous boundary conditions using Hilbertian spaces Hk,l
β (Ω) and Blβ(Ω) and Theorem 5.2.1

is the main result for this part.

1.2 The hp-DGFEM method

Part 2 (Chapter 6-9) of this thesis will be dedicated to the numerical analysis of the stationary incom-
pressible NSE using the hp-DGFEM method.

hp-DGFEM combine h-refinement (reducing the size of specific elements towards singular points of
the analytic solution), p-refinement (increasing the order of the polynomial used for approximation), and
discontinuous approximation functions. Here the first two ingredients help to achieve exponential conver-
gence in solving many modelling problems with singularities given that the solution exhibits analyticity
or weighted analyticity (see, for example, [15] for general weighted analytic solutions or [40] for the Stokes
equation in a polygon) while h-refinement or p-refinement alone only leads to algebraic convergence rates
given strong regularity assumption (e.g. (u, p) ∈ Hk(Ω)2 × Hk−1(Ω) for k ∈ N≥2 in Stokes system).
Moreover, the discontinuous approximation functions admit the possibility to use irregular mesh so that
there are more choices for the mesh design. Therefore, hp-DGFEM is a perfect candidate for the resolu-
tion of the stationary incompressible NSE. Recently, [36] showed that hp-DGFEM achieves exponential
convergence for the stationary incompressible NSE with zero no-slip condition.

In Chapter 6-9, we will study the well-posedness, quasioptimality the the exponential convergence of
the hp-DGFEM discretization proposed in [36] on the stationary incompressible NSE with zero no-slip
condition and Theorem 9.2.1 is the main result.

1.3 Outline of the thesis

In Chapter 2, we set related notations and define some useful function spaces, these notations and spaces
follow mainly from [17, 36]. Chapter 3 studies the existence and uniqueness of the stationary incompress-
ible NSE with mixed homogeneous boundary condition. We mainly follow [33] here. Chapter 4 examines
the strain formulation of the Stokes equation in a sector. We extend the existence, uniqueness and regu-
larity results in [17] to three possible boundary conditions. This chapter will serve as a preparation for
the next chapter on the regularity analysis of NSE in a sector. Chapter 5 dedicates to the proof of the
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weighted analyticity of the solution. Chapter 6 introduces a hp-DGFEM discretization to the stationary
incompressible NSE with zero Dirichlet boundary condition. In Chapter 7 we present the proof of the
existence and uniqueness of the numerical solution to the discretization proposed before. In Chapter 8
we derive abstract error analysis for piecewise analytic solutions. Chapter 9 justifies that the hp-DGFEM
discretization proposed before achieves exponential convergence in solving NSE. And the final chapter,
Chapter 10, will serve as a conclusion to this thesis, it also contains some further discussion to the main
results.



Part I

Analytic regularity of the solution
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Chapter 2

Preliminaries

2.1 Notations

We firstly introduce some notations that will be used below. The notations here mainly follow from
[36]. We denote by N the set of all nonnegative integers and N≥k the set of all integers that are larger
than or equal to k. For v,w : Ω ⊂ R2 → R2 and σ, τ : Ω ⊂ R2 → R2×2, we write (∇v)ij = ∂jvi,

(∇ · σ)i = ∂1σi1 + ∂2σi2, σ : τ =
∑2
i,j=1 σijτij and (v ⊗ w)ij = viwj . Also, v · w corresponds to inner

product. It is easy to establish the identity (σw) ·v =
∑2
i,j=1 viσijwj = σ : (v⊗w). For v : Ω ⊂ R2 → R3,

we define (v)12 := (v1, v2)t and (v)3 := v3. For a multi-index α ∈ N2, α = (α1, α2), we write |α| = α1+α2,
Dα = ∂α1

x1
∂α2
x2

and Dα = ∂α1
r ∂α2

θ and for any n ∈ N0 we denote by
∑
|α|≤nA(α) the sum of all A(α)

satisfying |α| ≤ n. For n ∈ N, β = (β1, β2, · · · , βn) ∈ Rn and γ ∈ R, we allow componentwise operation
and we write γ > (<)β if γ > (<)βi. We denote the Euclidean distance between sets and (or) points by
d(·, ·) and the diameter of a set A by diam(A). For two quantities A and B, we write A ' B if there
exists a constant C > 0 which is independent of discretization parameters such that CA ≤ B ≤ C−1A.
For any set V , |V | describes the cardinal number of V .

2.2 Underlying domain, function spaces

Let Ω be a polygon with n vertices Ai and n open edges Γi, those vertices and edges are placed in
clockwise order with respect to the indices. For 1 ≤ i ≤ n, Γi connects Ai and Ai+1. We always
understand the index i modulo n in this thesis. Let D, G and N be disjoint subsets of {1, 2, · · · , n} such
that D∪G ∪N = {1, 2, · · · , n}. We further assume throughout this thesis that D 6= ∅. Set ΓD = ∪i∈DΓi,
ΓG = ∪i∈GΓi and ΓN = ∪i∈NΓi, then ΓD, ΓG and ΓN are either empty or a finite union of one or several
Γi and they together constitute the boundary of Ω. Moreover, |ΓD| > 0. We denote by ωi ∈ (0, 2π) the
angle at Ai and assume that if ωi = π then the two edges Γi−1 and Γi cannot be in the same set ΓD, ΓG
or ΓN . Furthermore, we do not allow, for any i ∈ N≥1, that both {i, i + 1} ⊂ N ∪ G and {i, i + 1} 6⊂ G
hold.

We define the weight function

Φβ+k =

n∏
i=1

(ri(x))βi+k,

with ri(x) := d(x,Ai).
Given a domain U ⊂ Ω with Lipschitz boundary, we denote by Wn,p(U) for n ∈ N and p ≥ 1 the usual

Sobolev space (if p = 2 we may write Hn(U) alternatively) and by Cn,γ(U) for n ∈ N and µ ∈ [0, 1] the
Hölder space. We write f ∈ Cn,µloc (U)(H1

loc(U)) if f |Ũ ∈ Cn,γ(Ũ)(H1(Ũ), respectively) for any compact

subset Ũ ⊂ U .
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6 CHAPTER 2. PRELIMINARIES

We now define some function spaces to describe the singularities near corners. These spaces were
introduced in [23, 4, 16, 17].

Definition 2.2.1 (Function spaces on a finite or infinite sector). For a sector Sδ := {(r, θ) : 0 < r <

δ, 0 < θ < ω} where δ <∞ or δ =∞ and for two integers k ≥ l ≥ 0, we denote by Hk,l
β (Sδ) the weighted

Sobolev spaces equipped with norm

‖u‖2
Hk,lβ (Sδ)

:= ‖u‖2Hl−1(Sδ)
+

k∑
|α|≥l

‖rβ+|α|−lDαu‖2L2(Sδ)
,

and we denote by H k,l
β (Sδ) the weighted Sobolev spaces equipped with the norm

‖u‖2
H k,l
β (Sδ)

:= ‖u‖2Hl−1(Sδ)
+

k∑
|α|≥l

‖rβ+α1−lDαu‖2L2(Sδ)
.

In above norms the term ‖u‖2Hl−1(Ω) shall be omitted if l = 0.

We denote by W k
β (Sδ) the weighted Sobolev spaces equipped with the following norm:

‖u‖2Wk
β (Sδ)

=
∑
|α|≤k

‖rβ+α1−k|Dαu|‖2L2(Sδ)
.

Finally, given two fixed constants C, d ≥ 1, we also define the countably normed spaces Blβ(Ω, C, d) by

Blβ(Sδ, C, d) := {u ∈ ∩k≥lHk,l
β (Sδ) : ‖rβ+k−lDαu‖L2(Sδ) ≤ Cd

k−l(k − l)! for |α| = k ≥ l}.

The spaces Bl
β(Sδ, C, d) are defined similarly as

Bl
β(Sδ, C, d) := {u ∈ ∩k≥lH k,l

β (Sδ) : ‖rβ+α1−lDαu‖L2(Sδ) ≤ Cd
k−l(k − l)! for |α| = k ≥ l}.

We usually omit C, d if they are not emphasized.

Definition 2.2.2 (Function spaces on an infinite strip). For a strip D = {(t, θ) : t ∈ R, 0 < θ < ω}, a
nonnegative integer k and any h > 0, we define Hk

h(D) := {u ∈ L2(D), ‖u‖Hkh(D) < +∞} with the norm
defined by

‖u‖2Hkh(D) :=
∑
|α|≤k

∫
D

e2ht|Dαu|2dtdθ.

Definition 2.2.3 (Function spaces on a polygon). Given a polygon Ω ⊂ R2 with finite edges. For two

integers l ≥ k ≥ 0, we denote by Hk,l
β (Ω) the weighted Sobolev spaces equipped with norm

‖u‖2
Hk,lβ (Ω)

:= ‖u‖2Hl−1(Ω) +

k∑
|α|≥l

‖Φβ+|α|−lD
αu‖2L2(Ω)

where the term ‖u‖2Hl−1(Ω) shall be omitted if l = 0. We write also Lβ(Ω) for H0,0
β (Ω).

For two fixed constants C, d ≥ 1, we also define the countably normed spaces Blβ(Ω, C, d) by

Blβ(Ω, C, d) := {u ∈ ∩k≥lHk,l
β (Ω) : ‖Φβ+k−lD

αu‖L2(Ω) ≤ Cdk−l(k − l)! for |α| = k ≥ l}.

C, d may be omitted if the dependence on them is not considered.
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Definition 2.2.4 (Trace spaces). For a sector Sδ := {(r, θ) : 0 < r < δ, 0 < θ < ω} where δ < ∞ or
δ =∞ and for an edge Γ := {r = 0 or ω}, we define the following trace spaces:

‖g‖
W
k− 1

2
β (Γ)

= inf
G|Γ=g

‖G‖Wk
β (Sδ)

.

We state here two useful lemmas about the relations between those function spaces defined above.

Lemma 2.2.5. For l = 0, 1, 2 and k ∈ N, if β ∈ (0, 1), then

u ∈ Hk,l
β (Sδ)⇐⇒ u ∈H k,l

β (Sδ), u ∈ Blβ(Sδ)⇐⇒ u ∈ Bl
β(Sδ).

This Lemma is shown in the proof of [4, Theorem 1.1, Theorem 2.1].

Lemma 2.2.6. • W 1
β (Sδ) = H1,1

β (Sδ).

• v ∈ H2,2
β (Sδ) and v(0) = 0 imply v ∈W 2

β (Sδ).

• W 2
β (Sδ) ⊂ H2,2

β (Sδ) ⊂ C0(Sδ) where δ < +∞.

For proof see [4, Lemma A.2] and [5, Lemma 2.1]



Chapter 3

Weak formulation of stationary
incompressible NSE in Ω

This chapter is mainly based on [33].

3.1 The incompressible NSE with homogeneous boundary con-
ditions

We consider the following problem:

−ν∆u + (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ΓD, (3.1){
u · n = 0

(σ(u, p)n) · t = 0
on ΓG,

σ(u, p)n = 0 on ΓN .

Here ν is the kinematic velocity, u is the velocity field, p is the pressure, f is the source term, n is the
normal vector and t is the tangential vector on the boundary, pointing in clockwise tangential direction.
The stress tensor of the fluid is defined as

σ(u, p) = −pI + ν(∇u + (∇u)t).

Homogeneous Dirichlet condition, slip condition and Neumann boundary condition are prescribed corre-
spondingly on ΓD, ΓG and ΓN . For other possible boundary conditions, see [35, Chapter 10.1.1].

Remark 3.1.1 (Remark on boundary conditions). Our setting on the domain Ω and D,G,N in Chapter
2 implies that the following conditions on the boundary conditions of the NSE must hold:

• Condition 1: Dirichlet boundary condition is on at least one edge.

• Condition 2: Each corner Ai must have at least one touching edge with Dirichlet
boundary condition or have both touching edges with slip boundary condition.

It is easy to see that if N = ∅, which means that we have only Dirichlet boundary condition and Slip
boundary condition on ∂Ω, then Condition 2 is satisfied.

8



3.1. THE INCOMPRESSIBLE NSE WITH HOMOGENEOUS BOUNDARY CONDITIONS 9

The following spaces are needed for the analysis.

W := {u ∈ H1(Ω)2 : u = 0 on ΓD and u · n = 0 on ΓG}, equipped with H1(Ω)-norm.

L0 = {q ∈ L2(Ω),

∫
Ω

q = 0}, equipped with L2(Ω)-norm.

We introduce the variational problem of (3.1). To this end, define the forms:

A(u, v) =
ν

2

∫
Ω

(∇u + (∇u)t) : (∇v + (∇v)t) dx, (3.2)

B(u, p) = −
∫

Ω

p∇ · u dx, (3.3)

O(w;u, v) =

∫
Ω

((w · ∇)u) · v dx. (3.4)

The variational problem now reads: Find (u, p) ∈W × L2(Ω) such that for all v ∈W and q ∈ L2(Ω),

A(u, v) +O(u;u, v)+B(v, p) =

∫
Ω

f · v dx,

B(u, q) = 0.

(3.5)

Here we assume that f ∈W∗ is given.

Lemma 3.1.2. W is a closed subspace of H1(Ω)2.

Proof. It is easy to show that W is a linear subspace of H1(Ω)2. To prove that W is closed, we select a
sequence {ui}i ⊂W such that ui → u in H1 norm. Then by the property of the trace operator, there
exists a constant C such that

‖u · n− ui · n‖L2(ΓD) ≤ ‖u− ui‖L2(ΓD) ≤ C‖u− ui‖H1(Ω) → 0,

and

‖u− ui‖L2(ΓG) ≤ C‖u− ui‖H1(Ω) → 0.

As ui ∈W, u = 0 on ΓD and u · n = 0 on ΓG and thus u ∈W.

Before we state the result about the existence and uniqueness of the weak solution to (3.5), we list
the following inequalities which are useful for the proof.

There exists a positive constant Ccoer = Ccoer(ν) such that for any u ∈W

A(u,u) ≥ Ccoer‖u‖2H1(Ω). (3.6)

This is the so-called Korn’s inequality. For proof see [44, Theorem 2].
Another useful result is about the inf-sup property of the form B(·, ·): If |ΓN | = 0, then there exists

a constant η that

inf
06=q∈L0

sup
06=v∈W

|B(v, q)|
‖v‖H1(Ω)‖q‖L2(Ω)

≥ η. (3.7)

In the case that |ΓN | > 0, then there exists a constant η that
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inf
06=q∈L2(Ω)

sup
06=v∈W

|B(v, q)|
‖v‖H1(Ω)‖q‖L2(Ω)

≥ η. (3.8)

This result is stated in [33, Section 3].
Now we state and prove the theorem about the existence of the weak solution. This result is an

extension to [33, Theorem 3.2]

Theorem 3.1.3. If ‖f‖W∗ := sup06=v∈W
|
∫
Ω
f·v|

‖v‖H1(Ω)
<

C2
coer

4Cconv
(Here Cconv is the constant appeared in

the inequality O(w;u, v) ≤ Cconv‖w‖H1(Ω)‖u‖H1(Ω)‖v‖H1(Ω)), then there exists a solution (u, p) to the
variational problem (3.5).

Moreover, if |ΓN | > 0, then u is uniquely determined in M1 := {v ∈ W, ‖v‖H1(Ω) ≤ ( 1
2 −√

1
4 −

Cconv
C2
coer
‖f‖W∗) CcoerCconv

} and p ∈ L2(Ω) associated with that u is uniquely determined. Otherwise,

u is uniquely determined in W, u ∈ M2 := {v ∈ W, ‖v‖H1(Ω) ≤ ‖f‖W∗Ccoer
} and p is uniquely determined

in L0(Ω).

The condition

‖f‖W∗ <
C2
coer

4Cconv
(3.9)

is the small data assumption.

Proof. Consider the following problem which is equivalent to (3.5): Given f ∈ W∗, find a solution
u ∈ V := {v ∈W : ∇ · v = 0} such that

A(u, v) =

∫
Ω

f · v−O(u;u, v).

for any v ∈ V.
We firstly consider the following auxiliary problem: Given a fixed u0 ∈ V, find u ∈W such that

A(u, v) =

∫
Ω

f · v−O(u0;u0, v), (3.10)

for any v ∈ V. By (3.6) A(·, ·) is coercive on V and clearly it is also continuous with respect to both
parameters and

∫
Ω
f·v−O(u0;u0, v) is a bounded linear functional for v ∈ V. Therefore, by Lax-Milgram

Lemma we could show that there exists a unique solution u ∈ V to (3.10) and we could define a mapping
Ψ : V→ V,u0 7→ u. If u0 ∈M, then

Ccoer‖u‖2W ≤ A(u,u) ≤ |
∫

Ω

f · u|+ |O(u0;u0,u)|

≤ ‖f‖W∗‖u‖H1(Ω) + ‖u0‖2H1(Ω)‖u‖H1(Ω) ≤ (‖f‖W∗ + ((
1

2
−

√
1

4
− Cconv
C2
coer

‖f‖W∗)
Ccoer
Cconv

)2)‖u‖H1(Ω)

= Ccoer(
1

2
−

√
1

4
− Cconv
C2
coer

‖f‖W∗)
Ccoer
Cconv

)‖u‖H1(Ω),

so u ∈M and Ψ always maps M into M.
Moreover, we set ui ∈M and M 3 ûi = Ψ(ui) for i = 1, 2. Then we have, for i = 1, 2,

A(ûi, û1 − û2) =

∫
Ω

f · (û1 − ûi)−O(ui;u2, û1 − û2).
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Therefore,

‖û1 − û2‖2H1(Ω) ≤
1

Ccoer
|A(û1 − û2, û1 − û2)| ≤ 1

Ccoer
|A(û1, û1 − û2)−A(û2, û1 − û2)|

≤ 1

Ccoer
| −O(u1;u1, û1 − û2) +O(u2;u2, û1 − û2)|

≤ 1

Ccoer
|O(u1;u1 − u2, û1 − û2)|+ 1

Ccoer
|O(u1 − u2;u2, û1 − û2)|

≤ Cconv
Ccoer

‖u1 − u2‖H1(Ω) · (‖u0‖H1(Ω) + ‖u1‖H1(Ω)) · ‖û1 − û2‖H1(Ω)

≤ 2(
1

2
−

√
1

4
− Cconv
C2
coer

‖f‖W∗)
Ccoer
Cconv

· Cconv
Ccoer

· ‖u1 − u2‖H1(Ω) · ‖û1 − û2‖H1(Ω)

= (1−

√
1− 4Cconv

C2
coer

‖f‖W∗) · ‖u1 − u2‖H1(Ω) · ‖û1 − û2‖H1(Ω).

It is clear now that Ψ is a contraction mapping in M1. With the Banach fixed point theorem we know
the existence and uniqueness of solution u in M1.

If |ΓN | > 0, then the existence and uniqueness of p associated with u obtained above follow from the
Lion-Lax-Milgram theorem and from (3.8).

Now assume that |ΓN | = 0. Then for any solution (u, p) ∈ V × L2(Ω) to (3.5), we have u · n = 0 on
∂Ω. By [14, Chapter IV, Lemma 2.2], O(u;u,u) = 0. Therefore,

Ccoer‖u‖2H1(Ω) ≤ A(u,u) ≤ |
∫

Ω

f · u|+ |O(u;u,u)| ≤ ‖f‖W∗‖u‖H1(Ω) ≤ ‖f‖W∗‖u‖H1(Ω),

which implies that any solution (u, p) ∈ V × L2(Ω) must satisfy that

‖u‖H1(Ω) ≤
‖f‖W∗

Ccoer
≤ (

1

2
−

√
1

4
− Cconv
C2
coer

‖f‖W∗)
Ccoer
Cconv

.

Therefore we must have u ∈M2 ⊂M1 and thus u is uniquely determined. The existence and uniqueness
of p in L0(Ω) then follow from the Lion-Lax-Milgram theorem and from (3.7).

Remark 3.1.4. We assume before that |ΓD| > 0 throughout this thesis as the cases that no Dirichlet
boundary condition is applied on boundary are rarely seen in physical application. However, we can still
study these cases mathematically and rework on the existence, uniqueness and regularity results of the
solution to NSE. To examine the existence and uniqueness, we shall introduce the following spaces

R = span{(1, 0)t, (0, 1)t, (−x2, x1)t},

W0 = {v ∈W :

∫
Ω

v ·w = 0 ∀w ∈W ∩R}.

Note that A(u, v) = B(v, q) = 0 for any (u, v, q) ∈ H1(Ω)2 ×R × L2(Ω). If ΓD = ∅, then (3.6) does
not hold for functions in W. But it still holds for function space W0[44, Theorem 2]. Therefore, we can
prove the existence and uniqueness in a similar way as is in the proof of Theorem 3.1.3. Moreover, it is
easy to see later that the weighted analytic regularity established in Theorem 5.2.1 is still correct for the
case that ΓD = ∅(Due to 3.1.1, here we must have ΓN = ∅).

Remark 3.1.5. In this thesis, no compatibility condition is required on the data f. On the contrary, it
is worthy mentioning that compatibility conditions are usually required for the Stokes problem.

For the following strain formulation of the Stokes problem in a polygon

−∇ · σ[u, p] = f,

∇ · u = 0,
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with the same boundary conditions as (3.1), the weak formulation then reads: Find (u, p) ∈W × L2(Ω)
such that for all v ∈W and q ∈ L2(Ω),

A(u, v)+B(v, p) =

∫
Ω

f · v dx,

B(u, q) = 0.

From the first equation here we obtain that for any v ∈W ∩R,∫
Ω

f · v dx = 0.

This is the compatibility condition on f for the Stokes problem.

Our general strategy to study the regularity of the solution of (3.1) is to transform (3.1) into a
linearized Stokes problem by moving the nonlinear term to the right-hand side and then analyze the
regularity of the solution to this new Stokes problem. Namely, we will often study the following alternative
problem:

−ν∆u +∇p = f− (u · ∇)u in Ω,

∇ · u = 0 in Ω,

u = 0 on ΓD, (3.11){
u · n = 0

(σ(u, p) · n) · t = 0
on ΓG,

σ(u, p) · n = 0 on ΓN .

To analyze the regularity of the solution to (3.11), we apply the technique used in [17]. The first step
is to study the Stokes problem in a sector.



Chapter 4

Stokes problem in the sector S∞

This chapter mainly follows Section 4 in [17].

Given the underlying domain as a sector S∞ = {(r, θ) : 0 < r < +∞, 0 < θ < ω}, we denote by
ΓD,S∞ , ΓG,S∞ and ΓN,S∞ three subsets of the collection of edges of S∞ on which Dirichlet condition, slip
boundary condition or Neumann condition are prescribed. We study the following Stokes problem in a
sector, written in components.

−ν(2∂2
x1
u1 + ∂x2

(∂x2
u1 + ∂x1

u2)) + ∂x1
p = f1,

−ν(2∂2
x2
u2 + ∂x1

(∂x2
u1 + ∂x1

u2)) + ∂x2
p = f2, (4.1)

∂x1
u1 + ∂x2

u2 = h,

with three possible boundary conditions on two edges θ = 0 and θ = ω:

• u|ΓD,S∞ = g0 = (g0
0 , g

0
1)t. (Dirichlet condition)

• σ[u, p]n|ΓN,S∞ = g1 = (g1
0 , g

1
1)t. (Neumann boundary condition)

• u · n|ΓG,S∞ = g0
2

(σ[u, p]n) · t|ΓG,S∞ = g1
2 . (Slip boundary condition)

Remark 4.0.1. (4.1) is equivalent to the strain formulation of the Stokes problem:

−∇ · σ[u, p] = f,

∇ · u = h.
(4.2)

If h = 0, (4.2) is equivalent to:

−ν∆u +∇p = f,

∇ · u = 0.
(4.3)

Remark 4.0.2. If we assume h = 0, then with this incompressiblity the Stokes equation can be equipped
with an alternative Neumann boundary condition:

−pn + 2ν
∂u

∂n
= g1.

13
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This is due to different weak formulations and the Green formula. Also, these two conditions are equivalent
with the incompressibility: We write n = (n1, n2)t and note that

σ[u, p] · n = −pn + ν(∇u + (∇u)t) · n
= −pn + ν(2∂xu1n1 + (∂xu2 + ∂yu1)n2, 2∂yu2n2 + (∂xu2 + ∂yu1)n1)t

= −pn + ν(2∂xu1n1, 2∂yu2n2)t

= −pn + 2ν
∂u

∂n
.

This boundary condition is studied in [26].

4.1 Polar-coordinate form in the sector S∞

We introduce the polar coordinates (r, θ) and the polar components u = (ur, uθ)
t, f = (fr, fθ)

t defined
by:

u = Au =

(
cos θ sin θ
− sin θ cos θ

)
u,

and

f = Af.

Lemma 4.1.1 ([16], Corollary 4.2). For finite or infinite sector Sδ and 0 < β < 1, u ∈ W 2
β (Sδ)

2 ⇐⇒
u ∈W 2

β (Sδ)
2.

Lemma 4.1.2. Let β ∈ (0, 1), δ ∈ (0,+∞). Then f ∈ B0
β(Sδ)

2 ⇐⇒ f ∈ B0
β(Sδ)

2.

Proof. Lemma 2.2.5 implies that f ∈ B0
β(Sδ)

2 ⇐⇒ f ∈ B0
β(Sδ)

2.

It suffices to show that f ∈ B0
β(Sδ)

2 ⇐⇒ f ∈ B0
β(Sδ)

2. We prove that f ∈ B0
β(Sδ)

2 =⇒ f ∈ B0
β(Sδ)

2

and the reverse direction could be proved by a similar argument. We have that there exists A0 > 1 such
that, for all |α| ≥ 1,

‖rα1+βDαfr‖L2(Sδ)

≤
α2∑
j=0

(
α2

j

)
‖∂jθ cos θ‖L∞(Sδ)‖r

α1+β∂α1
r ∂α2−j

θ f1‖L2(Sδ) +

α2∑
j=0

(
α2

j

)
‖∂jθ sin θ‖L∞(Sδ)‖r

α1+β∂α1
r ∂α2−j

θ f2‖L2(Sδ)

≤ 2A
|α|
0 |α|!

α2∑
j=0

A−j0

(
α2

j

)
≤ 2(2A0)|α||α|!.

The estimate for fθ follows by the same argument.

Lemma 4.1.3 ([16], Lemma 5.1). Let β ∈ (0, 1), δ ∈ (0,+∞) and u(0) = 0. Then u ∈ B2
β(Sδ)

2 ⇐⇒
u ∈ B2

β(Sδ)
2.

We remark here that B2
β(Sδ) ⊂H 2,2

β (Sδ) = H2,2
β (Sδ) ⊂ C0(Sδ) by Definition 2.2.1, Lemma 2.2.6 and

Lemma 2.2.5. Therefore the value of u ∈ B2
β(Sδ)

2 at the corner is well-defined.
With polar coordinates and polar components of u we rewrite (4.1) as:

−ν(∆ur −
1

r2
ur −

2

r2
∂θuθ + ∂r(∇ · u)) + ∂rp = fr,

−ν(∆uθ −
1

r2
uθ +

2

r2
∂θur +

1

r
∂θ(∇ · u)) +

1

r
∂θp = fθ,

∂rur + r−1ur + r−1∂θuθ = h.

(4.4)
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where ∆ := ∂2
r + r−1∂r + r−2∂2

θ , ∇ · u := ∂rur + r−1ur + r−1∂θuθ and the three possible boundary
conditions are:

• u|ΓD,S∞ = (g0
r , g

0
θ)t = g0. (Dirichlet condition)

• ±
(
ν(r−1∂θur + ∂ruθ − r−1uθ
−p+ 2νr−1(∂θuθ + ur))

)
|ΓN,S∞ = (g1

r , g
1
θ)t = g1. (Neumann boundary condition)

•
(

±uθ
ν(∂ruθ + 1

r∂θur −
1
ruθ)

)
|ΓG,S∞ = (g0

2 , g
1
2)t = g2. (Slip boundary condition)

To justify the polar-coordinate form of the Stokes equation shown above, we note that by elementary
calculus,

∂x1
= cos θ∂r −

sin θ

r
∂θ,

∂x2
= sin θ∂r +

cos θ

r
∂θ,

∂2
x1

= cos2 θ∂2
r +

2 cos θ sin θ

r2
∂θ +

sin2 θ

r
∂r −

2 cos θ sin θ

r
∂rθ +

sin2 θ

r2
∂2
θ ,

∂2
x2

= sin2 θ∂2
r −

2 cos θ sin θ

r2
∂θ +

cos2 θ

r
∂r +

2 cos θ sin θ

r
∂rθ +

cos2 θ

r2
∂2
θ ,

∂x1x2 = cos θ sin θ∂2
r +

sin2 θ − cos2 θ

r2
∂θ +

cos2 θ − sin2 θ

r
∂rθ −

sin θ cos θ

r
∂r −

sin θ cos θ

r2
∂2
θ .

Therefore we rewrite (4.1) as:



−ν((cos2 θ∂2
r + 2 cos θ sin θ

r2 ∂θ + sin2 θ
r ∂r − 2 cos θ sin θ

r ∂rθ + sin2 θ
r2 ∂2

θ + ∆)(cos θur − sin θuθ)

+(cos θ sin θ∂2
r + sin2 θ−cos2 θ

r2 ∂θ + cos2 θ−sin2 θ
r ∂rθ − sin θ cos θ

r ∂r − sin θ cos θ
r2 ∂2

θ )(sin θur + cos θuθ))
+(cos θ∂r − sin θ

r ∂θ)p

−ν((sin2 θ∂2
r − 2 cos θ sin θ

r2 ∂θ + cos2 θ
r ∂r + 2 cos θ sin θ

r ∂rθ + cos2 θ
r2 ∂2

θ + ∆)(sin θur + cos θuθ)

+(cos θ sin θ∂2
r + sin2 θ−cos2 θ

r2 ∂θ + cos2 θ−sin2 θ
r ∂rθ − sin θ cos θ

r ∂r − sin θ cos θ
r2 ∂2

θ )(cos θur − sin θuθ))
+(sin θ∂r + cos θ

r ∂θ)p


= A−1f

(4.5)

and

(cos θ∂r −
sin θ

r
∂θ)(cos θur − sin θuθ) + (sin θ∂r +

cos θ

r
∂θ)(sin θur + cos θuθ) = h. (4.6)

(4.5) is equivalent to

−ν((2 cos θ∂2
r − sin θ

r ∂rθ + cos θ
r2 ∂2

θ + 2 cos θ
r ∂r − 3 sin θ

r ∂θ − 2 cos θ
r2 )ur

+(− sin θ∂2
r + cos θ

r ∂rθ − 2 sin θ
r2 ∂2

θ − sin θ
r ∂r − 3 cos θ

r ∂θ + sin θ
r2 )uθ

+(cos θ∂r − sin θ
r ∂θ)p

−ν((2 sin θ∂2
r + cos θ

r ∂rθ + sin θ
r2 ∂2

θ + 2 sin θ
r ∂r + 3 cos θ

r2 ∂θ − 2 sin θ
r2 )ur

+(cos θ∂2
r + sin θ

r ∂rθ + 2 cos θ
r2 ∂2

θ + cos θ
r ∂r − 3 sin θ

r2 ∂θ − cos θ
r2 )uθ)

+(sin θ∂r + cos θ
r ∂θ)p


= A−1f. (4.7)

The first and the second equations of (4.4) will then be obtained by multiplying both sides of (4.7) by A
and the third equation of (4.4) is clearly equivalent to (4.6).
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Now we check the polar-component form of the boundary conditions. Without loss of generality we
only consider the edge θ = ω, then n = (− sinω, cosω)t and t = (cosω, sinω)t. The polar-component
form of Dirichlet boundary condition is straightforward to be obtained. To transform Neumann boundary
condition to polar-component form, we write

σ[u, p]n|θ=ω =

(
−p sin θ
p cos θ

)
|θ=ω

+ ν


2(cos θ∂r − sin θ

r ∂θ)(cos θur − sin θuθ) (sin θ∂r + cos θ
r ∂θ)(cos θur − sin θuθ)

+(cos θ∂r − sin θ
r ∂θ)(sin θur + cos θuθ)

(sin θ∂r + cos θ
r ∂θ)(cos θur − sin θuθ) 2(sin θ∂r + cos θ

r ∂θ)(sin θur + cos θuθ)
+(cos θ∂r − sin θ

r ∂θ)(sin θur + cos θuθ)

 |θ=ωn
=

(
−p sin θ
p cos θ

)
|θ=ω

+ ν



2(cos2 θ∂rur − cos θ sin θ∂ruθ 2 sin θ cos θ∂rur + (cos2 θ − sin2 θ)∂ruθ
− sin θ cos θ

r ∂θur + sin2 θ
r ur + cos2 θ−sin2 θ

r ∂θur − 2 sin θ cos θ
r ur

− sin2 θ
r ∂θuθ − sin θ cos θ

r uθ) − 2 sin θ cos θ
r ∂θuθ − cos2 θ−sin2 θ

r uθ

2 sin θ cos θ∂rur + (cos2 θ − sin2 θ)∂ruθ 2(sin2 θ∂rur + cos θ sin θ∂ruθ
+ cos2 θ−sin2 θ

r ∂θur − 2 sin θ cos θ
r ur + sin θ cos θ

r ∂θur + cos2 θ
r ur

− 2 sin θ cos θ
r ∂θuθ − cos2 θ−sin2 θ

r uθ + cos2 θ
r ∂θuθ − sin θ cos θ

r uθ)


|θ=ωn

The polar-component version of Neumann boundary condition can then be derived by multiplying A on
both side of the above equality. Finally, to derive the Slip boundary condition in polar-component form,
we note that condition u · n = g0

2 is equivalent to uθ = g0
2 . Also,

(σ[u, p]n) · t|θ=ω

= (ν


2(cos θ∂r − sin θ

r ∂θ)(cos θur − sin θuθ) (sin θ∂r + cos θ
r ∂θ)(cos θur − sin θuθ)

+(cos θ∂r − sin θ
r ∂θ)(sin θur + cos θuθ)

(sin θ∂r + cos θ
r ∂θ)(cos θur − sin θuθ) 2(sin θ∂r + cos θ

r ∂θ)(sin θur + cos θuθ)
+(cos θ∂r − sin θ

r ∂θ)(sin θur + cos θuθ)

 |θ=ωn) · t

= (ν



2(cos2 θ∂rur − cos θ sin θ∂ruθ 2 sin θ cos θ∂rur + (cos2 θ − sin2 θ)∂ruθ
− sin θ cos θ

r ∂θur + sin2 θ
r ur + cos2 θ−sin2 θ

r ∂θur − 2 sin θ cos θ
r ur

− sin2 θ
r ∂θuθ − sin θ cos θ

r uθ) − 2 sin θ cos θ
r ∂θuθ − cos2 θ−sin2 θ

r uθ

2 sin θ cos θ∂rur + (cos2 θ − sin2 θ)∂ruθ 2(sin2 θ∂rur + cos θ sin θ∂ruθ
+ cos2 θ−sin2 θ

r ∂θur − 2 sin θ cos θ
r ur + sin θ cos θ

r ∂θur + cos2 θ
r ur

− 2 sin θ cos θ
r ∂θuθ − cos2 θ−sin2 θ

r uθ + cos2 θ
r ∂θuθ − sin θ cos θ

r uθ)


|θ=ωn) · t.

This leads to

((σ[u, p]n) · t)|θ=ω = ν(∂ruθ +
1

r
∂θur −

1

r
uθ).

Remark 4.1.4. The symbol ”±” will be omitted in the following, we just need to change the sign of the
boundary value according to the edge chosen.

Remark 4.1.5. We look at the following Laplacian form of Stokes problem in a sector:

−ν∆u1 + ∂x1p = f1, (4.8)

−ν∆u2 + ∂x2p = f2, (4.9)

∂x1u1 + ∂x2u2 = h, (4.10)

with three possible boundary conditions on two edges θ = 0 and θ = ω:
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• u|ΓD,S∞ = g0 = (g0
0 , g

0
1)t. (Dirichlet condition)

• σ[u, p]n|ΓN,S∞ = g1 = (g1
0 , g

1
1)t. (Neumann boundary condition)

• u · n|ΓG,S∞ = g0
2 , (σ[u, p]n) · t|ΓG,S∞ = g1

2 . (Slip boundary condition)

We are interested in the polar-component form of this Stokes problem. The polar-component forms of the
boundary conditions are clearly the same as those of (4.1). Now we rewrite (4.8)-(4.10) as(

−ν∆(cos θur − sin θuθ) + (cos θ∂r − sin θ
r ∂θ)p

−ν∆(cos θur − sin θuθ) + (sin θ∂r + cos θ
r ∂θ)p

)
= A−1f (4.11)

and

(cos θ∂r −
sin θ

r
∂θ)(cos θur − sin θuθ) + (sin θ∂r +

cos θ

r
∂θ)(sin θur + cos θuθ) = h. (4.12)

(4.12) is equivalent to (4.10). Moreover, (4.11) could be rewritten as
−ν((cos θ∂2

r + cos θ
r ∂r + cos θ

r2 ∂2
θ − 2 sin θ

r2 ∂θ − cos θ
r2 )ur

−(sin θ∂2
r + sin θ

r ∂r + sin θ
r2 ∂2

θ + 2 cos θ
r2 ∂θ − sin θ

r2 )uθ) + (cos θ∂r − sin θ
r ∂θ)p

−ν((sin θ∂2
r + sin θ

r ∂r + sin θ
r2 ∂2

θ + 2 cos θ
r2 ∂θ − sin θ

r2 )ur
−(cos θ∂2

r + cos θ
r ∂r + cos θ

r2 ∂2
θ − 2 sin θ

r2 ∂θ − cos θ
r2 )uθ) + (sin θ∂r + cos θ

r ∂θ)p

 = A−1f.

Multiply both side by A and we have(
−ν(∂2

rur + 1
r∂rur + 1

r2 ∂
2
θur −

ur
r2 − 2

r2 ∂θuθ) + ∂rp
−ν(∂2

ruθ + 1
r∂ruθ + 1

r2 ∂
2
θuθ −

uθ
r2 + 2

r2 ∂θur) + 1
r∂θp

)
= f.

Therefore, if we define the differential operator Lst,1(·, ·) as

Lst,1(u, p) =

 −ν(∂2
rur + 1

r∂rur + 1
r2 ∂

2
θur −

ur
r2 − 2

r2 ∂θuθ) + ∂rp
−ν(∂2

ruθ + 1
r∂ruθ + 1

r2 ∂
2
θuθ −

uθ
r2 + 2

r2 ∂θur) + 1
r∂θp

∂rur + r−1ur + r−1∂θuθ

 (4.13)

and the boundary operator B(·, ·) as

• B(u, p)|ΓD,S∞ = u.

• B(u, p)|ΓN,S∞ =

(
ν(r−1∂θur + ∂ruθ − r−1uθ)
(−p+ 2νr−1(∂θuθ + ur))

)
.

• B(u, p)|ΓG,S∞ =

(
uθ

ν(∂ruθ + 1
r∂θur −

1
ruθ)

)
.

Then the polar-component form of (4.8)-(4.10) could be represented in the following concise form:

Lst,1(u, p) = ((f)t, h)t

with boundary conditions

• B(u, p)|ΓD,S∞ = g0.

• B(u, p)|ΓN,S∞ = g1.

• B(u, p)|ΓG,S∞ = (g0
2 , g

1
2)t.
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4.2 Parametric boundary value problem on the strip D and the
interval (0, ω)

Now we introduce new variable t = log 1
r in (4.4) and set ũ(t, θ) := u(e−t, θ), p̃ := e−tp(e−t, θ), f̃(t, θ) :=

e−2tf(e−t, θ), h̃(t, θ) = e−th(e−t, θ), g̃l(t, θ) = e−ltg(e−t, θ) for l = 0, 1 and g̃2(t, θ) = (g0
2(e−t, θ), e−tg1

2(e−t, θ))t.
Let Γ̂D, Γ̂G and Γ̂N be the image of the variable transformation t = log 1

r applied on ΓD,S∞ , ΓG,S∞ and
ΓN,S∞ . The resulting equation (4.14) is now in the infinite strip D = {(t, θ) : −∞ < t < +∞, 0 < θ < ω}:

−ν(2(∂2
t ũt − ũt) + ∂2

θ ũt − ∂tθũθ − 3∂θũθ)− (∂tp̃+ p̃) = f̃t,

−ν(−∂tθũr + 3∂θũt + ∂2
t ũθ + 2∂2

θ ũθ − ũθ) + ∂θp̃ = f̃θ,

−∂tũt + ũt + ∂θũθ = h̃.

(4.14)

The three types of boundary conditions now become:

• ũ|Γ̂D = g̃0. (Dirichlet condition)

•
(
ν(∂θũt + ∂tũθ − ũθ)
−p̃+ 2ν(∂θũθ + ũt)

)
|Γ̂N = g̃1. (Neumann boundary condition)

•
(

ũθ
ν(−∂tũθ + ∂θũt − ũθ)

)
|Γ̂G = (g̃0

2 , g̃
1
2)t = g̃2. (Slip boundary condition)

We finally apply Fourier transform with respect to t: for any λ = ξ+ iη ∈ C, we set [û, p̂] = F [ũ, p̃] :=
1√
2π

∫
R e
−iλt[ũ, p̃] dt. We also set ĥ = F(h̃) and ĝl = F g̃l for l = 0, 1, 2. The equation now becomes a

parametric two-point boundary problem on I = (0, ω):

−ν(∂2
θ ût − 2(1 + λ2)ût − (3 + iλ)∂θûθ)− (1 + iλ)p̂ = f̂t,

−ν(2∂2
θ ûθ − (1 + λ2)ûθ + (3− iλ)∂θût) + ∂θp̂ = f̂θ,

(1− iλ)ût + ∂θûθ = ĥ.

(4.15)

Denote by VD, VG and VN the collection of boundary points corresponding to Dirichlet, Neumann and
slip boundary conditions. The three types of boundary conditions now become:

• û|VD = (ĝ0
0 , ĝ

1
0)t =: ĝ0. (Dirichlet condition)

•
(
ν(∂θût − (1 + iλ)ûθ)
−p̂+ 2ν(∂θûθ + ût)

)
|VN = (ĝ0

1 , ĝ
1
1)t =: ĝ1. (Neumann boundary condition)

•
(

ûθ
ν(−∂tũθ + ∂θũt − ũθ)

)
|VG = (ĝ0

2 , ĝ
1
2)t =: ĝ2. (Slip boundary condition)

We may rewrite (4.15) using operator pencil notation. Denote ∂θ = iD. Then

L̂(D,λ)(û, p̂) = (f̂, h) on (0, ω),

B̂(D,λ)(û, p̂) = (ĝ0, ĝ1, ĝ2) on {0, ω}.
(4.16)

Here

L̂(D,λ) =

νD2 + 2ν(1 + λ2) ν(3 + iλ)iD −(1 + iλ)
−ν(3− iλ)iD ν2D2 + ν(1 + λ2) iD

1− iλ iD 0


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and

B̂(D,λ)|VD = A1 =

(
1 0 0
0 1 0

)
,

B̂(D,λ)|VN = A2 =

(
νiD −ν(1 + iλ) 0
2ν 2νiD −1

)
,

B̂(D,λ)|VG = A3 =

(
0 1 0
iD −(1 + iλ) 0

)
.

The principal parts L̂0(D,λ) and B̂0(D,λ) of those operators are

L̂0(D,λ) =

νD2 + 2νλ2 −νλD −iλ
−νλD 2νD2 + νλ2 iD
−iλ iD 0


and

B̂0(D,λ)|VD = A1,

B̂0(D,λ)|VN = Ã2 =

(
νiD −νiλ 0
2ν 2νiD −1

)
,

B̂0(D,λ)|VG = Ã3 =

(
0 1 0
iD −iλ 0

)
.

4.3 Parametric Norms |‖ · ‖|2Hk(I)

To analyze this boundary value problem and establish a priori estimates for the solution to (4.16), we
introduce norms on I: For any natural number k and any λ ∈ C, we set,

|‖u‖|2Hk(I) :=

k∑
l=0

|λ|2l‖u‖2Hk−l(I).

It is easy to verify that there exists a constant C which is independent of λ but depends on k such that

‖u‖2Hk(I) + |λ|2k‖u‖2L2(I) ≤ |‖u‖|
2
Hk(I) ≤ C(‖u‖2Hk(I) + |λ|2k‖u‖2L2(I)). (4.17)

4.4 A priori estimate on the entire line R
All results stated in this subsection could be found in [17, Section 4.2], for completeness we give proofs
to all of them. For any φ0 ∈ (0, π2 ), we set Σφ0

:= {λ ∈ C|| arg λ| < φ0 or |π − arg λ| < φ0}.
We consider the principal part of the system (4.15) defined on (−∞,+∞):

L̂0(D,λ)(û, p̂) = (f̂, ĥ) for λ = ξ + iη with fixed η, η ∈ R. (4.18)

By using Fourier transform with respect to θ,

ˆ̂u(ξ, λ) = F̂(u) =
1√
2π

∫ ∞
−∞

exp(−iξθ)û(θ, λ) dθ,

(4.18) is transformed to a parametric linear system

L̂0(ξ, λ)(ˆ̂u, ˆ̂p) = (
ˆ̂
f,

ˆ̂
h). (4.19)
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Here,

L̂0(ξ, λ) =

νξ2 + 2νλ2 −νλξ −iλ
−νλξ νξ2 + 2νλ2 iξ
−iλ iξ 0

 .

It is easy to check that det(L̂0(ξ, λ)) = ν(λ2 + ξ2)2 and

(L̂0(ξ, λ))−1 =
1

ν(λ2 + ξ2)2

 ξ2 ξλ iνλ(ξ2 + λ2)
ξλ λ2 −iνξ(ξ2 + λ2)

iνλ(ξ2 + λ2) −iνξ(ξ2 + λ2) 2ν2(ξ2 + λ2)2

 . (4.20)

Theorem 4.4.1. For arbitrary λ0>0 and for any λ satisfying λ ∈ Σφ0
, |λ| > λ0 and (f̂, ĥ) ∈ Hk−2(R)2×

Hk−1(R), the following system

L̂0(D,λ)(û, p̂) = (f̂, ĥ) (4.21)

has a unique solution (û, p̂) ∈ Hk(R)2 ×Hk−1(R) and we have the following estimate:

|‖û‖|2Hk(I) + |‖p̂‖|2Hk−1(I) ≤ C(|‖f̂‖|2Hk−2(I) + |‖ĥ‖|2Hk−1(I)). (4.22)

The constant C here depends only on λ0, φ0, k.

Proof. For real ξ and for any λ ∈ Σφ0
with |λ| ≥ λ0 > 0, det(L̂0) 6= 0. Therefore (4.19) is uniquely

solvable and due to (4.20) we have, for any k ≥ 2,

(1 + |λ|+ |ξ|)2k|ˆ̂u|2 + (1 + |λ|+ |ξ|)2k−2| ˆ̂p|2 ≤ C((1 + |λ|+ |ξ|)2k−4| ˆ̂f |2 + (1 + |λ|+ |ξ|)2k−2|ˆ̂h|2).
(4.23)

Furthermore, (û, p̂) = (F̂)−1(ˆ̂u, ˆ̂p) is the solution of (4.18), and (4.23) gives (4.22).

Lemma 4.4.2. For any integer k ≥ 2 and for |λ| ≥ λ0 > 0 with sufficiently large λ0 > 0, it holds for
I = R, (0,+∞), (0, ω) that

|‖(L̂(D,λ)(û, p̂)− L̂0(D,λ)(û, p̂))12‖|2Hk−2(I) ≤ C(|‖û‖|2Hk−1(I) + |‖p̂‖|2Hk−2(I)),

|‖(L̂(D,λ)(û, p̂)− L̂0(D,λ)(û, p̂))3‖|2Hk−1(I) ≤ C(|‖û‖|2Hk−1(I) + |‖p̂‖|2Hk−2(I)).

Proof. This follows from the definition of the principal operator L̂0(D,λ).

Theorem 4.4.3. There exists a constant λ0 such that for any λ satisfying λ ∈ Σφ0
, |λ| > λ0 and

(f̂, ĥ) ∈ Hk−2(R)2 ×Hk−1(R), the following system

L̂(D,λ)(û, p̂) = (f̂, ĥ) (4.24)

has a unique solution (û, p̂) ∈ Hk(R)2 ×Hk−1(R) and we have the following estimate:

|‖û‖|2Hk(I) + |‖p̂‖|2Hk−1(I) ≤ C(|‖f̂‖|2Hk−2(I) + |‖ĥ‖|2Hk−1(I)). (4.25)

The constant C here depends only on λ0, φ0, k.

Proof. We have det(L̂(ξ, λ)) = ν(λ2 + (ξ + 1)2)(λ2 + (ξ − 1)2). Therefore, for real ξ and λ ∈ Σφ0 with

|λ| ≥ λ0 > 0 where λ0 is arbitrary, det(L̂(ξ, λ)) 6= 0 and thus (4.24) has a unique solution (û, p̂) ∈
Hk(R)2 ×Hk−1(R). For this pair of solution, by (4.22),

|‖û‖|2Hk(R) + |‖p̂‖|2Hk−1(R)

≤ C(|‖(L̂(D,λ)( ˆu, p̂)− L̂0(D,λ)( ˆu, p̂))12‖|2Hk−2(R) + |‖(L̂(D,λ)( ˆu, p̂)− L̂0(D,λ)( ˆu, p̂))3‖|2Hk−1(R)

+ |‖f̂‖|2Hk−2(R) + |‖h‖|2Hk−1(R)).
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Lemma 4.4.2 yields

|‖û‖|2Hk(R) + |‖p̂‖|2Hk−1(R) ≤ C(|‖f̂‖|2Hk−2(R) + |‖h‖|2Hk−1(R) + |‖û‖|2Hk−1(R) + |‖p̂‖|2Hk−2(R)). (4.26)

By definition of the norm |‖ · ‖|2Hk(I), for |λ| > λ0 with λ0 > 2C,

|‖û‖|2Hk−1(R) + |‖p̂‖|2Hk−2(R) ≤
1

2C
(|‖û‖|2Hk(R) + |‖p̂‖|2Hk−1(R))

which, with (4.26), lead to the result.

4.5 A priori estimate on R+

We consider the principal system on the half-line:

L̂0(D,λ)(û, p̂) = (f̂, ĥ) on I = R+ = (0,+∞)

B̂0(D,λ)(û, p̂) = (ĝ0, ĝ1, ĝ2)
(4.27)

Firstly we assume that f̂ = 0 and ĥ = 0, in this case (4.27) becomes a homogeneous system. Then the
fundamental solutions can be written in the form ebθE with b satisfying det(L̂0(−ib, λ)) = ν(λ2−b2)2 = 0.

If λ = 0, then b = 0 and all solutions to (4.27) could not be integrable on I. We now assume that
Reλ < 0. To obtain solutions which are integrable on I, we should choose b = λ and then the two
appropriate fundamental solutions are w1 = eλθ(1, i, 0)t and w2 = eλθ(1 + λθ, iλθ, 2iνλ)t. We seek for
solutions of the form (û, p̂)t = c1w1 + c2w2.

For the Dirichlet condition B̂0(û, p̂)|θ=0 = ĝ0 = (ĝ0
0 , ĝ

1
0)t, we have c1 = −iĝ1

0 and c2 = ĝ0
0 + iĝ1

0 .
Therefore, for any l ∈ N

|∂lθû|2 ≤ C exp(2θReλ)|λ|2l(1 + θ2|λ|2)|ĝ0|2, (4.28)

and

|∂lθp̂|2 ≤ C exp(2θReλ)|λ|2l+2|ĝ0|2. (4.29)

Note that for fixed λ0 > 0, λ ∈ Σφ0
and any m ∈ N≥1,∫ ∞

0

θm exp(2θReλ)dθ ≤ Cm|λ|−m−1. (4.30)

Here the constant Cm depends on λ0.
(4.28), (4.29) with (4.30) imply that for k ∈ N≥2,∫ ∞

0

k∑
l=0

|d
lû

dθl
|2|λ|2(k−l) +

k−1∑
l=0

|d
lp̂

dθl
|2|λ|2(k−1−l) dθ ≤ C|λ|2k−1|ĝ0|2. (4.31)

For Neumann boundary condition B̂0(û, p̂)|θ=0 = ĝ1 = (ĝ0
1 , ĝ

1
1)t, we have c1 = − iν

2λ ĝ
1
1 and c2 =

ν
2λ (ĝ0

1 + iĝ1
1). Therefore,

|∂lθû|2 ≤ C exp(2θReλ)|λ|2l−2(1 + θ2|λ|2)|ĝ1|2, (4.32)

and

|∂lθp̂|2 ≤ C exp(2θReλ)|λ|2l|ĝ1|2. (4.33)
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The bounds (4.32), (4.33) and (4.30) give, for Neumann boundary condition,

∫ ∞
0

k∑
l=0

|d
lû

dθl
|2|λ|2(k−l) +

k−1∑
l=0

|d
lp̂

dθl
|2|λ|2(k−1−l) dθ ≤ C|λ|2k−3|ĝ1|2. (4.34)

We finally consider the case for slip boundary condition B̂0(û, p̂)|θ=0 = ĝ2 = (ĝ0
2 , ĝ

1
2)t. We have

c1 = −iĝ0
2 and C2 =

ĝ1
2

2λν + iĝ0
2 . Now:

|d
lû

dθl
|2 ≤ C|λ|2l(1 + |λ|2θ2)(|λ|−2|ĝ1

2 |2 + |ĝ0
2 |2) exp(2 Reλθ) (4.35)

and

|d
lp̂

dθl
|2 ≤ C|λ|2l+2(|λ|−2|ĝ1

2 |2 + |ĝ0
2 |2) exp(2 Reλθ). (4.36)

With (4.35), (4.36) and (4.30) we obtain that for the slip boundary condition,∫ ∞
0

k∑
l=0

|d
lû

dθl
|2|λ|2(k−l) +

k−1∑
l=0

|d
lp̂

dθl
|2|λ|2(k−1−l) dθ ≤ C(|λ|2k−1|ĝ0

2 |2 + |λ|2k−3|ĝ1
2 |2). (4.37)

This bound together with (4.31) and (4.34) help us to derive the following results:

Theorem 4.5.1. There exists a λ0>0 such that, for any λ ∈ Σφ0 with |λ| ≥ λ0>0, the principal system

(4.27) admits, for any f̂ ∈ Hk−2(R+)2, ĥ ∈ Hk−1(R+), k>1, and any initial data ĝl ∈ C2, l = 0, 1, 2, a
unique solution (û, p̂) ∈ Hk(R+)2×Hk−1(R+) and satisfies the following estimate: there exists a constant
C depending on λ0, φ0, k such that for l = 0, 1, we have

|‖û‖|2Hk(R+) + |‖p̂‖|2Hk−1(R+) ≤ C(|‖f̂‖|2Hk−2(R+) + |‖ĥ‖|2Hk−1(R+) + |λ|2k−1−2l|ĝl|2) (4.38)

and for l = 2:

|‖û‖|2Hk(R+) + |‖p̂‖|2Hk−1(R+) ≤ C(|‖f̂‖|2Hk−2(R+) + |‖ĥ‖|2Hk−1(R+) + |λ|2k−1|ĝ0
2 |2 + |λ|2k−3|ĝ1

2 |2). (4.39)

Proof. If f̂ = 0 and ĥ = 0, we can construct the explicit solution as above and (4.31), (4.34) with (4.37)

lead to the estimates. Otherwise, we extend f̂ and ĥ to R preserving there norms. Theorem 4.4.1 implies
that there exist a solution (û0, p̂0) ∈ Hk(R)2 × Hk−1(R) to (4.21) and the estimate (4.22) holds for
(û0, p̂0). We consider the following problem

L̂0(D,λ)(v̂, q̂) = (f̂, ĥ) on I = R+ = (0,+∞),

B̂0(D,λ)(v̂, q̂) = (ĝ0, ĝ1, ĝ2)− B̂0(D,λ)(û0, p̂0).

Clearly (û, p) := (û0 + v̂, p̂0 + q̂) is a solution to (4.27). As in the case that f̂ = 0 and ĥ = 0, we have, for
l = 0, 1,

|‖v̂‖|2Hk(R+) + |‖q̂‖|2Hk−1(R+) ≤ C|λ|
2k−1−2l|ĝl − B̂0(D,λ)(û0, p̂0)|2, (4.40)

and for l = 2,

|‖û‖|2Hk(R+) + |‖p̂‖|2Hk−1(R+) ≤ C(|λ|2k−1|ĝ0
2 − (B̂0(D,λ)(û0, p̂0))1|2 + |λ|2k−3|ĝ1

2 − (B̂0(D,λ)(û0, p̂0))2|2).

(4.41)
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By the definition of |‖ · ‖|Hk(I), Lemma 4.5.2 (this will be proved later) and (4.22), we have

|λ|2k−1|û0(0)|2 ≤ C|‖û0‖|2Hk(R) ≤ C(|‖f̂‖|2Hk−2(R+) + |‖h‖|2Hk−1(R+)), (4.42)

with

|λ|2k−3|û′0(0)|2 ≤ C|‖û0‖|2Hk(R) ≤ C(|‖f̂‖|2Hk−2(R+) + |‖h‖|2Hk−1(R+)), (4.43)

and

|λ|2k−3|p̂0(0)|2 ≤ C|‖p̂0‖|2Hk−1(R) ≤ C(|‖f̂‖|2Hk−2(R+) + |‖h‖|2Hk−1(R+)). (4.44)

By bounding the right-hand side of (4.40) and (4.41) using (4.42)-(4.44) we have (4.38) and (4.39).

Lemma 4.5.2. Given v ∈ H1(I) with I = R,R+ or (0, ω). Then for any λ0 > 0 the following inequality
holds for |λ| > λ0

|λ||v(0)|2 ≤ C|‖v‖|2H1(I).

Here C depends only on λ0.

Proof. The Sobolev embedding H1(I) ↪→ C0(I) implies that v ∈ C0(I), and

(v(0))2 = (v(x))2 + 2

∫ x

0

v′(t)v(t) dt.

Therefore, there exists C(λ0) > 0 such that for |λ| > λ0,

|λ|v(0)2 ≤ |λ|
∫
I

|v(t)|2 dt+

∫
I

(|v′(t)|2 + |λ|2|v(t)|2) dt ≤ C(|λ|2‖v‖2L2(I) + ‖v′‖2L2(I)) = C|‖v‖|2H1(I).

Theorem 4.5.3. There exists a λ>0 such that, for any λ ∈ Σφ0
with |λ| ≥ λ0>0, the following system

L̂(D,λ)(û, p̂) = (f̂, ĥ) on I = R+ = (0,+∞)

B̂(D,λ)(û, p̂) = (ĝ0, ĝ1, ĝ2)
(4.45)

admits, for any f̂ ∈ Hk−2(R+)2, ĥ ∈ Hk−1(R+), k > 1, and any initial data ĝl ∈ C2, l = 0, 1, 2, a
unique solution (û, p̂) ∈ Hk(R+)2 ×Hk−1(R+) and satisfies all estimates in Theorem 4.5.1.

Proof. (4.45) can be solved in the same way as (4.27). To justify the estimate we claim that there exists
λ0 > 0 such that for λ ∈ Σφ0

with |λ| > λ0,

|‖((L̂(D,λ)− L̂0(D,λ))(û, p̂))12‖|2Hk−2(R+) + |‖((L̂(D,λ)− L̂0(D,λ))(û, p̂))3‖|2Hk−1(R+)

+ |λ|2k−3|(B̂(D,λ)− B̂0(D,λ))(û, p̂)|2 ≤ 1

2C
(|‖û‖|2Hk(R+) + |‖p̂‖|2Hk−1(R+)).

(4.46)

To prove (4.46), we observe by Lemma 4.4.2 that

|‖((L̂(D,λ)− L̂0(D,λ))(û, p̂))12‖|2Hk−2(R+) + |‖((L̂(D,λ)− L̂0(D,λ))(û, p̂))3‖|2Hk−1(R+)

≤ C(|‖û‖|2Hk−1(R+) + |‖p̂‖|2Hk−2(R+)).
(4.47)

Also, it is easy to check that for any boundary conditions,

|(B̂(D,λ)− B̂0(D,λ))(û, p̂)|2 ≤ max(ν, 1)|û(0)|2.



24 CHAPTER 4. STOKES PROBLEM IN THE SECTOR S∞

Therefore, by Lemma 4.5.2,

|λ|2k−3|(B̂(D,λ)− B̂0(D,λ))(û, p̂)|2 ≤ C|λ|2k−4(|λ|2‖û‖2L2(R+) + ‖û‖2H1(R+)) ≤ C|‖û‖|
2
Hk−1(R+).

So, for |λ| ≥ λ0 > 0 with sufficiently large λ0,

|‖((L̂(D,λ)− L̂0(D,λ))(û, p̂))12‖|2Hk−2(R+) + |‖((L̂(D,λ)− L̂0(D,λ))(û, p̂))3‖|2Hk−1(R+)

+ |λ|2k−3|(B̂(D,λ)− B̂0(D,λ))(û, p̂)|2 ≤ C̃(|‖û‖|2Hk−1(R+) + |‖p̂‖|2Hk−2(R+))

≤ 1

2C
(|‖û‖|2Hk(R+) + |‖p̂‖|2Hk−1(R+)).

(4.48)

(4.47) and (4.48) imply (4.46).

4.6 A priori estimate on the interval I = (0, ω)

The following theorem holds:

Theorem 4.6.1. There exists λ0 > 0 such that for any λ ∈ Σφ0 , |λ| > λ0 and any k ≥ 2, and for

(f̂, ĥ) ∈ Hk−2(I)2 ×Hk−1(I) the parametric two-point boundary value problem

L̂(D,λ)(û, p̂) = (f̂, ĥ) on I = (0, ω),

B̂(D,λ)(û, p̂) = (ĝ0, ĝ1, ĝ2) on ∂I
(4.49)

has a unique solution (û, p̂) ∈ Hk(I)2 ×Hk−1(I).
Moreover, there exists C = C(λ0, φ0) > 0 such that for all λ ∈ Σφ0

, |λ| > λ0 we have the a priori
estimate

|‖û‖|2Hk(I) + |‖p̂‖|2Hk−1(I) ≤ C(|‖f̂‖|2Hk−2(I) + |‖ĥ‖|2Hk−1(I)+

|VD| · |λ|2k−1|ĝ0|2 + |VN | · |λ|2k−3|ĝ1|2 + |VG| · (|λ|2k−1|ĝ0
2 |2 + |λ|2k−3|ĝ1

2 |2)).

Proof. We set VD,0 = VD ∩ {0}, VN,0 = VN ∩ {0}, VG,0 = VG ∩ {0}, VD,ω = VD \ VD,0, VN,ω = VN \ VN,0
and VG,ω = VG \ VG,0. Let {Ii}ni=1 be a covering of I = [0, ω] and {φi}ni=1 be a subordinate smooth
partition of unity, which means that supp(φi) ⊂ Ii and

∑n
i=1 φi = 1 on [0, ω]. Set (ûi, p̂i) := φi(û, p̂),

i = 1, · · · , n. Then (ûi, p̂i) satisfies,

L̂(D,λ)(ûi, p̂i) + L̂i(D,λ)(ûi, p̂i) = (φif̂, φiĥ) on I = (0, ω),

B̂(D,λ)(ûi, p̂i) + B̂i(D,λ)(ûi, p̂i) = (ĝ0
i , ĝ

1
i , ĝ

2
i ) on ∂I,

(4.50)

where L̂i are differential operators of one degree lower than L̂ and

|‖(L̂i(D,λ)(û, p̂))12‖|2Hk−2(I) + |‖(L̂i(D,λ)(û, p̂))3‖|2Hk−1(I) ≤ C(|‖û‖|2Hk−1(I) + |‖p̂‖|2Hk−2(I)).

Moreover, B̂i are boundary operators that are one order lower than B̂ at both endpoints {0, ω}. We
also have ĝ0

1 = |VD,0|ĝ0, ĝ1
1 = |VN,0|ĝ1, ĝ2

1 = |VG,0|ĝ2, ĝ0
n = |VD,ω|ĝ0, ĝ1

n = |VN,ω|ĝ1 and ĝ2
n = |VG,ω|ĝ2.

Furthermore, ĝ0
i = 0 for i = 2, · · · , n− 1 and ĝ2

i = 0 for i = 2, · · · , n− 1. We write ĝ2
i := (ĝ0

2,i, ĝ
1
2,i)

t. By
Lemma 4.5.2 and the definition of the parametric norm |‖ · ‖|Hk(I), there exists λ0 such that for any λ
satisfying |λ| > λ0,

|λ|2k−3|B̂i(D,λ)(ûi, p̂i)|2 ≤ C|λ|2k−3|ûi(ω)|2

≤ C̃(|λ|2k−4‖ûi‖2H1(I) + |λ|2k−2‖ûi‖2L2(I))

≤ C̃|‖ûi‖|2Hk−1(I).
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If i = 1, n, then (4.50) can be extended to the half-line R+ and (4.50) can be extended to the whole real
line R otherwise. According to Theorem 4.4.3 and Theorem 4.5.3, there exists a sufficiently large λ0 > 0
such that for any λ ∈ Σφ0

and |λ| > λ0, the following estimate holds for all i = 1, 2, · · · , n,

|‖ûi‖|2Hk(I) + |‖p̂i‖|2Hk−1(I)

≤ C(|‖f̂i‖|2Hk−2(I) + |‖ĥi‖|2Hk−1(I) + |‖(L̂i(D,λ)(û, p̂))12‖|2Hk−2(I) + |‖(L̂i(D,λ)(û, p̂))3‖|2Hk−1(I)

+ |VD| · |λ|2k−1|ĝ0
i |2 + |VN | · |λ|2k−3|ĝ1

i |2 + |VG| · (|λ|2k−1|ĝ0
2,i|2 + |λ|2k−3(|ĝ1

2,i|2 + |B̂i(D,λ)(ûi, p̂i)|2))).

By summing up estimates above with respect to i and noticing that for |λ| ≥ λ0 > 2C, |‖û‖|2Hk−1(R) +

|‖p̂‖|2Hk−2(R) ≤
1

2C (|‖û‖|2Hk(R) + |‖p̂‖|2Hk−1(R)), we have

|‖û‖|2Hk(R) + |‖p̂‖|2Hk−1(R)

≤ C
n∑
i=1

(|‖ûi‖|2Hk(R) + |‖p̂i‖|2Hk−1(R))

≤ C(|‖f̂‖|2Hk−2(I) + |‖ĥ‖|2Hk−1(I) + |λ|2k−1|ĝ0|2 + |λ|2k−3|ĝ1|2 + (|λ|2k−1|ĝ0
2 |2 + |λ|2k−3|ĝ1

2 |2)).

4.7 Analysis on the operator pencil [L̂, B̂]

The operator pencil U(λ) = [L̂(D,λ), B̂(D,λ)] : Hk(I)2 × Hk−1(I) → Hk−2(I)2 × Hk−1(I) × C2 × C2

depends polynomially on λ. We justify, firstly, the Agranovich and Vishik condition I and II (see [2,
Chapter 6]) for this operator pencil.

Lemma 4.7.1 (Condition I). Given any η ∈ R and λ ∈ Σφ0 with |η|+|λ| 6= 0, we have det(L̂0(η, λ)) 6= 0.

Moreover, det(L̂0(η, λ)) = 0 as an equation of η, for any λ ∈ Σφ0
and λ 6= 0, has equal number of roots

in upper and lower half-planes.

Proof. We have det(L̂0(η, λ)) = ν(η2 + λ2)2. Since λ ∈ Σφ0
, λ2 is either a nonnegative real number or a

complex number with nonzero imaginary part, in both cases ν(η2 + λ2)2 6= 0.
To justify the second part of the lemma, we only need to notice that for the equation det(L̂0(η, λ)) = 0,

η = ±λ with double multiplicities.

Lemma 4.7.2 (Condition II). For any λ 6= 0, there exists a unique solution (û, p̂) to (4.27) such that
the solution tends to [0, 0] as θ → +∞.

This is justified in Section 4.5.
By the argument used in [2, Chapter 6], the operator pencil U(λ) has the Fredholm property and

thus, by [24, Theorem 1.1.1], the spectrum of this operator pencil consists of infinite isolated eigenvalues
(thus at most countable) with finite algebraic multiplicities which do not have any accumulation point
in C. Hence, the resolvent R(λ) = U−1(λ) is an operator-valued, meromorphic function λ with (at most
countable) poles of finite multiplicity. See Appendix A for results on the distribution of eigenvalues.

Theorem 4.7.3. Let Lh = {λ ∈ C : Imλ = h}. If R(λ) has no poles on Lh, then (4.16) admits a unique

solution (û, p̂) ∈ Hk(I)2 × Hk−1(I) provided (f̂, ĥ, ĝl) ∈ Hk−2(I)2 × Hk−1(I) × C2 for any l = 0, 1, 2,
and it holds for all λ ∈ Lh:

|‖û‖|2Hk(I) + |‖p̂‖|2Hk−1(I) ≤ C(|‖f̂‖|2Hk−2(I) + |‖ĥ‖|2Hk−1(I)+

|VD| · |λ|2k−1|ĝl|2 + |VN | · |λ|2k−3|ĝl|2 + |VG| · (|λ|2k−1|ĝ0
2 |2 + |λ|2k−3|ĝ1

2 |2)),
(4.51)

with C independent of Reλ.
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Proof. As R(λ) has no poles on Lh, the solution (û, p̂) ∈ Hk(I)2 ×Hk−1(I) exists if λ ∈ Lh. Theorem
4.6.1 implies that there exists λ0 > 0 such that for λ ∈ Lh with |λ| > λ0, (4.51) holds. If λ ∈ Lh and
|λ| ≤ λ0, then by assumption R(λ) is a bounded operator and

‖û‖2Hk(I) + ‖p̂‖2Hk−1(I) ≤ C(‖f̂‖2Hk−2(I) + ‖ĥ‖2Hk−1(I)+

|VD| · |λ|2k−1|ĝl|2 + |VG| · |λ|2k−3|ĝl|2 + |VN | · (|λ|2k−1|ĝ0
2 |2 + |λ|2k−3|ĝ1

2 |2)),

with

|λ|2k‖û‖2Hk(I) + |λ|2k−2‖p̂‖2Hk−1(I) ≤ C̃(|λ|2k−4‖f̂‖2Hk−2(I) + |λ|2k−2‖ĥ‖2Hk−1(I)+

|VD| · |λ|2k−1|ĝl|2 + |VG| · |λ|2k−3|ĝl|2 + |VN | · (|λ|2k−1|ĝ0
2 |2 + |λ|2k−3|ĝ1

2 |2)).

Here C̃ depends on λ0 but not on λ. By combining the above two inequalities we have (4.51) and the
proof is finished.

4.8 Regularity of the Stokes problem in the infinite sector

We now transform the regularity result Theorem 4.7.3 back to the strip D and to the sector Q. We need
the following lemmas:

Lemma 4.8.1. If v(r, θ) ∈W k,β(Q), k ≥ 0, then v := v(e−t, θ) ∈ Hk
h(D) with h = k − 1− β and

C1‖v‖Hkh(D) ≤ ‖v‖Wk
β (Q) ≤ C2‖v‖Hkh(D). (4.52)

Moreover, for 0 ≤ l ≤ 1, ṽl(r, θ) := e(l−2)tv(e−t, θ) ∈ Hk
h(D) with h = k + 1− 1− β and

C1‖ṽl‖Hkh(D) ≤ ‖v‖Wk
β (Q) ≤ C2‖ṽl‖Hkh(D). (4.53)

Here all constants are independent of v.

Lemma 4.8.2. Let ṽ ∈ Hk
h(D) for any k ≥ 0, then v̂ = F(ṽ) ∈ Hk(I), and

C1‖ṽ‖Hkh(D) ≤
∫ ∞+ih

−∞+ih

|‖v̂‖|Hk(I) dλ ≤ C2‖ṽ‖Hkh(D) (4.54)

Here all constants are independent of ṽ.

These two lemmas can be found in [4].

Lemma 4.8.3. For l = 0, 1, let G
l
(r, θ) ∈ W k−l

β (Q)2 with G
0|ΓD,Q = g0 and G

1|ΓN,Q = g0. Also, let

G
0

2(r, θ), G
1

2(r, θ) ∈ W k−l
β (Q) with G

0

2|ΓG,Q = g0
2 and G

1

2|ΓG,Q = g1
2. Set, for l = 0, 1, Ĝ

l
= F(G̃

l
) with

G̃
l

= e−ltG
l
(e−t, θ) and Ĝl2 = F(G̃l2) with G̃l2 = e−ltG

l

2(e−t, θ).
Then there exists a constant C > 0 such that we have, for l = 0, 1, k ≥ 2

|λ|2(k−l−1/2)|ĝl|2 ≤ C|‖Ĝ
l
‖|2Hk−l(I), (4.55)

and

|λ|2(k−l−1/2)|ĝl2|2 ≤ C|‖Ĝl2‖|2Hk−l(I). (4.56)
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Proof. By Lemma 4.8.1 and Lemma 4.8.2, for l = 0, 1 we have Ĝ
l
∈ H2−l(I)2 ⊂ C0(I)2 and Ĝl2 ∈

H2−l(I) ⊂ C0(I). By Lemma 4.5.2, the following inequalities hold for l = 0, 1,

|λ|2k−2l−1|ĝl|2 ≤ C|λ|2k−2l−2|‖Ĝ
l
‖|2H1(I) ≤ C|‖Ĝ

l
‖|2Hk−1(I),

and

|λ|2k−2l−1|ĝl2|2 ≤ C|λ|2k−2l−2|‖Ĝl‖|2H1(I) ≤ C|‖Ĝ
l‖|2Hk−1(I),

which leads to the result.

Theorem 4.8.4. Given k ≥ 2, let f ∈ W k−2
β (S∞)2, h ∈ W k−1

β (S∞), g0 ∈ W
k−1/2
β (ΓD,S∞)2, g1 ∈

W
k−3/2
β (ΓN,S∞)2. For l = 0, 1, let gl2 ∈W

k−l−1/2
β (ΓG,S∞).

Then if R(λ) has no pole on the line Lh = {λ : Imλ = k− 1− β}, then the Stokes problem (4.4) has
a solution (u, p) ∈W k

β (S∞)2 ×W k−1
β (S∞) and there holds the a-priori bound

‖u‖Wk
β (S∞) + ‖p‖Wk−1

β (S∞) ≤C(‖f‖Wk−2
β (S∞) + ‖h‖Wk−1

β (S∞)+

‖g0‖
W
k−1/2
β (ΓD,S∞ )

+ ‖g1‖
W
k−3/2
β (ΓN,S∞ )

+
∑
l=0,1

‖g1
2‖Wk−l−1/2

β (ΓG,S∞ )
).

(4.57)

Proof. The definition of trace space implies that there exist G
l ∈ W k−l

β (S∞)2 for l = 0, 1 and G
2

=

(G
0

2, G
1

2)t ∈ W k
β (S∞) ×W k−1

β (S∞) such that G
0|ΓD,S∞ = g0, G

1|ΓN,S∞ = g1, G
2|ΓG,S∞ = (g0

2 , g
1
2)t and

the following relations holds,

1

2
‖G0‖Wk

β (S∞) ≤ ‖g0‖
W
k− 1

2
β (ΓD,S∞ )

≤ ‖G0‖Wk
β (S∞),

1

2
‖G1‖Wk−1

β (S∞) ≤ ‖g
1‖
W
k− 3

2
β (ΓN,S∞ )

≤ ‖G1‖Wk−1
β (S∞),

1

2
‖G0

2‖Wk
β (S∞) ≤ ‖g0

2‖
W
k− 1

2
β (ΓG,S∞ )

≤ ‖G0

2‖Wk
β (S∞),

1

2
‖G1

2‖Wk−1
β (S∞) ≤ ‖g

1
2‖
W
k− 3

2
β (ΓG,S∞ )

≤ ‖G1

2‖Wk−1
β (S∞).

We define

f̃(t, θ) := e−2tf(e−t, θ), h̃(t, θ) := e−th(e−t, θ)

with

G̃
l
(t, θ) := e−ltf(e−t, θ), G̃l2(t, θ) := e−ltG

l

2(e−t, θ)

for l = 0, 1. Furthermore, we define f̂ = F(f̃), ĥ = F(h̃) with Ĝ
l

= F(G̃
l
), Ĝl2 = F(G̃l2) for l = 0, 1.

By Lemma 4.8.1 and (4.8.2), f̂ ∈ Hk−2(I)2, ĥ ∈ Hk−1(I) and for l = 0, 1 we have Ĝ
l
∈ Hk−l(I)2 with

Ĝl2 ∈ Hk−l(I). Moreover, (4.52)-(4.54) holds for all the functions above. By Theorem 4.7.3, for k ≥ 2
system (4.49) exhibits a unique solution (û, p̂) ∈ Hk(I)2×Hk−1(I) and (4.51) holds. By Lemma (4.8.3),

|‖û‖|2Hk(I) + |‖p̂‖|2Hk−1(I) ≤ C(|‖f̂‖|2Hk−2(I) + |‖ĥ‖|2Hk−1(I)+

|VD| · |‖Ĝ
0
‖|2Hk(I) + |VN | · |‖Ĝ

1
‖|2Hk−1(I) + |VG| · (|‖Ĝ0

2‖|2Hk(I) + |‖Ĝ1
2‖|2Hk−1(I))).
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As R has no pole on the line Lh = {λ : Imλ = h} with h = k − 1− β, we have 1√
2π

∫ +∞+ih

−∞+ih
eiλt(û, p̂) =:

(ũ, p̃) ∈ Hk
h(D)2 ×Hk−1

h (D), and by Lemma 4.8.2 we have

|‖ũ‖|2Hkh(D) + |‖p̃‖|2
Hk−1
h (D)

≤ C(|‖f̃‖|2
Hk−2
h (D)

+ |‖h̃‖|2
Hk−1
h (D)

+

|VD| · |‖G̃
0‖|2Hkh(D) + |VN | · |‖G̃

1‖|2
Hk−1
h (D)

+ |VG| · (|‖G̃0
2‖|2Hkh(D) + |‖G̃1

2‖|2Hk−1
h (D)

)).

Finally, Lemma 4.8.1 implies that (ũ, p̃)(log( 1
r ), θ) =: (u, p)(r, θ) ∈W k

β (S∞)2 ×W k−1
β (S∞) and

‖u‖Wk
β (S∞) + ‖p‖Wk−1

β (S∞) ≤C(‖f‖Wk−2
β (S∞) + ‖h‖Wk−1

β (Q)+

‖g0‖
W
k−1/2
β (ΓD,S∞ )

+ ‖g1‖
W
k−3/2
β (ΓN,S∞ )

+
∑
l=0,1

‖gl2‖Wk−l−1/2
β (ΓG,S∞ )

).

For the Stokes problem (4.1) we have:

Theorem 4.8.5. Assume that β ∈ (1 − κ, 1) ∩ (0, 1) where κ is the smallest positive imaginary part of
the nonzero eigenvalues of R(λ) with positive imaginary part and let f ∈ W 0

β (S∞)2, h ∈ W 1
β (S∞), g0 ∈

W
3/2
β (ΓD,S∞)2, g1 ∈ W 1/2

β (ΓN,S∞)2. For l = 0, 1, let gl2 ∈ W
2−l−1/2
β (ΓG,S∞). Then the Stokes problem

(4.1) has a solution (u, p) ∈W 2
β (S∞)2 ×W 1

β (S∞) and there holds the a-priori estimate

‖u‖W 2
β (S∞) + ‖p‖W 1

β (S∞) ≤C(‖f‖W 0
β (S∞) + ‖h‖W 1

β (S∞)+

‖g0‖
W

3/2
β (ΓD,S∞ )

+ ‖g1‖
W

1/2
β (ΓN,S∞ )

+
∑
l=0,1

‖gl2‖W 2−l−1/2
β (ΓG,S∞ )

). (4.58)

Proof. We start from Theorem 4.8.4 with k = 2 and apply the transformation u = A−1u. Then this
theorem can be validated using [16, Corollary 4.2].

Remark 4.8.6. Note that since the operator U has at most countably many points contained in its
spectrum, the set of β ∈ R ensuring that the line Lh = {λ : Imλ = 1−β} has no pole of R(λ) are dense
in R. Actually, R(λ) has no poles in {λ : Imλ ∈ (−κ, κ)} if Dirichlet condition is prescribed on at least
one edge of the sector and R(λ) has the origin as the only pole in this strip otherwise. See Appendix A
for more information on the eigenvectors of U(λ) corresponding to the origin as an eigenvalue.

Remark 4.8.7. The Stokes equation we analyze in this chapter is −∇ · σ[u, p] = f. By Remark 4.0.1,
above regularity results still hold for −ν∆u +∇p = f if u is divergence-free.



Chapter 5

Analytic regularity of the
incompressible stationary NSE

Recall that for a vector field w : Ω ⊂ R2 → R2, its polar component is

w = (wr, wθ)
t :=

(
cos θ sin θ
− sin θ cos θ

)
w.

5.1 Auxiliary Stokes problem in a truncated sector

In this section, we temporarily drop Condition 2 in Remark 3.1.1 on the boundary condition. As a result,
it is possible for a corner Ai to have Neumann boundary condition on both touching edges Γi−1 and Γi or
have Neumann boundary condition and Slip boundary condition on two edges. Without loss of generality
we consider the vertex A1 on ∂Ω. Let (r, θ) be the polar coordinate system centered at A1 such that
{θ = 0} coincides with Γn and let Sδ := {(r, θ) : 0 < r < δ < +∞, 0 < θ < ω1} ⊂ Ω.

We define formally the following two Stokes operators

Lst,1(u, p) := ((−ν∆u +∇p)t,∇ · u)t, (5.1)

and

Lst,2(u, p) := ((−∇ · σ(u, p))t,∇ · u)t. (5.2)

Consider the following two Stokes problems:

Lst,1(u, p) = ((f)t, 0)t in Sδ

u = 0 on (Γ1 ∪ Γn) ∩ ΓD ∩ ∂Sδ =: Γ(1),{
u · n = 0

(σ(u, p)n) · t = g1
2

on (Γ1 ∪ Γn) ∩ ΓG ∩ ∂Sδ =: Γ(2),

σ(u, p)n = g1 on (Γ1 ∪ Γn) ∩ ΓN ∩ ∂Sδ =: Γ(3).

(5.3)

Lst,2(u, p) = ((f)t, 0)t in Sδ

u = 0 on Γ(1),{
u · n = 0

(σ(u, p)n) · t = g1
2

on Γ(2),

σ(u, p)n = g1 on Γ(3).

(5.4)

29
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Here f ∈ Lβ(Sδ)
2, g1

2 ∈W
1
2

β (Γ(2)) and g1 ∈W
1
2

β (Γ(3))
2 with β ∈ (0, 1).

We assume that the function pair (u, p) ∈ H1(Sδ)
2 × L2(Sδ) is the weak solution to (5.4). Here the

weak solution means that for any (v, q) ∈ (H1(Sδ)
2 ∩ {v|v = 0 on Γ(1) ∩ ({r = δ} ∩ ∂Sδ) and v · n =

0 on Γ(2)})× L2(Sδ) the following holds:

A(u, v)Sδ+B(v, p)Sδ =

∫
Sδ

f · v dx +

∫
Γ(2)

g1
2(v · t) ds+

∫
Γ(3)

g1 · v ds, ,

B(u, q)Sδ = 0.

(5.5)

Here A(·, ·)Sδ and B(·, ·)Sδ are those bilinear forms (3.2) and (3.3) but they are integrals over Sδ. It
could be justified that this weak form also corresponds to the problem (5.3) due to the incompressible
condition and thus (u, p) solves also (5.3) as a weak solution.

Recall that S∞ = {(r, θ) : 0 < r < +∞, 0 < θ < ω1}. For l = 1, 2, 3, set Γ̃(l) as the extension of

Γ(l) ∩ ∂Sδ to the infinite sector S∞ if Γ(l) 6= ∅ and Γ̃(l) = ∅ otherwise.

By φδ(r) we denote a cut-off function C∞(R) such that φδ = 1 for 0 < r < δ
2 and φδ = 0 for r > δ.

Set

(ũ, p̃) := φδ(u, p), (5.6)

then clearly (ũ, p̃) = (u, p) on S δ
2
. By zero extension (ũ, p̃) ∈ H1(S∞)2 × L2(S∞) is well-defined in S∞

and it solves in S∞ the following equations as a weak solution:

Lst,2(ũ, p̃) = φδ(f, h) + L1(u, p, φδ) =: ((f̃)t, h̃)t in S∞,

ũ = 0 on Γ̃(1),{
ũ · n = 0

(σ(ũ, p̃)n) · t = φδg
1
2 + l1(u, p, φδ) · t

on Γ̃(2),

σ(ũ, p̃)n = φδg
1 + l1(u, p, φδ) on Γ̃(3).

(5.7)

Here L1(u, p, φδ) := Lst,2(ũ, p̃) − φδ(u, p) and l1(u, p, φδ) := σ(ũ, p̃) · n − φδσ(u, p) · n are lower or-
der differential operators. The weak solution (ũ, p̃) satisfies that for any (v, q) ∈ (H1(S∞)2 ∩ {v|v =
0 on Γ̃(1)) and v · n = 0 on Γ̃(2)})× L2(S∞) the following holds:

A(ũ, v)S∞+B(v, p̃)S∞ =

∫
S∞

f̃ · v dx +

∫
Γ̃(2)

g1
2(v · t) ds+

∫
Γ̃(3)

g1 · v ds,

B(ũ, q)S∞ =

∫
S∞

h̃q dx.

(5.8)

It is easy to justify that, by Lemma 2.2.6,

‖f̃‖Lβ(S∞) ≤ C(‖f‖Lβ(Sδ) + ‖u‖H1(Sδ\Sδ/2) + ‖p‖L2(Sδ\Sδ/2)),

‖h̃‖Lβ(S∞) ≤ C(‖u‖H1(Sδ\Sδ/2) + ‖p‖L2(Sδ\Sδ/2)),

‖l1(u, p, φδ)‖
W

1
2
β (Γ̃(2)∩Γ̃(3))

≤ C‖u‖H1(Sδ\Sδ/2),

‖φδg1
2‖
W

1
2
β (Γ̃(2))

≤ C‖g1
2‖
W

1
2
β (Γ̃(2))

,

‖φδg1‖
W

1
2
β (Γ̃(3))

≤ C‖g1‖
W

1
2
β (Γ̃(3))

.

Here C is independent of u and p.
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Lemma 5.1.1. Let (u, p) be the weak solution to (5.3), f̃, h̃ be defined as in (5.7) and (ũ, p̃) be defined
as in (5.6). Assume that β ∈ (1− κ, 1) ∩ (0, 1) with κ defined as the smallest positive imaginary part of
the nonzero eigenvalues of R(λ) with positive imaginary part where R(λ) is defined as in section 4.7.

Then the problem (5.7) in S∞ has at least one solution (v, q) ∈W 2
β (S∞)2×W 1

β (S∞). Moreover, there
exists a constant CSEC = CSEC(β, δ) such that:

If Γ̃(1) 6= ∅ or Γ̃(1) = Γ̃(3) = ∅, then the solution is unique, (v, q) = (ũ, p̃) and the solution (u, p) to
(5.3) satisfies

‖u‖W 2
β (Sδ/2) + ‖p‖W 1

β (Sδ/2)

≤ CSEC(‖f‖Lβ(Sδ) + ‖u‖H1(Sδ\Sδ/2) + ‖p‖L2(Sδ\Sδ/2) + ‖g1
2‖
W

1
2
β (Γ(2))

+ ‖g1‖
W

1
2
β (Γ(3))

).
(5.9)

In this case we have u ∈W 2
β (Sδ/2)2 ⊂ H2,2

β (Sδ/2)2 ⊂ C0(Sδ/2)2 and u(A1) = 0.

Otherwise, the solution to (5.7) is unique modulo a linear subspace V ⊂ R2 and there exists a constant
vector e ∈ V such that (v, q) = (ũ− e, p̃). Moreover, the solution (u, p) to (5.3) satisfies

‖u− e‖W 2
β (Sδ/2) + ‖p‖W 1

β (Sδ/2)

≤ CSEC(‖f‖Lβ(Sδ) + ‖u‖H1(Sδ\Sδ/2) + ‖p‖L2(Sδ\Sδ/2) + ‖g1
2‖
W

1
2
β (Γ(2))

+ ‖g1‖
W

1
2
β (Γ(3))

).
(5.10)

In this case we have u(A1) = e and u− e ∈W 2
β (Sδ/2)2 ⊂ H2,2

β (Sδ/2)2 ⊂ C0(Sδ/2)2.

To prove this lemma we need the following lemma:

Lemma 5.1.2. Let (v, q) ∈ W 2
β (S∞)2 ×W 1

β (S∞) be a solution to (5.7) in the sector S∞ and assume

that if ω = π then different boundary conditions are prescribed on two edges of the sector. If Γ̃(1) 6= ∅ or

Γ̃(1) = Γ̃(3) = ∅, then

‖∇v‖2L2(S∞) + ‖r−1v‖2L2(S∞) + ‖q‖2L2(S∞) < +∞. (5.11)

Otherwise, we have

‖∇v‖2L2(S∞) + ‖q‖2L2(S∞) < +∞. (5.12)

Here |∇v|2 := |∂x1v|2 + |∂x2v|2.

The proof follows the route of [16, Theorem 4.4, Corollary 4.3] and uses Lemma A.1.1.

Proof. For any vector field v, define |D1v|2 =
∑
|α|=1 r

−2α2 |Dαv|2. We list the following useful results

here, which are checked in the proof of [16, Theorem 4.4]:

|D1v|2 ≤ 2(|D1v|2 + |r−1v|2), (5.13)

|r−1v|2 = |r−1v|2, (5.14)

|D1v|2 = |∇v|2. (5.15)

We first consider the two cases Γ̃(1) 6= ∅ and Γ̃(1) = Γ̃(3) = ∅. By Lemma A.1.1 and Remark 4.8.6,
we may select β, β′ with β < 1 < β′ such that no pole of R lies in {λ : Imλ ∈ [1 − β′, 1 − β]}. Note
that since f̃, h̃, φδg

1
2 + l1(u, p, φδ) · t and φδg

1 + l1(u, p, φδ) have finite support, we have f̃ ∈ Lβ′(S∞)2,

h̃ ∈W 1
β′(S∞), φδg

1
2 + l1(u, p, φδ) · t ∈W

1
2

β′(Γ̃(2)) and φδg
1 + l1(u, p, φδ) ∈W

1
2

β′(Γ̃(3))
2. Therefore, Theorem

4.8.4 implies that (v, q) ∈W 2
β′(S∞)2 ×W 1

β′(S∞). Thus we have∫ ω1

0

∫ ∞
1

(|D1v|2 + |r−1v|2)r drdθ ≤
∫ ω1

0

∫ ∞
1

(r2(β′−1)|D1v|2 + r2(β′−2)|v|2)r drdθ ≤ ‖v‖2W 2
β′ (S∞)
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and ∫ ω1

0

∫ ∞
1

q2r drdθ ≤
∫ ω1

0

∫ ∞
1

(r2(β′−1)q2)r drdθ ≤ ‖q‖2W 1
β′ (S∞).

We also have∫ ω1

0

∫ 1

0

(|D1v|2 + |r−1v|2)r drdθ ≤
∫ ω1

0

∫ 1

0

(r2(β−1)|D1v|2 + r2(β−2)|v|2)r drdθ ≤ ‖v‖2W 2
β (S∞)

and ∫ ω1

0

∫ 1

0

q2r drdθ ≤
∫ ω1

0

∫ 1

0

(r2(β−1)q2)r drdθ ≤ ‖q‖2W 1
β (S∞).

By combining above four inequalities and using (5.13)-(5.15) we have (5.11).
Now we consider the case that both Γ̃(1) 6= ∅ and Γ̃(1) = Γ̃(3) = ∅ do not hold. By Lemma A.1.1,

we could select β < 1 < β′ such that 0 is the only pole of R that lies in {λ : Imλ ∈ [1 − β′, 1 −
β]}. Then we consider the solution (v′, q′) obtained by (v′, q′) = (ṽ′, q̃′)(log( 1

r ), θ) with (ṽ′, q′) =
1√
2π

∫∞+i(1−β′)
−∞+i(1−β′) R(λ)[̂f, ĥ, ĝl]eiλt dλ. We now argue as above and obtain that (v′, q′) ∈ W 2

β′(S∞)2 ×
W 1
β′(S∞). Then Lemma A.1.1 gives that q = q′ and

v = v′ + c1(cos θ,− sin θ)t + c2(sin θ, cos θ)t,

where c1, c2 ∈ R. Therefore

v = v′ + (c1, c2)t,

and |D1v|2 = |D1v′|2. Now, use (5.13):∫ ω1

0

∫ ∞
1

(|D1v|2 + q)r drdθ ≤ 2

∫ ω1

0

∫ ∞
1

(r2(β′−1)|D1v′|2 + r2(β′−2)|v|2 + r2(β′−1)q′
2
)r drdθ

≤ 2‖v′‖2W 2
β′ (S∞) + 2‖q‖2W 1

β′ (S∞),

and we also have∫ ω1

0

∫ 1

0

(|D1v|2 + q)r drdθ ≤ 2

∫ ω1

0

∫ 1

0

(r2(β−1)|D1v|2 + r2(β′−2)|v|2 + r2(β−1)q2)r drdθ

≤ 2‖v‖2W 2
β (S∞) + 2‖q‖2W 1

β (S∞).

Now combine above inequalities and use (5.15) and we have (5.12).

Proof of Lemma 5.1.1. The proof follows the route in the proof of [17, Theorem 5.2]. The existence of
the solution (v, q) is an application of Theorem 4.8.5. By Lemma 2.2.6, v ∈ H1

loc(S∞)2 and q ∈ L2(S∞).

We firstly show (5.9). For any (w, σ) ∈ H̃
1

0(S∞)×L2(S∞) where H̃
1

0(S∞) := {u ∈ H1
loc(S∞)2|‖∇u‖L2(S∞) <

+∞, u|Γ̃(1)
= 0, u · n|Γ̃(2)

= 0}, we have

A(ũ,w)S∞ +B(w, p̃)S∞ =

∫
S∞

f̃ ·w +

∫
Γ̃(2)

g1
2(w · t) +

∫
Γ̃(3)

g1 ·w,

B(ũ, σ)S∞ =

∫
S∞

h̃σ.

Here A(·, ·)S∞ and B(·, ·)S∞ are those bilinear forms (3.2) and (3.3) but they are integral over S∞. Also,

for any (w, σ) ∈ Ĥ
1

0(S∞) × L2(S∞) where Ĥ
1

0(S∞) := {u ∈ H̃
1

0(S∞)|u has bounded support in S∞} we
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have

A(v,w)S∞ +B(w, q)S∞ =

∫
S∞

f̃ ·w +

∫
Γ̃(2)

g1
2(w · t) +

∫
Γ̃(3)

g1 ·w,

B(v, σ)S∞ =

∫
S∞

h̃σ.

Therefore, for any (w, σ) ∈ Ĥ
1

0(S∞)× L2(S∞),

A(v− ũ,w)S∞ +B(w, q − p̃)S∞ = 0,

B(v− ũ, σ)S∞ = 0.

We define ∇Ĥ
1

0(S∞) := {τ |∃v ∈ Ĥ
1

0(S∞), τ = ∇v} and ∇H̃
1

0(S∞) := {τ |∃v ∈ H̃
1

0(S∞), τ = ∇v}. By

Lemma 5.1.2 and the density of ∇Ĥ
1

0(S∞) in ∇H̃1

0(S∞) with respect to L2(S∞)-norm (this will be shown
later in Lemma 5.1.4).

A(v− ũ, v− ũ)S∞ = 0.

Therefore v − ũ ∈ R. If Γ̃(1) 6= ∅, then v − ũ = 0 on Γ̃(1) and v = ũ on S∞. Otherwise, both edges are
equipped with slip boundary condition and thus (v − ũ) · n = 0 on ∂S∞. Since in this case ω1 6= π, we
must have v = ũ on S∞. And thus,

B(w, q − p̃)S∞ = 0, ∀w ∈ ũ1
0(S∞).

By [14, Corollary 2.4] and [32, Lemma 2.3], for any R > 0 there exists w ∈ H̃
1

0(SR) such that
∇ · w = q − p̃ in SR and ‖∇ · w‖L2(SR) ≤ c‖q − p̃‖L2(S∞). We extend w to S∞ such that the H1(S∞)
norm is still bounded and denote the extension still by w. Set w̃ = ψδw where ψδ is a cut-off function
such that ψδ = 1 on SR and ψδ = 0 on S∞ \ SR+δ. We have

0 = B(w̃, q − p̃)S∞ =

∫
SR

(q − p̃)2 +

∫
SR+δ\SR

(q − p̃)∇ · w̃,

and

|
∫
SR+δ\SR

(q − p̃)∇ · w̃| ≤ C‖q − p̃‖L2(SR+δ\SR)‖w‖H1(S∞).

Since q− p̃ ∈ L2(S∞), ‖q− p̃‖L2(SR+δ\SR) → 0 as δ → 0. Therefore, ‖q− p̃‖L2(SR) = 0. As R is arbitrary,
we have q = p̃ on S∞. Therefore, by Theorem 4.8.5, (ũ, p) = (v, q) ∈W 2

β (S∞)2 ×W 1
β (S∞) and

‖u‖W 2
β (Sδ/2) + ‖p‖W 1

β (Sδ/2)

≤ CSEC,1(‖f‖Lβ(Sδ) + ‖u‖H1(Sδ\Sδ/2) + ‖p‖L2(Sδ\Sδ/2) + ‖g1
2‖
W

1
2
β (Γ̃(2))

+ ‖g1‖
W

1
2
β (Γ̃(3))

).

By Lemma 2.2.6 we have u ∈W 2
β (Sδ/2)2 ⊂ H2,2

β (Sδ/2)2 ⊂ C0(Sδ/2)2 and we must have u(A1) = u(A1) =

0 to ensure that u ∈W 2
β (S δ

2
)2.

We now consider the case that Γ̃(1) = ∅ and Γ̃(3) 6= ∅. For any (w, σ) ∈ H̃
1
(S∞) × L2(S∞) where

H̃
1
(S∞) := {u ∈ H1

loc(S∞)2|‖∇u‖L2(S∞) < +∞, u · n|Γ̃(2)
= 0}, we have

A(ũ,w)S∞ +B(w, p̃)S∞ =

∫
S∞

f̃ ·w +

∫
Γ̃(2)

g1
2(w · t) +

∫
Γ̃(3)

g1 ·w,

B(ũ, σ)S∞ =

∫
S∞

h̃σ.
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Also, for any (w, σ) ∈ Ĥ
1
(S∞)×L2(S∞) where Ĥ

1
(S∞) := {u ∈ H̃

1
(S∞)|u has bounded support in S∞}

we have

A(v,w)S∞ +B(w, q)S∞ =

∫
S∞

f̃ ·w +

∫
Γ̃(2)

g1
2(w · t) +

∫
Γ̃(3)

g1 ·w,

B(v, σ)S∞ =

∫
S∞

h̃σ.

Therefore, for any (w, σ) ∈ Ĥ
1
(S∞)× L2(S∞),

A(v− ũ,w)S∞ +B(w, q − p̃)S∞ = 0,

B(v− ũ, σ)S∞ = 0.

We define ∇Ĥ
1
(S∞) := {τ |∃v ∈ Ĥ

1
(S∞), τ = ∇v} and ∇H̃

1
(S∞) := {τ |∃v ∈ H̃

1
(S∞), τ = ∇v}. Use

the density of ∇Ĥ
1
(S∞) in ∇H̃

1
(S∞) with respect to L2(S∞)-norm(this is shown in Lemma 5.1.4) and

we have

A(v− ũ, v− ũ)S∞ = 0.

Therefore,

v− ũ ∈ R.

By Lemma 5.1.2, ‖D(v−ũ)‖L2(S∞) < +∞. So v−ũ ∈ span{(1, 0)t, (0, 1)t} and therefore A(v−ũ,w)S∞ =

0 for any w ∈ H̃
1
(S∞). Based on this we have B(w, q − p̃)S∞ = 0 for any w ∈ H̃

1
(S∞). Argue as before

and we have q = p̃ in L2(S∞). By Theorem 4.8.5, there exists a constant vector e such that

‖u− e‖W 2
β (Sδ/2) + ‖p‖W 1

β (Sδ/2)

≤ CSEC,2(‖f‖Lβ(Sδ) + ‖u‖H1(Sδ\Sδ/2) + ‖p‖L2(Sδ\Sδ/2) + ‖g1
2‖
W

1
2
β (Γ̃(2))

+ ‖g1‖
W

1
2
β (Γ̃(3))

).

Lemma 2.2.6 implies that ũ ∈ C0(Sδ)
2 and we must have u(A1)−e = 0 to ensure that u−e ∈W 2

β (Sδ)
2.

Therefore u(A1) = e and u − e ∈ W 2
β (Sδ/2)2 ⊂ H2,2

β (Sδ/2)2 ⊂ C0(Sδ/2)2. The proof is completed by
setting CSEC = max(CSEC,1, CSEC,2).

Remark 5.1.3. The proof of Lemma 5.1.1 shows that any solution (u, p) ∈ W 2
β (S∞)2 × W 1

β (S∞) to
the Stokes problem (4.1) with 0 < β < 1, f = 0 and zero boundary condition must satisfy that u ∈
span{(0, 1)t, (1, 0)t} and that p = 0. Due to the fact that span{(0, 1)t, (1, 0)t} ∩W 2

β (S∞)2 = (0, 0)t, the

homogeneous Stokes problem in a sector can only have zero solution in W 2
β (S∞)2×W 1

β (S∞) and thus the

solution (u, p) ∈ W 2
β (S∞)2 ×W 1

β (S∞) to the Stokes problem (4.1) is unique in the scenario of Theorem
4.8.5 if 0 < β < 1.

We need to prove the following lemma used before.

Lemma 5.1.4. If Γ̃(1) 6= ∅ or Γ̃(1) = Γ̃(3) = ∅, then ∇Ĥ
1

0(S∞) is dense in ∇H̃
1

0(S∞) with respect to

L2(S∞)-norm. Otherwise, ∇Ĥ
1
(S∞) is dense in ∇H̃

1
(S∞) with respect to L2(S∞)-norm.

Proof. Without loss of generality, let A1 be located at the origin. We assume firstly that the edge
{θ = 0} = {(x1, x2)|x1 > 0, x2 = 0}. Define the following spaces:

H̃1
0 (S∞) := {u ∈ H1

loc(S∞)|‖∇u‖L2(S∞) < +∞, u = 0 on {θ = 0}},

Ĥ1
0 (S∞) := {u ∈ H̃1

0 (S∞)|u has bounded support},

H̃1(S∞) := {u ∈ H1
loc(S∞)|‖∇u‖L2(S∞) < +∞},

Ĥ1(S∞) := {u ∈ H̃1(S∞)|u has bounded support}.
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For any two constants 0 ≤ R1 < R2 ≤ +∞, define S[R1,R2] := S∞ ∩ {(r, θ) : R1 < r < R2}. Then

S∞ = S[0,1] ∪ (∪+∞
n=0S[2n,2n+1]). Furthermore, we fix a cut-off function φ(r) ∈ C∞(R) such that φ(r) = 1

for r < 0 and φ(r) = 0 for r > 1. Then it is straightforward to show that φn(x1, x2) := φ(

√
x2

1+x2
2−2n

2n )

satisfies ‖∇φn‖L∞(S∞) ≤ K
2n where K is a constant depending only on φ.

We prove two claims before verifying the statements in the lemma.

Claim 1: Given any u ∈ H̃1
0 (S∞) and any ε > 0, there exists v ∈ Ĥ1

0 (S∞) such that ‖∇u −
∇v‖L2(S∞) ≤ ε. Moreover, if u = 0 on ∂S∞, then v = 0 on ∂S∞.

Proof of Claim 1:
Fix a u ∈ H̃1

0 (S∞). The first Poincaré inequality implies that for any function w ∈ H1(S[1,2]) which
vanishes on {(r, θ) : θ = 0, r ∈ (1, 2)} there exists a constant Cpoin,1 > 0 such that the following holds:

‖w‖L2(S[1,2]) ≤ Cpoin,1‖∇w‖L2(S[1,2]).

By applying the homothetic scaling Φn : S[2n,2n+1] → S[1,2] : (x1, x2) 7→ ( x1

2n ,
x2

2n ) it is easy to verify that
for any n ∈ N and any w ∈ H1(S[2n,2n+1]) which vanishes on {(r, θ) : θ = 0, r ∈ (2n, 2n+1)} the following
Poincaré inequality holds:

‖w‖L2(S[2n,2n+1])
≤ 2nCpoin,1‖∇w‖L2(S[2n,2n+1])

.

For any ε > 0 we could choose ñ sufficiently large such that ‖∇u‖L2(S[2ñ,+∞])
< ε

3+KCpoin,1
. We show

now that v := φñu is the function we desire. Clearly v = 0 on any edge on which u = 0 and v has
bounded support in S∞. Moreover, we have

‖∇u−∇v‖L2(S∞)

≤ ‖∇u−∇(φñu)‖L2(S[2ñ,2ñ+1])
+ ‖∇u‖L2(S[2ñ+1,+∞])

≤ ‖(1− φñ)∇u‖L2(S[2ñ,2ñ+1])
+ ‖∇φñu‖L2(S[2ñ,2ñ+1])

+ ‖∇u‖L2(S[2ñ,+∞])

≤ 3‖∇u‖L2(S[2ñ,+∞])
+ ‖∇φñ‖L∞(S∞)‖u‖L2(S[2ñ,2ñ+1])

≤ 3ε

3 +KCpoin,1
+
K

2ñ
2ñCpoin,1‖∇u‖L2(S[2ñ,2ñ+1])

by the Poincaré inequality in S[2ñ,2ñ+1] stated above

≤ 3ε

3 +KCpoin,1
+KCpoin,1

ε

3 +KCpoin,1
= ε.

Therefore v satisfies the requirement in the claim.

Obviously Claim 1 also works for functions taking zero value on {θ = ω1}.

Claim 2: Given any u ∈ H̃1(S∞) and any ε > 0, there exists v ∈ Ĥ1(S∞) such that ‖∇u −
∇v‖L2(S∞) ≤ ε.

Proof of Claim 2:
By the second Poincaré inequality, for any function w ∈ H1(S[1,2]) there exists a constant Cpoin,2 > 0

such that the following holds:

inf
c∈R
‖w − c‖L2(S[1,2]) ≤ Cpoin,2‖∇w‖L2(S[1,2]).

Similar to the proof of Claim 1, by using the homothetic scaling Φn it is easy to verify that for any n ∈ N
and any w ∈ H1(S[2n,2n+1]) the following Poincaré inequality in S[2n,2n+1] holds:

inf
c∈R
‖w − c‖L2(S[2n,2n+1])

≤ 2nCpoin,2‖∇w‖L2(S[2n,2n+1])
.
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For any ε > 0 we could choose n̄ sufficiently large such that ‖∇u‖L2(S[2ñ,+∞])
< ε

3+KCpoin,2
. With aid of

the Poincaré inequality in S[2n̄,2n̄+1] there exists a constant cn̄ ∈ R such that

‖u− cn̄‖L2(S[2n̄,2n̄+1])
≤ 2n̄Cpoin,2‖∇u‖L2(S[2n̄,2n̄+1])

≤ 2n̄Cpoin,2ε

3 +KCpoin,2
.

We show now that v := φn̄(u − cn̄) is the function we desire. Obviously v has bounded support in S∞.
Moreover, we have

‖∇u−∇v‖L2(S∞)

≤ ‖∇u−∇(φn̄(u− cn̄))‖L2(S[2n̄,2n̄+1])
+ ‖∇u‖L2(S[2n̄+1,+∞])

≤ ‖(1− φn̄)∇u‖L2(S[2n̄,2n̄+1])
+ ‖∇φn̄(u− cn̄)‖L2(S[2n̄,2n̄+1])

+ ‖∇u‖L2(S[2n̄+1,+∞])

≤ 3‖∇u‖L2(S[2n̄,+∞])
+ ‖∇φn̄‖L∞(S∞)‖u− cn̄‖L2(S[2n̄,2n̄+1])

≤ 3ε

3 +KCpoin,2
+
K

2n̄
2n̄Cpoin,2ε

3 +KCpoin,2
= ε.

Therefore v satisfies the requirement in the claim.

We now turn to the proof of the lemma. It is easy to verify that if ω1 6= π, then there exists an
invertible matrix B := [n|θ=0,n|θ=ω1

]t such that (ua, ub)
t := Bu = (u · n|θ=0,u · n|θ=ω1

)t.

Firstly we justify the density of ∇Ĥ
1

0(S∞) in ∇H̃
1

0(S∞) given that Γ̃(1) 6= ∅ or Γ̃(1) = Γ̃(3) = ∅. Fix

u ∈ H̃
1

0(S∞). We have the following cases to deal with:

Case 1: Slip boundary condition is not prescribed on both edges(which means that only Dirichlet
and Neumann boundary conditions are on the boundary, note that we could not have only Neumann

boundary condition here). Then by Claim 1 there exists v ∈ Ĥ
1

0(S∞) such that ‖∇(u− v)‖L2(S∞) ≤ ε.

Case 2: Dirichlet and Slip boundary conditions are on the boundary. We may assume that Slip
boundary condition is on {θ = ω1} and Dirichlet boundary condition is on {θ = 0}. If ω1 6= π, then

(ua, ub)
t = 0 on {θ = 0} and ub = 0 on {θ = ω1}. By Claim 1, there exist va ∈ Ĥ1

0 (S∞) and

vb ∈ Ĥ1
0 (S∞) ∩ {w|w = 0 on {θ = ω1}} such that ‖∇((ua, ub)

t − (va, vb)
t)‖L2(S∞) ≤ ε

2‖B−1‖∞ (Here

‖ · ‖∞ is the maximum row sum matrix norm, see [19, Chapter 5.6]). Now v := B−1(va, vb)
t satisfies the

boundary condition required in Ĥ
1

0(S∞) and

‖∇(u− v)‖L2(S∞) ≤ 2‖B−1‖∞‖∇(B(u− v))‖L2(S∞) ≤ 2‖B−1‖∞‖∇((ua, ub)
t − (va, vb)

t)‖L2(S∞) ≤ ε.

If ω1 = π, then boundary conditions imply that u1 = 0 on {θ = 0} and u2 = 0 on ∂S∞(since we
assume before that {θ = 0} = {(x1, x2)|x1 > 0, x2 = 0}, n|θ=0,π = (0,−1)t). Now we could find

v = (v1, v2)t ∈ Ĥ
1

0(S∞) such that ‖∇(u−v)‖L2(S∞) ≤ ε by obtaining vi from ui with Claim 1 for i = 1, 2.

Case 3: Only Slip boundary condition is on ∂S∞. In this case ω1 6= π. Now ua vanishes on {θ = 0}
and ub vanishes on {θ = ω1} and thus by Claim 1 there exists (va, vb)

t with va vanishing on {θ = 0} and
vb vanishing on {θ = ω1} such that ‖∇((ua, ub)

t − (va, vb)
t)‖L2(S∞) ≤ ε

2‖B−1‖∞ . We now use the same

argument as in Case 2 before and it is clear that v := B−1(va, vb)
t ∈ Ĥ

1

0(S∞) and ‖∇(u− v)‖L2(S∞) ≤ ε.

Therefore∇Ĥ
1

0(S∞) is dense in∇H̃
1

0(S∞) with respect to L2(S∞)-norm. We now show that∇Ĥ
1
(S∞)

is dense in ∇H̃
1
(S∞) with respect to L2(S∞)-norm given that Γ̃(1) = ∅ and Γ̃(3) 6= ∅. Fix u ∈ H̃

1
(S∞).

Two cases shall be considered:
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Case 1: Neumann and Slip boundary conditions are on the boundary. We may assume that Slip
boundary condition is on {θ = 0} and Neumann boundary condition is on {θ = ω1}. If ω1 6= π, then

ua = 0 on {θ = 0}. By Claim 1 and Claim 2, there exist va ∈ Ĥ1
0 (S∞) and vb ∈ Ĥ1(S∞) such that

‖∇((ua, ub)
t − (va, vb)

t)‖L2(S∞) ≤ ε
2‖B−1‖∞ . Now v := B−1(va, vb)

t satisfies the boundary condition

required in Ĥ
1
(S∞) and

‖∇(u− v)‖L2(S∞) ≤ 2‖B−1‖∞‖∇(B(u− v))‖L2(S∞) ≤ 2‖B−1‖∞‖∇((ua, ub)
t − (va, vb)

t)‖L2(S∞) ≤ ε.

If ω = π, then boundary conditions imply that u2 = 0 on {θ = 0}. Now we could find v := (v1, v2)t ∈
Ĥ

1
(S∞) such that ‖∇(u − v)‖L2(S∞) ≤ ε by obtaining v1 from u1 with Claim 2 and obtaining v2 from

u2 with Claim 1.

Case 2: Only Neumann boundary condition is on ∂S∞. Then by Claim 2 there exists v ∈ Ĥ
1
(S∞)

such that

‖∇(u− v)‖L2(S∞) ≤ ε.

Above analysis ensures the density of ∇Ĥ
1
(S∞) in ∇H̃

1
(S∞).

We finally show that the density results still hold if our assumption about {θ = 0} at the beginning
is dropped. To see this we introduce a new coordinate system x̂ := (x̂1, x̂2)t induced by using a rotation
matrix R such that the relation between x̂ and the old coordinate x is x̂ = Rx and that {θ = 0} =
{(x̂1, x̂2)|x̂1 > 0, x̂2 = 0}. Then the normal vector will be presented using the new coordinate system as
n̂ = Rn. For any u ∈ H1

loc(S∞)2 ∩{v|‖∇xu‖L2(S∞) < +∞}, define û = Ru. Then it is easy to show that
û ∈ H1

loc(S∞)2 ∩ {v|‖∇x̂v̂‖L2(S∞) < +∞} under the new coordinate system and û = 0 on any edge if
and only if u = 0. Moreover, we have

û · n̂ = (Ru) · (Rn) = u · n,

since the rotation matrix R is orthogonal. Therefore û · n̂ = 0⇐⇒ u · n = 0. Now we could apply above
approximation results on û and transform those results back to u to support the density results in the
general case.

5.2 Analytic regularity over Ω

Recall that W := {u ∈ H1(Ω)2 : u = 0 on ΓD and u · n = 0 on ΓG}, M1 := {v ∈ W, ‖v‖H1(Ω) ≤
( 1

2 −
√

1
4 −

Cconv
C2
coer
‖f‖W∗) CcoerCconv

} and M2 := {v ∈ W, ‖v‖H1(Ω) ≤ ‖f‖W∗Ccoer
} (see the statement of Theorem

3.1.3). The following will be the main regularity result.

Theorem 5.2.1. Let 0 < βf = (β1, β2, · · · , βn) < 1 and f ∈ B0
βf

(Ω)2 ∩W∗ such that (3.9) holds true.

Assume that for each i ∈ {1, 2, · · · , n}, βi ∈ (1 − κi, 1) ∩ (0, 1) with κi defined as the smallest positive
imaginary part of the nonzero eigenvalues of Ri(λ) with positive imaginary part where Ri(λ) is defined
regarding the corner Ai as in section 4.7.

Then, to (3.1) there exists

• a weak solution (u, p) ∈ W × L2(Ω) such that u is uniquely determined in M1 and p associated
with that u is uniquely determined in L2(Ω) in the case that |ΓN | > 0.

• a unique weak solution (u, p) ∈W × L0(Ω) such that u ∈M2 in the case that |ΓN | = 0.

Moreover, any weak solution pair (u, p) ∈ B2
βf

(Ω)2 ×B1
βf

(Ω).

The existence and uniqueness of the solution (u, p) are a consequence of Theorem 3.1.3. Before we
complete the proof of this theorem, we give a corollary which is more applicable:
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Corollary 5.2.2. Let 0 < βf = (β1, β2, · · · , βn) < 1 and f ∈ B0
βf

(Ω)2 ∩W∗ such that (3.9) holds true.

Then there exists β̃ ∈ (0, 1)n satisfying β̃ > βf such that all the existence and uniqueness results in
Theorem 5.2.1 hold and (u, p) ∈ B2

β̃
(Ω)2 ×B1

β̃
(Ω).

Proof. We only need to show the regularity of the solution (u, p). There always exists (β̃1, · · · , β̃n) =:
β̃ ∈ (0, 1)n such that β̃ > βf and that for each i ∈ {1, 2, · · · , n}, β̃i > 1− κi where κi is defined as in the

statement of Theorem 5.2.1. Also, it is clear that f ∈ B0
β̃
(Ω)2. Now we apply Theorem 5.2.1 with β̃ and

we have the result.

We will prove a series of lemmas in the following to justify the weighted analytical regularity of the
solution. For any 0 < δ ≤ 1

4 mini,j d(Ai, Aj), define Siδ = B(Ai, δ) ∩ Ω the truncated sector at Ai
where B(Ai, δ) is the ball centered at Ai with radius δ. For 0 ≤ a < b ≤ 1

4 mini,j d(Ai, Aj) we also set

Sib ⊃ Si[a,b] := Sib \ Sia. Define further Ωδ := Ω \ ∪ni=1S
i
δ. Note that Ωδ is a Lipschitz domain.

Lemma 5.2.3. Given f ∈ B0
βf

(Ω)2 with 0 < βf = (β1, β2, · · · , βn) < 1, then f ∈ Lt(Ω)2 for t ∈
(1, 2

1+maxi βi
).

Proof. [28, Lemma 2.4] yields H2,0
βf

(Ω) ⊂ Lt(Ω) for any t ∈ (1, 2
1+maxi βi

). Since f ∈ B0
βf

(Ω)2 ⊂ H2,0
βf

(Ω)2

by the definition of B0
β(Ω), f ∈ Lt(Ω)2 with t ∈ (1, 2

1+maxi βi
).

Lemma 5.2.4. For any v ∈ H1(Ω)2, (v · ∇)v ∈ Ls(Ω)2 for 1 < s < 2.

Proof. This is an application of the Sobolev embedding H1(Ω) ↪→ Lq(Ω) valid for any q ∈ (1,+∞) and
of the Hölder inequality.

Lemma 5.2.5. Let 0 < βf < 1, f ∈ B0
βf

(Ω)2 and let (u, p) ∈ M × L2(Ω) be a weak solution to (3.1)

with right-hand side f. In particular, (u, p) solves (3.5).
Then (u · ∇)u ∈ L2(Ω)2. Moreover, given any δ ∈ (0, 1

4 mini,j d(Ai, Aj)], it holds that (u, p)|Ωδ ∈
Hk(Ωδ)

2 ×Hk−1(Ωδ) for any k ∈ N≥1. Furthermore, (u, p) ∈ Ck,µloc (Ωδ)
2 × Ck,µloc (Ωδ) for any k ∈ N and

µ ∈ [0, 1].

Proof. We move the nonlinear term to the right-hand side and consider the corresponding Stokes problem
(3.11). Choose a positive number γ < 1 − βf such that the operator pencil A(α), which was generated
by introducing polar coordinates and applying the Mellin transform with respect to the parameter α on
the Stokes operator in each truncated sector (see [32, Section 3.2]), has no eigenvalue or has α = 0 as the
unique eigenvalue in the strip {α : −ε < Reα ≤ γ}, where ε is a small positive real number.

By Lemma 5.2.3 and Lemma 5.2.4, f − (u · ∇)u ∈ L
2

2−γ (Ω)2. Therefore, by [33, Corollary 4.2],

(u, p) ∈ W 2, 2
2−γ (Ω)2 × W 1, 2

2−γ (Ω). The Sobolev embedding theorem implies u ∈ C0(Ω)2 and then
‖u‖L∞(Ω)<+∞. With u ∈ H1(Ω)2 we obtain (u · ∇)u ∈ L2(Ω)2.

As (u, p) ∈ H1(Ω)2×L2(Ω), (u, p)|Ωδ ∈ H1(Ωδ)
2×L2(Ωδ) for any δ ∈ (0, 1

4 mini,j d(Ai, Aj)]. To show
that (u, p)|Ωδ ∈ H2(Ωδ)

2 ×H1(Ωδ), we apply the standard elliptic regularity for Stokes problem:

‖u‖H2(Ωδ) + ‖p‖H1(Ωδ) ≤ C‖f− (u · ∇)u‖L2(Ωδ/2)<+∞.

We prove that (u, p)|Ωδ ∈ Hk(Ωδ)
2 ×Hk−1(Ωδ) for k ∈ N≥2 and for any δ ∈ (0, 1

4 mini,j d(Ai, Aj)] by
induction.

Assume that this holds for k = m − 1 where m ∈ N≥3. By using a Sobolev extension operator (see,
for example, the operator introduced by Stein [42, Chapter VI, Theorem 5]) on u we see that there exists
ũ ∈ Hm−1(R2)2 which is identical to u on Ωδ. Now, [6, Theorem C.10] implies that (ũ·∇)ũ ∈ Hm−2(R2)2.
The restriction of (ũ ·∇)ũ to Ωδ, which is (u ·∇)u, clearly belongs to Hm−2(Ωδ)

2. The elliptic regularity
for the Stokes problem implies (note that f ∈ Hm−2(Ωδ)

2):

‖u‖Hm(Ωδ) + ‖p‖Hm−1(Ωδ) ≤ C‖f− (u · ∇)u‖Hm−2(Ωδ/2)<+∞.
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Therefore (u, p)|Ωδ ∈ Hm(Ωδ)
2 ×Hm−1(Ωδ).

The local Hölder continuity of the solution can be justified by using the Sobolev embedding Hk(Ωδ) ↪→
Ck−2(Ωδ) for any k ∈ N≥2.

Now we could prove the interior analyticity of the solution using the local Hölder continuity of (u, p)
in Ωδ from Lemma 5.2.5 with [31, Theorem 6.7.6] or directly using [20, Theorem 1.2]. The analyticity in
regular parts of boundary can be derived using local Hölder continuity of the solution with [31, Theorem
6.7.6’].

Lemma 5.2.6. For any 0 < δ ≤ 1
4 mini,j∈{1,2,··· ,n},i6=j d(Ai, Aj), the solution (u, p) to (3.1) with f

satisfying (3.9) is analytic in Ωδ/2.

The task now is to investigate the regularity of the solution pair in each truncated sector Siδ/2, i ∈
{1, 2, · · · , n}.

In Lemma 5.2.5 we have shown that (u · ∇)u ∈ L2(Ω)2 ⊂ Lβf (Ω)2. By moving the nonlinear term
to the right-hand side and using Lemma 5.1.1 on each sector Siδ, we have (u, p) ∈ W 2

βi
(Siδ)

2 ×W 1
βi

(Siδ)
(recall that by Condition 2 in Remark 3.1.1, only the first case in Lemma 5.1.1 happens here).

From now on we fix a small δ ∈ (0, 1) such that for any i, ‖u‖W 2
βi

(Siδ)
≤ 1 and ‖p‖W 1

βi
(Siδ)

≤ 1.

This is possible since for each i, limδ→0 ‖u‖W 2
βi

(Siδ)
= 0 and limδ→0 ‖p‖W 1

βi
(Siδ)

= 0, by the Dominated

Convergence Theorem.
Without loss of generality we focus on the sector S1

δ . We will use the coordinate system (r, θ) centered
at A1 such that S1

δ = {(r, θ) : 0 < r < δ, 0 < θ < ω1}. We claim that:

Lemma 5.2.7. Let all assumptions in Theorem 5.2.1 hold true and let (u, p) be a weak solution to (3.1).
Then there exists two constants Du, Eu ≥ 1 such that for all α ∈ N2 satisfying |α| ≥ 2:

‖rβ1+α1−2Dαur‖L2(S1
δ/2

) ≤ D|α|−2
u E

max(α2− 4
3 ,0)

u (|α| − 2)!, (5.16)

‖rβ1+α1−2Dαuθ‖L2(S1
δ/2

) ≤ D|α|−2
u E

max(α2− 4
3 ,0)

u (|α| − 2)!, (5.17)

and for any |α| ≥ 1:

‖rβ1+α1−1Dαp‖L2(S1
δ/2

) ≤ D|α|−1
u Eα2

u (|α| − 1)!. (5.18)

To show this we need the following lemmas:

Lemma 5.2.8.

(u · ∇)u =

(
−u

2
θ

r + ur∂rur + uθ∂θur
r

uruθ
r + ur∂ruθ + uθ∂θuθ

r

)

Proof. Elementary calculus yields:

∂x1
= cos θ∂r −

sin θ

r
∂θ, ∂x2

= sin θ∂r +
cos θ

r
∂θ.

Then:

[(u · ∇)u]1 = (u1∂x1
+ u2∂x2

)u1 =

(cos θur − sin θuθ)(cos2 θ∂rur − cos θ sin θ∂ruθ +
sin2 θ

r
ur −

cos θ sin θ

r
∂θur +

cos θ sin θ

r
uθ +

sin2 θ

r
∂θuθ)+

(sin θur + cos θuθ)(cos θ sin θ∂rur − sin2 θ∂ruθ −
cos θ sin θ

r
ur +

cos2 θ

r
∂θur −

cos2 θ

r
uθ −

cos θ sin θ

r
∂θuθ)

= −cos θ

r
u2
θ −

sin θ

r
uruθ + cos θur∂rur − sin θur∂ruθ +

cos θ

r
uθ∂θur −

sin θ

r
uθ∂θuθ.
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Similarly:

[(u · ∇)u]2 = (u1∂x1
+ u2∂x2

)u2 =

= − sin θ

r
u2
θ +

cos θ

r
uruθ + sin θur∂rur + cos θur∂ruθ +

sin θ

r
uθ∂θur +

cos θ

r
uθ∂θuθ.

Therefore:

(u · ∇)u = A((u · ∇)u) =

(
−u

2
θ

r + ur∂rur + uθ∂θur
r

uruθ
r + ur∂ruθ + uθ∂θuθ

r

)
.

The next lemma is similar to [28, Lemma 1.10] but it is written in polar coordinates.

Lemma 5.2.9. Let η, η̂, a, b ∈ R such that η > η̂ + 1
2 and 0 ≤ a < b ≤ δ < 1. Then there exists a

constant CINT = CINT (η, η̂, a, b) > 0 such that for any multi-index α ∈ N2 and any function φ satisfying
‖rη̂+α1+γ1Dα+γφ‖L2(S1

[a,b]
)<+∞ for all γ ∈ N2 with |γ| ≤ 1, there holds

‖rη+α1Dαφ‖L4(S1
[a,b]

)

≤ CINT ‖rη̂+α1Dαφ‖
1
2

L2(S1
[a,b]

)
(
∑
|γ|≤1

‖rη̂+α1+γ1Dα+γφ‖
1
2

L2(S1
[a,b]

)
+ α

1
2
1 ‖rη̂+α1Dαφ‖

1
2

L2(S1
[a,b]

)
).

(5.19)

Proof. Without loss of generality we set b = 1.
Given j ∈ N0, we introduce Sj := {(r, θ) : 2−j−1<r<2−j , 0<θ<ω1} ⊂ S1

[0,1] and the homothetic

scaling Ψj : Sj → S0 : (r, θ) 7→ (2jr, θ) and set φ̂j = φ ◦Ψ−1
j . Then we have, for any q ∈ [1,+∞):

‖rη+α1Dαφ‖Lq(Sj) = 2−j(η+ 2
q )‖rη+α1D̂αφ̂j‖Lq(S0). (5.20)

Let now c ∈ (0, 1). As S1
[c,1] satisfies the cone condition (see [1]), by [1, Theorem 3] there exists a

constant C0 = C0(c) such that for any ψ ∈W 1,2(S1
[c,1]):

‖ψ‖L4(S1
[c,1]

) ≤ C0‖ψ‖
1
2

H1(S1
[c,1]

)
· ‖ψ‖

1
2

L2(S1
[c,1]

)
.

Note that:

∂x1 = cos θ∂r −
sin θ

r
∂θ, ∂x2 = sin θ∂r +

cos θ

r
∂θ.

Since S1
[c,1] is a bounded set and is bounded away from the vertex, rα1Dαφ ∈ H1(S1

[c,1]). Also, for all

ψ ∈ H1(S1
[c,1]),

‖ψ‖2H1(S1
[c,1]

) ≤ C1(‖ψ‖2L2(S1
[c,1]

) + ‖∂rψ‖2L2(S1
[c,1]

) + ‖∂θψ‖2L2(S1
[c,1]

)).

The constant C1 here depends on c but is independent of ψ. Therefore:

‖ψ‖2L4(S1
[c,1]

) ≤ C
2
0C1‖ψ‖L2(S1

[c,1]
) · (

∑
|γ|≤1

‖Dγ(rα1Dαψ)‖2L2(S1
[c,1]

))
1
2 .

Set ψ = rη+α1Dαφ in this inequality:
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‖rη+α1Dαφ‖L4(S1
[c,1]

) ≤ max(1, cη)‖rα1Dαφ‖L4(S1
[c,1]

)

≤ C0C
1
2
1 max(1, cη)‖rα1Dαφ‖

1
2

L2(S1
[c,1]

)
(
∑
|γ|≤1

‖Dγ(rα1Dαφ)‖2L2(S1
[c,1]

))
1
4

≤ C0C
1
2
1 max(1, cη)‖rα1Dαφ‖

1
2

L2(S1
[c,1]

)
(
∑
|γ|≤1

‖rγ1+α1Dα+γφ‖
1
2

L2(S1
[c,1]

)
+ |α1|

1
2 · ‖rα1−1Dαφ‖

1
2

L2(S1
[c,1]

)
)

≤ C0C
1
2
1 max(1, cη) max(1, c−η̂, c−η̂−1)‖rη̂+α1Dαφ‖

1
2

L2(S1
[c,1]

)

· (
∑
|γ|≤1

‖rη̂+γ1+α1Dα+γφ‖
1
2

L2(S1
[c,1]

)
+ |α1|

1
2 · ‖rη̂+α1Dαφ‖

1
2

L2(S1
[c,1]

)
).

If a 6= 0, then set c = a in the above inequality and (5.19) holds if CINT ≥ C0C
1
2
1 max(1, aη) max(1, a−η̂, a−η̂−1).

Otherwise, set c = 1
2 in the inequality and use (5.20):

‖rη+α1Dαφ‖L4(Sj) = 2−j(η+ 1
2 )‖rη+α1D̂αφ̂j‖L4(S0)

≤ C0C
1
2
1 max(1, (

1

2
)η) max(1, (

1

2
)−η̂, (

1

2
)−η̂−1)2−j(η+ 1

2 )‖rη̂+α1D̂αφ̂j‖
1
2

L2(S1
[c,1]

)

· (
∑
|γ|≤1

‖rη̂+γ1+α1D̂α+γ φ̂j‖
1
2

L2(S1
[c,1]

)
+ |α1|

1
2 · ‖rη̂+α1D̂αφ̂j‖

1
2

L2(S1
[c,1]

)
)

≤ C0C
1
2
1 max(1, (

1

2
)η) max(1, (

1

2
)−η̂, (

1

2
)−η̂−1)2−j(η+ 1

2 )+j(η̂+1)‖rη+α1Dαφ‖
1
2

L2(Sj)

· (
∑
|γ|≤1

‖rη̂+γ1+α1Dα+γφ‖
1
2

L2(Sj) + |α1|
1
2 · ‖rη̂+α1Dαφ‖

1
2

L2(Sj)).

and thus

‖rη+α1Dαφ‖L4(S1
[0,1]

) ≤
∑
j∈N
‖rη+α1Dαφ‖L4(Sj)

≤ C0C
1
2
1 max(1, (

1

2
)η) max(1, (

1

2
)−η̂, (

1

2
)−η̂−1)

∑
j∈N

(2−j(η+ 1
2 )+j(η̂+1)‖rη+α1Dαφ‖

1
2

L2(Sj)

· (
∑
|γ|≤1

‖rη̂+γ1+α1Dα+γφ‖
1
2

L2(Sj) + |α1|
1
2 · ‖rη̂+α1Dαφ‖

1
2

L2(Sj)))

≤ C0C
1
2
1 max(1, (

1

2
)η) max(1, (

1

2
)−η̂, (

1

2
)−η̂−1)(

∑
j∈N

2−j(η+ 1
2 )+j(η̂+1))

‖rη+α1Dαφ‖
1
2

L2(S1
[0,1]

)
· (
∑
|γ|≤1

‖rη̂+γ1+α1Dα+γφ‖
1
2

L2(S1
[0,1]

)
+ |α1|

1
2 · ‖rη̂+α1Dαφ‖

1
2

L2(S1
[0,1]

)
).

Conclude the two cases above and it is clear now that we could set

CINT := max(C0C
1
2
1 max(1, aη) max(1, a−η̂, a−η̂−1),

C0C
1
2
1 max(1, (

1

2
)η) max(1, (

1

2
)−η̂, (

1

2
)−η̂−1)(

∑
j∈N

2−j(η+ 1
2 )+j(η̂+1)))

(since η > η̂ + 1
2 the sum here is finite) to validate (5.19). This concludes the proof.
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Lemma 5.2.10. Let β ∈ (0, 1), k ∈ N≥1, 0 ≤ a < b ≤ δ ≤ 1 and let u be a function such that
‖u‖W 2

β (S1
δ ) ≤ 1. Assume that there exists two constants Du, Eu ≥ 1 independent of k, a, b such that, for

any 2 ≤ |α| ≤ k + 1:

‖rβ+α1−2Dαu‖L2(S1
[a,b]

) ≤ D|α|−2
u Eα2

u (|α| − 2)!

Then there is a constant CECN>0 independent of Du, Eu, k, a, b such that:
(1): for any α ∈ N2 with |α| ≤ k:

‖r
β
2−1+α1Dαu‖L4(S1

[a,b]
) ≤ CECN (|α|+ 1)

1
2D

max(|α|− 3
2 ,0)

u E
α2+ 1

2
u (max(|α| − 2, 0))!. (5.21)

(2): for any α ∈ N2 with |α| ≤ k:

‖r
β
2−1+α1Dα(ru)‖L4(S1

[a,b]
) ≤ CECN (|α|+ 1)

1
2D

max(|α|− 3
2 ,0)

u E
α2+ 1

2
u (max(|α| − 2, 0))!. (5.22)

(3): for any α ∈ N2 with |α| ≤ k − 1:

‖r
β
2−1+α1Dα(r∂ru)‖L4(S1

[a,b]
) ≤ CECN (|α|+ 1)

1
2D

max(|α|− 1
2 ,0)

u E
α2+ 1

2
u (max(|α| − 1, 0))!. (5.23)

(4): for any α ∈ N2 with |α| ≤ k − 1:

‖r
β
2−1+α1Dα(∂θu)‖L4(S1

[a,b]
) ≤ CECN (|α|+ 1)

1
2D

max(|α|− 1
2 ,0)

u E
α2+ 3

2
u (max(|α| − 1, 0))!. (5.24)

Proof. We start by showing (5.21). By Lemma 5.2.9 (note that since β < 1, β2 − 1 > β − 2 + 1
2 and thus

Lemma 5.2.9 is applicable here), there holds, for all α ∈ N2,

‖r
β
2−1+α1Dαu‖L4(S1

[a,b]
)

≤ CINT ‖rβ−2+α1Dαu‖
1
2

L2(S1
[a,b]

)
· (
∑
|γ|≤1

‖rβ−2+α1+γ1Dα+γu‖
1
2

L2(S1
[a,b]

)
+ α

1
2
1 ‖rβ−2+α1Dαu‖

1
2

L2(S1
[a,b]

)
).

Therefore, when |α| ≥ 2:

‖r
β
2−1+α1Dαu‖L4(S1

[a,b]
)

≤ 2CINT (Dmax(|α|−2,0)
u Eα2

u (|α| − 2)!)
1
2 (Dmax(|α|−1,0)

u Eα2+1
u (|α| − 1)!)

1
2

+ (1 + α
1
2
1 )CINTD

max(|α|−2,0)
u Eα2

u (|α| − 2)!

≤ 4CINT (|α|+ 1)
1
2D

max(|α|− 3
2 ,0)

u E
α2+ 1

2
u (|α| − 2)!

and in the case that |α| ≤ 1, recall that ‖u‖W 2
β (S1

δ ) ≤ 1:

‖r
β
2−1+α1Dαu‖L4(S1

[a,b]
) ≤ 4CINT .

It follows that

‖r
β
2−1+α1Dαu‖L4(S1

[a,b]
) ≤ 4CINT (|α|+ 1)

1
2D

max(|α|− 3
2 ,0)

u E
α2+ 1

2
u (max(|α| − 2, 0))!.
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In order to prove (5.22), remark that for all α ∈ N2,

‖r
β
2−1+α1Dα(ru)‖L4(S1

[a,b]
) ≤ ‖r

β
2 +α1Dαu‖L4(S1

[a,b]
) + α1‖r

β
2−1+α1Dα−(1,0)u‖L4(S1

[a,b]
)

≤ δ(‖r
β
2−1+α1Dαu‖L4(S1

[a,b]
) + α1‖r

β
2−1+α1−1Dα−(1,0)u‖L4(S1

[a,b]
)).

Now we apply (5.21) to obtain that

‖r
β
2−1+α1Dα(ru)‖L4(S1

[a,b]
)

≤ 4δCINT (|α|+ 1)
1
2D

max(|α|− 3
2 ,0)

u E
α2+ 1

2
u (max(|α| − 2, 0))!

+ 4δα1CINT |α|
1
2D

max(|α|− 5
2 ,0)

u E
α2+ 1

2
u (max(|α| − 3, 0))!

≤ (4δ + 4δmax
j∈N

(
j

3
2

(j + 1)
1
2 max(j − 2, 1)

))CINT (|α|+ 1)
1
2D

max(|α|− 3
2 ,0)

u E
α2+ 1

2
u (max(|α| − 2, 0))!

= (4 + 6
√

3)δCINT (|α|+ 1)
1
2D

max(|α|− 3
2 ,0)

u E
α2+ 1

2
u (max(|α| − 2, 0))!.

We now prove (5.23). We have, by applying (5.21) again, that

‖r
β
2−1+α1Dα(r∂ru)‖L4(S1

[a,b]
)

≤ ‖r
β
2−1+α1+1Dα+(1,0)u‖L4(S1

[a,b]
) + α1‖r

β
2−1+α1Dαu‖L4(S1

[a,b]
)

≤ 4CINT (|α|+ 2)
1
2D

max(|α|− 1
2 ,0)

u E
α2+ 1

2
u (max(|α| − 1, 0))!

+ 4α1CINT (|α|+ 1)
1
2D

max(|α|− 3
2 ,0)

u E
α2+ 1

2
u (max(|α| − 2, 0))!

≤ (4CINT max
j∈N

((
j + 2

j + 1
)

1
2 +

j

max(j − 1, 1)
))(|α|+ 1)

1
2D

max(|α|− 1
2 ,0)

u E
α2+ 1

2
u (max(|α| − 1, 0))!

≤ (8 +
8

3

√
3)(|α|+ 1)

1
2D

max(|α|− 1
2 ,0)

u E
α2+ 1

2
u (max(|α| − 1, 0))!.

Finally, for (5.24), we still use (5.21):

‖r
β
2−1+α1Dα(∂θu)‖L4(S1

[a,b]
) = ‖r

β
2−1+α1Dα+(0,1)u‖L4(S1

[a,b]
)

≤ 4CINT (|α|+ 1)
1
2D

max(|α|− 1
2 ,0)

u E
α2+ 3

2
u (max(|α| − 1, 0))!.

We set CECN = (4 + 6
√

3)CINT and this concludes the proof.

Lemma 5.2.11 (Weighted analytic regularity of the quadratic nonlinearity). Let 0 ≤ a < b ≤ δ ≤ 1,
β ∈ (0, 1) and k ∈ N≥1. Furthermore let u : S1

δ ⊂ Ω → R2 be a vector field such that ‖u‖W 2
β (S1

δ ) ≤ 1.

Assume that there exists two constants Du, Eu ≥ 1 such that, for any α ∈ N2 with 2 ≤ |α| ≤ k + 1:

‖rβ+α1−2Dαur‖L2(S1
[a,b]

) ≤ D|α|−2
u Eα2

u (|α| − 2)!,

‖rβ+α1−2Dαuθ‖L2(S1
[a,b]

) ≤ D|α|−2
u Eα2

u (|α| − 2)!.

Then, there exists a constant CANT > 0 independent of Du, Eu, k, a, b such that for any 1 ≤ |α| ≤ k,

‖rβ+α1−2Dα(r2(u · ∇)u)‖L2(S1
[a,b]

) ≤ CANTD|α|−1
u Eα2+2

u |α|!. (5.25)
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Proof. We estimate ‖rβ+α1−2Dα(ru2
θ)‖L2(S1

[a,b]
). By the Leibniz rule, the Hölder inequality and Lemma

5.2.10, for all α ∈ N2 with 1 ≤ |α| ≤ k,

‖rβ+α1−2Dα(ru2
θ)‖L2(S1

[a,b]
)

≤
|α|∑
j=0

∑
|γ|=j,γ≤α

(
α
γ

)
‖r

β
2 +γ1−1Dγ(ruθ)‖L4(S1

[a,b]
)‖r

β
2 +α1−γ1−1Dα−γ(uθ)‖L4(S1

[a,b]
)

≤
|α|∑
j=0

∑
|γ|=j,γ≤α

(
α
γ

)
(CECN (|γ|+ 1)

1
2D

max(|γ|− 3
2 ,0)

u E
γ2+ 1

2
u max(|γ| − 2, 0)!)

· (CECN (|α− γ|+ 1)
1
2D

max(|α−γ|− 3
2 ,0)

u E
α2−γ2+ 1

2
u max(|α− γ| − 2, 0)!)

≤ max
j≥0

(
j + 1

max(j − 1, 1)
)3C2

ECN

|α|∑
j=0

∑
|γ|=j,γ≤α

(
α
γ

)
D

max(|α|− 3
2 ,0)

u Eα2+1
u j!(|α| − j)! 1

(max(j, 1) max(|α| − j, 1))
3
2

≤ 27C2
ECN

|α|∑
j=0

∑
|γ|=j,γ≤α

(
α
γ

)
D

max(|α|− 3
2 ,0)

u Eα2+1
u j!(|α| − j)! 1

(max(j, 1) max(|α| − j, 1))
3
2

.

In [21, Proposition 2.1] it was shown that∑
|γ|=j,γ≤α

(
α
γ

)
=

(
|α|
j

)
.

Then,

‖rβ+α1−2Dα(ru2
θ)‖L2(S1

[a,b]
)

≤ 27C2
ECND

max(|α|− 3
2 ,0)

u Eα2+1
u |α|!

|α|∑
j=0

1

(max(j, 1) max(|α| − j, 1))
3
2

≤ 27C2
ECND

max(|α|− 3
2 ,0)

u Eα2+1
u |α|!

|α|∑
j=0

1

max(j, 1)
3
2

≤ 27C2
ECN · (2 +

∫ ∞
1

1

x
3
2

dx)D
max(|α|− 3

2 ,0)
u Eα2+1

u |α|!

≤ 108C2
ECND

max(|α|− 3
2 ,0)

u Eα2+1
u |α|!.

We could estimate ‖rβ+α1−2Dα(ruruθ)‖L2(S1
[a,b]

) by following the same steps. For all α ∈ N2 with

1 ≤ |α| ≤ k,

‖rβ+α1−2Dα(ruruθ)‖L2(S1
[a,b]

)

≤
|α|∑
j=0

∑
|γ|=j,γ≤α

(
α
γ

)
‖r

β
2 +γ1−1Dγ(rur)‖L4(S1

[a,b]
)‖r

β
2 +α1−γ1−1Dα−γ(uθ)‖L4(S1

[a,b]
)

≤
|α|∑
j=0

∑
|γ|=j,γ≤α

(
α
γ

)
(CECN (|γ|+ 1)

1
2D

max(|γ|− 3
2 ,0)

u E
γ2+ 1

2
u max(|γ| − 2, 0)!)

· (CECN (|α− γ|+ 1)
1
2D

max(|α−γ|− 3
2 ,0)

u E
α2−γ2+ 1

2
u max(|α− γ| − 2, 0)!)

≤ max
j≥0

(
j + 1

max(j − 1, 1)
)3C2

ECN

|α|∑
j=0

∑
|γ|=j,γ≤α

(
α
γ

)
D

max(|α|− 3
2 ,0)

u Eα2+1
u j!(|α| − j)! 1

(max(j, 1) max(|α| − j, 1))
3
2
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≤ 27C2
ECN

|α|∑
j=0

∑
|γ|=j,γ≤α

(
α
γ

)
D

max(|α|− 3
2 ,0)

u Eα2+1
u j!(|α| − j)! 1

(max(j, 1) max(|α| − j, 1))
3
2

.

≤ 27C2
ECND

max(|α|− 3
2 ,0)

u Eα2+1
u |α|!

|α|∑
j=0

1

(max(j, 1) max(|α| − j, 1))
3
2

≤ 27C2
ECND

max(|α|− 3
2 ,0)

u Eα2+1
u |α|!

|α|∑
j=0

1

max(j, 1)
3
2

≤ 27C2
ECN · (2 +

∫ ∞
1

1

x
3
2

dx)D
max(|α|− 3

2 ,0)
u Eα2+1

u |α|!

≤ 108C2
ECND

max(|α|− 3
2 ,0)

u Eα2+1
u |α|!.

Next, we consider bounding the term ‖rβ+α1−2Dα(r2ur∂rur)‖L2(S1
[a,b]

). There holds

‖rβ+α1−2Dα(r2ur∂rur)‖L2(S1
[a,b]

)

≤
|α|∑
j=1

∑
|γ|=j,γ≤α

(
α
γ

)
‖r

β
2 +γ1−1Dγ(rur)‖L4(S1

[a,b]
)‖r

β
2 +α1−γ1−1Dα−γ(r∂rur)‖L4(S1

[a,b]
)

+ ‖rβ1+α1−2urD
α(r∂rur)‖L2(S1

[a,b]
).

(5.26)

The first term above can be estimated as before:

|α|∑
j=1

∑
|γ|=j,γ≤α

(
α
γ

)
‖r

β
2 +γ1−1Dγ(rur)‖L4(S1

[a,b]
)‖r

β
2 +α1−γ1−1Dα−γ(r∂rur)‖L4(S1

[a,b]
)

≤
|α|∑
j=1

∑
|γ|=j,γ≤α

(
α
γ

)
(CECN (|γ|+ 1)

1
2D

max(|γ|− 3
2 ,0)

u E
γ2+ 1

2
u max(|γ| − 2, 0)!)

· (CECN (|α− γ|+ 1)
1
2D

max(|α−γ|− 1
2 ,0)

u E
α+2−γ2+ 1

2
u max(|α− γ| − 1, 0)!)

≤ max
j∈N

(
j + 1

max(j − 1, 1)
)2C2

ECN

|α|∑
j=0

∑
|γ|=j,γ≤α

(
α
γ

)
D|α|−1
u Eα2+1

u j!(|α| − j)! 1

(j)
3
2 (max(|α| − j, 1))

1
2

≤ 9C2
ECND

|α|−1
u Eα2+1

u |α|!
|α|∑
j=1

1

(j)
3
2 (max(|α| − j, 1))

1
2

≤ 9C2
ECND

|α|−1
u Eα2+1

u |α|!
|α|∑
j=1

1

j
3
2

≤ 9C2
ECN (1 +

∫ ∞
1

1

x
3
2

dx)D|α|−1
u Eα2+1

u |α|!

≤ 27C2
ECND

|α|−1
u Eα2+1

u |α|!.

For the second term in (5.26), since u ∈W 2
β (S1

δ )2 ⊂ C0(S1
δ )2 and ‖u‖W 2

β (S1
δ ) ≤ 1, if |α| = 1,

‖rβ+α1−2urD
α(r∂rur)‖L2(S1

[a,b]
)

≤ ‖ur‖L∞(S1
δ ) · (‖rβ−2+α1+1Dα(∂rur)‖L2(S1

[a,b]
) + α1‖rβ−2+α1Dαur‖L2(S1

[a,b]
))

≤ 2‖ur‖L∞(S1
δ ),
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and if |α| ≥ 2,

‖rβ+α1−2urD
α(r∂rur)‖L2(S1

[a,b]
)

≤ ‖ur‖L∞(S1
δ ) · (‖rβ−2+α1+1Dα(∂rur)‖L2(S1

[a,b]
) + α1‖rβ−2+α1Dαur‖L2(S1

[a,b]
))

≤ 2‖ur‖L∞(S1
δ )D

|α|−1
u Eα2

u (|α| − 1)!.

In conclusion:

‖rβ+α1−2Dα(r2ur∂rur)‖L2(S1
[a,b]

)

≤ 27C2
ECND

|α|−1
u Eα2+1

u |α|! + max(2‖ur‖L∞(S1
δ ), 2‖ur‖L∞(S1

δ )D
|α|−1
u Eα2

u (|α| − 1)!)

≤ (27C2
ECN + 2‖ur‖L∞(S1

δ ))D
|α|−1
u Eα2+1

u |α|!.

We bound ‖rβ+α1−2Dα(r2ur∂ruθ)‖L2(S1
[a,b]

) in the same way. There holds

‖rβ+α1−2Dα(r2ur∂rur)‖L2(S1
[a,b]

)

≤
|α|∑
j=1

∑
|γ|=j,γ≤α

(
α
γ

)
‖r

β
2 +γ1−1Dγ(rur)‖L4(S1

[a,b]
)‖r

β
2 +α1−γ1−1Dα−γ(r∂ruθ)‖L4(S1

[a,b]
)

+ ‖rβ+α1−2urD
α(r∂ruθ)‖L2(S1

[a,b]
).

(5.27)

For the first term we have,

|α|∑
j=1

∑
|γ|=j,γ≤α

(
α
γ

)
‖r

β
2 +γ1−1Dγ(rur)‖L4(S1

[a,b]
)‖r

β
2 +α1−γ1−1Dα−γ(r∂ruθ)‖L4(S1

[a,b]
)

≤
|α|∑
j=1

∑
|γ|=j,γ≤α

(
α
γ

)
(CECN (|γ|+ 1)

1
2D

max(|γ|− 3
2 ,0)

u E
γ2+ 1

2
u max(|γ| − 2, 0)!)

· (CECN (|α− γ|+ 1)
1
2D

max(|α−γ|− 1
2 ,0)

u E
α2−γ2+ 1

2
u max(|α− γ| − 1, 0)!)

≤ max
j∈N

(
j + 1

max(j − 1, 1)
)2C2

ECN

|α|∑
j=0

∑
|γ|=j,γ≤α

(
α
γ

)
D|α|−1
u Eα2+1

u j!(|α| − j)! 1

(j)
3
2 (max(|α| − j, 1))

1
2

≤ 9C2
ECND

|α|−1
u Eα2+1

u |α|!
|α|∑
j=1

1

(j)
3
2 (max(|α| − j, 1))

1
2

≤ 9C2
ECND

|α|−1
u Eα2+1

u |α|!
|α|∑
j=1

1

j
3
2

≤ 9C2
ECN (1 +

∫ ∞
1

1

x
3
2

dx)D|α|−1
u Eα2+1

u |α|!

≤ 27C2
ECND

|α|−1
u Eα2+1

u |α|!.

For the second term in (5.27), if |α| = 1,

‖rβ+α1−2urD
α(r∂ruθ)‖L2(S1

[a,b]
)

≤ ‖ur‖L∞(S1
δ ) · (‖rβ−2+α1+1Dα(∂ruθ)‖L2(S1

[a,b]
) + α1‖rβ−2+α1Dαuθ‖L2(S1

[a,b]
))

≤ 2‖uθ‖L∞(S1
δ ),
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and if |α| ≥ 2,

‖rβ+α1−2urD
α(r∂ruθ)‖L2(S1

[a,b]
)

≤ ‖ur‖L∞(S1
δ ) · (‖rβ−2+α1+1Dα(∂ruθ)‖L2(S1

[a,b]
) + α1‖rβ−2+α1Dαuθ‖L2(S1

[a,b]
))

≤ 2‖uθ‖L∞(S1
δ )D

|α|−1
u Eα2

u (|α| − 1)!.

In conclusion,

‖rβ+α1−2Dα(r2ur∂rur)‖L2(S1
[a,b]

)

≤ 27C2
ECND

|α|−1
u Eα2+1

u |α|! + max(2‖uθ‖L∞(S1
δ ), 2‖uθ‖L∞(S1

δ )D
|α|−1
u Eα2

u (|α| − 1)!)

≤ (27C2
ECN + 2‖uθ‖L∞(S1

δ ))D
|α|−1
u Eα2+1

u |α|!.

We now evaluate ‖rβ+α1−2Dα(ruθ∂θur)‖L2(S1
[a,b]

):

‖rβ+α1−2Dα(ruθ∂θur)‖L2(S1
[a,b]

)

≤
|α|∑
j=1

∑
|γ|=j,γ≤α

(
α
γ

)
‖r

β
2 +γ1−1Dγ(ruθ)‖L4(S1

δ
2

)‖r
β
2 +α1−γ1−1Dα−γ(∂θur)‖L4(S1

δ
2

)

+ ‖rβ+α1−2ruθD
α(∂θur)‖L2(S1

[a,b]
).

(5.28)

The first term here can be estimated as before and we obtain

|α|∑
j=1

∑
|γ|=j,γ≤α

(
α
γ

)
‖r

β
2 +γ1−1Dγ(ruθ)‖L4(S1

δ
2

)‖r
β
2 +α1−γ1−1Dα−γ(∂θur)‖L4(S1

δ
2

)

≤ 9C2
ECND

max(|α|− 3
2 ,0)

u Eα2+2
u |α|!

|α|∑
j=1

1

(j)
3
2 (max(|α| − j, 1))

1
2

≤ 9C2
ECND

max(|α|− 3
2 ,0)

u Eα2+2
u |α|!

|α|∑
j=1

1

j
3
2

≤ 9C2
ECN (1 +

∫ ∞
1

1

x
3
2

dx)D
max(|α|− 3

2 ,0)
u Eα2+2

u |α|!

≤ 27C2
ECND

max(|α|− 3
2 ,0)

u Eα2+2
u |α|!.

For the second term in (5.28), we get that

‖rβ+α1−2ruθD
α(∂θur)‖L2(S1

[a,b]
) ≤ ‖ruθ‖L∞(S1

δ ) · ‖rβ−2+α1Dα+(0,1)ur‖L2(S1
[a,b]

)

≤ δ‖uθ‖L∞(S1
δ )D

|α|−1
u Eα2+1

u (|α| − 1)!.

Therefore,

‖rβ+α1−2Dα(ruθ∂θur)‖L2(S1
[a,b]

) ≤ 27C2
ECND

max(|α|− 3
2 ,0)

u Eα2+2
u |α|! + δ‖uθ‖L∞(S1

δ )D
|α|−1
u Eα2+1

u (|α| − 1)!

≤ (27C2
ECN + δ‖uθ‖L∞(S1

δ ))D
|α|−1
u Eα2+2

u |α|!.

Similar arguments can be applied on ‖rβ+α1−2Dα(ruθ∂θuθ)‖L2(S1
[a,b]

):

‖rβ+α1−2Dα(ruθ∂θuθ)‖L2(S1
[a,b]

)

≤
|α|∑
j=1

∑
|γ|=j,γ≤α

(
α
γ

)
‖r

β
2 +γ1−1Dγ(ruθ)‖L4(S1

δ
2

)‖r
β
2 +α1−γ1−1Dα−γ(∂θuθ)‖L4(S1

δ
2

)

+ ‖rβ+α1−2ruθD
α(∂θuθ)‖L2(S1

[a,b]
).

(5.29)
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The first term here can be estimated as before and we obtain

|α|∑
j=1

∑
|γ|=j,γ≤α

(
α
γ

)
‖r

β
2 +γ1−1Dγ(ruθ)‖L4(S1

δ
2

)‖r
β
2 +α1−γ1−1Dα−γ(∂θuθ)‖L4(S1

δ
2

)

≤ 9C2
ECND

max(|α|− 3
2 ,0)

u Eα2+2
u |α|!

|α|∑
j=1

1

(j)
3
2 (max(|α| − j, 1))

1
2

≤ 9C2
ECND

max(|α|− 3
2 ,0)

u Eα2+2
u |α|!

|α|∑
j=1

1

j
3
2

≤ 9C2
ECN (1 +

∫ ∞
1

1

x
3
2

dx)D
max(|α|− 3

2 ,0)
u Eα2+2

u |α|!

≤ 27C2
ECND

max(|α|− 3
2 ,0)

u Eα2+2
u |α|!.

For the second term in (5.29), we get that

‖rβ+α1−2ruθD
α(∂θuθ)‖L2(S1

[a,b]
) ≤ ‖ruθ‖L∞(S1

δ ) · ‖rβ−2+α1Dα+(0,1)uθ‖L2(S1
[a,b]

)

≤ δ‖uθ‖L∞(S1
δ )D

|α|−1
u Eα2+1

u (|α| − 1)!.

Therefore

‖rβ+α1−2Dα(ruθ∂θuθ)‖L2(S1
[a,b]

) ≤ 27C2
ECND

max(|α|− 3
2 ,0)

u Eα2+2
u |α|! + δ‖uθ‖L∞(S1

δ )D
|α|−1
u Eα2+1

u (|α| − 1)!

≤ (27C2
ECN + δ‖uθ‖L∞(S1

δ ))D
|α|−1
u Eα2+2

u |α|!.

It is clear with all estimates above and Lemma 5.2.8 that if we set CANT := 2
1
2 (162C2

ECN + (2 +
δ)‖u‖L∞(S1

δ )), then (5.25) holds.

Proof of Lemma 5.2.7. We rewrite the Navier-Stokes equation in the sector S1
δ using differential and

boundary operators Lst,1(·, ·) and B(·, ·) introduced in Remark 4.1.5:

Lst,1(u, p) = ((f− (u · ∇)u)t, 0)t,

B(u, p) = 0 on (Γ1 ∪ Γn) ∩ ∂S1
δ .

(5.30)

This set of equations has the following specific form:

−ν(∂2
rur +

1

r
∂rur +

1

r2
∂2
θur −

ur
r2
− 2

r2
∂θuθ) + ∂rp = fr − ((u · ∇)u)r, (5.31)

−ν(∂2
ruθ +

1

r
∂ruθ +

1

r2
∂2
θuθ −

uθ
r2

+
2

r2
∂θur) +

1

r
∂θp = fθ − ((u · ∇)u)θ, (5.32)

∂rur + r−1ur + r−1∂θuθ = 0. (5.33)

u = 0 on (Γ1 ∪ Γn) ∩ ΓD ∩ ∂S1
δ , (5.34)(

u · n
(σ(u, p)n) · t

)
=

(
uθ

ν(∂ruθ + 1
r∂θur −

1
ruθ)

)
= 0 on (Γ1 ∪ Γn) ∩ ΓG ∩ ∂S1

δ , (5.35)

σ(u, p)n =

(
ν(r−1∂θur + ∂ruθ − r−1uθ)
−p+ 2νr−1(∂θuθ + ur)

)
= 0 on (Γ1 ∪ Γn) ∩ ΓN ∩ ∂S1

δ . (5.36)

By Lemma 4.1.2, Lemma 5.2.6, Lemma 5.2.11 and the fact that f ∈ B0
β(Ω)2, there exists constants

Kf ,Knonli,Ku,Kp ≥ 1 such that for any multi-index |α| ≥ 1:
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‖rβ1+α1−2Dα(r2f)‖L2(S1
δ ) ≤ K

|α|
f |α|!, (5.37)

‖rβ1+α1−2Dα(r2(u · ∇)u)‖L2(S1

[ δ
2
,δ]

) ≤ K
|α|
nonli|α|!, (5.38)

and

‖rβ1−1+α1Dαp‖L2(S1

[ δ
2
,δ]

) ≤ K |α|−1
p (|α| − 1)!. (5.39)

Also, for any k ∈ N≥1,

‖rk∂kru‖H1(S1

[ δ
2
,δ]

) ≤ Kk
uk!. (5.40)

Recall that we have fixed δ ∈ (0, 1). From (5.39) and the fact that β1<1 we have, for any k ∈ N≥1,

‖rk∂kr p‖L2(S1

[ δ
2
,δ]

) ≤ Kk
pk!. (5.41)

Set K = max(Kf ,Knonli,Ku,Kp), then all inequalities above still hold true if these constants are replaced
by K. We will always do that replacement when we use these inequalities later. We claim that all bounds
in Lemma 5.2.7 hold if we set

Eu = max([33(ν + CANT + 1)]3, [42(
1

ν
+ CANT + 1)]

3
2 ) ≥ 1 (5.42)

and

Du = max(22(CSEC + 1)(1 +
1

ν
)K, 2(CSEC + 1)(CANT + 7)E2

u,

33(ν + CANT + 1)E2
u, 42(

1

ν
+
CANT
ν

+ 1)E
7
3
u ) ≥ 1.

(5.43)

Before we prove this by induction, we present the following elementary results about Du and Eu,
which will be useful later. For k,N ∈ N≥1, there holds, under (5.42) and (5.43),

(CSEC + 1)(11Kkk! + (CANT + 7)Dk−1
u E2

uk!) ≤ Dk
uk!, (5.44)

since

(CSEC + 1)(11Kkk! + (CANT + 7)Dk−1
u E2

uk!)

= 11(CSEC + 1)Kkk! + (CSEC + 1)(CANT + 7)Dk−1
u E2

uk!

≤ 1

2
Dk
uk! +

1

2
Dk
uk! ≤ Dk

uk!.

Furthermore,

3Dk
uE

N− 4
3

u ≤ Dk
uE

N− 1
3

u , (5.45)
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since Eu ≥ [33(ν + CANT + 1)]3 ≥ 3. Also,

11(ν + CANT + 1)(Dk−1
u EN+2

u k! +Dk
uE

N− 1
3

u k!) +Kkk! ≤ Dk
uE

N
u k!, (5.46)

since

11(ν + CANT + 1)(Dk−1
u EN+2

u k! +Dk
uE

N− 1
3

u k!) +Kkk!

= 11(ν + CANT + 1)Dk−1
u EN+2

u k! + 11(ν + CANT + 1)Dk
uE

N− 1
3

u k! +Kkk!

≤ 1

3
Dk
uE

N
u k! +

1

3
Dk
uE

N
u k! +

1

3
Dk
uE

N
u k! ≤ Dk

uE
N
u k!.

Finally,

14(
1

ν
+
CANT
ν

+ 1)(Dk−1
u EN+2

u k! +Dk
uE

N−1
u k!) +

1

ν
Kkk! ≤ Dk

uE
N− 1

3
u k!, (5.47)

since

14(
1

ν
+
CANT
ν

+ 1)(Dk−1
u EN+2

u k! +Dk
uE

N−1
u k!) +

1

ν
Kkk!

= 14(
1

ν
+
CANT
ν

+ 1)Dk−1
u EN+2

u k! + 14(
1

ν
+
CANT
ν

+ 1)Dk
uE

N−1
u k! +

1

ν
Kkk!

≤ 1

3
Dk
uE

N− 1
3

u k! +
1

3
Dk
uE

N− 1
3

u k! +
1

3
Dk
uE

N− 1
3

u k! ≤ Dk
uE

N− 1
3

u k!.

To prove the weighted analytic regularity we introduce the following induction hypothesis.

Induction Hypothesis Hk

For any k ∈ N≥1, we say that the hypothesis Hk holds if inequalities (5.16) and (5.17), i.e.

‖rβ1+α1−2Dαur‖L2(S1
δ/2

) ≤ D|α|−2
u E

max(α2− 4
3 ,0)

u (|α| − 2)!,

‖rβ1+α1−2Dαuθ‖L2(S1
δ/2

) ≤ D|α|−2
u E

max(α2− 4
3 ,0)

u (|α| − 2)!,

are satisfied for 2 ≤ |α| ≤ k + 1 and (5.18), which is

‖rβ1+α1−1Dαp‖L2(S1
δ/2

) ≤ D|α|−1
u Eα2

u (|α| − 1)!,

is satisfied for 1 ≤ |α| ≤ k with Du and Eu defined in (5.42) and (5.43). Clearly these constants are
independent of k.

By our setting on δ, ‖u‖W 2
β1

(S1
δ ) ≤ 1 and ‖p‖W 1

β1
(S1
δ ) ≤ 1. Therefore (5.16) and (5.17) hold for |α| = 2

and (5.18) holds for |α| = 1 and H1 is correct. Now we assume that Hk holds for some k ∈ N≥1. To
show that Hk+1 is true we analyze in the following two steps: The first step is dedicated to prove that
(5.16) and (5.17) hold for |α| = k + 2 with α2 ≤ 2 and (5.18) holds for |α| = k + 1 with α2 ≤ 1. This is
done by applying Lemma 5.1.1 on the function pair v := rk∂kr (u) and q := rk∂kr p, which is the solution
of an auxiliary Stokes problem (this problem is constructed below). And in the second step, we finish
justifying Hk+1 by establishing relations between derivatives of (u, p) with lower and higher α2 using a
specific order of differentiation of (5.31), (5.32) and (5.33), this will enable us to bound derivatives with
higher α2 using derivatives with lower α2.
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Step 1: By Lemma 5.2.11, there exists a constant CANT independent of Du, Eu, k such that for any
α ∈ N2 with 1 ≤ |α| ≤ k

‖rβ1+α1−2Dα(r2(u · ∇)u)‖L2(S1
δ/2

) ≤ CANTD|α|−1
u Eα2+2

u |α|!. (5.48)

The following lemma is crucial for Step 1.

Lemma 5.2.12. (v, q) defined by v := rk∂kr (u) and q := rk∂kr p solves formally in S1
δ :

Lst,1(v, q)12 = rk−2∂kr (r2(f−(u · ∇)u))− krk−2(r∂kr p+ (k − 1)∂k−1
r p, ∂k−1

r ∂θp)
t, (5.49)

L(v, q)3 = 0, (5.50)

v = 0 on (Γ1 ∪ Γn) ∩ ΓD ∩ ∂S1
δ , (5.51)(

v · n
(σ(v, p)n) · t

)
= 0 on (Γ1 ∪ Γn) ∩ ΓG ∩ ∂S1

δ , (5.52)

σ(v, q)n =

(
0

krk−1∂k−1
r p

)
on (Γ1 ∪ Γn) ∩ ΓN ∩ ∂S1

δ . (5.53)

Proof. We verify all equations above in order.
Verification of (5.49): We firstly multiply both sides of Lst,1(u, p)12 = f − (u · ∇)u by r2, then

differentiate both sides by ∂kr and finally multiply both sides by rk−2. We obtain:

−ν((rk∂k+2
r + krk−1∂k+1

r + k(k − 1)rk−2∂kr )ur + (rk−1∂k+1
r + krk−2∂kr )ur

+rk−2∂kr ∂
2
θur − rk−2∂kr ur − 2rk−2∂kr ∂θuθ)

+(rk∂k+1
r + 2krk−1∂kr + k(k − 1)rk−2∂k−1

r )p

−ν((rk∂k+2
r + krk−1∂k+1

r + k(k − 1)rk−2∂kr )uθ + (rk−1∂k+1
r + krk−2∂kr )uθ

+rk−2∂kr ∂
2
θuθ − rk−2∂kr uθ + 2rk−2∂kr ∂θur)

+(rk−1∂kr ∂θ + krk−2∂k−1
r ∂θ)p


= rk−2∂kr (r2(f−(u · ∇)u)).

Moreover, we have, by (4.13),

Lst,1(v, q)12 :=

(
−ν(∂2

rvr + 1
r∂rvr + 1

r2 ∂
2
θvr −

vr
r2 − 2

r2 ∂θvθ) + ∂rq
−ν(∂2

rvθ + 1
r∂rvθ + 1

r2 ∂
2
θvθ −

vθ
r2 + 2

r2 ∂θvr) + 1
r∂θq

)

=



−ν((rk∂k+2
r + krk−1∂k+1

r + k(k − 1)rk−2∂kr )ur + (rk−1∂k+1
r + krk−2∂kr )ur

+rk−2∂kr ∂
2
θur − rk−2∂kr ur − 2rk−2∂kr ∂θuθ)
+(rk∂k+1

r + krk−1∂kr )p

−ν((rk∂k+2
r + krk−1∂k+1

r + k(k − 1)rk−2∂kr )uθ + (rk−1∂k+1
r + krk−2∂kr )uθ

+rk−2∂kr ∂
2
θuθ − rk−2∂kr uθ + 2rk−2∂kr ∂θur)

+rk−1∂kr ∂θp


.

Therefore,

Lst,1(v, q)12 +

(
krk−1∂kr p+ k(k − 1)rk−2∂k−1

r p
krk−2∂k−1

r ∂θp

)
= rk−2∂kr (r2(f−(u · ∇)u)).

This leads to (5.49).
Verification of (5.50): Note that (5.50) is equivalent to

rk∂k+1
r ur + (k + 1)rk−1∂kr ur + rk−1∂kr ∂θuθ = 0. (5.54)

The incompressibility of u (see (5.33)) implies

r∂rur + ur + ∂θuθ = 0.
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Differentiate it by ∂kr and we have

r∂k+1
r ur + (k + 1)∂kr ur + ∂kr ∂θuθ = 0.

By multiplying this equality by rk−1 we obtain (5.54) and thus (5.50) is justified.

Verification of (5.51): The equation (5.51) can be shown by differentiating (5.34) with ∂kr and
multiplying it by rk.

Verification of (5.52): We could show similarly as in the verification of (5.51) that the first com-
ponent of the left-hand side of (5.52) vanishes. Now, (5.35) implies

ν(r∂ruθ + ∂θur − uθ) = 0.

Differentiate it by ∂kr and multiply the resulting equality by rk−1, we have

ν(krk−1∂kr uθ + rk∂k+1
r uθ + rk−1∂kr ∂θur − rk−1∂kr uθ) = 0.

It is straightforward to show that this is equivalent to

ν(∂rvθ +
1

r
∂θvr −

1

r
vθ) = 0.

Due to (5.35), the left-hand side is exactly the second component of (5.52). By concluding above deriva-
tions we verify (5.52).

Verification of (5.53): We firstly look at the first component of it. (5.36) indicates

ν(∂θur + r∂ruθ − uθ) = 0.

Differentiate it by ∂kr and multiply the resulting equality by rk−1, we have

ν(rk−1∂kr ∂θur + krk−1∂kr uθ + rk∂k+1
r uθ − rk−1∂kr uθ) = 0.

This implies

ν(r−1∂θvr + ∂rvθ − r−1vθ) = 0, (5.55)

which implies, due to the polar-component form of the Neumann boundary condition (5.36), the first
component of (5.53) vanishes. For the second component of (5.53), we note that (5.36) implies

−rp+ 2ν(∂θuθ + ur) = 0

Differentiate it by ∂kr and multiply the resulting equality by rk−1, we have

−krk−1∂k−1
r p− rk∂kr p+ 2ν(rk−1∂kr ∂θuθ + rk−1∂kr ur) = 0.

Therefore,

−q + 2νr−1(∂θvθ + vr) = −rk∂kr p+ 2ν(rk−1∂kr ∂θuθ + rk−1∂kr ur) = krk−1∂k−1
r p.

Note that the left-hand side is the polar-component form of the second component of (5.53)(see (5.36)),
this together with (5.55) validates (5.53).

We remark here that all computations in the preceding proof are formal. (5.49)-(5.53) will then be
justified by taking suitable weighted Sobolev norms on those formal relations.
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By Hk, (5.37), (5.38) and (5.39), we have

‖Lst,1(v, q)12‖Lβ1
(S1
δ )

≤ ‖rβ1+k−2∂kr (r2f− r2(u · ∇)u)‖L2(S1
δ ) + k(k − 1)‖rβ1+k−2∂k−1

r p‖L2(S1
δ ) + k‖rβ1+k−1∂kr p‖L2(S1

δ )

+ k‖rβ1+k−2∂k−1
r ∂θp‖L2(S1

δ )

≤ (2Kkk! + CANTD
k−1
u E2

uk!) + (Dk−2
u k! +Kk−2k!) + (Dk−1

u k! +Kk−1k!) + (Dk−1
u Euk! +Kk−1k!)

≤ 5Kkk! + (CANT + 3)Dk−1
u E2

uk!,

and

‖σ(v, q)n‖
W

1
2
β1

((Γ1∪Γn)∩ΓN∩∂S1
δ )

≤ ‖krk−1∂k−1
r p‖W 1

β1
(S1
δ )

≤ ‖krβ1+k−2∂k−1
r p‖L2(S1

δ ) + ‖krβ1+k−2∂k−1
r ∂θp‖L2(S1

δ ) + ‖krβ1+k−1∂kr p‖L2(S1
δ )

+ ‖k(k − 1)rβ1+k−2∂k−1
r p‖L2(S1

δ )

≤ (kDk−2
u (k − 2)! + kKk−2(k − 2)!) + (kDk−1

u Eu(k − 1)! + kKk−1(k − 1)!)

+ (kDk−1
u (k − 1)! + kKk−1(k − 1)!) + (k(k − 1)Dk−2

u (k − 2)! + k(k − 1)Kk−2(k − 2)!)

≤ 4Kk−1k! + 4Dk−1
u Euk!.

By Lemma 5.1.1, the above two inequalities, (5.40) and (5.41),

‖v‖W 2
β (S1

δ/2
) + ‖q‖W 1

β (S1
δ/2

)

≤ CSEC(‖Lst,1(v, q)12‖Lβ1
(S1
δ ) + ‖v‖W 1,2(S1

[ δ
2
,δ]

) + ‖q‖L2(S1

[ δ
2
,δ]

) + ‖σ(v, q)n‖
W

1
2
β1

((Γ1∪Γn)∩ΓN∩∂S1
δ )

)

≤ CSEC(11Kkk! + (CANT + 7)Dk−1
u E2

uk!).

Based on this and Hk we have:

∑
|γ|=2

‖rβ1−2+k+γ1D (k,0)+γu‖L2(S1
δ
2

)

≤ ‖rβ1−2+2∂2
r (v)− 2krβ1+k−1∂k+1

r (u)− k(k − 1)rβ1+k−2∂kr (u)‖L2(S1
δ
2

)

+ ‖rβ1−2+2D (1,1)(v)− krβ1+k−1D (k,1)(u)‖L2(S1
δ
2

) + ‖rβ1−2+2D (0,2)(v)‖L2(S1
δ
2

)

≤ ‖v‖W 2
β (S1

δ ) + 3Dk−1
u k! +Dk−2

u k!

≤ (CSEC + 1)(11Kkk! + (CANT + 7)Dk−1
u E2

uk!).

and

∑
|γ|=2

‖rβ1−2+k+γ1D (k,0)+γu‖L2(S1
δ
2

)

≤ ‖rβ1−1+1∂rq − krβ1−1+k∂kr p‖L2(S1
δ
2

) + ‖rβ1−1∂θq‖L2(S1
δ
2

)

≤ ‖v‖W 2
β (S1

δ ) +Dk−1
u k! +Dk−2

u k!

≤ (CSEC + 1)(11Kkk! + (CANT + 7)Dk−1
u E2

uk!).
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Now, we obtain by using (5.44),

∑
|γ|=2

‖rβ1−2+k+γ1D (k,0)t+γur‖L2(S1
δ
2

) ≤ Dk
uk!,

∑
|γ|=2

‖rβ1−2+k+γ1D (k,0)t+γuθ‖L2(S1
δ
2

) ≤ Dk
uk!,

and

∑
|γ|=1

‖rβ1−1+k+γ1D (k,0)t+γp‖L2(S1
δ
2

) ≤ Dk
uk!.

Hence, (5.16) and (5.17) hold for |α| = k + 2 with α2 ≤ 2 and (5.18) holds for |α| = k + 1 with α2 ≤ 1.

Step 2: In this step we prove that (5.16) and (5.17) hold for |α| = k+2 and (5.18) holds for |α| = k+1.
Part of this statement has already been proven in the previous step and we need to prove that (5.16) and
(5.17) hold for |α| = k + 2 with 2 < α2 ≤ k + 2 and (5.18) holds for |α| = k + 1 with 1 < α2 ≤ k + 1.

We proceed by induction with respect to α2. Let N ∈ N, 2 ≤ N ≤ k + 1 and assume that (5.16) and
(5.17) hold true for |α| = k+ 2 with α2 ≤ N and (5.18) holds true for |α| = k+ 1 with α2 ≤ N − 1 (The
case N = 2 has been shown in step 1). We now show that (5.16) and (5.17) hold true for |α| = k + 2
with α2 = N + 1 and (5.18) holds true for |α| = k + 1 with α2 = N .

Now, (5.33) implies that formally

r∂rur + ur + ∂θuθ = 0.

Differentiate this equality with D (k+1−N,N) and multiply by r(β1−2)+(k+1−N) on both sides:

r(β1−2)+(k+2−N)D (k+2−N,N)ur + (k + 2)r(β1−2)+(k+1−N)D (k+1−N,N)ur+

r(β1−2)+(k+1−N)D (k+1−N,N+1)uθ = 0.

This implies that, by our assumption:

‖r(β1−2)+(k+1−N)D (k+1−N,N+1)uθ‖L2(S1
δ
2

)

≤ ‖r(β1−2)+(k+2−N)D (k+2−N,N)ur‖L2(S1
δ
2

) + (k + 2)‖r(β1−2)+(k+1−N)D (k+1−N,N)ur‖L2(S1
δ
2

)

≤ 3Dk
uE

N− 4
3

u k!.

Therefore, from (5.45), it follows that

‖r(β1−2)+(k+1−N)D (k+1−N,N+1)uθ‖L2(S1
δ
2

) ≤ Dk
uE

(N+1)− 4
3

u k! (5.56)

and (5.17) holds for |α| = k + 2 with α2 = N + 1. Now multiply both sides of (5.32) by r2, differentiate
by D (k+1−N,N−1) and then multiply by r(β1−2)+(k+1−N). We obtain the following formal relation:

r(β1−1)+(k−N+1)D (k−N+1,N)p = r(β1−2)+(k−N+1)D (k+1−N,N−1)(r2(fθ − ((u · ∇)u)θ))

− (k + 1−N)r(β1−1)+(k−N)D (k−N,N)p

−

 νr(β1−2)+k+3−ND (k+3−N,N−1) + ν(2(k + 1−N) + 1)r(β1−2)+k+2−ND (k+2−N,N−1)

+ν((k + 1−N)(k −N) + (k + 1−N)− 1)r(β1−2)+k+1−ND (k+1−N,N−1)

+νr(β1−2)+k+1−ND (k+1−N,N+1)

uθ

+ 2νr(β1−2)+(k+1−N)D (k+1−N,N)ur.



5.2. ANALYTIC REGULARITY OVER Ω 55

Hence, by the fact that Hk holds and by (5.37), (5.48) and (5.56),

‖r(β1−1)+(k−N+1)D (k−N+1,N)p‖L2(S1
δ
2

)

≤ Kkk! + CANTD
k−1
u EN+2

u k! +Dk−1
u ENu k! + νDk

uE
max(N− 7

3 ,0)
u k! + 3νDk−1

u E
max(N− 7

3 ,0)
u k!

+ 3νDk−2
u E

max(N− 7
3 ,0)

u k! + νDk
uE

N+1− 4
3

u k! + 2νDk−1
u E

N− 4
3

u k!

≤ 11(ν + CANT + 1)(Dk−1
u EN+2

u k! +Dk
uE

N− 1
3

u k!) +Kkk!.

It follows from (5.46) that

‖r(β1−1)+(k−N+1)D (k−N+1,N)p‖L2(S1
δ
2

) ≤ Dk
uE

N
u k!. (5.57)

Therefore (5.18) holds for |α| = k + 1 with α2 = N .
Finally, multiply both sides of (5.31) by r2, differentiate by D (k+1−N,N−1) and then multiply by

r(β1−2)+(k+1−N). We obtain formally:

νr(β1−2)+k+1−ND (k+1−N,N+1)ur = −r(β1−2)+k+1−ND (k+1−N,N−1)(r2(fr − ((u · ∇)u)r))

+

 r(β1−1)+k+2−ND (k+2−N,N−1)

+2(k + 1−N)r(β1−1)+k+1−ND (k+1−N,N−1)

+(k + 1−N)(k −N)r(β1−1)+k−ND (k−N,N−1)

 p

+

 −ν(r(β1−2)+k+3−ND (k+3−N,N−1)

+(2(k + 1−N) + 1)r(β1−2)+k+2−ND (k+2−N,N−1)

+((k + 1−N)(k −N) + (k + 1−N)− 1)r(β2−2)+k+1−ND (k+1−N,N−1))

ur

+ 2νr(β1−2)+k+1−ND (k+1−N,N)uθ.

Therefore, by the validity of Hk, (5.37), (5.48), (5.56) and (5.57),

‖r(β1−2)+k+1−ND (k+1−N,N+1)ur‖L2(S1
δ
2

)

≤ 1

ν
(CANTD

k−1
u EN+2

u k! +Kkk! +DN
u E

N−1
u k! + 2Dk−1

u EN−1
u k! + 2Dk−2

u EN−1
u k! + νDk

uE
N− 7

3
u k!

+ 3νDk−1
u E

max(N− 7
3 ,0)

u k! + 3νDk−2
u E

max(N− 7
3 ,0)

u k! + 2νDk−1
u E

max(N− 7
3 ,0)

u k!)

≤ 14(
1

ν
+
CANT
ν

+ 1)(Dk−1
u EN+2

u k! +Dk
uE

N−1
u k!) +

1

ν
Kkk!.

Then by (5.47), we obtain

‖r(β1−2)+(k−N+1)D (k−N+1,N+1)ur‖L2(S1
δ
2

) ≤ Dk
uE

N− 1
3

u k!. (5.58)

Therefore (5.16) holds for |α| = k + 2 with α2 = N + 1.

By combining (5.56), (5.57) and (5.58) we have that (5.16) and (5.17) are true for |α| = k + 2 and
(5.18) is true for |α| = k+ 1. Hence Hk+1 holds based on the validity of Hk. By induction we prove that
Hk holds for any k ∈ N≥1 and the proof is finished.
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Proof of Theorem 5.2.1. We have stated that the existence and uniqueness of the solution follow from
Theorem 3.1.3.

Lemma 5.2.7 indicates that there exists a constant D1 > 1 depending on ω1, δ and β1 such that for
all α ∈ N2 satisfying |α| ≥ 2:

‖rβ1+α1−2
1 Dαur‖L2(S1

δ/2
) ≤ D

|α|−2
1 (|α| − 2)!,

‖rβ1+α1−2
1 Dαuθ‖L2(S1

δ/2
) ≤ D

|α|−2
1 (|α| − 2)!,

and for any |α| ≥ 1:

‖rβ1+α1−1
1 Dαp‖L2(S1

δ/2
) ≤ D

|α|−1
1 (|α| − 1)!.

This result on the truncated sector S1
δ
2

in the proof of Lemma 5.2.7 can be conducted analogously on

other sectors Siδ
2

, i = 2, · · · , n and similar regularity results will be obtained: For each corner Ai, there

exists a constant Di > 1 depending on ωi, δ and βi such that for all α ∈ N2 satisfying |α| ≥ 2:

‖rβi+α1−2
i Dαur‖L2(Si

δ/2
) ≤ D

|α|−2
i (|α| − 2)!, (5.59)

‖rβi+α1−2
i Dαuθ‖L2(Si

δ/2
) ≤ D

|α|−2
i (|α| − 2)!, (5.60)

and for any |α| ≥ 1:

‖rβi+α1−1
i Dαp‖L2(Si

δ/2
) ≤ D

|α|−1
i (|α| − 1)!. (5.61)

To see this, we re-index the corner by clockwise rotation of the indices: for i ∈ {1, · · · , n}, we re-index
in the following way: Ai+1 → Ai, ωi+1 → ωi, βi+1 → βi and ri → ri−1. In this scenario, the proof of
Lemma 5.2.7 is actually made on the truncated sector S2

δ
2

and then (5.59)-(5.61) are proved with i = 2.

The validity of (5.59)-(5.61) with i > 2 will be shown by doing multiple rotations until Ai, ωi, βi, ri are
re-indexed as A1, ω1, β1, r1.

Now Lemma 2.2.5 and Lemma 4.1.3 give that for each corner Ai, there exists a constant Fi > 1
depending on ωi, δ and βi such that for all α ∈ N2 satisfying |α| ≥ 2:

‖rβi+|α|−2
i Dαu1‖L2(Si

δ/2
) ≤ D̂

|α|−2
i (|α| − 2)!, (5.62)

‖rβi+|α|−2
i Dαu2‖L2(Si

δ/2
) ≤ D̂

|α|−2
i (|α| − 2)!, (5.63)

and for any |α| ≥ 1:

‖rβi+|α|−1
i Dαp‖L2(Si

δ/2
) ≤ D̂

|α|−1
i (|α| − 1)!. (5.64)

By the setting of δ, it is easy to check that there exists a constant Cb depending on βf , Ω and δ such
that for any i ∈ {1, · · · , n}, any j ∈ {1, 2} and any |α| ≥ j.

Φβf+|α|−j < r
βi+|α|−j
i C

|α|−j
b .

Therefore, for all i and all α ∈ N2 satisfying |α| ≥ 2:

‖Φβf+|α|−2D
αu1‖L2(Si

δ/2
) ≤ (CbD̂i)

|α|−2(|α| − 2)!,

‖Φβf+|α|−2D
αu2‖L2(Si

δ/2
) ≤ (CbD̂i)

|α|−2(|α| − 2)!,
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and for any |α| ≥ 1:

‖Φβf+|α|−1D
αp‖L2(Si

δ/2
) ≤ (CbD̂i)

|α|−1(|α| − 1)!.

Lemma 5.2.6 implies that there exists C0 > nCbD̂i for any i such that for all α ∈ N2 satisfying |α| ≥ 2:

‖Φβf+|α|−2D
αu1‖L2(Ω\∪iSiδ/2

) ≤ C
|α|−2
0 (|α| − 2)!,

‖Φβf+|α|−2D
αu2‖L2(Ω\∪iSiδ/2

) ≤ C
|α|−2
0 (|α| − 2)!,

and for any |α| ≥ 1:

‖Φβf+|α|−1D
αp‖L2(Ω\∪iSiδ/2

) ≤ C
|α|−1
0 (|α| − 1)!.

Summarize all the inequalities above and we have that for all α ∈ N2 satisfying |α| ≥ 2:

‖Φβf+|α|−2D
αu1‖L2(Ω) ≤ 2C

|α|−2
0 (|α| − 2)!,

‖Φβf+|α|−2D
αu2‖L2(Ω) ≤ 2C

|α|−2
0 (|α| − 2)!,

and for any |α| ≥ 1:

‖Φβf+|α|−1D
αp‖L2(Ω) ≤ 2C

|α|−1
0 (|α| − 1)!.

These results together with the fact that (u, p)|Siδ ∈ W 2
βi

(Siδ)
2 × W 1

βi
(Siδ) ⊂ H2,2

βi
(Siδ)

2 × H1,1
βi

(Siδ)

holds in each corner Siδ imply that (u, p) ∈ B2
βf

(Ω)2 ×B1
βf

(Ω).
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hp-DGFEM Discretization

58



Chapter 6

hp-DGFEM Discretization of the
stationary incompressible NSE

From this chapter on we analyze the mixed hp-DGFEM for the stationary incompressible NSE. The
analysis is mainly based on [40] and [36]. We assume from now on that ∂Ω = ΓD. Then (3.1) reduces to
the following problem:

−ν∆u + (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in Ω, (6.1)

u = 0 on ∂Ω.

We introduce here a weak formulation of (6.1) which is different from (3.5). Define the following bilinear
form

Anoslip(u, v) = ν

∫
Ω

∇u : ∇v dx, (6.2)

The variational problem now reads: Find (u, p) ∈W × L0 such that for all v ∈W and q ∈ L0,

Anoslip(u, v) +O(u;u, v)+B(v, p) =

∫
Ω

f · v dx,

B(u, q) = 0.

(6.3)

It has been shown in [14, Chapter IV, Theorem 2.1] that there exists a solution (u, p) ∈W×L0 to (3.5)
such that u belongs to the kernel Z := {v ∈W|∇ · v = 0 in L2(Ω)}. Moreover, by setting v = u in (6.3)
and using the Cauchy-Schwarz and Poincaré inequalities we get the stability bound

‖∇u‖L2(Ω) ≤
CP ‖f‖L2(Ω)

ν
, (6.4)

where

CP := ( inf
v∈H1

0 (Ω)2

(
∫

Ω
‖∇v‖2F )

1
2

‖v‖L2(Ω)
)−1

is the Poincaré constant in Ω. Here ‖ · ‖F is the so-called Frobenius norm on matrix(see [19, Chapter
5.2]).

59
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It has also been shown in [14, Chapter IV, Theorem 2.2] that the uniqueness of the solution for (3.5)
can be ensured under the small data assumption

COCP ‖f‖L2(Ω)

ν2
< 1, (6.5)

where the norm of the convective form is

CO := sup
v,u,w∈V

O(w;u, v)

|u|H1(Ω)|v|H1(Ω)|w|H1(Ω)
< +∞.

We introduce a mixed hp-DGFEM discretization for (6.1) in this chapter. This discretization, which
combines the numerical scheme for the stationary Stokes system in [40] and a discrete trilinear form for
the convection term[9, Chapter 6], is proposed in [36].

6.1 Meshes and finite element space

Let T be a collection of meshes T on Ω. We assume that each element is the affine mapping of the
reference triangle T̂ = {(x, y) ∈ R2 : x > 0, y > 0, x + y < 1} or the reference square Q̂ = (0, 1)2. We
allow irregular meshes but we require that the intersection of the closures of two neighbouring elements is
a common vertex or a complete edge of at least one of those two elements. This setting makes it possible
to construct a geometric mesh towards a corner on ∂Ω, which is perfect in handling singularity of the
solution.

We denote by hK the diameter of the element K ∈ T and h = {hK}K∈T the diameter vector. To
build the finite element space we also assign to each element K a polynomial degree kK ≥ 1 and store
those polynomial degrees in a vector k = {kK}K∈T . We set the meshwidth of T as hT = maxK∈T hK
and the maximum polynomial degree of T as kT = maxK∈T kK . Furthermore, we have the following
restrictions on those parameters mentioned above:

• (Shape-regularity) There exist two positive constants κ1 and κ2 which are uniform with respect to
T such that

∀K ∈ T : ‖JF ‖L∞(K̂) ≤ κ1h
2
K ‖JF−1‖L∞(K) ≤ κ1h

−2

K̂

where JF (JF−1) is the Jacobian of the mapping F (F−1) and K̂ is T̂ or Q̂.

• (Bounded local variation of mesh sizes and elemental polynomial degrees) There exist two positive
constants κ3 and κ4 which are uniform with respect to T such that for any two elements K and K ′

sharing an interior edge

κ3hK ≤ hK′ ≤ κ−1
3 hK κ4kK ≤ kK′ ≤ κ−1

4 kK .

An interior edge Ei is the non-empty interior of ∂K ∩ ∂K ′, where K and K ′ are two adjacent elements.
Here we assume that E is the entire edge of at least one of those two elements. A boundary edge Eb is
the non-empty interior of ∂K ∩ ∂Ω such that Eb is the entire edge of K. We denote by EI(T ) the set of
all interior edges and ED(T ) the set of all boundary edges and set E(T ) := EI ∪ ED(T ).

Given a mesh T and a vector k listing the elemental polynomial degrees, we introduce the following
local polynomial space Sk(K) := {q = q̂ ◦ F−1

K : q̂ ∈ ŜkK (K̂)} where, for an positive integer k, Ŝk(K̂) =

Pk(K̂) if K is a triangle and Ŝk(K̂) = Qk(K̂) if K is a quadrilateral. For definition of Pk and Qk, refer
to [10, Chapter 1.2].

We now define the discontinuous Galerkin space

Sk(T ) := {v ∈ L2(Ω) : v|K ∈ SkK (K),K ∈ T }
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and introduce the following finite element spaces approximating W and L0:

VDG := [Sk(T )]2, Q̃DG := Sk−1(T ), QDG := L0 ∩ Q̃DG.

We also define ΣDG := [Sk(T )]2×2, which will be used in the analysis of DG-FEM method.

6.2 Trace operators

The trace operators, which describe the property of the (numerical) solutions near the interior or boundary
edges, play a central role in the design of the discontinuous Galerkin methods. We introduce here some
trace operators which will be used later.

Given a mesh T ∈ T and functions v ∈ H1(T )2, q ∈ H1(T ) and τ ∈ H1(T )2×2, consider an interior
edge E ∈ EI shared by two elements K±. Denote by n± the unit outward normals on ∂K± and by
(v±, q±, τ±) the traces of (v, q, τ) on E from K±. We define the mean value operator {{·}} as

{{v}} := (v+ + v−)/2, {{q}} := (q+ + q−)/2, {{τ}} := (τ+ + τ−)/2.

We also introduce jump operator [[·]] as

[[q]] := q+n++q−n−, [[v]] := v+ ·n++v− ·n−, [[v]] := v+⊗n++v−⊗n−, [[τ ]] := τ+n++τ−n−.

For a boundary edge E ∈ ED, we define the mean value operators as {{v}} := v, {{q}} := q, {{τ}}} := τ
and {{τ}} := τ , we also set jump operator as [[q]] := qn+,[[v]] := v · n+ and [[v]] := v ⊗ n+, where n+ is

the unit outward normal on the edge E. Due to the trace theorem for H1 functions in two-dimensional
case, all operators defined above are well-defined. Moreover, the following lemma holds.

Lemma 6.2.1. On an edge E, we have for u : Ω→ R2 and τ : Ω→ R2×2

[[τu]] = [[τ ]] · {{u}}+ {{τ}} : [[u]]. (6.6)

Here we assume that all trace operators are well-defined with respect to u and τ .

Proof. Elementary matrix manipulations.

6.3 Corner elements

Define:

Tvert := {K ∈ T : K ∩ {A1, · · · , An} = ∅}, Tint := T \ Tvert

We assume that each element each element in Tvert touches at most one corner.
Given an element K ∈ Tvert and assume that K ∩ ∂Ω = {Ai}. We introduce the auxiliary space

Hk,l
β (K) which is defined as the space Hk,l

β (Sδ) introduced in Chapter 2 but all integrals in the norm will

be taken on K instead of Sδ. We simply write f ∈ Hk,l
βi

(K) if f |K ∈ Hk,l
βi

(K).
We state the following auxiliary results.

Lemma 6.3.1 ([40], Lemma 3.1). Let K ∈ Tvert, then
(1): H0,0

β (K) ⊂ L1(K) and for any φ ∈ H0,0
βi

(K) we have

‖φ‖L1(K) ≤ Ch1−βi
K ‖φ‖H0,0

βi
(K). (6.7)

(2): Let φ ∈ H0,0
βi

(K) and v ∈ L∞(K), then

|
∫
K

φv dx| ≤ Ch1−βi
K ‖v‖L∞‖φ‖H0,0

βi
(K). (6.8)
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(3): Let φ ∈ H1,1
βi

(K), then the trace φ|∂K ∈ L1(∂K) and

‖φ‖L1(∂K) ≤ C(‖φ‖L2(K) + h1−βi
K ‖φ‖H1,1

βi
(K)). (6.9)

All the constants C > 0 are independent of the discretization parameter h, k.

Lemma 6.3.2 ([40], Lemma 3.2). Let K ∈ Tvert, τ ∈ H1,1
βi

(K)2×2 and v ∈ C1(K)2. Then the following
integration-by-part formula holds∫

K

τ : (∇⊗ v) dx = −
∫
K

τ : ∇v dx +

∫
∂K

τ : (v⊗ n) ds, (6.10)

here n is the unit outward normal vector.

6.4 Lifting operators

In this section we introduce some lifting operators, which map functions defined on edges to functions
defined on elements. As we will see later, they play a role in the design of the discrete forms.

The (global) lifting operator L : H1(T )2 → ΣDG is defined by∫
Ω

L(v) : τ dx =

∫
E(T )

[[v]] : {{τ}} ds ∀τ ∈ ΣDG.

Also, the lifting operator M : H1(T )2 → QDG is given by∫
Ω

M(v)q dx =

∫
E(T )

[[v]]{{q}} ds ∀q ∈ QDG.

These operators are introduced and thoroughly studied in [38].

6.5 Discretization on the variational problem

We consider the following mixed method: find (uDG, pDG) ∈ VDG × QDG such that for any v ∈ VDG

and q ∈ QDG:

ADG(uDG, v) +ODG(uDG;uDG, v)+BDG(v, pDG) =

∫
Ω

f · v dx,

BDG(uDG, q) = 0.

(6.11)

ADG, BDG and ODG discretize A(·, ·), B(·, ·) and O(·; ·, ·). Given u,v,w ∈ VDG, those forms are
defined as:

ADG(u, v) := ν

∫
Ω

∇hu : ∇hv d x− ν(

∫
E(T )

[[u]] : {{∇hv}}+ [[v]] : {{∇hu}} ds) + ν

∫
E(T )

j[[u]] : [[v]] ds,

BDG(v, q) := −
∫

Ω

q∇h · v dx +

∫
E(T )

{{q}}[[v]] ds,

ODG(w;u, v) :=

∫
Ω

((w · ∇h)u) · v dx +
1

2

∫
Ω

(∇h ·w)u · v dx−
∫
EI(T )

[[u]] : ({{v}} ⊗ {{w}} )ds

− 1

2

∫
E(T )

[[w]]{{u · v}} ds.

(6.12)
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Here ∇h and ∇h· denote the broken gradient and broken divergence operators, see [10, Chapter 1.2].
Also, the function j is the interior penalty stabilization function which is defined, for all edge E ∈ E(T )
as j|E := j0k

2
Eh
−1
E with j0>0 as a sufficient large constant independent of h, k and ν and with kE and

hE defined as:

kE :=

{
max{kK , kK′} if E = ∂K ∩ ∂K ′ ∈ EI(T ),

kK if E = ∂K ∩ ∂Ω ∈ ED(T ),
(6.13)

and

hE :=

{
min{hK , hk′} if E = ∂K ∩ ∂K ′ ∈ EI(T ),

hK if E = ∂K ∩ ∂Ω ∈ ED(T ).
(6.14)

With lifting operators given in section 6.4 we rewrite ADG and BDG as:

ADG(u, v) := ν

∫
Ω

(∇hu : ∇hv− L(u) : ∇hv− L(v) : ∇hu) dx + ν

∫
E(T )

j[[u]] : [[v]] ds,

BDG(v, q) := −
∫

Ω

q[∇h · v−M(v)] dx.

(6.15)



Chapter 7

Existence and uniqueness of the
discrete solution

In this chapter, we show the existence and uniqueness of the solution to the numerical scheme (6.11).
For a function v ∈ H1(T )2 we introduce the auxiliary norm ‖v‖DG by

‖v‖2DG := ‖∇hv‖2L2(Ω) +

∫
e∈E(T )

j|[[v]]|2 ds.

We have the following result:

Lemma 7.0.1. There exists a constant jmin such that for j0 ≥ jmin and for any p ∈ [1,+∞), there
exists a constant Cemb = Cemb(Ω, p, κ1, κ2, κ3, κ4) such that for any v ∈ H1(T )2

‖v‖Lp(Ω) ≤ Cemb‖v‖DG.

Proof. The following broken norm

‖v‖21,T := ‖∇hv‖2L2(Ω) +

∫
E(T )

h−1|[[v]]|2 ds

is introduced in [36]. [36, Lemma 4.1] indicates that there exists C0 := C0(Ω, p, κ1, κ2, κ3, κ4) such that
‖v‖Lp(Ω) ≤ C0‖v‖1,T .

Set jmin := 1
(min k)2 , then it is clear that ‖v‖1,T ≤ ‖v‖DG. Combine all above claims and the proof is

finished.

From now on we assume that j0 ≥ jmin.

7.1 Properties of discrete forms

In this section we list some properties for forms ADG, BDG and ODG. The following lemma shows that
ADG is continuous in H1(T )2 and coercive in VDG.

Lemma 7.1.1. There exists a constant CADG = CADG(j0, κ1, κ2, κ3, κ4) such that for any v,w ∈ H1(T )2

|ADG(v,w)| ≤ CADGν‖v‖DG‖w‖DG. (7.1)

Moreover, there is a constant Ccoer = Ccoer(jmin, κ1, κ2, κ3, κ4) with

ADG(v, v) ≥ Ccoerν‖v‖2DG, ∀v ∈ VDG. (7.2)
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The proof of this lemma is based on stability estimates on the lifting operator L, see [38, Lemma
7.1-Lemma 7.6] for technical details.

The following inf-sup condition for BDG is proved in [36, Lemma 4.3]

Lemma 7.1.2. Suppose that minK∈T kK ≥ 2 and let

α :=

{
1 if the mesh T contains at least one quadrilaterial
0 otherwise

Then there exists a constant Cis independent of h,k and ν such that the following inf-sup condition for
VDG and QDG holds true:

inf
0q∈QDG

sup
0v∈VDG

BDG(v, q)

‖v‖DG‖q‖L2(Ω)
≥ Cis|k|−α > 0 (7.3)

The following result is proved in [36, Proposition 4.1].

Lemma 7.1.3. For any w,u ∈ VDG, we have ODG(w;u,u) = 0. Moreover, there is a constant CODG
independent of h,k and ν such that for any u, v,w ∈ H1(T )2

|ODG(w;u, v)| ≤ CODG‖w‖DG‖u‖DG‖v‖DG. (7.4)

7.2 Existence and uniqueness of discrete solutions

We introduce the discrete kernel ZDG := {v ∈ VDG|BDG(v, q) = 0,∀q ∈ QDG}.
All above properties of the discrete form ADG, BDG, ODG can be used to derive the following existence

and uniqueness result for the discrete solution of (6.11)[36, Proposition 4.2]

Lemma 7.2.1. There exists a discrete solution (uDG, pDG) ∈ VDG ×QDG such that uDG ∈ ZDG and

‖uDG‖DG ≤
Cemb‖f‖L2(Ω)

νCcoer
(7.5)

Moreover, under the small data assumption

CODGCemb‖f‖L2(Ω)

C2
coerν

2
< 1 (7.6)

the discrete problem (6.11) has a unique solution.

By the continuous and discrete small data assumptions (6.5) and (7.6) we know that if we define

Csm :=
max{CO,CODG}max{CP ,Cemb}

min{1,C2
coer}

, then both (3.5) and (6.11) will have unique solutions if the following

condition

Csmν
−2‖f‖L2(Ω) ≤

1

2
(7.7)

holds.



Chapter 8

Error analysis

8.1 Weak residual

We firstly introduce a weak residual which measures the non-conformity of the scheme (6.11). Given the
solution (u, p) ∈W × L0, define

RDG(u, p; v) := ADG(u, v) +ODG(u;u, v) +BDG(v, p)−
∫

Ω

f · v dx (8.1)

for any v ∈ VDG.
The error estimate is then defined as the weak residual

RDG(u, p) := sup
0 6=v∈VDG

|RDG(u, p; v)|
ν1/2‖v‖DG

. (8.2)

We also introduce the following norm

‖|(u, p)|‖2 := ν‖u‖2DG + ν−1‖p‖2L2(Ω) (8.3)

for any function pair (u, p) ∈W × L0.
The following theorem holds.

Theorem 8.1.1. Assume that there exists a positive constant Csm such that for 0 < ν ≤ 1 (7.7) holds.
Let (u, p) ∈W×L0 be the continuous solution to (3.5) and let (uDG, pDG) ∈ VDG×QDG be the discrete
solution to (6.11). Then we have the following error estimates:

ν1/2‖u− uDG‖DG ≤ C|k|α[ inf
(v,q)∈VDG×QDG

‖|(u− v, p− q)|‖+RDG(u, p)] (8.4)

ν−1/2‖p− pDG‖L2(Ω) ≤ C|k|2α[ inf
(v,q)∈VDG×QDG

‖|(u− v, p− q)|‖+RDG(u, p)] (8.5)

where α is defined in Theorem 7.1.2 and where the constant C is independent of h,k and ν.

For proof see [36, Theorem 6.1].
With this theorem we are able to bound the error term ‖u−uDG‖DG and ‖p−pDG‖L2(Ω) by estimating

inf(v,q)∈V×Q ‖|(u − v, p − q)|‖ and RDG(u, p). The following lemmas, which are similar to [40, Lemma
3-Lemma 6, Theorem 2] will focus on this task.

Lemma 8.1.2. Let f ∈ L2(Ω)2 and (u, p) ∈ W × L0 be a solution to (6.1). Then we have for any
v ∈ VDG,

RDG(u, p; v) =

∫
Ω

(ν∇u−pI) : ∇hv dx−
∫

Ω

((u ·∇)u−f) ·v dx−
∫

Ω

ν∇u : L(v) dx+

∫
Ω

pM(v) dx. (8.6)
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This lemma can be derived directly from the definitions of all discrete forms and (8.1).

Lemma 8.1.3. If all assumptions in Corollary 5.2.2 and (6.5) hold true, then for any interior edge
E ∈ EI(T ), we have that [[ν∇u− pI]] = 0 in L2(E)2 on E.

Proof. By Corollary 5.2.2, there exists β ∈ (0, 1)n such that (u, p) ∈ B2
β(Ω)2 × B1

β(Ω). The proof then
follows the same way as in the proof of [40, Lemma 3.3]

Lemma 8.1.4. Let P : L2(Ω)2×2 → ΣDG and P : L2
0(Ω) → QDG denote the L2−projection onto ΣDG

and QDG. If all assumptions in Corollary 5.2.2 and (6.5) hold true, then we have, for all v ∈ VDG,

RDG(u, p; v) = ν

∫
E

[[v]] : {{∇u− P∇u}} −
∫
E
[[v]]{{p− P (p)}}. (8.7)

Proof. By partial integration (this can be justified by using Lemma 6.3.2), (6.6) and Lemma 8.1.3 we
deduce ∫

Ω

(ν∇u− pI) : ∇hv

=
∑
K∈T

(

∫
∂K

(ν∇u− pI) : (v⊗ nK)−
∫
K

(ν∆u−∇p) · v)

= −
∫

Ω

(ν∆u−∇p) · v +
∑

E∈E(T )

∫
E

[[(ν∇u− pI) · v]]

= −
∫

Ω

(ν∆u−∇p) · v +

∫
EI(T )

[[ν∇u− pI]] · {{v}}+

∫
E
{{ν∇u− pI}} : [[v]]

= −
∫

Ω

(ν∆u−∇p) · v +

∫
E
{{ν∇u− pI}} : [[v]].

So we have by using (8.6)

RDG(u, p; v) = −
∫

Ω

(ν∆u−∇p) · v +

∫
E
{{ν∇u− pI}} : [[v]]−

∫
Ω

((u · ∇)u− f) · v (8.8)

−
∫

Ω

ν∇u : L(v) +

∫
Ω

pM(v)

=

∫
E
{{ν∇u− pI}} : [[v]]−

∫
Ω

ν∇u : L(v) +

∫
Ω

pM(v).

Also, due to the properties of projection operators and the definition of lifting operators L and M we
have ∫

Ω

ν∇u : L(v) = ν

∫
Ω

P (∇u) : L(v) = ν

∫
E(T )

[[v]] : {{P (∇u)}}, (8.9)∫
Ω

pM(v) =

∫
Ω

P (p)M(v) =

∫
E(T )

[[v]]{{P (p)}}. (8.10)

Finally, insert (8.9) and (8.10) into (8.8):

RDG(u, p; v) =

∫
E
{{ν∇u− pI}} : [[v]]− ν

∫
E(T )

[[v]] : {{P (∇u)}}+

∫
E(T )

[[v]]{{P (p)}}

= ν

∫
E

[[v]] : {{∇u− P∇u}} −
∫
E
[[v]]{{p− P (p)}}.
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Lemma 8.1.5. Assume that all assumptions in Corollary 5.2.2 and (6.5) hold true.

Then there exists C depending only on κ1, κ2, κ3, κ4 and ν such that for any v,w ∈ VDG and
q ∈ QDG we have

|RDG(u, p;w)| ≤ C(‖|(u− v, p− q)|‖‖w‖DG) + |ν
∫
E
{{∇u−∇v}} : [[w]]−

∫
E
{{p− q}}[[w]]|. (8.11)

Proof. For fixed but arbitrary v,w ∈ VDG and q ∈ QDG, with (8.7) and the fact that L2-projection
reproduces polynomials in ΣDG and QDG we have

RDG(u, p;w) = ν

∫
E

[[w]] : {{∇u−∇hv− P (∇u)− P (∇hv)}} −
∫
E
[[w]]{{p− q − P (p) + P (q)}}

= (ν

∫
E

[[w]] : {{P (∇(v− u))}}+

∫
E
[[w]]{{P (p− q)}})︸ ︷︷ ︸

A

+ (ν

∫
E
{{∇u−∇v}} : [[w]]−

∫
E
{{p− q}}[[w]])︸ ︷︷ ︸

B

.

We consider bounding term A:

|ν
∫
E

[[w]] : {{P (∇(v− u))}}+

∫
E
[[w]]{{P (p− q)}}|

≤ ν|
∫
E
j

1
2 [[w]] : j−

1
2 {{P (∇(v− u))}}|+ |

∫
E
j

1
2 [[w]]j−

1
2 {{P (p− q)}}|

≤ ν
∫
E
j|[[w]]|2

∫
E
j−1|{{P (∇(v− u))}}|2 +

∫
E
j|[[w]]|2

∫
E
j−1|{{P (p− q)}}|2

≤ C‖w‖DG
∑
K∈T

[
hK
k2
K

ν‖P (∇(v− u))‖2L2(∂K) +
hK
k2
K

‖P (p− q)‖2L2(∂K)]
1
2

≤ C‖w‖DG[ν‖P (∇(v− u))‖L2(Ω) + ‖P (p− q)‖L2(Ω)]

≤ C‖w‖DGν
1
2 [ν

1
2 ‖∇(v− u)‖L2(Ω) + ν−

1
2 ‖p− q‖L2(Ω)]

≤ C‖w‖DGν
1
2 [ν

1
2 ‖u− v‖DG + ν−

1
2 ‖p− q‖L2(Ω)]

≤ C‖w‖DG‖|(u− v, p− q)|‖.

The constant C here only depends on κ1, κ2, κ3, κ4 and ν. In above derivation we use the Cauchy-
Schwarz inequality, the definition of j, hK , kK , the inequality |[[w]]|2 ≤ |[[w]]|2 and the following trace
inequality

‖φ‖2L2(∂K) ≤ Ck
2
Kh
−1
K ‖φ‖

2
L2(Ω)

which holds for any polynomial φ ∈ QkK (K), see [41, Theorem 4.76]. Combine all results above and we
have the result.

8.2 Quasioptimality of the discontinuous Galerkin method

Lemma 8.2.1. Assume that all assumptions in Corrollary 5.2.2 and the small data assumption (7.7)
hold true. Denote by (u, p) ∈W × L0 the unique solution to (3.1) and (uDG, pDG) ∈ VDG × QDG the
unique solution to (6.11) with k ≥ 2. Then we have

‖|(u− uDG, p− pDG)|‖ ≤ C|k|2α+1 inf
(v,q̃)∈VDG×Q̃DG

(E1 + E2 + E3) (8.12)
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where E1,E2 and E3 are defined as

E2
1 =

∑
K∈T

(|u− v|2H1(K) + h−2
K ‖u− v‖2L2(K) + ‖p− q̃‖2L2(K)),

E2
2 =

∑
K∈Tint

h2
K(|u− v|2H2(K) + |p− q̃|2H1(K)),

E2
3 =

∑
K∈Tvert

h
2(1−βK)
K (|u− v|2

H2,2
βK

(K)
+ |p− q̃|2

H1,1
βK

(K)
).

Here the constant C is independent of the discretization and we write βK = βi if K touches Ai.

Proof. By Corollary 5.2.2, u ∈ B2
β(Ω)2 and p ∈ B1

β(Ω) for some β ∈ (0, 1)n. In view of Lemma 8.1.5 and
Theorem 8.1.1 the crucial task is to bound ‖|(u− v, p− q)|‖ and

sup
06=w∈VDG

inf
(v,q)∈VDG×QDG

(
1

‖w‖DG
|ν
∫
E
{{∇u−∇v}} : [[w]]−

∫
E
{{p− q}}[[w]]|).

For any q̃ ∈ Q̃DG, set q = q̃ − 1
|Ω|
∫

Ω
q̃ ∈ QDG.

We firstly consider bounding ‖|(u− v, p− q)|‖. In the following steps we will use the trace inequality

‖φ‖2L2(∂K) ≤ C[h−1
K ‖φ‖

2
L2(K) + hK |φ|2H1(K)], ∀φ ∈ H1(K). (8.13)

We have

‖u− v‖2DG =
∑
K∈T

‖∇(u− v)‖2L2(K) +

∫
E
j|[[u− v]]|2ds

≤
∑
K∈T

‖∇(u− v)‖2L2(K) + C
∑
K∈T

∫
E∈∂K

k2
Eh
−1
E |u− v|2ds

≤
∑
K∈T

‖∇(u− v)‖2L2(K) + C
∑
K∈T

k2
Kh
−1
K ‖u− v‖2L2(∂K)

≤ C|k|2
∑
K∈T

(‖∇(u− v)‖2L2(K) + h−1
K ‖u− v‖2L2(∂K))

≤ C|k|2
∑
K∈T

(|u− v|2H1(K) + h−2
K ‖u− v‖2L2(K) + |u− v|2H1(K))

≤ C|k|2E2
1 .

Here the constant C depends only on κ3, κ4 and j0. Moreover, for any q ∈ QDG,

‖p− q‖L2(Ω) = ‖p− q̃ − |Ω|−1

∫
Ω

(p− q̃)‖L2()

≤ ‖p− q̃‖L2(Ω) + |Ω|− 1
2

∫
Ω

|p− q̃|

≤ 2‖p− q̃‖L2(Ω) ≤ 2E1.

(8.14)

So

‖|(u− v, p− q)|‖2 ≤ νC|k|2E2
1 + ν−1E2

1 ≤ C|k|2E2
1 .

The constant C here depends only on κ3, κ4, j0 and ν. Take the infimum among (v, q) ∈ VDG × QDG
and we have

inf
(v,q)∈VDG×QDG

‖|(u− v, p− q)|‖2 ≤ C|k|2E2
1 . (8.15)
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To bound sup0 6=w∈VDG
inf(v,q)∈VDG×QDG( 1

‖w‖DG |ν
∫
E{{∇u − ∇v}} : [[w]] −

∫
E{{p − q}}[[w]]|), we fix

v,w ∈ VDG and q ∈ QDG. Then we have

|ν
∫
E
{{∇u−∇v}} : [[w]]−

∫
E
{{p− q}}[[w]]|

≤
∑
E∈E

∫
E

ν|{{∇u−∇v}} : [[w]]|+ |{{p− q}}[[w]]| ds

≤
∑
E∈E

∫
E

(ν|{{∇u−∇v}}|+ |{{p− q}}|) · |[[w]]| ds

≤
∑
E∈E
‖[[w]]‖L∞(E)

∫
E

ν|{{∇u−∇v}}|+ |{{p− q}}| ds.

Since w ∈ VDG, each component of [[w]] is still a polynomial. Apply the trace inequality for polynomials
(see [34, Lemma 1]):

‖[[w]]‖L∞(E) = ‖|[[w]]|2‖
1
2

L∞(E) ≤ C
kE√
hE
‖|[[w]]|2‖

1
2

L1(E) = C
kE√
hE
‖[[w]]‖L2(E).

Notice the inequality |[[w]]|2 ≤ |[[w]]|2, we have

|ν
∫
E
{{∇u−∇v}} : [[w]]−

∫
E
{{p− q}}[[w]]|

≤ C
∑
E∈E

(
kE√
hE
‖[[w]]‖L2(E)(

∫
E

ν|{{∇u−∇v}}|+ |{{p− q}}| ds))

≤ C(
∑
E∈E
‖ kE√

hE
[[w]]‖2L2(E))

1
2 (
∑
E∈E

(

∫
E

ν|{{∇u−∇v}}|+ |{{p− q}}| ds)2)
1
2

≤ C(

∫
E
k2
Eh
−1
E |[[w]]|2 ds)

1
2 ((

∫
E
ν|{{∇u−∇v}}|)2 + (

∫
E
|{{p− q}}|)2)

1
2

≤ C‖w‖DG · [
∑
K∈T

(‖∇(u− v)‖2L1(∂K) + ‖p− q‖2L1(∂K))]
1
2 .

In the case that K ∈ Tint, since u ∈ B2
β(Ω)2 and p ∈ B1

β(Ω), ∇u|K ∈ H1(K)2×2 and p|K ∈ H1(K). By
applying the Cauchy-Schwarz inequality and the trace inequality (8.13):

‖∇(u− v)‖2L1(∂K) ≤ ChK‖∇(u− v)‖2L2(∂K) ≤ C‖∇(u− v)‖2L2(K) + Ch2
K |∇(u− v)|2H1(K)

≤ C(|u− v|2H1(K) + h2
K |u− v|2H2(K)).

Similarly ‖p − q‖2L1(∂K) ≤ C(‖p − q‖2L2(K) + h2
K |p − q|2H1(K)). Here the constant C depends only on κ1

and κ2.

In the case that K ∈ Tvert, we apply the third assertions of Lemma 6.3.1 on ∇u ∈ H1,1
βK

(K)2×2 and

p ∈ H1,1
βK

(K). We have

‖∇(u− v)‖2L1(∂K) ≤ C(‖∇(u− v)‖2L2(K) + h
2(1−βK)
K |u− v|2

H2,2
βK

(K)
),

‖p− q‖2L1(∂K) ≤ C(‖p− q‖2L2(K) + h
2(1−βK)
K |p− q|2

H1,1
βK

(K)
).
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By all claims above and noticing that ∇(q − q̃) ≡ 0 we have

1

‖w‖DG
|ν
∫
E
{{∇u−∇v}} : [[w]]−

∫
E
{{p− q}}[[w]]|

≤ C[
∑
K∈T

(|u− v|2H1(K) + ‖p− q‖2L2(K)) +
∑

K∈Tint

h2
K(|u− v|2H1(K) + |p− q|2H1(K))+∑

K∈Tvert

h
2(1−βK)
K (|u− v|2

H2,2
βK

(K)
+ |p− q|2K1

H
1,1
βK

(K)

)]
1
2

≤ C[
∑
K∈T

(|u− v|2H1(K) + ‖p− q̃‖2L2(K)) +
∑

K∈Tint

h2
K(|u− v|2H1(K) + |p− q̃|2H1(K))+∑

K∈Tvert

h
2(1−βK)
K (|u− v|2

H2,2
βK

(K)
+ |p− q̃|2K1

H
1,1
βK

(K)

)]
1
2

≤ C(E2
1 + E2

2 + E2
3)

1
2 .

Here the constant C is independent of |k|. As the choices of v,w ∈ VDG and q ∈ QDG are arbitrary,

sup
06=w∈VDG

inf
(v,q)∈VDG×QDG

(
1

‖w‖DG
|ν
∫
E
{{∇u−∇v}} : [[w]]−

∫
E
{{p− q}}[[w]]|) ≤ C(E2

1 + E2
2 + E2

3)
1
2 .

Now, by Lemma 8.1.5, (8.15) and the definition of RDG(u, p):

RDG(u, p)2 ≤ C(|k|2E2
1 + E2

1 + E2
2 + E2

3) ≤ C|k|2(E2
1 + E2

2 + E2
3). (8.16)

Finally, use Theorem 8.1.1, (8.15) and (8.16):

‖|u− uDG, p− pDG|‖2

= ν‖u− uDG‖2DG + ν−1‖p− pDG‖L2(Ω)

≤ C(|k|2α + |k|4α)[|k|2E2
1 + |k|2(E2

1 + E2
2 + E2

3)]

≤ C|k|4α+2(E2
1 + E2

2 + E2
3).

Taking the square root of each side and then taking the infimum among all (v, q) ∈ VDG×QDG concludes
the proof.



Chapter 9

Exponential rate of convergence

In this chapter, we show that the error estimate in Lemma 8.2.1 is exponentially convergent on geometrical
meshes. Theorem 9.2.1 will be the main result of the hp-DGFEM’s performance on the stationary
incompressible NSE with zero Dirichlet boundary condition.

9.1 Geometrical meshes

We follow the steps in [36, Section 6.3] which introduce the hp-DG discretization that uses geometrically-
refined mesh towards the corners with linear polynomial slope. We fix a refinement ratio σ ∈ (0, 1

2 ), a

polynomial slope s>0 and a minimum polynomial degree kmin. Let R := mini,j∈1,·,n
d(Ai,Aj)

2 . We also
fix a constant nL ∈ N.

We firstly consider a corner A ∈ {A1, · · · , An} and the corner mesh T lA := {K ∈ T : d(K,A) < R}.
Suppose that T lA can be divided into mesh layers T lA := Ll0 ∪ · · · ∪ Lll such that

• (1) Lll contains all elements touching c.

• (2) minK∈Llj d(K,A) ' maxK∈Llj d(K,A) ' Rσj .

• (3) For all K ∈ Llj , hK ' Rσj .

• (4) |Llj | ' nL.

Here all relations are uniform with respect to l and j. Furthermore, if T ∈ T lA is a triangle, we assume

that there exists an affine map FT such that T = FT (T̂ ) and that for QT := FT (Q̂), we have

• (5) QT ⊂ Ω.

• (6) d(QT , A) ≥ Cd(T,A) uniformly with respect to T and to the refinement level l.

Remark 9.1.1. It has been shown in [11, Lemma 1] that (5) holds for meshes that are sufficiently refined
using the Newest-vertex Bisection technique. Moreover, it can be shown that for any T , there exists an
affine mapping such that d(QT , A) = d(T,A). The key is to construct an affine mapping that maps the
segment y = −x+ 1, x ∈ (0, 1) to the edge of T which is the furthest edge away from A.

The refinement of the mesh T lA is T l+1
A := Ll+1

0 ∪ · · · ∪ Ll+1
l+1 with Ll+1

j = Llj for j = 0, 1, · · · , l − 1.

Now, the mesh T l on Ω is obtained by using T lci for i = 1, · · · , n and by using a fixed quasi-uniform
partition Tfixed in the rest part of Ω. Moreover, for each element K ∈ Llj ⊂ TlAi , the polynomial degree
corresponding to K is set as kK = kmin + bs(i− j)c and for each element K ∈ Tfixed , kK = kmin + bslc.
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Figure 9.1: An example of the corner mesh near a right-angle corner. The dashed lines show how to
refine the corner mesh at the next refinement step. In this case nL = 3.

9.2 Exponential convergence

We now prove the exponential convergence of the discretization stated in Chapter 6 with the mesh
described in Section 9.1.

Theorem 9.2.1. Assume that (7.7) holds and let (u, p) be the solution to (3.1) with f ∈ B0
βf

(Ω)2 for

a vector βf ∈ (0, 1)n. Let VDG and QDG be the spaces defined in (6.1) with respect to the mesh T l
and the polynomial setting shown in Section 9.1 and let (uDG, pDG) ∈ VDG×QDG denote the numerical
solution corresponding to (6.11). Then there exist two constants b and C independent of l such that for
N = dim(VDG) ' dim(QDG) we have

‖|(uDG − u, pDG − p)|‖ ≤ C exp(−bN 1
3 ).

The proof follows the lines of [40, Theorem 6.4] and [36, Theorem 6.3].

Proof. By Corollary 5.2.2, there exists β = (β1, · · · , βn) ∈ (0, 1)n such that u ∈ B2
β(Ω)2 and p ∈ B1

β(Ω).
For any element K touching a corner Aj we write βK = βj and rK = ri.

Now we consider bounding E2
1 +E2

2 +E2
3 in Lemma 8.2.1. We start by considering elements in Tvert.

Split E2
1 as:

E2
1 =

∫
K∈Tint

(|u− v|2H1(K) + h−2
K ‖u− v‖2L2(K) + ‖p− q̃‖2L2(K))

+

∫
K∈Tvert

(|u− v|2H1(K) + h−2
K ‖u− v‖2L2(K) + ‖p− q̃‖2L2(K)) =: E2

1,int + E2
1,vert.

By [37, Proposition 5.1, Proposition 5.4] and the assumption (3) on the corner mesh in Section 9.1, for
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any K ∈ Kvert there exist v ∈ Q1(K)2 and q̃ ∈ Q0(K) such that∑
K∈Tvert

(|u− v|2H1(K) + h−2
K ‖u− v‖2L2(K) + ‖p− q̃‖2L2(K))

≤ C
∑

K∈Tvert

h
2(1−βK)
K (|u|H2,2

β (K) + |p|H1,1
β (K))

≤ C
∑

K∈Tvert

σ2(1−βK)l(|u|H2,2
β (K) + |p|H1,1

β (K)).

and ∑
K∈Tvert

h
2(1−βK)
K (|u− v|2

H2,2
β (K)

+ ‖p− q̃‖2
H1,1
β (K)

) ≤ C
∑

K∈Tvert

h
2(1−βK)
K (|u|H2,2

β (K) + |p|H1,1
β (K))

≤ C
∑

K∈Tvert

σ2(1−βK)l(|u|H2,2
β (K) + |p|H1,1

β (K)).
(9.1)

So there exists two constants Cvert, bvert independent of l such that

E2
1,vert + E2

3 ≤ Cvert exp(−bvertl). (9.2)

Now it remains to estimate

E2
1,int + E2

2 =
∑

K∈Tint

(
∑

i=0,1,2

h
2(i−1)
K |u− v|2Hi(K) +

∑
i=0,1

h2i
K |p− q|2Hi(K)).

We fix an element K ∈ Tint. We firstly consider the case that K is a quadrilateral. For any s ≤ kK such
that s ≤ kK , let γ ∈ N2

0 be a multi index such that |γ| = s > 0. It has been shown in [41, Corollary 4.47]
that there exists a polynomial v ∈ QkK (K)2 such that∑

i=0,1,2

h
2(i−1)
K |u− v|2Hi(K) ≤ Ch

2s
K

∑
i=0,1,2

(
(kK − s)!

(kK + s+ 2− 2i)!

∑
|α|=1,2,3

h
2|α|−2
K ‖Dα+γu‖2L2(K)). (9.3)

Set βmax := maxβj . It can be inferred from conditions (2), (3) in Section 9.1 that rβK ' h
βmax
K uniformly

in j and l on K. we have∑
i=0,1,2

h
2(i−1)
K |u− v|2Hi(K) ≤ C

s+1h
2(1−βmax)
K

∑
i=0,1,2

(
(kK − s)!

(kK + s+ 2− 2i)!

∑
|α|=1,2,3

‖r|α|+|γ|+β−2Dα+γu‖2L2(K)).

(9.4)

In the case that K = T is a triangle, we consider QT defined in Section 9.1 and note that for k ∈ N,
Q̂bkT /2c ⊂ P̂k. So all functions in QbkT /2c(QT ) can be restricted to functions in PkT (T ), i.e., for i = 0, 1, 2
there exists a polynomial v ∈ Qb kT2 c(QT )2 such that v|T ∈ PkT (T )2 and

|u− v|Hi(T ) ≤ C|u− v|Hi(QT ).

Here the constant is independent of kT and hT . It can also be derived from conditions (2), (3) and (6)

in Section 9.1 that on QT we have rβ ' hβmaxQT
' hβmaxT . Use the above argument we obtain that there

exists a polynomial v ∈ PkT (K)2 such that for s ≤ bkT2 c,∑
i=0,1,2

h
2(i−1)
K |u− v|2Hi(K) ≤ C

s+1h
2(1−βmax)
K

∑
i=0,1,2

(
(bkT2 c − s)!

(bkT2 c+ s+ 2− 2i)!

∑
|α|=1,2,3

‖r|α|+|γ|+β−2Dα+γu‖2L2(K)).

(9.5)
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This estimate is weaker than (9.4), so it still holds for quadrilateral elements and it will be used in the
following. We still denote SkK (K) = QkK (K) if K is a quadrilateral and SkK (K) = PkK (K) if it is a
triangle.

As u ∈ B2
β(Ω)2, there exists two constant Au, Cu>1 such that for any multi-index α ∈ N2

0 with |α| > 0

we have ‖r|α|+β−2Dαu‖L2(Ω) ≤ CuA
|α|−2
u (|α|−2)!. Therefore, selecting C1 and A1 which are independent

of s (they depend only on u) and satisfying 9Cs+1C2
uA

2(s+1)
u (s + 1)2 ≤ C1A

s
1, we obtain that for any

K ∈ Tint there exists v ∈ SkK (K)2 such that

∑
i=0,1,2

h
2(i−1)
K |u− v|2Hi(K) ≤ C

s+1C2
uh

2(1−βmax)
K

∑
i=0,1,2

(
(bkK2 c − s)!

(bkK2 c+ s+ 2− 2i)!

∑
|α|=1,2,3

A2(s+|α|−2)
u (s+ |α| − 2)!2)

(9.6)

≤ C1h
2(1−βmax)
K

(bkK2 c − s)!
(bkK2 c+ s− 2)!

As1(s!)2.

Now, notice that p ∈ B1
β(Ω), use the same arguments as in (9.3)-(9.6) and we obtain that there exists a

polynomial q̃ ∈ SkK−1(K) and two constants A2, C2 (they only depend on the pressure p) such that

∑
i=0,1

h2i
K |p− q̃|2Hi(K) ≤ C2h

2(1−βmax)
K

(bkK2 c − s)!
(bkK2 c+ s− 2)!

As2(s!)2. (9.7)

Now we use (9.6) and (9.7) to bound E2
1,int + E2

2 . We note that if K ∈ Llj ⊂ T lc , then hK ' σj

and kK = kj := kmin + sbl − jc, otherwise (K ∈ Tfixed) hK ≤ diam(Ω) is fixed and kK = k0. Set
A = max(A1, A2) and we have

E2
1,int + E2

2 =
∑

K∈Tint∪(∪i=1,2··· ,nT lci )

(
∑

i=0,1,2

h
2(i−1)
K |u− v|2Hi(K) +

∑
i=0,1

h2i
K |p− q|2Hi(K)) (9.8)

+
∑

K∈Tfixed

(
∑

i=0,1,2

h
2(i−1)
K |u− v|2Hi(K) +

∑
i=0,1

h2i
K |p− q|2Hi(K))

≤ C[

l∑
j=0

σ2(1−βmax)j min
s=1,2,··· ,bkj/2c

(bkj2 c − s)!
(bkj2 c+ s− 2)!

As(s!)2]

≤ Cint exp(−bintl)

for some positive constants Cint and bint. Here the final inequality can be derived from [39, Lemma 5.9
and Lemma 5.12]. The proof is finished by combining (9.2), (9.8) and the fact that N ' l3 as l→ +∞.



Chapter 10

Discussion on main results

In this chapter, we conclude our work and give some discussion.
The two major results in this thesis are Theorem 5.2.1, which show the analytic regularity of the

solution to the NSE with specific boundary condition(see Chapter 3) using the weighted, analytic function
spaces Blβ(Ω) with 0 < β < 1 and Theorem 9.2.1, which establishes exponential convergence of a suitable
hp-DGFEM applied to the NSE with an analytic solution in a polygon. We give some further discussion
on these theorems.

10.1 Discussion on Theorem 5.2.1

Theorem 5.2.1 justifies the analytic regularity of the solution in polygon given analytic data and homoge-
neous boundary conditions. To the best of our knowledge, there is no previous result about the analytic
regularity of the stationary NSE in a polygon with mixed boundary conditions (A result which considers
only Dirichlet boundary condition was presented recently in [28]).

The core method we use here follows from [16] and [17], which studies the polar-component form of the
equation using polar coordinate: in Step 1 of the proof of Lemma 5.2.7, we evaluate W 2

β1
(S1

δ
2

)2×W 1
β1

(S1
δ
2

)

regularity of higher order derivatives (rk∂kru, r
k∂kr p) by considering an auxiliary Stokes problem with

(rk∂kru, r
k∂kr p) as the solution. Here, the usage of polar coordinate in the proof ensures that the boundary

conditions of this auxiliary problem can be easily determined by derivatives of the boundary value of (u, p)
and lower-order derivatives of p. This method was not possible to use with Cartesian coordinates.

What is the flaw in this method? One might notice that our restriction on the boundary condition
appears strange, particularly with regard to Condition 2 in Remark 3.1.1:

Condition 2: Each corner Ai must have at least one touching edge with Dirichlet bound-
ary condition or have both touching edges with slip boundary condition.

This condition rules out the possibility that we have only Neumann boundary condition or Neumann
boundary condition combined with slip boundary condition near a corner. From a practical point of view,
we may find it kind of acceptable as these cases are uncommon in physical application. However, they
are still of mathematical interest. Why is Condition 2 imposed here?

We revisit Theorem 5.1.1, which studies the local property of the solution to the Stokes problem near
a corner. Theorem 5.1.1 says that if the boundary condition near a corner (say, A1) follows Condition 2,
then the solution (u, p) satisfies that u ∈ W 2

β1
(S1
δ )2 ⊂ C0(Sδ/2)2 and u(A1) = 0. However, if Condition

2 is violated, then u is still continuous but not necessarily vanish at A1 and thus it is possible that
u,u 6∈ W 2

β1
(S1
δ )2. Similarly, the auxiliary Stokes problem’s solution (rk∂kru, r

k∂kr p) might not exhibit

W 2
β1

(S1
δ
2

)2 ×W 1
β1

(S1
δ
2

) regularity. Thus we could not evaluate higher order derivatives of u by calculating

W 2
β1

(S1
δ
2

)-norm.
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Therefore, if we follow the route in this thesis, [16] and [17], we must enforce Condition 2 on the
problem. On the other hand, for the study of Stokes or stationary incompressible NSE in a polygon with
general boundary conditions, the Kondrat’ev space W 2

β (Sδ) with 0 < β < 1 is not large enough to contain

the solution(However, the space Blβ(Ω) describing the analyticity might still be applicable). To study the
analytic regularity to these problems, a larger weighted Sobolev space should be constructed.

The good news is that the aforementioned flaw only affects equations with vector solutions. For a
scalar equation, we do not need to take the polar component of the solution and thus do not face the above
problem. As an illustration, we can use the method described in this thesis to investigate the analytic
regularity of the solution to the following equation with specified boundary conditions in a polygon

L(u) + g(u) = f,

where L(·) is an elliptic operator and g(·) is a function satisfying particular conditions. The analytic
regularity result for the linearized version, which omits g, is studied using polar coordinates in [4].

10.2 Discussion on Theorem 9.2.1

A central task in the hp-DGFEM discretization for stationary incompressible NSE with zero Dirichlet
boundary condition is to discretize the functional forms (6.2), (3.3) and (3.4).

We remark here that other possible discretization strategies exist. As for (6.2), this thesis uses
the so-called symmetric interior penalty discretization of the Laplace operator. A list of other possible
discretizations can be found in [3]. [38] justifies, for some of those discretizations in [3], the stability and
consistency properties. With minor modifications to the proof of Theorem 9.2.1, those discretizations
shall lead to exponential convergence as well.

A future generalization for this theorem (or the discretization) is to consider NSE with mixed boundary
conditions and apply hp-DGFEM on (3.5) instead of (6.3). For this aim, we need to consider discretizing
(3.2). Possible strategies for this could be found in [18, 45] treating the elastic problem, which is related
to the Stokes problem/NSE. Related discrete functional analysis tools are already developed in these
references. We expect that with the regularity result in Part 1 and with mesh design similar to that
presented in this thesis, hp-DGFEM will achieve exponential convergence as well. Details for that shall
be completed in a future paper.



Appendix A

Eigenvalues and eigenvectors of the
operator pencil [L̂, B̂]

A.1 Determination of the eigenvalues and eigenvectors

Consider the following homogeneous problem:

L̂(D,λ)(û, p̂) = (0, 0) on (0, ω)

B̂(D,λ)(û, p̂) = (0, 0, 0) on {0, ω}
(A.1)

We recall that ∂θ = iD and the operators are defined as:

L̂(D,λ) =

νD2 + 2ν(1 + λ2) ν(3 + iλ)iD −(1 + iλ)
−ν(3− iλ)iD 2νD2 + ν(1 + λ2) iD

1− iλ iD 0


and

B̂(D,λ)|VD = A1 =

(
1 0 0
0 1 0

)
B̂(D,λ)|VN = A2 =

(
νiD −ν(1 + iλ) 0
2ν 2νiD −1

)
B̂(D,λ)|VG = A3 =

(
0 1 0
iD −(1 + iλ) 0

)
We firstly study the fundamental solutions. Since [L̂, B̂] has only constant coefficients, all fundamental
solutions can be written in the form exp(bθ)E where b is a constant and E is a vector, b and E satisfy
L̂(−ib, λ)E = 0. As det(L̂(−ib, λ)) = ν(λ2 +(1− ib)2)(λ2 +(−1− ib)2), we have b1 = −i−λ, b2 = −i+λ,
b3 = i− λ, b4 = i+ λ. If λ 6= 0,±i, then for b1 we have

L̂(−ib1, λ) =

 ν(λ+ i)(λ− 3i) −iν(λ− 3i)(λ+ i) −i(λ− i)
−iν(λ+ 3i)(λ+ i) −ν(λ+ i)(λ+ 3i) −(λ+ i)
−i(λ+ i) −(λ+ i) 0


Therefore, the fundamental solution corresponding to b1 is exp(b1θ)E1 where E1 = (1,−i, 0)t. Similarly,
we have

L̂(−ib2, λ) =

 ν(λ− i)(λ+ 3i) iν(λ− 3i)(λ− i) −i(λ− i)
iν(λ+ 3i)(λ− i) −ν(λ− i)(λ− 3i) λ− i
−i(λ+ i) λ− i 0


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and we obtain for b2 the fundamental solution exp(b2θ)E2 where E2 = (i(λ − i),−(λ + i), 4iνλ)t. Fur-
thermore,

L̂(−ib3, λ) =

 ν(λ− i)(λ+ 3i) −iν(λ− 3i)(λ− i) −i(λ− i)
−iν(λ+ 3i)(λ− i) −ν(λ− i)(λ− 3i) −(λ− i)
−i(λ+ i) −(λ− i) 0


and exp(b3θ)E3 with E3 = (i(λ− i), λ+ i, 4iνλ)t is a fundamental solution for b3. Finally.

L̂(−ib4, λ) =

 ν(λ+ i)(λ− 3i) iν(λ− 3i)(λ+ i) −i(λ− i)
iν(λ+ 3i)(λ+ i) −ν(λ+ i)(λ+ 3i) λ+ i
−i(λ+ i) λ+ i 0


and the fundamental solution for b4 is exp(b4θ)E4 where E4 = (1, i, 0)t. Combine all above and we have
that the solution of the homogeneous problem has the form

(û, p̂) =

4∑
j=1

Bj exp(bjθ)Ej . (A.2)

If λ = 0, then b1 = b2 = −i with the eigenvector E0
1 = (1,−i, 0)t and b3 = b4 = i with the eigenvector

E0
3 = (1, i, 0)t. Therefore the solution can always be represented as

(û, p̂) =

4∑
j=1

Bj exp(bjθ)E
0
j . (A.3)

Here E0
2 = (iθ − 1, θ,−2ν)t and E0

4 = (−iθ − 1, θ,−2ν)t.
If λ = i, then b1 = −2i with the eigenvector Ei1 = (1,−i, 0)t, b2 = b3 = 0 with the eigenvectors

Ei2 = (0, 2i,−4ν)t and Ei3 = (0,−2i,−4ν)t and b4 = 2i with the eigenvector Ei4 = (1, i, 0)t and the
solution has the following form:

(û, p̂) =

4∑
j=1

Bj exp(bjθ)E
i
j . (A.4)

And if λ = −i, then b1 = b4 = 0 with the eigenvectors E−i1 = (1, i, 0)t, E−i4 = (1,−i, 0)t, b2 = −2i with
the eigenvectors E−i2 = (2, 0, 4ν)t and b3 = 2i with the eigenvector E−i4 = (2, 0, 4ν)t and the solution has
the following form:

(û, p̂) =

4∑
j=1

Bj exp(bjθ)E
−i
j . (A.5)

The vector B = (B1, B2, B3, B4)t could be determined according to the boundary conditions.

Lemma A.1.1. Set α = −iλ. If {{0}, {ω}} ⊂ VD, then the solution λ to the equation

α2 sin2(ω) = sin2(αω), α 6= 0 (A.6)

are the eigenvalues of the operator pencil [L̂, B̂].
If {{0}} ⊂ VD, {{ω}} ⊂ VN , then the solution λ to the equation

α2 sin2(ω) = cos2(αω) (A.7)

are the eigenvalues of the operator pencil.
If {{0}} ⊂ VD, {{ω}} ⊂ VG, then the solution λ to the equation

2α2 sinω cosω = sin(2αω), α 6= 0 (A.8)
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are the eigenvalues of the operator pencil.
If {{0}, {ω}} ⊂ VN , then the solution λ to the equation

α2 sin2(ω) = sin2(αω) (A.9)

are the eigenvalues of the operator pencil. Moreover, the eigenvectors corresponding to λ = 0 are
(cos θ,− sin θ, 0)t, (sin θ, cos θ, 0)t.

If {{0}} ⊂ VG, {{ω}} ⊂ VN , then the solution λ to the equation

2α2 sinω cosω = − sin(2αω) (A.10)

are the eigenvalues of the operator pencil. Moreover, the eigenvector corresponding to λ = 0 is (cos θ,− sin θ, 0)t.
If {{0}, {ω}} ⊂ VG, then the solution λ to the equation

sin((1 + α)ω) sin((1− α)ω) = 0 (A.11)

are the eigenvalues of the operator pencil (Therefore, 0 is not an eigenvalue as by our assumption on the
domain ω 6= π).

Proof. Let A(α) be defined as in the proof of Lemma 5.2.5, then it is easy to check, from [32, Section
3.2], that A(−iλ) = [L̂(D,λ), B̂(D,λ)]. The assertion follows now from [33] and [32, Example 3.2].
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