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Abstract
The multilevel Monte Carlo (MLMC) Finite Difference (FD) simulation of sta-
tistical solutions of the (incompressible) Navier-Stokes equations (NSE) as de-
scribed in [2] is proposed. The corresponding probability measure µt on the
ensemble of Leray solutions of the NSE is approximated by sample averages
on a hierarchic family of discretizations in space and time. Uniform measures
µ0 are considered. Direct numerical simulations of NSE for the pathwise so-
lutions are performed, using the code IMPACT of Kleiser et al. [6]. The ef-
fect of under-resolved scales for coarse grid samples in the MLMC-FD on the
overall accuracy is investigated. Efficient parallelization and a load balancing
strategy of the MLMC algorithm on distributed memory architectures are pro-
posed along the lines of [17]. Numerical results in two spatial dimensions, with
periodic boundary conditions on large scale, parallel computers are presented.
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INTRODUCTION ix

Introduction

The incompressible Navier-Stokes equations (NSE) govern the motion of constant property
Newtonian fluids. These are deterministic non-linear equations, however, at high Reynolds
numbers, their solution display a chaotic, or turbulent, behavior, and are very sensitive to
small perturbations in initial conditions, boundary conditions and material properties [14,
sect. 3.1]. It is therefore accepted that turbulent flows are statistical in nature [2, sect.
5.0].

A statistical solution describes the evolution of the probability distribution of a random
variable that satisfies some dynamical behavior. In the context of statistical solutions of
the Navier-Stokes equations, we assume we are given an initial probability distribution on
the ensemble of all physically meaningful velocity fields, and consider the evolution of the
probability distribution in time as the initial velocities evolve. In particular, we consider the
evolution of statistical moments of the probability distribution. Such moments (which are
ensemble averages of some quantity of interest) are of importance in a variety of contexts.

In [1], a novel theory and computational approach to compute generalized moments
of statistical solutions of the incompressible Navier-Stokes equations has been presented.
The approach consists in a multilevel Monte Carlo sampling strategy combined with the
use of space and time discretization methods for each sample. It permits to capture effi-
ciently ensemble averages and bulk properties of viscous, incompressible flows, because it
can compensate to some extent under-resolved discretizations by statistical oversampling
[1, sect. 9]. In this thesis we study the theoretical concepts that lead to this approach, and
test the method for two-dimensional incompressible laminar flows with periodic boundary
conditions, on large-scale, parallel computers. The thesis is structured as follows.

In Chapter 1, we review the fluid dynamics model behind the incompressible Navier-Stokes
equations, starting from the continuum hypothesis and continuing towards the formulation
of conservation laws of continuum mechanics applied to fluids. The assumption of constant
material properties will then lead us to the incompressible Navier-Stokes equations. Then,
following the description in [2], we present concepts and results from the mathematical the-
ory of the Navier-Stokes equations. In particular, we introduce the solution spaces of finite
kinetic energy and finite enstrophy for no-slip and periodic boundary conditions with as-
sociated norms, the Stokes operator, whose eigenfunctions constitute an orthonormal basis
of the solution spaces, the functional formulation and the weak formulation of the Navier-
Stokes equations, whose solutions are called Leray solutions. We conclude the chapter by
presenting explicitly an orthonormal basis for the space of divergence-free periodic velocity
fields, which we will use to expand data in our numerical experiments.

In Chapter 2, further following the presentation in [2], we turn to statistical solutions,
which are one-parameter family of probability measures that satisfy an evolution equation,
starting from a given initial probability measure on an ensemble of initial velocities. We
introduce first the concept of (generalized) statistical moments, present then an evolution
equation for these statistical moments, which will lead to the definition of statistical solu-
tions of the Navier-Stokes equations, and conclude with an existence and uniqueness result.
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In Chapter 3, we present the Monte Carlo (MC) sampling strategy, from which ensemble
averages and bulk properties of the statistical solution can be approximated by sampling
from the initial probability distribution and calculating a sample mean. We then present
a result from [1], that states that, with mild assumptions, the error (in a statistical sense)
of the sample mean decreases with the square root of the number of samples, and this
independently of the kinematic viscosity.

In Chapter 4, following the presentation and results in [1], we discuss the effect of using
space and time discretization methods to approximate the sample solutions used in the
Monte Carlo approach. This results in the singlelevel Monte Carlo method (MC). We then
present the multilevel Monte Carlo (MLMC) method, in which the statistical moments
are approximated numerically by sample averages on a hierarchic family of discretizations
in space and time, and permits to equilibrate statistical and discretization errors more
efficiently than the singlelevel Monte Carlo method.

In Chapter 5, we give a detailed description of the solver that we use in our numerical
experiments to approximate the sample solutions in the MC and MLMC methods. The
solver is named ‘IMPACT’ [6] and is a massively parallel solver for incompressible flows
which uses Finite Differences (FD) in both space and time for the discretization and solves
the resulting linear systems iteratively.

In Chapter 6, we present the MLMC-FD solver developed in the context of this thesis,
which uses the IMPACT code to calculate the pathwise evolutions of randomly generated
initial velocity samples that are used in the MLMC method. This solver was implemented
on top of the IMPACT solver for a usage on parallel computers, based on a static load
balancing strategy presented in [17].

Finally, in Chapter 7, we present results from numerical experiments on large-scale,
parallel computers, where two-dimensional incompressible flows with periodic boundary
conditions and uniform probability distributions for the generation of the initial data were
considered. In these experiments, the MLMC-FD solver is first tested. Then, further
tests are done, where the convergence of the error of the MLMC method is measured and
compared with the theoretical predictions, and where the effect of under-resolved scales
on coarse grid samples on the overall accuracy of the approximated statistical moments is
investigated.
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Fluid dynamics model and elements of the mathematical theory of the Navier-Stokes
equations xi

Chapter 1

Fluid dynamics model and
elements of the mathematical
theory of the Navier-Stokes
equations

In the first part of this chapter, we present the fluid dynamics model behind the Navier-
Stokes equations, following the description in [11], [14] and [2]. A detailed description can
also be found in [12]. We first briefly review the physical principles behind the continuous
representation of fluids, and present two different continuous representations. Then we
review the basic conservation principles of continuum mechanics applied to fluids, which
will lead to the incompressible Navier-Stokes equations that govern the flow of constant-
property Newtonian fluids.

In the second part of this chapter, we present concepts and results from the mathematical
theory of the incompressible Navier-Stokes equations that can be found in the book of Foias
et al. [2], as these are needed to define statistical solutions of the Navier-Stokes equations.

1.1 Continuum hypothesis and continuous representa-
tions

As mentioned in [14, chapt. 2.1], the “idea of treating fluids as continuous media is both
natural and familiar”, and simplifies the physical modeling of the dynamical behavior of
fluids [11].

We review now the continuum hypothesis.

1.1.1 Continuum hypothesis

In the continuum hypothesis, a fluid is considered as a continuum that is abstracted from
the underlying molecular structure. Instead of considering the detailed molecular structure,
it is assumed that a fluid consists of a dense packing of individual elements, so-called fluid
particles, that occupy the space continuously. These fluid particles are small compared
to the relevant scales of the flow, but large compared to the molecular scales [11]. The
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1.1. CONTINUUM HYPOTHESIS AND CONTINUOUS REPRESENTATIONS xii

separation of length scales is quantified by the Knudsen number

Kn =
λ

l
, (1.1.1)

where λ ∈ R>0 represents the molecular collision mean free path and l ∈ R>0 the small-
est representative physical scale in a flow. In general the continuum approach, adopted
throughout this thesis, is “appropriate for Kn� 1” [14, chapt. 2.1]. There, fluid particles
and points in space are mapped one-to-one, i.e. at every point in space there is exactly one
fluid particle and every fluid particle is located at a unique point in space. Then, physical
properties of a fluid (such as the velocity or the density) can be represented at every point
in space (and, as such, for every fluid particle) by a continuous field quantity [11]. This
quantity is defined as an average over a small spherical region whose radius is small com-
pared to l but large compared to λ [14, chapt. 2.1]. It is “important to appreciate that,
once we invoke the continuum hypothesis to obtain continuous fields, we can leave behind
all notions of the discrete molecular nature of the fluid, and molecular scales cease to be
relevant” [14, chapt. 2.1].

1.1.2 Lagrangian and Eulerian representations

Since fluids are treated as continuous media in the continuum hypothesis, they need to obey
the basic conservation principles of continuum mechanics: conservation of mass, linear mo-
mentum and energy [2, chapt. 1.1]. The corresponding equations can be written according
to two different representations: the Eulerian and the Lagrangian representation.

Eulerian representation

Consider the velocity field

u :

{
D × J̄ → Rd

(x, t) 7→ u(x, t)
(1.1.2)

on the bounded and connected domain D ⊂ Rd, in space dimension d = 2 or 3, and on the
finite time interval J̄ = [0, T ], with T <∞.
The velocity field u(x, t) represents the fluid velocity at point x at time t as seen from an
inertial reference frame. Other fields such a the density field ρ(x, t) : D × J̄ 7→ R>0 or the
hydrostatic pressure field p(x, t) : D × J̄ 7→ R are defined similarly.

This is the so-called Eulerian representation [14, chapt. 2.2]. It is the representation
that we will use to formulate the conservation laws.

Lagrangian representation

Another useful represention is the Lagrangian representation, where quantities of interest
of a moving fluid particle at a fixed, specific time are given with respect to the particle’s
initial position [14, chapt. 2.2].

In other words, u(x0; t) is the velocity at time t of a fluid particle that was located at
the point x0 at time 0. It is the representation that we will use to derive the conservation
laws.

Both representations can be related through

u(x0; t) = u(x(x0; t), t) , (1.1.3)

where x(x0; t) is the position at time t of a fluid particle that was located at the point x0

at time 0. The Lagrangian representations of other quantities such as the density ρ(x0; t)
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or the hydrostatic pressure p(x0; t) are defined similarly.

We can derive x(x0; t) by solving the initial value problem

d

dt
y(t) = u(y(t), t) , y(0) = x0 , y(t) = x(x0; t) . (1.1.4)

Its solution t → y(t) defines the path travelled by a particle carried along by the fluid, a
particle trajectory, also called a pathline.
A streamline at time τ is the curve in D defined by the autonomous initial value problem

d

dt
y(t) = u(y(t), τ) , y(0) = y0 . (1.1.5)

Remark that streamlines are in general not the same as pathlines, except if the velocity
field is stationary [11].

Remark 1.1.1. A velocity field induces a transformation (mapping) of space [7]. Consider
the path of a particle located at x0 ∈ D at time t = 0, and assume that the particle does not
leave the domain between time t = 0 and time t = τ > 0 (this assumption is not necessary
if u · n|∂D = 0 (where n is the outward unit normal vector to the boundary ∂D) or if u is
periodic). Then the mapping

Φτ :

{
D → D

x0 7→ x(x0; τ)
, τ 7→ x(x0; τ) solution of IVP (1.1.4) (1.1.6)

is a well defined mapping of D to itself, and is called the flow map. Obviously, it satisfies

Φ0x0 = x0 . (1.1.7)

Moreover, V = Φτ (V0) is the volume occupied at time t = τ by particles that occupied
V0 ⊂ D at time t = 0, assuming τ is small enough such that none of the particles in V0

have left D between time t = 0 and time t = τ .

1.1.3 Material derivative and Reynolds transport theorem

Consider some fluid property φ : D × J̄ → R of a fluid particle that is located at point x
at time t and that is moving with the flow described by the velocity field u. The material
derivative of φ is defined as

D
Dt
φ :=

d

dt
φ

∣∣∣∣
(x=x(t),t)

=
∂

∂t
φ+ u · ∇φ (1.1.8)

and takes into account both local and advective parts of the total derivative in time. It
depicts the rate of change as experienced from the moving particle [11].

Consider now the integral of φ over a volume V at time t that is moving with the flow, i.e.

Ψ =

∫
V

φdV . (1.1.9)

The material derivative of Ψ is defined as

D
Dt

Ψ :=
d

dt
Ψ =

d

dt

∫
V=V (t)

φdV =

∫
V

∂

∂t
φ dV +

∫
∂V

φu · n dS , (1.1.10)
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where S = ∂V is the surface of the volume V . It depicts the rate of change as experienced
from the moving volume. The last equality is known as the Reynolds transport theorem [11].

We remark that the material derivative does not commute in general with integration.
Indeed, we have

D
Dt

∫
V

φdV =

∫
V

D
Dt
φ dV +

∫
V

φdiv(u) dV . (1.1.11)

We are now ready to formulate the conservation laws.

1.2 Conservation laws

For the derivations made in this section, we refer to [11] if not specified otherwise. A
detailed description can also be found in [12, chapt. 4].

1.2.1 Conservation of mass

Let us denote by m the total mass of a moving volume V , i.e.

m =

∫
V

ρ dV , (1.2.1)

where ρ : D × J̄ 7→ R>0 is the density. By definition, the mass of the volume is conserved
[11] (supposing that we are not in the relativistic velocity regime), i.e.

D
Dt
m = 0 . (1.2.2)

With (1.1.10), we may rewrite this in the form of a conservation law:

for any control volume V ⊂ D :∫
V

∂

∂t
ρ dV︸ ︷︷ ︸

mass change inside the volume

+

∫
∂V

ρu · n dS︸ ︷︷ ︸
mass flux through the surface

= 0 . (1.2.3)

This leads to the following partial differential equation, also called continuity equation:

∂ρ

∂t
+ div(ρu) = 0 . (1.2.4)

We have: [m] = kg, [ρ] = kg
m3 , [u] = m

s , [x] = m, [t] = s.

Incompressible flow

A flow is called incompressible if

1

ρ

Dρ
Dt

=
1

ρ
(
∂ρ

∂t
+ u · ∇ρ) = 0 . (1.2.5)

For such flows, the continuity equation (1.2.4) reduces to

div(u) = 0 . (1.2.6)

A special case of incompressible flows are flows of incompressible, homogeneous fluids, for
which ρ = const [11].
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Remark 1.2.1. An incompressible flow has the property that it’s associated flow map is
volume preserving [7], i.e.

|Φτ (V )| = |Φ0(V )| (1.2.7)

for all sufficiently small times τ > 0 and for all control volumes V ⊂ D.

1.2.2 Conservation of momentum

Let us denote by P the total linear momentum of a moving volume V , i.e.

P =

∫
V

ρu dV . (1.2.8)

By Newton’s second law of motion [14, chapt. 2.4], the rate of change of momentum
experienced by the volume is equal to the sum of all forces Ftot acting on the volume:

D
Dt

P = Ftot . (1.2.9)

Fluid volume elements can experience two kinds of forces: surface forces and body/volume
forces [14, chapt. 2.4].

Surface forces

A fluid is differentiated from another material (e.g. a solid) by the property that, at rest, it
only take pressure forces (resulting from a compressional stress) without entering in motion.
Other shear and tensional forces put the fluid in motion, and these forces result from viscous
stresses (that appear when the fluid is ‘being deformed’). In comparison, a solid can support
shear or tensional forces without entering in motion. These forces result from elastic stresses
(that appear when the solid is ‘being held in a static deformed configuration’), to which by
the above definition a fluid material cannot be exposed [11].

These stresses are in general described by the symmetric Cauchy stress tensor σ :
D × J̄ → Rd×d, which takes the form

σij = −pδij + τij , (1.2.10)

where τ : D × J̄ → Rd×d is the viscous stress tensor and p is the hydrostatic pressure [11].
The force on the surface ∂V of a fluid volume element V takes then the form

Fsurface =

∫
∂V

σ · n dS . (1.2.11)

Viscous stresses are due to the molecular exchange of momentum between neighboring fluid
layers with a non-zero velocity gradient. They have a dissipative effect and can therefore
be seen as ‘friction’ terms [11].

In this report we only consider Newtonian fluids, for which it is assumed that the vis-
cous stress tensor depends linearly on the velocity gradients and where the Cauchy stress
tensor reads [14, chapt. 2.8]

σij = −pδij + 2µSij + µ′div(u)δij︸ ︷︷ ︸
τij

, (1.2.12)

where

Sij =
1

2

( ∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
div(u)δij (1.2.13)
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is the rate-of-strain tensor,
div(u)δij (1.2.14)

is the dilatation tensor,
µ > 0 (1.2.15)

is the shear viscosity coefficient, called also dynamic viscosity, and

µ′ > 0 (1.2.16)

is the dilation viscosity coefficient. The viscosity coefficients depend in general on the
temperature T of the fluid [11].
We have: [σ] = N

m2 , [µ] = [µ′] = Ns
m2 , [p] = N

m2 , [T ] = K.

Body forces

Body forces act on the entire fluid volume element V , and take the form

Fbody =

∫
V

ρf dV + Fext , (1.2.17)

where f : D × J̄ → Rd is a body/volume force and Fext : J̄ → Rd is an external force that
appears in some cases, which does not influence the fluid’s motion. For example, we have
an external force to hold a pipe in place [11].
We have: [f ] = m

s2 , [Fext] = N.

Examples of body forces are given by

• Gravitation, with f = −ge3.

• Forces f = fn.i. appearing when the reference frame is a non-inertial frame, e.g. Cori-
olis effect in the atmosphere due to the rotation of the earth [14, chapt. 2.9].

We have then

D
Dt

P = Ftot

= Fsurface + Fbody

=

∫
∂V

σ · n dS +

∫
V

ρf dV + Fext

= −
∫
∂V

pn dS +

∫
∂V

τ · n dS +

∫
V

ρf dV + Fext .

(1.2.18)

With (1.1.10), we may rewrite this in the form of a conservation law:

for any control volume V ⊂ D :∫
V

∂

∂t
(ρu) dV︸ ︷︷ ︸

momentum change inside the volume

+

∫
∂V

(ρu)u · n dS︸ ︷︷ ︸
momentum flux through the surface

=

−
∫
∂V

pn dS︸ ︷︷ ︸
pressure forces

+

∫
∂V

τ · n dS︸ ︷︷ ︸
viscous forces

+

∫
V

ρf dV︸ ︷︷ ︸
body forces

+ Fext︸︷︷︸
external forces

.

(1.2.19)

This leads to the following partial differential equation, also called momentum equation:

∂

∂t
(ρu) + div((ρu)u) = −∇p+ div(τ ) + ρf . (1.2.20)
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Inserting the continuity equation (1.2.4) into the momentum equation leads to

ρ
( ∂
∂t

u + (u · ∇)u)
)

= −∇p+ div(τ ) + ρf . (1.2.21)

We can rewrite (1.2.21) using Einstein’s summation convention and get

ρ
( ∂
∂t
ui + uj

∂ui
∂xj

)
= − ∂

∂xi
p+

∂

∂xj
τij + ρfi . (1.2.22)

For a compressible, Newtonian fluid, we have

ρ
( ∂
∂t

u + (u · ∇)u)
)

= −∇p+ µ4u + (
µ

3
+ µ′)∇div(u) + ρf . (1.2.23)

1.2.3 Conservation of energy

Let us denote by E the total energy (per unit volume) of a moving volume V , i.e.

E = ρ(ein +
|u|2

2
) , (1.2.24)

where ρein : D × J̄ → R is the internal energy and ρ |u|
2

2 : D × J̄ → R≥0 is the kinetic
energy.
The rate of change of total energy experienced by the volume is due to the mechanical work
done by the surface and body forces and to heat fluxes and heat sources:

D
Dt
E =

∑
i

Wi +
∑
i

Q̇i

=

∫
∂V

(σu) · n dS +

∫
V

ρf · u dV

−
∫
∂V

q · n dS +

∫
V

ρqV dV ,

(1.2.25)

where q : D × J̄ → Rd is the heat flux and qV : D × J̄ → R is a heat source/sink [11].

We have: [ρein] = [ρ |u|
2

2 ] = J
m3 , q = J

m2s , qV = J
kg s .

With (1.1.10), we may rewrite this in the form of a conservation law:

for any control volume V ⊂ D :∫
V

∂

∂t
(ρ(ein +

|u|2

2
)) dV︸ ︷︷ ︸

energy change inside the volume

+

∫
∂V

ρ(ein +
|u|2

2
)u · n dS︸ ︷︷ ︸

energy flux through the surface

=

∫
∂V

(σu) · n dS︸ ︷︷ ︸
work from surface forces

+

∫
V

ρf · u dV︸ ︷︷ ︸
work from body forces

−
∫
∂V

q · n dS︸ ︷︷ ︸
heat fluxes

+

∫
V

ρqV dV︸ ︷︷ ︸
heat sources/sinks

.

(1.2.26)

This leads to the following partial differential equation, also called energy equation:

∂

∂t

(
ρ(ein +

|u|2

2
)
)

+ div
(
ρ(ein +

|u|2

2
)u
)

= ρf · u + div(σu)− div(q) + ρqV .

(1.2.27)
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Inserting the continuity equation (1.2.4) into the energy equation leads to

ρ
∂

∂t
ein + ρu · ∇ein + ρ

∂

∂t
(
|u|2

2
) + ρu · ∇(

|u|2

2
)

= ρf · u + div(σu)− div(q) + ρqV .

(1.2.28)

We can rewrite (1.2.28) using Einstein’s summation convention and get

ρ
∂

∂t

(
ein +

ujuj
2

)
+ ρui

∂

∂xi

(
ein +

ujuj
2

)
= ρfiui +

∂

∂xi
(ujσij)−

∂qi
∂xi

+ ρqV .

(1.2.29)

By multiplying the momentum equation (1.2.21) with u, we get a conservation equation
for the kinetic energy:

ρ
D
Dt

(
ujuj

2
) = ρ

∂

∂t

(ujuj
2

)
+ ρui

∂

∂xi

(ujuj
2

)
= ρfiui + uj

∂σij
∂xi

= ρfiui − uj
∂p

∂xj
+ uj

∂τij
∂xi

= ρfiui − uj
∂p

∂xj
+

∂

∂xi
(ujτij)− τij

∂uj
∂xi

.

(1.2.30)

By subtracting (1.2.30) from (1.2.29), we get a conservation equation for the internal energy:

ρ
Dein

Dt
= ρ

∂

∂t

(
ein

)
+ ρui

∂

∂xi

(
ein

)
= σij

∂uj
∂xi
− ∂qi
∂xi

+ ρqV

= −p∂uj
∂xj

+ τij
∂uj
∂xi
− ∂qi
∂xi

+ ρqV .

(1.2.31)

We remark that:

• The term τij
∂uj
∂xi

appears in both equations (1.2.31) and (1.2.30), but with opposite
signs. It stands for the dissipation of kinetic energy into heat [11].

• We can use Fourier’s law to get the heat flux as a function of the temperature [11]:

q = −κ∇T , (1.2.32)

where T : D × J̄ → R>0 is the temperature and κ ∈ R>0 (that we assume to be
constant) is the fluid’s heat conductivity. We have: [κ] = J

Kms .

Energy equation for incompressible flows

For incompressible flows, we have the divergence-free condition (1.2.6), such that the pres-

sure work term −p∂uj∂xj
inside equation (1.2.31) disappears. We do not need then to differ-

entiate between isochoric (Cv) and isobaric (Cp) specific heat capacity [11], such that we
can write the differential of ein as

Dein = CDT . (1.2.33)

The equation for the internal energy becomes then an equation for the temperature T [11]:

ρC
DT
Dt

= ρC
(∂T
∂t

+ ui
∂T

∂xi

)
= κ4T + τij

∂uj
∂xi

+ ρqV . (1.2.34)
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1.3 Navier-Stokes equations for an incompressible, ho-
mogeneous Newtonian fluid

For the remainder of this thesis, we assume that the fluid is incompressible and homoge-
neous, i.e. the density ρ is constant in space and time, which is a reasonable approximation
for small Mach numbers, e.g. Ma < 0.3 [11]. We further assume that the fluid is Newtonian
with constant dynamic viscosity coefficient µ, and set

ν =
µ

ρ
, (1.3.1)

where ν > 0 is called the kinematic viscosity coefficient. Also, we identify the pressure p
with the scaled pressure p

ρ .

1.3.1 Navier-Stokes equations and pressure equation

We obtain then, from the continuity equation (1.2.4) and the momentum equation (1.2.21),
the Navier-Stokes equations for an incompressible, homogeneous fluid:

∂

∂t
u + (u · ∇)u = −∇p+ ν4u + f (1.3.2a)

div(u) = 0 , (1.3.2b)

with a given initial velocity field u(0) = u0, where u0 : D → Rd is divergence-free [2, chapt.
1.1].

By taking the divergence of the momentum equation (1.3.2a), we end up with a Poisson
equation for the pressure:

4p = −div((u · ∇)u) + div(f)
(1.3.2b)

= −
d∑

i,j=1

∂ui
∂xj

∂uj
∂xi

+ div(f) . (1.3.3)

The terms div(∂u∂t ) and div(4u) disappear because of the continuity equation (1.3.2b).

Thus, the pressure field is “fully determined at each instant of time by the velocity field”,
and at “any given point in space, it is determined by the velocity field everywhere” [2, chapt.
2.2]. This is a consequence of the incompressibility assumption. The sound speed “becomes
infinite and velocity fluctuations everywhere are coupled instantaneously” [2, chapt. 2.2].
As a consequence, in the constant-density Navier-Stokes equations, the pressure is inter-
preted as a Lagrange multiplier that maintains the divergence-free condition for the velocity
field rather than as a “purely thermodynamic variable related to density and temperature
by an equation of state” [14, chapt. 2.5].

1.3.2 Boundary value problems

The Navier-Stokes equations (1.3.2) must be supplemented with initial and boundary con-
ditions that depend on the physical problem under consideration [2, chapt. 2.2].

We consider in this thesis two types of boundary conditions: the no-slip boundary con-
dition and the space-periodic boundary condition. They are discussed in detail throughout
[2]. The no-slip boundary condition (flow past a rigid boundary) is “one of the few that cor-
respond to a physically accessible boundary condition” [2, chapt. 2.2]. The space-periodic
case is “not a physically achievable one, but it is relevant on the physical side as a model
for some flows and is needed in the study of homogeneous turbulence” [2, chapt. 2.2].
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There it is assumed that walls are far from the region being studied and thus that the wall
effects are not influencing [2, chapt. 2.2]. We will consider two distinct situations in the
space-periodic case: when the average flow (over the space domain) is zero, and when it is
not necessarily zero.

No-slip boundary condition

At a solid wall, we have

u = Uwall (1.3.4a)

u · n = 0 , (1.3.4b)

where Uwall is the velocity of the wall and n is the outward unit normal to the wall. In the
Eulerian representation, we get directly for the first derivative in time

∂u

∂t
· n =

∂

∂t
(u · n) = 0 . (1.3.5)

Since boundary particles ‘stick’ to the wall, the velocity change experienced by those par-
ticles cannot have a non-zero component normal to the wall, such that in the Lagrangian
representation, we have similarly

Du

Dt
· n = 0 . (1.3.6)

We get then also for the advective term

(
Du

Dt
− ∂u

∂t
) · n = ((u · ∇)u) · n = 0 . (1.3.7)

This yields the following Neumann boundary condition for the pressure

∇p · n = (f + ν4u) · n , (1.3.8)

and the pressure solution of the Poisson equation (1.3.3) is defined up to an additive constant
[2, chapter 2.2]. The consistency condition∫

∂D

∇p · n dS =

∫
D

4p dx , (1.3.9)

where S = ∂D is the surface boundary of D, is satisfied, because we have∫
D

−div((u · ∇)u) dx = −
∫
∂D

((u · ∇)u) · n︸ ︷︷ ︸
=0

dS = 0 (1.3.10)

and ∫
∂D

ν4u · n dS = ν

∫
D

div(4u)︸ ︷︷ ︸
=0

dx = 0 . (1.3.11)

In this thesis, we assume that the shape and the volume of the domain D occupied by the
fluid are independent of time, such that the boundary ∂D is at rest, and we have

u = 0 on ∂D . (1.3.12)

Space-periodic boundary condition

In the space-periodic case, we assume that the fluid fills the entire space Rd, but with the
condition that

u, f and p are L1-periodic in each spatial coordinate, with L1 > 0 (1.3.13)

and denote the domain by D = (0, L1)d. Here also, the pressure solution of the Poisson
equation (1.3.3) is defined up to an additive constant [2, chapter 2.2].
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Space-periodic boundary condition with vanishing space average

Assuming that the average flow is zero for all time, i.e.

1

|D|

∫
D

u(x, t) dx = 0 , (1.3.14)

is sometimes “useful” and leads to a “simpler mathematical description” [2, chapter 2.2].
A sufficient condition is that the initial velocity field and the body forces have zero space-
average. Indeed, because of the periodic boundary condition, if we integrate the momentum
equation (1.3.2) over D, we are left with the relation

∂

∂t

( 1

|D|

∫
D

u(x, t) dx
)

=
1

|D|

∫
D

f(x, t) dx . (1.3.15)

That is, if
1

|D|

∫
D

u0(x) dx = 0 and
1

|D|

∫
D

f(x, t) dx = 0, (1.3.16)

then
1

|D|

∫
D

u(x, t) dx = 0 at all times t ≥ 0 . (1.3.17)

Initial condition

The Navier-Stokes equations (1.3.2) are supplemented with an initial velocity field u0 =
u(0) which, for consistency reasons, has to be divergence-free and satisfy the boundary
conditions of the problem being considered [2, chapter 2.2].

1.3.3 Non-dimensional form

It is sometimes useful, for “both physical discussions and mathematical transparency” [2,
chapter 1.1], to consider the Navier-Stokes equations in their non-dimensional form.
For the sake of this section only, the pressure p is the ‘real’ pressure, and not the pressure
scaled by the density.

Reynolds number similarity

Let L∗ be a reference length and U∗ a reference velocity of the flow. Typically, L∗ character-
izes the size of the domain and U∗ characterizes the magnitude of the initial and boundary
conditions for the velocity [14, chapt. 2.9]. Let us set

x′ =
1

L∗
x, t′ =

U∗
L∗
t, u′ =

1

U∗
u, p′ =

1

ρU2
∗
p, f ′ =

L∗
U2
∗

f . (1.3.18)

Then we obtain the non-dimensional form [2, chapt. 1.1] of the Navier-Stokes equations:

∂u′

∂t′
+ (u′ · ∇′)u′ = −∇′p′ + 1

Re
4′u′ + f ′ (1.3.19a)

∇′ · u′ = 0 , (1.3.19b)

where

Re =
U∗L∗
ν

= ρ
U∗L∗
µ

(1.3.20)

is a non-dimensional number called the Reynolds number.
Thus, different experiments sharing the same Reynolds number yield similar results, i.e.

they yield the same results up to rescaling. This is the so-called Reynolds number similarity,

Yann Poltera 2013 c©



1.4. ELEMENTS OF THE MATHEMATICAL THEORY OF THE NAVIER-STOKES
EQUATIONS xxii

which is “constantly used in mechanical engineering” [2, chapt. 1.1].

The Reynolds number can be seen as a measure of the ratio of inertial forces (of the

order of
U2
∗
L∗

) over viscous forces (of the order of ν U∗L2
∗
) on the largest scales of the flow [2,

chapt. 1.1].

Space, time, rotational, reflectional and Galilean invariance

Suppose an experiment E is done on a coordinate system that is orientated differently than
the reference experiment E ′ (by rotation or by reflection of a coordinate axis described by the
orthogonal matrix R), performed at time T later than the reference experiment, translated
by an amount X0 from the reference experiment, and that is moving with constant velocity
V0. With the following choice of variables

x′ =
1

L∗
RT [x− (X0 + V0(t− T ))], t′ =

U∗
L∗

(t− T ),

u′ =
1

U∗
RT [u−V0], p′ =

1

ρU2
∗
p, f ′ =

L∗
U2
∗

RT f ,

(1.3.21)

we obtain again the non-dimensional equations (1.3.19). Thus, “just like all phenomena de-
scribed by classical mechanics, the behavior of fluid flows is the same in all inertial frames”
[14, chapt. 2.9]. It is to note that it is the fluid’s acceleration (and it’s associated forces)
that are Galilean invariant, and not the fluid’s velocity. Also, although the velocity is in-
variant under rotation or reflection, the vorticity is in general not [14, chapt. 2.9].

If the coordinate system is moving with a variable velocity and/or is rotating, a fictitious
force has generally to be added to the non-dimensional equations (1.3.19) in order to take
into account the effect of the non-inertial coordinate system motion [14, chapt. 2.9]. These
fictitious forces occur for example when an object is accelerated in a fluid ‘at rest’ [11], or
in “meteorology and turbomachinery” [14, chapt. 2.9].

1.4 Elements of the mathematical theory of the Navier-
Stokes equations

In this section, we follow the presentation given in [2], and, except if specified otherwise,
the statements refer to results as they are found in [2].

First, we introduce function spaces that are “appropriate for use in mathematical treat-
ments of the Navier-Stokes equations”, but that are also physically meaningful [2, chapt.
2.5].

1.4.1 Kinetic energy and enstrophy, function spaces

The kinetic energy (divided by the density ρ) of a fluid with velocity field u and occupying
a region D is given by

e(u) =
1

2

∫
D

|u|2 dx . (1.4.1)

Another important integral quantity is the enstrophy

E(u) =

d∑
i=1

∫
D

|∇ui|2 dx =

d∑
i,j=1

∫
D

∣∣∣∣ ∂ui∂xj

∣∣∣∣2 dx , (1.4.2)
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as we see next.
For the boundary conditions we consider (no-slip and space-periodic boundary condi-

tions), the equation for the conservation of kinetic energy becomes

d

dt
e(u) + νE(u) =

∫
D

f · u dx . (1.4.3)

Indeed, by integrating the different terms of the equation for the kinetic energy (1.2.30),
we get, using Einstein’s summation convention,∫

D

∂

∂t
(
ujuj

2
) dx =

∂

∂t

∫
D

∂

∂t
(
ujuj

2
) dx =

d

dt
e(u),∫

D

ui
∂

∂xi
(
ujuj

2
) dx = −

∫
D

∂ui
∂xi︸︷︷︸
=0

ujuj
2

dx +

∫
∂D

u · nujuj
2

dS︸ ︷︷ ︸
=0 for per. and no-slip b.c.

= 0,

∫
D

−uj
∂p

∂xj
dx =

∫
D

∂ui
∂xi︸︷︷︸
=0

p dx−
∫
∂D

u · np dS︸ ︷︷ ︸
=0 for per. and no-slip b.c.

= 0,

∫
D

uiν
∂2ui
∂x2

j

dx = −ν
∫
D

( ∂ui
∂xj

)2
dx +

∫
∂D

(∇ui · n)ui dS︸ ︷︷ ︸
=0 for per. and no-slip b.c.

= −νE(u) .

(1.4.4)

We recall that the pressure p is here scaled by the density.

Also, for the boundary conditions we consider, the enstrophy can be written as

E(u) =

∫
D

d∑
i,j=1

∣∣∣∣ ∂ui∂xj

∣∣∣∣2 dx
=

∫
D

|ω|2 dx +

∫
D

d∑
i=1

(∂xiu) · ∇ui dx

=

∫
D

|ω|2 dx−
∫
D

d∑
i=1

div(∂xiu)ui dx +

∫
∂D

d∑
i=1

ui(∂xiu) · n dS

=

∫
D

|ω|2 dx−
∫
D

d∑
i=1

∂xi(div(u)︸ ︷︷ ︸
=0

)ui dx +

∫
∂D

((u · ∇)u) · n dS︸ ︷︷ ︸
=0 for per. and no-slip b.c.

=

∫
D

|ω|2 dx ,

(1.4.5)

where

ω = rot(u) = ∇× u =

∂u3

∂x2
− ∂u2

∂x3
∂u1

∂x3
− ∂u3

∂x1
∂u2

∂x1
− ∂u1

∂x2

 (1.4.6)

is the vorticity vector (which can be heuristically interpreted as twice the averaged, at a
given instant in time, angular velocity of a fluid particle [11]; in two dimensions, it has
only one non-zero component). Thus, for these boundary conditions, the enstrophy is the
integral of the square of the vorticity over the domain.
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When there are no volume forces (i.e. when f = 0), the kinetic energy decays “by vis-
cous effect” [2, chapt. 2.1] at the rate −νE(u):

d

dt
e(u) = −νE(u) . (1.4.7)

Function spaces

As remarked in [2, chapt. 2.1], physical solutions of the Navier-Stokes equations should
have finite kinetic energy and finite enstrophy. We consider thus the two spaces H and
V that take into account the boundary conditions, the incompressibility assumption and
the boundedness of the physical quantities e(u) and E(u). The space H is the space
of incompressible vector fields with finite kinetic energy and with appropriate boundary
conditions, and V is the space of incompressible vector fields with finite enstrophy and also
with appropriate boundary conditions.

We assume here the domain D ⊂ Rd, for d = 2, 3, to be open, bounded and connected,
and its boundary ∂D is assumed to be either C2 or D is assumed to be convex, in order to
ensure local H2(D) regularity of the velocity field ([1, sect. 3.1] and references there).

Consider the space L2(D) of square integrable vector fields from D into Rd, which is a
Hilbert space with the inner product

(u,v) =

∫
D

u · v dx (1.4.8)

and the associated norm

|u| = (u,u)
1
2 =

( ∫
D

|u|2 dx
) 1

2 . (1.4.9)

We have the relation |u|2 = 2e(u), such that L2(D) consists of the space of all velocity
fields with finite kinetic energy.

Further, we consider the Sobolev space H1(D) of vector fields on D that are square in-
tegrable and whose gradient is also square integrable. This is a Hilbert space with the
inner product

((u,v))1 =
1

L2
1

∫
D

u · v︸ ︷︷ ︸
=(u,v)

dx +

∫
D

d∑
i=1

∂u

∂xi
· ∂v

∂xi
dx︸ ︷︷ ︸

:=((u,v))

, (1.4.10)

where L1 is a typical length, e.g. the diameter of D (L1 = 1 for non-dimensional variables)
[2, chapt. 1.4], and the associated norm is given by

||u||1 = ((u,u))
1
2
1 =

( 1

L2
1

∫
D

|u|2 dx︸ ︷︷ ︸
|u|2

+

∫
D

d∑
i,j=1

∣∣∣∣ ∂ui∂xj

∣∣∣∣2 dx︸ ︷︷ ︸
:=||u||2

) 1
2 . (1.4.11)

We have the relation ||u||2 = E(u), such that H1(D) consists of the space of all velocity
fields with finite enstrophy. From (1.4.11), the following inequality holds:

|u|2 ≤ L2
1||u||21 . (1.4.12)
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Function spaces for the no-slip boundary conditions

In the no-slip case, we have

H = Hdir = {u ∈ L2(D) : ∇ · u = 0, u · n|∂D = 0} (1.4.13)

and
V = Vdir = {u ∈ H1(D) : ∇ · u = 0, u|∂D = 0} . (1.4.14)

Here, n denotes the outward unit normal to the domain D which is defined almost ev-
erywhere on the Lipschitz boundary ∂D [1, sect. 3.1]. Since D is bounded and u ∈ Vdir
vanishes at the boundary, we can use the Poincaré inequality

|u|2 ≤ 1

λ1
||u||2 for all u ∈ Vdir , (1.4.15)

where λ1 > 0 is the smallest eigenvalue of the corresponding Stokes operator [2, chapt. 2.5]
(see Section 1.4.4). Then for u ∈ Vdir, we have

||u||21 =
1

L2
1

|u|2 + ||u||2 ≤ (
1

L2
1

1

λ1
+ 1)||u||2 , (1.4.16)

such that the semi-norm (‘enstrophy norm’) || · || associated to the inner product ((·, ·)) is
in this case actually a norm.

We endow then Hdir with the norm | · |H = | · | and the associated inner product
(·, ·)H = (·, ·), and we endow Vdir with the norm | · |V = || · || and the associated inner
product (·, ·)V = ((·, ·)).

Function spaces for the periodic boundary conditions with vanishing space av-
erage

In the periodic case with vanishing space average, we have

H = Ḣper = {u ∈ L2
per(D) : ∇ · u = 0,

∫
D

u dx = 0} (1.4.17)

and

V = V̇per = {u ∈ H1
per(D) : ∇ · u = 0,

∫
D

u dx = 0} . (1.4.18)

The Poincaré inequality can also be used in this case, because u ∈ Vper has a zero space
average, and we have

|u|2 ≤ 1

λ1
||u||2 for all u ∈ V̇per , (1.4.19)

where λ1 > 0 is the smallest eigenvalue of the corresponding Stokes operator [2, chapt. 2.5]
(see Section 1.4.4). Then, similarly to the no-slip case, the semi-norm (‘enstrophy norm’)
|| · || associated to the inner product ((·, ·)) is actually a norm.

We endow Ḣper with the norm | · |H = | · | and the associated inner product (·, ·)H =

(·, ·), and we endow V̇per with the norm | · |V = || · || and the associated inner product
(·, ·)V = ((·, ·)).

Function spaces for the periodic boundary conditions

In the general periodic case, we have

H = Hper = {u ∈ L2
per(D) : ∇ · u = 0} (1.4.20)
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and
V = Vper = {u ∈ H1

per(D) : ∇ · u = 0} . (1.4.21)

The Poincaré inequality is not valid in this case [2, chapt. 2.5], because u ∈ Vper does
not necessarily vanish at the boundary and does not have a zero space average. Hence we
endow Vper with the full norm | · |V = || · ||1 and associated inner product ((·, ·))1, and it
holds the inequality (1.4.12) instead. Hper is endowed with the norm | · |H = | · | and the
associated inner product (·, ·)H .

Fourier Series

The spaces Hper, Vper, Ḣper and V̇per can be characterized in terms of Fourier series [2,
chapt. 2.5]. We have

Hper = {u =
∑
k∈Zd

ûke
i 2π
L1

k·x : û−k = ¯̂uk︸ ︷︷ ︸
⇔u∈Rd

, ûk · k = 0︸ ︷︷ ︸
⇔∇·u=0

,
∑
k∈Zd

|ûk|2︸ ︷︷ ︸
= 1
|D| |u|

<∞} , (1.4.22)

Vper = {u =
∑
k∈Zd

ûke
i 2π
L1

k·x :

û−k = ¯̂uk, ûk · k = 0,
∑
k∈Zd

(
1

L2
1

+ 2π|k|2)|ûk|2︸ ︷︷ ︸
= 1
|D| ||u||1

<∞} , (1.4.23)

Ḣper = {u =
∑

k∈Zd\{0}

ûke
i 2π
L1

k·x : û−k = ¯̂uk, ûk · k = 0,
∑

k∈Zd\{0}

|ûk|2︸ ︷︷ ︸
= 1
|D| |u|

<∞} , (1.4.24)

V̇per = {u =
∑

k∈Zd\{0}

ûke
i 2π
L1

k·x :

û−k = ¯̂uk, ûk · k = 0,
∑

k∈Zd\{0}

|k|2|ûk|2︸ ︷︷ ︸
= 1

2π|D| ||u||

<∞} . (1.4.25)

In the following, we shall use the symbols V and H in all statements which apply
generically, i.e. to either choice of V and of H. In all cases, we have the dense inclusions
V ⊂ H [1, sect. 3.1] and the corresponding norms are related by the inequality

|u|2H ≤
1

CHV
|u|2V ∀u ∈ V , (1.4.26)

where for the no-slip case and the space-periodic case with vanishing space-average, CHV =
λ1, which is the smallest eigenvalue of the corresponding Stokes operator (see Section 1.4.4),
and for the general space-periodic case, CHV = 1

L2
1
.

We present next the Helmholtz-Leray decomposition of vector fields, which allows us to
write the Navier-Stokes equations in functional form and to define the Stokes operator.
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1.4.2 Helmholtz-Leray decomposition of vector fields

The Helmholtz-Leray decomposition resolves a vector field w ∈ L2(D) on a bounded set
D ⊂ Rd into the sum of a gradient and a curl vector, by taking into account the boundary
conditions of the problem. It is a generalization of the Helmholtz decomposition, which is
done on the whole space Rd without any boundary conditions [2, chapt. 2.3].

The decomposition is of the form

w = ∇q + v, with div(v) = 0 , (1.4.27)

which implies that
4q = div(w) (1.4.28)

and that, at least locally, v is a curl vector [2, chapt. 2.3].
One can calculate the decomposition by solving (1.4.28) to get q (with boundary condi-

tions on q that depend on those of w), and then use the relation

v = w −∇q (1.4.29)

to get v.

Space-periodic boundary conditions

In the space-periodic case, w is periodic, so we require v to be periodic as well and impose
periodic boundary conditions on q, which together with Equation (1.4.28) determine q
uniquely in terms of w (up to an additive constant) [2, chapt. 2.3].

No-slip boundary conditions

In the no-slip case, we only require that

v · n = 0 on ∂D , (1.4.30)

which implies that
∇q · n = w · n on ∂D . (1.4.31)

Together with Equation (1.4.28), this determines q uniquely in terms of w (up to an addi-
tive constant) [2, chapt. 2.3].

It is worth to note that, “contrary to the usual Helmholtz decomposition”, the Helmholtz-
Leray decomposition is unique (up to an additive constant for q) [2, chapt. 2.3], and the
map

PL :

{
L2(D) → H

w 7→ v(w)
(1.4.32)

is well-defined. This map, so-called Leray projector, is an orthogonal projector from L2(D)
onto H [2, chapt. 5.0]. In particular, if w is already divergence-free and satisfies the
boundary conditions characterizing H, then PLw = w. And if w is a gradient vector which
is not divergence-free, then PLw = 0.
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1.4.3 Functional evolution equation for the velocity field

By applying the Leray projector on the momentum equation (1.3.2), one finds [2, chapt.
2.3] that

∂u

∂t
+ νAu +B(u) = PLf , and PL∇p = 0 , (1.4.33)

where

Au = −PL4u, B(u) = B(u,u), B(u,v) = PL((u · ∇)v) . (1.4.34)

The operator A is the Stokes operator [2, chapt. 2.3]. In the space-periodic case, we have

Au = −PL4u = −4u . (1.4.35)

However, in the no-slip case, it holds

Au = −PL4u 6= −4u (1.4.36)

in general [2, chapt. 2.3].
We assume further that f belongs to H. If not, we set f = PLf and add the term (I−PL)f

(which is a gradient vector) to the pressure gradient, which disappears in (1.4.33). Then
we can write the nonlinear dynamical system

u′(t) = F(t,u(t)) , (1.4.37)

where

u′ =
∂u

∂t
, F(t,u) = f(t)− νAu−B(u) . (1.4.38)

Functional formulation of the Navier-Stokes equations

The system (1.4.37) yields the following functional formulation [2, chapt. 5.0] of the Navier-
Stokes equations:

given T > 0,u0 ∈ H and f ∈ L2(J ;H),

find u ∈ L∞(J ;H) ∩ L2(J ;V ) with u′ ∈ L1(J ;V ∗), such that

u′ = f − νAu−B(u) ,

(1.4.39)

where V ∗ is the dual of V .

1.4.4 The Stokes operator

The Stokes operator is associated with the linear part of the Navier-Stokes equations, and
as such, plays an “important role in the study of the full, nonlinear equations” [2, chapt.
2.6]. We have

Au = −PL4u for u ∈ D(A) = V ∩H2(D) , (1.4.40)

where D(A) is the domain of A, i.e. the subspace of H for which Au is meaningful.
In the no-slip case and in the space-periodic case with vanishing space average, it has

been shown ([2, chapt. 2.6] and references there) that

(Au,v)H = (u,v)V for all u,v ∈ D(A) , (1.4.41)

and thus that the Stokes operator A is self-adjoint, i.e.

(Au,v)H = (u, Av)H for all u,v ∈ D(A) , (1.4.42)
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and positive definite, i.e.

(Au,u)H = (u,u)V = |u|2V > 0 for all u 6= 0 in D(A) . (1.4.43)

More precisely, the Stokes operator is a closed, unbounded, self-adjoint positive definite
operator on its domain D(A) [1, sect. 7.1]. By the spectral theorem, A has a discrete
spectrum Σ = (λm,m ∈ N) ⊂ R>0 which consists of real eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · , λm → +∞ as m→ +∞ , (1.4.44)

which accumulate only at infinity, and which admits a countable sequence of eigenfunctions
(wm,m ∈ N), with

Awm = λmwm, m = 1, 2, ... , (1.4.45)

which are dense in H and V and constitute an orthonormal basis of H [1, sect. 7.1].
The first eigenvalue λ1 is exactly the best constant [2, chapt. 2.6] for the Poincaré

inequality

|u|2H ≤
1

λ1
|u|2V , (1.4.46)

that we introduced in (1.4.15) and (1.4.19). The asymptotic behavior of the eigenvalues is
given [2, chapt. 2.6] by

λm ∼ λ1m
2
d as m→∞ . (1.4.47)

Because (wm,m ∈ N) is an orthonormal basis in H, we may write for u ∈ H

u =

∞∑
m=1

ûmwm, ûm = (u,wm)H . (1.4.48)

We have, from the orthonormality property and (1.4.43),

|u|2H =

∞∑
m=1

|ûm|2 (1.4.49)

and

|u|2V =

∞∑
m=1

λm|ûm|2 . (1.4.50)

Since A is a positive, self-adjoint operator, we can define fractional powers of A [1, sect.
3.2]. We denote the fractional powers by Aa, for a ∈ R, and by D(Aa) the domain of Aa.
The powers Aa are defined by

Aau =

∞∑
m=1

λamûmwm (1.4.51)

and

u ∈ D(Aa)⇔ |u|D(Aa) =

∞∑
m=1

λ2a
m |ûm|2 <∞ . (1.4.52)

We have then D(A
1
2 ) = V . Furthermore, it holds that V ∗ = D(A−

1
2 ), where V ∗ is the dual

of V [2, chapt. 2.6].
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Expression for the eigenfunctions in the periodic case with vanishing space
average

In the periodic case with vanishing space average, the eigenfunctions (wm,m ∈ N) can be
expressed from their Fourier expansion (1.4.24), i.e.

wk = ake
i 2π
L1

k·x + āke
−i 2π

L1
k·x , (1.4.53)

where for each k the ak are d− 1 independent vectors in Cd such that ak · k = 0 and with
a−k = āk. The eigenvalues [2, chapt. 2.6] are

λk =
4π2

L2
1

|k|2 . (1.4.54)

They can be ordered in nondecreasing order such that, for each λk, k ∈ Zd\{0}, we have a
corresponding eigenvalue λm for some m ∈ N, with λm ≤ λm+1. The corresponding eigen-
function is wm = wk. The eigenfunctions have been explicitly calculated in [16, append.
A.1] and are presented in Section 1.5.

In the space-periodic case without vanishing space-average, the Stokes operator A is not
positive definite anymore [2, chapt. 2.6]. However, we can consider instead the operator Ã
defined by

Ãu =
1

L2
1

u +Au for u ∈ D(Ã) ≡ D(A) . (1.4.55)

One can show [2, chapt. 2.6] that

(Ãu,v)H =
1

L2
1

(u,v) + ((u,v))

= ((u,v))1 = (u,v)V for all u ∈ D(A),v ∈ V .

(1.4.56)

It holds that D(Ã
1
2 ) = V and that D(Ã−

1
2 ) = V ∗, where V ∗ is the dual of V . Furthermore,

Ã is a positive self-adjoint operator with compact inverse, and possesses a sequence of
positive eigenvalues (λ̃m,m ∈ N) associated with an orthonormal basis (wm,m ∈ N) of H
[2, chapt. 2.6]. We can recover the eigenvalues (λm,m ∈ N) of the Stokes operator A, which
are related to those of Ã, by

λm = λ̃m −
1

L2
1

. (1.4.57)

We have
0 = λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · , λm → +∞ as m→ +∞ . (1.4.58)

The eigenvalues and eigenfunctions are actually the same as in the case of the vanishing
space average, except that now we include the case with the wavenumber vector k = 0,
which is associated with the eigenvalue λ1 = 0 and with a d-dimensional eigenspace [2,
chapt. 2.6].

1.4.5 Weak formulation of the Navier-Stokes equations

By multiplying the Navier-Stokes equations (1.3.2) with a test function and then integrating
by parts, we obtain the weak formulation of the Navier-Stokes equations, which, equipped
with either no-slip or space-periodic boundary conditions, is [2, chapt. 5.0] as follows:

given T > 0,u0 ∈ H and f ∈ L2(J ;H),

find u ∈ L∞(J ;H)∩L2(J ;V ), such that,∀v ∈ V :

d

dt
(u,v)H + ν((u,v)) + b(u,u,v) = (f ,v)H .

(1.4.59)
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If f is square integrable but not with values in H, we can replace it by its Leray projection
on H, such that f is always assumed to be in H. The pressure term disappears in the weak
formulation because it is orthogonal to H [2, chapt. 5.0].

In Equation (1.4.59), the trilinear form b is defined by

b(u,v,w) =

d∑
i,j=1

∫
D

ui
∂vj
∂xi

wj dx . (1.4.60)

The trilinear form b is continuous on V and

∀u,v,w ∈ V : b(u,v,v) = 0 and b(u,v,w) = −b(u,w,v) . (1.4.61)

Further, the trilinear form b induces, for fixed u ∈ V , a bilinear operator B : V × V → V ∗

defined by

V ∗〈B(u,v),w〉V = b(u,v,w), (1.4.62)

for all u,v,w ∈ V [1, sect. 3.2]. This corresponds to the same operator B that was used
in the functional formulation (1.4.39) [2, chapt. 5.0].

Weak solutions of the Navier-Stokes equations are characterized, in the sense of Leray-
Hopf, by the following definition [1, def. 3.1][3, def. 2.1].

Definition 1.4.1. On a time interval J ⊂ R, a function u : J 7→ H is called a Leray–Hopf
weak solution of the Navier-Stokes equations (1.3.2) if

(i) u ∈ L∞(J ;H) ∩ L2(J ;V ),

(ii) (∂tu)(·) ∈ L4/3(J ;V ∗) for d = 3 or (∂tu)(·) ∈ L2(J ;V ∗) for d = 2,

(iii) t 7→ u(t) is weakly continuous (i.e. for every v ∈ H, t 7→ (u(t),v)H is continuous
from J to R),

(iv) u satisfies (1.4.39),

(v) for almost all t, t′ ∈ J , u satisfies the energy inequality

1

2
|u(t)|2 + ν

∫ t

t′
||u(s)||2 ds ≤ 1

2
|u(t′)|2 +

∫ t

t′
(f(s),u(s)) ds. (1.4.63)

We call Leray–Hopf solutions from now on simply weak solutions of the Navier–Stokes
equation. For any t0 ∈ R and for any u0 ∈ H, there exists at least one global weak solution
in [t0,∞) such that u(t0) = u0 in H. In space dimension d = 2, this solution is, moreover,
unique [2, thm. II.7.1-4].

Solution operator

We denote by S(t, 0) the solution operator that maps u0 into u(t). The solution operator
is well defined in space dimension d = 2 thanks to the uniqueness of weak solutions [2,
chapt. 2.7]. It is, however, in general not a semigroup on H (solution operators are not
associative), because f could be time dependent [1, sect. 3.2]. In space dimension d = 3,
the definition of the solution operator is “more involved” [1, sect. 3.2], since in the presence
of a time-dependent f , only local uniqueness has been shown [2, thm. II.7.2].

In the next chapter, we introduce the concept of statistical solutions of the Navier-Stokes
equations. But first, to conclude this chapter, we present an explicit expression for the eigen-
functions of the Stokes operator in the space-periodic case with vanishing space average in
space dimension d = 2. As mentioned in Section 1.4.4, they constitute an orthonormal
basis of H, and are therefore useful to expand data and solutions in H.
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1.5 Eigenfunctions of the Stokes operator in the space-
periodic case with vanishing space average

We present here another, explicit representation of the eigenfunctions of the Stokes operator

Au = −PL4u (1.5.1)

for the space-periodic case with vanishing space-average in space dimension d = 2. We
recall that in the periodic case, the Stokes operator reduces to

Au = −4u . (1.5.2)

In the following, we present the eigenfunctions of the Stokes operator together with a
temporal evolution factor, sum up their properties, and show that these time-dependent
eigenfunctions are actual solutions of the Navier-Stokes equations when the body force is
conservative. This last property will be useful to help us calculate exact reference solutions
for our numerical experiments.

1.5.1 Stokes eigenfunctions

The eigenfunctions of the Stokes operator are given (the eigenfunctions without the time
dependent factor A(t) were found in [16, append. A.1]) by

wI
κ1,κ2

(x, t) =

(
κ2sin( 2π

L1
κ1x1)sin( 2π

L1
κ2x2)

κ1cos( 2π
L1
κ1x1)cos( 2π

L1
κ2x2)

)
Cw√

κ2
1 + κ2

2L1

A(t) , (1.5.3)

wII
κ1,κ2

(x, t) =

(
κ2sin( 2π

L1
κ1x1)cos( 2π

L1
κ2x2)

−κ1cos( 2π
L1
κ1x1)sin( 2π

L1
κ2x2)

)
Cw√

κ2
1 + κ2

2L1

A(t) , (1.5.4)

wIII
κ1,κ2

(x, t) =

(
κ2cos( 2π

L1
κ1x1)sin( 2π

L1
κ2x2)

−κ1sin( 2π
L1
κ1x1)cos( 2π

L1
κ2x2)

)
Cw√

κ2
1 + κ2

2L1

A(t) , (1.5.5)

wIV
κ1,κ2

(x, t) =

(
κ2cos( 2π

L1
κ1x1)cos( 2π

L1
κ2x2)

κ1sin( 2π
L1
κ1x1)sin( 2π

L1
κ2x2)

)
Cw√

κ2
1 + κ2

2L1

A(t) , (1.5.6)

with

A(t) ≡ e
−ν 4π2

L2
1

(κ2
1+κ2

2)t
, (1.5.7)

where the time t ∈ R≥0, x = (x1, x2) in the periodic domain D = (0, L1) × (0, L1),
κ1, κ2 ∈ N, Cw ∈ R is some prefactor (independent of x1, x2 and t), and ν > 0 is the
kinematic viscosity. The prefactor Cw <∞ can be chosen freely. For example, in some of
our numerical experiments, Cw takes the values of a uniformly distributed random variable
on the intervals (0, 1) or (−1, 1).

We remark that the eigenfunctions are also valid for κ1 ∈ N and κ2 = 0, and for κ1 = 0 and
κ2 ∈ N. In the former case, only wI

κ1,0 and wIII
κ1,0 are not equal to zero. In the latter case,

only wIII
0,κ2

and wIV
0,κ2

are not equal to zero. For these non-trivial functions, all the proper-
ties presented in the next section remain valid, although for simplicity these functions are
not listed there.
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1.5.2 Properties

We show here that the functions presented above are effectively eigenfunctions of the Stokes
operator and a set of orthogonal basis functions of the space of periodic divergence-free
vector fields with finite kinetic energy and vanishing space-average, i.e. of the space

Ḣper = {v ∈ L2(D) : ∇ · v = 0,

∫
D

v dx = 0} . (1.5.8)

First, it is easy to show that the functions have a vanishing space average. It holds

∀I ∈ {I, II, III, IV }, ∀κ1, κ2 ∈ N :

∫
D

wIκ1,κ2
dx = 0 . (1.5.9)

Their H-norm, which is the L2-norm for the space Ḣper, can also be easily calculated

∀I ∈ {I, II, III, IV }, ∀κ1, κ2 ∈ N, ∀t ≥ 0 :

‖wIκ1,κ2
‖H =

1

2
CwA(t) <∞ ,

(1.5.10)

as well as the orthogonality property

∀I1, I2 ∈ {I, II, III, IV }, ∀κ1, κ2, κ
′
1, κ
′
2 ∈ N s.t. I1 6= I2

and/or (κ1, κ2) 6= (κ′1, κ
′
2) : (wI1κ1,κ2

,wI2κ′1,κ′2
)H = 0 .

(1.5.11)

Moreover, it is easy to show that they satisfy the continuity equation, i.e.

∀I ∈ {I, II, III, IV }, ∀κ1, κ2 ∈ N : ∇ ·wIκ1,κ2
= 0 . (1.5.12)

Thus, the functions wIκ1,κ2
are in Ḣper and mutually orthogonal, and form an orthogonal

basis of Ḣper. We see from (1.5.10) and (1.5.7) that by choosing Cw = 2 at time t = 0, they

form an orthonormal basis of Ḣper. As mentioned in Section 1.4.4, the Stokes operator

reduces to the negative Laplacian for the space Ḣper. By applying the negative Laplacian
to the functions wIκ1,κ2

, we get

∀I ∈ {I, II, III, IV }, ∀κ1, κ2 ∈ N :

−∆xwIκ1,κ2
=

4π2

L2
1

(κ2
1 + κ2

2)wIκ1,κ2
,

(1.5.13)

which shows that the functions wIκ1,κ2
are eigenfunctions of the Stokes operator with cor-

responding eigenvalues

λκ1,κ2
=

4π2

L2
1

(κ2
1 + κ2

2) . (1.5.14)

We remark finally that the derivative in time and the negative Laplacian of these functions
cancel out, i.e.

∀I ∈ {I, II, III, IV }, ∀κ1, κ2 ∈ N : ∂tw
I
κ1,κ2

− ν4wIκ1,κ2
= 0 . (1.5.15)

Thus, the momentum equation

∂tu + (u · ∇)u = −1

ρ
∇p+ ν4u + f (1.5.16)

reduces to
1

ρ
∇p = f − (u · ∇)u (1.5.17)

for the functions u = wIκ1,κ2
. This last property will be useful in the next section, where

we show that the functions wIκ1,κ2
are solutions of the Navier-Stokes equations.
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1.5.3 Exact solution when f is conservative

We assume that we can write the forcing term as a conservative body force, i.e.

f(x, t) = −∇ψ(x, t) . (1.5.18)

As an example, we have ψ = gx2 (constant gravitational field, g being the gravitational
acceleration) and the trivial case ψ = 0, f = 0. Then we can define the modified pressure
field

p̃ =
1

ρ
p+ ψ , (1.5.19)

and the momentum equation (1.5.16) reduces to

∂tu + (u · ∇)u = −∇p̃+ ν4u . (1.5.20)

That is, the body force has no effect on the velocity field and on the modified pressure field.
We recover the pressure field p by

p(x, t) = ρp̃(x, t)− ρψ(x, t) . (1.5.21)

By using Equation (1.5.15), for the basis functions wIκ1,κ2
, the momentum equation (1.5.20)

reduces then to
∇p̃ = −(wIκ1,κ2

· ∇)wIκ1,κ2
. (1.5.22)

We prove next that the basis functions wIκ1,κ2
solve (1.5.22) and are thus solutions of

the Navier-Stokes equations with a conservative body force. From the definitions (1.5.3),
(1.5.4), (1.5.5) and (1.5.6), this means that they don’t change during their evolution in
time, except that they are damped by the factor A(t) defined in (1.5.7). We show here only
the case I = I, but the proof is similar for the other basis functions.

Let us define u(x, t) ≡ wI
κ1,κ2

(x, t), and use the following abbreviations to facilitate the
notation:

u1 ≡ u(x, t)1, u2 ≡ u(x, t)2,κ ≡ (κ1, κ2),

s1 ≡ sin(
2πκ1

L1
x1), s2 ≡ sin(

2πκ2

L1
x2),

c1 ≡ cos(
2πκ1

L1
x1), c2 ≡ cos(

2πκ2

L1
x2) .

(1.5.23)

Then it follows (
u1

u2

)
=

(
κ2s1s2

κ1c1c2

)
Cw

‖κ‖2L1
A(t) , (1.5.24)

∂x1

(
u1

u2

)
=

(
κ2c1s2

−κ1s1c2

)
2πκ1

L1

Cw

‖κ‖2L1
A(t) , (1.5.25)

and

∂x2

(
u1

u2

)
=

(
κ2s1c2
−κ1c1s2

)
2πκ2

L1

Cw

‖κ‖2L1
A(t) . (1.5.26)

As mentioned before, the momentum equation results in

(u(x, t) · ∇)u(x, t) = −∇p̃(x, t) . (1.5.27)
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We calculate

−∂x1 p̃ = u1∂x1u1 + u2∂x2u1

= [
2π

L1
κ1κ

2
2s1c1s

2
2 +

2π

L1
κ1κ

2
2s1c1c

2
2]
( Cw

‖κ‖2L1
A(t)

)2
= [κ2

2

2πκ1

L1
s1c1︸︷︷︸

1
2 sin(2

2πκ1
L1

x1)

(s2
2 + c22)︸ ︷︷ ︸

=1

]
( Cw

‖κ‖2L1
A(t)

)2
=

1

4
κ2

2

4πκ1

L1
sin(

4πκ1

L1
x1)
( Cw

‖κ‖2L1
A(t)

)2
,

(1.5.28)

and

−∂x2 p̃ = u1∂x1u2 + u2∂x2u2

= [−2π

L1
κ2

1κ2s
2
1s2c2 −

2π

L1
κ1κ

2
2c

2
1s2c2]

( Cw

‖κ‖2L1
A(t)

)2
= [−κ2

1

2πκ2

L1
s2c2︸︷︷︸

1
2 sin(2

2πκ2
L1

x2)

(s2
1 + c21)︸ ︷︷ ︸

=1

]
( Cw

‖κ‖2L1
A(t)

)2
= −1

4
κ2

1

4πκ2

L1
sin(

4πκ2

L1
x2)
( Cw

‖κ‖2L1
A(t)

)2
.

(1.5.29)

Thus, we showed that the basis function wI
κ1,κ2

(x, t) solves the Navier-Stokes equations
with a conservative body force, and the modified pressure is given by

p̃Iκ1,κ2
(x, t) = Cp̃ +

1

4

[CwA(t)

‖κ‖2L1

]2[
κ2

2cos(
4πκ1

L1
x1)− κ2

1cos(
4πκ2

L1
x2)
]
, (1.5.30)

where Cp̃ ∈ R is an arbitrary constant. The pressure pIκ1,κ2
is then given by

pIκ1,κ2
(x, t) = Cp +

ρ

4

[CwA(t)

‖κ‖2L1

]2[
κ2

2cos(
4πκ1

L1
x1)− κ2

1cos(
4πκ2

L1
x2)
]
− ρψ(x, t) , (1.5.31)

with Cp = ρCp̃.

Analogously, we get for wII
κ1,κ2

(x, t), wIII
κ1,κ2

(x, t) and wIV
κ1,κ2

(x, t):

pIIκ1,κ2
(x, t) = Cp

+
ρ

4

[CwA(t)

‖κ‖2L1

]2[
κ2

2cos(
4πκ1

L1
x1) + κ2

1cos(
4πκ2

L1
x2)
]
− ρψ(x, t) ,

(1.5.32)

pIIIκ1,κ2
(x, t) = Cp

+
ρ

4

[CwA(t)

‖κ‖2L1

]2[− κ2
2cos(

4πκ1

L1
x1)− κ2

1cos(
4πκ2

L1
x2)
]
− ρψ(x, t) ,

(1.5.33)

and

pIVκ1,κ2
(x, t) = Cp

+
ρ

4

[CwA(t)

‖κ‖2L1

]2[− κ2
2cos(

4πκ1

L1
x1) + κ2

1cos(
4πκ2

L1
x2)
]
− ρψ(x, t) .

(1.5.34)
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Next we show that the sum of all four basis functions also solves the Navier-Stokes equa-
tions (1.5.20), assuming they all have the same wave numbers κ1 and κ2. This property
will be useful for calculating exact reference solutions to our numerical experiments.

Let us define u(x, t) ≡ wI
κ1,κ2

(x, t) + wII
κ1,κ2

(x, t) + wIII
κ1,κ2

(x, t) + wIV
κ1,κ2

(x, t). Then,
using the same abbreviations as in (1.5.23), it follows(

u1

u2

)
=

(
κ2(s1s2 + s1c2 + c1s2 + c1c2)
κ1(c1c2 − c1s2 − s1c2 + s1s2)

)
Cw

‖κ‖2L1
A(t) , (1.5.35)

∂x1

(
u1

u2

)
=

(
κ2(c1s2 + c1c2 − s1s2 − s1c2)
κ1(−s1c2 + s1s2 − c1c2 + c1s2)

)
2πκ1

L1

Cw

‖κ‖2L1
A(t) , (1.5.36)

and

∂x2

(
u1

u2

)
=

(
κ2(s1c2 − s1s2 + c1c2 − c1s2)
κ1(−c1s2 − c1c2 + s1s2 + s1c2)

)
2πκ2

L1

Cw

‖κ‖2L1
A(t) . (1.5.37)

We calculate

u1∂x1
u1 = κ2

2

2πκ1

L1
(s1c1s

2
2 + s1s2c1c2 − s2

1s
2
2 − s2

1s2c2

+ s1c2c1s2 + s1c1c
2
2 − s2

1c2s2 − s2
1c

2
2

+ c21s
2
2 + c21s2c2 − c1s1s

2
2 − c1s2s1c2

+ c21c2s2 + c21c
2
2 − c1s1c2s2 − c1s1c

2
2)
[CwA(t)

‖κ‖2L1

]2
= κ2

2

2πκ1

L1
(− s2

1s
2
2 − s2

1c
2
2 + c21s

2
2 + c21c

2
2 − 2s2

1s2c2 + 2c21s2c2)
[CwA(t)

‖κ‖2L1

]2
= κ2

2

2πκ1

L1
(− s2

1 (s2
2 + c22)︸ ︷︷ ︸

=1

+c21 (s2
2 + c22)︸ ︷︷ ︸

=1

+2s2c2(c21 − s2
1))
[CwA(t)

‖κ‖2L1

]2
= κ2

2

2πκ1

L1
(c21 − s2

1)(1 + 2s2c2)
[CwA(t)

‖κ‖2L1

]2
.

(1.5.38)

Analogously, we have

u2∂x2
u1 = κ2

2

2πκ1

L1
(c21 − s2

1)(1− 2s2c2)
[CwA(t)

‖κ‖2L1

]2
. (1.5.39)

From the linearity of the Laplacian operator and of the partial derivative in time, we have
that here also the momentum equation (1.5.20) results in

(u(x, t) · ∇)u(x, t) = −∇p̃(x, t) . (1.5.40)

This gives

−∂x1 p̃ = u1∂x1u1 + u2∂x2u1

= κ2
2

2πκ1

L1
2 (c21 − s2

1)︸ ︷︷ ︸
cos(2 2π

L1
κ1x1)

[ Cw

‖κ‖2L1
A(t)

]2
= κ2

2

4πκ1

L1
cos(

4πκ1

L1
x1)
[ Cw

‖κ‖2L1
A(t)

]2
.

(1.5.41)

Similarly, we have

u1∂x1
u2 = κ2

1

2πκ2

L1
(s2

2 − c22)(1 + 2s1c1)
[ Cw

‖κ‖2L1
A(t)

]2
, (1.5.42)
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and

u2∂x2u2 = κ2
1

2πκ2

L1
(s2

2 − c22)(1− 2s1c1)
[ Cw

‖κ‖2L1
A(t)

]2
. (1.5.43)

This yields

−∂x2
p̃ = u1∂x1

u2 + u2∂x2
u2

= κ2
1

2πκ2

L1
2 (s2

2 − c22)︸ ︷︷ ︸
−cos(2 2π

L1
κ2x2)

[ Cw

‖κ‖2L1
A(t)

]2
= −κ2

1

4πκ2

L1
cos(

4πκ2

L1
x2)
[ Cw

‖κ‖2L1
A(t)

]2
.

(1.5.44)

Thus, we showed that the sum of the basis functions wI
κ1,κ2

(x, t)+wII
κ1,κ2

(x, t)+wIII
κ1,κ2

(x, t)+

wIV
κ1,κ2

(x, t) (with same wave number vector κ = (κ1, κ2)) solves the Navier-Stokes equa-
tions with a conservative body force, and the modified pressure is given by

p̃κ1,κ2
(x, t) = Cp̃ +

[CwA(t)

‖κ‖2L1

]2[− κ2
2sin(

4πκ1

L1
x1) + κ2

1sin(
4πκ2

L1
x2)
]
, (1.5.45)

where Cp̃ ∈ R is an arbitrary constant. The pressure is then given by

pκ1,κ2
(x, t) = Cp + ρ

[CwA(t)

‖κ‖2L1

]2[− κ2
2sin(

4πκ1

L1
x1) + κ2

1sin(
4πκ2

L1
x2)
]
− ρψ(x, t) , (1.5.46)

with Cp = ρCp̃.

We conclude this section by showing in Figures 1.1, 1.2, 1.3 and 1.4 the plots of the basis
functions wIκ1,κ2

on the domain D = (0, 1)× (0, 1) at time t = 0 and with Cw = 1, for the
wave number vectors κ = (1, 1) and κ = (1, 2).
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1.5.4 Plots

Figure 1.1: Stokes eigenfunctions wI
1,1 and wI

1,2 on D = (0, 1)× (0, 1) at time t = 0 and
with Cw = 1. Figure generated with MATLAB.

Figure 1.2: Stokes eigenfunctions wII
1,1 and wII

1,2 on D = (0, 1)× (0, 1) at time t = 0 and
with Cw = 1. Figure generated with MATLAB.
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Figure 1.3: Stokes eigenfunctions wIII
1,1 and wIII

1,2 on D = (0, 1)× (0, 1) at time t = 0 and
with Cw = 1. Figure generated with MATLAB.

Figure 1.4: Stokes eigenfunctions wIV
1,1 and wIV

1,1 on D = (0, 1)× (0, 1) at time t = 0 and
with Cw = 1. Figure generated with MATLAB.
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Chapter 2

Statistical solutions of the
Navier-Stokes equations

As stated in [2, chapt. 5.0], it is “commonly accepted that turbulent flows are necessarily
statistical in nature”. However, the Navier-Stokes equations (1.3.2) are not a stochastic
PDE, such that the statistical nature of turbulent flows should be attainable by other
means. In the following, we consider as initial data an ensemble of velocity fields, and let
all these velocities evolve according to the Navier-Stokes equations and get an ensemble
of solutions. Uncertainty is then given by some probability distribution on the initial
ensemble. This is in practice sufficient for the statistics on the ensemble of solutions to
emulate “complex turbulent flows” [2, chapt. 5.0].

2.1 Probability distribution on the initial data

In the dynamical systems viewpoint of the Navier-Stokes equations presented in Chapter
1, we were interested in finding a (unique in space dimension d = 2) weak solution u(t) of
(1.3.2) that solves the system

u′(t) = F(t,u(t)), with F(t,u) = f(t)− νAu−B(u), (2.1.1)

given an initial (deterministic) velocity field u0 ∈ H, and denoted by S(t, 0) the corre-
sponding solution operator (well-defined in space dimension d = 2) in H that maps u0 into
u(t). Now we try to describe the evolution if the initial velocity field is random.

More precisely, we consider an ensemble of initial velocity fields described by a given
probability distribution µ0 on the space H. Then the ensemble of solutions at some later
time t will be described by (possibly) another probability distribution µt [2, chapt. 4.0],
and we have a time-dependent family of measures µ = (µt, t ≥ 0) on H that are given by

µt(E) = µ0(S(t, 0)−1E), (2.1.2)

for all measurable (sub-)ensembles of initial velocities E ⊂ H [2, chapt. 5.1].
In general, the initial distribution is defined on an underlying (complete) probability

space (Ω,F ,P) and is assumed to be given as an image measure under a random variable
X from the measurable space (Ω,F) into the measurable space (H,B(H)), where B(H) is
the Borel σ-algebra on H, i.e.

X :

{
Ω→ H

ω 7→ u0

(2.1.3)
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and
µ0(E′) = P

(
{ω ∈ Ω : X(ω) ∈ E′}

)
(2.1.4)

for all E′ ∈ B(H) [1, sect. 3.4].

Before continuing the discussion, we present the definitions of two norms we are using
in the thesis. These definitions can be found in [1, sect. 2].

Definitions

For a random variable X : Ω → B taking values in a Banach space B, the expectation of
X is given by

E(X) =

∫
Ω

X dP . (2.1.5)

The expectation E(X) is defined for X ∈ L1(Ω;B), where Lp(Ω;B), 1 ≤ p < ∞ (with a
modification for p =∞), denotes the space of p-summable random variables taking values
in B, and is equipped with the norm

‖X‖Lp(Ω;B) :=


(
E(‖X‖pB)

)1/p
, for 1 ≤ p <∞,

ess sup
ω∈Ω
‖X(ω)‖B , for p =∞. (2.1.6)

Similarly, the space of strongly measurable functions f taking values in B is denoted by
Lp(J̄ ;B), and is equipped with the norm

‖f‖Lp(J̄;B) :=

{( ∫ T
0
‖f(t)‖pB dt

)1/p
, for 1 ≤ p <∞,

ess supt∈(0,T ) ‖f(t)‖B , for p =∞.
(2.1.7)

For the next section, we follow the description in [2, chapt. 5].

2.2 Generalized moments

For any time t ≥ 0, one can extract statistical information from the probability distribution
µt through the generalized moment

Eµt(Φ) =

∫
H

Φ(v) dµt(v) (2.2.1)

for a µt-integrable function Φ on H. We will call this generalized moment also ensemble
average. Heuristically, the more moments we have, the more we know about the probability
distribution.

The simplest moments are the linear ones corresponding to the average velocity [2, chapt.
5.0] ∫

H

vi dµt(v), i = 1, 2, 3 . (2.2.2)

We may also consider nonlinear moments [2, chapt. 5.0] such as∫
H

vi1 . . . vik dµt(v) , (2.2.3)
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for example to calculate covariances. We may otherwise be interested in some scalar bulk
property, that can be extracted by taking the inner product (·, ·)H of the velocity v ∈ H
with a given function g ∈ H. The ensemble average of this bulk property is then∫

H

(v,g)H dµt(v) . (2.2.4)

For example [2, chapt. 5.0], the ensemble average of the averaged first component of the ve-
locity field in a ball of radius ε centered at x0 can be obtained with g = 1

Vol(Bε(x0))1Bε(x0)e1,

such that (v,g)H = 1
Vol(Bε(x0))

∫
Bε(x0)

v1(x) dx.

Or more generally, we may consider the ensemble average of a function of several bulk
properties ∫

H

φ
(
(v,g1)H , . . . , (v,g1)H

)
dµt(v) . (2.2.5)

Let then Φ be a real-valued µt-integrable function on H. It holds [2, chapt. 5.1]∫
H

Φ(v) dµt(v) =

∫
H

Φ(S(t, 0)v) dµ0(v) , (2.2.6)

such that the evolution in time is given by

d

dt

∫
H

Φ(v) dµt(v) =

∫
H

d

dt
Φ(S(t, 0)v) dµ0(v) . (2.2.7)

The time derivative of Φ(S(t, 0)v) can be computed by the chain differentiation rule [2,
chapt. 5.1]

d

dt
Φ(S(t, 0)v) =

( d
dt
S(t, 0)v,Φ′(S(t, 0)v)

)
H

=
(
F(t, S(t, 0)v),Φ′(S(t, 0)v)

)
H
, (2.2.8)

with F as in Equation (2.1.1). Thus, the evolution of statistical moments of the flow in
time is given by

d

dt

∫
H

Φ(v) dµt(v) =

∫
H

(F(t, S(t, 0)v),Φ′(S(t, 0)v))H dµ0(v)

=

∫
H

(F(t,v),Φ′(v))H dµt(v),

(2.2.9)

for suitable testfunctionals Φ. The expression

d

dt

∫
H

Φ(v) dµt(v) =

∫
H

(F(t,v),Φ′(v))H dµt(v) (2.2.10)

is meaningful even if the solution operator is not defined, as in the general case for d = 3
[2, chapt. 5.1]. A suitable class of testfunctionals for (2.2.10) is given by the following
definition.

Definition 2.2.1. Let C be the space of cylindrical test functionals Φ on H which are
real-valued and depend only on a finite number of components of v ∈ H, i.e. for k <∞

Φ(v) = φ((v,g1)H , . . . , (v,gk)H), (2.2.11)

where φ is a compactly supported C1 scalar function on Rk and g1, . . . ,gk ∈ V .
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For Φ ∈ C we denote by Φ′ its differential in H, which is given by

Φ′(v) =

k∑
i=1

∂iφ((v,g1)H , . . . , (v,gk)H)gi (2.2.12)

for the no-slip case and by

Φ′(v) =
1

Ld1

k∑
i=1

∂iφ((v,g1)H , . . . , (v,gk)H)gi (2.2.13)

for the space-periodic cases. Since Φ′(v) is a linear combination of elements in V , Φ′(v)
belongs to V .

Suppose now that the mapping

t 7→
∫
V

|v|2V dµt(v) (2.2.14)

is integrable on the time interval J = (0, T ), i.e. that it belongs to L1(0, T ). This implies
that the family of measures (µt, t ∈ J) does not carry any mass on H\V , i.e. µt(H\V ) =
0 almost everywhere in t. Then it follows [2, chapt. 5.1] that the right-hand side of
equation (2.2.10) is well defined and we may integrate equation (2.2.10) in time. This gives
the following integral form∫

H

Φ(v) dµt(v) =

∫
H

Φ(v) dµ0(v) +

∫ t

0

∫
H

(F(s,v),Φ′(v))H dµs(v) ds (2.2.15)

for the no-slip case and∫
H

Φ(v) dµt(v) =

∫
H

Φ(v) dµ0(v) + Ld1

∫ t

0

∫
H

(F(s,v),Φ′(v))H dµs(v) ds (2.2.16)

for the space periodic cases, and leads to the following energy-type inequality∫
H

|v|2H dµt(v) + 2ν

∫ t

0

∫
V

|v|2V dµs(v) ds

≤
∫ t

0

∫
H

(f(s),v)H dµs(v) ds+

∫
H

|v|2H dµ0(v) for all t ∈ [0, T ].

(2.2.17)

We remark that for d = 2 we have equality in Equation (2.2.17) [2, chapt. 5.1].

2.3 Statistical solutions

The integral form (2.2.10), the energy-type inequality (2.2.17) and the fact that we should be
able to calculate generalized moments from µt with any meaningful Φ lead to the following
definition of statistical solutions of the Navier-Stokes equations (1.3.2) according to Foias-
Prodi [1, def. 3.3][3, def. 3.2].

Definition 2.3.1. A one-parameter family µ = (µt, t ∈ J) of Borel probability measures
on H is called statistical solution of Equation (1.3.2) on J ⊂ R if

(i) the initial Borel probability measure µ0 on H has finite mean kinetic energy, i.e.,∫
H

|v|2H dµ0(v) <∞, (2.3.1)
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(ii) f ∈ L2(J ;H) and the Borel probability measures µt satisfy equation (2.2.10) for all
Φ ∈ C and the energy inequality (2.2.17) holds,

(iii) the mapping

J 3 t 7→
∫
H

ϕ(v) dµt(v) (2.3.2)

is measurable on J for every bounded, continuous, real-valued function ϕ : H 7→ R
and the Borel probability measures (µt, t ∈ J) satisfy (compare [2, (V.1.12), (V.1.13)])

t 7→
∫
V

|v|2V dµt(v) ∈ L1(J), t 7→
∫
H

|v|2H dµt(v) ∈ L∞(J) . (2.3.3)

(iv) (Liouville Equation) for every cylindrical testfunction Φ as in Definition 2.2.1, and
for every t, t′ ∈ J , µt satisfies∫
H

Φ(v) dµt(v) =

∫
H

Φ(v) dµt′(v)

+

∫ t

t′

∫
H

(f ,Φ′(v))H − ν(Av,Φ′(v))H − (B(v,v),Φ′(v))H dµs(v) ds.

(2.3.4)

(v) (strengthened mean energy inequality (2.2.17)) on the time interval J ⊂ R there
exists a subset J ′ ⊂ J of full measure such that, for every nonnegative continuously
differentiable function ψ : [0,∞)→ R with ‖ψ′‖L∞((0,∞)) <∞, there holds

1

2

∫
H

ψ(|u|2H) dµt(u) + ν

∫ t

t′

∫
H

ψ′(|u|2H)|u|2V dµs(u) ds

≤ 1

2

∫
H

ψ(|u|2H) dµt′(u) +

∫ t

t′

∫
H

ψ′(|u(s)|2H)(f(s),u(s))H dµs(u) ds

(2.3.5)

for every t′ ∈ J ′ and every t ∈ J with t′ < t.

The existence (and uniqueness in space dimension d = 2) of statistical solutions accord-
ing to the previous definition is stated in the following result [2, thm. V.1.1-V.1.5].

Theorem 2.3.2. Let µ0 be a Borel probability measure on H with finite mean kinetic
energy, ∫

H

|v|2H dµ0(v) < +∞ . (2.3.6)

Let, moreover, f ∈ L2(J ;H) be a forcing term. Then, for either the no-slip case (H = Hdir)
or the periodic case (H = Hper or H = Ḣper) there exists a statistical solution (µt, t ∈ J)
of the Navier–Stokes equation on H in the sense of Definition 2.3.1.

In dimension d = 2, if µ0 is supported in BH(R) for some 0 < R <∞, and if the forcing
term f ∈ H is time-independent, the statistical solution is unique and explicitly given by
µt = S(t, 0)µ0, for t ≥ t0.
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Chapter 3

Monte Carlo method

We recall the important result from last chapter: assuming we are given a Borel probability
measure µ0 on H with finite mean kinetic energy and a forcing term f ∈ L2(J ;H), where
H = Hdir, Hper or Ḣper, then there exists a statistical solution (µt, t ∈ J) of the Navier–
Stokes equations on H. We can get statistical information from the solution µt by using
the generalized moments

Eµt(Φ) =

∫
H

Φ(v) dµt(v) , t ∈ J , (3.0.1)

where Φ is a bounded and continuous real-valued function on H.

Here we use the Monte Carlo method to approximate Eµt(Φ) numerically, as described
in [1, sect. 4].

3.1 Monte Carlo method

We assume that we can sample from the exact initial distribution µ0. We generate then
M ∈ N independent copies (vi, i = 1, . . . ,M) of u0, where u0 is µ0-distributed. We assume
further that for each sample vi, we can solve v(t) = S(t, 0)vi exactly and that we can
evaluate the real-valued functional Φ(v(t)) exactly. Then, we have the approximation

Eµt(Φ) ≈ EMµt (Φ) :=
1

M

M∑
i=1

Φ(S(t, 0)vi), (3.1.1)

where we denote by (EMµt ,M ∈ N) the sequence of Monte Carlo estimators which approxi-
mate the (generalized) expectation Eµt(Φ).

We assume that there is no forcing term, i.e. f = 0. Also, we assume that Φ satisfies
the linear growth condition, i.e., for some constant C > 0,

∀v ∈ H : |Φ(v)| ≤ C(1 + |v|H) . (3.1.2)

This is the case e.g. for all Φ ∈ C (with C as in Definition 2.2.1) [1, sect. 4.1].

Then we have the following proposition, as stated and proved in [1, prop. 4.1].
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Proposition 3.1.1. Let Φ ∈ C be a testfunction. Then, an error bound on the mean-square
error of the Monte Carlo estimator EMµt , for M ∈ N, is given by

‖Eµt(Φ)− EMµt (Φ)‖L2(H;R) =
1√
M

(Varµt(Φ))
1/2

≤ C 1√
M

(
1 +

( ∫
H

|v|2H dµ0(v)
)1/2)

.

(3.1.3)

For ν > 0, the latter inequality is strict.

We remark that the error estimate in Proposition 3.1.1 does not contain any implicit con-
stant. It is therefore concluded in [1, sect. 4.1] that “the (mean-square over all flow

configurations) convergence rate [M−
1
2 ] of Monte Carlo sample averages is uniform with

respect to the physical parameters of the flow [e.g. ν] but depends, of course, on the second
moment of µ0, i.e. on the mean kinetic energy of the initial probability measure µ0”.

The error bound in Proposition 3.1.1 is semi-discrete, in the sense that it requires an
exact (weak) solution of the Navier–Stokes equations for each initial velocity sample drawn
from µ0. But in order to obtain “computationally feasible approximations” of generalized
moments of statistical solutions, we have to perform additional space and time discretiza-
tions [1, sect. 5.0]. This adds a bias to the error bound in Proposition 3.1.1, as we shall see
in the next chapter.

To conclude this chapter, we discuss the issue of sampling exactly from µ0, since the cal-
culation of the Monte Carlo estimator was based on this assumption. As mentioned in [1,
sect. 4.1], this is “not a constraint” if µ0 is given by a finite-dimensional measure. But we
also have to be able to sample from a measure µ0 defined on a possibly infinite-dimensional
space.

3.2 Discretization of the initial distribution µ0

We recall that the initial distribution µ0 is defined on a probability space (Ω,F ,P) and
is assumed to be given as an image measure under an H-valued random variable X with
distribution µ0, where the random variable X is defined as a mapping from the measurable
space (Ω,F) into the measurable space (H,B(H)) such that µ0 = X ◦ P [1, sect. 7.0].

We assume for simplicity that µ0 is a Gaussian measure supported on H or on a sub-
space of H. Since Gaussian measures are completely characterized by the mean m ∈ H
and the covariance operator Q defined on H [1, sect. 7.0], the Gaussian random variable
X is given by the Karhunen-Loève expansion

X = m +
∑
i∈N

√
λiβiwi, (3.2.1)

where ((λi,wi), i ∈ N) is a complete orthonormal system in H and consists of eigenvalues
and eigenfunctions of Q, and the sequence (βi, i ∈ N) consists of real-valued, independent,
standard normal-distributed random variables [1, sect. 7.0].

Because the expansion in (3.2.1) is infinite, in order to generate X numerically, we use
a truncated expansion of the form

Xκ = m +

κ∑
i=1

√
λiβiwi , (3.2.2)
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with κ ∈ N, mean m ∈ H and covariance operator Qκ. The sequence of truncated sums
(Xκ, κ ∈ N) converges P-a.s. to X for κ→ +∞ [1, sect. 7.0], and the L2(Ω;H)-error of this
truncation is controlled by the decay of the eigenvalues, as shown in the following lemma,
stated and proved in [1, lemm. 7.1].

Lemma 3.2.1. If the eigenvalues (λi, i ∈ N) of the covariance operator Q of the Gaussian
random variable X on H have a rate of decay of λi ≤ C i−γ , then the sequence (Xκ, κ ∈ N)
converges to X in L2(Ω;H) and the error is bounded by

‖X−Xκ‖L2(Ω;H) ≤ C
1√
γ − 1

κ−
γ−1
2 . (3.2.3)

3.2.1 Expansion in terms of Stokes eigenfunctions

We consider now the space-periodic case with vanishing space average, with H = Ḣper, and
let A be the corresponding Stokes operator (see Chapter 1, Section 1.4.4). We recall that
we can define fractional powers Aa of A, with a ∈ R, and that the eigenfunctions of A form
an orthonormal basis of H.

By choosing Q = A−δ and prescribing a mean velocity field 〈u0〉 = Eµ0
(H) ∈ H, draws

of the random initial velocity u0 with law µ0 can be obtained from the Karhunen-Loève
expansion (see (3.2.1))

u0(ω; x) = 〈u0〉+
∑
i∈N

√
µiξi(ω)wi(x) , (3.2.4)

where wi ∈ V denote the eigenfunctions of the Stokes operator A, ξi ∼ N (0, 1) are indepen-
dent standard normal random variables taking values in R, and µi are the Karhunen-Loève
eigenvalues, which, by the spectral mapping theorem, are given by µi = λ−δi , where the
(λi, i ∈ N) are the eigenvalues of the Stokes operator A [1, sect. 7.2].

In our numerical experiments, we will obtain draws of the random initial velocities u0

by using a truncated expansion of the form

u0(ω; x) =

κ∑
i=1

√
λiYi(ω)wi(x) , (3.2.5)

where κ < ∞ and Yi are independent and uniformly distributed random variables on a
bounded interval (a, b). The expectation of u0 is then

E(u0) =

κ∑
i=1

√
λiE(βi)wi =

a+ b

2

κ∑
i=1

√
λiwi , (3.2.6)

and its (squared) L2(Ω;H)-norm is

‖
κ∑
i=1

√
λiYiwi‖2L2(Ω;H) = E

(
‖

κ∑
i=1

√
λiYiwi‖2H

)
=

κ∑
i=1

λiE(Y 2
i )‖wi‖2H

=
a2 + ab+ b2

3

κ∑
i=1

λi .

(3.2.7)

We choose λi = Ci−γ , with γ > 1 such that u0 is still in L2(Ω;H) (resp. the initial
probability distribution has finite kinetic energy) when κ→∞. The truncation error with
respect to the case κ =∞ is bounded the same way as in Lemma 3.2.1.
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The reason we choose uniformly distributed coefficients Yi instead of normally dis-
tributed ones is that by sampling from a normal distribution, we may obtain large samples
Yi and thus large values for the initial velocities. This leads to high Reynolds number flows
that may be difficult for the discrete solvers to handle, or could lead to compatibility issues
(in the sense that the velocities in the initial ensemble should satisfy Ma . 0.3 for the
incompressible Navier-Stokes equations to be applicable (see Chapter 1, Section 1.3)) or
even to an unphysical problem (velocities higher than the speed of light).
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Chapter 4

Space and time discretization

In Chapter 3, Section 3.1, for the computation of the Monte Carlo estimator for the gener-
alized moment Eµt(Φ) at time t, we assumed that we could calculate exactly the solution
S(t, 0)vi from a random initial velocity vi drawn from the probability distribution µ0.

In this chapter, we follow the lines of [1, sect. 5-6], and address the effect of space
and time discretizations, used to compute the pathwise solutions numerically, on the mean-
square error of the Monte Carlo (MC) estimator. Then we present the multilevel Monte
Carlo (MLMC) method, which uses a hierarchic family of discretizations in space and time
to equilibrate statistical and discretization errors more efficiently than the Monte Carlo
method.

4.1 Fully-discrete formulation

We summarize here the description presented in [1, sect. 5.1-2].

For the discretization in space, a nested family of finite dimensional subspaces V = (V`, ` ∈
N0) of L2(D) is introduced. The subspaces V` are endowed with the canonical inner product
of L2(D), which is also the H-norm (see Chapter 1, Section 1.4.1). The refinement levels
` ∈ N0, the refinement sizes (h`, ` ∈ N0) and the projections (P`, ` ∈ N0) from V onto V`
are associated to the subspaces V`. For ` ∈ N0, the sequence is supposed to be dense in the
sense that

lim
`→+∞

|v − P`v`|H = 0 ∀v ∈ V . (4.1.1)

For the discretization in time, a sequence of time discretizations Θ = (Θ`, ` ∈ N0) of the
time interval [0, T ], for T < +∞, is introduced, each of equidistant or maximum time steps
of size ∆`t. The time discretization at level ` ∈ N0, Θ`, is the partition of [0, T ] which is
given by

Θ` = {ti` ∈ [0, T ] : ti` = i ·∆`t, i = 0, . . . ,
T

∆`t
} . (4.1.2)

We denote by S` = (S`(t
i
`, 0), i = 0, . . . , T/∆`t) the full-discrete solution operator that

maps u0 into u`,` = (u`,`(t
i
`), i = 0, . . . , T/∆`t). The spaces in V and the time discretiza-

tions Θ are assumed to be chosen such that the following error bound holds.

Assumption 4.1.1. The sequence of full-discrete solutions (u`,`, ` ∈ N0) converges to the
(unique, in space dimension d = 2) solution u of Equation (1.3.2). The space and time
discretization error is bounded, for ` ∈ N and t ∈ Θ`, by

|u(t)− u`,`|H = |S(t, 0)u0 − S`(t, 0)u0|H ≤ C (
hσ`
ν

+
(∆`t)

σ

ν
), (4.1.3)
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for d ≥ 2 and for σ > 0.
In both cases C > 0 is independent of ν, ` and h`. With the choice h` ' ∆`t this reduces

to

|u(t)− u`,`|H ≤ C
hσ`
ν
, (4.1.4)

for d ≥ 2 and for σ > 0.

Convergence requirement

Achieving asymptotic convergence in Assumption 4.1.1 requires that there exists `∗ ∈ N0

such that hσ`∗ ≤ ν. Then for all h` with ` ≥ `∗, we say that the convergence requirement is
fulfilled and that the refinement levels ` ≥ `∗ are resolved. If we are in the regime ` < `∗

(which implies hσ` > ν), the convergence requirement is not fulfilled, and we say that the
refinement levels ` < `∗ are under-resolved.

Remark 4.1.2. The assumption of a space and time discretization with the convergence
bound (4.1.4) where the rate of convergence σ > 0 holds for large Reynolds numbers
(robust convergence [1, sect. 5.1]) and where the constant C > 0 is independent of the
fluid viscosity in the norm L∞(J ;H) is “strong” [1, rem. 5.3]. It means essentially that
the numerical scheme resolves the bulk properties of the flow consistent to order σ > 0
“independent of the small scale features of the flow” [1, rem. 5.3]. In practice, therefore,
Assumption 4.1.1 implies that, “for flows with large Reynolds number, a proper turbulence
model is used for discretizations which do not resolve physical length scales of the flow” [1,
rem. 5.3].

4.1.1 Discretization with Finite Differences

To compute numerically the pathwise solutions, we use in this thesis a solver named ‘IM-
PACT’. It is a massively parallel solver for incompressible flows which uses Finite Differ-
ences in both space and time for the discretization. We refer to Chapter 5 for a detailed
description of this solver.

4.2 Multilevel Monte Carlo method

4.2.1 Singlelevel Monte Carlo method

We recall that on each discretization level ` ∈ N0, we have a space and time discretization V`
and Θ` and a corresponding discrete solution operator for computing the discrete pathwise
solutions S`(t, 0)u0 = u`,` ∈ V`, with t ∈ Θ`. We can then formulate the fully discrete
Monte Carlo estimator on level ` with M` samples

EM`
µt (Φ) ≈ EM`

µt (Φ`) :=
1

M`

M∑̀
i=1

Φ(S`(t, 0)vi). (4.2.1)

This approach is called singlelevel Monte Carlo [1, sect. 6.1], since all samples of the Monte
Carlo estimator are approximated with one common space and time discretization. As we
shall see next, the space and time discretization introduces a bias in the mean square error
bound of the (discrete) Monte Carlo estimator.

We assume here that the testfunction Φ ∈ C satisfies a Lipschitz condition, i.e. there
exists C > 0 such that

∀u,v ∈ H : |Φ(u)− Φ(v)| ≤ C|u− v|H . (4.2.2)
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We remark that Equation (4.2.2) is an additional constraint compared to the linear growth
condition in Equation (3.1.2).

The Monte Carlo estimator has then the following mean-square error bound, as stated
and proved in [1, thm. 6.1].

Theorem 4.2.1. If, for Φ ∈ C fulfilling Equation (4.2.2) and ` ∈ N0, the fully-discrete
Monte Carlo estimator EM`

µt (Φ`) for the generalized moment of the statistical solution fulfills
Assumption 4.1.1, for σ > 0 and h` ' ∆`t, then the variance of the estimator admits, for
t ∈ Θ`, the bound

‖Eµt(Φ)− EM`
µt (Φ`)‖L2(H;R) ≤

1√
M`

(
Varµt(Φ)

)1/2
+ ‖Φ− Φ`‖L2(H;R)

≤ C
( 1√

M`

+
hσ`
ν

)
.

(4.2.3)

The constant C > 0 is independent of `, h` and of ν.

We see in Theorem 4.2.1 that the error bound for the singlelevel Monte Carlo estimator
consists of two additive components, one for the ‘sampling’ error (which is the same as in
Proposition 3.1.1) and one for the ‘discretization’ error. Although only an upper bound is
stated, this error is indeed of additive nature [1, sect. 6.1]. That is, in order to achieve that
the total error in Theorem 4.2.1 is smaller than a prescribed tolerance ε > 0, we require
that, for some η ∈ (0, 1),

1√
M`

(
Varµt(Φ)

)1/2 ≤ η · ε and ‖Φ− Φ`‖L2(H;R) ≤ (1− η)ε . (4.2.4)

For example, in order equilibrate statistical and discretization errors and achieve an error
of the order of magnitude of the discretization error, we set the number of samples M` to

M` = O
(
(
ν

hσ`
)2
)
, (4.2.5)

where all constants implied in the Landau symbol O(·) are independent of ν, ` and h` [1,
sect. 6.2].

4.2.2 Multilevel Monte Carlo method

In the singlelevel approach, we calculated all samples of the Monte Carlo estimator on a
single level of discretization in space and time. We extend now this approach to a multilevel
discretization, where samples of the Monte Carlo estimator are drawn and calculated on a
hierarchy of nested spatial and temporal discretizations [17, sect. 1].

The idea is that the expectation of the discrete solution ΦL on some discretization level
L, for t ∈ ΘL, can be written (telescopic sum) as

Eµt(Φ`) = Eµt(Φ0) +

L∑
`=1

Eµt(Φ` − Φ`−1). (4.2.6)

That is, it can be expanded as the expectation on the (coarsest) discretization level ` = 0
and a sum of correcting terms on all discretization levels ` = 1, . . . , L.

The expectation of each term on the right-hand side is then approximated with a Monte
Carlo estimator, with a corresponding level-dependent number of samples M`

ELµt(ΦL) = EM0
µt (Φ0) +

L∑
`=1

EM`
µt (Φ` − Φ`−1)

=
1

M0

M0∑
i=1

Φ(S0(t, 0)vi) +

L∑
`=1

1

M`

M∑̀
i=1

(Φ(S`(t, 0)vi)− Φ(S`−1(t, 0)vi)) .

(4.2.7)
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The term ELµt is called the multilevel Monte Carlo estimator for discretization level L ∈ N0

[1, sect. 6.2]. We remark that for the difference Φ(S`(t, 0)vi) − Φ(S`−1(t, 0)vi) appearing
on the right-hand side, for a given i, the same initial velocity sample vi is taken.

The multilevel Monte Carlo estimator has the following mean-square error bound, as stated
and proved in [1, prop. 6.3].

Proposition 4.2.2. If, for Φ ∈ C fulfilling Equation (4.2.2) and L ∈ N0, the fully-discrete
Monte Carlo estimator EM`

µt (Φ`) for the generalized moment of the statistical solution fulfills
Assumption 4.1.1, for all ` = 0, . . . , L with σ > 0 and h` ' ∆`t, and if for ` = 0, . . . , L
h`−1 ≤ %h`, with some reduction factor 0 < % < 1 independent of `, then there exists
C(%) > 0 independent of L, such that the the variance of the estimator admits, for t ∈ ΘL,
the error bound

‖Eµt(Φ)− ELµt(ΦL)‖L2(H;R) ≤ ‖Φ− ΦL‖L2(H;R) +

L∑
`=0

1√
M`

(
Varµt(Φ` − Φ`−1)

)1/2
≤ C(%)

(hσL
ν

+
1√
M0

+

L∑
`=0

1√
M`

hσ`
ν

)
.

(4.2.8)

In order to achieve that the total error in Proposition 4.2.2 is smaller than a prescribed
tolerance ε > 0, we require that, for some ηL ∈ (0, 1),

‖Φ− ΦL‖L2(H;R) ≤ (1− ηL) ε, (4.2.9)

and
L∑
`=0

1√
M`

(
Varµt(Φ` − Φ`−1)

)1/2 ≤ ηL ε. (4.2.10)

We determine next the required number M` of Monte Carlo samples on each discretiza-
tion level `, in order to equilibrate the errors arising from each term Varµt(Φ` −Φ`−1) and
achieve a total error of the order of the discretization error.

We suppose that the convergence requirement is at least fulfilled on the finest level, i.e.,
hσL < ν. Then, on the first level,

M0 = O

(( ν

hσL

)2
)

(4.2.11)

is chosen, in order to equilibrate the statistical and the discretization error contributions
[1, sect. 6.2]. The sample numbers M`, for the discretization levels ` = 1, . . . , L, is chosen
according to

M` = O

((hσ`
hσL

)2

`2(1+η)

)
, (4.2.12)

for η > 0 [1, sect. 6.2].
All constants implied in the Landau symbols O(·) are independent of ν [1, sect. 6.2].

Cost considerations

On each level ` = 1, . . . , L, the cost W` to compute
∑L
`=1E

M`
µt (Φ` − Φ`−1) is M` times

the (average) cost to calculate one discrete solution Φ(S`(t, 0)v) and one discrete solution
Φ(S`−1(t, 0)v) on the discretization level `. And on level ` = 0, the costW0 is M0 times the
(average) cost to calculate one discrete solution Φ(S0(t, 0)v) on the coarsest discretization
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level. If the costs W`, ` = 0, . . . , L − 1, are smaller than or equal to the cost WL on the
finest discretization level, then, with a small number of samples ML, the cost for calculating
the multilevel Monte Carlo estimator ELµt(ΦL) is approximatively only a couple of times
the cost to calculate one discrete solution on the finest discretization level L.

In comparison, in the singlelevel Monte Carlo approach, we need to calculate usually
more (see Equation (4.2.5)) fine discrete solutions in order to equilibrate statistical and
discretization error. With a Finite Volume solver used to calculate the discrete solutions, it
was shown that the multilevel Monte Carlo approach was, at the relative error level of 1%,
“two orders of magnitude faster” than the singlelevel approach ([17, sect. 1] and references
there).

In this thesis, we compute numerically the discrete pathwise solutions S`(t, 0)v with a
massively parallel solver for incompressible flows named ‘IMPACT’, which uses Finite Dif-
ferences in both space and time for the discretization and solves resulting linear systems of
equations iteratively. We describe this solver more in detail in the next chapter.
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Chapter 5

IMPACT

The IMPACT code was originally developed by Dr. Rolf Henniger at ETH Zurich in
the context of his Phd thesis “Direct and Large-Eddy Simulation of particle transport
processes in estuarine environments” [4] in the research group of Prof. L. Kleiser. The code
is continuously developed at the Institute of Fluid Dynamics at ETH Zurich [5].

Utilization of the code in the context of this thesis was kindly permitted by Prof. L.
Kleiser and PD Dr. D. Obrist.

This chapter aims at summarizing the code capabilities that may be of interest in the
context of this thesis as well as the underlying theoretical and algorithmic concepts, as they
were described in [4] and [6], and follows closely the descriptions, notations, equations and
figures found there.

5.1 General description

IMPACT stands for a simulation code that can predict the evolution of “Incompressible
(turbulent) flows by means of Massively PArallel CompuTers” [4, chapt. 2.0].

5.1.1 Governing equations

The code solves the Navier-Stokes equations for incompressible flows in dimension d = 2 or 3
given by

∂

∂t
u = −∇p+

1

Re
4u︸ ︷︷ ︸
Lu

+ f − (u · ∇)u︸ ︷︷ ︸
N (u)

(5.1.1a)

∇ · u = 0 , (5.1.1b)

for an initial condition u0 and appropriate boundary conditions for u.
The momentum and continuity equations (5.1.1a) and (5.1.1b) can be written in matrix

form (including boundary conditions), by

∂

∂t

[
u
0

]
=

[
L −G
−D 0

] [
u
p

]
+

[
N (u)

0

]
, (5.1.2)

where D and G are resp. the divergence and gradient operators.
By applying the continuity equation (5.1.1b) to the momentum equation (5.1.1a) we

obtain an equation for the pressure:

4p = ∇ · N (u) . (5.1.3)
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The code solves a discretized form of (5.1.2), and from this discretized system of equa-
tions, a discretized equation for the pressure is derived such that no explicit pressure bound-
ary conditions need to be specified [6, sect. 2.0].

The governing equations are solved on a rectangular domain D = (0, L1) × (0, L2) ×
(0, L3) with boundary ∂D and extents L1, L2 and L3. Suitable boundary conditions for
the velocity u that are handled by the code are:

• Periodic boundary conditions.

• Symmetry boundary conditions.

• Dirichlet boundary conditions u(x, t)|∂D = g(x, t).
Note that the following compatibility condition must be satisfied [4, chapt. 2.1]:∫

∂D

g · n dS = 0 . (5.1.4)

• Advective boundary conditions ∂
∂tu(x, t) + c(x) ∂

∂nu(x, t)
∣∣
∂D

= −A(x, t).

As previously mentioned, the boundary conditions for the pressure p in Equation (5.1.3)
depend implicitly on the aforementioned boundary conditions for the velocity u.

As mentioned in [6, sect. 3.0]: “A complete strategy for solving numerically the incom-
pressible Navier-Stokes equations consists of a data decomposition method, a discretization
scheme and an appropriate solution technique for the resulting system of linear equations”.
We present next the domain decomposition method.

5.2 Domain decomposition and datastructure

IMPACT uses a static data decomposition as sketched in Figure 5.1 for a 2D problem [4,
chapt. 2.2.1].

Figure 5.1: Static data decomposition and ghost cell update between four processors.
Figure and caption taken from [4, fig. 2.1].

The computational domain is decomposed into sub-domains on a cartesian grid (see
Figure 5.1) and each processor is mapped to one of the sub-domains and holds it in its
memory. The connection with sub-domains is done by ghost cells which are located at the
junctions between the sub-domains. Each sub-domain contains only a portion of the discrete
global vectors and operators (e.g. the diagonal blocks in a system of linear equations), and
the ghost cells correspond to the parts of the operator which cannot be distributed (e.g.
the off-diagonal blocks in a system of linear equations) [4, chapt. 2.2.1]. Before a global
operator is applied to a global vector, the data in the ghost cells is updated or synchronized
with the corresponding data from the neighboring processors [4, chapt. 2.2.1].
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5.3 Temporal discretization scheme

5.3.1 Stability and efficiency

The maximum time step size for a stable time integration of Equation (5.1.2) with an explicit
time integration scheme is estimated from the Courant-Friedrichs-Lévy (CFL) condition [6,
sect. 4.1]. If only the convective term (u · ∇)u is taken into account, for e.g. in the semi-
implicit scheme used in the code [4, chapt. 2.3.1], the convective time step limit (for d = 3,
similarly for d = 2) is set [6, sect. 4.1] to

∆t ≤ sconv

max
D

{
|u1|κ̃C,1 + |u2|κ̃C,2 + |u3|κ̃C,3

}
⇔ ∆t = ˜CFL

sconv

max
D

{
|u1|κ̃C,1 + |u2|κ̃C,2 + |u3|κ̃C,3

} , (5.3.1)

with the ‘normalized’ CFL–number 0 < ˜CFL ≤ 1. The parameter sconv is the stability limit
of the time integration scheme used to treat the convective term, which is known or can be
precalculated before the computations are started. The κ̃C,i = κ̃C,i(∆x), for i = 1, 2, 3, are
the maximum modified wave numbers of the spatial discretization of the convective term,
which are calculated before the start of the time integration. For our simulations, we set
the value of ˜CFL to 0.75.

We remark that Equation (5.3.1) leads also to a more ‘classical’ CFL-condition [6, sect.
4.1], namely

∆t ≤ CFLconv
1

max
D

{ |u1|
∆x1

+ |u2|
∆x2

+ |u3|
∆x3

} , (5.3.2)

where the CFL–number

CFLconv ≡
sconv

max
D

{
|∆x1|κ̃C,1 + |∆x2|κ̃C,2 + |∆x3|κ̃C,3

} (5.3.3)

is calculated (or a lower bound is guessed) before the start of the time integration.
If only the diffusive term 4u is taken into account, the viscous time step limit (for

d = 3, similarly for d = 2) is set [6, sect. 4.1] to

∆t ≤ svisc

max
D

{
1

Re (κ̃2
L,1 + κ̃2

L,2 + κ̃2
L,3)

} . (5.3.4)

Here, the parameter svisc is the stability limit of the time integration scheme used to treat
the viscous term, which is known or can be precalculated before the computations are
started. The κ̃L,i = κ̃C,i(∆x), for i = 1, 2, 3, are the maximum modified wave numbers of
the spatial discretization of the viscous term, which are calculated before the start of the
time integration.

We remark that Equation (5.3.4) leads also to a more ‘classical’ CFL-condition [6, sect.
4.1], given by

∆t ≤ CFLvisc
1

max
D

{
1

Re

(
1

∆x2
1

+ 1
∆x2

2
+ 1

∆x2
3

)} , (5.3.5)

where the CFL–number

CFLvisc ≡
svisc

max
D

{
(∆x1κ̃L,1)2 + (∆x2κ̃L,2)2 + (∆x3κ̃L,3)2

} (5.3.6)

is again calculated (or a lower bound is guessed) before the start of the time integration.
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If both the convective and diffusive terms are taken into account, for e.g. in the fully
explicit scheme used in the code [4, chapt. 2.3.1], the time step limit (for d = 3, similarly
for d = 2) is set [4, chapt. 2.3.1] to

∆t = ˜CFL
sconv+visc

max
D

{√∣∣|u1|κ̃C,1 + |u2|κ̃C,2 + |u3|κ̃C,3
∣∣2 +

∣∣ 1
Re (κ̃2

L,1 + κ̃2
L,2 + κ̃2

L,3)
∣∣2} , (5.3.7)

with the ‘normalized’ CFL–number 0 < ˜CFL ≤ 1. The parameter sconv+visc is the stability
limit of the time integration scheme used to treat both convective and diffusive terms, which
is known or can be precalculated before the computations are started. For our simulations,
we set the value of ˜CFL to 0.75.

As it can be seen from the time step limits (5.3.1) and (5.3.4), there is “always a Reynolds
number Re (and an according fine-grid spacing ∆x) below which the viscous time step
limit is more restrictive than the convective limit” [6, sect. 4.1]. Such viscous time step
size restrictions can be avoided by using an implicit time integration scheme [4, chapt.
2.3.1]. This results in solving an additional linear system of equations, which increases
the computational work per time step [6, sect. 4.1]. However, the time step sizes may
be larger than with an explicit time integration (due to the less restrictive stability limit),
such that less time steps are needed to advance the solution over a given time interval. As
mentioned in [4, chapt. 2.3.1], it is “often hard to judge beforehand whether implicit or
explicit time integration is more efficient overall” since “accuracy requirements may impose
stronger limitations on the time step size than the stability limits”.

5.3.2 Integration scheme

We recall here that the momentum and continuity equations (5.1.1a) and (5.1.1b) can be
written in matrix form (including boundary conditions):

∂

∂t

[
u
0

]
=

[
L −G
−D 0

] [
u
p

]
+

[
N (u)

0

]
, (5.3.8)

where D and G are resp. the divergence and gradient operators.
Let u(0) = u(t) be the solution at time t. For advancing the solution by a time step

size ∆t, the (CN-)RK3 ((Crank-Nicolson)-Runge-Kutta 3) scheme is used for the system
(5.3.8) [4, chapt. 2.3.1], and it reads:

1

∆t
(u(m) − u(m−1)) = α(m)

c [ΘCNLu(m) + (1−ΘCN )Lu(m−1) − Gp(m)]

+ α(m)
a N (u(m−1)) + α

(m)
b N (u(m−2)) ,

(5.3.9)

where u(1) = u(t+α
(1)
a ∆t), u(2) = u(t+ (α

(1)
a +α

(2)
a +α

(2)
b )∆t) are intermediate solutions,

and u(3) = u(t+ ∆t) is the solution at time t+ ∆t. The coefficients α
(m)
a , α

(m)
b and α

(m)
c ,

m = 1, 2, 3, are listed in Table 5.1.

The parameter ΘCN allows to choose between a fully explicit or a semi-implicit scheme:

• for ΘCN = 0, the (CN-)RK3 scheme (5.3.9) is fully explicit and corresponds to a
low-storage, three-stage Runge-Kutta scheme (RK3) of (global) order 3 [4, chapt.
2.3.1].

• for ΘCN = 0.5 (which is the value we use in the code), the (CN-)RK3 scheme (5.3.9)
is semi-implicit, where the unconditionally stable Crank-Nicolson scheme (CN) of
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Table 5.1: Coefficients of the (CN-)RK3 time integration scheme. Table data and caption
taken from [4, table 2.2].

m α
(m)
a α

(m)
b α

(m)
c

1 8
15 0 8

15
2 5

12 − 17
60

2
15

3 3
4 − 5

12
1
3

(global) order 2 is used for the integration of the linear term Lu, while the explicit
time integration of the nonlinear term N (u) is performed with the RK3-scheme [4,
chapt. 2.3.1]. This scheme allows to “avoid the restrictive viscous time step limit” [6,
sect. 4.1].

The scheme (5.3.9) results in the following coupled system of linear equations for the
velocity u(m) and the pressure p(m) of the new sub-time level m[

H(m) α
(m)
c ∆tG

D 0

] [
u(m)

p(m)

]
=

[
q(u(m−1),u(m−2))

0

]
, for m = 1, 2, 3 , (5.3.10)

where
H(m) = 1−ΘCNα

(m)
c ∆tL (5.3.11)

is the Helmholtz operator and

q(u(m−1),u(m−2)) =
[
1 + (1−ΘCN )α(m)

c ∆tL
]
u(m−1)

+ α(m)
a N (u(m−1)) + α

(m)
b N (u(m−2))

(5.3.12)

stands for the remainder of Equation (5.3.10).
As mentioned in [4, chapt. 2.3.1], the repeated solution of the linear system (5.3.10) is

“typically by far the most time-consuming part of a numerical simulation”.

5.4 Spatial discretization scheme

For this section, we follow closely the description and the notation in
[4, chapt. 2.3.2].

IMPACT handles Cartesian coordinates and rectangular domains with arbitrary grid stretch-
ing [6, sect. 4.2]. Explicit finite differences of high convergence order are used as a local
spatial discretization scheme. Based on (5.3.10), this leads to a SLE of the form[

H G
D 0

] [
u
p

]
=

[
q
0

]
, (5.4.1)

which has to be solved in each sub-time step of the time integration scheme (the index m
for the sub-time step level is dropped from now on to simplify the notation). The vector
u = [u1,u2,u3]T represents the discrete velocity and p represents the discrete pressure.
The matrix D is the discretized form of the divergence operator D = ∇· (·), and the matrix
G is the discretized form of the gradient operator αc∆tG = αc∆t∇(·). The discretized
Helmholtz operator H has the form

H = J− 1

2
αc∆tL (5.4.2)
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for the semi-implicit time integration scheme, where L stands for the discretized form of
the linear operator L = 1

Re4(·), and the form

H = J (5.4.3)

for the fully explicit time integration scheme.
The matrix J is equal to the identity matrix I except that the rows corresponding to

boundary points hold the stencils describing the velocity boundary conditions. The matrices
L and G act everywhere except on the boundary, i.e. their rows corresponding to boundary
points are left blank (these same rows in J and q describe the boundary conditions for the
velocity). In contrast, the continuity equation is imposed everywhere and Du = 0 acts also
on boundary points.

By taking the Schur complement of Equation (5.4.1), an equation for the pressure is
obtained, given by

DH−1Gp = DH−1q . (5.4.4)

Once the pressure is found, the velocity u can be determined from

Hu = q−Gp . (5.4.5)

5.4.1 Staggered grids

The finite differences stencils are used on staggered grids for the velocity and the pressure.
There are four sub-grids (Figure 5.2): one for each velocity component and one for the
pressure. The pressure grid is labeled 0 and the velocity grids are labeled 1, 2 or 3 (corre-
sponding to the direction of the velocity component). The momentum equations are solved
on the respective velocity grids, and the continuity equation is satisfied on the pressure
grid.

Figure 5.2: Staggered grid in two dimensions near boundaries. Figure and caption taken
from [4, fig. 2.2].

The discrete divergence operator D computes first derivatives on grid 0 from function
values stored on grids 1, 2 and 3, whereas the discrete gradient operator G computes first
derivatives on the grids 1, 2 and 3 from function values stored on grid 0. The discrete
Laplacian operator L computes second derivatives directly in the respective velocity grids.
It is obtained by applying subsequently G then D.

For the advective term (u ·∇)u, the first derivative on grid i in direction j is represented
by the discrete operator

Ci,j ≈
∂(·)i
∂xj

, i, j = 1, 2, 3 . (5.4.6)

Yann Poltera 2013 c©



5.4. SPATIAL DISCRETIZATION SCHEME lx

Additionally, the advection velocities have to be transferred between the velocity grids. The
discrete interpolation operators Ti,0 and T0,j are used for this. They interpolate function
values from the pressure grid 0 onto the velocity grid i and function values from the velocity
grid j onto the pressure grid 0, respectively. The local velocity component in direction j
on grid i is then obtained from

uj,i = Ti,0T0,juj , i, j = 1, 2, 3 . (5.4.7)

The final form of the the advective term (u · ∇)u is

uj
∂ui
∂xj
≈ diag{uj,i}Ci,jui = diag{Ti,0T0,juj}Ci,jui, i, j = 1, 2, 3 , (5.4.8)

where diag{uj,i} is a diagonal matrix with the components of uj,i as diagonal entries.

From now on, we will call staggered an operation that computes derivatives or interpo-
lated values on a grid from a function whose values are stored on a different grid (e.g.
the operators D, G and T), and call collocated an operation that computes derivatives or
interpolated values on a grid from a function whose values are stored on the same grid (e.g.
the operators L, H and C).

5.4.2 Finite Differences stencils

Two methods are implemented to compute the finite difference and interpolation stencil
coefficients.

• In the first method, the coefficients are computed directly on the stretched (physical)
grid from truncated Taylor series. For sufficiently smooth functions, the truncation
error with respect to the exact result “typically scales as O(∆xn−1)” for central
collocated operations, and “as O(∆xn)” for central staggered operations [4, chapt.
2.3.2].

We remark that the stencil coefficients are obtained by inverting a Vandermonde-like
matrix, which is increasingly ill-conditioned with growing n, such that the “accuracy
of the stencil coefficients is limited” [6, sect. 6.1.1]. For our simulations, we use a
scheme with up to n = 7 coefficients.

• In the second method, an invertible, at least twice differentiable mapping x(z) is used
to switch between the physical grid with coordinates x and an equidistant computa-
tional grid with coordinates z on which all spatial operations are performed. While
the above stated convergence orders hold on the equidistant grid, the convergence
orders are in general reduced on the physical grid [4, chapt. 2.3.2]. However, this
approach has the advantage that it “does not introduce any artificial advection or
amplification to the discrete operators in case of nonuniform grids” [4, chapt. 2.3.2].

To “provide an anti-aliasing filter for under-resolved flows” [6, sect. 4.2.2], upwind-biased
finite differences for the discretization of C are used. There the outermost coefficients on
the downwind sides of the stencils are set to zero (Figure 5.3), and the convergence order
reduces to n− 2 [4, chapt. 2.3.2]. This modified scheme “damps the solution especially at
high wave numbers” but “does not affect the dispersion properties” [6, sect. 4.2.2]. The
damping of high wavenumber modes has a dissipative effect [4, chapt. 2.3.2] and “controls
the accumulation of kinetic energy in the large wave numbers” [6, sect. 4.2.2].

In the interior of the domain, the same stencil width n is used for all collocated operators
and the same stencil width n−1 for all staggered operators, where n is an odd number and
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Figure 5.3: Upwind-biased finite-difference stencils, where the ηj are the stencil
coefficients. The outermost coefficients on the downwind sides are set to zero. Figure
taken from [4, fig. 2.4].

central stencils are used (except for the upwind schemes). Near the boundaries, the stencil
widths are reduced and modified stencils are used [4, chapt. 2.3.2].

Five different sets of finite-difference stencils are implemented [4, chapt. 2.3.2], as spec-
ified in Figure 5.4. The d3 scheme is the one that we use for our simulations. It is sketched
in Figure 5.5.

Figure 5.4: Convergence order (and number of non-zero coefficients) of the finite
difference stencils on the first few grid points starting from the boundary. The first pair of
numbers corresponds to the grid point on the boundary (collocated) or next to the
boundary (staggered), cf. Figure 5.5. Table and caption taken from [6, table 3].

Discretization scheme for LES

The differentiation error of the previously described finite difference stencils is “typically
most pronounced at high wave numbers” [4, chapt. 2.3.2].

In Large-Eddy Simulations (LES), the differentiation errors become significant ideally
only “at wavenumbers which are effectively treated by the SubGrid Scale model” [4, chapt.
2.3.2]. The explicit differentiation schemes described before are however often not suf-
ficiently accurate to achieve this [4, chapt. 2.3.2]. Therefore, compact finite difference
schemes (where differentiation schemes are defined implicitly [10, chapt. 3.1.2]) together
with the mapping approach (described in Section 5.4.2) are used for LES. The schemes are,
for equidistant grids, fourth-order accurate at the boundary and tenth-order accurate in the
interior of the domain [4, chapt. 2.3.2]. Since the energy accumulation at high wavenumbers
is controlled ideally uniquely by the SubGrid Scale (SGS) model, no “interfering upwind
procedure” is employed for the advective terms [4, chapt. 2.3.2].
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Figure 5.5: Finite difference stencils of the d3 scheme near the boundary. Differentiation
scenarios: (a) from a velocity grid to the same velocity grid (collocated operation), (b)
from a velocity grid to the pressure grid (staggered operation) and (c) from the pressure
grid to a velocity grid (staggered operation). Figure and caption taken from [4, fig. 2.6].

Further discussion of the spatial discretization with compact finite differences schemes is
out of the scope of this thesis, and in the following, we assume that explicit finite differences
schemes are used. For a short description of one of the SGS models used in the code, we
refer to Section 5.8.

5.5 Iterative solution

We recall here that on each sub-time step of the integration scheme, a linear system of the
form [

H G
D 0

] [
u
p

]
=

[
q
0

]
(5.5.1)

has to be solved. An equivalent system can be obtained [4, chapt. 2.4.1] by taking the
Schur complement of (5.5.1), this leads to[

H G
0 DH−1G

] [
u
p

]
=

[
q

DH−1q

]
. (5.5.2)

To solve (5.5.2), an equation for the pressure is solved first

Ap = b , (5.5.3)

where A = DH−1G and b = DH−1q. Once the pressure is found, the velocity u can be
determined from

Hu = q−Gp . (5.5.4)

Iterative methods are used to solve the linear systems (5.5.3) and (5.5.4), because “di-
rect solvers have an unfavorable numerical complexity” [6, sect. 5.0] for large problem sizes.
Furthermore, iterative methods allow a “direct control of the solution accuracy”, which is
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useful for problems that do not need high accuracy (e.g. sup-problems appearing in pre-
conditioners) [6, sect. 9.0].

Before discussing the solution of Equations (5.5.3) and (5.5.4), we define the measure

β ≡ ∆t

2
‖L‖∞ , (5.5.5)

which characterizes the Helmholtz matrix H [6, sect. 5.1]. For the central discretizations
of L used in the code, it is found [6, sect. 5.1] that

β ≈ ∆t

Re min
Ω
{∆x2}

. (5.5.6)

The measure β can be interpreted as a measure for the number of iterations needed by
the solvers to solve the system (5.5.1), independently of the problem size or the degree of
parallelization [6, sect. 5.2.0, 8.1.1, 8.1.2]. For very large values of β, we may need to reduce
β for the solvers to converge [6, sect. 5.2.1]. Very small values of β indicate (see (5.5.6))
that the time step size is in the viscous time step stability limit and that an explicit time
integration may be more efficient (we remark that β = 0 for the explicit time integration)
[6, sect. 5.2.1].

5.5.1 Pressure iteration

With staggered grids it is normally achieved that A has “normally” a rank-deficit of one
(and a corresponding zero eigenvalue) [6, sect. 4.2.1], which accounts for the undefined
pressure constant. But since A has a zero eigenvalue, “typical primary iterative solvers will
not work efficiently without an appropriate preconditioner” [6, sect. 5.2.0].

In the code, the preconditioned Richardson iteration scheme is used. It reads, with a
preconditioner Ã:

pl+1 = pl + ωÃ−1rlA , (5.5.7)

where l is the iteration count, ω is a relaxation parameter (in the code ω = 1) and rlA is
the residual

rlA = b−Apl = DH−1(q−Gpl) = Dul . (5.5.8)

We see from (5.5.8) that the discrete divergence of ul is given by the residual rlA. The error
in the pressure field is

elA = p− pl = A−1rlA . (5.5.9)

The Richardson iteration is terminated when the residual satisfies

‖rl∗A‖ ≤ εA , (5.5.10)

with the threshold εA ≥ 0 and the corresponding iteration count l∗. As initial guess p0,
the pressure field from the previous sub-time step is used [6, sect. 5.2.0]. For the very first
initial guess, we set the value zero in the code.

Preconditioner

In the code, a commutation-based preconditioner [6, sect. 5.2.0] is used, which has the form

Ã = DJ−1G(DJ−1HJ−1G)−1DJ−1G . (5.5.11)

Its application requires two sub-solutions, which are solutions of Poisson problems with
matrix K = DJ−1G [6, sect. 5.2.0]. The application of the preconditioner (5.5.11) is
illustrated in Figure 5.6.
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Figure 5.6: Flow chart of the pressure iteration with the preconditioner (5.5.11). The
vectors p′ and y are temporary variables in the context of the preconditioner. Figure and
caption taken from [6, fig. 7]. The figure was slightly modified.
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The preconditioner 1
ω Ã is an “increasingly poor approximation” of A as β increases,

and at a certain point, the Richardson iteration diverges [6, sect. 5.2.1]. This can be
avoided, for a given mesh width ∆x and Reynolds number Re, by choosing a smaller ω or
by reducing the time step size ∆t to reduce β [6, sect. 5.2.1].

The complexity to solve the pressure equation is given by the complexity of the Richard-
son iteration (5.5.7) plus the complexity to apply D and the preconditioner Ã−1. And the
complexity to apply Ã−1 is equal to the complexity to apply K−1 = (DJ−1G)−1 plus the
complexities of D, G, H and J−1. The inverse J−1 is “trivial to compute directly since
only the boundary conditions need to be inverted” [6, sect. 5.2.0, 5.2.1].

5.5.2 Poisson equations

The preconditioner (5.5.11) includes two Poisson sub-problems of the form

Kx = h . (5.5.12)

where the operator K = DJ−1G is of Laplacian-type [6, sect. 5.2.2].
In the code, Equation (5.5.12) is solved with the Krylov subspace method BiCGstab

with right preconditioning using geometric multigrid [6, sect. 5.2.2]. That is,

xstart = K̃−1h (5.5.13)

is first solved and xstart is then used as a first guess for the BiCGstab algorithm. The
matrix K̃−1 stands for one application of a geometric multigrid scheme with a V (m,m)-
cycle (m smoothing sweeps on each grid level) at a grid coarsening factor of two in all spatial
directions, where the Gauss-Seidel iteration is used as a smoother [6, sect. 5.2.2]. The fine-
grid discretization in the multigrid scheme is the d1 scheme (see Figure 5.4 in Section
5.4.2) [6, sect. 8.1.2]. The restriction is performed by injection (‘direct mapping’) and the
prolongation is performed by bilinear interpolation, which is usually sufficient because “the
induced error is normally only a small part of the total approximation error of K̃−1” [6,
sect. 5.2.2].

Equation (5.5.12) is solved iteratively and terminated after j = j∗ iterations, when the
residual satisfies ‖rj∗K ‖ ≤ εK , with the threshold εK ≥ 0. The threshold at the iteration

count l+ 1 of the outer pressure iteration is set to εl+1
K = φ‖rl+1

A ‖, with a relaxation factor

φ < 1 [6, sect. 5.2.2]. The residual rl+1
A is extrapolated from the previous time step, such

that the termination threshold for the Poisson sub-problems at time t, sub-time step m and
iteration l + 1 [6, sect. 5.2.2] is

εl+1
K,t,m = φ‖rl+1

A ‖t−∆t,m . (5.5.14)

Values for φ between 0.1 and 1.0 (we set the value to 0.5 in the code) are in practice “good
choices” [6, sect. 5.5]. They do not need to be smaller because it can “be cheaper overall
to tolerate a few more outer pressure iterations (because of a large φ) rather than solving
the preconditioner problem fewer times but more accurately” [6, sect. 5.5].

For the first Poisson problem, the initial guess is set to zero, and for the second Poisson
problem, it is set to the solution of the first Poisson problem [6, sect. 5.2.2]. The number of
iterations to solve Equation (5.5.12) with BiCGstab and multigrid is “typically of order one”
and does not depend “on the problem size or the degree of parallelization” [6, sect. 5.2.2].
The complexity to compute K−1h is then given by the complexities of K, the contributions
of the BiCGstab solver and of the multigrid preconditioner [6, sect. 5.2.2].

5.5.3 Helmholtz problem

Once the pressure pl is obtained, the system

Hul = q−Gpl (5.5.15)
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can be solved in order to obtain the velocity ul and compute the residual rlA = Dul for the
next pressure iteration. Once this residual is sufficiently small, a separate solution of the
Helmholtz equation (5.5.4) is “usually not necessary” [6, sect. 5.3].

Equation (5.5.15) is solved iteratively and terminated after k = k∗ iterations, when the
residual

rl,kH = q−Gpl −Hul,k (5.5.16)

satisfies ‖rl,kH ‖ ≤ εH , with the threshold εH ≥ 0. The flow field u from the previous
sub-time step is “usually the best initial guess” [6, sect. 5.3].

The value of β is in practice “sufficiently small” to solve Equation (5.5.15) with the
unpreconditioned Krylov subspace method BiCGstab [6, sect. 5.3]. If β is large, the
Helmholtz problems tend to be Poisson–like such that they can be treated with multigrid
preconditioning, similarly as the Poisson problems (5.5.12) [6, sect. 5.3]. In terms of
computational cost, the solution of the Helmholtz problems is “typically equally or less
expensive than the application of the preconditioner Ã” [6, sect. 5.3].

The number of iterations to solve Equation (5.5.15) with BiCGstab to a given level of
accuracy depends “mostly on β” but not on the problem size or the degree of parallelization
[6, sect. 5.3]. So, the complexity to solve Equation (5.5.15) is given by the complexity of
H and the contributions of the BiCGstab solver [6, sect. 5.3].

Explicit time integration

If the explicit time integration scheme is used, the matrix H−1 reduces to J−1, which
is easy to compute directly since “only the boundary conditions need to be inverted” [6,
sect. 5.2.1]. Therefore, the Helmholtz problem (5.5.15) can be directly solved, without an
iterative solver. Additionaly, the matrix A and the right-hand side b reduce to A = DJ−1G
and b = DJ−1q, such that the pressure solution can be found with the same solver used for
the Poisson problems (5.5.12), but with the residual threshold εA instead of εK . Therefore,
the pressure problem (5.5.3) is solved without the outer pressure iteration (5.5.7).

5.5.4 Total error

The error between the numerical solution u and the exact solution uexact can be decomposed
in a discretization error ed due to the discretization of the operators and an iteration error eit
due to the iterative solution [6, sect. 6.0]. For efficiency reasons, the iteration error “should
not be required to be much smaller than the discretization error ” [6, sect. 5.4]. Conversely,
for the convergence order of the discretization error to be observable, the iteration error
should not be bigger than the discretization error.

5.5.5 Solution accuracy

For a given threshold εH of the Helmholtz problem, it cannot be expected in general [6,
sect. 5.4] that the residual ‖rA‖ of the pressure equation can be reduced below

εA,min = sup
‖rH‖≤εH

‖DH−1rH‖. (5.5.17)

By approximating (5.5.17) (with consistent matrix norms), the following relation is used
[6, sect. 5.4] instead

‖D‖‖H−1‖εH = εA . (5.5.18)

In the code, we use the relation
εA = εH , (5.5.19)

and the residual norms are calculated in the infinity norm.
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5.5.6 Solvability

For the singular system (5.5.1) to have a solution, the right-hand side must be contained in
the column space of the system matrix. With such a right-hand side, the rank deficiency
of the system matrix is “usually not a problem” for the iterative solvers used in the code
[6, sect. 5.6]. As mentioned in [6, sect. 5.6], a right-hand side which is not contained in
the column space of the matrix indicates that “the boundary conditions try to enforce a
net increase or decrease of mass in the domain [respectively an artificial inflow (or outflow)
over the boundaries] which violates the mass conservation law”.

In [6, sect. 5.6], two methods to resolve this problem are described. The first one
modifies the system matrix by prescribing the pressure artificially at at least one point in
space, such that A becomes “non-singular and a solution always exists” [6, sect. 5.6]. The
disadvantage is that the governing equation Du = 0 is replaced at these grid points by
an artificial pressure constraint, such that the flow field is “generally not divergence-free
there” [6, sect. 5.6]. These points can be interpreted as “mass sinks (or sources) which
compensate for the net outflow (or inflow) over the boundaries” [6, sect. 5.6]. The solution
is also “normally not smooth” in these areas which can lead to “stability problems during
the time integration” [4, chapt. 2.4.6].

In the second method, used in the code [6, sect. 5.6], it is the right-hand side q =
HD−1b that is corrected to qcorr = HD−1bcorr, such that the corresponding corrected
right-hand side bcorr lies in the column space of A and the system Ap = bcorr admits a
solution. Once a solution for the pressure is found, the arbitrarily pressure constant can be
chosen arbitrarily [6, sect. 5.6].

We describe next how the right-hand side qcorr is corrected, following the explanation
in [4, chapt. 2.4.6]. Let the vector Ψ 6= 0, with ΨTA = 0, represent the left nullspace
of A. The vector Ψ can be calculated with the same methods as used for solving the
pressure equation (5.5.3) [4, chapt. 2.4.6]. The corrected right-hand side bcorr must then
be orthogonal to Ψ since

ΨTbcorr = ΨTAp = 0 . (5.5.20)

Let us now define the vector
φ ≡ H−TDTΨ . (5.5.21)

The vector φ can be calculated from Ψ with the same methods as used for solving the
Helmholtz problem (5.5.4) [4, chapt. 2.4.6]. The right-hand side qcorr of the Helmholtz
problem (5.5.4) must be orthogonal to φ, because

φTqcorr = ΨTDH−1qcorr = ΨTbcorr = 0 . (5.5.22)

To satisfy the condition (5.5.22), q is corrected to qcorr by projecting it along a vector onto
the orthogonal space to φ, i.e.

qcorr = q− φ
Tq

φTθ
θ, for some θ with φTθ 6= 0 . (5.5.23)

Then φTqcorr = 0 and ΨTbcorr = 0 are satisfied and Equations (5.5.1) and (5.5.3) have
at least one solution [4, chapt. 2.4.6]. The projection vector θ, also called flux correction
vector, can be chosen freely as long as it satisfies φTθ 6= 0. Loosely speaking, the flux
correction vector corrects the accumulation of discretization errors by enforcing the fluxes
at the boundaries to sum up to 0 (mass conservation). For example, in a channel flow,
the flux correction vector should be zero at the walls and have, e.g. non-zero components
at the outflow boundary in the outflow direction. Otherwise, it is possible to choose that
the 2-norm of the correction, ‖qcorr − q‖2, is minimal, and θ = φ is set for this [4, chapt.
2.4.6]. Fluxes are then corrected on the entire boundary.
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Since the vectors φ and Ψ depend on the matrix H, which is different for the three
sub-time steps m = 1, 2, 3 and changes with the time step size ∆t, for the semi-implicit
time integration, these vectors have to be stored separately at each sub-time step and
recomputed as soon as the time step size changes [4, chapt. 2.4.6]. In the code, the time
step size is changed every nTS time steps (we use nTS = 10). For explicit time integration,
the vectors φ and Ψ are unique for all times and all sub-time steps [4, chapt. 2.4.6].

5.6 Computational and communication complexity

We recall that to advance the solution in time by a time step size ∆t, the system[
H G
0 DH−1G

] [
u
p

]
=

[
q

DH−1q

]
(5.6.1)

has to be solved three times.
Following the description in [6, sect. 3.2], it is assumed in this section that the compu-

tational domain has Nd grid points, and that a torus network of dimension d is used. The

domain is distributed to P processors, such that each sub-domain contains Nd

P grid points.
As mentioned in Section 5.5, the number of iterations to solve Equation (5.6.1) by the

iterative algorithms is mainly dependent on β, but not on the problem size or on the degree
of parallelization. That is, the computational work of these iterative algorithms is mainly
governed by O(1) sparse matrix-vector multiplications. The computational complexity to
solve Equation (5.6.1) is then governed by the application of d differentiation stencils of

length n to the Nd

P data points in the sub-domain, such that the computational cost to

advance the solution by one time step size ∆t is O(dnN
d

P ) [6, sect. 3.2].

Only the ghost cells need to be communicated to the P
1
d neighboring sub-domains, such

that the communication complexity is given by the product of the d stencils of width n
with the surface area of each sub-domain, times the number of neighboring sub-domains.
In the best case (neighboring sub-domains are mapped to neighboring processors), the

communication cost is O(dnN
d−1

P P
1
d ) = O(dn(N

d

P )
d−1
d ). In the worst case (neighboring sub-

domains are mapped to pairs of processors separated by a distance P
1
d , the communication

cost is O(dn(N
d

P )
d−1
d P

1
d ) [6, sect. 3.2].

Multigrid on parallel processors adds a cost of O(d logP ) +O(P
1
d ) [6, sect. 3.2], but it

plays a secondary role compared to the communication cost of the ghost cell updates on
the fine-grid mesh [6, sect. 8.1.2].

5.7 (Non-exhaustive) list of parameters that can be set
in IMPACT

• Initial velocity field (on velocity grid) and initial guess for the very first pressure
iteration (on pressure grid), usually zero.

• Type of the boundary conditions for the velocity: symmetry, periodic, Dirichlet or
advective.

• Use of the flux corrections. If used, choice of flux correction vector on the boundaries
of choice of minimal 2-norm.

• Extents L1, L2, L3 of the domain.
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• Number of grid points in each direction (on the grid 0) of the form Mi = a2l + 1.
M3 = 2 is set for 2D simulations. With this value of M3, the code switches off all
computations in the third direction.

• Number of sub-domains NBi in each direction with mod(Mi − 1, NBi) = 0. NB3 = 1 is
set for 2D simulations.

• Mapping x(z) where z is the computational grid.

• Reynolds number Re.

• Start and end time for the time integration.

• Maximal number of time steps.

• Time integration scheme: semi-implicit or explicit.

• Maximal time step size.

• Maximal time step size for the first Int dtime time steps of the time integration.

• Number of time steps nTS after which the time step size is recomputed.

• Normalized CFL-number ˜CFL.

• Use of upwind scheme.

• Use of mapping for computing the finite differences.

• Use of compact finite differences, and in that case, for which discrete operators.

• Use of LES and LES parameters.

• Maximal number of iterations for the Richardson, the Poisson and the Helmholtz
problems.

• Residual threshold εH for the Helmholtz iteration (we use εA = εH for the Richardson
iteration).

• Ratio εK
εA

. It is set to 0.5 for our simulations.

• Number of relaxation sweeps in the multigrid. It is set to 4 for our simulations.

• Choice of Gauss-Seidel or Jacobi smoothing in the multigrid.

• Settings for outputs.

• Volume forces in the momentum equation.

• Dirichlet boundary conditions. No need to specify them if they are the same as in
the initial condition.

• Values of c(x) (on the pressure grid) and A(x, t) for the advective boundary condi-
tions.
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5.8 Turbulence modeling in IMPACT

The turbulence models implemented in IMPACT are of LES type and are the high-pass fil-
tered Smagorinsky model and the so-called ADM-RT (Approximate Deconvolution Model -
Relaxation Term). We summarize here very briefly the ADM-RT model, from the descrip-
tion given in [4, chapt. 5.2]. Further discussion of this model is out of the scope of this thesis.

In LES, a filtered velocity field ū = Fu, where F is a spatial low-pass filter, is solved
[4, chapt. 5.1]. The filter F used is the so-called implicit grid filter. This filter commutes
with differentiation in the continuous equations [4, chapt. 5.1], so by applying it to the
Navier-Stokes equation one obtains

∇ · ū = 0 (5.8.1)

∂tū + (ū · ∇)ū = −∇p̄+ Re−14ū + f̄ + s , (5.8.2)

where s is the SGS (SubGrid Scale) term and can be written as si = − ∂
∂xj

(uiuj − ūiūj) =

− ∂
∂xj

τRij , where τRij is the residual stress tensor [14, chapt. 13.3.1]. This SGS-term cannot

be obtained by the equations themselves and has to be modeled (closure problem) [14,
chapt. 13.3.1].

Here, s is modeled by s ≈ −χFhpu, χ ≥ 0 [4, chapt. 5.2.1], and in the code this term is
simply added as an additional term.

Fhp is a high-pass filter of the form Fhp = (I− F
Mlp

lp )Mhp where Flp is a low-pass filter
that we obtain by applying subsequently one-dimensional filters: Flp = Flp1Flp2Flp3 [4,
chapt. 5.2.1].

The stencils of width n for the filters Flpk , k = 1, 2, 3 at a point x0 are

ηi = {B−1}i,1, i = 1, . . . , n , (5.8.3)

where B is given by

{Bi,j} = {(x0 − xj)i−1}, i = 1, . . . , n− 1, j = 1, . . . , n , (5.8.4)

{Bn,j} = {(−1)−j}, j = 1, . . . , n , (5.8.5)

where x0 is the kth coordinate x0,k of the point x0 [4, chapt. 5.2.1].
On equidistant grids, Fhp and Flp are symmetric positive (semi-)definite, such that

ū · s ≤ 0, which ensures that the model dissipates energy [4, chapt. 5.2.2]. Stretched grids
and asymmetric filter stencils at the boundaries usually “do not affect this property” [4,
chapt. 5.2.2].

This concludes the chapter about the IMPACT code. In our implementation of the MLMC
algorithm, we will use this solver to calculate the pathwise solutions S`(t, 0)u0 needed to
compute the values Φ`. Next, we describe how we implemented the MLMC algorithm to-
gether with the IMPACT Finite Differences solver, in a parallel environment and using a
static load balancing strategy, and call it simply ‘MLMC-FD’.
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Chapter 6

MLMC-FD solver

We describe here the implementation in parallel of a MLMC-FD (multilevel Monte Carlo -
Finite Differences) solver, based on a static load balancing strategy. We follow for this the
lines of [17, sect. 2.4], where a highly scalable implementation for Finite Volume solvers
has been tested and validated.

6.0.1 Static load balancing

In the multilevel Monte Carlo method, we approximate the generalized moment Eµt(Φ) by
calculating the statistical estimator

ELµt(ΦL) =

L∑
`=0

EM`
µt (Φ` − Φ`−1) , (6.0.1)

where we used Φ−1 ≡ 0 and where EM`
µt (·) stands for the Monte Carlo sample mean using

M` samples.
As mentioned in [17, sect. 2.3], there are three possible degrees of parallelization for the

calculation of the estimator in (6.0.1): across the discretization levels `, across the Monte
Carlo samples M` and inside the deterministic FD solver that computes Φ`, using domain
decomposition. We assume a homogeneous computing environment (i.e. “all cores have
identical CPUs and RAM per node, and equal bandwidth and latency to all other cores”
[17, sect. 2.3]), and assign for each level 0 ≤ ` ≤ L a number C` = P`D` of cores, where D`

stands for the number of sub-domains used by the FD solver and P` stands for the number
of samplers, which are groups of cores that compute some portion of the M` Monte Carlo
samples at level ` [17, sect. 2.3].

Estimation of the computational work

As seen in Chapter 4, Section 4.2, in order to equilibrate statistical and spatio-temporal
discretization errors, we use the following relation for the sample numbers M` (the term
M0 = O

(
( ν
hσL

)2
)

is here omitted for simplicity)

M` = ML(
h`
hL

)2σ = ML22(L−`)σ , (6.0.2)

with the convergence rate σ > 0 and the (small) number of samples ML on the finest resolu-
tion level. We have assumed here for simplicity that the meshwidth h` on the discretization
level ` is equal to 2−`.
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The computational complexity of the FD solver IMPACT to compute the solution of
a two-dimensional problem on a grid with meshwidth h` and after a number O(∆`t

−1)
of time steps is O(h−2

` ) · O(∆`t
−1), because iterative solvers with sparse matrix-vector

multiplications are used to solve Helmholtz and/or Poisson problems (see Chapter 5, Section
5.6). Also, by using a semi-implicit time integration scheme, we may write ∆`t = O(h`),
such that the computational work to compute M` Monte Carlo samples can be estimated
by

WorkM`
(h`) = M` ·O(h−3

` ) , (6.0.3)

and the computational work to calculate the value EM`
µt (Φ` − Φ`−1) at level ` can then be

estimated by
Work` ≡WorkM`

(h`) + WorkM`
(h`−1) . (6.0.4)

For an efficient computation of the MLMC estimator ELµt(ΦL) in parallel, the cost to com-

pute the sample means EM`
µt (Φ` − Φ`−1) should be about the same on all parallel levels `.

Assuming weak scalability of the solver, this leads to the relation

Work`+1

C`+1
≡ Work`

C`
. (6.0.5)

Assuming a bound (6.0.3) where lower order terms in h` can be neglected and taking into
account (6.0.2), the following relation for the number of cores C` on level ` was derived in
[17, sect. 2.3]

C` = ceil
( C`+1

23−2σ

)
, ∀` < L , (6.0.6)

with the number of cores CL = PLDL on the finest level L being fixed. In the case σ < 1.5,
we see that we have an inefficient load balancing for levels ` ≤ `∗, where C`∗ < 1. Assuming
that PL and DL are powers of 2, it is shown in [17, sect. 2.3] that an efficient load balancing
can be obtained in this case by assigning multiple levels ` = 0, . . . , `∗ to one single core.
This is even essential in order to obtain an “efficient and highly scalable parallelization”
[17, sect. 2.3]. An example for a static load balancing distribution for MLMC-FD can be
seen in Figure 6.1.

Figure 6.1: Static load balancing structure: L = 5,ML = 4, DL = 2, PL = 4. Figure and
caption taken from [17, fig. 1]. The figure was slightly modified.

We remark that the above estimation (6.0.6) is to be considered carefully in the IMPACT
code. One of the reasons is that, since we assumed that ∆`t = O(h`), the parameter
β ≈ ν∆`t

h2
`

= νO(h−1
` ), which can be interpreted as a measure for the convergence speed of

the iterative solvers (see Chapter 5, Section 5.5), increases with decreasing h`, such that in
a finer discretization level, for a given level of accuracy, we have not only to integrate the
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solution over more time steps, but also each time step takes longer. We do not believe this

changes the ratio
WorkM`1

(h`1 )

WorkM`2
(h`2 ) significantly for `1 close to `2, but it may in the other case.

More importantly, we assumed before that we had an homogeneous computing environment
with equal bandwidth and latency between all cores, but this is unfortunately not always
the case. This can have a non-negligible influence when the cores assigned for the domain
decomposition in the FD solver are not all on the same computing node (in which the cores
benefit from very fast inter-connections). Indeed, while the computations in the IMPACT
code scale weakly for a given β (as measured in [6, sect. 8.1.2]), the communication costs
due to the ghost-cell updates generally do not in case of uneven networking [6, sect. 8.1.2].

Therefore, we found that for the IMPACT solver, the best processor assignment may
be problem specific and benchmarking may be advisable, and because of communication
costs, the relation (6.0.6) for the processor assignments is more to be interpreted as a ‘rule
of thumb’. Still, it is important that the implementation can handle the case of multiple
levels ` = 0, . . . , `∗ on one core.

6.1 Implementation

The IMPACT code is written in FORTRAN90 and uses the Message Passing Library (MPI)
for communication. The Hierarchical Data Format (HDF5) is used for parallel I/O of large
datasets [4, chapt. 2.5]. We implemented the MLMC-FD algorithm in FORTRAN90 on
top of the IMPACT code (i.e. we extended or modified some of the source files), using also
MPI, by following the implementation guidelines from [17, sect. 2.4]. We will summarize
the method next. But first, we describe shortly the main steps during a simulation with
the IMPACT code and their importance for our implementation, as well as the random
number generator (RNG) that we use to generate samples for the random initial velocities.

6.1.1 Workflow of the IMPACT code

The execution of IMPACT is mainly divided into two steps: initialization and time integra-
tion. We assume that we have assigned the correct number of cores such that the program
can perform a given domain decomposition.

Initialization

During the initialization, input parameters (such as domain size, Reynolds number, . . . )
are read and tested, then the domain decomposition is performed, i.e. the cores are as-
signed to sub-domains (according to the partitioning inputted by the user) and a cartesian
MPI communicator COMM CART is created from the main communicator MPI COMM WORLD.
The COMM CART communicator as well as communicators derived from it are used for all
communications between sub-domains, for example for the synchronization of ghost cells.
Later on, to create the communicator COMM CART, we will not use the default commu-
nicator MPI COMM WORLD, which connects all processes, but we will use a communicator
comm domain, which connects only a fraction of all available processes. This allows to run
the IMPACT code in parallel during the same simulation.

Once the domain decomposition is set up, helping variables and running indices are cre-
ated, and arrays holding portions of the discrete operators and global vectors are allocated
dynamically into the processes memory. Finally, the grid coordinates are calculated and the
coefficients for the Finite Differences and interpolation stencils are calculated and tested.
This ends the initialization step.
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Time integration

The time integration is then performed by calling a routine timeintegration. Before
calling this routine, parameters that affect the spatial discretization, e.g. the problem size,
the domain decomposition, the type of boundary conditions or the grid geometry, cannot be
changed. The fact that the problem size cannot be changed indicates that for the calculation
of

1

M`

M∑̀
i=1

(
Φ(S`(t, 0)vi)− Φ(S`−1(t, 0)vi)

)
, (6.1.1)

a group of processors should not calculate consecutively the discrete solutions S`(t, 0)vi

and S`−1(t, 0)vi for a given i on the different discretization levels ` and `− 1, because this
would imply performing the whole initialization again.

Other parameters, such as the initial condition or settings for the iterative solvers, can
be changed just before the time integration. Later on, we will use this property to put
the call to the routine timeintegration into a loop and assign a different (random) initial
condition in each iteration. The routine timeintegration implements a measurement of
the running time, based on the FORTRAN90 routine DATE AND TIME. We will later use
these measurements to estimate the cost due to the time integration.

6.1.2 Pseudo random number generation

For the generation of (pseudo) uniformly distributed random numbers, a robust random
number generator (RNG) is needed, because, as mentioned in [17], “inconsistent seeding
and insufficient period length of the RNG might cause correlations in presumably i.i.d.
draws which might potentially lead to biased solutions”. We used an implementation in
FORTRAN90 of the Mersenne-Twister MT19937 RNG from [8]. The generated numbers are
in (0, 1) and have 52 bits accuracy [8].

6.1.3 MLMC-FD

We aim here at implementing a scalable parallel application for the computations of MLMC
estimators for the mean velocity Eµt(u) or for generalized moments Eµt(Φ(u)). We use a
static load balancing strategy, where we assign C` = P` ×D` cores for the computation of
the Monte Carlo sample means EM`

µt (·), for ` = 0, . . . , L. These cores are divided into P`
groups of D` cores (as already mentioned, we call this groups also ‘samplers’), and each of
these groups computes with the IMPACT solver M`

P`
Monte Carlo samples, where the D`

cores are used for the domain decomposition in IMPACT.
We divide the simulation into three phases: initialization, simulation and data collection.

We assume next that each MPI process runs on its own core.

Initialization

Creation of communicators: In MPI, different parallel processes can communicate with
each other when they belong to the same group, or communicator. Inside such a com-
municator, each process becomes a unique identifier called rank, which is a non-negative
integer (we remark that this identifier is unique only within the communicator). The pro-
cess with the rank 0 is called root of the communicator. The main communicator in MPI
is MPI COMM WORLD, which is created by default and connects all processes of the running
application.

In our implementation, an MPI process belongs to three or four of the following types
of communicators (besides MPI COMM WORLD):
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i comm entire level, which connects all C` processes inside the level `. It is created
from MPI COMM WORLD based on the rank in MPI COMM WORLD and the partitioning
(C`, ` = 0, . . . , L) of processes per level.

ii comm domain, which connects D` processes (these D` processes form a ‘sampler’), that
will be used for the domain decomposition in the IMPACT solver. It is created from
comm entire level based on the rank in comm entire level and on the number D`.
A process with rank 0 in comm domain is called domain root.

iii comm samplers, which connects corresponding sub-domains between the P` sam-
plers. It is created from comm entire level based on the rank of the sub-domain in
comm entire level. A process with rank 0 in comm samplers is called sampler root.

iv comm level roots, which connects processes that are roots in both
comm domain and comm samplers. It is created from MPI COMM WORLD. The process
with rank 0 belongs to the finest level ` = L.

For the creation of subgroups and communicators, we use the MPI functions MPI Group[ range] incl()

and MPI comm create(). In Figure 6.2 we can see the structure of the communicators for
the setup as in Figure 6.1.

Figure 6.2: Structure and root processes of the communicators for the setup depicted in
Figure 6.1. Figure and caption taken from [17, fig. 1]. The figure was slightly modified.

Random number generation: On each level `, we need to generate M` × κ random
samples, where κ is the number of samples needed to generate the initial condition. To
generate this sequence of random numbers, we use for the RNG a seed based on the level
number ` (and the simulation number if we do many independent simulations of the same
problem).

In our implementation, each process assigned to level ` generates the full sequence of
M` × κ random samples, and uses some portion of length M`

P`
× κ for the simulation. For

our purposes, the number of samples M` × κ was not so big (up to about 20000) such that
it could become an issue. Else, it is also possible with our RNG to generate P` independent
streams of only M`

P`
× κ samples for a given seed [8], and then each core assigned to level

` and to sampler j ∈ {1, . . . , P`} generates such a stream instead of the longer sequence.
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In all cases, generating the full sequence of samples only on domain and sample roots and
then scattering or broadcasting samples via the domain or sampler communicators “should
be avoided”, because it introduces “unnecessary communication and memory overheads”
[17, sect. 2.4].

Simulation

FD solves: Each group of D` processes (or ‘sampler’) inside a domain communicator does
M`

P`
FD solves (one for each initial random sample vi) with the IMPACT solver, calculating

therefore a part of EM`
µt (Φ`) and a part of EM`

µt (Φ`−1). In our implementation, we do first

all M`

P`
FD solves for EM`

µt (Φ`−1) and then all M`

P`
FD solves for EM`

µt (Φ`), to avoid multiple
reinitializations of the IMPACT code.

Data Collection

MC estimator: In each level `, the sub-domains between different samplers collectively re-
duce their part of EM`

µt (Φ`) and of EM`
µt (Φ`−1) to EM`

µt (Φ`) and EM`
µt (Φ`−1) into sub-domains

of the sampler root, with MPI Reduce(). In our implementation, we compute also the MC
means EM`

µt (u`) and EM`
µt (u`−1) for the velocity fields. Both of these mean vector fields are

outputted by the sampler roots (using the HDF5 library) already at this step.

MLMC estimator: Then, EM`
µt (Φ`) and EM`

µt (Φ`−1) are combined into the MC estimators

EM`
µt (Φ`−Φ`−1) on domain and sampler roots, and these estimators are then combined via

the comm level roots communicator into the domain and sampler root on level ` = L.
Finally, this domain and sampler root on level ` = L outputs the result.

This concludes the description of the MLMC-FD solver we implemented. Next we de-
scribe the machine on which the solver was run for our numerical experiments, and present
the results of these experiments in the next chapter.

6.2 Computing resources

The code was run on a machine called ‘Pilatus’ at the Swiss National Computing Center
in Lugano [13].

6.2.1 Description of the machine

We summarize here the informations given in [13].

Pilatus is an Intel SandyBridge cluster composed of 44 computing nodes. Each node has 2
× 8-core Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz, and 64GB DDR3 memory. The 16
physical cores have Hyper-Threading enabled, such that a “pure MPI job” can actually ask
up to 32 MPI tasks per node [13]. Two nodes provide login facilities for user access and
compilation, such that the maximum number of virtual cores that can be required is 1344.
The maximum allowed running time is 24h and the maximum number of running jobs per
user is 3.

6.2.2 Programming environment

The operating system is SUSE SLES11.2 [13]. The programming environment we used was
pgi/12.5 from the Portland Group. It loads the mvapich2/1.8 MPI library. As written in
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[15], “MVAPICH and MVAPICH2 are high-performance implementations of the Message
Passing Interface (MPI) standard which run over InfiniBand interconnects”.

Compilation

For the compilation of the IMPACT code, we used the pgf90 compiler from pgi/12.5. The
IMPACT uses HDF5 for parallel I/O, such that we also loaded the hdf5/1.8.9 library.

Floating point operations in double precision (8 bytes) were ensured with the compiler
flag -r8, while integers are treated as 4 bytes variables with the flag -i4.
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Chapter 7

Results

In this chapter, we describe the results from numerical experiments that were done to test
the validity and the feasibility of the MLMC-FD method. There are not related to a specific
physical scenario.

7.1 Common setup

We restrict ourselves to the space dimension d = 2, and consider the Navier-Stokes equations
(1.3.2) with stochastic initial data, described by a given probability distribution µ0. We
assume that there are no volume forces, i.e. f = 0.

The domain is set to D = (0, 1)× (0, 1), and we consider the case of periodic boundary
conditions with vanishing space average. The spaces H and V correspond then to Ḣper

and V̇per respectively, and an orthonormal basis of H constituted by the eigenfunctions
(wi, i ∈ N) of the corresponding Stokes operator is given explicitly in Chapter 1, Section
1.5. Initial data and solutions can then be expanded in terms of these basis functions. For
the initial data, we consider the expansion

u0(ω; x) =

κ∑
i=1

√
λiYi(ω)wi(x) , (7.1.1)

where κ < ∞ and Yi are independent and uniformly distributed random variables on a
bounded interval (a, b), and λi = Ci−γ , with γ > 1. The initial probability distribution has
then finite kinetic energy, as shown in Chapter 3, Section 3.2, i.e.∫

H

|v|2H dµ0(v) = ‖u0‖2L2(Ω;H) <∞ . (7.1.2)

For the rest of this chapter, we will refer to the basis functions wi(x) appearing in (7.1.1)
as the functions wIκ1,κ2

(x, t = 0), I ∈ {I, II, III, IV } described in Chapter 1, Section 1.5,
normed with the coefficient Cw = 2 such that they are of unit H-norm.

7.1.1 Generalized moment

We are interested in statistical moments, or ensemble averages of the flow, of the form

Eµt(Φ) =

∫
H

Φ(v) dµt(v), (7.1.3)

at some time t > 0.
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For our numerical experiments, we will consider cylindrical test functions Φ ∈ C of the
form

Φ(v) = φ
(
(v,g1)H

)
, (7.1.4)

that represent some bulk property of the flow, where φ is a compactly supported C1 function
on R and g1 ∈ V . We choose here φ(x) = x (not formally compactly supported on R, but it
could be extended to a compactly supported function far away from the values of interest,
assuming (v,g1)H takes values on a bounded interval), such that

Φ(v) = (v,g1)H =

∫
D

v · g1 dx . (7.1.5)

The test function Φ satisfies the Lipschitz condition. Indeed, for u,v ∈ H, we have

|Φ(u)− Φ(v)| = |(u,g1)H − (v,g1)H | = |(u− v,g1)H |
≤ |u− v|2H |g1|2H =

(
|g1|2H |u− v|H

)︸ ︷︷ ︸
C

|u− v|H . (7.1.6)

Such a C always exists since g1 and (u− v) are in H.

7.1.2 MLMC estimator

We use the MLMC algorithm to calculate the statistical estimator ELµt(ΦL) ≈ Eµt(Φ) for
the ensemble average of Φ at time t > 0, where L > 0 represents a (fine) discretization level.
We have then a sequence of space and time discretization levels, where the discretization
level ` = 0, . . . , L is characterized by a meshwidth h` and a time step size ∆`t, and we
denote by u`,` = S`(t, 0)v the discrete solution of the Navier-Stokes equations with initial
condition v, where S`(t, 0) is the discrete solution operator that maps the initial data v into
u`,`. In our simulations, we use the IMPACT solver described in Chapter 5 to calculate the
discrete solutions S`(t, 0)v.

The MLMC estimator is, with Φ` := Φ(S`(t, 0)v),

Eµt(Φ) ≈ ELµt(ΦL) = EM0
µt (Φ0) +

L∑
`=1

EM`
µt (Φ` − Φ`−1)

=
1

M0

M0∑
i=1

Φ(S0(t, 0)vi) +

L∑
`=1

1

M`

M∑̀
i=1

(Φ(S`(t, 0)vi)− Φ(S`−1(t, 0)vi)) .

(7.1.7)

With our choice of Φ and φ we have

ELµt(ΦL) =
1

M0

M0∑
i=1

(
S0(t, 0)vi,g1

)
H

+

L∑
`=1

1

M`

M∑̀
i=1

[(
S`(t, 0)vi,g1

)
H
−
(
S`−1(t, 0)vi,g1

)
H

]
=
(
EM0
µt (u0,0),g1

)
H

+

L∑
`=1

[(
EM`
µt (u`,`),g1

)
H
−
(
EM`
µt (u`−1,`−1),g1

)
H

]
=
(
EM0
µt (u0,0) +

L∑
`=1

[
EM`
µt (u`,`)− EM`

µt (u`−1,`−1)
]
,g1

)
H

=
(
ELµt(SL(t, 0)u0),g1

)
H

= Φ
(
ELµt(SL(t, 0)u0)

)
.

(7.1.8)
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That is, we can compute at first the MLMC estimate ELµt(SL(t, 0)u0) for the velocity
field, and then apply the test function Φ, which is interesting if one wants to change the
function g1 or the method used to evaluate (u,g1)H . For test functions Φ for which we
cannot do the above reasoning, we have to evaluate Φi` ≡ Φ(S`(t, 0)vi) after the sample
S`(t, 0)vi has been computed.

We remark that the addition of the vector fields EM`
µt (u`,`) depends on the choice of

the method used to reconstruct a solution in L2(D) from the discrete Finite Differences
solutions outputted by the IMPACT solver. We prefer to have the liberty to choose the
reconstruction method during the post-processing of results, therefore, instead of adding
arrays of different sizes in our MLMC-FD solver (which would require to choose the recon-
struction/interpolation method prior to the simulations), we output the arrays representing
the discrete counterparts of EM`

µt (u`,`) as such, and perform the reconstruction and addition

needed to compute ELµt(SL(t, 0)u0) during the post-processing.

7.1.3 Space and time discretization

As already mentioned, we use the IMPACT solver described in Chapter 5 to compute the
discrete solutions S`(t, 0)v for a given (random) initial velocity field v. We discuss next the
choices of h` and ∆`t for the discretization on level `, as well as the parameters used in the
IMPACT code that are common to all the simulation results we present.

Since we have no solid walls that would need a refinement of the mesh size near the bound-
aries [10, chapt. 3.1.4], we partition the domain with an equidistant grid, and set the
constant mesh size for level ` to

h` = 2−` . (7.1.9)

The discretization scheme that we use in the IMPACT solver has, for sufficiently smooth
solutions, a convergence order of at least O(h3

`) (the largest errors are on the boundaries
[6, sect. 6.1.1]).

Time integration

For the time step size, we want to have a relation of the form ∆`t = O(h`), where the
constant implied in the Landau symbol O(·) is independent of the viscosity ν. This is
in general not possible with a fully explicit time integration scheme, because there the
integration of the viscous term implies a viscosity-dependent restriction of the time step
size, for stability reasons (see Chapter 5, Section 5.3). We use therefore the semi-implicit
CN-RK3 integration scheme in IMPACT, which is of global order 2 for sufficiently smooth
solutions.

For our case of periodic boundary conditions and no volume forces, there is no production
of kinetic energy and the kinetic energy dissipates at a rate νE(u), where E(u) denotes the
enstrophy (see Chapter 1, Section 1.4.1). We assume therefore that a time step size which
is stable at the beginning of the time integration (with respect to the initial velocity field,
at t = 0) remains stable for the whole simulation (i.e. also for t > 0). For our simulations
we take a fixed time step size ∆`t, and for a given initial velocity sample u0, we use

∆`t = CFL(u0)h` , (7.1.10)

where the CFL-based parameter CFL(u0) depends on the maximal component-wise mag-
nitude of the initial velocity field u0.

We set the threshold εH for the residual of the velocity field solution for the iterative
solvers in IMPACT to be 10−10 (and allow a maximal number of 35 outer pressure iterations,
see Chapter 5, Section 5.5), because it is approximately the accuracy required on the
finest grids we use for the semi-implicit CN-RK3 to satisfy its expected convergence rate
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of O(∆lt
2) (supposing enough smoothness of the solution). This accuracy is generally not

necessary on coarser grids, but having it common to all simulations, together with constant
meshwidths h` and constant time step sizes ∆`t, facilitates the pre- and post-simulation
analysis.

We ensure zero-divergence of the discrete solutions by a flux correction vector that has
minimal 2-norm (see Chapter 5, Section 5.5.6).

7.1.4 Error

We recall from Proposition 4.2.2 that if we can assume that, with h` ' ∆`t, the space and
time discretization error (in H-norm) is bounded by

|u(t)− u`,`|H ≤ C
hσ`
ν
, (7.1.11)

for σ > 0 and with a constant C > 0 that is independent of ν, ` and h`, and that h`−1 ≤ %h`,
with 0 < % < 1, then, for a functional Φ satisfying the Lipschitz condition (4.2.2), the error
bound

‖Eµt(Φ)− ELµt(ΦL)‖L2(H;R) ≤ C(%)
(hσL
ν

+
1√
M0

+

L∑
`=0

1√
M`

hσ`
ν

)
(7.1.12)

holds, with a constant C(%) independent of L.

7.1.5 Error measurement

In our simulations, we will investigate if the error bound (7.1.12) holds. For this, we monitor
the convergence of the error

εEL = |Eµt(Φ)ref − ELµt(ΦL)| (7.1.13)

in the L2(H,R)-norm, where Eµt(Φ)ref denotes the reference solution. Since the solution
ELµt(ΦL) is a random variable, the discretization error εEL is a random quantity as well. For
the error convergence analysis we therefore compute a statistical estimator by averaging
samples of εEL from K > 0 independent runs and compute the error in (7.1.12) by approxi-
mating the L2(H,R)-norm with Monte Carlo sampling, as explained in the following.

Let Eµt(Φ)ref be the reference solution (i.e. the exact solution if it is known, otherwise an
approximation of assumed higher accuracy as the MLMC estimates), and (ELµt(ΦL)(k), k =
1, ...,K) be a sequence of independent approximated solutions obtained by running the
MLMC-FD solver K times.

Then the L2(H;R)-based relative error estimator is defined [1, sect. 8.1] to be

RεEL :=

√√√√√√√
1

K

K∑
k=1

( ε
E,(k)
L

|Eµt(Φ)ref|︸ ︷︷ ︸
Rε(k)L

)2

× 100

≈ ‖
|Eµt(Φ)ref − ELµt(ΦL)|

|Eµt(Φ)ref|︸ ︷︷ ︸
RεL

‖L2(H;R) × 100% ,

(7.1.14)

where
ε
E,(k)
L = |Eµt(Φ)ref − ELµt(ΦL)(k)| . (7.1.15)
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If Eµt(Φ)ref = 0, we use

RεEL := 100×

√√√√ 1

K

K∑
k=1

(
ε
E,(k)
L

)2

(7.1.16)

instead.

In order to obtain a sufficiently accurate estimate of RεL, the number K must be large
enough to ensure a sufficiently small (< 0.01) [1, sect. 8.1] relative variance σ2(RεL), which
can be estimated [1, sect. 8.1] by

σ2(RεL) ≈ σ2
K(RεL) :=

1

K − 1

EKµt(Rε
2
L − EKµt(RεL)2)

EKµt(RεL)
. (7.1.17)

We present next our results. The simulations were performed on Pilatus - Intel Sandy-
Bridge (see Chapter 6, Section 6.2).

7.2 Numerical experiments

7.2.1 Discretization error in H-norm in the IMPACT code

First, we try to see if, for a smooth and laminar flow of the type of those that will be used
in later experiments, an error bound in the H-norm of the form

|u− u`,`|H ≤ C
hσ

ν
(7.2.1)

holds, with a convergence rate σ > 0. This was an important assumption for the validity
of the error bounds in Proposition 4.2.2.

We made two similar test cases with simple smooth and laminar flows. We can then
assume smooth solutions, and we expect at least a second order convergence in h`, since
the convergence of the spatial discretization scheme is at least of third order in h` and that
of the time integration scheme of second order in ∆`t, and ∆`t ' h`.

Test cases

The initial velocity field was chosen to be

u0(x) =
1

2

(
wI

1,1(x) + wII
1,1(x) + wIII

1,1 (x) + wIV
1,1(x)

)
, (7.2.2)

where the wI1,1 are the orthonormal eigenfunctions of the Stokes operator in the space-
periodic case with vanishing space average. As shown in Chapter 1, Section 1.5, the exact
solution at time t is

u(x, t) = u0(x)e−4π2(12+12)νt . (7.2.3)

In the first test, we have set the viscosity to ν = 0.01 and the solution was calculated
until t = 0.1, and in the second test, we have set the viscosity to ν = 0.1 and the solution
was calculated until t = 0.01.

The simulation was performed on a sequence of grids with mesh sizes hL = 2−L,
L = 4, . . . , 10. The constant time step size ∆Lt was set according to the component-wise
magnitude of the initial velocity field. We have

max
x∈D
|u0,1(x)| ≤ 4(

1√
12 + 12

) =
4√
2
, (7.2.4)
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max
x∈D
|u0,2(x)| ≤ 4(

1√
12 + 12

) =
4√
2
. (7.2.5)

With the CFL-condition

∆Lt ≤ CFL
1

max
x∈D
{ |u0,1(x)|

hL
+
|u0,2(x)|
hL

}
(7.2.6)

in mind, we choose

∆Lt = 0.2
hL

8/
√

2
= 0.025

√
2hL . (7.2.7)

We remark that for this choice of ∆Lt, we calculate ∆Lt
2 = 1.28×2−10h2

L . h3
L for L ≤ 10.

Since the semi-implicit time integration scheme is of global order 2, we can expect the
discretization error in time to be O(∆Lt

2) = O(h3
L) for L ≤ 10. The spatial discretization

scheme we use is of at least order 3, so we can expect in this case a spatio-temporal error
of the order of O(h3

L) at the grid points. However, the discrete solution at time t is only
given at those grid points, and we need to reconstruct it into a function in L2(D) in order
to evaluate the bound (7.2.1). We denote this reconstruction by urct

`,` (x).
We tested three methods to reconstruct the discrete solution: piecewise constant in-

terpolation, bilinear interpolation and bicubic convolution interpolation [9]. All three are
implemented in MATLAB. The bicubic convolution interpolation is suited for equidistant
grids and has the advantage that it does not need to solve sub-problems (such as computing
derivatives), which makes it efficient [9].

The error in (7.2.1) needs the evaluation of an integral

|u− urct
`,` |2H =

∫
D

‖u− urct
`,`‖22 dx . (7.2.8)

We used here a high-order composite 100-points 2D Gauss-Legendre quadrature to evaluate
the integral, such that the integration error is negligible.

As expected, the convergence rate σ in (7.2.1) depends on the interpolation method used,
as we can observe in Figure 7.1 for the first test case and in Figure 7.2 for the second test
case. With piecewise constant interpolation, we have σ = 1, with bilinear interpolation, we
have σ = 2, and with bicubic convolution interpolation, we have σ = 3.

In view of the sample number analysis from Chapter 4, Section 4.2.2, for our MLMC
simulations, we will set the number of samples on each level to

M` = ML

( h`
hL

)2σ
= ML22σ(L−`), for ` = 1, . . . , L, and M0 = C0

( ν
hσL

)2
. (7.2.9)

For σ > 1, this can result in quite large number of samples on the coarse levels, which
would have taken a large amount of computing resources. Therefore we restricted ourselves
to σ = 1, by choosing to evaluate Φ(u`,`) using the piecewise constant reconstruction for
urct
`,` (x).

It may seem unnatural to have voluntary a larger discretization error, but this permits
to test if the sample numbers used in the MLMC method and calculated for σ = 1 permit
to equilibrate efficiently sampling and discretization errors on coarser levels such that the
resulting final error is of the same order of magnitude as the discretization error on the
finest level. Otherwise, one could argue that since we can expect third order convergence
with an adequate interpolation method, the final error we observe is dominated by the
sampling error and discretization errors are negligible in comparison, even on the coarser
discretization levels. Also, in order to investigate the effect of under-resolved scales hσ` > ν
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7.2. NUMERICAL EXPERIMENTS lxxxiv

Figure 7.1: Test of the IMPACT code. Convergence of the error |u− urct
L,L|H against the

meshwidth hL, for the case with ν = 0.01 and t = 0.1. The FD solution has been
interpolated on D = (0, 1)× (0, 1) with piecewise constant interpolation, bilinear
interpolation and bicubic convolution interpolation (it is the bicubic interpolation
MATLAB uses for equidistant grids), and integration to calculate the H-norm was
performed with a composite 100-points 2D Gauss-Legendre quadrature rule. Figure
generated with MATLAB.
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Figure 7.2: Test of the IMPACT code. Convergence of the error |u− urct
L,L|H against the

meshwidth hL, for the case with ν = 0.1 and t = 0.01. The FD solution has been
interpolated on D = (0, 1)× (0, 1) with piecewise constant interpolation, bilinear
interpolation and bicubic convolution interpolation (it is the bicubic interpolation
MATLAB uses for equidistant grids), and integration to calculate the H-norm was
performed with a composite 100-points 2D Gauss-Legendre quadrature rule. Figure
generated with MATLAB.
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7.2. NUMERICAL EXPERIMENTS lxxxvi

in coarse levels `, we would need, with σ > 1, smaller viscosity values ν as the one we use
for our numerical experiments with smooth laminar flows.

We present next the results from our numerical experiments with the MLMC method,
where we investigate the convergence of the error in (7.1.12), and we will see that, even in
the presence of under-resolved discretization levels, the error bound holds.

7.2.2 MLMC - Test 1

Initial condition

In this test, the initial velocity was given by

u0(ω; x) =
√
λ1Y1(ω)

(
wI

1,1(x) + wII
1,1(x) + wIII

1,1 (x) + wIV
1,1(x)

)
, (7.2.10)

where λ1 = 1
41−5 and Y1 ∼ U(0, 1).

Using the orthonormality property of the Stokes eigenfunctions, we get

|u0(ω)|2H = (u0(ω),u0(ω))H

= λ1Y1(ω)24

= Y1(ω)2 .

(7.2.11)

The mean kinetic energy of the initial condition is then

Eµ0(|u0|2H) = Eµ0(Y 2
1 ) = Var(Y1) + Eµ0(Y1)2 =

1

3
. (7.2.12)

Solution

As shown in Chapter 1, Section 1.5, the exact solution at time t is

u(ω; x, t) = u0(ω; x)e−4π2(12+12)νt . (7.2.13)

For our simulation, the end time was set to t = 0.1 and the viscosity to ν = 0.01.

Time integration

The time step size choice depends on the random numbers appearing in the initial condition.
We have

max
x∈D
|u0,1(ω; x)| ≤ 2

1√
12 + 12

|
√
λ1Y1(ω)|4 , (7.2.14)

max
x∈D
|u0,2(ω; x)| ≤ 2

1√
12 + 12

|
√
λ1Y1(ω)|4 . (7.2.15)

With the CFL-condition

∆`t(ω) ≤ CFL
1

max
x∈D
{ |u0,1(ω;x)|

h`
+
|u0,2(ω;x)|

h`
}

(7.2.16)

in mind, we choose

∆`t(ω) = 0.2
h`

umax(ω)
, (7.2.17)

where

umax(ω) =
2√
2

max{1, 4|Y1(ω)|} (7.2.18)

is an upper bound for the velocity components. We use the maximum term to ensure that
we do not have too large time step sizes.
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MLMC

We investigate the convergence of the L2(H;R)-error of the MLMC estimator ELµt(ΦL) by
successfully increasing the finest level L from L = 4 to L = 9. For each L, the coarsest
level contains 16× 16 = 256 grid points. So ` = 0 corresponds actually to the coarsest grid
with meshwidth h = 2−4, and we identify ` = 0 with ` = 4. In order to reduce the variance
of the error estimates, we perform K = 30 independent simulation runs.

For the next results of the convergence of the error of the MLMC estimator presented
in this thesis, we proceed similarly.

Sample numbers

The number of samples on the finest mesh is set to ML = 4. As already mentioned, we
have σ = 1, and we take the following sample numbers:

ML = 4 ,

M` = ML

( h`
hL

)2
= ML22(L−`), ` = L− 1, L− 2, . . . , 1 ,

M0 = 100
( ν
h2
L

)2
= 100

ν2

h2
L

.

(7.2.19)

We expect then that the error in Proposition 4.2.2 becomes

‖Eµt(Φ)− ELµt(ΦL)‖L2(H;R) ≤ C
hL
ν
. (7.2.20)

The term M0, which is responsible for the purely sampling error, has a pre-factor of 100
to avoid too large relative errors. Recalling that h` = 2−`, we see that h` > ν for ` ≤ 6,
such that the discretization levels ` ≤ 6 do not satisfy the convergence requirement, i.e.
they are under-resolved. Only the mesh resolution levels ` = 7, 8, 9 are resolved.

We plot in Figure 7.3 and in Figure 7.4 the L2(H;R)-based relative error RεEL in (7.1.14)
against the meshwidth hL on discretization level L for each of the following two functions
g1 (recalling that Φ(v) = (v,g1)H),

g1(x1, x2) = wI(x1, x2) (7.2.21)

and

g1(x1, x2) = (x1x2,
1

2
x2

2)T . (7.2.22)

The dashed lines indicate the expected convergence rate of the multilevel Monte Carlo
method obtained in Proposition 4.2.2. This expected convergence rate coincides with the
observations in the numerical experimental data, even in the presence of multiple under-
resolved levels. The convergence in the resolved levels ` = 7, 8, 9 indicates that the dis-
cretization error on the coarser samples is equilibrated by a high enough number of samples
such that the total error is of the order of magnitude of hL

ν , even if the coarse samples are
under-resolved.

In Figure 7.5 we can see the results corresponding to the only 5 first simulations with
the function g1 in (7.2.21). The random nature of the error εEL in (7.1.13) is there clearly
visible, and it is therefore necessary to increase the number of simulations in order to reduce
the variance of εEL and obtain an accurate estimate of the L2(H;R)-based relative error.
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Figure 7.3: Test 1. Convergence of the relative error RεEL with K = 30 runs and
g1(x1, x2) = wI

1,1(x1, x2) ∈ V . The reference solution was known. Piecewise constant
reconstruction of the discrete solutions and composite 4-points 2D Gauss-Legendre
quadrature were used for the evaluation of Φ. On all levels, the relative variance σ2

K (see
7.1.17) was at most 0.005. Figure generated with MATLAB.
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Figure 7.4: Test 1. Convergence of the relative error RεEL with K = 30 runs and
g1(x1, x2) = (x1x2,

1
2x

2
2)T ∈ V . The reference solution was calculated with 100-point 2D

Gauss-Legendre quadrature. Piecewise constant reconstruction of the discrete solutions
and composite 4-points 2D Gauss-Legendre quadrature were used for the evaluation of Φ.
On all levels, the relative variance σ2

K was at most 0.005. Figure generated with
MATLAB.
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Figure 7.5: Test 1. Convergence of the relative error RεEL with K = 5 runs and
g1(x1, x2) = wI

1,1(x1, x2) ∈ V . The reference solution was known. Piecewise constant
reconstruction of the discrete solutions and composite 4-points 2D Gauss-Legendre
quadrature were used for the evaluation of Φ. On all levels, the relative variance σ2

K was
at most 0.029. Figure generated with MATLAB.
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Parametrization

For the simulation, we used the processors assignment described in Table 7.1, where we use
the notation introduced in Chapter 6. We report also in Table 7.2 the total number of cores
used and the runtime (in seconds) needed to compute one estimate ELµt(ΦL) (averaged over
K = 30 runs) measured by the MPI function MPI Wtime(). For L = 9, we had to do 6 of
the 30 runs separately because we had not allocated enough running time on the machine.
The runtime of these 6 simulation runs are outliers compared to the other simulation runs,
and we suspect a congestion of the network or a bad processor mapping to be the cause.
Without these outliers, the (averaged) measured runtime on L = 9 is 489 (s).

Table 7.1: Test 1. Parametrization of C` = [D`]× P`.

L C4 C5 C6 C7 C8 C9

4 [1× 1]× 1 − − − − −
5 [1× 1]× 1 [2× 2]× 1 − − − −
6 [1× 1]× 1 [2× 2]× 1 [2× 2]× 1 − − −
7 [1× 1]× 2 [2× 2]× 1 [2× 2]× 1 [4× 4]× 1 − −
8 [1× 1]× 4 [2× 2]× 2 [2× 2]× 1 [4× 4]× 1 [4× 4]× 1 −
9 [1× 1]× 19 [2× 2]× 8 [2× 2]× 4 [4× 4]× 2 [4× 4]× 2 [4× 4]× 2

Table 7.2: Test 1. Total number of cores and runtime.

L Ncores Runtime (s)
4 1 1
5 5 2
6 9 9
7 26 68
8 48 163
9 163 1251

7.2.3 MLMC - Test 2

Initial condition

In this test, the initial velocity was given by

u0(ω; x) =
√
λ1Y1(ω)wI

1,1(x) +
√
λ2Y2(ω)wI

2,2(x) , (7.2.23)

where λi = 1
4 i
−5 and Yi

i.i.d.∼ U(0, 1), i = 1, 2.
Using the orthonormality property of the Stokes eigenfunctions, we get

|u0(ω)|2H = (u0(ω),u0(ω))H

= λ1Y1(ω)2|wI
1,1|2H + λ2Y2(ω)2|wI

2,2|2H

=
1

4

(
Y1(ω)2 + 2−5Y2(ω)2

)
.

(7.2.24)
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We calculate the mean kinetic energy of the initial condition with Monte Carlo sampling
(106 samples), and get, with a 95%-confidence interval,

Eµ0(|u0|2H) ≈ 0.085995± 0.000146 . (7.2.25)

The end time was set to t = 0.1 and the viscosity to ν = 0.01.

Reference solution

The reference solution is here unknown, and so we have to approximate it. To avoid
method-related correlations, one should take a different method than MLMC to compute
the reference solution. For example, one can take the MC method or a method based on
numerical quadrature.

In this case, we use Gauss-Legendre quadrature to compute the reference solution
Eµt(Φ)ref, together with discrete solutions uL,L computed on the fine discretization level
L = 10. We explain next the method.

Let us denote by Φ(u)(y1,y2) the test function obtained when the initial condition u0 of
u uses for its random coefficients the independent values y1 = Y1(ω) and y2 = Y2(ω) with
probability distribution function fY 1,Y 2. Then we can write

Eµt(Φ(u)) =

∫
(0,1)

∫
(0,1)

Φ(u)(y1,y2)fY1,Y2
(y1, y2) dy1 dy2

=

∫
(0,1)

∫
(0,1)

Φ(u)(y1,y2)fY1
(y1)fY2

(y2) dy1 dy2 ,

(7.2.26)

because Y1 and Y2 are independent.

Since here Yi
i.i.d.∼ U(0, 1), i = 1, 2, we have fY1(y1) = fY2(y2) = 1(0,1), and we can write

Eµt(Φ(u)) =

∫
(0,1)

∫
(0,1)

Φ(u)(y1,y2) dy1 dy2

≈
∫

(0,1)

∫
(0,1)

Φ(uL,L)(y1,y2) dy1 dy2

≈
N∑
i=1

N∑
j=1

wi,j︸︷︷︸
=wiwj

Φ(uL,L)(ξi,ξj) ,

(7.2.27)

where N is the number of quadrature points of the one-dimensional quadrature rule, and
wi, wj and ξi, ξj are resp. the quadrature weights and the quadrature points on the interval
(0, 1). For the evaluation of the reference solution, we use here

Eµt(Φ)ref =
N∑
i=1

N∑
j=1

wiwjΦ(uL,L)(ξi,ξj)

= Φ
( N∑
i=1

N∑
j=1

wiwju
(ξi,ξj)
L,L

)
:= Φ

(
uref

)
,

(7.2.28)

since our choice of Φ permits this exchange. We take here a quadrature rule with N = 10
quadrature points, such that the number of quadrature points on (0, 1)×(0, 1) is N2 = 100.
The advantage of calculating the reference solution with this method instead of with Monte
Carlo is that the number of required discrete solutions, N2, is smaller than ML (we use
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N2 = 100 here instead of ML = ν2

h2
L

= 105 for ν = 0.01 and hL = 2−10), but also its

assumed increased accuracy.
We may then wonder why we do not use Gaussian quadrature instead of (ML)MC

sampling to approximate Eµt(Φ). For the small number of random coefficients used here
for the initial condition (namely 2), it would be indeed more efficient, but as the complexity
of the quadrature increases exponentially with the number of random coefficients, when we
have 3 or more random coefficients, this method becomes not feasible anymore and we
choose then (ML)MC, whose complexity increases only linearly with the number of random
coefficients.

Time integration

The time step size choice depends on the random numbers appearing in the initial condition.
We have

max
x∈D
|u0,1(ω; x)| ≤ 2

1√
12 + 12

|
√
λ1Y1(ω)|+ 2

2√
22 + 22

|
√
λ2Y2(ω)|

=
1√
2

(
|Y1(ω)|+ |

√
2−5Y2(ω)|

)
,

(7.2.29)

max
x∈D
|u0,2(ω; x)| ≤ 2

1√
12 + 12

|
√
λ1Y1(ω)|+ 2

2√
22 + 22

|
√
λ2Y2(ω)|

=
1√
2

(
|Y1(ω)|+ |

√
2−5Y2(ω)|

)
.

(7.2.30)

With the CFL-condition

∆`t(ω) ≤ CFL
1

max
x∈D
{ |u0,1(ω;x)|

h`
+
|u0,2(ω;x)|

h`
}

(7.2.31)

in mind, we choose

∆`t(ω) = 0.2
h`

umax(ω)
, (7.2.32)

where

umax(ω) =
2√
2

max{1, |Y1(ω)|+ |
√

2−5Y2(ω)|} (7.2.33)

is an upper bound for the velocity components. We use the maximum term to ensure that
we do not have too large time step sizes.

MLMC

In this test, we considered an alternative, slightly stronger, requirement on the discretization
error, i.e.

|u− u`,`|H ≤ C min{1, h`
ν
} . (7.2.34)

In this test also, the levels ` = 4, 5, 6 are under-resolved. For the equilibration of statistical
and discretization errors, the number of samples was set to

ML = 4 ,

M` = O
(
(
min{ν, h`}

hL
)2
)

=

{
M0, h` ≥ ν
ML

(
h`
hL

)2
, h` < ν

, ` = L− 1, L− 2, . . . , 1 ,

M0 = O
(
(
ν

hL
)2
)

=

{
ML, hL ≥ ν
ML

(
ν
hL

)2
, hL < ν

.

(7.2.35)
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These special relations for the sample numbers are there to avoid having ML > M` (with
` < L) for the under-resolved finest levels L = 4, 5, 6, and also to avoid having sample
numbers M` smaller than 1 for the under-resolved levels `. Because of the relations in
(7.2.35), the number of samples M` on the under-resolved levels is the same.

We expect that the error in Proposition 4.2.2 becomes

‖Eµt(Φ)− ELµt(ΦL)‖L2(H;R) ≤ C min{1, hL
ν
} , (7.2.36)

and we see in Figure 7.6 that we get this same error behavior, where we considered
in the simulation the function g1(x1, x2) = wI

1,1(x1, x2) for Φ. For the evaluation of
Φ(uref ) = (uref ,g1)H , we used bicubic interpolation for the reconstruction and composite
25-points 2D Gauss-Legendre quadrature for the integration, such that the integration error
is negligible.

We observe that for the under-resolved levels ` = 4, 5, 6, whose discretization error
is reduced to O(1) by the relation (7.2.34), we recover this reduction of the error in the
L2(H;R)-based relative error. The convergence on higher levels ` = 7, 8, 9 indicates that the
larger discretization error on the coarser samples is equilibrated by a high enough number
of samples such that the total error is of the order of magnitude of hL

ν , even if the coarse
samples are under-resolved.

Parametrization

For the simulation, we used the processors assignment described in Table 7.3. We report
also in Table 7.4 the total number of cores used and the runtime (in seconds) needed to
compute one estimate ELµt(ΦL) (averaged over K = 30 runs) measured by the MPI function
MPI Wtime().

Table 7.3: Test 2. Parametrization of C` = [D`]× P`.

L C4 C4 & 5 C6 C7 C8 C9

4 [1× 1]× 1 − − − − −
5 − [1× 1]× 1 − − − −
6 − [1× 1]× 1 [2× 2]× 1 − − −
7 − [1× 1]× 1 [2× 2]× 1 [4× 4]× 1 − −
8 − [1× 1]× 1 [2× 2]× 1 [4× 4]× 1 [4× 4]× 2 −
9 − [1× 1]× 1 [2× 2]× 1 [4× 4]× 1 [4× 4]× 2 [8× 8]× 1

Table 7.4: Test 2. Total number of cores and runtime.

L Ncores Runtime (s)
4 1 1
5 1 1
6 5 3
7 21 15
8 53 66
9 117 265
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Figure 7.6: Test 2. Convergence of the relative error RεEL with K = 30 runs and
g1(x1, x2) = wI

1,1(x1, x2) ∈ V . The reference solution was calculated with 100-points 2D
Gauss-Legendre quadrature. Piecewise constant reconstruction of the discrete solutions
and composite 4-points 2D Gauss-Legendre quadrature were used for the evaluation of Φ.
On all levels, the relative variance σ2

K was at most 0.0032. Figure generated with
MATLAB.
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7.2.4 MLMC - Test 3

Initial condition

In this test, the initial velocity was given by

u0(ω; x) =
√
λ1Y1(ω)wI

1,1(x) +
√
λ2Y2(ω)wI

2,2(x) , (7.2.37)

where λi = 1
4 i
−5 and Yi

i.i.d.∼ U(−1, 1), i = 1, 2.
Using the orthonormality property of the Stokes eigenfunctions, we get

|u0(ω)|2H = (u0(ω),u0(ω))H

= λ1Y1(ω)2|wI
1,1|2H + λ2Y2(ω)2|wI

2,2|2H

=
1

4

(
Y1(ω)2 + 2−5Y2(ω)2

)
.

(7.2.38)

We calculate the mean kinetic energy of the initial condition with Monte Carlo sampling
(106 samples), and get, with a 95%-confidence interval,

Eµ0(|u0|2H) ≈ 0.60178± 0.00043 . (7.2.39)

The end time was set to t = 0.01 and the viscosity to ν = 0.1.

Time integration

The time step size choice depends on the random numbers appearing in the initial condition.
We have

max
x∈D
|u0,1(ω; x)| ≤ 2

1√
12 + 12

|
√
λ1Y1(ω)|+ 2

2√
22 + 22

|
√
λ2Y2(ω)|

=
1√
2

(
|Y1(ω)|+ |

√
2−5Y2(ω)|

)
,

(7.2.40)

max
x∈D
|u0,2(ω; x)| ≤ 2

1√
12 + 12

|
√
λ1Y1(ω)|+ 2

2√
22 + 22

|
√
λ2Y2(ω)|

=
1√
2

(
|Y1(ω)|+ |

√
2−5Y2(ω)|

)
.

(7.2.41)

With the CFL-condition

∆`t(ω) ≤ CFL
1

max
x∈D
{ |u0,1(ω;x)|

h`
+
|u0,2(ω;x)|

h`
}

(7.2.42)

in mind, we choose

∆`t(ω) = 0.2
h`

umax(ω)
, (7.2.43)

where

umax(ω) =
2√
2

max{1, |Y1(ω)|+ |
√

2−5Y2(ω)|} (7.2.44)

is an upper bound for the velocity components. We use the maximum term to ensure that
we do not have too large time step sizes.
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Reference solution

The reference solution was calculated here with the Monte Carlo method on the discretiza-
tion level L = 10. The number of samples was chosen according to ML =

(
ν
hL

)2 ≈ 10486.
We took ML = 10010 for our simulation to limit the required computing resources.

A unique multilevel Monte Carlo estimate on the discretization level L = 10 has also
been calculated, with the same sample numbers choice as in (7.2.45), in order to com-
pare approximatively the computational cost needed by both methods to attain the same
accuracy.

MLMC

All levels ` = 4, . . . , 9 are here resolved, and for the MLMC simulation, we took the following
sample numbers:

ML = 4 ,

M` = ML

( h`
hL

)2
= ML22(L−`), ` = L− 1, L− 2, . . . , 1 ,

M0 =
( ν
h2
L

)2
=
ν2

h2
L

,

(7.2.45)

and we expect then that the error in Proposition 4.2.2 becomes

‖Eµt(Φ)− ELµt(ΦL)‖L2(H;R) ≤ C
hL
ν
. (7.2.46)

In the simulation, we considered the function g1(x1, x2) = wI
1,1(x1, x2) for Φ. The refer-

ence solution was reconstructed with bicubic interpolation and the evaluation of Φ for the
reference solution was done with composite 25-points 2D Gaussian quadrature, such that
the integration error is negligible. The behavior predicted in (7.2.46) can be observed in
Figure 7.7.

Parametrization

For the simulation, we used the processors assignment described in Table 7.5. We report also
in Table 7.6 the total number of cores used and the runtime (in seconds) needed to compute
one estimate ELµt(ΦL) (averaged over K = 30 runs, except for the MLMC simulation on
level L = 10 , where we report the timing of the only run we made) measured by the MPI
function MPI Wtime().

Table 7.5: Test 3. Parametrization of C` = [D`]× P`.

L C4 C5 C6 C7 C8 C9 C10

4 [1× 1]× 1 − − − − − −
5 [1× 1]× 1 [2× 2]× 1 − − − − −
6 [1× 1]× 1 [2× 2]× 1 [2× 2]× 1 − − − −
7 [1× 1]× 2 [2× 2]× 1 [2× 2]× 1 [4× 4]× 1 − − −
8 [1× 1]× 4 [2× 2]× 2 [2× 2]× 1 [4× 4]× 1 [4× 4]× 1 − −
9 [1× 1]× 19 [2× 2]× 8 [2× 2]× 4 [4× 4]× 2 [4× 4]× 2 [4× 4]× 2 −
10 [1× 1]× 14 [2× 2]× 8 [2× 2]× 4 [4× 4]× 2 [4× 4]× 2 [4× 4]× 4 [16× 16]× 1
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7.2. NUMERICAL EXPERIMENTS xcviii

Figure 7.7: Test 3. Convergence of the relative error RεEL with K = 30 runs and
g1(x1, x2) = wI

1,1(x1, x2) ∈ V . The reference solution was calculated with the Monte
Carlo method with 10010 samples on the discretization level L = 10. Piecewise constant
reconstruction of the discrete solutions and composite 4-points 2D Gauss-Legendre
quadrature were used for the evaluation of Φ. On all levels, the relative variance σ2

K was
at most 0.0035. Figure generated with MATLAB.

Table 7.6: Test 3. Total number of cores and runtime.

L Ncores Runtime (s)
4 1 1
5 5 1
6 9 3
7 26 14
8 48 41
9 163 130
10 446 311
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Comparison of MLMC and MC

As mentioned previously, for this simulation we made both a Monte Carlo simulation on
the fine discretization level L = 10, and a multilevel Monte Carlo simulation with finest
discretization level L = 10. In both cases, the sample numbers were chosen in order to
obtain a L2(H;R)-based relative error of the order of magnitude of hLν . The parametrization
C10 = D10 × P10 for the processors assignment in the Monte Carlo simulation was C10 =
[8×8]×14 = 896 cores. The parametrization and the number of cores used in the multilevel
Monte Carlo simulation on the finest level L = 10 can be seen in Table 7.5 and Table 7.6.

We can get a crude estimation of the total computational work by multiplying on each
level the number of processors assigned on that level with the (average) time needed for
the time integration in that level. This takes also into account the communication time in
the IMPACT solver, for this reason it is only an estimation.

We measured the ratio of the computational work to calculate the MC estimate over
the computational work to calculate the MLMC estimate to be about 690, such that the
MLMC simulation had a cost of about two orders of magnitude smaller.

Effect of the reconstruction method on the velocity field

To conclude the discussion about this test, we present an example resulting from the MLMC
simulation to illustrate the fact that, while the piecewise constant reconstruction seems to be
sufficiently accurate for the evaluation of the real-valued functional Φ (representing some
bulk property of the flow), one may loose intrinsic smoothness of the FD solution with
this method, such that for the reconstruction e.g. of the mean velocity field, one should
use a higher order interpolation scheme. Indeed, interpolation schemes such as piecewise
constant interpolation or bilinear interpolation may display artifacts, for example when
adding flows rotating in different directions (we remark that the random coefficients in the
initial condition may also take negative values in this test). This is visible by comparing
Figure 7.8a, where bilinear interpolation was used to reconstruct the MLMC estimate for
the mean velocity field in one of the simulation runs on level L = 9, and Figure 7.8b, where
bicubic interpolation was used for the same simulation run on that level.
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(a) Test 3. MLMC estimate EL
µt(SL(t, 0)u0) on level L = 9 for the simulation run number 5.

Bilinear reconstruction of the discrete solutions was performed. Figure generated with MATLAB.

(b) Test 3. MLMC estimate EL
µt(SL(t, 0)u0) on level L = 9 for the simulation run number 5.

Bicubic reconstruction of the discrete solutions was performed. Figure generated with MATLAB.

Figure 7.8: Effect of the reconstruction method on the velocity field.
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Efficiency

While efficiency is of great importance in parallel applications, for the numerical experi-
ments, we were primarily focused on calculating correctly the statistical estimates and on
observing the expected error convergence rates, while trying naturally to guess a priori,
from prior results, the best processor assignment to achieve an efficient load balancing.

Final words

The presented results have shown that the MLMC-FD method seems to capture correctly
ensemble averages and bulk properties of the flow, even in the presence of under-resolved
discretizations, and confirm thus the theoretical foundings presented in Chapter 4.
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Conclusion

The MLMC-FD solver implemented in the context of this thesis approximates ensemble
averages and bulk properties of statistical solutions of the Navier-Stokes equations by sam-
pling, combined with the use of the discrete solver IMPACT for the pathwise evolution
of each sample arising out of an ensemble of initial conditions. It is based on the novel
theoretical and computational approach presented in [1] and the implementation approach
(in a parallel environment) presented in [17].

The simulation results showed that the errors arising from coarse, under-resolved dis-
cretizations used in the MLMC algorithm can be compensated (in mean square sense)
efficiently by statistical oversampling, such that the resulting approximations of the ensem-
ble averages attain the level of accuracy of the finest discretizations used in the algorithm,
and this at a lower cost than with the more traditional MC approach.

Outlook

For our simulations, we considered smooth and laminar flows, in two space dimensions and
with periodic boundary conditions. Since the discussion leading to the error bounds for
the MLMC estimates in Chapter 4 took also into account no-slip boundary conditions and
three space dimensions, we expect to obtain similar convergence results as the one observed
in our numerical experiments for this type of boundary conditions and for this higher space
dimension, assuming smooth and laminar flows.

The error bounds for the MLMC estimates were derived assuming robust convergence
(with respect to the grid spacing) of the discretization error measured in the energy-norm.
Since this norm can be seen (when squared) as a spatial average of the discretization error
in the (squared) euclidean norm, the discrete solutions do not need to resolve locally and
in detail the small scale features of the flow, as long as this spatial average converges
consistently, i.e. as long as these discrete solutions resolve the bulk properties of the flow
independently of the small scale features of the flow.

At larger Reynolds numbers however, even with this less restrictive character of the
energy-norm, this is only possible with the use of a proper turbulence model on under-
resolved simulations. The investigation of the effect of using turbulence models on the
accuracy and the efficiency of the MLMC algorithm could be an idea for future work.
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