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Abstract

This thesis studies the regularity property of the stationary incompressible Navier-Stokes equation (NSE)
with various homogeneous boundary conditions in a polygonal domain 2 C R? and examines the per-
formance of mixed hp-discontinuous Galerkin finite element method (hp-DGFEM) on the equation with
only Dirichlet boundary condition. We will show that given sufficiently small and weighted analytic data
there will be a unique and weighted analytic solution to the equation. Also, we justify that with the ana-
lyticity of the solution and with geometrically refined meshes following corresponding linearly increasing
polynomial orders, hp-DGFEM leads to exponential convergence of the numerical solution.



Freedom does not consist in any dreamt-of independence from natural laws, but in the knowledge of these laws,
and in the possibility this gives of systematically making them work towards definite ends.
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Chapter 1

Introduction

This chapter serves as an introduction to the topics discussed after and to the structure of the thesis.

1.1 The stationary incompressible Navier-Stokes equation, an-
alytic regularity

In Part 1(Chapter 2-5) of this thesis, we study the following stationary incompressible Navier-Stokes
equation (NSE) in a 2-dimensional polygon domain 2 with homogeneous Dirichlet, slip and(or) Neumann
boundary conditions (details of those conditions will be introduced in Chapter 3):

—vAu+ (u-Vu+Vp=Ff in Q,
V-u=0 in 0Q.

In this thesis we always assume that Dirichlet condition is on at least one side of the boundary 9f2. This
equation is frequently used in the modelling of viscous, incompressible flow.

The following Stokes equation, which can be considered as a linearized version of stationary NSE, is
also of interest:

—vAu+Vp=f in Q,
V-u=0 in 09.

One of the central topics in this thesis is to investigate on the (analytic) regularity of the solution to the
stationary incompressible NSE in a polygon given analytic data. This is very important in the study of
numerical methods (e.g. hp-DGFEM which will be studied later in this thesis) to this equation as higher
regularity of the solution usually implies higher order of convergence with carefully chosen numerical
methods and in the case of analytic regularity, exponential rate of convergence (See, for example, [15]).
A systematic treatment of the NSE or Stokes problem could be found in [27, 43, 14, 12].

For the regularity of the solution to the stationary incompressible NSE or the Stokes equation, if the
underlying domain 2 has smooth boundary 92, then we have classical interior and boundary regularity-
shift results for both equations, see [12, Chapter IV and IX] and the references therein. Moreover,
analyticity in interior area or regular part of boundaries for both equations are possible given analytic
data, see [31, Chapter 6]. We also refer to [29, 20, 13] for analyticity of the solution to the stationary
incompressible NSE.

Things become more complicated when we deal with the polygonal domain ) as standard regularity
results of elliptic equations do not work even if data is regular (f € L?*(Q2)? does not imply (u,p) €
H?(Q)% x H'(Q2)) and the key reason for that is about the corner singularities. This issue triggered the
study about the regularity theory of incompressible stationary NSE or Stokes equations in polygons (or
polyhedral domains in 3-dimensional case) over the past several decades.

1



2 CHAPTER 1. INTRODUCTION

Some studies were conducted in the standard Sobolev spaces: In [22] it was shown that for the Stokes
equation in convex polygon with only zero Dirichlet boundary condition (u,p) € H?(Q)? x H(2) can
be ensured given f€ L?(Q)2. [8] studies the H®-regularity of the solution to Stokes equation with zero
Dirichlet boundary condition where s is possibly a non-integer. See also [25] for the regularity results of
the Stokes equation or NSE in 3-dimension.

For elliptic problems, the singularities near the corner usually contain power-logarithm form[24].
Therefore, it is easy to understand that a powerful tool to remedy the singularities is the weighted
Sobolev spaces, which weights the derivatives with powers of the distance to the singular points. The
Kondrat’ev spaces WZ,“(Q)7 introduced in the pioneer work [23], are applied to Stokes equation and
stationary incompressible NSE in [33, 32]. For the application of the Kondrat’ev spaces to other elliptic
problems with corner singularities, see [30, 7].

Another type of weighted Sobolev spaces Hg’l(Q), which was introduced in [4], has more flexibility
in weighting derivatives than Kondrat’ev spaces and thus is a better choice for describing the regularity
for elliptic problems. The weighted analytic function spaces Bg () was also defined in this reference
based on H E(Q) These spaces were used to study the stationary Stokes problem in [17] and regularity-

shift theorem as well as analyticity of the solution were obtained using Hg’l(Q) and Bé(Q) here. The
analyticity of the solution to stationary incompressible NSE with zero no-slip boundary condition was
justified recently in [28] using the weighted spaces KF*(Q2) with s > 2, which can be regarded as the
non-Hilbertian version of Blﬂ (). See also [16] for the usage of these spaces in elastic problem and [7] for
general elliptic problems.

In Chapter 2-5, we try to extend the result in [17, 28] to the stationary incompressible NSE with
mixed homogeneous boundary conditions using Hilbertian spaces HEZ(Q) and Blﬂ (©) and Theorem 5.2.1
is the main result for this part.

1.2 The hp-DGFEM method

Part 2 (Chapter 6-9) of this thesis will be dedicated to the numerical analysis of the stationary incom-
pressible NSE using the Ap-DGFEM method.

hp-DGFEM combine h-refinement (reducing the size of specific elements towards singular points of
the analytic solution), p-refinement (increasing the order of the polynomial used for approximation), and
discontinuous approximation functions. Here the first two ingredients help to achieve exponential conver-
gence in solving many modelling problems with singularities given that the solution exhibits analyticity
or weighted analyticity (see, for example, [15] for general weighted analytic solutions or [40] for the Stokes
equation in a polygon) while h-refinement or p-refinement alone only leads to algebraic convergence rates
given strong regularity assumption (e.g. (u,p) € H¥(Q)? x H*"1(Q) for k € N>5 in Stokes system).
Moreover, the discontinuous approximation functions admit the possibility to use irregular mesh so that
there are more choices for the mesh design. Therefore, hp-DGFEM is a perfect candidate for the resolu-
tion of the stationary incompressible NSE. Recently, [36] showed that hp-DGFEM achieves exponential
convergence for the stationary incompressible NSE with zero no-slip condition.

In Chapter 6-9, we will study the well-posedness, quasioptimality the the exponential convergence of
the hp-DGFEM discretization proposed in [36] on the stationary incompressible NSE with zero no-slip
condition and Theorem 9.2.1 is the main result.

1.3 Outline of the thesis

In Chapter 2, we set related notations and define some useful function spaces, these notations and spaces
follow mainly from [17, 36]. Chapter 3 studies the existence and uniqueness of the stationary incompress-
ible NSE with mixed homogeneous boundary condition. We mainly follow [33] here. Chapter 4 examines
the strain formulation of the Stokes equation in a sector. We extend the existence, uniqueness and regu-
larity results in [17] to three possible boundary conditions. This chapter will serve as a preparation for
the next chapter on the regularity analysis of NSE in a sector. Chapter 5 dedicates to the proof of the
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weighted analyticity of the solution. Chapter 6 introduces a hp-DGFEM discretization to the stationary
incompressible NSE with zero Dirichlet boundary condition. In Chapter 7 we present the proof of the
existence and uniqueness of the numerical solution to the discretization proposed before. In Chapter 8
we derive abstract error analysis for piecewise analytic solutions. Chapter 9 justifies that the hp-DGFEM
discretization proposed before achieves exponential convergence in solving NSE. And the final chapter,
Chapter 10, will serve as a conclusion to this thesis, it also contains some further discussion to the main
results.



Part 1

Analytic regularity of the solution



Chapter 2

Preliminaries

2.1 Notations

We firstly introduce some notations that will be used below. The notations here mainly follow from
[36]. We denote by N the set of all nonnegative integers and N>, the set of all integers that are larger
than or equal to k. For v,w: Q@ C R? —» R? and o,7 : @ C R? — R**2, we write (Vv);; = 9;u;,
(V-0); = 0oy + 02049, 0 : T = 21‘2,]‘:1 047 and (v® w);; = v;w;. Also, v- w corresponds to inner
product. It is easy to establish the identity (cw) v = Zij:l vioi;wj =0 : (v@w). For v: Q C R? - R3,
we define (v)12 1= (v1, v2)! and (v)3 := 3. For a multi-index o € N?, & = (a1, az), we write || = a1 +aq,
D = 031032 and 7% = 07105 and for any n € Ny we denote by ., <, A(e) the sum of all A(a)
satisfying || <mn. For n € N, 8 = (p1, 52, -+ ,Bn) € R™ and v € R, we allow componentwise operation
and we write v > (<)8 if v > (<)B;. We denote the Euclidean distance between sets and (or) points by
d(-,-) and the diameter of a set A by diam(A). For two quantities A and B, we write A ~ B if there
exists a constant C' > 0 which is independent of discretization parameters such that CA < B < C~1A.
For any set V, |V| describes the cardinal number of V.

2.2 Underlying domain, function spaces

Let 2 be a polygon with n vertices A; and n open edges I';, those vertices and edges are placed in
clockwise order with respect to the indices. For 1 < i < n, I'; connects A; and A;;1;. We always
understand the index 4 modulo n in this thesis. Let D, G and N be disjoint subsets of {1,2,--- ,n} such
that DUGUN = {1,2,--- ,n}. We further assume throughout this thesis that D # (. Set I'p = U;eply,
I'g = Ujegl; and I'y = Ujen Ly, then T'p, T'g and 'y are either empty or a finite union of one or several
I'; and they together constitute the boundary of Q. Moreover, |I'p| > 0. We denote by w; € (0,27) the
angle at A; and assume that if w; = 7 then the two edges I';_; and I'; cannot be in the same set I'p, I'g
or I'y. Furthermore, we do not allow, for any i € N>y, that both {¢,i + 1} C N UG and {i,i +1} ¢ G
hold.
We define the weight function

Oppp = [ [ (ri(a)) P,
i=1
with r;(z) := d(z, A;).

Given a domain U C 2 with Lipschitz boundary, we denote by W™P(U) for n € N and p > 1 the usual
Sobolev space (if p = 2 we may write H"(U) alternatively) and by C™7(U) for n € N and u € [0, 1] the
Holder space. We write f € C*(U)(HL,(U)) if flg € C™V(U)(H(U), respectively) for any compact
subset U C U.



6 CHAPTER 2. PRELIMINARIES
We now define some function spaces to describe the singularities near corners. These spaces were
introduced in [23, 4, 16, 17].

Definition 2.2.1 (Function spaces on a finite or infinite sector). For a sector S5 := {(r,6) : 0 < r <
3,0 < 6 < w} where § < 0o or § = oo and for two integers k > [ > 0, we denote by Hg’l(Sg) the weighted
Sobolev spaces equipped with norm

k
1y s,y = lulnmsgsy + 3 Il Dl s,
e >1
and we denote by %k’l(Sg) the weighted Sobolev spaces equipped with the norm
k
1P sy = NelBagsyy + 3 1P+ 9%,
o] >

In above norms the term ||u||le,1(Q) shall be omitted if I = 0.

We denote by Wg(&;) the weighted Sobolev spaces equipped with the following norm:
||UH%/V/’;(S(;) = Z [ [T
la| <k

Finally, given two fixed constants C,d > 1, we also define the countably normed spaces Bg(Q, C,d) by

BY(Ss,C,d) = {u € N HY' (S5) ¢ [IrP 7D Lo,y < CdF (k= 1)) for |a] = k > 1}
The spaces %lﬁ (Ss,C, d) are defined similarly as

By (S5, C,d) = {u € M1, (S5) + P T 2% pas,y < Cd¥! (K — 1)) for |of =k > 1}
We usually omit C, d if they are not emphasized.

Definition 2.2.2 (Function spaces on an infinite strip). For a strip D = {(¢,0) : t € R,0 < 6 < w}, a
nonnegative integer k and any h > 0, we define Hf¥(D) := {u € L*(D), ||u||H;§(D) < 400} with the norm
defined by '

a2y = 3 / €2 902 dtdf.
laj<k P

Definition 2.2.3 (Function spaces on a polygon). Given a polygon £ C R? with finite edges. For two
integers [ > k > 0, we denote by Hgl(Q) the weighted Sobolev spaces equipped with norm

k

1y = lulli-s oy + D 195410110 ulE2(e)
|| >1

where the term HUH%’Z*I(Q) shall be omitted if I = 0. We write also Lg(2) for HgO(Q)
For two fixed constants C,d > 1, we also define the countably normed spaces BlB(Q, C,d) by

B4(Q,C.d) == {u € Nz HY'(Q) ¢ [|@p 46— Dul| 2y < Cd¥(k — 1)) for |o| =k > 1}

C, d may be omitted if the dependence on them is not considered.
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Definition 2.2.4 (Trace spaces). For a sector S5 := {(r,0) : 0 < r < 6,0 < § < w} where § < oo or
§ = oo and for an edge I' := {r = 0 or w}, we define the following trace spaces:

190,54 g, = i, 16w s

We state here two useful lemmas about the relations between those function spaces defined above.

Lemma 2.2.5. For [ =0,1,2 and k € N, if g€ (0,1), then
u € Hy'(Ss) <= u € ;' (S5),u € By(S5) <= u € Bj(Ss).

This Lemma is shown in the proof of [4, Theorem 1.1, Theorem 2.1].

Lemma 2.2.6. o W5(Ss) = Hé’l(S(;).
LIRS Hé’z(S(;) and v(0) = 0 imply v € W;(Ss).
o W5(Ss) C HE’Q(S(;) C C%(S5) where § < +oo.

For proof see [4, Lemma A.2] and [5, Lemma 2.1]



Chapter 3

Weak formulation of stationary
incompressible NSE in ()

This chapter is mainly based on [33].

3.1 The incompressible NSE with homogeneous boundary con-
ditions

We consider the following problem:

—vAu+ (u-V)u+Vp=f in €,

V-u= in Q,
u=20 on I'p, (3.1)
u-n=>0
{ (o(up)n) - t=0 onfe.
o(u,p)n=10 on I'y.

Here v is the kinematic velocity, u is the velocity field, p is the pressure, fis the source term, n is the
normal vector and t is the tangential vector on the boundary, pointing in clockwise tangential direction.
The stress tensor of the fluid is defined as

a(u,p) = —pl +v(Vu+ (Vu)').

Homogeneous Dirichlet condition, slip condition and Neumann boundary condition are prescribed corre-
spondingly on I'p, I'¢ and I'y. For other possible boundary conditions, see [35, Chapter 10.1.1].

Remark 3.1.1 (Remark on boundary conditions). Our setting on the domain Q and D,G, N in Chapter
2 implies that the following conditions on the boundary conditions of the NSE must hold:

e Condition 1: Dirichlet boundary condition is on at least one edge.

e Condition 2: Each corner A; must have at least one touching edge with Dirichlet
boundary condition or have both touching edges with slip boundary condition.

It is easy to see that if N = 0, which means that we have only Dirichlet boundary condition and Slip
boundary condition on 0N), then Condition 2 is satisfied.

8



3.1. THE INCOMPRESSIBLE NSE WITH HOMOGENEOUS BOUNDARY CONDITIONS 9

The following spaces are needed for the analysis.
W:={uec H(Q)?:u=00nTp and u-n=0on I'g}, equipped with H'(€2)-norm.

Ly={qe€ L2(Q),/ q = 0}, equipped with L?(Q)-norm.
Q

We introduce the variational problem of (3.1). To this end, define the forms:

Alw ) = ¥ /Q (Vu+ (Vo)) : (Vo+ (Vo)) da, (3.2)
B(u,p) = — /QpV -y da, (3.3)
O(w; u,v) = /Q((w V)u) - v dw. (3.4)

The variational problem now reads: Find (u,p) € W x L?() such that for all v€ W and ¢ € L?(),

A(u, v) + O(w; u, v)+B(v,p) = Qf- v dx, (3.5)

B(u,q) = 0.
Here we assume that f& W* is given.
Lemma 3.1.2. W s a closed subspace of H'(Q)2.

Proof. It is easy to show that W is a linear subspace of H'(Q)2. To prove that W is closed, we select a
sequence {u;}; C W such that u; — win H' norm. Then by the property of the trace operator, there
exists a constant C' such that

lw-n— i nf2ry) < llu—wuill2@p) < Cllu— g o) =0,
and
lw— wil|2(rg) < Cllu—wif 51 @) — 0.
Asu; e W, u=0onTp and u-n=0on ' and thus u € W. O]

Before we state the result about the existence and uniqueness of the weak solution to (3.5), we list
the following inequalities which are useful for the proof.
There exists a positive constant Ceper = Ceper (V) such that for any u e W

A(u,u) > Ccoer”'”’”%{l((z)- (3.6)

This is the so-called Korn’s inequality. For proof see [44, Theorem 2].
Another useful result is about the inf-sup property of the form B(-,-): If |I'x| = 0, then there exists
a constant 7 that

B
inf  sup |B(v.9)l > . (3.7)
0#q€Lo g£tveW ||U||H1(Q) ||QHL2(Q)

In the case that [I'y| > 0, then there exists a constant 7 that
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B
O;éqeL"‘(Q) ozvew |V e llall 2 —

(3.8)

This result is stated in [33, Section 3].
Now we state and prove the theorem about the existence of the weak solution. This result is an
extension to [33, Theorem 3.2]

2
Theorem 3.1.3. If |flw- = SUDPgLyew H‘vulf\nfll < 4%"” (Here Coony is the constant appeared in
H

the inequality O(w;u,v) < Ceono || Wl g1 (o)l wllar (@) |Vl 51 (), then there exists a solution (u,p) to the
variational problem (3.5).

Moreover, if |T'n| > 0, then u is uniquely determined in My = {v € W, ||v|lg) < (5 —

V3 Gepne ||f||w) Lo} gnd p € L*(Q) associated with that w is uniquely determined. Otherwise,

Ceonw

u is umquely determined in W, u € My := {v € W, [|v|| 1) < ”fHW } and p is uniquely determined
in Lo(9).

The condition

2

CCOGT’
I fllw- < 1Coprs (3.9)

is the small data assumption.

Proof. Consider the following problem which is equivalent to (3.5): Given f € W*, find a solution
ueV:={veW:V.v=0} such that

Alwv) = [ 0= O(uwuv).

for any v € V.
We firstly consider the following auxiliary problem: Given a fixed uy € V, find u € W such that

A(u, v) :/f~v70(u0;u0,v), (3.10)

Q
for any v € V. By (3.6) A(:,-) is coercive on V and clearly it is also continuous with respect to both
parameters and fQ f-v—0(up; up, v) is a bounded linear functional for v € V. Therefore, by Lax-Milgram

Lemma we could show that there exists a unique solution w € V to (3.10) and we could define a mapping
U:V = V,uy— u If ug € M, then

Cover 2y < Al w) < | / £+l + 10 (uo; w0, )
Q

coer COTLU

1 1 con'u COST
< | flwe e @) + 1ol o 1l o) < (Ufilwe + (5 = \/4 — o Mlw ) 5= o

coer ('om)

1 1 CO’I’L'U COCT
= Ccoe'r(§ - \/4 - 02 ||fHW*) )HuHHl(Q)’

so u € M and ¥ always maps M into M.
Moreover, we set u; € M and M > @&; = U(w;) for ¢ = 1,2. Then we have, for i = 1,2,

Al iy — i1p) = / £ (i — i) — Ous; g, s — ).
Q
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Therefore,

. . 1 . L . L . A .
[ty — U2||§{1(Q) < T‘A(ul — U, Uy — Up)| < | ATy, Uy — Ug) — A2, Uy — )|

coer

| — O(’U,l, U, ’le — ﬁg) + O('UQ, Uz, ’le — ﬁ2)|
coer

1 . . . R
< [O(ur; wr — ug, Wy — 2)| + [O(u1 — ug; up, Uy — o)

coer coer
o .
< G = wallm ) - (ol o) + ol o) - 19 = 21 o)

coer

1 1 Conv CoeT (jconv A~ ~
<2(; - \/4 “Cz IAlw-) & . [ur — w2l (o) - |t — Gl (o)

=(1- \/1 - CQCOM IAlw) - |ur — w2l gy - (|81 — el g1 (q)-

coer

It is clear now that V¥ is a contraction mapping in M;. With the Banach fixed point theorem we know
the existence and uniqueness of solution w in M;.

If T | > 0, then the existence and uniqueness of p associated with u obtained above follow from the
Lion-Lax-Milgram theorem and from (3.8).

Now assume that [['x| = 0. Then for any solution (u,p) € V x L?(Q) to (3.5), we have u-n =0 on
0. By [14, Chapter IV, Lemma 2.2], O(u; u, u) = 0. Therefore,

Ceoer|| 3 () < Alu,uw) < I/Qf- ul +10(w w, w)| < [flw-l[ullmr @) < [Ifllw-lullm @),

which implies that any solution (u,p) € V x L?(Q) must satisfy that

”-ﬂ‘w* 1 1 Ceonv Ceoer
ull (o) < Co =G -\1- o2 Hﬂ|w*)

coer COTLU

Therefore we must have u € My C M; and thus u is uniquely determined. The existence and uniqueness
of p in Lo(§2) then follow from the Lion-Lax-Milgram theorem and from (3.7). O

Remark 3.1.4. We assume before that |T'p| > 0 throughout this thesis as the cases that no Dirichlet
boundary condition is applied on boundary are rarely seen in physical application. However, we can still
study these cases mathematically and rework on the existence, uniqueness and reqularity results of the
solution to NSE. To examine the existence and uniqueness, we shall introduce the following spaces

R = span{(1,0)",(0,1)!, (—x2,21)'},

Woz{vGW:/v~w:0 Ywe WNR}.
Q

Note that A(u,v) = B(v,q) = 0 for any (u,v,q) € H(Q)?> x R x L*(Q). If T'p = 0, then (3.6) does
not hold for functions in W. But it still holds for function space Wq[44, Theorem 2]. Therefore, we can
prove the existence and uniqueness in a similar way as is in the proof of Theorem 3.1.3. Moreover, it is
easy to see later that the weighted analytic regularity established in Theorem 5.2.1 is still correct for the
case that T'p = 0(Due to 3.1.1, here we must have 'y = 0).

Remark 3.1.5. In this thesis, no compatibility condition is required on the data f. On the contrary, it
is worthy mentioning that compatibility conditions are usually required for the Stokes problem.
For the following strain formulation of the Stokes problem in a polygon

*vg[uvp]:fa
V-u=0
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with the same boundary conditions as (5.1), the weak formulation then reads: Find (u,p) € W x L?({2)
such that for all v W and q € L*(Q),
A(u, v)+B(v,p) = | f-vdz,
Q
B(u,q) =0.

From the first equation here we obtain that for any v€ W N R,

frvdz=0.
Q

This is the compatibility condition on f for the Stokes problem.

Our general strategy to study the regularity of the solution of (3.1) is to transform (3.1) into a
linearized Stokes problem by moving the nonlinear term to the right-hand side and then analyze the
regularity of the solution to this new Stokes problem. Namely, we will often study the following alternative
problem:

—vAu+Vp=f—(u-V)u in €,
V-u=0 in Q,
u=20 on I'p, (3.11)
u-n=>0
{ (o(up)-n)-t=0 onfe.
o(u,p) - n=20 on I'y.

To analyze the regularity of the solution to (3.11), we apply the technique used in [17]. The first step
is to study the Stokes problem in a sector.



Chapter 4

Stokes problem in the sector S

This chapter mainly follows Section 4 in [17].

Given the underlying domain as a sector Seo = {(r,0) : 0 < r < 400,0 < 6 < w}, we denote by
I'ps..,las,, and 'y s, three subsets of the collection of edges of So, on which Dirichlet condition, slip
boundary condition or Neumann condition are prescribed. We study the following Stokes problem in a
sector, written in components.

—1(207, s + Oy (Oy 1 + D, un)) + Do, = fi,
—v(202 Uz + 0y, (Opyur + Opyu2)) + Ouyp = fo, (4.1)
8I1U1 + 8x2u2 = h,

with three possible boundary conditions on two edges § = 0 and 6 = w:
e ur, =9 =1(90,97)". (Dirichlet condition)
e glu,pln|ry . = 9" = (g5, 91)". (Neumann boundary condition)

_ 0
U n‘rc,s(x, =93

(c[u,p]n) - tr, s = g3. (Slip boundary condition)
Remark 4.0.1. (4.1) is equivalent to the strain formulation of the Stokes problem:

-V Q[u’p] =1,

4.2
V-u=h. (42)
If h =0, (4.2) is equivalent to:
—vAu+ Vp =,
vAutVp =1 (4.3)
V-u=0.

Remark 4.0.2. If we assume h = 0, then with this incompressiblity the Stokes equation can be equipped
with an alternative Neumann boundary condition:

0
—pn + 21/—u =g
an

13
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This is due to different weak formulations and the Green formula. Also, these two conditions are equivalent
with the incompressibility: We write m = (n1,n2)" and note that
alu,p]-n=—pn+v(Vu+ (Vu)') n
= —pn + v (20, u1n1 + (Ozu2 + Oyur)ng, 20y usns + (Ozus + ayul)nl)t
= —pn+ v(20,uiny, 28yuQn2)t
AL
=—pn+2v—.
P on

This boundary condition is studied in [26].

4.1 Polar-coordinate form in the sector S

We introduce the polar coordinates (r,#) and the polar components @ = (u,,ug)t, f= (fr, fo)! defined
by:
cos  sinf

w=Au= < —sinf cosf )u,

and
f=Af.
Lemma 4.1.1 ([16], Corollary 4.2). For finite or infinite sector S5 and 0 < 8 <1, uw € W3(S5)? <=
uc WE(S(s)Q.
Lemma 4.1.2. Let 3 € (0,1), 6 € (0,+00). Then fe Bj(S5)* <= fe #5(Ss)*.
Proof. Lemma, 2.2.5 implies that fe Bg(55)2 — fe %’2(55)2.
It suffices to show that fe £5(S;5)* <= fe B(Ss)>. We prove that f e Bj(Ss)* = fe £5(S;)°

and the reverse direction could be proved by a similar argument. We have that there exists Ay > 1 such
that, for all || > 1,

Ir* 22 £yl Lacs,)

(e} [e5]
Q2 i o a1 N2 —] Q2 ) . e} a1 N2 —7]
SZ( ->II8§ €08 0] e 5 [P HE 021 05 Jf1|L2<sé>+Z< j)nazsmenmsw 89010827 | 12
j=0

J =

a2
<245 a1y A7 (O‘?> < 2(240)1all.

— J

=0
The estimate for fy follows by the same argument.

O

Lemma 4.1.3 ([16], Lemma 5.1). Let § € (0,1), § € (0,400) and w(0) = 0. Then u € %3(Ss)* <
[TAS @2(5’5)2.

We remark here that %3(S5) C #5%(Ss) = Hy*(S5) C C°(S5) by Definition 2.2.1, Lemma 2.2.6 and
Lemma 2.2.5. Therefore the value of u € %3(S5)* at the corner is well-defined.
With polar coordinates and polar components of u we rewrite (4.1) as:

— 1

2 _
—v(Au, — ﬁur — 77289“9 + 0,(V @) + 0rp = fr,

— 1 2 1. — 1
—v(Aug — —up + —0gu, + ~0p(V - W) + ~0gp = fo, (4.4)
72 72 r r

Ay + Yy + 1 10ug = h.
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where A == 92 +r710, + r=20%, V- u := Oyu, + r 'u, + r"10puy and the three possible boundary
conditions are:

e Ulr, . =(9%,99)" =9’ (Dirichlet condition)

-1 -1
o+ ( VYp f;g;j%:se +7‘ur)”t)60 ) Irvs. = (9t,95)" =g". (Neumann boundary condition)

iUQ _ 0 1INt _ =2 . o, .
° < W(Dyup + %89% B %UG) ) |Fc,soo = (g5,95)" = g°. (Slip boundary condition)

To justify the polar-coordinate form of the Stokes equation shown above, we note that by elementary

calculus,

Oy, = 0800, — gag’

Oy, = sin 00, + cos 089’

2. = cos? 90 + 2 cosrezsmﬂae . sirf 93r 2 cosfsinGare sin? 969,

632 _ sin® 002 — 2COST92Sin080 N COiQ GaT n 2c0sfsin98m 4 cos 989,

By, = COSBsin 982 n sin? 0 r—zcos2 959 n cos? 6 ; sin? 93r9 B sin H:OS 98,« B sin igos 633.

Therefore we rewrite (4.1) as

. .2 . i 2 —_— .
—v((cos? 00? + QCOST%SIHQ% + 09, — QCOstmgare + %5 983 + A)(cos Ou,. — sin Ouy)
. G2 2 29 o2 . . " . .
+(COS@S]H 933 4 sin QTQCOb 939 4 cos 6 —sin Oare __sin 9Tc0598r __ sin igos@ag)(snl gur + cos 911,9))

T

+(cos 00, — %ae)p

.2 i 2 ~ 2 o s
—V((Sln 983 _ QZCOST%SII;eae 4 Cos;2 Gar _’2_ 2005$sm98r9 + co:.2 Oag + A)(smﬁur &+ cos GUQ)
+(cos€sin 983 4 Sin 9;;:05 989 4 cos 9:sm 987"9 __ sin QTCOSOaT _ smigos@ag)(cos euT — sin 6"11,9))
+(sin 00, + <229y)p

=A"'f
(4.5)
and
sin @ . . .
(cos 00, — 89)(005 Ou, — sinBug) + ( )(sin Qu, + cos Bug) = h. (4.6)
(4.5) is equivalent to
_V((QCOSQ(C)E smf)a 4 co<982 2c?s06 3si‘n9(c) 2?;9)”7’
+(_Sineaz co;@a 257.111082 sir;@a 3(:0598 4 bm@)ug
+(cos 00, — M@g _
( ) =A"'f (4.7)

((28111982 cos@a +51n089 2511198 +300508 2bi§0)ur
(COS 983 smeTa + 2cos(982 coiaaT 35;;1080 o %)’U/g)
(sm 00, + <220)p

The first and the second equations of (4.4) will then be obtained by multiplying both sides of (4.7) by A
and the third equation of (4.4) is clearly equivalent to (4.6).
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Now we check the polar-component form of the boundary conditions. Without loss of generality we
only consider the edge § = w, then m = (—sinw,cosw)? and t = (cosw,sinw)?. The polar-component
form of Dirichlet boundary condition is straightforward to be obtained. To transform Neumann boundary
condition to polar-component form, we write

=

2(cos 00, — #69)(008, Ou, — sin Ouyg)

[ —psinf
ol sl = (1
cos 6

(sin 00, + <2%0p)(cos Ou, — sin Ouyg)

+(cos 00, — =229y)(sin Ou, + cos Oug)
+ v |0:wn

+(cos 00, —

=

2(cos? 00,u, — cos f sin 00,.ug
_ sin 9Tcos 0 80’“7‘ + sirf 0 Uy
. 2
0
_ sn}r g —

p
—psinf

(sin 00, + <229y)(cos Ou, — sin Oug)
- ( pcosf

sin 0 COSG’LLQ)

+v "

2 sin 6 cos 00,u,. + (cos® 0 — sin? 0)0,ug

+ cos? 0;sin2 6 aeur _ 2sin 79”(:03 6 U,
2sinfcos@ _ cos?f—sin? 6
- o (%UQ o (%

$in0 9 (sin Ou, + cos ug)

2(sin 00, + <22 0p)(sin fu,. + cos ug)

2sin 0 cos 09,1, + (cos? § — sin? 0)0rugp
s? 0—sin® @

+CO§ Tiln aeur _
2sin 0 cos 0

o s1nrcos g —

2 sin IZCOS 6 Uy
cos? §—sin? 6

T ua
oy ) 0=w T
2(sin” 00, u, + cos 0 sin 00, ug

sin 6 cos 6 cos? 0
+ s a&“r + s Uy
2
+ Li, 0 Opug — ug)

sin 6 cos 6
o

The polar-component version of Neumann boundary condition can then be derived by multiplying A on
both side of the above equality. Finally, to derive the Slip boundary condition in polar-component form,
we note that condition - n = g9 is equivalent to ug = g3. Also,

(alw, pln) - tlo=.

2(cos 00, — 229y) (cos Ou, — sinug)  (sin 00, + <29y)(cos fu, — sin fuy)
( +(cos 00, — =2€9y)(sin Gu,. + cos Ouy) | W
= (v G=w ) *
(sin 00, + <229y)(cos Ou, — sinfug)  2(sin 09, + <22 9y)(sin fu, + cos Oug) N
+(cos 00, — %89) (sin Ou, + cos Qug)
2(cos? 00, u, — cos 0 sin 00,ug 2sin 0 cos 00,u,. + (cos® 0 — sin? 0)0,ug
__sin 6 cos 089’11, + sin® Qu + cos? f—sin? 089’11, _ 2siné COSQU
T T T T

B (V _ sir‘;-2 589u9 _ sin6 ?02 0“9) _ 2sin 2205 089u6 _ cos? 0;Tsin2 ng | n) .
= o .t

25sin A cos 9,u, + (cos? § — sin” 0)0,ug 2(sin? 00,u, + cos O sin AD,ug ¢

+ cos? 0;5in2 0 aeuT _ 2sin (:cos 0 . + sin Grcos 0 aeuT + COiZ 0 Uy

sin 0 cos 6
r

. 2 02
_281n9005060u9 _ cos” f—sin 9”0

2
- - +958 Gpug — up)

This leads to
1 1
((a|u, p]n) - t)]op=w = v(Orug + ;[“)gur - ;ue).

Remark 4.1.4. The symbol "£7 will be omitted in the following, we just need to change the sign of the
boundary value according to the edge chosen.

Remark 4.1.5. We look at the following Laplacian form of Stokes problem in a sector:

*VAul + a”£1p = f17 (48)
—VAUg + Op,p = fo, (4.9)
Oz, u1 + Oyt = h, (4.10)

with three possible boundary conditions on two edges 8 =0 and 0 = w:
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o ur, =9 =1(90.90)". (Dirichlet condition)
e glu,plnlry s =g"' = (95,91)" (Neumann boundary condition)
o u-nlr, =93, (clu,pn) tlrg s = g3. (Slip boundary condition)

We are interested in the polar-component form of this Stokes problem. The polar-component forms of the
boundary conditions are clearly the same as those of (4.1). Now we rewrite (4.8)-(4.10) as

—vA(cos Qu, — sinOug) + (cos 00, — 2Ly )p \ -
( —vA(cos Qu, — sin Oug) + (sin 00, + <29p)p ) — AT f (4.11)
and
(cos 60y — Smea@)(cos Ouy — sin fug) + (si )(sin Qu,. + cos Bug) = h. (4.12)

(4.12) is equivalent to (4.10). Moreover, (4.11) could be rewritten as

_V((COSGaQ 00598 + 005082 2sm98 _ cosﬁ)ur
h L 5 0 )
—(sin 992 + S22y, + 31“95'2 20050, — hll‘e)ue) + (cos 00, — =289,)p

= A"
—V((bin982 sm08 T sm962 2C0$08 _ sme)uT
—(cos 00? + Cowa + 603989 257}“98 - @)ue) + (sin 00, + @&9)}0
Multiply both side by A and we have
—v(0%u, + 18 Uy + 50, — 72 — 20gug) + Oyp _7
—y(aQU9 + 1(9 Uug + 6911,9 39ur) %39}7 -
Therefore, if we define the differential operator Ly 1(,-) as
B —v(02u, + L0pu, + H03u, — 72 — % 0pug) + Orp
Lst,l(ua p) = *V(aQUG + 18 ug + 3316 Tz 5 30“7”) ,1«89p (413)

aur—f—r Yup + 17 89U9

and the boundary operator B(-,-) as

o E(’u’vp)h—‘D,Soo =u.
_ B
® B(u,p)lrys. = < (=p + 2vr=1(Opug + u,))
. u
L4 B(u7p)|FG,Soo = ( y(arug + lgeur - lu9) )

Then the polar-component form of (4.8)-(4.10) could be represented in the following concise form:

zst,l(ua p) = ((?)t? h)t

with boundary conditions

(u’v p)|FD,sOC> = yO

(uv p)|FN,Soo = ?]1'

ox

ox

or]

(u’ p)lrc,sw = (987 g%)t'
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4.2 Parametric boundary value problem on the strip D and the
interval (0, w)

Now we introduce new variable t = log L in (4.4) and set (t, 0) := w(e~t,0), p:= e~'p(et,0), f(t,0) :=
e 2f(e ", 0), h(t,0) = e"'h(e™,0), §'(t,0) = e~g(e~",0) for | = 0,1 and g*(t,0) = (g9(e~",0),e gl (e, 0))".
Let f‘D, I'c and I'y be the image of the variable transformation ¢ = log% applied onI'p 5, I'g,s.. and
I'n.s..- The resulting equation (4.14) is now in the infinite strip D = {(¢,0) : —00 <t < 00,0 < § < w}:

—v(2(07 1y — ) + O} liy — Orplip — 30pile) — (Op + P) = fr,
— (=gl + 30yl + 021 + 20319 — Tig) + Ogp = fo, (4.14)

—Oliy + Uy + Oplip = h.
The three types of boundary conditions now become:
e |z, =g (Dirichlet condition)

. ( V(a&’ﬁ/t + 8tﬂ9 — ’l]g)

b+ 20Dy + i) > lpy = g'. (Neumann boundary condition)

ﬂg R (=0 =1\t _ =2 . L
. ( V(= Byiig + Dyl — Tig) > £ = (92,92)" = g°. (Slip boundary condition)

We finally apply Fourier transform with respect to ¢: for any A = {+in € C, we set [@, p| = Fl@,p] :=
\/% fR e~ [, p] dt. We also set h = F(h) and g = Fg for 1 =0,1,2. The equation now becomes a

parametric two-point boundary problem on I = (0,w):

— (0% — 2(1 + A2 dy — (3+1iN)dptip) — (1 4+ iNp = fr,
—1(20%09 — (1 + A2)dg + (3 — iN)Dgitiy) + Opp = fo, (4.15)
(1 —iN)iy + Bpig = h.

Denote by Vp, Vo and Vi the collection of boundary points corresponding to Dirichlet, Neumann and
slip boundary conditions. The three types of boundary conditions now become:

o iy, = (33,96)" =: §°. (Dirichlet condition)

. ( v(Opity — (1 +iN)ilg) >VN = (

0 A1Vt . 5l .
"+ 20(Dyitg + 1) 1,91)" =: g . (Neumann boundary condition)

tg (A0 ALVE . 22 (Qr: .
o ( V(= Byiig + Doy — Tip) ) lve = (g3, 93)" =: g°. (Slip boundary condition)

We may rewrite (4.15) using operator pencil notation. Denote dy = iD. Then

L(D,N)(wp) = (f;h)  on (0,w),
R 4.16
B(D,N)(i,p) = (8°,4,5") on {0,w} (10
Here
vD? + 2u(1 + \2%) v(3 +i\)iD —(1+1N)
L(D,N) = | —v(B3—i\iD  v2D? +u(1+A?) iD

11— 1D 0
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and

: 100
B(D,/\)|VD:A1:<O | O),

(mD —v(1+iX) 0)’

BD Nl =42 = { 'y, wiD  —1

- 0 1 0
B0 = 4= (15 o 1)

The principal parts Lo(D, A) and Bo(D, \) of those operators are

R vD? 4 2v)\? —vAD —iA
Lo(D,\) = —vAD 2uD? +vA\? D
—iA 1D 0

and

BO(D7>\)|VD = A17

B()(D,)\)|VN _ A~2 _ (l/ZD —VZ)\ 0 ) 7

v 2uiD -1

A e 0 1 0
BO(DvA)|Vc:A3: (lD Y 0)

4.3 Parametric Norms || - HE{‘“(I)

To analyze this boundary value problem and establish a priori estimates for the solution to (4.16), we
introduce norms on I: For any natural number k& and any A € C, we set,

k
ulllZrery = D AP ull3e-i gy
(@)
=0

It is easy to verify that there exists a constant C which is independent of A but depends on & such that

leallZncry + NP ull 2oy < lulllFey < CUlullFey + M lullZar)- (4.17)

4.4 A priori estimate on the entire line R

All results stated in this subsection could be found in [17, Section 4.2], for completeness we give proofs
to all of them. For any ¢g € (0, 5), we set Xy, := {A € C||arg A| < ¢ or |1 —arg A| < ¢o}.
We consider the principal part of the system (4.15) defined on (—oo, +00):

Lo(D, N (w,p) = (f, h) for \ = & +in with fixed 5,  n€R. (4.18)

By using Fourier transform with respect to 6,
A N 1 o0
W&, \) = F(u) = —= —i&0)u(0, \) db,
6.0 = Fu) = o= [ expl—ig0)uas.)

(4.18) is transformed to a parametric linear system

Lo(&, N () = (F, h). (4.19)
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Here,

R vE2 4 202 —vAE —iA
Lo(€,\) = —UXE v€2 £ 20N i
—iA i€ 0

It is easy to check that det(Lo(&, \)) = v(A2 + £2)2 and

¢ €A iA(E2 + \2)
S — X A2 —ivE(E2+A2) | . (4.20)
(/\2 + 52) 7;1/)\(52 + )\2) —il/f(€2 + )\2) 2]/2(52 + )\2)2

(Lo(€, 1) !

Theorem 4.4.1. For arbitrary M\o>0 and for any X satisfying A € 3g,, |A| > Ao and (f,h) € H*2(R)2 x
HF1(R), the following system

has a unique solution (u,p) € H*(R)? x H*"1(R) and we have the following estimate:
1ll ey + WDl Fn=1(ry < AN Fn=2(ry + WA x-1 1)) (4.22)

The constant C' here depends only on Ay, ¢g, k

Proof. For real ¢ and for any A € ¥4 with [A| > Ao > 0, det(Lo) # 0. Therefore (4.19) is uniquely
solvable and due to (4.20) we have, for any k > 2,

(L+ AL+ [EDP82 + (L A+ 6D 213 < C(L+ A+ [6D* 1712 + (1 + |\ + |§|)2k_2|;l|2()« :
4.23

Furthermore, (i, p) = (F)~ (@, p) is the solution of (4.18), and (4.23) gives (4.22). O

Lemma 4.4.2. For any integer k > 2 and for || > Ao > 0 with sufficiently large \g > 0, it holds for
I =R, (0,400),(0,w) that

(LD, A) (@, p) — i0(1)7/\)(’11,15))12”|12r1ﬂ~=—2(1) < C(lalllFpe=1¢ry + MBI T2y,
LD, N) (@, ) = Lo(D, ) (t, 5)) 3l 711y < CUNl 1 gy + DI Fpe-2(p))-
Proof. This follows from the definition of the principal operator IA/O(D7 A). O

Theorem 4.4.3. There exists a constant Ao such that for any X satisfying A € Zg,, |A| > Ao and
(f,h) € H*2(R)2 x H*Y(R), the following system

L(D,N) (@, p) = (f, ) (4.24)
has a unique solution (u,p) € H*(R)? x H*"Y(R) and we have the following estimate:
1l 371y + WDl sy < CUIANEr=2ry + AN (1))- (4.25)

The constant C here depends only on Ao, ¢g, k

Proof. We have det(L(£,\)) = v(A2 + (€ + 1)2)(\ + (£ — 1)2). Therefore, for real € and \ € ¥4, with
IA| > Ao > 0 where )\ is arbitrary, det(L(£,\)) # 0 and thus (4.24) has a unique solution (i, p) €
H*(R)? x H*"1(R). For this pair of solution, by (4.22),

el gy + MBI Ere-1 )
< C(IL(D, N (w, p) = Lo(D, A) (w ) r2ll[Fx-2 gy + (LD, N (w, ) = Lo(D, X) (4, 9)) 3|31 sy
H N2y + B 1 )
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Lemma 4.4.2 yields
el 12k ry + BN Fre-1 @y < CUNF -2y + N s gy + @l sy + B -2 ry)- (4.26)

By definition of the norm ||| - |||Hk (ry» for [A] > Ao with Ag > 2C,

. . I .
a7 gy + 1B -2z < %(‘”u”'?{k(R) 1Bl )

which, with (4.26), lead to the result. O

4.5 A priori estimate on R

We consider the principal system on the half-line:

(4.27)

Firstly we assume that f= 0and h = 0, in this case (4.27) becomes a homogeneous system. Then the
fundamental solutions can be written in the form e?’ E with b satisfying det(Lo(—ib, \)) = v(A\2—b?)? = 0.
If A =0, then b = 0 and all solutions to (4.27) could not be integrable on I. We now assume that
Re A < 0. To obtain solutions which are integrable on I, we should choose b = X\ and then the two
appropriate fundamental solutions are w; = e*?(1,4,0)! and wy = (1 + M\, i\0, 2iv\)*. We seek for
solutions of the form (i, p)" = cywy + cowy.

For the Dirichlet condition Bo(w,p)lo—o = §° = (33, 38)t, we have ¢; = —igy and ¢ = §9 + ig3.
Therefore, for any [ € N
10 w)? < Cexp(20Re M) |A2(1 + 62|72 |§° 2, (4.28)
and
105p]% < C exp(20 Re M) |\21H2| 872 (4.29)

Note that for fixed Ao > 0, A € ¥4, and any m € N1,
/ 0™ exp(20 Re \)df < C,, |\~ L. (4.30)
0

Here the constant C,, depends on Ag.
(4.28), (4.29) with (4.30) imply that for k € N>,

/ 91| AP ”+Z| PAPE1-0 g < O g2 (4.31)

~1

For Neumann boundary condition Bg(ﬂ, Dlo=o = g = (J

7@%)2 we have ¢; = *%g% and ¢ =
ﬁ(ﬁ? +1g1). Therefore,

|0hat)? < Cexp(20 Re M) |A22(1 + 02)A1H) g%, (4.32)

and

|06p|* < Cexp(20Re M)A . (4.33)
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The bounds (4.32), (4.33) and (4.30) give, for Neumann boundary condition,

/ del| N ”+Z| PRnRE10 g < OISt (434)

We finally consider the case for slip boundary condition By(i, p)lo—o = §° = (39, 43)". We have

c1 = —igg and Cy = 2/\11 + 292 Now:
d'u 2 21 2 215112 1 |50)2
lZgrl” s CAF + APO*) (1N 721921 + 1951%) exp(2 Re A0) (4.35)
and
d'p 2 2142 212112 02
|W‘ < CINPT2N 721Gl + 16912) exp(2Re \G). (4.36)

With (4.35), (4.36) and (4.30) we obtain that for the slip boundary condition,

k—1 l
/ del\ APED 13 TP PEO0 ap < COAPE B + AP, as)
=0

This bound together with (4.31) and (4.34) help us to derive the following results:

Theorem 4.5.1. There exists a Ao>0 such that, for any A € Xy, with || > X\g>0, the principal system
(4.27) admits, for any fe H*2(R*)2, h € H*Y(R"), k>1, and any initial data §' € C2,1=0,1,2, a
unique solution (4, p) € H¥(RT)2x H*=1(R*) and satisfies the following estimate: there exists a constant
C depending on Mg, ¢g, k such that for | = 0,1, we have

- - e 7 —1-20) 4]
el 7 ey + B2 oy < CUIANE 2y + AN @y + IAPF2G) (4.38)
and for | = 2:
1l e ey + B -1 ey < CUNA T2y + BN Fos @y + PGS + AP 21930%). (4.39)

Proof. If f= 0 and h = 0, we can construct the explicit solution as above and (4.31), (4.34) with (4.37)
lead to the estimates. Otherwise, we extend fand h to R preserving there norms. Theorem 4.4.1 implies
that there exist a solution (@, pg) € H¥(R)? x H¥1(R) to (4.21) and the estimate (4.22) holds for
(w0, po). We consider the following problem

Lo(D, M) (9,4) = (f, h) on I =R, = (0,40),
Bo(D,N)(,9) = (. 8", §°) — Bo(D, M) (i, po)-

Clearly (@, p) := (up + ¥, po + §) is a solution to (4.27). As in the case that Ff= 0and h = 0, we have, for
1=0,1,

0 e ey + a1y < CIAPF g = Bo(D, ) (i, o), (4.40)
and for [ = 2,

el e sy + Bl ey < CUAPEE = (Bo(D, M) (o, o)1 ]* + AP 72135 — (Bo(D, \) (i, po))2?)-
(4.41)
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By the definition of ||| - ||| z# (), Lemma 4.5.2 (this will be proved later) and (4.22), we have

APE g (0) 2 < Cllaol| ey < CUNI s ey + s gy (4.42)
with

AP () < ClllaiollFe iy < CUIPIEp-2aey + 110 (). (4.43)
and

NP3 150 (0)* < CllIpoll k-1 my < CUNNGre—2mey + BN Frx1 (g ))- (4.44)

By bounding the right-hand side of (4.40) and (4.41) using (4.42)-(4.44) we have (4.38) and (4.39). O

Lemma 4.5.2. Given v € H(I) with I = R,R* or (0,w). Then for any Ao > 0 the following inequality
holds for |A| > Ao

IMv(0)* < Clllvlllz r)-
Here C' depends only on Ag.
Proof. The Sobolev embedding H*(I) < C°(I) implies that v € C°(I), and

x

(W(0))2 = (v(z))? + 2/ W (B)u(t) dt.

0

Therefore, there exists C(A\g) > 0 such that for |A] > Ao,

Alw(0)? < [A /I lo(t)[* dt + /I(Iv’(t)l2 +AP@)?) dt < COAPIollLz + 11 Z2(r) = Cllvlln -

O

Theorem 4.5.3. There exists a A>0 such that, for any A € Xy, with |A\| > X\g>0, the following system
LD, ) (4, p) = (£, h on I =R, = (0,+00

D)) =GR + = (0,420) )

B(D,A\)(%,p)=(9.9.9)

admits, for any f € H*2(RT)2, h € HF"Y(RY), k > 1, and any initial data g € C2, 1 = 0,1,2, a
unique solution (u,p) € HF¥(RT)? x H*"Y(RT) and satisfies all estimates in Theorem 4.5.1.

Proof. (4.45) can be solved in the same way as (4.27). To justify the estimate we claim that there exists
Ao > 0 such that for A € Ly, with [A] > Ao,

(LD, A) = Lo(D, M) (@, )2l -2y + LD, A) = Lo(D, ) (@, B)sll i1 e (4.46)
. . 4.46
+APF(B(D,A) = Bo(D, V) (w, ) < %(IllﬁHﬁmRﬂ + Bl e ))-

To prove (4.46), we observe by Lemma 4.4.2 that

(LD, X) = Lo(D, )ty )12l 72y + LD, A) = Lo(D, X)) (@, 5)3 171 g

- o (4.47)
< O allgrr ey + PN Er—2@r))-

Also, it is easy to check that for any boundary conditions,

|(B(D,A) = Bo(D, X)) (@, p)|* < max(v, 1)|@(0)|*.
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Therefore, by Lemma 4.5.2,
IAPF2I(B(D, X) = Bo(D, M) (@, p)* < CINPF (APl 2oy + Nl 7 ) < Clllal s gy
So, for |A| > Ao > 0 with sufficiently large Ao,
(LD, A) = Lo(D, X)) (@, D) 12| Fre—2zey + (LD, X) = Lo(D, A)) (@, 5))3 || Fre-r zey
+ APF(B(D,A) = Bo(D. ) (@, 9)* < CUUal G- gy + 1B Frx-2 ) (4.48)
a1 [ e

(4.47) and (4.48) imply (4.46). O

4.6 A priori estimate on the interval [ = (0,w)

The following theorem holds:

Theorem 4.6.1. There exists Ao > 0 such that for any A € Ty, |A| > Ao and any k > 2, and for
(f,h) € H*2(1)2 x H*1(I) the parametric two-point boundary value problem

(4.49)

i
B
has a unique solution (&,p) € H*(I)? x H*=(I).
Moreover, there exists C = C(Ao, o) > 0 such that for all X € Xy, |A| > Ao we have the a priori
estimate

el [y ry + WDl sy < CUNANZ=2ry + A 1)+

V|- INPFHG P + Vvl - NP2+ [Vl - (AR H1881% + IAPE 2 g2))).
Proof. We set VD70 =Vpn {0}, VN70 =VynN {O}, VGvO,: Van {0}, VD,w =Vp \ VD,O, VN,w =VnN \ VN,O
and Voo = Vo \ Vgo. Let {I;}; be a covering of I = [0,w] and {¢;}_; be a subordinate smooth

partition of unity, which means that supp(¢;) C I; and Y ., ¢; = 1 on [0,w]. Set (@;,p;) := ¢;(%,p),
i=1,---,n. Then (&, p;) satisfies,

L(D,\) (s, ps) + Li(D, N (43, ;) = (6if, dih) on I =(0,w),

R R 4.50
B(D, ) (4, p;) + Bi(D, ) (. ;) = (8. 9i,9])  on dl, (450)

where L; are differential operators of one degree lower than L and
I(La(Dy X) (i D))ol g2y + W (La (D, ) (@, 5)sll s 1y < CUN@ 1 ¢y + WDl Fre—2 1)

Moreover, B; are boundary operators that are one order lower than B at both endpoints {0,w}. We
also have g = |V ol@®, 1 = [Vivolg', & = Vaold®, 8 = [Vbwld’, gn = [Vawl§' and g7 = [Va.o|d’.
Furthermore, f]? =0fori=2,--- ,n—1and f]? =0fori=2--- ,n—1. We write gf = (§87i,gé)i)t. By
Lemma 4.5.2 and the definition of the parametric norm ||| - ||| zx(s), there exists Ao such that for any X
satisfying |A| > Ao,

IAPF721Bi (D, A) (3, i) [P < CIAP g (w)
< CONP* el F ) + I 7272 )

< Clll |31 1y
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If i = 1,n, then (4.50) can be extended to the half-line R* and (4.50) can be extended to the whole real
line R otherwise. According to Theorem 4.4.3 and Theorem 4.5.3, there exists a sufficiently large Ao > 0
such that for any A € ¥4, and |A| > Ao, the following estimate holds for all ¢ =1,2,--- ,n

)

el F ) + HBill Fren )
< CUMN -2y + WAl Fres y + 1L (Dy A (s D)2l iy + (Li (D, X) (@ 5))sll 71y
+ Vol - APFG P + Vel - NP2 195 12+ [Val - (AP 189, 07 + P2 (193, + 1Bi(D, A) (s, 52) ).

By summing up estimates above with respect to ¢ and noticing that for [A| > Ao > 2C, ||| @]||3;.- w) T
1801202y < 2 (1) gy + 1150200+ )s we have

137 gy + D1 (ry
< CZ(‘”'&'Z'H'%{’“(R) + 16ill e (=)

< CUMNZr—2(ry + RN Famr oy + AP+ P21+ (PGP + AP 21831%).

4.7 Analysis on the operator pencil [L, B]

The operator pencil 4(\) = [L(D,\), B(D,\)] : H*(I)? x H*Y(I) — H*2(I)2 x HF1(I) x C2 x C?
depends polynomially on A. We justify, firstly, the Agranovich and Vishik condition I and IT (see [2,
Chapter 6]) for this operator pencil.

Lemma 4.7.1 (Condition I). Given any n € R and X € X4, with |n|+|A| # 0, we have det(Lo(n,A)) # 0.
Moreover, det(]io(n, A)) =0 as an equation of n, for any A € Xy, and X # 0, has equal number of roots
in upper and lower half-planes.

Proof. We have det(Lo(n, \)) = v(n? + A?)2. Since A € ¥4, A? is either a nonnegative real number or a
complex number with nonzero imaginary part, in both cases v(n? 4+ A?)? # 0.

To justify the second part of the lemma, we only need to notice that for the equation det([}ﬂn7 A) =0,
1n = £ with double multiplicities. O

Lemma 4.7.2 (Condition II). For any X\ # 0, there exists a unique solution (u,p) to (4.27) such that
the solution tends to [0,0] as 6 — +o0.

This is justified in Section 4.5.

By the argument used in [2, Chapter 6], the operator pencil ${(A) has the Fredholm property and
thus, by [24, Theorem 1.1.1], the spectrum of this operator pencil consists of infinite isolated eigenvalues
(thus at most countable) with finite algebraic multiplicities which do not have any accumulation point
in C. Hence, the resolvent R(\) = 4~1(\) is an operator-valued, meromorphic function A with (at most
countable) poles of finite multiplicity. See Appendix A for results on the distribution of eigenvalues.

Theorem 4.7.3. Let £, ={\ € C:ImA\ = h}. If R(X) has no poles on Ly, then (4.16) admits a unique
solution (i, p) € H*(I)2 x H*Y(I) provided (f h,g') € H*2(1)2 x H*1(I) x C2 for any | = 0,1,2,
and it holds for all A € £y

@l (ry + MBIy < CUNAN 2y + NN e )+

o A (4.51)
Vol - AP+ [Vl - P21 o+ [Vl - (P81 + 1A 21g %),

with C independent of Re \.
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Proof. As R(\) has no poles on £, the solution (#%,p) € H¥(I)2 x H*~1(I) exists if A € £5,. Theorem
4.6.1 implies that there exists Ao > 0 such that for A € £, with |[A| > Ao, (4.51) holds. If A € £, and
[A] < Ao, then by assumption SR(A) is a bounded operator and

el + 1Bl ) < CUAGs=2(y + 1Al 1y +
Vol - APEHG P 4 Vel - INPE2 G2+ Vil (APEHGE P + AP 192 1)),

with

INPFlal e gy + AP 21005y < COMNPE A gy + I 2RI 1)+
Vol - AP+ Vel - AP 4 Vil - (APRH88 1 + AR 2192 1))

Here C' depends on Ao but not on A. By combining the above two inequalities we have (4.51) and the
proof is finished. O

4.8 Regularity of the Stokes problem in the infinite sector

We now transform the regularity result Theorem 4.7.3 back to the strip D and to the sector Q). We need
the following lemmas:

Lemma 4.8.1. If v(r,0) € WEP(Q),k >0, then v :=v(e™*,0) € HF(D) with h=k —1— 3 and

Crlvll gy < N0llwi@) < Calloll gy (4.52)

Moreover, for 0 <1 <1, §(r,0) := =2t (e~t,0) € HF(D) with h=k+1—1— 3 and

Cilloll g oy < Ivllwe@) < Calltill e (p)- (4.53)

Here all constants are independent of v.
Lemma 4.8.2. Let © € HF (D) for any k > 0, then © = F(v) € H*(I), and
co+ih

Culldllgoy < [ Wollscry 4 < Calllngy (4.54)

—oo+1th

Here all constants are independent of v.

These two lemmas can be found in [4].
Lemma 4.8.3. For [ =0,1, let él(r,G) € Wg_l(Q)2 with §0|FD,Q =9° and 61|FN,Q =g°. Also, let
— _ — _ 1 iy
Gy (r,8), Go(r,0) € WEH(Q) with Gyl o = 73 and Golrg o = Gb. Set, for 1 =0,1, & = F(G) with
G = e_ltal(e_t,ﬁ) and Gb = F(GL) with Gy = e‘”ég(e_tﬂ).

Then there exists a constant C > 0 such that we have, for | =0,1, k > 2

R 1
APE21G 12 < OG-y (4.55)

and

IAPF==12 g 2 < OG- (4.56)
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A1 _ .
Proof. By Lemma 4.8.1 and Lemma 4.8.2, for [ = 0,1 we have G € H*Y1)? c C%I)? and G} €
H?7Y(I) € C°(I). By Lemma 4.5.2, the following inequalities hold for [ = 0,1,

—9]— A~ —Zl— ~ !
IAPF2ENG R < CIPEF NGy < CHNG ey
and
IAPE=213E 2 < NP 221G 20 oy < CHIG s 1y,
which leads to the result. =

Theorem 4.8.4. Given k > 2, let f € Wg_Q(Soo)Q,h € Wﬂk_l(Soo),?]O S Wg_l/z(FD7sm)2,§1 €
WA (Cn,s)?. For 1=0,1, let gh e Wi * (T s.).

Then if R(A) has no pole on the line £, = {\: Im X = k — 1 — B}, then the Stokes problem (4.4) has
a solution (@,p) € WE(Sx)? x Wg_l(Soo) and there holds the a-priori bound

w5y + DBl sy SCUPlw-2sy + IBllyts s+

—0 —1 1
g ‘|W[]§71/2(FD,SO¢) + g HW;:73/2(1"N,500) + l%:l ||92||W§7171/2(Fc,5m))'

(4.57)

Proof. The definition of trace space implies that there exist @l € V[/é%l(Soo)2 for [ = 0,1 and G =

—0 —1 _ —0 o =1 1 =2
(G2ﬂG2)t € W[{}C(SDO) X W,(]; 1(500) such that G |FD‘Soo = goa G |Fstoo = gla G |chsoc = (9(2)795)1: and
the following relations holds,

1,—o0 0 —0
§||G lwis.e) < Ilg ||W§7%(FDS < NG llwp (s

So0)

1,—1 _ —1
SIC s sy <UL es <G s

B (FN,Soo)

1, —o0 0 o
S1Gz2llwe(se) < llozll - < [1Gallwps.
2 ﬁ( ) WB ;3( )7

1
2 (Tg,s

Soo)

1,1 1 —1
§||Gz||wl’;*1(soo) < ng”W;*%(ch ) < ||G2||W§’1(Sm)'

»S 00

We define
ft,0):=e 2fet,0),  h(t,0):=eth(et,0)
with
G (1,0) = e t,0),  CLLO) = "Th(et,0)

for | = 0,1. Furthermore, we define f = F(f), h = F(h) with & = .7-'(@1)7 G = F(GY) for I = 0,1.
By Lemma 4.8.1 and (4.8.2), f € H*~2(I)%, h € H*~(I) and for I = 0,1 we have &' e BHF(1)? with
GY € H*Y(I). Moreover, (4.52)-(4.54) holds for all the functions above. By Theorem 4.7.3, for k > 2
system (4.49) exhibits a unique solution (@, p) € H*(I)? x H*=(I) and (4.51) holds. By Lemma (4.8.3),
ey + 1B s oy < COUIFIre 2y + 1A g+
-0 1 A .
Vol [1G Nz + V- WG Wy + Vel - NGk 1) + G2 e ))-
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+oo+ih z)\t(

As R has no pole on the line £, = {\: Im A = h} with h =k — 1 — /3, we have rf cotih

(@,p) € HF(D)? x HFY(D), and by Lemma 4.8.2 we have

, p) =

1@l sy + MBI 1y < CUIANG -2y + RN 5 )+

-0
Vol 1G [k py + [Val - IG" 11551y + Vel - (G2 Rs oy + G251 1))
Finally, Lemma 4.8.1 implies that (%,p)(log(L),6) =: (@,p)(r,0) € Wé“(Soo)2 X Wg_l(Soo) and

w50y + 1Pl 5.y <COPlw- (s + Ilis gy +

”gOHW/I;_lM(FD,Soo) + ||g1”W§_3/2(FNYSm) + Z ||gl2||Wg_l_l/2(FG,Soo)).
1=0,1

For the Stokes problem (4.1) we have:

Theorem 4.8.5. Assume that 5 € (1 — k,1) N (0,1) where k is the smallest positive imaginary part of
the nonzero eigenvalues of R(N) with positive imaginary part and let f € Wg(Soo)Q,h € Wﬁl(Soo),gO €

W§/2(FD,S )2, g € Wl/z(FMsw)? For 1 =0,1, let g, € Wg_l_1/2(FG7SW). Then the Stokes problem
. as a solution (u,p) € o) X ~) and there holds the a-priori estimate
4.1) h l Wg Soo)? Wﬁl S, d there holds th 0T )

||17||W§(soc) + ||p||wg(soo) SC(”ﬁWO(Sm) + HhHW1 5.t

”g sz/z (Tp.so )+||g ||W1/2(FNS + Z ||92||W2 Y2 e ))
1=0,1

(4.58)

Proof. We start from Theorem 4.8.4 with k = 2 and apply the transformation u = A~'%. Then this
theorem can be validated using [16, Corollary 4.2]. O

Remark 4.8.6. Note that since the operator i has at most countably many points contained in its
spectrum, the set of 8 € R ensuring that the line £, = {\: Im X\ = 1 — 8} has no pole of R(\) are dense
in R. Actually, $8(X) has no poles in {\:Im X € (—k,k)} if Dirichlet condition is prescribed on at least
one edge of the sector and PR(\) has the origin as the only pole in this strip otherwise. See Appendix A
for more information on the eigenvectors of (X)) corresponding to the origin as an eigenvalue.

Remark 4.8.7. The Stokes equation we analyze in this chapter is —V - o[u,p] = f. By Remark 4.0.1,
above regularity results still hold for —vAu+ Vp = fif u is divergence-free.



Chapter 5

Analytic regularity of the
incompressible stationary NSE

Recall that for a vector field w: Q € R? — R?, its polar component is

cos sin@ >
w.

—sinf  cosf

= () = (

5.1 Auxiliary Stokes problem in a truncated sector

In this section, we temporarily drop Condition 2 in Remark 3.1.1 on the boundary condition. As a result,
it is possible for a corner A; to have Neumann boundary condition on both touching edges I';_; and T'; or
have Neumann boundary condition and Slip boundary condition on two edges. Without loss of generality
we consider the vertex A; on 9. Let (r,0) be the polar coordinate system centered at A; such that
{6 = 0} coincides with T',, and let S5 :={(r,6) : 0 <r < < +00,0 <0 <w;y} C Q.

We define formally the following two Stokes operators

Lt (u,p) = ((—vAu+ Vp)', V- u), (5.1)
and

Ls2(u,p) = ((=V - a(u,p))", V- w)". (5:2)
Consider the following two Stokes problems:

L1 (u,p) = ((f)',0)" in Ss
u=0 on (T UT,)NTpNISs =: F(l),

wen=2 _ (5.3)
{ (Q(’u,p)n) -t = g% on (Fl U Fn) NlgN 0Ss =: F(g),
o(u,p)n=g' on (I UT,) NTy NASs =:T'(3).
Lst,2(uap) = ((f)t,O)t in 56
u=20 on F(l),
u-n=0 r (5.4)
(a(u,p)n) - t= g5 on L(2);
—(uap)n = gl on F(g)
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Here f € Ly(S5)% g5 € W2(Tz)) and ' € W2 (T5))? with B € (0,1).

We assume that the function pair (u,p) € H'(S5)? x L?(S5) is the weak solution to (5.4). Here the
weak solution means that for any (v,q) € (H*(S5)*> N{vlv = 0onTyN({r =6} NSs) and v-n =
0 on I'9)}) x L?(Ss) the following holds:

Alwv)s,+Blop)s, = [ fodes [ goass [ gods,
Sé F(Q) F(g) (55)

B(u,q)s; =0.

Here A(-,-)s, and B(-,-)g, are those bilinear forms (3.2) and (3.3) but they are integrals over Ss. It
could be justified that this weak form also corresponds to the problem (5.3) due to the incompressible
condition and thus (u, p) solves also (5.3) as a weak solution.

Recall that Soo = {(r,0) : 0 < r < +00,0 < 6 < wy}. Forl = 1,2,3, set f‘(l) as the extension of

I'(;y N 0S5 to the infinite sector S if I'(j) # 0 and f‘(l) = () otherwise.
By ¢s(r) we denote a cut-off function C*°(R) such that ¢s = 1 for 0 < r < g and ¢s5 = 0 for r > 4.
Set

then clearly (@,p) = (u,p) on Ss. By zero extension (@,p) € H'(Sx)? x L*(Sx) is well-defined in S
and it solves in S, the following equations as a weak solution:

Lato(@,p) = ¢5(f, h) + Li(w,p, ¢5) =: (H!, h)? in Seo,
u=20 on f‘(l),
{ @-n=0 . (5.7)
(a(@,p)n) - t = dsgs + li(u,p, ds) - t
o(@,p)n = dsg" + li(u,p, ds) on I'(3).
Here Li(u,p, ¢s5) := Lg2(@,p) — ¢s(u,p) and l1(w,p, ¢5) = o(@,p) - n — ¢sa(u,p) - n are lower or-

der differential operators. The weak solution (u,p) satisfies that for any (v,q) € (H'(Sx)* N {vjv =
OonT () and v-n=0on [(y)}) x L?(S) the following holds:

gs(v- 1) ds—l—/ g -vds,

A(@,v)s. +B(v,p)s.. =/ o d‘”/ Fs) (5.8)

L (2)

Soo
B(w,q)s., = ﬁq dez.
Seo

It is easy to justify that, by Lemma 2.2.6,

1Al s(5) < CUALa(ss) + 1l 1 (s\85,2) + 1Pl L2(55\85)):
17l Lg(sw) < CUlullrr(ss\sso) + 1Pl L2(s5\85,2)):

L (uw < Cllu
|| 1( ,p7¢6)||WB%(f‘(2)ﬁf‘(3)) = || ||H1(SS\S<S/2)7

<Clgsll .
: [ QIIW; Fn)

¢5g1 1 <C g1 1.
| ||Wﬁ2 Eeon | HWﬂ2 Feo)

o593l 1
[ 2||WB2(F(2)

Here C' is independent of u and p.
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Lemma 5.1.1. Let (u,p) be the weak solution to (5.3), f,h be defined as in (5.7) and (u,p) be defined
as in (5.6). Assume that 8 € (1 — k,1)N(0,1) with k defined as the smallest positive imaginary part of
the nonzero eigenvalues of R(N\) with positive imaginary part where R(N) is defined as in section 4.7.
Then the problem (5.7) in Sa has at least one solution (v,q) € W5 (Se)? X W3 (Ses). Moreover, there
ezists a constant Cspc = Cspc(B,0) such that:
If F(l) #0 or F(l) = F(3) = (), then the solution is unique, (v,q) = (@,p) and the solution (u,p) to
(5.8) satisfies

[wllwz(ss)s) + IPIwicss 2

(5.9)

+1lg'| )-

< Cspo(1flLsess) + [l 1 (55\85,2) T 1Pl 22(55\55,2) T+ HQ%HW%(F( )
2

1
5 Wi (L)

In this case we have @€ W3(S5/2)* C H§72(55/2)2 C C°(S5/2)? and u(A;y) = 0.
Otherwise, the solution to (5.7) is unique modulo a linear subspace V C R? and there exists a constant
vector e € V such that (v,q) = (4 — e,p). Moreover, the solution (u,p) to (5.3) satisfies

l[u— EHW2(S(;/2) ||p||W 1(Ss/2)

5.10
< Cspo(lflLacss) + 1@llar(ss\s5,2) + 1Pl L2(55\85,2) + H92|| 2( ) +lg' || (r( ))) (5.10)
(2) 3

In this case we have w(Ay) = e and U —€ € W;(S5/2)* C Hg’z(Sg/g)Q C C%(S5,2)?.
To prove this lemma we need the following lemma:

Lemma 5.1.2. Let (v,q) € W5(Sx)? X Wj(Sx) be a solution to (5.7) in the sector Su and assume

that if w = 7 then different boundary conditions are prescribed on two edges of the sector. If 1"(1) #0 or
F( 1) = F(g) =0, then

”va%Q(Sw) + HT*l”H%%sm) + ||‘J||%2(soo) < too. (5.11)
Otherwise, we have
IVol|Z2 sy + lall7z(s.y < +oc. (5.12)
Here |Vv|? := |0z, v]? + |0, v|%.
The proof follows the route of [16, Theorem 4.4, Corollary 4.3] and uses Lemma A.1.1.

Proof. For any vector field v, define |2'v]* = 37, |, 77>**|2v|>. We list the following useful results
here, which are checked in the proof of [16, Theorem 4.4]:

|2 )* < 2(|12' % + |r~9)?), (5.13)
[t = e, (5.14)
|2 |* = |V)?. (5.15)

We first consider the two cases f(l) # () and f(l) = f(g) = (. By Lemma A.1.1 and Remark 4.8.6,
we may select 3, 8" with 8 < 1 < 8’ such that no pole of R lies in {\ : ImX € [1 — 3',1 — B]}. Note
that since f, h, ¢sgs + l1(u,p, ¢s) - t and ¢sg' + l1(u, p, ¢5) have finite support, we have f € Lg (So)?,
. 1 T
he Wé,(S’oo), b593 +11(u,p, ps5) -t € W,}(F(g)) and ¢sg' +11(u, p, ¢s) € WBQ/(I‘(;;))2. Therefore, Theorem
4.8.4 implies that (v, q) € W3,(Sx0)? X W} (Sa). Thus we have

w1 o w1 o0
/O /1 (|@17}‘2 + |T_ITJ|2)7° drdf < /0 /1 (T2(B —1)‘@1742 + P28 —2)|7;|2)r drdf < HT]”%VE,(SOO)
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and

w1 [e'e] w1 o
/ / ¢*r drdf < / / (P DgP)r drdd < |lqll3y1, s
0 1 0 1 o
We also have

w1 1 w1 1
/O /0 (12'9)? + |r—'9))r drdo g/o /0 (r2B=V) 2% + 25D |52)r drdf < IIT’H%,;(SW)

wi  pl wy el
¢?r drdf < (r* =V g?)r drdf < lalls sy
o Jo o Jo p(5e0)

By combining above four inequalities and using (5.13)-(5.15) we have (5.11).

Now we consider the case that both f‘(l) # () and f‘(l) = f(3) = () do not hold. By Lemma A.1.1,
we could select 5 < 1 < B’ such that 0 is the only pole of SR that lies in {\ : ImX € [1 — 3,1 —
B]}. Then we consider the solution (¥,q’) obtained by (¥,q¢') = (¥/,¢)(log(),0) with (¢¥',q') =

\/% ffooji(zl(fg,) R(N)[f, b, g™ dX. We now argue as above and obtain that (¥,¢) € W5 (Ss0)?

Wé/ (Ss). Then Lemma A.1.1 gives that ¢ = ¢’ and

and

X

=1 +ci(cosf, —sin ) + ca(sin b, cos )",
where ¢y, co € R. Therefore
V= ’U/ + (Cl, Cg)t,

and |2'v|? = |2v/|2. Now, use (5.13):

w1 &S] w1 [e'e]
/ / (12 o2 + q)r drdf < 2 / / (P28 =D | 1 2 4 p25 =2 |2 4 p25=D) ) e
0 1 0 1

< 2\\7’/”%1/;,(500) + 2”(]“%/1/;,(500);

and we also have

w1 1 w1 1
/ / (|2 + q)r drdo < 2/ / (r2B=D12'5)? + 28 =2 |2 4 2=V 2\ drdh
o Jo o Jo
< 2||5||€v§(sm) + QHQH%Vg(sm)-
Now combine above inequalities and use (5.15) and we have (5.12). O

Proof of Lemma 5.1.1. The proof follows the route in the proof of [17, Theorem 5.2]. The existence of
the solution (v, ¢) is an application of Theorem 4.8.5. By Lemma 2.2.6, v € H] (So)? and ¢ € L?(Swo).

~1 ~1
We firstly show (5.9). For any (w,0) € Hy(Soo) X L?(S) where Hy(Sso) := {u € H}, .(Soo)?|[|Vul 12(s..) <
+o00, u|1:(1) =0, u- n‘f@) =0}, we have

A(a,w>sm+B<w,p>sM:/ f~w+/ g;<w't>+/ ¢ w,
Soo T2 INEN

B(u,0)s.. :/ ho.
Seo

Here A(-,-)s., and B(-,-)g.. are those bilinear forms (3.2) and (3.3) but they are integral over So. Also,
for any (w, o) € IA{(lJ(SOO) x L*(S,,) where IAI(l)(SOO) ={ue ﬁé(Sw)\u has bounded support in So} we
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have

A(v,w>sm+B<w,q>sm=/ f-w+[ g;<w-t>+[ g,
INEN INEN

Seo

B(v,0)s_, :/ ho.
S

oo

Therefore, for any (w, o) € fI(l)(Soo) x L*(S),

A(v—a,w)s,, + B(w,q—p)s.. =0,
B(v—i,0)s. = 0.

We define VfI(l)(Soo) ={r|3v e fI(l)(Soo),I = Vv} and VI~{(1)(SOO) ={r]v € fI(l)(Sm),z = Vuv}. By
Lemma 5.1.2 and the density of VIA-Ié(SOO) in VIiI%)(SOO) with respect to L?(Sx)-norm (this will be shown
later in Lemma 5.1.4).

A(v—u,v—u)s,_ =0.

oo

Therefore v— u € R. If f(l) # (), then v— 4 = 0 on f‘(l) and v = won S,,. Otherwise, both edges are
equipped with slip boundary condition and thus (v — @) - n = 0 on S, Since in this case wy # 7, we
must have v = % on So,. And thus,

B(w,q—p)s. =0, Ywe u)(Sx).

By [14, Corollary 2.4] and [32, Lemma 2.3], for any R > 0 there exists w € f-I(lJ(SR) such that
V-w=q—pin Sk and |V - wl|r2(s,) < cllg — Dl r2(s..)- We extend w to Sy such that the H'(Sx)
norm is still bounded and denote the extension still by w. Set w = Ysw where 95 is a cut-off function
such that ¥5 = 1 on Sk and ¥5 = 0 on Sy \ Srts. We have

0= Bl@g-p)s. = [

-9+ [ @-pV@
Sr Sr+s\Skr

and

| (a—p)V-w| < Cllg = pllr2(spis\sn)ll Wl (s00)-
Sr+5\SRr
Since ¢ —p € L?(Sx), |lq —Dllz2($nis\Sr) — 0 as & — 0. Therefore, ||q —pl/z2(s,) = 0. As R is arbitrary,
we have ¢ = p on S,. Therefore, by Theorem 4.8.5, (u,p) = (v,q) € VVE(SOQ)2 X é(SOO) and
||ﬂ|\wg(sa/2) + ||pHWg(sé/2)

< Csuea(lflnscss) + 8l o (ss\Ss ) + 1PN L2(s5\ss o) F1lgsll x —  + 1 1+ - ).
(Al s (s5) + Ul 1(55785,2) 1PN L2(55\85,2) + | QHW;(F(Q)) l HW;(F(S)))

By Lemma 2.2.6 we have u € Wg(55/2)2 C H;’2(55/2)2 C C°(S5/2)? and we must have u(A4;) = u(A;) =
0 to ensure that u € WE(S%)z.
We now consider the case that f(l) = () and f(g) # (. For any (w,0) € f]l(Soo) x L?(Ss) where
~1
H (S) :=={ue H. (5x)?|IVull12(s..) < +00, u- n|1:(2) = 0}, we have
T2

Soo T3y

B(it,0)s.. :/ ho.
Soo
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Also, for any (w,0) € IAfl(SOO) x L?(Ss) where H (Sw) i={ue H (Ss)|u has bounded support in Soo}

we have

Therefore, for any (w, o) € " (Soo) X L?(Sw0),

A(v—u,w)s_ + B(w,q —p)s., =0,
B(v—1u,0)s, =0.

We define VIAtll(Soo) = {r|Fv € f{l(S’oo),z = Vv} and VfIl(Soo) = {r]3v € I~11(SOO),I = Vuv}. Use
~1 ~1
the density of VH (Sy) in VH (S,,) with respect to L?(S4 )-norm(this is shown in Lemma 5.1.4) and
we have
A(v—u,v—u)s,_ =0.
Therefore,
v—uc<R.
By Lemma 5.1.2, || D(v—@)||12(s..) < +00. So v—u € span{(1,0)",(0,1)'} and therefore A(v—a, w)s,, =
0 for any w € ﬁl(Sm). Based on this we have B(w,q —p)s,, = 0 for any w € fIl(Soo). Argue as before
and we have ¢ = p in L?(S4). By Theorem 4.8.5, there exists a constant vector e such that
1@ —€llwz(s,,.) + IPIwics,,.)

= - 1 1

< CSE'C,Q(Hﬂ|Lﬁ(Sa) + HUHHl(S(S\S&/z) + ”pHLQ(S(s\S&m) + HQQHWé (o) ”g HWé(f(g))).
Lemma 2.2.6 implies that @ € C°(S5)? and we must have w(A;) —e = 0 to ensure that u—e € W3(S;)°.
Therefore u(A;) = e and u— € € Wg(55/2)2 C H§72(56/2)2 C 00(5'5/2)2. The proof is completed by
setting Cspe = max(Cspe,1, Cspo2)- =

Remark 5.1.3. The proof of Lemma 5.1.1 shows that any solution (u,p) € W3(Sx)? x Wj(Sx) to
the Stokes problem (4.1) with 0 < 8 < 1, f = 0 and zero boundary condition must satisfy that u €
span{(0,1)",(1,0)'} and that p = 0. Due to the fact that span{(0,1)",(1,0)"} N WZ(Sx)* = (0,0)", the
homogeneous Stokes problem in a sector can only have zero solution in VVBQ(SDQ)2 X Wj;(Seo) and thus the
solution (u,p) € W5(So0)? X Wé (Sx) to the Stokes problem (4.1) is unique in the scenario of Theorem
4.8.5if 0<f<1.

We need to prove the following lemma used before.

Lemma 5.1.4. If f’(l) £ 0 or f(l) = f(g) =0, then VIAIé(SOO) is dense in VfI(l)(S’OO) with respect to
L?(Ss)-norm. Otherwise, VIAfl(SOO) is dense in VH (Sso) with respect to L?(Ss)-norm.

Proof. Without loss of generality, let A; be located at the origin. We assume firstly that the edge
{6 =0} = {(z1,22)|x1 > 0,25 = 0}. Define the following spaces:

Hy (Soc) 1= {u € Hjpo(Soo)[IVull 12(s.0) < +00,u =0 on {# = 0}},
Y (Sso) = {u € H}(Ss0)|u has bounded support},
H' (o) = {u € Hjpo(Soo)llIVul 2(s.) < +00},

H'(S) := {u € H'(Sso)|u has bounded support}.
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For any two constants 0 < Ry < Ry < +o00, define Sig, g, = Soo N {(1,0) : Ry < 7 < Rp}. Then
See = S)0,1) U (U2 S[2n 2n+1)). Furthermore, we fix a cut-off function ¢(r) € C*°(R) such that ¢(r) =1
for r < 0 and ¢(r) = 0 for r > 1. Then it is straightforward to show that ¢, (x1,z2) := (i)(iw)

27L
satisfies |V, ||~ (s..) < & where K is a constant depending only on ¢.
We prove two claims before verifying the statements in the lemma.

Claim 1: Given any u € H}(Ss) and any € > 0, there exists v € HE(Ss) such that |[Vu —
Vollr2(s..) < €. Moreover, if u = 0 on 0S., then v =0 on JS5.

Proof of Claim 1:
Fix a u € H3(Sx). The first Poincaré inequality implies that for any function w € Hl(S[l)Q]) which
vanishes on {(r,0) : 6 = 0,7 € (1,2)} there exists a constant Cpein,1 > 0 such that the following holds:

Hw||L2(S[1,2]) S CPOi”J”vw”Lz(S[Lz])'

By applying the homothetic scaling ®,, : Sian gn+1) = Sj19) & (21, 22) = (
for any n € N and any w € H'(S[an 2n+1)) which vanishes on {(r,6) : 6§ =
Poincaré inequality holds:

) it is easy to verify that

z
0,7 € (27,271} the following

[l 22(S g gnir)) < 2" Croin VWl L2050 i)

For any € > 0 we could choose 7 sufficiently large such that HVUHLZ(SP;L o) < FFRG We show
oo poin,

now that v := ¢mu is the function we desire. Clearly v = 0 on any edge on which v = 0 and v has
bounded support in S,,. Moreover, we have

Vu = Vullp2(s.,,)
< ”VU' - V(¢ﬁu)||L2(S[2ﬁ,2ﬁ+l]) + |‘VUHL2(S[27'L+1,+OO])
<A = 0a)VullLa(s,a i) T IVORUL2(5 a0 4ag) T 1VullL2(s

(27 400])
<3IVullzaisyn o) T IVl s lullLzsga yainy)
3 i
< m + 272"C'pom,1||VU||L2(S[2;1‘2;1+1]) by the Poincaré inequality in Sjps n+1] stated above
3e €

+ choin,li = €.

< -
-3 + choin,l 3 + KCpoin,l

Therefore v satisfies the requirement in the claim.
Obviously Claim 1 also works for functions taking zero value on {6 = ws }.

Claim 2: Given any u € H'(Ss) and any € > 0, there exists v € H'(Ss) such that IVu —
V'U”LQ(SOO) <e.

Proof of Claim 2:

By the second Poincaré inequality, for any function w € H 1(8[1’2]) there exists a constant Cppin,2 > 0
such that the following holds:

égﬂg ||'lU - C||L2(S[1721) S CPOin72||vw||L2(S[1,z])'

Similar to the proof of Claim 1, by using the homothetic scaling ®,, it is easy to verify that for any n € N
and any w € Hl(S[Qn’QHq) the following Poincaré inequality in Sjgn gn+17 holds:

ég]g [Jw — C||L2(S[2n12n+1]) < 2n0p0m72||vw”L2(s[2ny2n+1])'
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For any € > 0 we could choose 7 sufficiently large such that HquLz(S[ . With aid of

€
Qﬁ',+oo]) < 3+KCpoin,2
the Poincaré inequality in Spoa gn+1) there exists a constant c; € R such that

2716’;)02’77,,26

) S 2ﬁCpo7Ln,2||vu||L2(S[2ﬁ,2ﬁ+1]) S m

Hu - C’leLz(SpﬁzﬁJrl]

We show now that v := ¢5(u — ¢5) is the function we desire. Obviously v has bounded support in S..
Moreover, we have

HVU — VUHLZ(SOO)
< IVu = V(o (u—ca))llL2(syn yurn) T 1VUllL2(s 000
<N = da)VullLa (s yuia) T 1VOa(w = ca)llL2(s 0 yuiry +1IVUllL2(s 00, )

o))

< 3IVullza(syn 4o T I1VEallLesollu = callLa(syn yara)
e K 277Lc(poin,26

S\ ——mF—i——+ ——— ——— =
— 34+ KCpoin,Q 2" 3 + KCpoin,Q

Therefore v satisfies the requirement in the claim.

We now turn to the proof of the lemma. It is easy to verify that if wy # m, then there exists an

invertible matrix B := [n|g—o, n|g=w, |’ such that (uq,up)’ == Bu = (u- njo—o, u- njp=w, ).

1 ~ - - -
Firstly we justify the density of VHy(Ss) in VH(I)(SOO) given that I'(1) # @ or I'(qy = I'(3) = 0. Fix
u e fi(l)(Soo). We have the following cases to deal with:

Case 1: Slip boundary condition is not prescribed on both edges(which means that only Dirichlet
and Neumann boundary conditions are on the boundary, note that we could not have only Neumann

~1
boundary condition here). Then by Claim 1 there exists v € Hy(Soo) such that ||V (u — v)||2(s.) < e

Case 2: Dirichlet and Slip boundary conditions are on the boundary. We may assume that Slip
boundary condition is on {# = w;} and Dirichlet boundary condition is on {6 = 0}. If w; # =, then

(ta,up)! = O on {f = 0} and w, = 0 on {# = wy}. By Claim 1, there exist v, € HY(Ss) and
vy € Hj(Se) N{wlw = 0on {6 = wi}} such that |[V((uq,us)’ — (va,v)")||12(s) < gt (Here
| lloo is the mazimum row sum matriz norm, see [19, Chapter 5.6]). Now v:= B~ !(v,,v,)! satisfies the

boundary condition required in 1/'\{(1)(500) and
IV (=) 250y < 2B oo IV(B(u— ) 22(s.0) < 2B ool V((ta, u)" — (va, v6)")ll22(5.0) < €.
If w; = 7, then boundary conditions imply that u; = 0 on {# = 0} and us = 0 on IS (since we
assume before that {6 = 0} = {(z1,22)|z1 > 0,22 = 0}, nlp=or = (0,—1)"). Now we could find
~1
v = (v1,v2)" € Hy(Ss) such that ||V(u—v)|[12¢s..) < € by obtaining v; from u; with Claim 1 for i = 1,2.
Case 3: Only Slip boundary condition is on S.. In this case wy # m. Now u, vanishes on {f = 0}

and uy, vanishes on {6 = w;} and thus by Claim 1 there exists (v4,v,)" with v, vanishing on {# = 0} and
v, vanishing on {§ = wi} such that ||V ((ua,us)" — (va,v)")||2(s.0) < E-T o We now use the same

~1
argument as in Case 2 before and it is clear that v := B~1(v,,v;)! € Hy(S) and |V (u— V)| 2s.) < e

- ~1 ~1
Therefore VH;(SOO) is dense in V Hy(Soo ) with respect to L?(Ss )-norm. We now show that VH (So)

is dense in VINII(SOO) with respect to L?(Ss)-norm given that f‘(l) = and f(g) #0. Fix u e fIl(Soo).
Two cases shall be considered:
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Case 1: Neumann and Slip boundary conditions are on the boundary. We may assume that Slip
boundary condition is on {# = 0} and Neumann boundary condition is on {# = wy}. If wy # =, then
ug = 0 on {# = 0}. By Claim 1 and Claim 2, there exist v, € PAI&(SOO) and v, € H'(Sy) such that
IV ((ua,up)* = (Ve v5)" ) L2(s00) < gppsrs- Now v = B7Y(vg,vp)! satisfies the boundary condition

required in IAfl(Soo) and
IV(w = )llz2(s.0) < 21B™ sl V(B = 9) 25y < 2B ool V((ta, up)" = (va; v6)*) | L2(5.0) < €.

If w = 7, then boundary conditions imply that us = 0 on {# = 0}. Now we could find v := (vy,v2)" €

~1
H (S.) such that [|[V(u — v)||r2(s.) < € by obtaining v; from u; with Claim 2 and obtaining v, from
ug with Claim 1.

~1
Case 2: Only Neumann boundary condition is on 9S4. Then by Claim 2 there exists v € H (So)
such that

IV(u=v)l[L2(s.) < e

Above analysis ensures the density of VfIl(SOO) in VI~I1(SOO).

We finally show that the density results still hold if our assumption about {6 = 0} at the beginning
is dropped. To see this we introduce a new coordinate system % := (21, #2)! induced by using a rotation
matrix R such that the relation between Z and the old coordinate = is & = Rz and that {# = 0} =
{(Z1,42)|Z1 > 0,%2 = 0}. Then the normal vector will be presented using the new coordinate system as
7= Rn. For any u € H} (Sx)?>N{v|||Vaull12(s..) < +00}, define &= Ru. Then it is easy to show that
e H (Sx)” N{v||Va0]|L2(s..) < +o0} under the new coordinate system and % = 0 on any edge if
and only if uw = 0. Moreover, we have

u-n=(Ru) - (Rn)=u-n,

since the rotation matrix R is orthogonal. Therefore -1 =0 <= u-n = 0. Now we could apply above
approximation results on u and transform those results back to u to support the density results in the
general case. O

5.2 Analytic regularity over ()

Recall that W := {u € H'(Q)? : u = OonTpand u-n = 0on g}, My := {v € W, |v|g1(q) <
(2-,/3- %Hﬂw*)gfz:} and My := {v € W, ||v]|g1(q) < ”cflliow:} (see the statement of Theorem
3.1.3). The following will be the main regularity result.

Theorem 5.2.1. Let 0 < By = (B1,82,--,Bn) <1 and fe€ Bgf(Q)2 N'W* such that (3.9) holds true.
Assume that for each i € {1,2,--- ,n}, B; € (1 — k;,1) N (0,1) with k; defined as the smallest positive
imaginary part of the nonzero eigenvalues of MR;(\) with positive imaginary part where R;(X\) is defined

regarding the corner A; as in section 4.7.
Then, to (3.1) there exists

o a weak solution (u,p) € W x L?(Q) such that w is uniquely determined in My and p associated
with that u is uniquely determined in L*(Y) in the case that |T'n| > 0.

e a unique weak solution (u,p) € W X Lo(Q2) such that uw € My in the case that |T' x| = 0.
Moreover, any weak solution pair (u,p) € B%f ()2 x Béf(Q).

The existence and uniqueness of the solution (u,p) are a consequence of Theorem 3.1.3. Before we
complete the proof of this theorem, we give a corollary which is more applicable:
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Corollary 5.2.2. Let 0 < By = (B1, B2, ,Pn) <1 and fe Bgf ()2 N W* such that (3.9) holds true.

Then there ezists 3 € (0, 1)™ satisfying B > Bf such that all the existence and uniqueness results in
Theorem 5.2.1 hold and (u,p) € BE(Q)2 X BE(Q)

Proof. We only need to show the regularity of the solution (u,p). There always exists (31, cee Bn) =:
B € (0,1)" such that 8 > ff and that for each i € {1,2,--- ,n}, 8; > 1 — k; where &; is defined as in the
statement of Theorem 5.2.1. Also, it is clear that f € Bg (2)2. Now we apply Theorem 5.2.1 with 3 and
we have the result. O

We will prove a series of lemmas in the following to justify the weighted analytical regularity of the
solution. For any 0 < § < Imin,;d(4;, A;), define Si = B(A;,8) N Q the truncated sector at A;
where B(A;, ) is the ball centered at A; with radius 6. For 0 < a < b < iminm d(A;, A;) we also set

Sio S[ia,b] := S} \ Si. Define further Qs := Q\ U, Si. Note that Qs is a Lipschitz domain.

Lemma 5.2.3. Given f € Bgf(Q)2 with 0 < By = (B1,B2,-++,Bn) < 1, then f € LY (Q)? for t €
(1’ 1+m22LXi ﬁi)'

Proof. [28, Lemma 2.4] yields HéfO(Q) C LY(Q) for any t € (1, m) Since f € Bgf Q)% c H;;FO(Q)2
by the definition of Bg(Q)7 fe LY (Q)? with t € (1, m) O
Lemma 5.2.4. For any ve HY(Q)?, (v-V)ve L*(Q)? for 1 <s < 2.

Proof. This is an application of the Sobolev embedding H'(2) < L4(f2) valid for any ¢ € (1,+00) and
of the Holder inequality. O

Lemma 5.2.5. Let 0 < 3§ < 1, f€ Bgf(Q)2 and let (u,p) € M x L*(Q) be a weak solution to (5.1)
with right-hand side f. In particular, (u,p) solves (3.5).

Then (u-V)u € L2(Q)2. Moreover, given any 6 € (0, min; ; d(A;, A;)], it holds that (u,p)|a, €
H*(Q5)% x H*1(Q;) for any k € Nsy. Furthermore, (u,p) € Cl*(Q5)2 x Cl(Q5) for any k € N and
p e [0,1].

Proof. We move the nonlinear term to the right-hand side and consider the corresponding Stokes problem
(3.11). Choose a positive number v < 1 — 87 such that the operator pencil A(«a), which was generated
by introducing polar coordinates and applying the Mellin transform with respect to the parameter o on
the Stokes operator in each truncated sector (see [32, Section 3.2]), has no eigenvalue or has o = 0 as the
unique eigenvalue in the strip {a : —e < Rea < v}, where € is a small positive real number.

By Lemma 5.2.3 and Lemma 5.24, f— (u- V)u € L%(Q)? Therefore, by [33, Corollary 4.2],
(u,p) € VVQ’%(Q)2 x Whats (2). The Sobolev embedding theorem implies u € C°(Q)? and then
|ul| Lo ()< + 00. With w € H'(Q)? we obtain (u-V)u € L*(Q)2.

As (u,p) € H'(Q)2 x L*(Q), (u,p)|o, € H'(Qs)? x L*(€) for any & € (0, + min; ; d(A;, A;)]. To show
that (u,p)|a, € H?(Q5)? x H' (), we apply the standard elliptic regularity for Stokes problem:

lull 2 05) + 1Pl (05) < Cllf = (v V)ul12(q;,,) < + o0

We prove that (u,p)lo, € H*(Qs)? x H*~1(Qs) for k € N>, and for any § € (0, ; min; ; d(A;, A;)] by
induction.

Assume that this holds for k = m — 1 where m € N>3. By using a Sobolev extension operator (see,
for example, the operator introduced by Stein [42, Chapter VI, Theorem 5]) on u we see that there exists
@€ H™ 1(R?)? which is identical to w on 5. Now, [6, Theorem C.10] implies that (u-V)u € H™2(R?)2.
The restriction of (- V)@ to s, which is (u- V)wu, clearly belongs to H™~2(25)%. The elliptic regularity
for the Stokes problem implies (note that f& H™2(Q5)?):

lull e s) + Pl Em=1(05) < Cllf = (w- V)ullgm—2(q,,,) < + oc.
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Therefore (u,p)|a; € H™(Qs)? x H™ ().
The local Holder continuity of the solution can be justified by using the Sobolev embedding H F(Qs) —
C*k=2(Qs) for any k € N>s. O

Now we could prove the interior analyticity of the solution using the local Holder continuity of (u, p)
in Qs from Lemma 5.2.5 with [31, Theorem 6.7.6] or directly using [20, Theorem 1.2]. The analyticity in
regular parts of boundary can be derived using local Holder continuity of the solution with [31, Theorem
6.7.67].

Lemma 5.2.6. For any 0 < § < %minlﬂ’je{l’g),.,)n}’i# d(A;, A;j), the solution (u,p) to (3.1) with f
satisfying (8.9) is analytic in /5.

The task now is to investigate the regularity of the solution pair in each truncated sector Sg /2,2' €
{1,2,--+ ,n}.

In Lemma 5.2.5 we have shown that (u- V)u € L*(Q)? C Lg,(©2)?. By moving the nonlinear term
to the right-hand side and using Lemma 5.1.1 on each sector Sk, we have (%,p) € ng(Sg)2 X WIBI(S(Z;)
(recall that by Condition 2 in Remark 3.1.1, only the first case in Lemma 5.1.1 happens here).

From now on we fix a small § € (0,1) such that for any 1, ||17ngi(sg-) < 1 and HpHng(S};) < 1

This is possible since for each 4, lims_o ||TIIHW§(S(§) = 0 and lims_ ||p||W§ (siy = 0, by the Dominated
Convergence Theorem. ' '

Without loss of generality we focus on the sector S}. We will use the coordinate system (r,6) centered
at Aj such that S§ = {(r,0) : 0 <r < 4,0 <6 <w;}. We claim that:

Lemma 5.2.7. Let all assumptions in Theorem 5.2.1 hold true and let (u,p) be a weak solution to (3.1).
Then there exists two constants D,,, E, > 1 such that for all o € N? satisfying |a| > 2:

[t 2%, | agsy ) < DI 2B (o] - 9, (5.16)
P29 g sy ) < D2 B3 (o] — 2)1 (5.17)

and for any |a| > 1:
I 2 Plliasy, ) < DT ER? (ol = DL (5.18)

To show this we need the following lemmas:

Lemma 5.2.8.

ul Ug o Uy

urrue + u’l”arue + Uo TOUG

Proof. Elementary calculus yields:

Oy, = cos 00, — gag, By, = sin 00, + CO:%@.
Then:
[(w- V)uly = (u10z, + U202, )ur =
(cos Bu, — sin tﬁ)ue)(cos2 00,1, — cos 0sin 00, ug + sirf eur _ o8 H:in Hagur + o8 9:111 aua + sirf 939U9)+
(sin Ou,. + cos Oug)(cos O sin 0, u, — sin? 00, up — €8 Hrsin aur + Cof o oty — Cof 0u0 e 9rsin o )
= —CO:%?) - gurue + cos Ou,Opu, — sin Ou,.0pug + cos&ueaeur _ Sinawaew'
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Similarly:
[(’LL V)’“’]Q - (ulaajl + uQam)uQ =
sinf , cosf . sin 6 0
= up + L Urte + sin Ou,. Opuy + cos O, Opug + TuGaeuT + g Optg.
T
Therefore:

(u-V)u ug wgOp Uy
(u-V)u=A((u-V)u) = ( —=2 +u,Oru, + - ) .

UTTUG + ura'rU/O + Ug reue

The next lemma is similar to [28, Lemma 1.10] but it is written in polar coordinates.

Lemma 5.2.9. Let n,7,a,b € R such that n > 7 —l—% and 0 < a < b < 6§ < 1. Then there exists a
constant Cryt = Cin (1,1, a,b) > 0 such that for any multi-index o € N? and any function ¢ satisfying
‘|Tﬁ+a1+’yl.@a+‘y¢||L2(s[l y) < oo for all v € N? with |y| < 1, there holds

I 2%l Lagsy, )

R 1 R 1 P 1 519
< Ol 70l b (3 el rade b ) O
oI ’ -

Proof. Without loss of generality we set b = 1.
Given j € No, we introduce 7 := {(r,0) : 2777 1<r<277,0<<wi} C Sy, and the homothetic

scaling ¥; : $7 — SY: (r,0) — (277,0) and set QASJ- =¢o \11371. Then we have, for any ¢ € [1, +00):
a2 o Aol
[P DY B|| agssy = 27D | DG | Laso)- (5.20)

Let now ¢ € (0,1). As S[lc ) satisfies the cone condition (see [1]), by [1, Theorem 3] there exists a
constant Cp = Cy(c) such that for any ) € Wl’Q(S[lc’l]):

1 1
Hw”L‘*(S[lC,U) < COHwHIQ_Il(S[lc,l]) ’ WHEz(S[lm]y
Note that:

Oz, = c0s 00, — gag, Oy, = sin 00, + cos

0p.
,
Since S[lc 1] is a bounded set and is bounded away from the vertex, r®12%¢ € H'(S}

le,1]
1;[} € Hl(S[lc71])a

). Also, for all

|\1/J||§11(s[1m]) < Cl(Hl/’H%%s[lm]) + ||ar¢||2L2(s[1m]) + ||80¢||%2(s[lcyl]))~
The constant C here depends on ¢ but is independent of 1. Therefore:

1
1B asy ) < CRCINLasy ) (30 12702 70 B )%

[vI<1

Set ¢ = r"T*1 9%¢ in this inequality:
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I 2] pagsy ) < max(L, ) 1 PG sy )

< CHC? max(l,c")||ra19a¢||zz(5[1¢ 1])( Z ‘|@7(7a19a¢)||%2(31 &

fe.1]
[vI<1

1 1 1 1 B 1
< CoCF max(l,cn)Hro‘l@a(bHiz(S[l 1])( Z ‘|T71+a1@a+’y¢”zz(s[1 ) + lo |2 - [|r 1@a¢||zz(s[1
T kit - “

1 . N N 1
< CoCP max(1, ") max(1, ¢, ¢~ 171 ||piten 2|7,

)

1)

(Sfnp)

~ 1 3 g 5
- Z ||7m+'n+o<1 -@a+’y¢||22(s[1&1]) + a2 - ||7«77+a1@a¢”zz(s[lc 1])).
lv]<1 | |

If a # 0, then set ¢ = a in the above inequality and (5.19) holds if Cryr > 0001% max(1,a") max(1,a=", a="71).

Otherwise, set ¢ = % in the inequality and use (5.20):

||7~7H-a1 @a¢HL4(Sj) — 2—j(ﬁ+§)||7~77+a1 gzaéj”Lf‘(SO)
1 1 1., 1. . . " a A
< CoCy max(1, (5)") max(1, (5) 7, (5) 772D e geg,
iHrtor Gaty ) |12 L pitargag |3
.(lzlg [t g 7¢jHL2(S[1CY1])+‘CY1|2 riter g quHLQ(S[lC,ll))
vI<1

%
||L2(S[1c,1])

1 1 | BN B NE RTN o e ok
< CoCf max(1, (5)") max(1, (5) 77, (5) 772 I TEDH A |t geg 2,
N «@ «@ 3 1 n+o « 3
(|2|: Hr”+71+ 19 +V¢||z2(sj) +|a1|2 .||Tn+ 1 ¢||f2(s.7’))'
<1

(57)

and thus
||7“'fl+oél @04¢||L4(S[10’1]) < Z Hr”‘i‘al @a¢||L4(Sj)
jEN
1 1 1 5 . s 1 RN 1
< CoC maX(17(§)")maX(1,(§) 777(5) 7 1)2(2 J(7I+2)+](77+1)||r77+a1@a¢||22(sj)
jEN

~ 1 1 ~ 1
. ( Z Hrﬂ-i-’h-i-al 90&%”22(54‘) + |a1|2 . ||r77+oc1 @%”iz(sw')))
[vI<1

—

1 1 1. . 1. . ) o
< ol max(L, (5)") max(1, ()7, (3) 713 2D HD)
jeN
+a a 3 n+v1 4o a+ 3 1 n+a a 3
|t g ¢”22(S[10,1]) ( Z |pitrter g 7¢||22(S[1071]) + Jay|? - ||r1tr g ¢H22

(st )"
[v|<1

Conclude the two cases above and it is clear now that we could set
1 N _
Cinr := max(CoC7 max(1,a”) max(1,a™",a= 171,

COCl% max(1, (%)n) max(1, (1)777, (1)”7*1)(2 9=i(n+3)+i(i+1)))

2 2 .
JjeN

(since 7 > 7 + 5 the sum here is finite) to validate (5.19). This concludes the proof. O
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Lemma 5.2.10. Let 8 € (0,1), k € N>1,0 < a <b <6 <1 and let u be a function such that
Hu||W§(S§) < 1. Assume that there exists two constants D,, E, > 1 independent of k,a,b such that, for
any 2 < |o| < k+1:

||7“5+a1—2@04u”[l2(5[1a‘b]) < D=2 g2 (|a| — 2)!

Then there is a constant Cgon>0 independent of D,, Ey,k,a,b such that:
(1): for any o € N? with |o| < k:

B

_3 ot L
Ir? = 9% asr ) < Cron(la] + 1)2 D129 52242 (max(|a - 2,0))!. (5.21)

[a;b]

(2): for any o € N? with |o| < k:

B

||T§*1+041 -@a(TU)“L“(S[la)b]) < Cgen(a| + 1)%Du (| Q,O)Eu2+2 (max(|a| — 2,0))!. (5.22)

(3): for any o € N? with |a| <k —1:

8

I3 G (r0) | sy, ) < Cren(lal + 1) prex(el=2.0 goets (1ha(la] — 1,0))L. (5.23)

(4): for any o € N? with |o| < k —1:

||Tg*1+a1@a(69u)||L4(S[1mb]) < Cgen(al + 1)%D21ax(\0¢|*%,0)E32+%(maxua‘ —1,0)). (5.24)

Proof. We start by showing (5.21). By Lemma 5.2.9 (note that since § < 1, g —1> -2+ 3 and thus
Lemma 5.2.9 is applicable here), there holds, for all o € N2,

8_
[ 1Jral-@QUHLAI(SEW)

B—2+a1 o, |3 B—2+a1+v1 oty (|3 3|,.8—2+a1 ga, |3
< Crrllr 7z, ) (|Z I P ullfasy y+of Pullfas )
vI<1

Therefore, when |a| > 2:

51+
(|72 O“90{“||L4(s[1m)

< 20 N (D120 go2 (|| — 2)1)3 (Dpax(lel=10) peatl (o] — 1)1)2
+ (14 a¥)CrypDrax(al=2.0) goz (1o — 21

1 _max(|a|—32 o+ 1
< 4Cinr(jo] + 1) 2 Dy(el=2:0 geata ) — 9y

and in the case that |a| < 1, recall that ||uHW§(S§) <1

B _
||7’2 1+a1‘@au”L4(S[10’ o) <A4CinT.

It follows that

B

72

max(

al—3 ol
T sy, ) < ACIvr (o] + 1) DI EY BT (max(ja] - 2,0))1
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In order to prove (5.22), remark that for all o € N2,

B

||7'2_1+a1@a(7’u)”L4(S[1a1b]) < Hrg-i_al@auHLHS[la’b]) +a1||r§_1+a1@C‘_(l’O)uHUI(SL

)

[a,b]
B_ B_ — —

<(;(H7”2 1 al@aU”[zL(_g[la,b])+(11H7"2 I+en 1@(1 (1’0)’&”[4(3[1&’[7])).

Now we apply (5.21) to obtain that

B _
Ir =4 2 ) s )

1 max -3 1
< 45Cnr(lal + 1)2 D020 geats (ax(ja] — 2,0)!
+ 4801 Cyyrla|E DRXe=30) goets (0] — 3,0))!

Njw

< (49 + 49 max( T J
JEN " (j 4+ 1)2 max(j — 2,1)

— (44 6V3)6C N1 (|a] + 1)3 DRI 2:0) poat s (o 1a] — 2,0))1.

NCrnr(la] + 1)3 DeI=5:0 peats oy (o] — 2,0))!

We now prove (5.23). We have, by applying (5.21) again, that

B _
2 1+a1ga(r8TU)||L4(S[1n,,b1)

< ||7~g*1+a1+1@a+(1,0)u||L4(5[1 b]) + OélHTg*hHm _@au||L4(Sl ])
a,

[a,
< 4Crnr(la] + 2)F DRex1el=2:0) goats (ool — 1,0))!

max afé o 1
+ 40, Cryr(Ja] + 1)E DRexe1=2.0) geets oy () — 2,0))!
+ 2.1 j

)+

S (4CINT HlaX((j

max afl (0% 1
CAE D(lal+ 13 D07 B (max(ja| - 1,0))!
JEN ]

max(j —1,1)
8 1 max -1 2 1
< 8+ 3V3)(la| + D" 11729 g2 2 (ax(|a| — 1,0))L.
Finally, for (5.24), we still use (5.21):
L _1+ta « 8 _1+a «a
= l+a1 g (3916)“1:4(5[1@,&]) =||rz I+ai1 g +(0’1)“||L4(5[1a,b])
_1 ot
< 40 nr(ja) + 1) D29 peots (v (o] — 1,0))L.

We set Cpon = (44 6v/3)Cyr and this concludes the proof. O

Lemma 5.2.11 (Weighted analytic regularity of the quadratic nonlinearity). Let 0 < a < b < ¢
B € (0,1) and k € Nxy. Furthermore let u: S} C Q — R? be a vector field such that ||ﬂ||Wﬁ2(S§)

Assume that there exists two constants Dy, Fy > 1 such that, for any o € N? with 2 < o] < k+1:

IAIA

||T5+a172_@aur||Lz(S[1a o) < DLQ|*2E32(\04| -2,

||T5+a172_@0¢u9||L2(S[1a.b]) < DIM=2E2 (|a) — 2)1.

Then, there exists a constant Cant > 0 independent of D, E,,k,a,b such that for any 1 < |a| <k,

2+ =22 (- V)wliacsy, ) < Cant DT B alt (5.25)
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Proof. We estimate ||r#+e1—29« (rug)HLz(s[l L By the Leibniz rule, the Holder inequality and Lemma
5.2.10, for all a € N? with 1 < |a| <k,

5+ =29% (rud) | sy

la|
(% B o~y — _
<X X () IE S Gl I s

=0 |y|=jy<a

o

max —70

<> D0 ( y ><0ECN<|W|+1> D50 51208 max(ly| - 2,0))

§=0 |y|=j~<a
A(Cron (o =] + 1) D1e1720 ee2%2 1ax(la — 4] — 2,0)1)

. ||
1

< ma: J+

-4 - 3 « max(|o|— 27) as+1 1
(T ey X (4) ol 21 (Ja] )1

- 3
J=0 |y|=j,7<a (max(j, 1) max(|a| — 7,1))2

]

« max(|a|—3,0) Lo 1
SQ?C?ECNZ Z <7>Dua | E2+1 (ol — 5)!

) 3.
7=0 |y|=j,y<a (max(j, 1) max(|a| — j,1))2

In [21, Proposition 2.1] it was shown that

l=j<a N J
Then,

HTBJFO‘l*Q.@a (TUg) ||L2(S[la,,b])

laf
_3 1
< 2702 Dmax(\a| 2’0)E32+1 all
< 27CpenDu o ]Z—:o (max(j, 1) max(|e| — j,1))2

< 27CECNDmaX(‘a| Ea2+l| ! Z

. \3

max j, 2
<oz o+ [ La )Dmaxua\ﬁ,o)Eam' !
< ECN ol ) Dy, a1 )

max -2
< 10802y Da01=2.0) gaatt gy

We could estimate [|r?+*1=292 (ru,up)| 2

(SL,.4) by following the same steps. For all @« € N? with
1< ol <k,

H?“ﬁ—i—ou QQQ(TuTuQ)HLz St

]

SZ Z ( " ) ||7"2+71 1@7(7'“7“)”[‘4 ||7"2+a1 n-1ga- y(u‘g)”L4

)

J=0 |y|=j,7<a "

a a (71—2.0) ot b

1 max -5, 5

SZ_: Z (7)(CECN(|'Y|+1)2DM TTERUERTE max(|y] - 2,0))

J=0]y|=jr<a

max(|o— -3 o — 1
-(C’ECN(|oz—'y|—|—1)%Du ol 2’O)Euz T2t max(|a — 5| —2,0)!)
lal
J+1 E a max(|o|—2.,0) ant1 1

< c DT E -

mox( e Y, S (1) M(la] - 3)

J=0|v|=j,v<a (max(j, 1) max(|a| — j,1))
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]

6] max (x——O a 1
SQ?C%CNZ Z <7>Dua( | )E 2+1 (|a|—j)

. . 3"
i20 jy|=y<a (max(j, 1) max(|e| — j, 1)) 2

|
max(|al—$,0) ay41 1
< 27C%onDu” E3> al! - -
;) (max(j, 1) max(je| — j,1))2
. | L
< 270, DRI H0) goatt o 37 max(j, 1)?

=0
1 mas(|al— 2
§27C,230N-(2+/ — dz) D120 gaat

1 Tz
< 10802y D750 past oy

Next, we consider bounding the term HrﬁJral’Q@O‘(rQur@Tur)HLz(s[l o) There holds

P42 (P Oy asy, )
o]

Q o o
<2 2 (v)'“” AT P T A O RT [PY

i=1 7127 <a
+ ||Tﬁ1+a172ur@a(r8rur)||L2(S[1a w)

The first term above can be estimated as before:
la|

a B Bt 1 e
> % (2 i, I G0 sy

J=1|y|=jy<a

] 5 .
<> > <3><0ECN(7|+1>%DL““””'2’°>E12+2max<|v|2,o>!>

J=1|y[=j 7S

(Cpen(ja — ]+ 1) D172 0 gt t3 oy (la — 4] — 1,0)))

la
1
< max T

45

(5.26)

1
la| =1 pas+1
(kY. X (0) Dl el - )

=0 |y[=j,v<a
laf 1
< 9C% oy DI B2 !
- | ';u)%(maxw—j,l))%

2l

1
< 902,y Dlol= 1Ea2+1\a|'2—
Jj= 1772
> q
<9Ckon(1+ [ —pda) DI B ol
1 T2

< 2702y D=L Eoatlig)L,
For the second term in (5.26), since @ € W3(S3)* C C°(S1)? and HT‘HWB?(Sg) <1,if |o| =1,
H’l",3+a1 2y +D*(r0, ur)||L2 L)
< ||UT||L°°(S§) : (||7"B_2+a1+1-@a(8rur)HL2(S[1a.b]) + al”Tﬁ_2+a1‘@auTHLZ(S[la,b]))

< 2f|ur || Lo (s

(7)% (max(la| - j,1))?
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and if |a| > 2,

HT[“'OQ_QUJTQQ (Ta”‘ur) ||L2(S[1“vb])

< flurllpe sy - (||7’5_2+a1+19a(3rur)HL?(s[la’b]) + 041||T6_2+a1QaurHH(s[{m]))
< 2l || oo sy DI T ES (o] — 1)L
In conclusion:

||r/3+a1—2@0‘ (T‘QuraruT) ||L2(S[la.b])

< 270Een DY T B ol + max(2|ur || e (51 2l |l e sy D EG2 (o] = 1))

S (270%0]\] + ZHU,rHLoo(Sé))DLa|*1E32+1|a“.
We bound ||rﬂ+a1_2@°‘(r2u78rue)HLz(S[l W) in the same way. There holds

||r/3+ar2@“(r2ur3rur)||L2(S[1a »)

||
o 5 - g o1 —y1— oa—
<> > ( )Iraﬂl 1.@7(TU7‘)||L4(S[1QM)Hr2+ NG (rOpug) || pagsr (5.27)

fa.b]
I=1y=jy<e 7

+ ||rﬁ+a1—2uT@a (r@,.ug) ||L2(S[1a,b] )

For the first term we have,

||

o By B ot —1 o
>y (7 ) |72 197(7“%)||L4(s[1a,b])|\7”2+c'1 N DT (rOpug) | pagst

[a.b]
J=1|v|=jv<a

|ex|
max(|y|—2 1
< Z Z < ?; ) (Cren(ly] + 1)%Du (Il 270)Egg+2 max(|7] — 2,0))
J=1lyl=jy<a
—~l=1 o — 1
. (CECN(|a . ’Y| + 1)%Dglax(\06 vl 270)Eu2 Y2+ 3 max(\a . ’Y| _ 170)')

]

I+ 1
<max( e Y. Y (a)Df'lEiz“j!(la—j)! !

jeN ‘max(7 — 1,1 . -
(7 ’ J=0 |y|=j,v<La

(5)2 (max(|a| - j,1))?

laf
1

< 9Chon DI B al!

S ";<j>%<max<|a|—j,1>>%

||

1
2 -1 1
< 9CEon DI BT ‘allzj?
j=1

> 1
<903y (1+ / L dr) Dl Bt o)

xrz
< 27C% Ny DIV B2 o1,

For the second term in (5.27), if |a] =1,

([P =20, 2% (rd,up) ”Lz(slla-,bl)

)

< HU'THLOO(S(%) . (||Tﬁ—2+a1+190‘(87_u9)HL2(S[1Q~H) + Oé1||7“5—2+oz1 @au9||L2(S[1a,b])

< 2|ug|| Lo (s>
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and if |a| > 2,

P20, 2% (rd,ug) ”LQ(S[la»bl)

< lurllzoo sty - (||Tﬂ_2+a1+1-@a(3rue)HL?(s[la’b]) + Oél||T6_2+°”9%0||L2(S[1a?b]))
< 2||U9HLoc(sg)Dlual_lEﬁz(W - 1L
In conclusion,
15401290 (20,0, |2
< 27CHon DI B o] + max(2||ug|| Lo 51, 2[[up | Lo (s3) DI ES? (o] — 1))
< (27Chon + 2|uoll L (s1)) D EZ2 ol

We now evaluate ||r5+°‘1_2:@a(ru989u,.)||L2(S[1 L

||r5+a1—2@a (rueaeur) HLQ(S[la,b])

la
« B _ Byon—mi—1 gpa—
< > ( )|r2+’ﬂ L7 (rug) | ags ) I F T T (@) | s (5.28)

, : Y
J=1|v]=j,v<a

+ ||7”5+041*2ru9@a (Opur) ”Lz(slla:b]).

The first term here can be estimated as before and we obtain

||

o B _ Bt 1 e
> X ()1 s sy I G sy

J=1yl=jr<a

il

max(|al—2,0) ay42 1
< 9C%onDu PUER T ! : :
; (j)2 (max(|a| — j,1))3
s ol
§9C%CNDumaX(|a > Egﬁz\o‘“Zﬁ
j=1

e 1 max( |« -3
< 90%01\](1 +/ jd&?)Du (lex| 2’0)E32+2|0z|!
1 T2
_s
< 27C% DR (11720 goat2 1
For the second term in (5.28), we get that
I+ =2 rug 2% (Bgur) | 12 (s

< 5||U9||Loc(sg)D|ua|_1E32+l(\Oé| - 1L

)= l[rugll Lo (s1y - ||TB_2+Q1@a+(0’1)u7‘”L2(S[1a’b])

b
Therefore,

max(|o] 3,

‘|T5+a1—2@a(rugagu7~)||L2(S[1 ") < 27C%CNDu 0)E32+2|a|! + 5||u0||Loo(S§)DLa‘_1E32+1(|OZ| . 1)'
< (27Chon + 5||u9HLOO(S(}))DLQ‘_IE?H\04|!~

Similar arguments can be applied on HrﬁJrO‘l*Q@a(ru989Ug)||Lz(S[1 Nk
||Tﬁ+a1—2_@a(ru989ua)||L2(S[1 ")
|
@ B8 _ B8 e — —
<Y X () Gl I Gy (629)
J=1|y|=5y<e : 2

+ ||r5+a1—2ru0@a(89“9)HLQ(S[la n)
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The first term here can be estimated as before and we obtain

||
> X () s I o @l
=1 =i <a :
|ex|

_3
< 90 DR paet2 oy

j—l

1
(7)% (max(|a| - j,1))?

< 9CECNDmaX(Ia|77 Ea2+2| "Zi
j=177?

S| max oz—f
SQC%CN(1+A 7d ) (e O)Ea2+2| ||

xZ

< 2702y DRI 30) pazt2) )

For the second term in (5.29), we get that

BHar—2 B72+a1@a+(0,1)

| Tuega(aeue)nm(slla,b]) < ||7"U9||Loo(sg) 7 u9||L2(S[1a1b])
< 6)lugll oo 53y DT BT (Jaf = DL
Therefore
212 2% (rupBpug) | 2gsz, ) < 2TCEon D117 B2+ a1 + 6lJug|| e 51y DI B (0] — 1)
< (27Cken +5||U0|\Loo(sg))DLa| LB ol
It is clear with all estimates above and Lemma 5.2.8 that if we set Canr = 2%(1626%01\, + 2+

§)[ull Lo (s1)), then (5.25) holds.
O

Proof of Lemma 5.2.7. We rewrite the Navier-Stokes equation in the sector S} using differential and
boundary operators Lg 1(+,-) and B(-,-) introduced in Remark 4.1.5:

Z57571(11'?])) = ((}._ (U V)’u‘)tﬁo)tv

ol ) (5.30)
B(u,p) =0 on (T UT,)NAS;.
This set of equations has the following specific form:
, 1 1.,  u 2 S
—v(OFur + ~Opur + 5 0ur — 5 — 5 0pug) + Op = fr — (w-V)w),  (5.31)
, 1 1., ug 2 1 S
—v(0ug + ;Grug + ﬁaaue ~ 2 + T—Zagur) + ;agp = fo — ((u- V)u)g, (5.32)
Oty + 1 Yy + 11 Opug = 0. (5.33)
w=0 on (T;Ul,)NTpNaSE, (5.34)
u-n . 1
< (o(u,p)m) - ¢ ) = ( V(Orug + aeur L) ) on (IuT,)NTegNaAS;, (5.35)
—— [ v(r 189ur—|—8u9—r Lug) 1
o(u,p)n = ( o+ 20 Y Dy + ur) =0 on (ThUT,)NT'y NOIS;. (5.36)

By Lemma 4.1.2, Lemma 5.2.6, Lemma 5.2.11 and the fact that f € Bg(Q)Q, there exists constants
K¢, Kponti, Ky, K > 1 such that for any multi-index |a| > 1:
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I =20 (P gsy) < Kol (537)

[P+ =2 2% (2w V) s, ) < Kloylall (5.38)
(5.6
and
I 2 bl ) < K ol = DL (5:39)
g,

Also, for any k£ € N>,

7% 08| g sn. ) < KPR (5.40)
13,8

Recall that we have fixed 6 € (0,1). From (5.39) and the fact that 51 <1 we have, for any k£ € N>,

0k p|2csr. ) < KXk 5.41
T ( ) P
[$.6]

Set K = max(Ky, Knonii, Ku, Kp), then all inequalities above still hold true if these constants are replaced
by K. We will always do that replacement when we use these inequalities later. We claim that all bounds
in Lemma 5.2.7 hold if we set

1 s
B, = max([33(v + Cant + 1)]?, [42(; + Cant +1)]2) > 1 (5.42)
and

1
D, = max(22(Cspc + 1)(1 + ;)K, 2(Cspc + 1)(Cant + 7)E3,

(5.43)
1 C z

=+ A LB
14 1%

33(v + Canr + 1) E;, 42( ) > 1.

Before we prove this by induction, we present the following elementary results about D, and F,,
which will be useful later. For k, N € N>1, there holds, under (5.42) and (5.43),

(Cspc + 1)(A1K*E! + (Canr + 7)DE1E2E!) < DFE!, (5.44)
since
(Cspe + 1) (1LK*K! + (Cant + 7) Dy ' E2k))
=11(Cspc + 1) K"k 4+ (Cspc + 1)(Cant + 7)DETE2E!
< 1Dkk! + 1D’“k! < DFE!.
2w g
Furthermore,

_4 _1
3DFEY TS < DFEN T, (5.45)
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since Ey, > [33(v + Cant + 1)]> > 3. Also,

(v + Canr + 1)(DETENT21 4 DEEN T3 11) + K*k1 < DFENR, (5.46)
since
(v + Canr + D)(DEEN®21 4 DFEN 311y 4 KFp
— 11 + Canr + D EN*2R 4 11(v + Cane + 1)DEEN k1 + K*H
< %D{jE{)’k! + éDﬁE{)’k! + %DﬁE{L\’k! < DFENE!.
Finally,
14(% + @ + 1)(DFENT2E + DFENT1ED) 4 %K’ck! < DEENTFp, (5.47)
since
14(% + % +1)(DE-LEN V2R 4 DEEN-1R) 4 %K’“k!
- 14(% + @ +1)DETEN T2 4 14(% + @ +1)DEEN 1k + %Kkk;!

< éijEff*%k! + éD{jE{F%k! + %DﬁEﬁV*%k! < DFEYNH g,

To prove the weighted analytic regularity we introduce the following induction hypothesis.

Induction Hypothesis Hj,
For any k € N>1, we say that the hypothesis Hj, holds if inequalities (5.16) and (5.17), i.e.

P42, | agsy ) < Dlet-2EE2=40 (0] _ g
||Tﬁl+a1_2-@aU0HL2(sg/2) < plal2pmax(2=3.0) 01 oy
are satisfied for 2 < |a| < k41 and (5.18), which is
It D pl| 2 sr ) < DIFITUER (Jal = 1)),

is satisfied for 1 < |o| < k with D,, and E, defined in (5.42) and (5.43). Clearly these constants are
independent of k.

By our setting on ¢, ||’TI,HW§1(S§) <1 and ||p||W51 sy < 1. Therefore (5.16) and (5.17) hold for |a| = 2
and (5.18) holds for |a| = 1 and H; is correct. Now we assume that Hj holds for some k € N>q. To
show that Hyy is true we analyze in the following two steps: The first step is dedicated to prove that
(5.16) and (5.17) hold for |a| = k + 2 with as < 2 and (5.18) holds for |a| = k& 4+ 1 with as < 1. This is
done by applying Lemma 5.1.1 on the function pair v := r*0*(u) and ¢ := r*0¥p, which is the solution
of an auxiliary Stokes problem (this problem is constructed below). And in the second step, we finish
justifying Hy.1 by establishing relations between derivatives of (u,p) with lower and higher ay using a
specific order of differentiation of (5.31), (5.32) and (5.33), this will enable us to bound derivatives with
higher o using derivatives with lower .
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Step 1: By Lemma 5.2.11, there exists a constant C 4y independent of D, F,, k such that for any
aeN? with1 < |a| <k

[rArter=2 g2 (r2(y - V)u)llzgsy ) < Canr DI E22 2|1, (5.48)

The following lemma is crucial for Step 1.

Lemma 5.2.12. (v,q) defined by ©:=r*0F(u) and q := r*0Fp solves formally in S}:

Lyt (v,qn2 = 207 (7 (F~(u- V)w) — kr* 2 (rdfp + (k — 1)87'p, 87~ 9up)’, (5.49)
L(v,q)3 =0, (5.50)
=0 on (T, UT,)NTpNISE, (5.51)
v-n _ 1
( (o(v,p)n) - ¢ ) =0 on (IuT,)NTgNoS;, (5.52)
0
o(v,q)n = ( b1k ) on (I UT,)NTyNASE (5.53)

Proof. We verify all equations above in order. B B
Verification of (5.49): We firstly multiply both sides of Ly 1(u,p)12 = f— (u-V)u by r?, then
differentiate both sides by 9F and finally multiply both sides by r*~2. We obtain:

—v((rFOF T2 4 krk=1oF L 4 k(k — 1)7F =208 )u, + (rFLOF Y 4+ krF 208w,
+Tk_28f83ur - rk_zaffur - 2rk_28f89u9)
+(r*OF Y 4 2krk =108 4 k(k — 1)rF =20k 1)p
—v((r*Ok T2 4 krF 1ok 4 k(K — 1)rk =208 )up + (rF7LOF L 4 krk =208 Yuy
+rk=20k0%ug — r*20Fug + 2r¥ =205 0pu,.)
+(rk=10F 0y + kr*—20E"10y)p

= R V)

Moreover, we have, by (4.13),

Tt (0.0)1 = —v(02v, + L0,v, + LOFv, — & — 5%50119) +0rq
st,11% 412 - —v(02vg + %&«vg + rzagvo — %+ 50pvy) + %80(]

—v((rFOF T2 4 krk=1oF L 4 k(K — 1)rF =208 ), + (rF1OF Y 4 krF =208 )u,
+r8 208020, — rh=20Fu, — 2r*=20%0guyp)
+(rFoF Y 4 krk=19%)p

—v((rROFF2 4 krk—1oF L 4 k(k — 1)rk =208 ug + (rF1OM L 4+ krF=20%)uy
+rE=20k02ug — r*=20Fug + 2rk =20k Ogu,.)
+r’“_16,’?80p
Therefore,

— krk_la,’? +k(k—1 rk—Qaj?—l _ — ——
Laaloaha+ (7 OB IEZ DT ) 2 T )

This leads to (5.49).
Verification of (5.50): Note that (5.50) is equivalent to
rRoOF u, + (k+ D)r* 10k u, + r* 1% 9pup = 0. (5.54)

The incompressibility of u (see (5.33)) implies

rOptUy + Uy + Ogug = 0.
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Differentiate it by 0% and we have

rOF T, 4 (k + 1)0Fu, + 0%9pup = 0.

By multiplying this equality by r*~! we obtain (5.54) and thus (5.50) is justified.

Verification of (5.51): The equation (5.51) can be shown by differentiating (5.34) with 9% and
multiplying it by r*.

Verification of (5.52): We could show similarly as in the verification of (5.51) that the first com-
ponent of the left-hand side of (5.52) vanishes. Now, (5.35) implies

v(royug + Opu, — ug) = 0.

L we have

Differentiate it by 0% and multiply the resulting equality by 7%~
v(kr*=10Rug + o lug + r* 10k Ogu, — r* 10k ug) = 0.

It is straightforward to show that this is equivalent to

1 1
v(0pvg + —0pv,. — —vg) = 0.
r r

Due to (5.35), the left-hand side is exactly the second component of (5.52). By concluding above deriva-
tions we verify (5.52).
Verification of (5.53): We firstly look at the first component of it. (5.36) indicates

v(Qguy + rorug — ug) = 0.

L we have

Differentiate it by 0% and multiply the resulting equality by 7%~
v(r* 1ok dgu, + kr* T oFug 4+ rF O ug — rF 10k ug) = 0.
This implies
1/(7"*139% + Opvg — rilvg) =0, (5.55)

which implies, due to the polar-component form of the Neumann boundary condition (5.36), the first
component of (5.53) vanishes. For the second component of (5.53), we note that (5.36) implies

—rp + 2v(Ogug + ur) =0
Differentiate it by 0% and multiply the resulting equality by 7*~1, we have
—kr* 1Ry — ROk p 4 2w(r* L 0R Dpug 4+ r* 0% u,) = 0.
Therefore,
—q 4 2vr~ Y (Bgvg + vy) = =% p + 20 (rF LR Dgug + rF 1 OFw,) = krk ok 1p.

Note that the left-hand side is the polar-component form of the second component of (5.53)(see (5.36)),
this together with (5.55) validates (5.53). O

We remark here that all computations in the preceding proof are formal. (5.49)-(5.53) will then be
justified by taking suitable weighted Sobolev norms on those formal relations.
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By Hy, (5.37), (5.38) and (5.39), we have

[Lst,1(v,012llL,, (s1)

< |rHE2OR (2 f = 2 (u- V) )| 2 sty + Rk = DIrP 208 pl| Laggr) + kI RO Dl 251

+ k||Tﬂl+k_Qaf_1aep||L2(sg)

< (2K*E! + CanyDEYE2EY) + (DF 2k + KF72k)) + (DR + KF1E) 4+ (DE 1B k! 4+ KR 1R
< 5KFEV 4+ (Cant + 3)DE1E2R),

and
o(v,q)n|| 1
lle(v, q) ||W521 ((T1Ur,)NC N NBSE)

< Hkrk_laf_lpﬂwgl(sg)

< kPR 2R ]| Lo gsay + ke R 208 Ogpll 2y + [RrP TF T OE Dl L2 sy

+ [|k(k — 1)7"Bl+k723f71p||L2(5;)

< (kDE72(k — 2! + kK 2 (k — 2)!) + (kDE B, (k — 1)1+ kK* Y (k — 1))

+ (EDE"Y(E — D)V + kKR Yk — 1)) 4 (k(k — 1)DF2(k — 2)! + k(k — 1) K" 2(k — 2)!)
<AK* 'kl +4DET B, K.

By Lemma 5.1.1, the above two inequalities, (5.40) and (5.41),

||5ng(s;/2) + ||Q||Wg(s;/2)

< Cspe(|[Lst (B @)1zl (s1) + [[llwrase

3,

< Cspo(11K*E! + (Cant + T)DY T ELKY).

+ + v,q)n|| 1
6]) ||QHL2(S[1g’5]) ||Q( ?Q) ||Wﬂ%1((F1UFn)ﬂFNﬂ35§)

Based on this and Hj we have:

Z Hrﬁr2+k+~/1 9(k570)+7ﬂ||L2(816)
lv|=2 H

< P2 R207 (0) — 2k PR (@) — Rk — 1) 208 (@) | o

2
+ [P 220D (@) — kP LG ED @) o g1y + (1P 220D (0] 251
< [@llwzsy) + 3DF1E! 4+ DE2g 2 2
< (Cspe + V)(ALK*E! + (Cant + T)DETLE2RY).

and

Z ||761—2+k+71@(k,O)MﬂHLQ(S%)
Ivl=2 :
< ||7«ﬁ171+1arq _ krﬁlflekaprLz(S%) + ”,,,51718961”112(5%)

2 2
< |[@lwz(sy) + Di kL + Dy 2k!

< (Cspe + 1)(A1K* K + (Cant + 7)DE 1 E2K!).
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Now, we obtain by using (5.44),

Z Hr5172+k+w1g(k,o)wvurnp(sla) < DFE!,
=2 :
S [z g0 g L ) < DERL
=2 :

and

DN Lt @(k,O)th”LQ(Slﬁ) < DFE!.
=1 ’

Hence, (5.16) and (5.17) hold for |a| = k + 2 with as < 2 and (5.18) holds for |a| = k 4+ 1 with as < 1.

Step 2: In this step we prove that (5.16) and (5.17) hold for |a| = k+2 and (5.18) holds for |a] = k+1.
Part of this statement has already been proven in the previous step and we need to prove that (5.16) and
(5.17) hold for |a| = k + 2 with 2 < ag < k+ 2 and (5.18) holds for |a| =k + 1 with 1 < ag < k + 1.

We proceed by induction with respect to as. Let N € N; 2 < N < k4 1 and assume that (5.16) and
(5.17) hold true for |a] = k + 2 with as < N and (5.18) holds true for |a| = k+ 1 with ag < N — 1 (The
case N = 2 has been shown in step 1). We now show that (5.16) and (5.17) hold true for |a| = k + 2
with ag = N 4 1 and (5.18) holds true for |a| = k + 1 with ag = N.

Now, (5.33) implies that formally

rOptly + Uy + Ogug = 0.

Differentiate this equality with 2*+1=N:N) and multiply by r(#1=2+(k+1=N) on both sides:

r(51—2)+(k+2—N)_@(k-‘r?—NvN)ur 4 (k + Q)T(Bl—2)+(k+1—N)9(k+1—N,N)ur+

B1=2)+(k+1-N) gy(k+1—-N,N+1)

i ug = 0.

This implies that, by our assumption:

||7~(5172)+(k+17N)@(kJrlfN,NJrl)ug ||L2(51%)

< ||r(61—2)+(k+2—N)9(k+2—N,N)ur||L2(Sl )+ (k+2)||T(51—2)+(k+1—N)@(k-ﬁ-l—N,N)ur”LQ(sl)
- s s
2 2
< 3DFEN iR
Therefore, from (5.45), it follows that

Hr(5172)+(k+17N)@(kaN,NJrl)ue||L2(S15) < DEET(LN-&-I)—%M (5.56)
2

and (5.17) holds for |a| = k + 2 with ap = N + 1. Now multiply both sides of (5.32) by r2, differentiate
by 2*+1=N.N-1) a5 then multiply by r(F1=2)+(E+1-N) e obtain the following formal relation:

r(ﬁl—1)+(k—N+1)@(k—N+1,N)p _ 7,([31—2)+(k—N+1)9(k+1—N,N—1)(TQ(fe _ (W)e))
—(k+1- N)T(,é’l—l)w“(k—N)@(k—N,N)p
pr(BL=2)+k+3-N (k+3-N,N—-1) | v(2(k+1—N)+ 1)7‘(5172)+k+27N@(kJerN,N—l)

- +v((k+1—N)(k = N)+ (k+1— N) — 1)rfr=2+kt1=Ngk+1-N.N-1) ”
4ur(Br=2)+k+1-N g (k+1-N,N+1)

4 2up(BI=D+(H1=N) (k+1-N.N),,
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Hence, by the fact that Hj holds and by (5.37), (5.48) and (5.56),

||r(51‘1)+(’“_N+1)Q(k_N“*N)pHp(Slé )
2

-1 max(N—%
< K"Kl 4 Canp DEVEN+25) 4 DELEN k1 4 y DR N30 4 3p, ph-1 pax(N =500

_z -4 -3
+3uDE 2PN TS O Ly DE RN T TS oy DE BN TS

< 11(v + Canr + D(DFLEN*251 4+ DEEN "5 k1) 4+ KRR,
It follows from (5.46) that

(PN GNELN) ) < DEEN R
2

Therefore (5.18) holds for |a| = k41 with ag = N.

95

(5.57)

Finally, multiply both sides of (5.31) by r?, differentiate by 2*+1=N:N=1) and then multiply by

r(P1=2)+(k+1=N) "We obtain formally:

V?“(’Bl_2)+k+1_N@(k+1_N’N+1)ur — _r(ﬂl—2)+k+1—N@(k+1—N,N—1)(T2<fr _ ((U V)u)r))

r(Bi=1)+k+2-N g(k+2-N,N—1)
+ +2(k +1— N)r(ﬁl—1)+k+1—N@(k+1—N,N—1) P
+(k +1-— N)(]{ _ N)T(61—1)+k—N@(k—N,N—1)
—y(r(Br1=2)+h+3-N g(k+3-N,N-1)
+ +(2(k 41— N) + 1)r(Br=2+k+2-N g(k+2-N.N-1) e
+((k+1=N)k—N)+ (k+1—N)—1)rB=2+k+1-N gk+1-N,N-1))
4 2up(BL1=2)+k+1-N g(k+1-N,N),

Therefore, by the validity of Hy, (5.37), (5.48), (5.56) and (5.57),

2PN G NN Dy o
2

1 _
< ~(CantDFEN*2k 4+ K¥kl + DNEN-1 4 2DFLEN =11 4 2DF2EN—1k1 4 yDFELY
14

4 3y DE 1 g NTEO ) 4 3y, pho2 e (N=50 4 o) phot prmax(V=5.0) )
1 1

<14(= + Canr | 1)(DEPENT2E 4 DFEN-1R) 4 2Kk
1% 124 124

Then by (5.47), we obtain
||7«(ﬁ1—2)+(k—N+1)g(k—N+1,N+1)u7_HLZ(S%) < ijEiV*%k!.

Therefore (5.16) holds for |a| = k + 2 with ap = N + 1.

z
3k

(5.58)

By combining (5.56), (5.57) and (5.58) we have that (5.16) and (5.17) are true for |a| = k + 2 and
(5.18) is true for || = k+ 1. Hence Hy11 holds based on the validity of Hy. By induction we prove that

Hj, holds for any k£ € N>; and the proof is finished.

O
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Proof of Theorem 5.2.1. We have stated that the existence and uniqueness of the solution follow from
Theorem 3.1.3.

Lemma 5.2.7 indicates that there exists a constant D; > 1 depending on wy, § and (1 such that for
all € N? satisfying |a| > 2:

+a1—2 —2
H?”fl a gauT”LQ(S{%m) < Dll(" (|a| - 2)',

— —2
||r§31+o¢1 2@C"U9||L2(S§/2) < D|1a\ (la] = 2)1,

and for any |a| > 1:

+a1—1 -1
||7‘f1 ai -@ap||L2(S§/2) < Dlla‘ (|a| — 1)'

This result on the truncated sector S in the proof of Lemma 5.2.7 can be conducted analogously on
. 2
other sectors S%,i = 2,--- ,n and similar regularity results will be obtained: For each corner A;, there
2

exists a constant D; > 1 depending on w;, d and f3; such that for all a € N? satisfying |a| > 2:

7 2D s ) < D72 (ja) — 2), (5.59)
\|Tfi+u1—2@au0||Lz(S§/2) < D72 (o — 2), (5.60)
and for any |a| > 1:
I 2 pll sy < DI (lad = DL (5.61)
To see this, we re-index the corner by clockwise rotation of the indices: for i € {1,--- ,n}, we re-index

in the following way: A;11 — A;, wit1 — wi, Biv1 — P; and r; — r;—1. In this scenario, the proof of
Lemma 5.2.7 is actually made on the truncated sector S and then (5.59)-(5.61) are proved with i = 2.
The validity of (5.59)-(5.61) with ¢ > 2 will be shown byz doing multiple rotations until A;,w;, B;,r; are
re-indexed as Aq,w1, B1,71.

Now Lemma 2.2.5 and Lemma 4.1.3 give that for each corner A;, there exists a constant F; > 1
depending on w;, § and 3; such that for all « € N? satisfying |a| > 2:

ol —2 ~a || —2
72D | gy ) < DI (lal = 2)1, (5.62)
it+|al—-2 Hlal—2
[rPtel D%up|| (s ) < D172 (ja -2, (5.63)
and for any |a| > 1:
i+l =1 Ko - -1
rHle=1p Pllzaess ) < Dl Yo — 1)1, (5.64)

By the setting of ¢, it is easy to check that there exists a constant Cj depending on 3y, 2 and § such
that for any 7 € {1,--- ,n}, any j € {1,2} and any |a| > j.

Bitlal—j ~lo| =i
(I)ﬁf+|a\fj < Cb .

Therefore, for all i and all o € N? satisfying |a| > 2:
1®g;+jaj-2D%ur]|L2(s; ,) < (CoDi)*1 7% (la] - 2)!,

1®g;+laj-2D%uz|L2(s; ,) < (CyD)1Y=2(la] - 2),
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and for any |a| > 1:
H‘I)ﬂf+|a|—1Dap||L2(sg/2) < (CyD) =1 (Ja| — 1)

Lemma 5.2.6 implies that there exists Cy > nCyD; for any i such that for all a € N? satisfying |a| > 2:

a al—2
195, 1ol D%url| L2n0nsi L) < Ch 2 (lal = 2)1,

5/2
« al—2
195+ a1-2D%uall L2@\usst ) < (ol - 2)1,
and for any |a| > 1:
@ al—1
195, 41011 D Pllz2@ues: ) < C8 (o] = 1)
Summarize all the inequalities above and we have that for all @ € N? satisfying |a| > 2:
195, 410120t [l 120y < 266 (la] - 2)1,
195, 4 101-2D w2l 20y < 266 (la] = 2)!,

and for any |a| > 1:

« al—1
195, 11011 DDl L2 () < 205 (Jaf = 1)1,

These results together with the fact that (u,p)lsi € W (S5)? x W5, (S5) C H§;2(53)2 X Hgl(S};)
holds in each corner Sj imply that (u,p) € BE, (Q)* x Bj (). O




Part 11

hp-DGFEM Discretization
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Chapter 6

hp-DGFEM Discretization of the
stationary incompressible NSE

From this chapter on we analyze the mixed hp-DGFEM for the stationary incompressible NSE. The
analysis is mainly based on [40] and [36]. We assume from now on that 9 = I'p. Then (3.1) reduces to
the following problem:

—vAu+ (u-V)u+Vp=f in Q,
V-u=0 in €, (6.1)
u=20 on 0.

We introduce here a weak formulation of (6.1) which is different from (3.5). Define the following bilinear
form

Apostip(t,v) =v [ Vu:Vode, (6.2)
Q

The variational problem now reads: Find (u,p) € W X Lg such that for all v € W and ¢ € Ly,

Anoslip(u7 'U) + O(u, u, v)+B(v, p) = f v de,
Q (6.3)

B(u,q) = 0.

It has been shown in [14, Chapter IV, Theorem 2.1] that there exists a solution (u,p) € W x Lg to (3.5)
such that u belongs to the kernel Z := {v € W|V - v =0 in L*(Q)}. Moreover, by setting v = w in (6.3)
and using the Cauchy-Schwarz and Poincaré inequalities we get the stability bound

Crlflr2@
IVl 2 < ” 2, (6.4)
where
1
_ (Jo IVOllE)Z
Cp:=( T
ver (@2 [[v]L2(q)
is the Poincaré constant in . Here || - ||F is the so-called Frobenius norm on matrix(see [19, Chapter
5.2]).
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It has also been shown in [14, Chapter IV, Theorem 2.2] that the uniqueness of the solution for (3.5)
can be ensured under the small data assumption

CoCpllfllL2(a)
V2

<1, (6.5)
where the norm of the convective form is
O(w; u, v)

Co := sup < +o0.
vuwev [ (0) [V Q)| W H ()

We introduce a mixed hp-DGFEM discretization for (6.1) in this chapter. This discretization, which
combines the numerical scheme for the stationary Stokes system in [40] and a discrete trilinear form for
the convection term[9, Chapter 6], is proposed in [36].

6.1 Meshes and finite element space

Let T be a collection of meshes T on 2. We assume that each element is the affine mapping of the
reference triangle 7' = {(z,y) € R2 : & > 0,y > 0,2 +y < 1} or the reference square Q = (0,1)2. We
allow irregular meshes but we require that the intersection of the closures of two neighbouring elements is
a common vertex or a complete edge of at least one of those two elements. This setting makes it possible
to construct a geometric mesh towards a corner on 0f2, which is perfect in handling singularity of the
solution.

We denote by hx the diameter of the element K € T and h = {hk}xe7 the diameter vector. To
build the finite element space we also assign to each element K a polynomial degree kx > 1 and store
those polynomial degrees in a vector k = {kx}xe7. We set the meshwidth of T as hy = maxxer hi
and the maximum polynomial degree of T as k7 = maxgeT kg. Furthermore, we have the following
restrictions on those parameters mentioned above:

e (Shape-regularity) There exist two positive constants k1 and ke which are uniform with respect to
T such that
VK €T : ”JFHLOC([() Sﬁlh%( ||JF—1||LOO(K) Sf‘ilh;(z

where Jp(Jg-1) is the Jacobian of the mapping F(F~1) and K is T or Q.

e (Bounded local variation of mesh sizes and elemental polynomial degrees) There exist two positive
constants k3 and k4 which are uniform with respect to T such that for any two elements K and K’
sharing an interior edge

Kkshx < hgr < k3 hi Kok < kg < k) kg

An interior edge E; is the non-empty interior of 0K N JK’, where K and K’ are two adjacent elements.
Here we assume that F is the entire edge of at least one of those two elements. A boundary edge Fj is
the non-empty interior of 0K N 9N such that Ej is the entire edge of K. We denote by £7(T) the set of
all interior edges and Ep(T) the set of all boundary edges and set £(T) := Ez U Ep(T).

Given a mesh 7 and a vector k listing the elemental polynomial degrees, we introduce the following
local polynomial space Si(K) := {q =qgo F : G € Spy (K)} where, for an positive integer k, Sp(K) =
Pr(K) if K is a triangle and S (K) = Qi(K) if K is a quadrilateral. For definition of Pj, and Qy, refer
to [10, Chapter 1.2].

We now define the discontinuous Galerkin space

SE(T) :={v e L*(Q) : v|g € Sky (K), K € T}



6.2. TRACE OPERATORS 61

and introduce the following finite element spaces approximating W and Lg:
Vpe = [S5T))?.  @Qpc:=S5T), Qpc:=LiNQnc
We also define X, := [SE(T)]?*2, which will be used in the analysis of DG-FEM method.

6.2 Trace operators

The trace operators, which describe the property of the (numerical) solutions near the interior or boundary
edges, play a central role in the design of the discontinuous Galerkin methods. We introduce here some
trace operators which will be used later.

Given a mesh 7 € T and functions v € H*(T)?, g € H'(T) and 7 € H'(T)?*2, consider an interior
edge E € &7 shared by two elements K*. Denote by n* the unit outward normals on 0K+ and by
(vt, ¢, %) the traces of (v,¢,7) on F from K*. We define the mean value operator {{-}} as

{vh} =" +v7)/2,  {ap=(¢"+q)/2, {Hh:=E" +1z7)/2
We also introduce jump operator [-] as

lad] :==q¢ nt+q¢ n, [v] .= v nt+v -n", [v] .= v @nt+v @n, [7] =" nt+12 0.

For a boundary edge E € Ep, we define the mean value operators as {{v}} := v, {{¢}} :==¢, {z}}} =1
and {{r}} := 7, we also set jump operator as [[¢]] := gn™,[[v]] := v- nT and [v] ;== v® n'", where n' is

the unit outward normal on the edge E. Due to the trace theorem for H' functions in two-dimensional
case, all operators defined above are well-defined. Moreover, the following lemma holds.

Lemma 6.2.1. On an edge E, we have for u: Q — R? and 7 : Q — R?x?2

[ru] = [z] - {ul} + {2}« [l (6.6)

Here we assume that all trace operators are well-defined with respect to w and 7.

Proof. Elementary matrix manipulations. O

6.3 Corner elements
Define:
7:)8’)"t = {KET:?H{Aly"'7An}:®}7 ﬁnt ::T\%ert

We assume that each element each element in 7,..; touches at most one corner.
Given an element K € Tyert and assume that K N 0N = {4;}. We introduce the auxiliary space
Hg’l(K ) which is defined as the space HE’I(S(;) introduced in Chapter 2 but all integrals in the norm will

be taken on K instead of Ss. We simply write f € Hgl(K) if flx € Hgl(K)
We state the following auxiliary results.

Lemma 6.3.1 ([40], Lemma 3.1). Let K € Tyert, then
(1): Hg’O(K) C LY(K) and for any ¢ € HEQO(K) we have

160y < ORI 1600 (6.7)

(2): Let ¢ € Hy*(K) and v € L™(K), then

[ v dal < O ol o (6.9)
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(3): Let ¢ € Hé;l(K), then the trace ¢|lorx € L'(OK) and

6]l o) < CUllll2 k) + hk_&WIlH;«é(m) (6.9)

All the constants C > 0 are independent of the discretization parameter h, k.

Lemma 6.3.2 ([40], Lemma 3.2). Let K € Tyert, T € Hg;l(K)QXQ and v € CY(K)2. Then the following
integration-by-part formula holds

/KI:(V@)'U)da::—/KI:V'vdm—l-/ 7:(v®mn)ds, (6.10)

oK

here n is the unit outward normal vector.

6.4 Lifting operators

In this section we introduce some lifting operators, which map functions defined on edges to functions
defined on elements. As we will see later, they play a role in the design of the discrete forms.
The (global) lifting operator £ : H'(T)? — X is defined by

[ @ izda= [ [z vreZpe

&Tm

Also, the lifting operator M : H*(T)? — Qp¢ is given by
/ M(v)q dx = / [v]{q}} ds Yq € Qpe.
Q E(T)

These operators are introduced and thoroughly studied in [38].

6.5 Discretization on the variational problem

We consider the following mixed method: find (upg,ppa) € Vpe X @pe such that for any v € Vpg
and ¢ € Qpg:

Apc(upa,v) + Opa(upa; upa, v)+Bpa(v,ppa) = / frvde, (6.11)
Q )

Bpa(upg,q) = 0.

Apa, Bpe and Opg discretize A(-,+), B(-,-) and O(+;-,-). Given u,v,w € Vpg, those forms are
defined as:

Ape(u, v) = u/thu: Vivdao— V(/gm[[u]] {(Vho) + [0] - (Vaul} ds) + ”/E il - [o] ds,

(7)

Boov.a)i=— [ a¥n-vis [ (a)lol ds
1
Opc(w; u,v) := /Q((w Vi) - vde+ 3 /Q(Vh cw)u- v de— /é‘I(T)M (v} @ {w}} )ds

1
-3 /5 (v as

(6.12)
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Here V}, and V- denote the broken gradient and broken divergence operators, see [10, Chapter 1.2].
Also, the function j is the interior penalty stabilization function which is defined, for all edge E € £(T)
as jlg = jok%hgl with jo>0 as a sufficient large constant independent of A, k and v and with kg and

hg defined as:

max{kK, kK/}
k‘E = kK

and

min{hK, hk/}
hE = hK

if E=0KnNOoK' € &(T),
if E=0KnNoQe &p(T),

if E=0KnoK'e & (T),
if E=0KnoQe &p(T).

With lifting operators given in section 6.4 we rewrite Apg and Bpg as:

st |

Q

Boo(v,q) = —/Qq[Vh v — M(v)] da.

(Vhu:Vyv— L(u) : Vv — L(v) : Viyu) de+ 1// Jlu] - [v] ds,

&(T)

(6.13)

(6.14)

(6.15)



Chapter 7

Existence and uniqueness of the
discrete solution

In this chapter, we show the existence and uniqueness of the solution to the numerical scheme (6.11).
For a function v € H*(T)? we introduce the auxiliary norm ||v||pg by

I3 = Vo220 + / JI[ol? ds.
E(T)

ec -
We have the following result:

Lemma 7.0.1. There exists a constant jmin such that for jo > jmin and for any p € [1,+00), there
exists a constant Cemp = Cemp(Q, D, K1, Ko, K3, k1) such that for any v HY(T)?

”'UHLF(Q) < Oemb”v”DG-

Proof. The following broken norm
102 7 = Va0l + / B o] ? ds
&(T)

is introduced in [36]. [36, Lemma 4.1] indicates that there exists Cy := Co(2, p, K1, K2, K3, £4) such that
V]l 2r () < Collvll1,7-

Set jmin := m, then it is clear that ||v]|1,7 < ||v]|pg. Combine all above claims and the proof is
finished. O

From now on we assume that jo > jmin-

7.1 Properties of discrete forms

In this section we list some properties for forms Apg, Bpg and Opg. The following lemma shows that
Apg is continuous in H*(7)? and coercive in V pg.

Lemma 7.1.1. There exists a constant Ca, . = Ca,.(jo, K1, K2, K3, ka) such that for any v, w € H'(T)?
|Apc (v, w)| < Capevl|vlpelwlpe- (7.1)
Moreover, there is a constant Ceoer = Ceoer(Jmin, K1, K2, K3, K4 ) With

Apc(v,v) > CcoeTVH'UH%)& Vv € Vpg. (7.2)

64



7.2. EXISTENCE AND UNIQUENESS OF DISCRETE SOLUTIONS 65

The proof of this lemma is based on stability estimates on the lifting operator £, see [38, Lemma
7.1-Lemma 7.6] for technical details.
The following inf-sup condition for Bpg is proved in [36, Lemma 4.3]

Lemma 7.1.2. Suppose that ming e kg > 2 and let

o 1 if the mesh 7 contains at least one quadrilaterial
10 otherwise

Then there exists a constant Cys independent of h.k and v such that the following inf-sup condition for
Vpa and Qpg holds true:

B
i sup 2P o o s g (7.3)

04€Qpc 0veVpe ||Vl D¢l L2 (0)
The following result is proved in [36, Proposition 4.1].

Lemma 7.1.3. For any w,u € Vpg, we have Opg(w; u,w) = 0. Moreover, there is a constant Co
independent of h.,k and v such that for any u,v,w € H'(T)?

|Opc(w; u,v)| < Copellwllpellvllpellvlpe- (7.4)

7.2 Existence and uniqueness of discrete solutions

We introduce the discrete kernel Zpg := {v € Vpg|Bpa(v,q) =0,Yq € Qpc}-
All above properties of the discrete form Apg, Bpg, Opag can be used to derive the following existence
and uniqueness result for the discrete solution of (6.11)[36, Proposition 4.2]

Lemma 7.2.1. There exists a discrete solution (upa,ppc) € Vpe X @pa such that upg € Zpe and

Cemb”ﬂ‘L?(Q)

u < .
|lupc|lpe < VO (7.5)
Moreover, under the small data assumption
C Oem
Opce b||ﬂ|L2(Q) <1 (7.6)

c?z_v?

coer
the discrete problem (6.11) has a unique solution.

By the continuous and discrete small data assumptions (6.5) and (7.6) we know that if we define

Csm = max{co’iﬁfﬁ}égax{cﬁcmz’}, then both (3.5) and (6.11) will have unique solutions if the following

- COE‘.’V‘}
condition

CsmV_QHﬂlLQ(Q) < (7-7)

1
2
holds.



Chapter 8

Error analysis

8.1 Weak residual

We firstly introduce a weak residual which measures the non-conformity of the scheme (6.11). Given the
solution (u,p) € W x Lg, define

R (u,p;v) = Ap(u,9) + Ope (1 4, v) + Bp(v,p) — / foode (8.1)
Q

for any v € Vpg.
The error estimate is then defined as the weak residual

R .
Rpe(u,p) := sup M (8.2)
0#£veVpe V / ”v”DG
We also introduce the following norm
1w, )III? = vlullbe + v IplZ g (8.3)

for any function pair (u,p) € W x Ly.
The following theorem holds.

Theorem 8.1.1. Assume that there exists a positive constant Cl,, such that for 0 < v <1 (7.7) holds.
Let (u,p) € W x Lg be the continuous solution to (3.5) and let (upa,ppa) € Vboa X Qpe be the discrete
solution to (6.11). Then we have the following error estimates:

V' |lu—upgllpe < ClE[*| inf [[(w—v,p =)l + Rpc(u, p)] (8.4)
(v,9)€EVDeXQpa

v 2|lp = ppclla@) < ClEP] inf [I(w—v,p =)l + Rpa(u,p)] (8.5)
(v,9)€EVpexQpac

where « is defined in Theorem 7.1.2 and where the constant C' is independent of h.k and v.

For proof see [36, Theorem 6.1].

With this theorem we are able to bound the error term ||u—upg| pe and |[p—ppa||L2(o) by estimating
inf(, gyevxo l||(w — v,p — ¢)||| and Rpe(u,p). The following lemmas, which are similar to [40, Lemma
3-Lemma 6, Theorem 2] will focus on this task.

Lemma 8.1.2. Let f € L?(Q)? and (u,p) € W x Lo be a solution to (6.1). Then we have for any
vE VDG7

Roe(u, p; v) Z/Q(uVu—pD : Vh'udw—/g((wV)u—f)-vdcc—/

vVu: L(v) d:c—i—/ pM(v) dx. (8.6)
Q Q
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This lemma can be derived directly from the definitions of all discrete forms and (8.1).

Lemma 8.1.3. If all assumptions in Corollary 5.2.2 and (6.5) hold true, then for any interior edge
E € £7(T), we have that [[vVu— pl]] = 0in L*(E)? on E.

Proof. By Corollary 5.2.2, there exists 8 € (0,1)" such that (u,p) € BE(Q)2 X Bé(Q) The proof then
follows the same way as in the proof of [40, Lemma 3.3] O

Lemma 8.1.4. Let P: L*(Q)**? - X4 and P : L3(2) — Qpc denote the L*>—projection onto ¥
and Qpa. If all assumptions in Corollary 5.2.2 and (6.5) hold true, then we have, for all v € Vpg,

Roc(u,p;v) = v /5 [o] : {Vu— PV} — /g [l {lp — P()}}. (8.7)

Proof. By partial integration (this can be justified by using Lemma 6.3.2), (6.6) and Lemma 8.1.3 we
deduce

/(uVu—pl) : Vv
Q

= Z(/BK(VVu—pl):(v@nK)—/K(VAu—Vp)-'v)

KeT

:—/Q(yA'u,—Vp)-’U—‘r > /E[[(uVu—pD-v]]

Ee&(T)

= [wau-Vp) vt [ WVu-pll- o+ [ {0V p1) s o]
Q £2(T) £
= —/(VAu—Vp) : v—&-/{{l/Vu—pl}} 2 o]
Q £
So we have by using (8.6)
Roe(u,p; v) = —/Q(VAu— Vp) - v+/g{{yw—p1}} ol - /ﬂ((u- Vu—fl-v  (38)

—/QVVU:L('U)—F/QZ)M('U)
:/g{{yvu_pg}}:M_/QVVU:;(Q;H/Q;;M(U).

Also, due to the properties of projection operators and the definition of lifting operators £ and M we
have

[ vvus Loy =v [ PV Lo = [ [0l (2T, (3.9)
[ o= [ Poyme = [ [P (8.10)
Finally, insert (8.9) and (8.10) into (8.8):

Roe(u,p;v) = /5 {rVu—pI}} : [o] - v /E INCIRCANE /5 NG

v [ (Vu- £Vl - [ [l - POY.
15 &
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Lemma 8.1.5. Assume that all assumptions in Corollary 5.2.2 and (6.5) hold true.

Then there exists C depending only on ki, Ko, K3, kK4 and v such that for any v,w € Vpg and
q € Qpg we have

(R (wp: )| < CQl(u=vp=a)lllwlpe) + v [ (Vu=Vo: [u] = [ Hp—apfull. (510

Proof. For fixed but arbitrary v,w € Vpg and ¢ € Qpg, with (8.7) and the fact that L?-projection
reproduces polynomials in ¥~ and Q) pg we have

Rog(wpiw) = v [ [u]: (Vu=Vyo—P(Ve) = P(V,0)} - / [ulflr — - P() + P)}
= [ [l - (B (=) + [P -0+ (v [ (Tu= Vo [u] = [ o - apfu]).

A B

We consider bounding term A:

v [ Ll - {E(V (0= w)} + [ [wliPo - O}
<ol [ RO+ | [Tl P - O
<v [P [ KRS o= e+ [P [ Pe - o

hK hK 1
< Cllwlpe Z [kTVHB(V(v* W) 7205 + kTHP(p — 2 0m))2
KeT K K

< Cllwlpa V| P(V(v - w) |20 + [P — @)l r2(o)
< Cllwllper? V2 |V (v — w)|L2ge) + v 2 lp — qll 2 ()]
< Cllwllper? v ||u—vlpe + v [lp — qll ()]

< Cllwlpell(w—v,p - q)l-

The constant C' here only depends on k1, ko, K3, k4 and v. In above derivation we use the Cauchy-
Schwarz inequality, the definition of j, hx, ki, the inequality |[w]|* < |[w]* and the following trace
inequality

1917 20) < Chichi 1911720

which holds for any polynomial ¢ € Qg (K), see [41, Theorem 4.76]. Combine all results above and we
have the result.

O

8.2 Quasioptimality of the discontinuous Galerkin method

Lemma 8.2.1. Assume that all assumptions in Corrollary 5.2.2 and the small data assumption (7.7)
hold true. Denote by (u,p) € W X Lo the unique solution to (3.1) and (upg,ppc) € Vpe X Qpg the
unique solution to (6.11) with k > 2. Then we have

|2+t inf  (E1+ Ea+ E3) (8.12)
(v,§)€EVDpce*xQpac

I(w—wupa,p — poa)lll < Clk
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where E1,Ey and E3 are defined as

E} = Z (lw = ol gy + PiCllw— vl 22y + Ip = dll72(50))s
KeT

Z hic(Ju— vtz + 10— @70 )
KeTint

2(1—
Z h( Ar) (|u 'v\sz(K)-Hp qull(K))
KeTvert

Here the constant C is independent of the discretization and we write Bx = B; if K touches A;.

Proof. By Corollary 5.2.2, u € Bg(Q)2 and p € BE(Q) for some 8 € (0,1)". In view of Lemma 8.1.5 and
Theorem 8.1.1 the crucial task is to bound |||(v — v,p — ¢)||| and

sup inf v / {Vu—Vol} : ] - / - ) [ll).

0£weVpg (v ’Q)GVDG XQpa ||wHDG

For any § € Qpg, set ¢ = G — ﬁfgij Qpe-
We firstly consider bounding |||(u— v, p — q)|||. In the following steps we will use the trace inequality

16172 0x) < Clh 8ll72(x) + hlOlin ), Vo € HY(K). (8.13)
We have

Ju=vlbe = 3 [0l + [ slus]Pds

KeT
<Y IVl +C Y [ ki fu oPds
KeT KeT eaK
< Z IV (w = 0)[|72(5) + C Z kit lu—ol|72 o5
KeT KeT
< Clk? Z IV (w = )72y + Px 1w = vll72(ox))
KeT
< ClkP Z (lu— w3 gy + hx Nl — |7 gy + [ = 3 )
KeT
< C|k|*E}.

Here the constant C depends only on k3, k4 and jg. Moreover, for any q € Qpq,

I — allzzy = lp— G — |9 /Q (- Dl

N _1 . 8.14
< Ip -l + 19 2/|p—q| (8:14)
Q
<2(lp = Gllz2 ) < 2E:.
So
l(u—vp— QI < vCIEPE? + v E? < C|KE?.

The constant C here depends only on k3, K4, jo and v. Take the infimum among (v,q) € Vpg X @pc
and we have

inf u—v,p—q)|||* < C|k|?E?. 8.15
(v’q)evDGXQDGIII( p—lll” < ClE["E] (8.15)
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To bound SUpysyev g inf (o, q)EVDcXQDc(HwHDG v [{Vu— Vo}} : — Jellp — ¢}w]l), we fix
v,w € Vpg and ¢ € Qpg. Then we have

» / {Vu— Vol : [u] / {p— ahlw
<3 [ ATu=ul: [l + 1y - a}wl| ds

Ec&

<Z/ v[{{Vu— Vol + [{{p — ¢}}l) - [[w]] ds

Eec&

< S ey / VI{(Vu— Vol + [{p - a3} ds.

Ec&

Since w € V pg, each component of Jw] is still a polynomial. Apply the trace inequality for polynomials
(see [34, Lemma 1]):

Mz~ () = NIl < FHI[[w]H Y j%l[[wﬂllmua)

Notice the inequality [[w]|* < [[w]|?, we have

v / {Vu— Vol : [w] - /8 - a} [l
<c3( FH 1l 2ee) </Ev|{{w—W}}|+\{{p—q}}|ds>>

Eec€&

Ll w22 3 v u— Vv — s)?)2
7C(§||\/EMIIL (2)) (Z(/E {Vu— Vol + [{{p - q}}| ds))

FEe&
gC(/ S []? dsﬁ((/m{{w Vol ))? /|{{p IR

< Cllwllpe - [ (IV(w= )} 0x) + P = alF:0m))) -
KeT

In the case that K € Tint, since u € B3()? and p € B5(Q), Vu|x € H'(K)*** and p|x € H'(K). By
applying the Cauchy-Schwarz inequality and the trace inequality (8.13):

IV (u =)L ox) < ChiclIV (= )2 05) < ClIV (= )12 50) + ChE|V (1 = )31 )

< Cllu— o3 ey + hiclu— vl3p (i)

Similarly ||p — q||2L1(aK) < C(p - qH%z(K) +h2%|p— q‘%fl(K))' Here the constant C' depends only on
and Kso.

In the case that K € T, we apply the third assertions of Lemma 6.3.1 on Vu € Hé’;(K)QXQ and
pE HéKl(K) We have
2(1—
IV (e = )31 000y < CUV (= )32y + B

2(1—

2
"u’_ U‘H;ﬁ(K))’

Ip = allZor) < CUlp — all7z iy + P Ip—Q@;;(K))-
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By all claims above and noticing that V(¢ — ¢) = 0 we have

ol [4Vu= Vol ful = [ - apul

<[ Z lu— U|H1(K) +llp - q||L2(K) Z h(|u - Uﬁql(K) +1lp- qﬁql(K))"’

KeT KeTint
ST (|- o2z ey 10— i )z
K€Tpert e (0
<C| Z (lu— w3 gy + lp = @ll72(x) + Z h (1w = ol gy + 1P — @3 )+
KeT KeTint
D e (e e TR
KE,Tvert HB,K(K)

< C(E? + E2 + E2)3.

Here the constant C' is independent of |k|. As the choices of v,w € Vpg and ¢ € Qpg are arbitrary,

sup inf IV/{{VU Vol : [w] /{{p alHwl)) < C(E} + B + E3)=.

0£weVpg (1:0)EVDeXQpa H’wHDG
Now, by Lemma 8.1.5, (8.15) and the definition of R pg(w,p):
Rpc(u,p)® < C(|k|*E} + E? + F3 + E3) < C|k|*(E? + E3 + E3). (8.16)
Finally, use Theorem 8.1.1, (8.15) and (8.16):

llw— upe,p — pocll®

= vlu—upclpe +v P - poall2

< C(|k[** + [K|*)[|KI*E} + |k|*(ET + B3 + E3)]
< Clk|**T2(E? + E3 + E3).

Taking the square root of each side and then taking the infimum among all (v, ¢) € Vpg X Q@ pg concludes
the proof. O



Chapter 9

Exponential rate of convergence

In this chapter, we show that the error estimate in Lemma 8.2.1 is exponentially convergent on geometrical
meshes. Theorem 9.2.1 will be the main result of the Ap-DGFEM’s performance on the stationary
incompressible NSE with zero Dirichlet boundary condition.

9.1 Geometrical meshes

We follow the steps in [36, Section 6.3] which introduce the hp-DG discretization that uses geometrically-
refined mesh towards the corners with linear polynomial slope. We fix a refinement ratio o € (0, %)7 a

polynomial slope s>0 and a minimum polynomial degree kp,;,. Let R := min; je1,. w. We also
fix a constant ny, € N.

We firstly consider a corner A € {A;,---,A,} and the corner mesh T} := {K € T : d(K,A) < R}.
Suppose that T} can be divided into mesh layers T} := £} U--- U £l such that

e (1) £ contains all elements touching c.

e (2) Minjee gt d(K,A) ~ max gl d(K,A) ~ Ro.
e (3) For all K € £, hgx ~ Ro?.

o (4) I8} = ny.

Here all relations are uniform with respect to [ and j. Furthermore, if T € T} is a triangle, we assume

that there exists an affine map Fr such that T = Fr(T) and that for Q7 := Fr(Q), we have

] (5) Qr C Q.
e (6) d(Qr,A) > Cd(T, A) uniformly with respect to T' and to the refinement level .

Remark 9.1.1. It has been shown in [11, Lemma 1] that (5) holds for meshes that are sufficiently refined
using the Newest-vertex Bisection technique. Moreover, it can be shown that for any T, there exists an
affine mapping such that d(Qr,A) = d(T, A). The key is to construct an affine mapping that maps the
segment y = —x + 1,2 € (0,1) to the edge of T' which is the furthest edge away from A.

The refinement of the mesh 74 is 74" := £t' U--- U 1] with 5" = &} for j =0,1,--- , 1 - 1.

Now, the mesh 7% on € is obtained by using 7? for i = 1,--- ,n and by using a fixed quasi-uniform
partition Trizeq in the rest part of {2. Moreover, for each element K € 22 - SlAi, the polynomial degree
corresponding to K is set as kx = kyin + | (¢ — j)| and for each element K € Tyiged , kx = kmin + 8]

72
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Figure 9.1: An example of the corner mesh near a right-angle corner. The dashed lines show how to
refine the corner mesh at the next refinement step. In this case ny = 3.

9.2 Exponential convergence

We now prove the exponential convergence of the discretization stated in Chapter 6 with the mesh
described in Section 9.1.

Theorem 9.2.1. Assume that (7.7) holds and let (u,p) be the solution to (3.1) with f € Bgf(Q)2 for

a vector By € (0,1)". Let Vpe and Qpg be the spaces defined in (6.1) with respect to the mesh T'
and the polynomial setting shown in Section 9.1 and let (upa,ppc) € Vpa X @pa denote the numerical

solution corresponding to (6.11). Then there exist two constants b and C' independent of 1 such that for
N =dim(Vpg) = dim(Qpg) we have

l[(upe — u,ppa —p)|| < CeXp(—bN%).

The proof follows the lines of [40, Theorem 6.4] and [36, Theorem 6.3].

Proof. By Corollary 5.2.2, there exists § = (81, , 8n) € (0,1)" such that u € B%(Q)2 and p € BE(Q)
For any element K touching a corner A; we write fx = 3; and rx = 7r;.

Now we consider bounding E? + E3 + E? in Lemma 8.2.1. We start by considering elements in Tyt
Split E7 as:

B = [ (= ol + Al ol + I = )
KE'T;Jnt
+~/K - (‘u_vﬁ{l(l()+h;(2|‘u_v”%2(K)+||p_EjH%2(K)) = Elz,int—’_Eivert'
ETvert

By [37, Proposition 5.1, Proposition 5.4] and the assumption (3) on the corner mesh in Section 9.1, for
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any K € Kyere there exist v € Qi (K)? and G € Qo(K) such that

S (= v + hilllu— vl3a e + I — @122 0)

KeTvert
2(1—
KeTyert
<C Z 02(17ﬁK)l(|u’|H2'2(K) + \P|H;=1(K))-
Keﬁzert
and
2(1— 2(1—
D T vl g+ 0= Al ) <€ D0 T gz 0 + el )
KeTyert KeTyert
2018 (9.1)
<C > x) |u\H22(K)+|p|H“ K):
KeTyert
So there exists two constants Clert, byert independent of [ such that
Eivert + E32 S Cvert eXp(_bUertl)- (92)

Now it remains to estimate

2(i—1 i
Eimt +E§ = Z ( Z hK( )|u— vﬁ{’i(K) + Z h%{\p— (Jﬁ{i(K))-
K€Tipn: i=0,1,2 i=0,1

We fix an element K € 7;,;. We firstly consider the case that K is a quadrilateral. For any s < kg such
that s < ki, let v € N3 be a multi index such that |y| = s > 0. It has been shown in [41, Corollary 4.47]
that there exists a polynomial v € Qy, (K)? such that

i kx —s)! 2lar|—2
> W ol < O Y (! 52 I ) (93)
i=0,1,2 i=0,1,2 (kxc + s +2 —20)! la|=1,2,3
Set Bmage = max 3;. It can be inferred from conditions (2), (3) in Section 9.1 that I e hﬁ 7+ uniformly
in j and [ on K. we have
2(i—1 s 2(1=Bmaax (kK — ) o -2 o
3 vl S O 3 ey 2 I )

i=0,1,2 i=0,1,2 lo|=1,2,3
(9.4)

In the case that K = T' is a triangle, we consider Q7 defined in Section 9.1 and note that for k € N,
Qkr/2) C Pg. So all functions in Q|,. /2 (@) can be restricted to functions in P, (T), i.e., for i = 0,1,2
there exists a polynomial v € QL’“—TJ (Qr)? such that v|r € Py, (T)? and

2

lu—vlgir) < Clu—vgiQq)-

Here the constant is independent of kr and hr. It can also be derived from conditions (2), (3) and (6)
in Section 9.1 that on Qr we have r? ~ hg;‘“” ~ héaf”‘”. Use the above argument we obtain that there

exists a polynomial v € Py,.(K)? such that for s < [ %],

kr
120 (5] - 9)! _
Do i P vl < ORI N (2 D [ Pt AN

i=0,1,2 i=0,1,2 (L] +s+2 - 20)! la|=1,2,3

(9.5)

))-
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This estimate is weaker than (9.4), so it still holds for quadrilateral elements and it will be used in the
following. We still denote S, (K) = Qp, (K) if K is a quadrilateral and Sy, (K) = Py, (K) if it is a
triangle.

As u € B3(Q)?, there exists two constant A,, C,>1 such that for any multi-index o € Nj with |a| >0

we have [[rl®H+8=2Dy|| 12 () < C’uALa|72(\a| —2)1. Therefore, selecting C; and A; which are independent

of s (they depend only on u) and satisfying 908“‘103143(5“)(3 +1)2 < C1 45, we obtain that for any

K € Tint there exists v € Sy, (K)? such that

i— —Brma: (L5) — 9! -
i=0,1,2 i=0,1,2 (LTKJ +s 42— 20)! |a|=1,2,3
(9.6)
< oyp20men)_FT =L e
- (L5 +s -2

Now, notice that p € Bé(ﬂ), use the same arguments as in (9.3)-(9.6) and we obtain that there exists a
polynomial § € Si,.—1(K) and two constants Ag, Co (they only depend on the pressure p) such that

kx| _ )
W2 — a2, < copiBmen) L= e 9.7
25 MR o = Cie T e S Y "

Now we use (9.6) and (9.7) to bound Ef, , + E3. We note that if K € £ C 7!, then hx ~ o
and kx = kj := kmin + s|{ — j|, otherwise (K € Tfized) hx < diam(Q) is fixed and kx = ko. Set
A = max(A1, Az) and we have

2(1—1 i
E12,int +E; = Z ( Z hK( )\u— '”@n(K) + Z hi|p — Q‘%Ii(K)) (9-8)
Keﬂntu(ui:1,2-»-,n7—cli) 1=0,1,2 1=0,1
2(i—1 7
+ 3 0> B V=g + Y WP — a0
KeTfi"d 1=0,1,2 1=0,1

l ' Bl _ o)

< Q) o?Fmeadd  min ECLZ‘J—S)AS(S!)?]
= =12,k /2) (| 5] 45— 2)!

S Cint eXP(—bintl)

for some positive constants Cj,; and b;,¢. Here the final inequality can be derived from [39, Lemma 5.9
and Lemma 5.12]. The proof is finished by combining (9.2), (9.8) and the fact that N ~ [3 as| — +o00. O



Chapter 10

Discussion on main results

In this chapter, we conclude our work and give some discussion.

The two major results in this thesis are Theorem 5.2.1, which show the analytic regularity of the
solution to the NSE with specific boundary condition(see Chapter 3) using the weighted, analytic function
spaces Bé (Q) with 0 < 8 < 1 and Theorem 9.2.1, which establishes exponential convergence of a suitable
hp-DGFEM applied to the NSE with an analytic solution in a polygon. We give some further discussion
on these theorems.

10.1 Discussion on Theorem 5.2.1

Theorem 5.2.1 justifies the analytic regularity of the solution in polygon given analytic data and homoge-
neous boundary conditions. To the best of our knowledge, there is no previous result about the analytic
regularity of the stationary NSE in a polygon with mixed boundary conditions (A result which considers
only Dirichlet boundary condition was presented recently in [28]).

The core method we use here follows from [16] and [17], which studies the polar-component form of the
equation using polar coordinate: in Step 1 of the proof of Lemma 5.2.7, we evaluate W5, (Sé)2 x W3, (Sé)

regularity of higher order derivatives (r*9*m,r*9%p) by considering an auxiliary Stokes problem with
(rkafﬁ, rkafp) as the solution. Here, the usage of polar coordinate in the proof ensures that the boundary
conditions of this auxiliary problem can be easily determined by derivatives of the boundary value of (u, p)
and lower-order derivatives of p. This method was not possible to use with Cartesian coordinates.

What is the flaw in this method? One might notice that our restriction on the boundary condition
appears strange, particularly with regard to Condition 2 in Remark 3.1.1:

Condition 2: Each corner A; must have at least one touching edge with Dirichlet bound-
ary condition or have both touching edges with slip boundary condition.

This condition rules out the possibility that we have only Neumann boundary condition or Neumann
boundary condition combined with slip boundary condition near a corner. From a practical point of view,
we may find it kind of acceptable as these cases are uncommon in physical application. However, they
are still of mathematical interest. Why is Condition 2 imposed here?

We revisit Theorem 5.1.1, which studies the local property of the solution to the Stokes problem near
a corner. Theorem 5.1.1 says that if the boundary condition near a corner (say, A;) follows Condition 2,
then the solution (u,p) satisfies that u € W3 (55)? C C°(S5/2)* and u(A;) = 0. However, if Condition
2 is violated, then w is still continuous but not necessarily vanish at A; and thus it is possible that
u,u ¢ WEI(S(%)Q. Similarly, the auxiliary Stokes problem’s solution (r*9¥w, r*9*p) might not exhibit
ng (S %)2 X VVBI1 (S é) regularity. Thus we could not evaluate higher order derivatives of w by calculating

w3 (S% )-norm.
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Therefore, if we follow the route in this thesis, [16] and [17], we must enforce Condition 2 on the
problem. On the other hand, for the study of Stokes or stationary incompressible NSE in a polygon with
general boundary conditions, the Kondrat’ev space WE(S(;) with 0 < 8 < 1 is not large enough to contain
the solution(However, the space Bé () describing the analyticity might still be applicable). To study the
analytic regularity to these problems, a larger weighted Sobolev space should be constructed.

The good news is that the aforementioned flaw only affects equations with vector solutions. For a
scalar equation, we do not need to take the polar component of the solution and thus do not face the above
problem. As an illustration, we can use the method described in this thesis to investigate the analytic
regularity of the solution to the following equation with specified boundary conditions in a polygon

L(u) +g(u) = f,

where L(-) is an elliptic operator and ¢(-) is a function satisfying particular conditions. The analytic
regularity result for the linearized version, which omits g, is studied using polar coordinates in [4].

10.2 Discussion on Theorem 9.2.1

A central task in the hp-DGFEM discretization for stationary incompressible NSE with zero Dirichlet
boundary condition is to discretize the functional forms (6.2), (3.3) and (3.4).

We remark here that other possible discretization strategies exist. As for (6.2), this thesis uses
the so-called symmetric interior penalty discretization of the Laplace operator. A list of other possible
discretizations can be found in [3]. [38] justifies, for some of those discretizations in [3], the stability and
consistency properties. With minor modifications to the proof of Theorem 9.2.1, those discretizations
shall lead to exponential convergence as well.

A future generalization for this theorem (or the discretization) is to consider NSE with mixed boundary
conditions and apply Ap-DGFEM on (3.5) instead of (6.3). For this aim, we need to consider discretizing
(3.2). Possible strategies for this could be found in [18, 45] treating the elastic problem, which is related
to the Stokes problem/NSE. Related discrete functional analysis tools are already developed in these
references. We expect that with the regularity result in Part 1 and with mesh design similar to that
presented in this thesis, Ap-DGFEM will achieve exponential convergence as well. Details for that shall
be completed in a future paper.



Appendix A

Eigenvalues and eigenvectors of the
operator pencil |L, B|

A.1 Determination of the eigenvalues and eigenvectors

Consider the following homogeneous problem:

L(D, M) (w,p) = (0,0)  on (0,w)

(A1)
B(D, A)(w,p) = (0,0,0) on {0,w}

We recall that dy = iD and the operators are defined as:

) vD? 4+ 2u(1 + \?) v(3 +iA)iD —(141A)
L(D,N) = —v(3—i\)iD  2uD?+ (14 \?) iD
1—i\ iD 0

and

- 1 0 0
B(D7>‘)|VD :Al = (0 1 0)

(mD —v(141iA) 0)

B(D,Alvy = 4 2 2wiD —1

- 0 1 0
B(D, Mlve = 43 = (Z'D —(1+1X) 0)

We firstly study the fundamental solutions. Since [IA/7 B] has only constant coefficients, all fundamental
solutions can be written in the form exp(b#) ' where b is a constant and E is a vector, b and E satisfy
L(—ib,\)E = 0. As det(L(—ib,\)) = v(A\?+ (1 —ib)?)(A\2+ (=1 —1ib)?), we have by = —i — \, by = —i + ),
b3 =1i— M\ by =1+ A If X\ 0,+i, then for by we have

( v A+i)(A=3i) —iv(A—=3)(A+1) —i(A— z))

L(=iby, \) = [ —iv(A+30)(A+i) —vA+i)(A+3i) —(A+1i)

—i(A + 1) —(A+1i) 0

Therefore, the fundamental solution corresponding to by is exp(b;0)E; where F; = (1, —i,0)". Similarly,
we have

(A +3)(A—i) —v(A—i)(A=3i)  A—i

) (V(A —)A+3) (A —3)(A—1) —i(A— i))
L(—iby, \) =
—i(A+1) A—i 0
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and we obtain for by the fundamental solution exp(b20)Es where Ey = (i(A — i), —(\ + i), 4ivA)t. Fur-
thermore,

) VA=) A+3i)  —iv(A—3)(A—i) —i(A—1i)
L(—ibs, \) = | —iv(A+3) (A —i) —v(A—D)(A—3) —(\—1i)
—i(A+1) —(A—1) 0

and exp(b3f)E3 with E3 = (i(\ — i), A + i, 4iv)\)! is a fundamental solution for b3. Finally.
v+ )N —30)  iv(A—3D)(A+i)  —i(A— )

L(—ibg, \) = [ ivO +30)A+i) —vA+i)(A+3i) A+
—i(A+1) A4 0

and the fundamental solution for by is exp(bs0)E4 where E4 = (1,4,0)!. Combine all above and we have
that the solution of the homogeneous problem has the form

(@, p) = Y _ Bjexp(b;0)E;. (A.2)

If A =0, then by = by = —i with the eigenvector EY = (1, —i,0)! and b3 = by = i with the eigenvector
EY = (1,4,0)!. Therefore the solution can always be represented as

4
(@6, p) = Y _ Bjexp(b;0)EY. (A.3)

j=1

Here EY = (i0 — 1,0, —2v)! and E} = (—if — 1,0, —2v)".

If A\ = i, then by = —2i with the eigenvector E! = (1,—i,0)!, by = b3 = 0 with the eigenvectors
Ei = (0,2i,—4v)" and EY = (0,—2i,—4v)! and by = 2i with the eigenvector Ej = (1,4,0)* and the
solution has the following form:

4
(4, p) = Z Bj exp(b;0)EL. (A.4)

And if A = —i, then b; = by = 0 with the eigenvectors Ey* = (1,i,0)!, E;" = (1,—4,0)", by = —2i with
the eigenvectors E5 " = (2,0,4r)" and by = 2i with the eigenvector E; " = (2,0,4r)" and the solution has
the following form:

4

(@6,p) = > _ Bjexp(b;0)E;". (A.5)
j=1

The vector B = (By, Bs, Bs, B4)! could be determined according to the boundary conditions.

Lemma A.1.1. Set o = —iX. If {{0},{w}} C Vb, then the solution X to the equation

a? sin?(w) = sin?(aw), a#0 (A.6)

are the eigenvalues of the operator pencil [ﬁ, B]
If {{0}} C Vp,{{w}} C Vi, then the solution X to the equation

o?sin?(w) = cos?(aw) (A7)

are the eigenvalues of the operator pencil.
If {{0}} C Vp,{{w}} C Vg, then the solution A to the equation

20 sin w cos w = sin(20w), a#0 (A.8)
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are the eigenvalues of the operator pencil.
If {{0},{w}} C Vi, then the solution X to the equation

o? sin?(w) = sin’(aw) (A.9)
are the eigenvalues of the operator pencil. Moreover, the eigenvectors corresponding to A\ = 0 are
(cosf, —sin6,0)%, (sin 6, cos6,0)t.

If {{0}} C Ve, {{w}} C Vn, then the solution X to the equation

202 sinw cosw = — sin(2aw) (A.10)

are the eigenvalues of the operator pencil. Moreover, the eigenvector corresponding to X = 0 is (cos 6, —sin 0, 0)*.

If {{0},{w}} C Vg, then the solution X to the equation
sin((1 4+ o)w) sin((1 — a)w) =0 (A.11)
are the eigenvalues of the operator pencil (Therefore, 0 is not an eigenvalue as by our assumption on the
domain w # 7).

Proof. Let A(«a) be defined as in the proof of Lemma 5.2.5, then it is easy to check, from [32, Section

3.2], that A(—i)\) = [L(D, A), B(D, \)]. The assertion follows now from [33] and [32, Example 3.2]. O
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