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Abstract

We are concerned with the numerical computation of the measure val-
ued vanishing dispersion limit (VDL) of Burgers’ equation. Motivated
by modern ideas concerning the numerical treatment of systems of con-
servation laws [5], we present an implicit finite di↵erence scheme (FDS)
with perturbation of the initial data and provide both theoretical and
numerical indication that it indeed approximates the VDL.

Furthermore, we also present a Crank-Nicolson FDS for which we can’t
proof the above mentioned theoretical results but which as a KdV scheme
works better than the implicit scheme. Indeed we shall see an improve-
ment in the numerical results.

In order to have a reference for comparison, we lean on the work of Lax
and Levermore [12] who theoretically investigated the mean and variance
of the VDL.
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1 Introduction

This thesis is embedded into the framework of conservation laws which form a class of
PDE’s appearing in many physical contexts. Basically, it is the PDE-formulation of
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the fact that the local change of a certain quantity is equal to the flux of this quantity
through the boundary of the local domain:

d
dt

Z

⌦

u dx =

Z

@⌦

F (u) · dS.

Applying Gauss’s formula
R
@⌦

F · dS =
R
⌦
div(F ) dx, one then derives the correspond-

ing PDE

u
t

+ div(F (u)) = 0.

In the following, we shall give a short summary of well-known theory up to modern
research topics concerning conservation laws and their numerical treatment. This will
lead quite naturally to the vanishing dispersion limit (VDL) of Burgers’ equation as
theoretically investigated by Lax and Levermore (LaL) [12],[13],[14], but from the
perspective of conservation laws and their measure valued solutions. The following
introduction is mainly based on the work of DiPerna [4], Fjordholm and co-workers
[5], and well-established theory that can be found for instance in [3].

1.1 Scalar Conservation Laws in One Space Dimension

In one space dimension, the scalar conservation law takes the form

u
t

+ f(u)
x

= 0, x 2 R, t > 0

u(x, 0) = u0(x), x 2 R, (1)

where f : R ! R is the flux function. One classical example of a non-linear flux is the

Burgers’ flux f(u) = u

2

2 which will be considered in this thesis.
It is well-known that even for smooth initial data, the classical solution of (1)

generates infinite derivatives, so-called shocks, in finite time. It is therefore necessary
to weaken the notion of solution in order to obtain existence of a global solution.

1.1.1 Weak Solutions, Entropy Conditions

The concept of solution is weakened such that it doesn’t have to be di↵erentiable
anymore. This is formally done by shifting the derivatives onto a test function using
integration by parts. More precisely, a function u(x, t) is said to be a weak solution of
(1) if for all compactly supported, smooth test functions '(·, ·) 2 C1

c

(R ⇥ R�0), the
following integral equation holds:

ZZ

R⇥R�0

u(x, t)'
t

(x, t) + f(u(x, t))'
x

(x, t) dx dt+

Z

R
u0(x)'(x, 0) dx = 0. (2)

Even though the concept of weak solutions gives existence, we lose uniqueness.
This is why certain constraints have to be enforced, so-called entropy conditions. A
pair (⌘, q) of functions R ! R is an entropy pair if ⌘ is convex and if

q0 = f 0⌘0. (3)

The function q is called an entropy flux. A weak solution u(x, t) is then said to
be an entropy solution if for all entropy pairs (⌘, q) and all non-negative, compactly
supported, smooth test functions 0  '(·, ·) 2 C1

c

(R ⇥ R
>0), the following integral

inequality holds:
ZZ

R⇥R�0

⌘(u(x, t))'
t

(x, t) + q(u(x, t))'
x

(x, t) dx dt � 0. (4)
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These entropy inequalities are forcing the weak solution to be the vanishing viscosity
limit (VVL), i.e. the strong L2-limit u = lim

"!0 u
" where u " is the smooth solution

of

u "
t

+ f(u ")
x

= "u "
xx

. (5)

Indeed, the entropy inequality (4) is formally derived by multiplying the vanishing
viscosity equation (5) with ⌘0(u ") and inserting (3). The inequality sign is then a
consequence of the viscosity term "u "

xx

together with the convexity of ⌘. Thus, (4)
makes sure that the entropy properties of the vanishing viscosity equation (5) are
shared in the weak sense by the entropy solution. Kruzkhov [9] showed that this is
indeed enough to prove uniqueness of the entropy solution. Moreover, it can be shown
that the strong limit u = lim

"!0 u
" exists which yields existence.

1.1.2 Numerical Solutions

There is a well-established theory of numerical methods converging to the entropy
solution. Since we want to compute a solution that is characterized by integral
(in)equalities, we work with so-called finite volume schemes. After discretizing space
and time into cells [x

j�1/2, xj+1/2), [tn, tn+1), the spatial cell averages 1
�x

R
x

j+1/2
x

j�1/2
u(x, t

n

) dx

are approximated by the following explicit discrete scheme:

u
j,n+1 � u

j,n

�t
+

F
j+1/2,n � F

j�1/2,n

�x
= 0. (6)

Here, F
j+1/2,n = F

j+1/2,n(uj,n

, u
j+1,n) is the numerical flux, and the mesh sizes �x

and �t are linked via the CFL condition �t = ��x.
In order to achieve convergence to the entropy solution, the numerical flux has to

satisfy certain criteria of which the most important is monotonicity. This property
allows us to establish discrete entropy inequalities which imply that as �x ! 0, the
computed solution will satisfy the entropy inequalities (4). One example of such a
monotone flux is the Godunov flux :

F (u
j

, u
j+1) =

⇢
min

u

j

✓u

j+1 f(✓) if u
j

 u
j+1

max
u

j+1✓u

j

f(✓) if u
j

� u
j+1.

For our numerical experiments, we use an initial function u0 which satisfies the
requirements of the LaL theory [12]. In particular, we choose the smooth, non-positive
one-bump function

u0(x) =

(
�e

1
2� 1

(2x+2)2
� 1

(2x�2)2 if |x| < 1
0 else.

Furthermore, we adjust the Burgers flux in order to be conformable to the KdV equa-
tion considered by LaL and therefore work with the flux f(u) = �3u2.

The computed numerical solution with

N = 500 spatial mesh points,

� = 0.1 and

t = 0.1, 0.2, 0.3, 0.4

is shown in figure 1. One can clearly see how the initial bump function is skewed to
the right and forms a shock which is then nicely resolved by the monotone scheme.
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Figure 1: Entropy solution at the scalar level, computed with the Godunov
finite volume scheme.

1.2 Systems of Conservation Laws

Most problems in physics are neither one-dimensional nor scalar. Therefore, we usually
seek the solution u : Rd ⇥ R�0 ! RN of a multi-dimensional system of conservation
laws:

u
t

+r
x

· f(u) = 0, x 2 Rd, t > 0

u(x, 0) = u0(x), x 2 Rd, (7)

where f : RN ! Rd⇥N is the flux function.
In contrast to the scalar case, it is much harder to obtain (global) well-posedness

results for such systems. There are some results available for one-dimensional systems
(d = 1), see for instance [7],[1]. However, there are no global well-posedness results
for generic systems in several space dimensions. Again, it is necessary to weaken the
notion of solution hoping to get existence and uniqueness results.

1.2.1 Young Measures

Instead of looking at solutions u(x, t) which can be exactly evaluated at each point
(x, t), we turn to the concept of measure valued solutions introduced by DiPerna [4].
For that purpose, we have to introduce the notion of Young measures: For D ⇢ Rk 1,
we define Y(D,RN ) to be the set of all measurable functions

⌫ : D ! Prob(RN ),

y 7! ⌫
y

.

It can be shown that each Young measure ⌫ can be written as a random field v :
D ⇥ ⌦ ! RN for some probability space (⌦,F , P ). The connection between the
random field and the Young measure is given by

⌫
y

(F ) = P ({! : v(y;!) 2 F}), F ⇢ RN .

The Young measure ⌫ is called the law of the random field v. Note that the class of
measurable functions u : D ! RN is included in the notion of Young measures since

1In our case, D will usually be Rd ⇥ R�0.
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y 7! �
u(y) trivially defines a Young measure. Here, �

⇠

is the Dirac measure centered at
⇠ 2 RN . Every Young measure that can be written as such a Dirac measure is called
atomic.

Let g be any continuous function

g : RN ! R,
⇠ = (⇠0, . . . ⇠N�1) 7! g(⇠),

⌫ a Young measure and v the corresponding random field. We define the pairing of ⌫
with g at y as

h⌫
y

, gi :=
Z

RN

g(⇠) d⌫
y

(⇠)

which can be thought of as the expectation of the functional g(v) at the point y.
Having defined this pairing, we equip the set of Young measures with the topology of
narrow convergence: ⌫n is said to converge narrowly to ⌫ (written ⌫n * ⌫) if

Z

D

'(y)h⌫n
y

, gi dy !
Z

D

'(y)h⌫
y

, gi dy, n ! 1

for all g 2 C0(RN ) and ' 2 L1(D).
Let v " be a sequence of measurable maps D ! RN which converges weakly to

v, i.e.
R
D

'(y)v "(y) dy !
R
D

'(y)v(y) dy for all ' 2 C1
c

(D). As was described by

DiPerna [4], there is a subsequence such that for all continuous functions g : RN ! R,
the functionals g(v ") also converge weakly. Moreover, there is a Young measure ⌫
such that each of these weak limits is the pairing of ⌫ with g, i.e. for all continuous
functions g, we have

Z

D

'(y)g(v "(y)) dy !
Z

D

'(y)h⌫
y

, gi dy.

Thus, Young measures are a convenient way of describing the weak limit behavior of
a sequence of functions and their functionals. The above statement is a special case
of the fundamental theorem of Young measures which states that under some mild
assumptions, each sequence of Young measures has a narrowly converging subsequence,
see ([5], Theorem A.1).

1.2.2 Measure Valued Solutions

Coming back to systems of conservation laws, we define a Young measure ⌫ 2 Y(Rd ⇥
R�0,RN ) to be a measure valued (MV) solution of (7) if

ZZ

Rd⇥R�0

'
t

(x, t)h⌫(x,t), idi+r
x

'(x, t) · h⌫(x,t), fi dx dt

+

Z

Rd

'(x, 0)h⌫(x,0), idi dx = 0 (8)

for all test functions '(·, ·) 2 C1
c

(Rd ⇥R�0). Here, ⌫(·,0) is the atomic initial measure
�
u0(·), and therefore we have h⌫(x,0), idi = u0(x). However, there is nothing that
prevents us from also allowing the initial measure ⌫(·,0) to be non-atomic. In the
sequel, we shall denote this initial measure by � 2 Y(Rd,RN ).

Again, we have to impose certain entropy constraints hoping to enforce uniqueness
of the MV solution. Let (⌘, q) be an entropy pair, i.e. functions ⌘ : RN ! R and
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q : RN ! Rd such that ⌘ is convex, and q0 = ⌘0 · f 0. We then define a MV solution ⌫
to be an entropy measure valued (EMV) solution if

ZZ

Rd⇥R�0

'
t

(x, t)h⌫(x,t), ⌘i+r
x

'(x, t) · h⌫(x,t), qi dx dt

+

Z

Rd

'(x, 0)h�
x

, ⌘i dx � 0 (9)

for all non-negative test functions '.
So far, there is no complete theory about existence and uniqueness of EMV so-

lutions. However, as it was demonstrated in [5], there can be no uniqueness in the
case of non-atomic initial data even at the scalar level. Nevertheless, we shall use the
concept of non-atomic initial data for the sake of numerical computations as we shall
explain below.

The question is how to find or construct MV solutions. As we discovered in the
scalar case, it makes sense to add some regularizing term to the conservation law,
i.e. a higher order derivative term, and then let the coe�cient of this term go to
zero. Thus, we get a sequence u " of smooth solutions. Assuming this sequence to be
uniformly bounded in L1, we get a weakly converging subsequence. As mentioned
in the previous subsection, we can then again extract a subsequence such that each
functional g(u ") converges weakly, and these weak limits can conveniently be described
by a Young measure. It can then be shown that this Young measure is a MV solution.
However, we expect to obtain a di↵erent MV solution for each type of regularization,
and the entropy inequalities, if existing, are inherited from the regularized equation.

1.2.3 Perturbations in Numerical Computations

Suppose that a numerical scheme produces a solution u�x such that each functional
g(u�x) converges weakly. In order to compute an approximation of the corresponding
Young measure, we pick a sequence �x1 > · · · > �x

M

and use the corresponding
solutions u�x1 , . . . u�x

M as samples. It turns out that in order to get enough samples
for a reasonable approximation, one has to go to extremely small mesh refinements.
Therefore, even though we know about the non-uniqueness of EMV solutions in the
case of non-atomic initial data, we use small perturbations of the initial function in
order to obtain a Young measure for a fixed mesh size. More precisely, the perturbation
of the initial function is considered to be a random field, and doing sampling over the
corresponding probability space, the numerical solution also becomes a random field.
The corresponding Young measure is then taken to be the numerical approximation
of the MV solution.

This perturbation approach is based on the stability of the MV solution with re-
spect to small perturbations around atomic initial data. It is a remedy of the numerical
nightmare of having to go to extremely small mesh refinements. We refer the reader
to [5] where this approach was first developed and numerically tested.

1.3 Outline of Thesis

Nothing prevents us from considering MV solutions also in the scalar case. However,
by a stability result that was proven in [5] and by the above mentioned theory of
entropy solutions in the scalar case (section 1.1.1), we expect the EMV solution to be
atomic. As a consequence of the entropy constraints, this is indeed the case. Moreover,
the EMV solution turns out to be the vanishing viscosity limit (VVL). However, in
contrast to di↵usive regularization (e.g. vanishing viscosity), this thesis focuses on the
MV solution obtained by the vanishing dispersion equation

u "
t

+ f(u ")
x

= "2u "
xxx

(10)
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in the special case of Burgers’ flux f(u) = u

2

2 . The corresponding dispersive equation
(10) is in fact the famous Korteweg-de Vries (KdV) equation. When substituting
di↵usion with dispersion, we lose the entropy constraints which force the EMV to be
atomic. Therefore, we expect the measure valued vanishing dispersion limit (VDL)
to be non-atomic. This is indeed the case and a consequence of the KdV solution
being oscillatory. These KdV oscillations have a frequency of O( "�1) and occur after
a certain break time which is independent of ".

In a remarkable series of three papers [12], [13], [14], Lax and Levermore (LaL)
theoretically computed the first two moments of the VDL of Burgers’ equation. Moti-
vated by their result and inspired by the numerical perturbation approach described in
[5], we attempt to approximate the Young measure of the VDL with a finite di↵erence
scheme (FDS).

The outline of the thesis is as follows: We start with considering the VVL of Burg-
ers’ equation in section 2, and demonstrate the atomicity of the EMV solution both
theoretically and numerically. In Chapter 3, we turn to the VDL and give a summary
of the LaL theory together with a characterization of the VDL given by DiPerna [4].
This characterization is based on the KdV hierarchy of conservation laws and can be
regarded as some kind of weaker entropy condition. In Chapter 4, we present an im-
plicit FDS and prove that under some assumptions, the computed solution will satisfy
DiPerna’s characterization as �x ! 0. This theoretical result is based on the FDS
being implicit and di↵usive. Attempting to get a reasonable approximation of the
VDL, we then apply the perturbation approach and compare the computed solution
with the LaL theory. To improve the numerical results, we furthermore present an
almost di↵usion-less Crank-Nicolson FDS in section 5. Unfortunately, we couldn’t
prove DiPerna’s characterization for the Crank-Nicolson scheme.

Summarized, this thesis combines modern ideas arising in the numerical treatment
of systems of conservation laws with the dispersive regularization of scalar conservation
laws.

2 The EMV Solution of Burgers’ Equation

In this section, we show that the entropy measure valued (EMV) solution at the scalar
level coincides with the vanishing viscosity limit (VVL) and therefore is atomic. This
is then also demonstrated numerically with the perturbation approach mentioned in
subsection 1.2.3. We mainly base this section on ideas presented in [5].

2.1 The EMV Solution and Vanishing Viscosity

We consider the VVL of the scalar conservation law (1), i.e. the strong L2-limit
u = lim

"!0 u
" where u " is the smooth solution of

u "
t

+ f(u ")
x

= "u "
xx

. (11)

Let (⌘, q) be an entropy pair so that in particular we have q0(u) = f 0(u)⌘0(u). Multi-
plying (11) with ⌘0(u "), we obtain the entropy property

⌘(u ")
t

+ q(u ")
x

= "u "
xx

⌘0(u ")

= "⌘(u ")
xx

� "⌘00(u ")(u "
x

)2

 "⌘(u ")
xx

, (12)

where the last step is due to the convexity of ⌘. Note that the right hand side vanishes
in the sense of distributions. It can be shown that the strong L2-limit u = lim

"!0 u
"

exists which gives existence of an entropy solution of the scalar conservation law (1)
because u inherits all entropy constraints from the above inequality (12). Furthermore,
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as was shown by Kruzkhov [9], these entropy constraints make the entropy solution
unique.

In the language of measure valued solutions, we can say that the measure valued
VVL is atomic as a consequence of the strong L2-convergence of u " to the entropy
solution. However, we have to ask the question if the EMV solution subject to atomic
initial data coincides with the VVL, i.e. if the EMV solution is atomic and coincides
with the entropy solution. As was shown in ([5], Theorem 3.3), this is indeed the case.
We reproduce this result together with the proof for the one-dimensional case d = 1:

Theorem 2.1.1 ([5], Theorem 3.3). Consider the scalar one-dimensional case N =
d = 1. Let u0 2 L1(R) and let � 2 Y(R,R) be uniformly bounded, i.e. there exists a
compact set K ⇢ R such that for all x 2 R : supp(�

x

) ⇢ K. Let u 2 L1(R⇥R�0) be the
entropy solution of the scalar conservation law (1) with initial data u0. Furthermore,
let ⌫ be any EMV solution of (1) which attains the initial MV data � in the sense

lim
T!0

1
T

Z
T

0

Z

R
|h⌫(x,t), |⇠ � u(x, t)|i � h�

x

, |⇠ � u0(x)|i| dx dt = 0.

Then, for all t > 0, we have the stability estimate
Z

R
h⌫(x,t), |u(x, t)� ⇠|i dx 

Z

R
h�

x

, |u0(x)� ⇠|i dx.

In particular, if � = �
u0(·), then ⌫ = �

u(·,·).

Proof. We follow DiPerna [4] who proved the uniqueness of scalar EMV solutions
subject to atomic initial data.

For ⇠ 2 R, let (⌘(⇠, u), q(⇠, u)) be the Kruzkhov entropy pair, defined as

⌘(⇠, u) := |⇠ � u|, q(⇠, u) := sgn(⇠ � u)(f(⇠)� f(u)).

By ([4], Theorem 4.1) we know that for any entropy solution u and any EMV solution
⌫ of (1), we have

Z

R�0

Z

R
'

t

(x, t)h⌫(x,t), ⌘(⇠, u(x, t))i+ '
x

(x, t)h⌫(x,t), q(⇠, u(x, t))i dx dt � 0

for all test functions 0  ' 2 C1
c

(R⇥ R�0). In particular the function

V (t) :=

Z

R
h⌫(x,t), |⇠ � u(x, t)|i dx

is non-increasing. By hypothesis, the point t = 0 is a Lebesgue point for V , so
lim

t!0 V (t) =
R
Rh�x

, |u0(x)� ⇠|i dx. The result follows.

This Theorem in particular proves that the EMV solution is atomic when subject
to atomic initial data. Therefore, we see that the entropy constraints are forcing the
EMV solution to be atomic and to coincide with the VVL.

2.2 Numerical Experiments

In this section which is a generalization of section 1.1.2, we present a numerical algo-
rithm proposed in [5] to compute EMV solutions of conservation laws. We apply this
algorithm to a monotone finite volume scheme at the scalar level and demonstrate the
atomicity of the EMV solution numerically.
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Finite Volume Scheme We discretize space into cells C
j

= [x
j�1/2, xj+1/2) of

size �x and time into cells [t
n

, t
n+1) of size �t. The mesh widths �x and �t are linked

via the CFL-number � = �t

�x

. The cell averages 1
�x

R
C
j

u(x, t
n

) dx are approximated

by the explicit scheme

u
j,n+1 � u

j,n

�t
+

F
j+1/2,n � F

j�1/2,n

�x
= 0

where F
j+1/2,n = F

j+1/2,n(uj,n

, u
j,n+1) is the numerical flux. As in subsection 1.1.2,

we choose the Godunov flux

F (u
j

, u
j+1) =

⇢
min

u

j

✓u

j+1 f(✓) if u
j

 u
j+1

max
u

j+1✓u

j

f(✓) if u
j

� u
j+1

which is both consistent and monotone. The resulting function u�x(x, t) is defined to
be piecewise constant, i.e.

u�x(x, t) = u
j,n

, (x, t) 2 C
j

⇥ [t
n

, t
n+1).

A consistent and monotone scheme such as the Godunov scheme satisfies some
nice properties which imply convergence to the entropy solution: First, it satisfies a
discrete maximum principle and thus, u�x is uniformly bounded in L1. Second, it is
TVD, i.e. the total variation of u�x(·, t) is non-increasing over time. Third, it satisfies
discrete entropy inequalities using the Crandall-Majda numerical entropy fluxes [2].

Perturbation Algorithm To compute the MV solution associated to any numer-
ical scheme, one has to consider the weak limits of u�x and its functionals g(u�x) as
�x ! 0 and find the Young measure which characterizes these weak limits.2 However,
this is numerically very ine�cient since the mesh sizes that are required in order to get
a reasonable approximation are immensely small. We therefore follow [5] where the
following algorithm ([5], Algorithm 4.6 and 4.8), based on perturbation of the initial
function, is presented:

1. Let (⌦,F , P ) be a probability space. Fix " > 0 and let u "0 (·, ·) be a random
field Rd ⇥ ⌦ ! R such that ||u "0 (·;!)� u0(·)||

L

1(Rd)  " for P -almost every !.

2. Pick a random sample of M drawings of u "0 (·;!), denoting them by u ",k0 (·),
k = 1, . . . ,M .

3. Choose a numerical method (i.e. a finite volume scheme) and compute the
numerical approximation u ",�x,k(·, ·) for each sample k = 1, . . . ,M .

4. Compute the approximated MV solution as

⌫ ",�x,M

(x,t) :=
1
M

MX

k=1

�
u

",�x,k(x,t).

If the chosen numerical scheme satisfies the following properties:

1. Uniform boundedness:

||u ",�x,k||
L

1(Rd⇥R�0)
 C, 8!, ",�x,

2. Weak BV (case d = 1): There exists 1  r < 1 such that

lim
�x!0

Z
T

0

X

j

|u ",�x,k(x
j+1, t)� u ",�x,k(x

j

, t)|r�x dt = 0, 8!,

2Since it can be shown that consistent and monotone schemes converge strongly at the
scalar level, we immediately conclude that the resulting measure must be atomic. However,
for the sake of illustrating the perturbation approach, we don’t use this result here.
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EMV solution, T = 0.1504, N = 500, eps = 0.1, M = 200, L1−standdev(T) = 0.060614, L1−standdev(0) = 0.058692

 

 
mean
standard deviation
entropy solution

Figure 2: EMV solution (mean and standard deviation) at the scalar level,
computed with the perturbation algorithm of [5] with the Godunov finite volume
scheme.

3. Discrete entropy inequality (case d = 1): For an entropy pair (⌘, q), there is a
numerical entropy flux Q

j+1/2,n(uj,n

, u
j+1,n) consistent with the entropy flux q

such that

⌘(u
j,n+1)� ⌘(u

j,n

)
�t

+
Q

j+1/2,n �Q
j�1/2,n

�x
 0, 8j, n,!,

then it can be shown that there is subsequence (�x, ",M) ! (0, 0,1) such that
⌫ ",�x,M converges narrowly to an EMV solution of the corresponding conservation
law. At the scalar level, the above three properties are satisfied by any consistent and
monotone finite volume scheme.

The major advantage of the above algorithm is that for a reasonably small but fixed
�x, we can perform the above described perturbation and sampling process without
having to go to extremely small mesh sizes, yet still obtain a good approximation.
The computational cost of doing more sampling is increasing linearly whereas the
computational cost of going to smaller mesh sizes grows at least quadratically (this
follows from the CFL-condition).

We use the same smooth, non-positive one-bump initial function as in section
1.1.2 and perturb it by the random field u0(x;!) = u0(x)+! " with probability space
⌦ = [�1, 1] and uniform probability distribution. We show the numerical result for

N = 500 mesh points,

CFL-number � = 0.1,

end time T = 0.15,

perturbation level " = 0.1 and

sample number M = 200

in figure 2. We observe that the L1-norm of the standard deviation at t = 0 and t = T
is almost identical which is a strong indication that the computed approximation
indeed converges to an atomic limit measure. However, we observe a narrow peak of
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KdV−oscillations for different epsilons, t = 0.15, N = 2000

 

 
initial function
epsilon = 0.05
epsilon = 0.025

Figure 3: KdV solution for di↵erent ", computed with the Crank-Nicolson FDS
(62).

the standard deviation near the shock of the entropy solution. This can be explained
by the fact that perturbations cause the solution to be shifted in space. Since we can
at best hope for convergence in L1, such a narrow peak is perfectly acceptable.

3 The Vanishing Dispersion Limit of Burgers’
Equation

So far, we have seen that di↵usive regularization (e.g. vanishing viscosity) at the scalar
level forces the MV solution to be atomic as a consequence of the entropy constraints.
Now, we turn to dispersive regularization in the special case of Burgers’ equation. In
order to conform to Lax and Levermore (LaL) [12], we adjust the flux function to
be f(u) = �3u2 and reverse the sign of the dispersive term so that our regularized
equation finally is

u
t

� 6uu
x

+ "2u
xxx

= 0. (13)

This is in fact the famous Korteweg-de Vries (KdV) equation. From numerical compu-
tations, we know that the solution of KdV forms oscillations after a certain break time.
The frequency of these oscillations is O( "�1) whereas the amplitude is independent of
", see figure 3. Therefore, we may expect the VDL which is the narrow limit �

u(·,·) * ⌫
of equation (13) to be non-atomic.

LaL [12] computed the first two moments (i.e. mean and variance) of this limit
measure ⌫ theoretically. In section 3.1, we shall give a short summary of their work
as far as it is relevant for our purpose. Since the LaL theory doesn’t provide simple
computable formulas, we shall discuss a numerical method developed by McLaughlin
and Strain [15] to reproduce the LaL result approximatively in section 3.2. This will be
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needed later in order to numerically test our finite di↵erence schemes. Even though we
lose infinitely many entropy constraints when substituting di↵usion with dispersion,
DiPerna [4] described a characterization of the VDL which is based on the infinite KdV
hierarchy of conservation laws (reviewed in section 3.3) and which we shall present in
section 3.4. This characterization can be regarded as some kind of weaker entropy
condition and will be used it in section 4 to theoretically justify the implicit FDS.

3.1 Review of Lax and Levermore Theorie

In this section, we summarize some of the theoretical work done by LaL [12] who
computed the first two moments of the VDL of Burgers’ equation, i.e. the distribu-
tional limits u(x, t; ")

⇤! u and u2(x, t; ")
⇤! u2 where u(x, t; ") is the KdV solution

of equation (13).
The main tool used in the following theoretical considerations is the inverse scat-

tering method which was first described in [6]: To each solution u(x, t; ") of KdV (13),
we associate a one-parameter family of Schrödinger operators

L(t) := � "2@2
x

+ u(x, t; ").

If u(x, t; ") evolves according to the KdV equation, the eigenvalues of the operator
L(t) are integrals of motion. Moreover, for each such L(t), we can define scattering
data which consists of

1. the reflection coe�cients R(k),

2. the eigenvalues �⌘2
n

, n = 1, . . . , N( ") and

3. the norming constants c
n

associated to the eigenfunctions f
n

of L(t).
Here, the number of eigenvalues N( ") is given by

N( ") ⇠=
1
"⇡

�(0)

where

�(⌘) := Re

Z 1

�1

p
�u0(y)� ⌘2 dy.

The scattering data evolves in time in a surprisingly simple manner:

R(k, t) = R(k)e4ik
3
t/ ",

⌘
n

(t) = ⌘
n

,

c
n

(t) = c
n

e4⌘
3
n

t/ ".

The crucial point is that one can reconstruct the solution u(x, t; ") from the scattering
data. In particular, if all reflection coe�cients R(k) vanish, Kay and Moses gave the
following formula for the solution u(x, t; "):

u(x, t; ") = @2
x

W (x, t; "), (14)

where

W (x, t; ") = �2 "2 log det(I +G(x, t; ")),

G(x, t; ") = "

✓
e�(⌘

n

x+⌘
m

x)/ "

⌘
n

+ ⌘
m

c
n

c
m

◆
N

n,m=1

.

In order to make the reflection coe�cients vanish, we have to choose the initial
function u0(x) to be non-positive, C1-smooth, decaying to 0 su�ciently fast as x !
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be a Schroedinger operator whose potential satisfies (1.2). Denote by N ( F )  the 
number of eigenvalues of 9; then 

More generally, the number N ( s ,  q )  of eigenvalues less than -q2 is 

(1.10) 

Suppose u satisfies (1.8) and has a single minimum. Then for -q*>min u 
there are two functions x + ( y )  and x ..(q), defined by 

2 (1.11) 

Clearly, 

u ( x - )  = U ( X + )  = -q , 

u ( x ) < - q 2  for x - < x  < x + ,  

so that (1.10) can be written as 

(1.12) 

where 

(1.13) 

(see Figure 1). 
X - ( f l )  X+ ( n )  

x -<x+ .  

X 

Figure 1 

We shall from now on assume that 

(1.13)' 

Then the domain of the functions x- , x+ and @ is 0 5 9 5 1. 
We turn next to the asymptotic determination of the norming constants. We 

shall use a crude WKB method, Le., we represent the eigenfunction f in (1.4) as 

(1.14) f ( x )  = c exp {-e(x)/e}. 

u(xo)  = min u ( x )  = -1. 

Figure 4: Definition of x±(⌘), ([12], Figure 1).

1, and to have only one critical point x0. For simplicity, we require u0(x0) = �1.
Moreover, we then have to replace the exact scattering data of u0(x) with a WKB
scattering data which has the property that the corresponding initial function u0(x; ")
converges to u0(x) strongly in L2 as " ! 0. In particular, the WKB scattering data
is given as follows:

R(k) = 0 8k,

N( ") =

⇠
1
"⇡

�(0)

⇡
,

�(⌘
n

) =

✓
n� 1

2

◆
"⇡,

c
n

= e✓+(⌘
n

)/ ", n = 1, . . . N( ")

where

✓+(⌘) := ⌘x+(⌘) +

Z 1

x+(⌘)

⌘ � (⌘2 + u0(y))
1/2 dy

and where x±(⌘) are defined by requiring

u0(x±(⌘)) = �⌘2, x�(⌘)  0  x+(⌘).

This is well defined because of the special structure of u0(x), see figure 4. Furthermore,
we define the following two functions which we will need below:

�(⌘) :=

Z
x+(⌘)

x�(⌘)

⌘

(�u0(y)� ⌘2)1/2
dy,

a(⌘, x, t) := ⌘x� 4⌘3t� ✓+(⌘). (15)

Coming back to the explicit formulas (14) ↵., we write the determinant det(I +G)
as

det(I +G) =
X

S

det(G
S

)

where the sum ranges over all index subsets S ⇢ {1, . . . , N} and where G
S

is the
principal minor of G with indices in S. It is then shown that this sum is dominated
by its largest term. The corresponding approximation of W (x, t; ") is denoted by
Q⇤(x, t; ") and is the solution of a minimization problem. LaL then show that the
locally uniform limit Q⇤(x, t) = lim

"!0 Q
⇤(x, t; ") exists and can also be characterized

by a minimization problem. More precisely, we have the following

Theorem 3.1.1 (LaL [12], Theorem 2.2).

lim
"!0

Q⇤(x, t; ") = Q⇤(x, t)
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uniformly on compact subsets of x, t, where

Q⇤(x, t) = min{Q( ;x, t) :  2 A};

the admissible set A consisting of all Lebesgue measurable functions  on [0, 1],

0   (⌘)  �(⌘), (16)

and Q( ;x, t) denoting the quadratic form

Q( ;x, t) =
4
⇡

Z 1

0

a(⌘, x, t) (⌘) d⌘

� 1
⇡2

Z 1

0

Z 1

0

log

✓
⌘ � µ

⌘ + µ

◆2

 (µ) (⌘) dµ d⌘. (17)

Finally, we have the following Theorem which characterizes the first two moments
of the VDL:

Theorem 3.1.2 (LaL [12], Theorem 2.10 and 2.11). Let u(x, t; ") be the solution of
the KdV equation 13 with initial WKB data u0(x; "); then the distributional limits

u(x, t; ")
⇤! u(x, t),

u2(x, t; ")
⇤! u2(x, t)

exist, and

u(x, t) = @
xx

Q⇤(x, t),

u2(x, t) =
1
3
@
xt

Q⇤(x, t).

3.2 Numerical Method of McLaughlin and Strain

The numerical approach presented here is a simplified version of the method developed
by McLaughlin and Strain [15]. The idea is to solve the minimization problem posed in
Theorem 3.1.1 on a finite dimensional subspace S

N

⇢ L1(0, 1) to get an approximation
of the minimizing function  (⌘). But unlike McLaughlin and Strain who choose S

N

to be the space of continuous, piecewise linear functions, we choose it to be the space
of piecewise constant functions.

3.2.1 The Method

We discretize the interval [0, 1] into N cells [⌘
i�1, ⌘i), i = 1, . . . , N of size �⌘ = 1

N

.
Let S

N

⇢ L1(0, 1) denote the set of piecewise constant functions on this grid, and let
 �⌘(⌘) denote a function in S

N

, i.e.

 �⌘(⌘) =  
i

, ⌘ 2 [⌘
i�1, ⌘i).

Furthermore, denote by  := ( 
i

)
i

the vector of the piecewise constant values corre-

sponding to the function  �⌘. Assuming that we can evaluate the function a(⌘, x, t)
(see (15)) exactly,3 we can compute the entries of a N ⇥N -matrix L and of a vector
a such that

Q( �⌘;x, t) = aT �  TL =: Q
N

( ) (18)

3This is actually not true in our case, but ✓+(⌘) and thus also a(⌘, x, t) can be computed
by very accurate numerical integration.
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(see (17) of Theorem 3.1.1) exactly. We then have to solve the following finite dimen-
sional minimization problem:

 ⇤ := argmin{Q
N

( ) : 0   
i

 �
i

, i = 1, . . . , N}

where �
i

:= �(⌘
i�1/2), ⌘i�1/2 :=

⌘

i�1+⌘i
2 .

Our major concern is to find the regions where  ⇤ meets the constraints 0   ⇤
i


�
i

. Let A denote the set of indices i such that  ⇤
i

= 0 and B the set of indices such
that  ⇤

i

= �
i

. Furthermore, define C := A [ B, I = {1, . . . N}\C and introduce the
following notation:

 
X

:= ( 
i

)
i2X

, X ⇢ {1, . . . , N},

a
X

:= (a
i

)
i2X

, X ⇢ {1, . . . , N},
L

XY

:= L
i2X,j2Y

, X, Y ⇢ {1, . . . , N}.

Suppose for the moment that we know the sets A and B in which case we can find  ⇤

by the following stationary-point-equation:

@
 

⇤
I

Q
N

( ⇤) = 0. (19)

Note that this is a linear equation: Since we can rearrange the indices such that

L =

✓
L

II

L
IC

L
CI

L
CC

◆
,  =

✓
 

I

 
C

◆
, a =

✓
a
I

a
C

◆
,

we find by expanding (18) that

Q
N

( ) = aT

I

 
I

+ aT

C

 
C

�  T

I

L
II

 
I

� 2 T

C

L
CI

 
I

�  T

C

L
CC

 
C

,

and therefore

@
 

I

Q
N

( ) = aT

I

� 2 T

C

L
CI

� 2 T

I

L
II

.

The crucial issue therefore is how to find the sets A and B. First note that the
following inequalities must be satisfied componentwise:

@
 

⇤
A

Q
N

( ⇤) > 0, @
 

⇤
B

Q
N

( ⇤) < 0, (20)

which is actually a consequence of the positive definiteness of the operator L. McLaugh-
lin and Strain [15] now developed the following algorithm to construct A,B iteratively:
We start with an initial guess for A,B and  . Then, we solve equation (19) to compute
 

I

of the new iterate. There are two cases that can occur now: Either  is admissable,
0   

i

 �
i

, i 2 I, or not. In the first case, we check whether A,B satisfy the correct
signs (20). If this is the case, we are done and the iteration stops. If not, we remove
the index i 2 C = A [ B for which @

 

i

Q
N

( ) is furthest from correct4 from the set
C and add it to I. In the second case where  

I

is not admissable, we interpolate
between the old and new iterate as far as possible towards the new iterate until a
constraint is met. The index for which this happens is then added to A resp. B, and
the interpolation becomes the new iterate.

So far, we have computed an approximation for Q⇤(x, t) as described in Theorem
3.1.1 which we shall denote by Q⇤

N

(x, t). In order to approximate u and u2, we
have to numerically di↵erentiate Q⇤

N

(x, t), see Theorem 3.1.2. We do this by using

4i.e. among those @
 

i

Q

N

( ), i 2 C for which the sign is not correct, we choose the one
with the largest absolute value.
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finite di↵erence quotients in x and t. More precisely, we choose (x�1, x0, x1) := (x �
�x, x, x+�x), (t�1, t0, t1) := (t��t, t, t+�t) and compute

u ⇡ Q⇤
N

(x1, t0)� 2Q⇤
N

(x0, t0) +Q⇤
N

(x�1, t0)
�x2

,

u2 ⇡ 1
3
Q⇤

N

(x1, t1)�Q⇤
N

(x�1, t1)� (Q⇤
N

(x1, t�1)�Q⇤
N

(x�1, t�1)
4�x�t

.

The numerical di�culty arising at this point is the fact that the numerical error
|Q⇤(x, t)�Q⇤

N

(x, t)| essentially gets divided by �x2 resp. �x�t. This is why one
has to be careful not to choose �x,�t too small.

We close this subsection by emphasizing one important aspect of the McLaughlin
algorithm: it is a local method, i.e. for each (x, t), a di↵erent minimization problem
has to be solved. This is a major numerical drawback which we try to avoid when
applying a FDS.

3.2.2 Numerical Experiments

We use the same initial function as in subsection 1.1.2 and show the resulting mini-
mizing  ⇤ for

N = 200,

(x, t) = (0.5, 0.15)

in figure 5. One can clearly see the regions A and B where  
i

= 0 resp.  
i

= �
i

.
Furthermore, we show the resulting approximation of the mean and standard deviation
at t = 0.15 and with

N = 200,

�x = 0.02,

�t = 0.01

in figure 6. We see that the non-atomicity is propagating out of the shock to the left.
In section 7 of [14], LaL explicitly computed some numerical values of the mean

and variance of the VDL at t = 1 with Riemann initial data

ustep

0 (x) =

⇢
�1 if x < 0,
0 if x � 0.

(21)

This is clearly not a function for which the LaL requirements are satisfied. In order to
nevertheless use the explicit LaL values as a reference to test our simplified method
of McLaughlin and Strain, we instead use a smooth function for which the LaL re-
quirements are satisfied and which approximates the step function (21) in a reasonably
large domain. More precisely, we choose some l > 0 and construct smooth one-bump
cut-o↵-functions u�0(x) such that

||ustep

0 � u�0||
L

1(�l,1) ! 0, � ! 0.

We set

N = 100,

�x = 0.02,

�t = 0.01

and show the resulting mean and standard deviation together with the LaL explicit
values and the approximating initial functions corresponding to l = 6 and l = 9 in
figure 7. On the right hand side of the plots, the LaL values and our computed
solutions coincide very well. On the left hand side, we can observe the truncation
error that arises because we cut o↵ the Riemann initial data at x = �l. Obviously,
this truncation error is worse for l = 6 then it is for l = 9.
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Figure 5: Minimizing function  

⇤ as computed with the simplified method of
McLaughlin and Strain.
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2 of the VDL, computed with
the simplified method of McLaughlin and Strain.
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Figure 7: Mean and standard deviation of the VDL with Riemann initial func-
tion (21), computed with the simplified method of McLaughlin and Strain and
di↵erent cut-o↵-functions and compared to the explicit values of LaL ([14], sec-
tion 7).
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3.2.3 Stability of the VDL w.r.t. Perturbation of Initial Data

There is no mathematical proof of whether the VDL is stable with respect to small
perturbation around atomic initial data. In this subsection, we present numerical
indication that this is indeed the case. We use the same initial function u0(x) as in
subsection 1.1.2 and perturb it such that the LaL requirements are still satisfied. We
use the following two di↵erent types of perturbations:

u
�,(1)
0 (x) := u0(x) + �u0(2x+ 1) + �u0(2x� 1),

u
�,(2)
0 (x) := u0((1� �)x).

We then apply the simplified method of McLaughlin and Strain to the original and
to the perturbed function using the same setting as in figure 6. In figures 8 and 9,
we plot the L1-errors of the mean and standard deviation against the L1-norms of
the perturbation. We observe that as the perturbation level tends to zero, also the
mean and standard deviation of the perturbed problem are converging to the solution
of the original problem. This indicates that the VDL is stable with respect to small
perturbation around atomic initial data.

3.3 Aside: The KdV Hierarchy of Conservation Laws

It is well-known that the KdV equation (13) possesses infinitely many integrals of
motion, i.e. there are infinitely many distinct polynomials p

n

(u, u
x

, u
xx

, . . . ) of the
KdV solution u and its x-derivatives such that

R
R pn(u, ux

, u
xx

, . . . ) dx is a conserved
quantity. In fact, for every such polynomial p

n

, there is a polynomial q
n

(u, u
x

, u
xx

, . . . )
such that

@
t

p
n

+ @
x

q
n

= 0, n = 0, 1, 2, . . . . (22)

This is sometimes also referred to as the KdV hierarchy of conservation laws. We call
the polynomials p

n

conserved densities and q
n

the corresponding fluxes. We will need
these KdV conservation laws in order to precisely discribe DiPerna’s characterization
of the VDL in the following section 3.4.

3.3.1 Summary of Miura et al

The following is a summary of the work of Miura et al done in [16]. It is a formal ar-
gument on how to construct infinitely many integrals of motion for the KdV equation.

Together with the KdV equation (13), we shall also consider the equation

v
t

� 6v2v
x

+ "2v
xxx

= 0. (23)

The connection between (23) and (13) is the following remarkable non-linear transfor-
mation: If v satisfies (23), then

u := v2 ± "v
x

(24)

satisfies (13). Indeed, a direct calculation shows that

u
t

� 6uu
x

+ "2u
xxx

= (2v ± "@
x

)(v
t

� 6v2v
x

+ "v
xxx

).

For a generalization of this connection between (13) and (23), we now introduce
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Figure 8: Stability check with simplified method of McLaughlin and Strain, first
type of perturbation: Error plot for the mean and standard deviation.
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the following transformation:

t0 = t

x0 = x+
6
⇠2

t

u(x, t) = u0(x0, t0) +
1
⇠2

v(x, t) =
⇠

2
v0(x0, t0) +

1
⇠
.

Then, equations (13) and (23) transform into

u0
t

0 � 6u0u0
x

0 + "2u0
x

0
x

0
x

0 = 0 (25)

and

v0
t

0 � 3⇠2

2
v02v0

x

0 � 6v0v0
x

0 + "2v0
x

0
x

0
x

0 = 0.

) v0
t

0 +

✓
�⇠

2

2
v03 � 3v02 + "2v0

x

0
x

0

◆

x

0
= 0. (26)

It is important that the KdV equation (13) resp. (25) is invariant under this transfor-
mation. Furthermore, the transformation (24) becomes

u0 = v0 ± ⇠ "

2
v0
x

0 +
⇠2

4
v02. (27)

Having done these preparations, we can now present the formal argument on how
to construct infinitely many integrals of motion. By (26),

R
R v

0 dx0 is a conserved
quantity. We now consider ⇠ to be a small perturbation parameter. Thus, v0 is a
perturbation of u0, see (27). Consequently, we formally express v0 as a sum

v0 =
1X

n=0

p
n

⇠n (28)

with p0 = u0. The crucial point is that equation (27) determines the coe�cients
p
n

, n = 1, 2, 3, . . . as polynomials of u0 and its x0-derivatives. By the independence of
the terms p

n

⇠n, each p
n

is a conserved quantity together with v0.

3.3.2 The Recursion Formula

From now on, we drop the primes for the sake of simplicity. This is no problem because
the KdV equation (13) is invariant under the transformation that was carried out in
the previous subsection.

Inserting the sum (28) into the transformation (27) and taking the + in (27), we
get

u =
1X

n=0

p
n

⇠n +
"⇠

2

1X

n=0

@
x

p
n

⇠n +
⇠2

4

 1X

n=0

p
n

⇠n
!2

.

Comparing coe�cients yields the recursion formula

p0 = u

p
n

= � "

2
@
x

p
n�1 �

1
4

X

i+j=n�2

p
i

p
j

, n = 1, 2, 3, . . . (29)
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This gives for the first four polynomials:

p1 = � "

2
u
x

p2 =
"2

4
u
xx

� 1
4
u2

p3 = � "3

8
u
xxx

+
"

2
uu

x

p4 =
"4

16
u
xxxx

� 5 "2

16
u2
x

� 3 "2

8
uu

xx

+
1
8
u3

. . .

We can see that p1 and p3 are exact derivatives which trivially are integrals of mo-
tion. In fact, one can always add exact x-derivatives to an integral of motion without
substantially altering it. However, p2 and p4 seem to be genuinely distinct integrals
of motion. This suggests that the distinct conserved densities we are looking for are
only the polynomials p2n, n 2 N0.

To compute the polynomials q
n

corresponding to p
n

, we use the KdV equation (13)
to write @

t

p
n

without t-derivatives. Then we write the result as an exact x-derivative.
For the sake of illustration, we carry out this calculation for q2:

�@
x

q2 = @
t

p2 =
"2

4
u
txx

� 1
2
uu

t

=
"2

4

�
6uu

x

� "2u
xxx

�
xx

� 1
2
u(6uu

x

� "2u
xxx

)

=
"2

4

�
6uu

x

� "2u
xxx

�
xx

� (u3)
x

+
"2

2
uu

xxx

=
"2

4

�
6uu

x

� "2u
xxx

�
xx

� (u3)
x

+
"2

2
(uu

xx

)
x

� "2

4
(u2

x

)
x

) q2 = � "2

4
(6uu

x

� "2u
xxx

)
x

+ u3 � "2

2
uu

xx

+
"2

4
u2
x

.

3.3.3 The Rank

In the following, we are going to modify the KdV conservation laws (22) by splitting
o↵ exact x-derivatives from p

n

and adding them to q
n

. Actually, we never worry
about q

n

because we can always reconstruct it from p
n

as explained in the previous
subsection. We already mentioned that p

n

remains an integral of motion after adding
or subtracting an exact x-derivative to it. The goal of this operation is to decrease the
order of derivatives appearing in p

n

and q
n

to a minimum.
We define the rank of a term @i1

x

u · · · @i

m

x

u as

rank[@i1
x

u · · · @i

m

x

u] :=
mX

l=1

1 +
i
l

2
. (30)

Note that x-di↵erentiation increases the rank by 1
2 , and the rank of a product is the

sum of the ranks of the factors.
The following Lemma is a first statement about the ranks of the polynomials p

n

.
In particular, it states that the rank of each polynomial p

n

is indeed well-defined:

Lemma 3.3.1. Each term of p
n

as defined by the recursion (29) has rank n

2 + 1.

Proof. By induction: The case n = 0 is clear. For the induction step n � 1 ! n, we
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use the recursion (29) to check that

rank[@
x

p
n�1] = rank[p

n�1] +
1
2
=

n� 1
2

+ 1 +
1
2
=

n

2
+ 1

rank[p
i

p
j

] = rank[p
i

] + rank[p
j

] =
i

2
+ 1 +

j

2
+ 1 =

n

2
+ 1.

The next Lemma states that the polynomials p
n

behave nicely with the regular-
ization parameter ". More precisely, it says that we can view p

n

as polynomials of
u, "u

x

, "2u
xx

, . . . with coe�cients independent of ":

Lemma 3.3.2. Each term of p
n

has the form c "i1+···+i

l@i1
x

u · · · @i

l

x

u with c indepen-
dent of ".

Proof. Follows by induction from the recursion (29).

The next Lemma allows us to split o↵ exact x-derivatives from the conserved
densities p

n

and thus reduce the order of derivatives appearing in them:

Lemma 3.3.3. Each polynomial p
n

, n � 1 can be written as

p
n

= P
n

+ @
x

p̃
n

such that P
n

is a polynomial of u, u
x

, . . . @l

n

x

u, l
n

= dn

2 e � 1.

Proof. We construct P
n

iteratively. First, set P
n

= p
n

and p̃
n

= 0. Now let
@i1
x

u · · · @i

l

x

u be a term of P
n

and assume that i1 � · · · � i
l

. If m = 1, then P
n

already is an exact derivative and we are done. Assume therefore that m � 2 and
suppose that i1 > bn

2 c. Since the rank of the considered term must be n

2 + 1 (see
Lemma 3.3.1), we conclude that

i1
2

+
i2
2

+ 2  n

2
+ 1

) i1 + i2  n� 2

) i2  n� 2�
jn
2

k

) i2 
jn
2

k
� 1 < i1 � 1.

Therefore, we can split o↵ an exact derivative

@i1
x

u · · · @i

l

x

u = �@i1�1
x

u(@i2
x

u · · · @i

l

x

u)
x

+ (@i1�1
x

u · · · @i

l

x

u)
x

where the highest derivative appearing in the first term on the right hand side has
order  i1 � 1. Since we assumed i1 > bn

2 c, we can iterate this process to reduce the
order of derivatives appearing in P

n

to bn

2 c. This also proves the Lemma for n being
odd.

For n even, we can assume by the above that i1 = n

2 . We argue as before and find
that

i1 + i2  n� 2

) i2  n

2
� 2,

which allows us to again reduce the order of derivative by one.

We summarize our results in the following
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Theorem 3.3.1. For each n 2 N0, there is a conserved densitiy P
n

which is a poly-
nomial of u, "u

x

, . . . "ln@l

n

x

u,

l
n

=

⇢
0 , n = 0

dn

2 e � 1 , n � 1

with coe�cients independent of ", and a corresponding polynomial flux Q
n

such that
@
t

P
n

+ @
x

Q
n

= 0.

3.4 The DiPerna Characterization

In this section, we will further investigate the KdV hierarchy of conservation laws in
order to reproduce DiPerna’s characterization of the VDL as given in ([4], section 7).

3.4.1 The KdV Conservation Laws Revisited

As already mentioned, the distinct conserved densities for the KdV equation are only
the polynomials P

n

(see Theorem 3.3.1) for n even. We therefore set U
k

:= P2k�2 and
V
k

:= Q2k�2, k � 1. Thus, the distinct KdV conservation laws are

@
t

U
k

+ @
x

V
k

= 0, k = 1, 2, 3, . . . (31)

We take a closer look at the fluxes V
k

which we construct by the conservation
law (31) itself: We di↵erentiate U

k

with respect to t, insert the KdV equation (13)
to get rid of all t-derivatives, and finally write the result as an exact x-derivative.
From Lemma 3.3.1, we know that the rank of U

k

is k. By the KdV equation (13),
di↵erentiation with respect to t increases the rank by 3

2 . We conclude that the rank
of V

k

is k+1. Moreover, by Lemma 3.3.3, we know that for k � 2, U
k

is a polynomial
of u, "u

x

, . . . , "k�2@k�2
x

u. Again by the KdV equation (13), we conclude that for
k � 2, the highest derivative appearing in V

k

is of order k. Finally, note that Lemma
3.3.2 holds also for V

k

, i.e. for k � 2, V
k

is a polynomial of u, "u
x

, . . . , "k@k

x

u with
coe�cients independent of ". These considerations motivate the following definition:

Definition 3.4.1. For each k 2 N�1, we define the k-jet J "
k

to be the k-tuple J "
k

:=
(u, "u

x

, . . . "k�1@k�1
x

u). Note that J "
k

can be viewed as a function R⇥ R�0 ! Rk.

By this definition, U
k

is a polynomial of J "
k�1, and V

k

is a polynomial of J "
k+1 (for

k � 2). From now on, we shall always make the following

Assumption 3.4.1. The k-jet J "
k

is bounded in L1(R⇥ R�0,Rk) uniformly in ".

We intend to modify the conservation law (31) (which so far is a statement involv-
ing the k+1-jet) such that as "! 0, it implies a statement concerning the k-jet. Let
@i1
x

u · · · @i

l

x

u be a term of V
k

and assume i1 � · · · � i
l

and i1 = k. Since the rank
of V

k

is k + 1, we argue as in the proof of Lemma 3.3.3 to conclude that i2  k � 2.
Therefore, we write

@i1
x

u · · · @i

l

x

u = �@i1�1
x

u(@i2
x

u · · · @i

l

x

u)
x

+ (@i1�1
x

u · · · @i

l

x

u)
x

.

Remember that the coe�cient of the considered term has the form c "i1+···+i

l . Since
i2  k� 2, the first term on the right hand side therefore is a polynomial of the k-jet.
Moreover, by Assumption 3.4.1, the second term on the right hand side vanishes in
the sense of distributions as "! 0. We get the following

Lemma 3.4.1. The KdV conservation laws (31) can be written as

@
t

U
k

+ @
x

F
k

+ @2
x

W
k

= 0,

where U
k

and F
k

are polynomials of J "
k�1 resp. J "

k

and where @2
x

W
k

vanishes in the
sense of distributions as "! 0.
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For k = 1, the conservation law of Lemma 3.4.1 is the KdV equation itself. There-
fore, we conclude that U1 = u and F1 = �3u2, or written as polynomials: U1(⇠) = ⇠
and F1(⇠) = �3⇠2. For the sake of illustration, we also present the case k = 2 ex-
plicitly: Up to multiplication with a constant, the conserved density for the 2-jet is

U2 = u

2

2 . The corresponding conservation law can be obtained directly by multiplying
the KdV equation (13) with u:

uu
t

� 6u2u
x

+ "2uu
xxx

= 0

)
✓
u2

2

◆

t

� (2u3)
x

+ ( "2uu
xx

)
x

� "2u
x

u
xx

= 0

)
✓
u2

2

◆

t

� (2u3)
x

+ ( "2uu
x

)
xx

� ( "2u2
x

)
x

�
✓
"2u2

x

2

◆

x

= 0.

We conclude that F2 = �2u3 � 3 "2u2
x

2 and W2 = "2uu
x

, or written as polynomials:

U2(⇠0, ⇠1) =
⇠20
2

F2(⇠0, ⇠1) = �2⇠30 � 3
2
⇠21 .

3.4.2 KdV-Hierarchy-Based Characterization of the VDL

We now turn to DiPerna’s characterization of the VDL which is based on the KdV
hierarchy of conservation laws as given in Lemma 3.4.1. By the assumed bound-
edness of the k-jet, see Assumption 3.4.1, we get a weakly converging subsequence
J "
k

⇤! (u0, . . . , uk�1). As was described at the end of subsection 1.2.1, there is
a subsequence such that J "

k

converges narrowly to a k-dimensional Young measure
⌫k = (⌫k0 , . . . ⌫

k

k�1) 2 Y(R⇥ R�0,Rk):
ZZ

R⇥R�0

'(x, t)g(J "
k

) dx dt !
ZZ

R⇥R�0

'(x, t)h⌫k, gi dx dt, "! 0

for all test functions ' and all continuous functions g. We call such a Young measure
⌫k a Young measure associated with an L1-stable k-jet. Note that the first component
⌫k0 is the VDL.

DiPerna’s characterization states a connection between the components of the
Young measure ⌫k using the notion of MV solutions to systems of conservation laws
(see subsection 1.2.2):

Theorem 3.4.1 (DiPerna [4], Theorem 7.2). For each k � 1, the Young measure ⌫k

associated with an L1-stable k-jet of a KdV solution sequence is a MV solution to a
system of k conservation laws of the form

@
t

Uk(u1, . . . uk

) + @
x

F k(u1, . . . uk

) = 0, Uk, F k : Rk ! Rk.

Here, the components of Uk resp. F k are U1, . . . Uk

resp. F1, . . . Fk

as given in Lemma
3.4.1.

Remark 3.4.1. More specifically, this means that the Young measure ⌫k associated
with an L1-stable k-jet satisfies the following property: For all test functions ' and
l = 1, . . . k:

ZZ

R⇥R�0

'
t

(x, t)h⌫k(x,t), Ul

i dx dt+

ZZ

R⇥R�0

'
x

(x, t)h⌫k(x,t), Fl

i dx dt = 0 (32)

where we view the polynomials U
l

, F
l

as functions

U
l

, F
l

: Rk ! R
(u1, . . . uk

) 7! U
l

(u1, . . . , ul

), F
l

(u1, . . . , ul

).
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Proof. Follows immediately from Lemma 3.4.1 and the narrow convergence �
J

"

k

*

⌫k.

Note that this characterization looks similar to the entropy constraints given in
(9). However, it is much weaker since it also includes x-derivatives of the KdV solution
and the polynomials U

k

are not necessarily convex.
We call a k-dimensional measure ⌫k = (⌫k0 , . . . ⌫

k

k�1) which satisfies the DiPerna
characterization a k-jet MV solution and the corresponding equation (32) the k-jet
MV equation. In the following section, we shall prove that any k-dimensional Young
measure associated with our implicit FDS satisfies the k-jet MV equation provided
we choose the rate at which " tends to zero as �x ! 0 properly. This will provide
indication that the computed measure indeed approximates the VDL.

4 Implicit Finite Di↵erence Scheme

We come to the main part of this thesis where we present an implicit finite di↵erence
scheme (FDS) attempting to approximate the vanishing dispersion limit (VDL). This
approach is motivated by [5] where finite volume schemes together with perturbation
of the initial data are used to approximate EMV solutions of systems of conservation
laws. However, such an EMV is the result of vanishing viscosity rather than vanishing
dispersion. Also, dispersive regularization doesn’t o↵er infinitely many entropy in-
equalities. Moreover, we have seen that in the special case of a one-dimensional scalar
conservation law, the EMV solution is atomic whereas we presume that the VDL is
non-atomic. There is therefore no theoretical background to fall back on which could
indicate that a FDS will provide the correct VDL. Thus, we aim to present both
theoretical and numerical indication that our FDS does indeed approximate the VDL.

After introducing the scheme in section 4.1, we shall prove in section 4.2 that under
the assumption of discrete L1-boundedness, the associated limit measure is a MV
solution. Moreover, we will prove in section 4.4 that the limit measure associated with
a uniformly bounded discrete k-jet satisfies DiPerna’s characterization as described in
Theorem 3.4.1, i.e. it satisfies the k-jet MV equation (32). For the sake of illustration,
we shall first prove the case k = 2 in section 4.3 before moving on to the general
case. However, for each k, this theoretical result depends on the rate at which the
dispersion coe�cient " tends to zero as �x ! 0. To satisfy the whole infinite KdV
hierarchy of conservation laws, this rate would have to be slower than any polynomial
rate " = �xr.

It is no accident that we call our scheme a finite di↵erence scheme instead of finite
volume scheme. Indeed, it was originally designed as an approximation for the KdV
equation. With the methods presented in [10] and [11], it can be proven to converge to
the classical di↵erentiable KdV solution (for fixed "). Consequently, our scheme was
designed to approximate a classical solution in contrast to a weak or even MV solution.
We shall see that we indeed rely on how accurately we can reproduce the oscillations
of the KdV solution. This is why we shall furthermore present a generalization of the
implicit finite di↵erence equation in section 4.6 which allows for a better approximation
of the classical KdV solution while still satisfying the DiPerna characterization. We
shall use this generalized scheme to finally perform numerical experiments in section
4.7 and compare the results with the simplified method of McLaughlin and Strain
which was presented in section 3.2.

4.1 The Scheme

The implicit finite di↵erence scheme (FDS) which we present in this section was first
developed in [8] as an approximation for the KdV equation. For fixed ", it was proven
to converge to the classical KdV solution in [10].
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From now on, we consider the space-periodic case, i.e. x 2 R/Z.5 After defining
the finite di↵erence equation, we will describe how to obtain an approximative MV
solution from it. Finally, we shall discuss the di↵usiveness of the scheme.

4.1.1 Preparations Concerning the Discrete Environment

We discretize space by a �x-equispaced grid (x
j

)
j2Z/NZ of N gridpoints where x

j

=
j�x and �x = 1

N

. Also, we discretize time into mesh points (t
n

)
n2N0 where t

n

= n�t.
The mesh sizes �x and �t are linked linearly via the CFL-number � = �t

�x

.
For a discrete function

Z/NZ⇥ N0 ! R
(j, n) 7! v

j,n

,

we define the following operators:

Ev
j,n

:=
v
j�1,n + v

j,n

+ v
j+1,n

3

D+vj,n :=
v
j+1,n � v

j,n

�x

D�vj,n :=
v
j,n

� v
j�1,n

�x

D0vj,n :=
v
j+1,n � v

j�1,n

2�x

Dt

�vj,n :=
v
j,n

� v
j,n�1

�t

. . . (33)

Note that the first four (spatial) operators can be viewed as N ⇥N -matrices. Further-
more, we define the discrete spatial inner product

(v
j

, w
j

)�x

:=
NX

j=1

v
j

w
j

�x

which induces the norm || · ||�x

. From now on, we shall abbreviate
P

N

j=1 with
P

j

for
the sake of simplicity.

We shall need the following Sobolev-type inequalities:

Lemma 4.1.1. 9C > 0 s.t. 8�x, 8(v
j

)
j

, 8 "0 > 0:

||D+vj ||2�x

 C

"0
||v

j

||2�x

+ "02||D3
+vj ||2�x

(34)

||D2
+vj ||2�x

 C

"02
||v

j

||2�x

+ "0||D3
+vj ||2�x

. (35)

Proof. First, by simple integration by parts and Young’s inequality with ", we find
that

Z
'2

x

dx  C

"0

Z
'2 dx+ "02

Z
'2

xxx

dx
Z
'2

xx

dx  C

"02

Z
'2 dx+ "0

Z
'2

xxx

dx

for any smooth periodic function '. Then, by a result that was proven by Sjöberg in
([17], Lemma 2.2), these inequalities can be transferred to the discrete case.

5For the initial function u0(x) we considered so far (see subsection 1.1.2), this is no substan-
tial restriction since u0(x) = 0 for |x| big enough. We therefore assume that also u(x, t) = 0
for |x| big enough and t small enough.
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Moreover, it can easily be checked that the following discrete Leibniz rules hold:

D+(vjwj

) = D+vjwj

+ v
j+1D+wj

,

D�(vjwj

) = D�vjwj

+ v
j�1D�wj

,

D0(vjwj

) = D0vjwj�1 + v
j+1D0wj

,

Dt

�(vnwn

) = Dt

�vnwn

+ v
n�1D

t

�wn

.

Also, discrete integration by parts can be done as follows:

(D+vj , wj

)�x

= �(v
j

, D�wj

)�x

(D0vj , wj

)�x

= �(v
j

, D0wj

)�x

.

4.1.2 The Finite Di↵erence Equation

We define the discrete function u
j,n

which is supposed to approximate the KdV solution
u(x

j

, t
n

) of (13) to be the solution of the discrete implicit finite di↵erence equation

Dt

�uj,n

� 6Eu
j,n

D0uj,n

+ "2D2
+D�uj,n

= 0, j 2 Z/NZ, n 2 N�1,

u
j,0 = u0(xj

), j 2 Z/NZ. (36)

The backward operator Dt

� makes this scheme implicit. For each time step, it is
therefore necessary to solve a non-linear equation. This is done by the following fixed-
point iteration:

u
j,n,(m+1) = u

j,n�1 + 6�tEu
j,n,(m)D0u

j,n,(m) � "2�tD2
+D�u

j,n,(m+1), m � 0,

u
j,n,(0) = u

j,n�1. (37)

In this iteration, it is still necessary to solve a linear system for each iteration step.
Even though this is computationally very costly, it is necessary in order to prove
convergence of the iteration for fixed ", see [11]. It is far from being obvious whether
the iteration converges if " is decreasing at a rate " = �xr. Nevertheless, we don’t
investigate this issue further at this point since the convergence of the iteration can
always be checked experimentally.

We furthermore have to specify the behavior of " as �x ! 0. We simply set

" = c�xr, r > 0 (38)

where c is a constant. The influence of the rate r on the solution will be discussed
extensively in the following subsections.

We close this subsection by giving some motivation for each term in the finite
di↵erence equation (36). The discrete time derivative is chosen to be a backward
operator because implicity is well-known to provide stability. In our case, it will be
needed to derive weak BV properties. The non-linear term is discretized such that it
satisfies the continuous property (vv

x

, v)
L

2(R/Z) = 0 discretely. Indeed, we find that

(Ev
j

D0vj , vj)�x

= 0.

Furthermore, the discrete dispersion term is chosen such that a property similar to
(u, u

xxx

)
L

2(R/Z) = 0 holds discretely. Indeed, using discrete integration by parts and
the Cauchy-Schwartz inequality, we find that

(D2
+D�vj , vj)�x

= (D�vj , D
2
�vj)�x

=
(D�vj , D�vj)�x

� (D�vj , D�vj�1)�x

�x
� 0.

This inequality will allow us to always neglect the third order term when deriving
weak BV estimates. However, the symmetric operator D3

0 would in fact satisfy an
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even better property, namely (D3
0vj , vj)�x

= 0. As a result, it produces a better
approximation of the KdV solution which is the reason why it was preferred above
the asymmetric operator D2

+D� in [11]. Nevertheless, we shall stick to D2
+D� for the

moment because it allows us to apply the discrete Sobolev-type inequalities of Lemma
4.1.1.

4.1.3 Construction of the Approximative Young Measure

After having defined the discrete finite di↵erence equation (36) to obtain the discrete
function (j, n) 7! u

j,n

, we turn to producing an approximative Young measure. We
shall present two approaches: the straightforward weak limit approach and the pertur-
bation approach of [5]. In order to do that, we define the piecewise constant function

u�x(x, t) = u
j,n

, (x, t) 2 [x
j

, x
j+1)⇥ [t

n

, t
n+1).

Weak Limit Approach: The most straightforward approach to compute the
Young measure associated with a numerical scheme is to compute the weak limits
of u�x and its functionals g(u�x) as �x ! 0 and determine the Young measure
which characterizes these weak limits, see subsection 1.2.1. In practice, this is done
by choosing a sequence �x

m

! 0 and defining the approximative Young measure as

⌫
(�x

m

)
m

,M

(x,t) :=
1
M

MX

m=1

�
u

�x

m (x,t).

However, one has to go to very small mesh sizes �x
m

in order to obtain enough
samples. This is computationally very costly which is why we next introduce the

Perturbation Approach: (Compare to section 2.2.) Following [5], we perturb
the initial data with a random field u0(x;!) over a probability space (⌦,F , P ). The
FDS will then produce the random field u�x(x, t;!) whose law ⌫�x is taken to be
the approximative Young measure. Since it is not possible to compute u�x(x, t;!) for
each ! 2 ⌦, we apply a Monte-Carlo method: We choose M independent, identically
distributed drawings of u0(x;!) and denote them by um

0 (x),m = 1, . . .M . The FDS
will then produce M functions u�x,m(x, t) and the approximative Young measure is
defined to be

⌫�x,M

(x,t) :=
1
M

MX

m=1

�
u

�x,m(x,t).

It remains to specify how the random field u0(x;!) is constructed. We postpone this
issue to section 4.7 where we shall explicitly do numerical experiments.

The perturbation approach is numerically more e�cient then the weak limit ap-
proach since the numerical complexity grows linearly with the number of samples M .
The rate at which the numerical complexity grows with decreasing �x is much worse.

Remembering the DiPerna characterization (Theorem 3.4.1), we actually not only
want to compute the one-dimensional VDL but also the k-dimensional k-jet MV solu-
tion ⌫k = (⌫k0 , . . . ⌫

k

k�1). We define the discrete k-jet as

Jj,n

k

:= (u
j,n

, "D+uj,n

, . . . "k�1Dk�1
+ u

j,n

)

which yields the function J�x

k

:= (u�x, . . . "k�1Dk�1
+ u�x). Then, we repeat the above

procedures for each component. This yields the approximative k-jet MV solutions

⌫
(�x

m

)
m

,M,k

(x,t) = (⌫(�x

m

)
m

,M,k

0,(x,t) , . . . ⌫
(�x

m

)
m

,M,k

k�1,(x,t) )
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resp.

⌫�x,M,k

(x,t) = (⌫�x,M,k

0,(x,t) , . . . ⌫�x,M,k

k�1,(x,t)).

Even though these are the explicit methods wherewith we will compute the ap-
proximative Young measures, we shall for the sake of theoretical proofs consider the
narrow limits

�
u

�x(·,·) * ⌫

resp. for the k-jet

�
J

�x

k

(·,·) * ⌫k = (⌫k0 , . . . ⌫
k

k�1).

Up to a subsequence, the existence of these limits is a consequence of assuming u�x

resp. J�x

k

to be bounded in L1 uniformly in �x.

4.1.4 Numerical Di↵usion

The fact that the FDS is implicit adds a considerable amount of di↵usion to it. In-
deed, we shall exploit this fact when deriving weak BV estimates below. In addition,
the asymmetric discretization of the third order term is another source of di↵usion.
In this section, we take a closer look at this third order finite di↵erence term and
approximate it using Taylor sequences. This will indicate that our finite di↵erence
equation approximates the solution of Burgers’ equation with dispersive and di↵usive
regularization rather than just dispersive regularization.

In a canonical way, the discrete operators D+, D� and D0 can also be applied to
functions v : R ! R, e.g. D+v(x) =

v(x+�x)�v(x)
�x

. We then find that

D2
+D�v(x) =

v(x+ 2�x)� 3v(x+�x) + 3v(x)� v(x��x)
�x3

.

For each term of the enumerator, we use a Taylor sequence to approximate it around
x:

v(x+ 2�x) = v(x) + 2�xv0(x) +
4�x2

2
v00(x)

+
8�x3

6
v000(x) +

16�x4

24
v0000(x) +O(�x5),

v(x+�x) = v(x) +�xv0(x) +
�x2

2
v00(x)

+
�x3

6
v000(x) +

�x4

24
v0000(x) +O(�x5),

v(x��x) = v(x)��xv0(x) +
�x2

2
v00(x)

� �x3

6
v000(x) +

�x4

24
v0000(x) +O(�x5).

This yields

D2
+D�v(x) = v000(x) +

�x

2
v0000(x) +O(�x2)

which is a mixture of dispersion v000(x) and di↵usion �x

2 v0000(x). This indicates that
instead of approximating the KdV solution, we are rather approximating the modified
equation

@
t

u� 6uu
x

+ "2u
xxx

+
"2�x

2
u
xxxx

= 0.
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Already at this stage we see that the smaller we choose the rate r in (38), the smaller
the di↵usion becomes compared to dispersion. More precisely, the smaller r is, the

faster the di↵usion coe�cient �x

1+2r

2 goes to zero compared to the dispersion coe�-
cient �x2r. This already indicates that the smaller we choose r, the closer we get to
the VDL.

The existence of numerical di↵usion in the third order term is a consequence of
its asymmetry. To avoid this asymmetry, we would have to bring the symmetric
operator D0 into play. However, this would make the application of the Sobolev-type
inequalities of Lemma 4.1.1 impossible. Furthermore, it is a well-known principle that
di↵usion adds stability to the numerical equation.

4.2 MV Solution, or: 1-jet MV solution

We assume that the numerical solution u�x(x, t) is bounded in L1(R/Z ⇥ (0, T ))
uniformly in �x. Here, T = n

end

�t is a fixed end time. From this assumed uniform
boundedness, we get a subsequence �x

m

! 0 such that u�x

m converges narrowly to
a Young measure ⌫:

�
u

�x

m (·,·) * ⌫, m ! 1.

We call ⌫ the Young measure associated with the implicit FDS. We shall prove that ⌫ is
a MV solution of Burgers’ equation u

t

� (3u2)
x

= 0 if �x = o( ") or, more concretely,
" = �xr, r < 1. Note that being a MV solution is equivalent to satisfying the 1-jet
MV equation.

4.2.1 Weak BV for the 1-jet MV equation

As it was the case in subsection 2.2, we will need some weak BV property. In particular,
we shall need

n

endX

n=0

||u
j+1,n � u

j,n

||2�x

�t ! 0, �x ! 0

(we shall abbreviate
P

n

end

n=0 with
P

n

). This is achieved using the properties of each
term of the finite di↵erence equation (36) as explained at the end of subsection 4.1.2.

We multiply the finite di↵erence equation (36) with u
j,n

and sum over j. Using
the properties (Ev

j

D0vj , vj)�x

= 0 and (D2
+D�vj , vj)�x

� 0 we conclude that

(u
j,n

, u
j,n

� u
j,n�1)�x

 0 (39)

) ||u
j,n

||2�x

 (u
j,n

, u
j,n�1)�x

 ||u
j,n

||�x

||u
j,n�1||�x

 1
2
||u

j,n

||2�x

+
1
2
||u

j,n�1||2�x

) ||u
j,n

||2�x

 ||u
j,n�1||2�x

. (40)

Assuming L1-boundedness, the last estimate (40) isn’t really needed. Nevertheless,
it shows one of the nice properties of the scheme. Turning again to (39), we apply the
basic equality a(a � b) = 1

2a
2 � 1

2 b
2 + 1

2 (a � b)2 (it is here that we make use of the
implicity) to obtain

||u
j,n

||2�x

� ||u
j,n�1||2�x

+ ||u
j,n

� u
j,n�1||2�x

 0. (41)
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Summing over n and exploiting the arising telescoping sum for the first two terms
yields

X

n

||u
j,n

� u
j,n�1||2�x

 ||u
j,0||2�x

� ||u
j,n

end

||2�x

 ||u0||2
L

1(R)

)
X

n

||Dt

�uj,n

||2�x

�t 
||u0||2

L

1(R)
�t

. (42)

Here, the finite di↵erence equation (36) comes into play again. From it, we directly
estimate its third order derivative term as
X

n

|| "2D2
+D�uj,n

||2�x

�t  2
X

n

||6Eu
j,n

D0uj,n

||2�x

�t+ 2
X

n

||Dt

�uj,n

||2�x

�t. (43)

The second term on the right hand side is bounded by (42). For the first term, we
use the assumed L1-boundedness of u�x and Lemma 4.1.1, (34) together with (40)
to estimate

2
X

n

||6Eu
j,n

D0uj,n

||2�x

�t  72||u�x||2
L

1

 
CT

"0
||u0||2

L

1 + "02
X

n

||D3
+uj,n

||2�x

�t

!
.

Inserting this into (43) and setting "0 = 1
12||u�x||

L

1
"2, we conclude that

X

n

|| "2D3
+uj,n

||2�x

�t 
4||u0||2

L

1(R)
�t

+
1728||u�x||3

L

1 ||u0||2
L

1CT

"2
.

Applying once more Lemma 4.1.1, (34) together with (40) yields

X

n

||D+uj,n

||2�x

�t  CT

"0
||u0||2

L

1

+ "02
 
4||u0||2

L

1(R)
�t "4

+
1728||u�x||3

L

1 ||u0||2
L

1CT

"6

!

from which we conclude that there is a constant C0 such that

X

n

||D+uj,n

||2�x

�t  C0
✓

1
"0

+
"02

�x "4
+
"02

"6

◆

)
X

n

||u
j+1,n � u

j,n

||2�x

�t  C0
✓
�x2

"0
+
"02�x

"4
+
"02�x2

"6

◆
. (44)

Setting "0 = �xs and remembering that " = �xr, the right hand side can be written
as

C0 ��x2�s +�x2s+1�4r +�x2s+2�6r� .

Since s is arbitrary, we can make this vanish as �x ! 0 if r < 1. So we have proven
the following

Lemma 4.2.1 (Weak BV for 1-jet). Let u
j,n

be the discrete function computed by the
scheme (36). Assuming it to be uniformly bounded in L1 and fixing the rate " = �xr

at some r < 1, we have the following weak BV property:

NX

j=1

n

endX

n=0

(u
j+1,n � u

j,n

)2�x�t ! 0, �x ! 0.
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4.2.2 Proof of 1-jet MV equation

We are now ready to prove the 1-jet MV equation for the limit measure ⌫ associated
with the implicit FDS (in other words, we prove that the limit measure ⌫ is a MV
solution of Burgers’ equation u

t

� (3u2)
x

= 0):

Theorem 4.2.1 (1-jet MV equation). Let ⌫ be the one-dimensional Young measure
associated with the implicit FDS, i.e. �

u

�x(·,·) * ⌫,�x ! 0. Assuming u�x to be
uniformly bounded in L1(R/Z⇥ (0, T )) and fixing the rate " = �xr at some r < 1, ⌫
will be a MV solution of Burgers’ equation u

t

� (3u2)
x

= 0. In other words, ⌫ satisfies
the 1-jet MV equation

ZZ

R/Z⇥(0,T )

'
t

(x, t)h⌫(x,t), ⇠i dx dt�
ZZ

R/Z⇥(0,T )

'
x

(x, t)h⌫(x,t), 3⇠2i dx dt = 0

for all test functions ' 2 C1
c

(R/Z⇥ (0, T )), and therefore is a 1-jet MV solution.

Proof. Let ' 2 C1
c

(R/Z ⇥ (0, T )) be a test function and define its local averages
'

j,n

:= 1
�x�t

R
x

j+1

x

j

R
t

n+1

t

n

'(x, t) dx dt. We then multiply the scheme (36) with '
j,n

and sum over j, n:
X

j,n

Dt

�uj,n

'
j,n

�x�t�
X

j,n

6Eu
j,n

D0uj,n

'
j,n

�x�t

+ "2
X

j,n

D2
+D�uj,n

'
j,n

�x�t = 0. (45)

It can easily be verified that 6Ev
j

D0vj = D+(v
2
j�1 + v2

j

+ v
j

v
j�1). Therefore, we can

do discrete integration by parts for each term of (45) to obtain
X

j,n

u
j,n

Dt

+'j,n

�x�t�
X

j,n

(u2
j�1,n + u2

j,n

+ u
j,n

u
j�1,n)D�'j,n

�x�t

+ "2
X

j,n

u
j,n

D+D
2
�'j,n

�x�t = 0. (46)

It is for the second term that we need the weak BV property of Lemma 4.2.1: We
write

X

j,n

(u2
j�1,n + u2

j,n

+ u
j,n

u
j�1,n)D�'j,n

�x�t

=
X

j,n

3u2
j,n

D�'j,n

�x�t+
X

j,n

(u2
j�1,n + u

j,n

u
j�1,n � 2u2

j,n

)D�'j,n

�x�t

where the last term vanishes as �x ! 0 by the assumed L1-boundedness and the
weak BV property of Lemma 4.2.1. We can now write (46) as

X

j,n

u
j,n

Dt

+'j,n

�x�t�
X

j,n

3u2
j,n

D�'j,n

�x�t

+ "2
X

j,n

u
j,n

D+D
2
�'j,n

�x�t = o(1)

Remembering the definition of '
j,n

and u�x, this can be written as an integral
equation:

ZZ

R/Z⇥(0,T )

u�x(x, t)Dt

+'(x, t) dx dt

�
ZZ

R/Z⇥(0,T )

3(u�x(x, t))2D�'(x, t) dx dt

+ "2
ZZ

R/Z⇥(0,T )

u�x(x, t)D+D
2
�'(x, t) dx dt = o(1).
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The last term on the left hand side vanishes as "! 0. The 1-jet MV equation follows
now immediately from the narrow convergence �

u

�x(·,·) * ⌫,�x ! 0.

In the following sections, we shall similarly prove the 2-jet MV equation and the
general k-jet MV equation for higher-dimensional Young measures associated with the
implicit FDS. The proofs are going to be more technical but still of the same spirit.

4.3 2-jet MV Solution

We assume that the discrete 2-jet J�x

2 (x, t) = (u�x(x, t), "D+u
�x(x, t)) is bounded in

L1(R/Z⇥(0, T )) uniformly in �x. We can then extract a subsequence �x
m

! 0 such
that J�x

m

2 converges narrowly to a two-dimensional Young measure ⌫2 = (⌫20 , ⌫
2
1 ):

�
J

�x

m

2 (·,·) * ⌫2, m ! 1.

We call ⌫2 the two-dimensional Young measure associated with the implicit FDS. We
shall prove that ⌫2 is a 2-jet MV solution if " = �xr, r < 1

4 .

4.3.1 Auxiliary Lemmas for the 2-jet MV equation

We shall need two more auxiliary Lemmas of which the first was already stated in [11]:

Lemma 4.3.1 ([11], Lemma 3.2).

8(v
j

)
j

, (w
j

)
j

: (D0(vjwj

), w
j

)�x

=
�x

2
(D+vjD0wj

, w
j

)�x

+
1
2
(w

j�1D0vj , wj

)�x

Remark 4.3.1. In fact, Lemma 4.3.1 is the very core of this thesis. A.Sjöberg also
used it in [[17], p.575], and the main steps in the derivation of the essential Lemmas
4.3.2 and 4.4.2 below are based on it.

Proof. Manipulate the right hand side using the definition of D+, the discrete Leibniz
ruleD0(vjwj

) = v
j+1D0wj

+w
j�1D0vj and discrete integration by parts (D0wj

, v
j

w
j

)�x

=
�(w

j

, D0(vjwj

))�x

.

Lemma 4.3.2.

8(v
j

)
j

: (D+(6Ev
j

D0vj), D+vj)�x

= 2(D+vjD0vj , D+vj)�x

+�x(D+vjD0D+vj , D+vj)�x

+ (D�vjD0vj , D+vj)�x

.

Remark 4.3.2. We would like to stress the importance of Lemma 4.3.2: It allows us to
use the assumed boundedness of the discrete 2-jet for the term (D+(6Ev

j

D0vj), D+vj)�x

which will appear when deriving weak BV properties below. Note in particular the �x
in front of the second term on the right hand side.

Proof. First note that 6Ev
j

D0vj = 2v
j

D0vj +2D0(v
2
j

). This and the discrete Leibniz
rule for D+ yield

(D+(6Ev
j

D0vj), D+vj)�x

= 2(D+(vjD0vj), D+vj)�x

+ 2(D+D0(v
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j+1D+D0vj , D+vj)�x

+ 2(D0(D+vjvj), D+vj)�x

+ 2(D0(D+vjvj+1), D+vj)�x

.

Doing discrete integration by parts for D0 in the last term, it cancels with the second
term. The Lemma then follows by applying Lemma 4.3.1 to the third term.
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4.3.2 Weak BV for the 2-jet MV equation

As before, we shall need certain weak BV properties. In particular, for the 2-jet, we
will need
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||D2
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||2�x

�t ! 0, �x ! 0.

Note that in the following, the constant C might change since we abstain from
introducing a new name every time a new bounding constant comes up. We apply D+

to the finite di↵erence equation (36), multiply it with D+uj,n

and sum over j. Using
again the property (D2

+D�vj , vj)�x

� 0 and applying Lemma 4.3.2, we conclude that

1
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(D+uj,n

, D+uj,n

�D+uj,n�1)�x

= 2(D+uj,n
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)�x
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D0uj,n
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)�x

.

By the assumed L1-boundedness of the discrete 2-jet, we can find a constant C
such that the right hand side is bounded by C

"

3 . Applying the identity a(a � b) =
1
2a

2 � 1
2 b

2 + 1
2 (a� b)2 for the left hand side, we get
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� ||D+uj,n�1||2�x
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�D+uj,n�1||2�x

 C�t

"3
.

Summing over n and exploiting the arising telescoping sum for the first two terms
yields
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. (47)

Here, we again bring the finite di↵erence equation (36) (whereto we applied D+)
into play to estimate its fourth order derivative term as
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The second term on the right hand side is bounded by (47). For the first term, we
apply the discrete Leibniz rule for D+ and obtain two terms of which the first contains
two first order derivatives and the second contains a second order derivative. Since we
assume the discrete 2-jet to be bounded, we only have to worry about the second order
derivative. Applying the Sobolev-type inequality (34) of Lemma 4.1.1 to v

j

= D+uj,n

,
we bound it by C

"

0
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||2�x

�t+ "02
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||D4
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�t. Inserting everything
into (48) and choosing "0 ⇠ "2 properly6, this implies
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6i.e. setting "

0 = c "

2 and choosing c properly
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where we can neglect the last term because �t = o( ").
At this point, we apply the Sobolev-type inequality (35) of Lemma 4.1.1 to v

j

=
D+uj,n

and obtain by the above inequality:
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We are now ready to state the following Lemma:

Lemma 4.3.1 (Weak BV for 2-jet). Let Jj,n

2 = (u
j,n

, "D+uj,n

) be the discrete 2-jet
computed by the scheme (36). Assuming it to be uniformly bounded in L1 and fixing
the rate " = �xr at some r < 1

4 , we have the following weak BV properties:

"4
X

n

||D3
+uj,n

||2�x

�t
X

n

||u
j,n

� u
j,n�1||2�x

�t ! 0, �x ! 0,

"2
X

n

||D+uj+1,n �D+uj,n

||2�x

�t ! 0, �x ! 0,

"2
X

n

||D2
+uj+1,n �D2

+uj,n

||2�x

�t ! 0, �x ! 0.

Proof. By the Sobolev-type inequality (35) (setting "0 = 1) of Lemma 4.1.1, the
quantity

P
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||2�x

�t satisfies the same bound as in (49). We therefore have
the two bounds
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Also, by (49) and (42), we have
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The Lemma follows if these three bounds vanish as �x ! 0. Since r < 1
4 < 1

2 and
therefore �x = o( "2), the first two bounds are dominated by the third one. Setting
"0 = �xs and " = �xr, we write this last bound as

C(�x1+2r�2s +�xs�3r).

Since s is arbitrary, we can make this vanish as �x ! 0 if r < 1
4 .

4.3.3 Proof of 2-jet MV equation

We are now ready to prove the 2-jet MV equation for the 2-dimensional limit measure
⌫2 = (⌫20 , ⌫

2
1 ) associated with the implicit FDS:

Theorem 4.3.1 (2-jet MV equation). Let ⌫2 = (⌫20 , ⌫
2
1 ) be the two-dimensional Young

measure associated with the implicit FDS, i.e. �
J

�x

2 (·,·) * ⌫2,�x ! 0. Assuming J�x

2

to be uniformly bounded in L1(R/Z ⇥ (0, T )) and fixing the rate " = �xr at some
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r < 1
4 , ⌫

2 will be a 2-jet MV solution. In other words, ⌫2 satisfies the 2-jet MV
equation7
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'
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(x, t)h⌫2(x,t), 2⇠30 + 3⇠21/2i dx dt = 0

for all test functions ' 2 C1
c

(R/Z⇥ (0, T )), and therefore is a 2-jet MV solution.

For the following proofs, we introduce the following terminology: We say that a
discrete function v

j,n

vanishes in the sense of distributions (i.t.s.o.d.) if for all test
functions ' 2 C1

c

(R/Z⇥ (0, T )):
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v
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'
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R
x
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x

j

R
t

n+1

t

n

'(x, t) dx dt are the local averages.

Proof. The strategy of the proof is to do the same manipulations as at the end of
subsection 3.4.1 discretely. The di�culties arise whenever having to apply the Leibniz
rule in the discrete setting. The arising errors must be shown to vanish i.t.s.o.d. which
is why we need the weak BV properties. Since we don’t want to worry about this issue
when dealing with the time derivative term, we make sure that we can apply the
discrete Leibniz rule for the discrete time derivative exactly.

We multiply the finite di↵erence equation (36) with
u

j,n�1+u

j,n

2 and directly apply
the discrete Leibniz rule to the first term:
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Next, we want to get rid of the u
j,n�1’s in the second and third term. It is mainly for

this step that we need the weak BV properties. We write
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The error R
(2)
j,n

vanish i.t.s.o.d. by the first weak BV property of Lemma 4.3.1.

The same is true for R(1)
j,n

because of the boundedness of the 2-jet and inequality (42).
We turn to the second term of equation (50). First, we write it as an exact discrete

derivative by noting that 6Ev
j

D0vjvj = D+(v
2
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v
j�1+v
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v2
j�1). To get rid of all j-index

shifts, we write
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vanishes i.t.s.o.d. by similar arguments as above.

7See the end of subsection 3.4.1 for the derivation of U2, F2.
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Finally, we approach the third order derivative term of equation 50. We do the
following manipulations applying the discrete Leibniz rule several times:

D2
+D�vjvj = D�(D

2
+vjvj+1)�D2

+vjD+vj
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Therefore, we conclude that
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where the last two terms vanish i.t.s.o.d.: For the third term, this follows quickly by
the boundedness of the 2-jet. For the fourth term, we apply discrete integration by
parts once to get rid of the second derivative term and apply the last two weak BV
properties of Lemma 4.3.1.

Taking everything together, we have derived the following discrete 2-jet equation:
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where R
j,n

vanishes i.t.s.o.d. Multiplying (51) with '
j,n

, summing over j, n and doing
discrete integration by parts, we get the following integral equation:
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The 2-jet MV equation follows now immediately from the narrow convergence �
J

�x

2 (·,·) *

⌫2,�x ! 0.

4.4 Generalization: k-jet MV Solutions

In this section, we generalize the results of the previous sections about the 1- resp.
2-jet to general k-jets: We assume that the discrete k-jet

J�x

k

(x, t) = (u�x(x, t), . . . "k�1Dk�1
+ u�x(x, t))

is bounded in L1(R/Z⇥ (0, T )) uniformly in �x. We can then extract a subsequence
�x
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! 0 such that J�x

k

converges narrowly to a k-dimensional Young measure ⌫k =
(⌫k0 , . . . ⌫

k

k�1):

�
J

�x

m

k

(·,·) * ⌫k, m ! 1.

We call ⌫k the k-dimensional Young measure associated with the implicit FDS. We
shall prove that ⌫k is a k-jet MV solution if " = �xr and r small enough.
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4.4.1 Auxiliary Lemmas for the k-jet MV equation

To prove the weak BV properties that are necessary for the general case, we also need
general Lemmas: The first is a generalization of the discrete Leibniz rule and the
second is a generalization of Lemma 4.3.2.

Lemma 4.4.1 (Discrete Leibniz). Let m � 0. Then:
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Proof. By induction: For m = 0, the Lemma is trivial. For the induction step m !
m+ 1, we compute
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Lemma 4.4.2. Let k � 1. Assume uniform L1-boundedness of the discrete k-jet
Jj,n

k

. Then, 9C > 0 s.t. 8�x, 8n:
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Proof. For the case k = 1, we have already seen that
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Now let k � 2. Since 3Ev
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D0vj and by the above Leibniz-
Lemma 4.4.1, we have
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Doing discrete integration by parts for D0, we see that the second and fourth term
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cancel. Therefore, writing the first summand of the first sum separately, we get

3(Dk�1
+ (Eu

j,n

D0uj,n

), Dk�1
+ u

j,n

)�x

= (D0(D
k�1
+ u

j,n

u
j,n

), Dk�1
+ u

j,n

)�x

+
k�2X

l=1

✓
k � 1

l

◆⇣
D0(D

k�1�l

+ u
j+l,n

Dl

+uj,n

), Dk�1
+ u

j,n

⌘

�x

+
k�2X

l=0

✓
k � 1

l

◆⇣
Dk�1�l

+ u
j+l,n

D0D
l

+uj,n

, Dk�1
+ u

j,n

⌘

�x

.

Note that all derivatives appearing in the two sums are of order  k � 1. Therefore,
by the assumed L1-boundedness of the discrete k-jet, they can be bounded by C

"

2k�1 .
To treat the first term on the right hand side, we use (and here is the point) Lemma
4.3.1 which yields in this case
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which can also be bounded by C

"

2k�1 due to the �x in front of the first term.

4.4.2 Weak BV for the k-jet MV equation

We generalize the weak BV results of Lemma 4.3.1 in the following

Lemma 4.4.1 (Weak BV for k-jet). Let
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= (u
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, . . . "k�1Dk�1
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)

be the discrete k-jet computed by the scheme (36). Assuming it to be uniformly bounded
in L1, we have the following weak BV properties:
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Proof. We shall do essentially the same steps as in subsection 4.3.2 but with higher
derivatives. We apply Dk�1

+ to the finite di↵erence equation (36), multiply with
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and sum over j. Using again the property (D2
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third order term, the bound of Lemma 4.4.2 for the nonlinear term, and the equality
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2 (a� b)2 for the time derivative term, we conclude that
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Summing over n and exploiting the arising telescoping sum for the first two terms
yields
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Here, we again bring the finite di↵erence equation (36) (whereto we applied Dk�1
+ )

into play to estimate its highest order derivative term as
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The second term on the right hand side is bounded by (52). For the first term, we use
the discrete Leibniz rule of Lemma 4.4.1:
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Note that in the first sum, only derivatives of order  k � 1 appear. By the assumed
boundedness of the k-jet, it can therefore be bounded by C

"

2k . For the second term,

we apply the Sobolev-type inequality (34) of Lemma 4.1.1 to v
j

= Dk�1
+ u

j,n

:

X

n

||Eu
j+k�1,nD

k�1
+ D0uj,n

||2�x

�t  C
X

n

||Dk

+uj,n

||2�x

�t

 C

"0

X

n

||Dk�1
+ u

j,n

||2�x| {z }
 C

"

2k�2

�t

+ "02
X

n

||Dk+2
+ u

j,n

||2�x

�t.

Inserting this into (53) and choosing "0 ⇠ "2 properly8, we conclude that

X

n

||Dk+2
+ u

j,n

||2�x

�t  C

�t "2k+3
+

C

"2k+4
(54)

where we can neglect the last term because �t = o( ").
Since k is actually arbitrary, we conclude that

83  l  k + 2 :
X

n

||Dl

+uj,n

||2�x

�t  C

�t "2l�1

) 82  l  k + 1 :
X

n

||Dl

+uj+1,n �Dl

+uj,n

||2�x

�t  C�x

"2l+1
. (55)

Furthermore, by the Sobolev-type inequality (35) of Lemma 4.1.1, we get

X

n

||Dk+1
+ u

j,n

||2�x

�t  C

"02

X

n

||Dk�1
+ u

j,n

||2�x

�t

+ "0
X

n

||Dk+2
+ u

j,n

||2�x

�t

 C

"02 "2k�2
+

C "0

�t "2k+3

8i.e. setting "

0 = c "

2 and choosing c properly
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which, because k is arbitrary, again implies that

82  l  k + 1 :
X

n

||Dl

+uj,n

||2�x

�t  C

"02 "2l�4
+

C "0

�t "2l+1
. (56)

Since "0 is arbitrary, the Lemma now follows by the Cauchy-Schwartz inequality
and inequalities (52),(55) and (56) (note that (52) can also be generalized because k
is arbitrary).

4.4.3 Proof of k-jet MV equation

We are now ready to prove the k-jet MV equation for the k-dimensional limit measure
⌫k = (⌫k0 , . . . ⌫

k

k�1) associated with the implicit FDS:

Theorem 4.4.1 (k-jet MV equation). Let ⌫k = (⌫k0 , . . . ⌫
k

k�1) be the k-dimensional
Young measure associated with the implicit FDS, i.e. �

J

�x

k

(·,·) * ⌫k,�x ! 0. Assum-

ing J�x

k

to be uniformly bounded in L1(R/Z⇥ (0, T )) and fixing the rate " = �xr at
some small enough r, ⌫k will be a k-jet MV solution. In other words, ⌫k satisfies the
k-jet MV equations9

81  l  k :

ZZ

R/Z⇥(0,T )

'
t

(x, t)h⌫k(x,t), Ul

i dx dt

+

ZZ

R/Z⇥(0,T )

'
x

(x, t)h⌫k(x,t), Fl

i dx dt = 0

for all test functions ' 2 C1
c

(R/Z⇥ (0, T )), and therefore is a k-jet MV solution.

Proof. The strategy of this proof is actually di↵erent then the proofs of Theorems 4.2.1
and 4.3.1. For instance in the case of the 2-jet, we started with the finite di↵erence
equation (36) and then derived the discrete 2-jet equation (51). In each step of the
derivation, we made sure that the arising errors vanish i.t.s.o.d. We have seen that
this approach brings up some technicalities involving discrete Leibniz manipulations.
To do the general case, it is actually easier to start with the discrete k-jet equation
and then prove that the error vanishes i.t.s.o.d.

Let

@
t

U
l

+ @
x

F
l

+ @2
x

W
l

= 0 (57)

be the KdV conservation law as in Lemma 3.4.1. Remember that U
l

is a polynomial of
the l�1-jet, F

l

is a polynomial of the l-jet, andW
l

vanishes in the sense of distributions.
We define the discrete quantities

U
j,n

:= U
l

(u
j,n

, . . . "l�2Dl�2
+ u

j,n

),

F
j,n

:= F
l

(u
j,n

, . . . "l�1Dl�1
+ u

j,n

),

W
j,n

:= W
l

(u
j,n

, . . . "l�1Dl�1
+ u

j,n

),

and write down the discrete l-jet equation as

Dt

�Uj,n

+D+Fj,n

+D2
+Wj,n

=: R
j,n

. (58)

Our goal is to prove that R
j,n

vanishes i.t.s.o.d.

9see Remark 3.4.1
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Let "i1+···i
mDi1

+ u
j,n

· · ·Di

m

+ u
j,n

be a term of U
j,n

. Using the discrete Leibniz
rule10 and inserting the scheme (36), we compute:

Dt

�(D
i1
+ u

j,n

· · ·Di

m

+ u
j,n

) =
mX

�=1

Di1
+ u

j,n�1 · · ·Dt

�D
i

�

+ u
j,n

· · ·Di

m

+ u
j,n

=
mX

�=1

Di1
+ u

j,n�1 · · ·D
i

�

+ (6Eu
j,n

D0uj,n

) · · ·Di

m

+ u
j,n

� "2
mX

�=1

Di1
+ u

j,n�1 · · ·D
i

�

+ D2
+D�uj,n

· · ·Di

m

+ u
j,n

.

Note that i1, . . . im  l � 2  k � 2. Therefore, by the second weak BV property
derived in Lemma (4.4.1), we can get rid of the n-index shifts:

Dt

�(D
i1
+ u

j,n

· · ·Di

m

+ u
j,n

) =
mX

�=1

Di1
+ u

j,n

· · ·Di

�

+ (6Eu
j,n

D0uj,n

) · · ·Di

m

+ u
j,n

� "2
mX

�=1

Di1
+ u

j,n

· · ·Di

�

+ D2
+D�uj,n

· · ·Di

m

+ u
j,n

+R
(1)
j,n

where R(1)
j,n

vanishes i.t.s.o.d. provided that " = �xr and r small enough. Applying the
discrete Leibniz rule once more for the first term on the right hand side, we conclude
that Dt

�Uj,n

is a polynomial of u
j,n

, . . . Dl+1
+ u

j,n

and j-shifts thereof, i.e. there is a

polynomial QU such that

Dt

�Uj,n

= QU ((u
j+j

0
,n

)
j

0 , . . . (Dl+1
+ u

j+j

0
,n

)
j

0)
| {z }

=:QU

j,n

+R
(1)
j,n

.

Even simpler considerations imply that also for D+Fj,n

+ D2
+Wj,n

, there is a
polynomial QFW such that

D+Fj,n

+D2
+Wj,n

= QFW ((u
j+j

0
,n

)
j

0 , . . . (Dl+1
+ u

j+j

0
,n

)
j

0)
| {z }

=:QFW

j,n

.

We now make the following crucial observation: If we replaced each discrete deriva-
tive with a continuous one and each u

j+j

0
,n

with u(x
j

, t
n

), the two quantities QU and
QFW would add up to zero by (57). Therefore, we can estimate the discrete quantity
QU

j,n

+QFW

j,n

by comparing pairwise terms

Di1
+ u

j+j

0
1,n

· · ·Di

m

+ u
j+j

0
m

,n

�Di1
+ u

j+j

00
1 ,n

· · ·Di

m

+ u
j+j

00
m

,n

(59)

where only the j-shifts are di↵erent. Note that the rank of @
x

F
l

+ @2
x

W
l

is l + 3
2

(see subsection 3.4.1). Assume that i1 � · · · � i
m

. If i3 exists, it must therefore

satisfy i3  2l�3
3  k� 1, and therefore each factor D

i

�

+ u
j+j

0
�

,n

resp. D
i

�

+ u
j+j

00
�

,n

with

� � 3 is bounded by the assumed boundedness of the discrete k-jet. Since furthermore
i1, . . . im  l + 1  k + 1, we can estimate the above di↵erence (59) by the first weak

10Using the discrete Leibniz rule iteratively, one can quickly see that

D

t

�(v
(1)
n

· · · v(m)
n

) =

mX

�=1

v

(1)
n�1 · · · v

(��1)
n�1 D

t

�v

(�)
n

v

(�+1)
n

· · · v(m)
n

.
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BV property of Lemma 4.4.1. This proves that the error R
j,n

in the discrete k-jet
equation (58) vanishes i.t.s.o.d.

The rest of the proof is now standard: We multiply the discrete k-jet equation (58)
with '

j,n

, sum over j, n and do discrete integration by parts to obtain the integral
equation

ZZ

R/Z⇥(0,T )

U�x

l

(x, t)Dt

+'(x, t) dx dt

+

ZZ

R/Z⇥(0,T )

F�x

l

(x, t)D�'(x, t) dx dt = o(1)

where U�x

l

(x, t) = U
l

(J�x

l�1(x, t)) and F�x

l

(x, t) = F
l

(J�x

l

(x, t)). The k-jet MV equa-
tions follow now immediately from the narrow convergence �

J

�x

k

(·,·) * ⌫k,�x ! 0.

4.5 Interpretation of the Theoretical Result

We have seen that the k-dimensional Young measure associated with the implicit FDS
is a k-jet MV solution provided that the rate " = �xr is slow enough. In fact, we have
seen that being a k-jet MV solution requires r ! 0 as k ! 1. It seems therefore that
it is not possible to satisfy the whole infinite DiPerna characterization with a fixed
polynomial rate. Also, we have seen in subsection 4.1.4 that we are approximating the
modified equation

u
t

� 6uu
x

+ "2|{z}
=:µ

disp

u
xxx

+
"2�x

2| {z }
=:µ

diff

u
xxxx

= 0

rather than the KdV equation u
t

� 6uu
x

+ "2u
xxx

= 0. This indicates that we are
computing a MV solution of Burgers’ equation which is the result of both dispersive and
di↵usive regularization! The smaller the rate r is, the smaller the di↵usion coe�cient
µ
diff

becomes compared to the dispersion coe�cient µ
disp

. More precisely, we consider
the di↵usion coe�cient µ

diff

to be a power of µ
disp

:

µ
diff

= cµs

disp

.

We presume that as the rate s tends to infinity, the limit of the above dispersive-
di↵usive equation is the VDL. In our case, we can quickly verify that s = 1+2r

2r and
thus s ! 1 as r ! 0. This indicates that for each rate r, the Young measure
associated with the implicit FDS might be di↵erent, but that we get closer and closer
to the VDL as r ! 0.

There is also another interpretation of why we need a slow rate " = �xr. The VDL
is measure valued as a consequence of KdV oscillations which occur after a certain
break time which is independent of " and whose frequency is O( "�1). Therefore,
computing the VDL depends on approximating these oscillations as accurately as
possible. For a fixed ", our scheme converges to the KdV solution as �x ! 0. Thus,
we interpret the above theoretical results as follows: A slower rate " = �xr means a
better resolution of the KdV equation and therefore makes for a better approximation
of the VDL. This interpretation is not only consistent with our theoretical results, but
also with mere common sense.

Numerical experiments show that schemes with a symmetrical third order dis-
cretization such as D3

0 or D+D�D0 approximate the KdV solution better than our
discretization D2

+D� which is mainly due to the absence of numerical di↵usion. Nev-
ertheless, we haven’t chosen such a symmetrical discretization for computing the VDL
simply because the essential Sobolev-type Lemma 4.1.1 can’t be applied to them. We
shall address this issue in the next section.
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Figure 10: KdV oscillations: Comparison of the di↵usive asymmetric third order
discretization D

2
+D� and the di↵usion-less symmetric D+D�D0 discretization.

4.6 Generalized Scheme

Numerical experiments show that the KdV solution is better approximated if the third
order term is discretized in a symmetrical manner. This is clearly not the case for the
scheme (36). As an example, we look at the third order discretization D+D�D0. If
we perform a Taylor approximation as in section 4.1.4, we find that

D+D�D0v(x) = v
xxx

(x) +
�x2

4
v
xxxxx

(x) +O(�x3).

We see that there is no numerical di↵usion in such a symmetric discrete dispersive
term. Since it is a well-known fact that di↵usion causes sharp peaks to spread out, we
would prefer a di↵usion-less discretization above a di↵usive discretization because the
VDL is the result KdV oscillations which get finer and finer as " ! 0. In figure 10,
we compare the numerical KdV solutions of the implicit scheme for the dispersions
D2

+D� and D+D�D0. We see that the symmetric scheme resolves the oscillations
much better than the dispersive-di↵usive scheme.

We therefore believe that a symmetric third order discretization would also better
approximate the VDL. However, it makes the application of the Sobolev-type Lemma
4.1.1 impossible. As a consequence, all weak BV properties which were derived in the
previous sections don’t hold. In fact, di↵usion is needed in order to prove all of the
above results.

We therefore need a scheme which is still di↵usive while being closer to the sym-
metric discretization D+D�D0. We propose the following generalized scheme:

Dt

�uj,n

� Eu
j,n

D0uj,n

+ "2D
(3)
�

u
j,n

= 0 (60)

where

D
(3)
�

:=

✓
1
2
+ �

◆
D2

+D� +

✓
1
2
� �

◆
D+D

2
�, 1 � � > 0.



4 IMPLICIT FINITE DIFFERENCE SCHEME 48

Note that for � = 0, this discretization is exactly D+D�D0, and for � = 1, we get our
implicit FDS with the third order discretization D2

+D�.
For small �, this discretization is almost di↵usion-less since Taylor approximation

shows that

D
(3)
�

v(x) = v
xxx

(x) + ��xv
xxxx

(x) +O(�x2).

At the same time, we can still apply the Sobolev-type Lemma 4.1.1 because the triangle
inequality implies that

2�||D3
+vj ||�x

=

✓
1
2
+ �

◆
||D2

+D�vj ||�x

�
✓
1
2
� �

◆
||D+D

2
�vj ||�x

 ||D(3)
�

v
j

||�x

.

It is even possible to let � ! 0 as �x ! 0 with a rate � = �xs. However, the results
of the previous sections then only hold for even smaller rates " = �xr.

4.7 Numerical Experiments

In this section, we carry out numerical experiments with the generalized implicit FDS
(60) using the two approaches described in subsection 4.1.3. Using the McLaughlin
results as a reference, we shall see that the implicit FDS seems to approximate the
correct VDL as �x, r ! 0 and that the perturbation approach is much more e�cient
than the weak limit approach. Furthermore, replacing the Monte-Carlo method with
a fixed uniform grid of the probability space will improve the results even more.

We shall then apply this last deterministic perturbation method to a Riemann
initial data for which LaL [14] computed explicit numerical values. Despite the overall
satisfactory results, we shall address some concerns about the accuracy of our method.
Finally, we close this section with some considerations about the numerical complexity.

4.7.1 Weak Limit Approach

In the weak limit approach, we choose a sequence �x1, . . .�x
M

and use the numerical
solutions u�x1(x, t), . . . u�x

M (x, t) as samples to compute the approximative Young
measure

⌫
(�x

m

)
m

,M

(x,t) :=
1
M

MX

m=1

�
u

�x

m (x,t).

We can easily compute the mean and variance of this measure as

E(⌫(�x

m

)
m

,M

(x,t) ) =
1
M

MX

m=1

u�x

m(x, t),

Var(⌫(�x

m

)
m

,M

(x,t) ) =
1
M

MX

m=1

(u�x

m(x, t))2 � E(⌫(�x

m

)
m

,M

(x,t) )2.

To determine the sequence �x1, . . .�x
M

, we choose a minimal value N
min

and
a maximal value N

max

. After fixing a sample number M , we divide the interval
[N

min

, N
max

] logarithmically into M points N
min

= N1, N2, . . . NM

= N
max

such that
N

m�1/Nm

= const. for all m = 2, . . .M . We then set �x
m

:= 1
dN

m

e . Furthermore,
we fix some "0 and choose the constant c in " = c�xr such that "0 = c�xr

1.
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We use the generalized scheme (60) with � = 0.01 and present the results for

N
min

= 400,

N
max

= 8000,

r =
1
2
,
1
4
,

M = 10, 100,

t = 0.15,

"0 = 0.06 and

� = 0.5

in figure 11. We see that the mean and standard deviation seem to converge for in-
creasing sample number M . However, the standard deviation is nowhere near the
McLaughlin result. In the region away from the shock, the variance increases for de-
creasing r. However, in the shock-region, we don’t see an improvement as r decreases.
On the contrary, the mean becomes more oscillatory. This can be explained by the fact
that a smaller rate r results in a smaller range of the dispersion coe�cient " if N

min

and N
max

are fixed. As a consequence, the statistics get worse. However, keeping the
range of " unaltered would result in a larger range [N

min

, N
max

] for decreasing r and
thus an enormous increase of the computational complexity.

All in all, we have to say that the numerical results of the weak limit approach are
very unsatisfactory.

4.7.2 Perturbation Approach

In the perturbation approach, we artificially create a measure valued initial data by
perturbing the initial function. This perturbation is best described by a random field
u0(x;!). Doing Monte-Carlo sampling over the corresponding random field ! 2 ⌦ and
solving the numerical scheme for each initial sample um

0 (x),m = 1, . . .M , we get the
approximative Young measure by setting

⌫�x,M

(x,t) :=
1
M

MX

m=1

�
u

�x,m(x,t)

where u�x,m(x, t) is the numerical solution of the m-th sample.
We are left with specifying how to perturb the initial function. We present two

approaches: the Monte-Carlo-left-right-shift-approach (MC-LR-approach)

u0(x;!) = u0(x+ ! "0)

and the Monte-Carlo-up-down-shift-approach (MC-UD-approach)

u0(x;!) = u0(x) + ! "0.

Here, "0 is the perturbation level and ! 2 ⌦ = [�1, 1] with uniform distribution is the
probability space.

We set

M = 200,

N = 2000,

" = 0.03, 0.06

t = 0.15,

"0 = 0.1 and

� = 0.5
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Figure 11: Approximative Young measure (mean and standard deviation) with
implicit FDS and weak limit approach for di↵erent rates r and di↵erent sample
numbers M , compared to simplified method of McLaughlin and Strain.
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and use the generalized scheme (60) with � = 0.01. The results are shown in figure 12.
They are both similar and much better than the weak limit approach with considerably
less computing time. We see that for fixed M,�x, the results get better for larger
dispersion coe�cient ". This is explained by the following two reasons: First, the
KdV solution is better approximated for larger " if �x is fixed. Second, a larger "
imitates the behavior of a smaller rate r because a smaller rate r means that " tends
to zero slower as �x ! 0. Despite the improvement compared to the weak limit
approach, both mean and standard deviation show considerable coarse fluctuations.

4.7.3 Uniform Left-Right-Shifts

Considering the MC-LR-approach and keeping in mind that the whole problem is
translation invariant, we presume that we can minimize the Monte-Carlo error by the
following uniform-left-right-shift-approach (UNI-LR-approach): Instead of drawing M
random samples ! 2 ⌦ = [�1, 1], we fix a uniform grid !

i

= 2i
M

�1, i = 1, . . .M on the
probability space. Furthermore, we observe that the sampling process is indeed not
necessary for left-right-shifts: By the translation invariance, it is enough to compute
only one sample and use the numerical solution within the region [x � "0, x + "0] for
the statistics. Having to compute only one solution also allows us to go to a finer mesh
resolution.

We set

N = 8000,

" = 0.03

t = 0.15,

"0 = 0.1 and

� = 0.5

and use the generalized scheme (60) with � = 0.01. The results are shown in figure
13 where we can observe a considerable improvement compared to the Monte-Carlo
method from figure 12.

4.7.4 Other Example: Riemann Problem

In section 7 of [14], LaL explicitly computed some numerical values of the mean and
variance of the VDL with the Riemann initial data (21). This gives an excellent
reference for testing our FDS. Since this is not a periodic problem, we feed the scheme
from left and right with �1 resp. 0. We set

N = 8000,

" = 0.2,

t = 1,

"0 = 1 and

� = 0.1

and apply the UNI-LR-approach with the generalized scheme (60) with � = 0.01. The
result is shown in figure 14. Basically, we can make the same observations as in the
previous subsections. Again, we see that the non-atomicity is propagating out of the
shock to the left.

4.7.5 Criticism, Resolving the KdV Solution

Even though the numerical results of the UNI-LR-approach seem quite promising, we
shall explain in this subsection that using only the mean and standard deviation as a
reference might be partly misleading.
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Figure 12: Approximative Young measure (mean and standard deviation) with
implicit FDS and MC-LR-approach resp. MC-UD-approach and di↵erent ",
compared to simplified method of McLaughlin and Strain.
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Figure 13: Approximative Young measure (mean and standard deviation)
with implicit FDS and UNI-LR-approach, compared to simplified method of
McLaughlin and Strain.

−8 −6 −4 −2 0 2 4 6
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Uniform LR−shifts, N = 8000, eps = 0.2, epsprime = 1, t = 1

 

 
initial data
mean
standard deviation
mean LaL
standard deviation LaL

Figure 14: UNI-LR-approach for Riemann initial data, compared to explicit
values of LaL ([14], section 7).



4 IMPLICIT FINITE DIFFERENCE SCHEME 54

In order to do a sound statistical analysis in the perturbation approach, we would
like to choose the dispersion coe�cient " very small compared to the perturbation
level "0. It is a fact however that for fixed �x, the FDS works worse and worse for
decreasing ". Because of the numerical di↵usiveness and implicity of the FDS, we
have to choose " quite large in order to be enough oscillatory. In other words, to get
a good approximation of the KdV oscillations, we have to choose either " large or �x
small. As a consequence of these conflicting requirements, the perturbation level ends
up being of the same order of magnitude as the dispersion coe�cient. Considering in
particular the UNI-LR-approach, the shift-region [x� "0, x+ "0] has about the size of at
most two KdV oscillation periods. Even though this gives satisfactory approximations
of the mean and standard deviation, we have to doubt whether the approximation of
the whole Young measure is faithful.

The correctness of the computed Young measure depends mainly on how accurate
the FDS can resolve the KdV oscillations. Going back to the LaL theory of section 3.1
and remembering the formulas (14) ↵. which we can actually implement numerically,
we get a good reverence solution for these KdV oscillations. We set

" = 0.05, 0.01,

N = 8000,

t = 0.15 and

� = 0.5

and show the KdV oscillations generated with the generalized scheme (60) together
with the LaL reference in figure 15. We see that even though there is a shift in x, the
shape and the amplitude of the KdV oscillations is reasonably resolved for " = 0.05.
But already for " = 0.01, the result gets much worse.

4.7.6 Numerical Complexity

We experimentally investigate the numerical complexity of the implicit FDS as �x !
0. We do this by measuring the computing times for di↵erent mesh resolutions N .
Performing a best linear fit of the logarithmic plot shown in figure 16, we see that

computing time ⇡ O(N2),

i.e. the computational complexity grows at a quadratic rate with the mesh resolution
N . Since �x and �t are linked linearly via the CFL-number � = �t

�x

, this computa-
tional complexity is to be expected provided that we can solve one time step in O(N)
time. This is rather surprising for an implicit scheme and also not entirely true since
the best linear fit yields a rate which is slightly above 2, see figure 16. Nevertheless,
the almost quadratic rate in the case of our implicit scheme can be explained by

• assuming that the number of iterations in (37) is uniformly bounded,

• noting that the inverse matrix needed in order to solve one iteration step only
has to be computed once for the entire process,

and by taking into account that MATLAB has optimized algorithms for computing
matrix-vector-multiplications and inverting matrices.

In the context of the weak limit approach, adding one single sample while keeping
the ratio µ := �x

m�1/�x
m

fixed means multiplying the computing time by µ2, and
thus

computing time ⇡ O(µ2M ).

This exponential rate is much worse than the linear rate at which the computing time
of the perturbation approach grows with increasing sample number M .
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Figure 15: KdV oscillations for " = 0.05 resp. " = 0.01 computed with the
implicit FDS and compared to LaL reference.
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In addition to these considerations concerning the computational complexity, there
is another advantage of the perturbation approach compared to the weak limit ap-
proach: The sampling process can be computationally optimized by using parallel
computing. This is much harder if not impossible for the weak limit approach since
every new sample has a di↵erent mesh size �x.

Lastly, we would like to point out that the UNI-LR-approach avoids the sampling
process completely which again means an enormous increase of e�ciency.

4.8 Conjecture: Limit Measure is Vanishing Dispersion
Limit

4.8.1 The r-Limit Measure

We have seen that the k-dimensional Young measure associated with the implicit FDS
is a k-jet MV solution provided that the rate " = �xr is slow enough. We have
also seen that the scheme (36) approximates Burgers’ equation with a mixture of
dispersive and di↵usive regularization where the di↵usive term tends to zero faster
than the dispersive term as r ! 0. We have conjectured that for each r, the Young
measure associated with the implicit FDS is di↵erent, and that we get closer and closer
to the VDL as r ! 0. We shall make this more precise in this section.

For each k, let r
k

be the rate " = �xr

k such that the k-dimensional Young measure
⌫k = (⌫k0 , . . . ⌫

k

k�1) associated with the implicit FDS is a k-jet MV solution. By the
fundamental theorem of Young measures (see [5], Theorem A.1) and by a simple
diagonalization argument, we conclude that there is a subsequence k

l

such that for
each j, the one-dimensional components ⌫kl

j

converge narrowly:

8j : ⌫
k

l

j

* ⌫
j

, l ! 1.

Formally, we get an infinite-dimensional measure (⌫0, ⌫1, . . . ) which we call the r-limit
measure associated with the implicit FDS. By narrow convergence, we get the following

Theorem 4.1 (r-Limit Measure). Let (⌫0, ⌫1, . . . ) be the r-limit measure associated
with the implicit FDS. Then, for each k, the first k components (⌫0, . . . ⌫k�1) of the
r-limit measure are a k-jet MV solution. In other words, the r-limit measure satisfies
the whole infinite DiPerna characterization.

This Theorem indicates that the first component ⌫0 of the r-limit measure is the
VDL. However, this remains a conjecture for the moment.

4.8.2 Non-Polynomial Dispersion Coe�cient

We can avoid the notion of the r-limit measure by considering a dispersion coe�cient
which is not a power of the mesh size �x but which tends to zero slower than any
power of �x:

" = ↵(�x), 8r > 0 : �xr = o(↵(�x)). (61)

By the above results, the Young measure corresponding to the resulting scheme will
satisfy the whole DiPerna characterization:

Theorem 4.2 (Non-polynomial dispersion coe�cient). Let ⌫k = (⌫k0 , . . . ⌫
k

k�1) be the
k-dimensional Young measure associated with the implicit FDS where the dispersion
coe�cient " = ↵(�x) is chosen such that

8r > 0 : �xr = o(↵(�x)).

Assuming J�x

k

to be uniformly bounded in L1(R/Z ⇥ (0, T )), ⌫k will be a k-jet MV
solution for any k 2 N.
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This again indicates that the one-dimensional Young measure associated with the
implicit FDS is the VDL provided we choose " to behave as in (61). However, this
again remains a conjecture for the moment.

5 Crank-Nicolson Finite Di↵erence Scheme

Even though we payed a lot of attention to the di↵usion contained in the dispersive
operator D2

+D� (see sections 4.1.4, 4.5 and 4.6), it is also mainly the implicity of the
scheme (36) resp. (60) which is responsible for di↵usion. This is also indispensable
for deriving the weak BV estimates that are needed for proving the DiPerna charac-
terization. As an example, we look at the L2-norm of the numerical solution: The
inequality (41) shows that it is not only non-increasing but indeed decreasing. It is
this undesirable property which we try to avoid in this section.

Attempting to improve the numerical results, we thus present a Crank-Nicolson
finite di↵erence scheme and use it to perform numerical experiments. The construction
of the FDS is such that the L2-norm is not decreasing but completely conserved.
This however makes it impossible to prove the above theoretical result concerning the
DiPerna characterization. For fixed ", we nevertheless believe that we can prove it
to converge to the classical KdV solution doing a similar proof as in [11]. As a KdV
scheme, the Crank-Nicolson FDS works much better than the implicit scheme which
is the reason for the numerical improvement when computing the VDL.

5.1 The Scheme

It is a fact that being implicit adds a considerable amount of di↵usion to a FDS.
We eliminate this source of di↵usion by evaluating the numerical terms corresponding
to 6uu

x

and "u
xxx

at the n � 1
2 -th time step. Also, we use the symmetric third

order operator D+D�D0 which was already discussed in section 4.6. The result is the
following Crank-Nicolson scheme:

u
j,n

� u
j,n�1

�t
� 6Eu

j,n�1/2D0u
j,n�1/2 + "2D+D�D0u

j,n�1/2 = 0 (62)

where

u
j,n�1/2 :=

u
j,n�1 + u

j,n

2
.

Multiplying equation (62) with u
j,n�1/2 and summing over j, we see that

||u
j,n

||�x

= ||u
j,n�1||�x

,

i.e. the L2-norm of the numerical solution is completely conserved. It is this property
which is mainly responsible for the numerical improvement compared to the implicit
scheme.

5.2 Numerical Experiments

In this section, we perform numerical experiments with the perturbation approach
using the Crank-Nicolson FDS. Since it approximates the KdV solution much better
than the implicit scheme, it allows us to choose the dispersion coe�cient much smaller
which yields a more faithful statistical analysis.

In addition to the one-bump initial function, we shall present the numerical result
for the initial function u0(x) = cos(x), and perform a stability experiment. Finally, we
shall demonstrate how well this scheme approximates the KdV oscillations for small
values of ".
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5.2.1 One-Bump and cos(x) Initial data

We apply the MC-LR-approach resp. MC-UD-approach to the same one-bump initial
function as in subsection 4.7.2. We set

M = 200,

N = 1000,

" = 0.01

t = 0.15,

"0 = 0.1 and

� = 0.1

and show the resulting plots in figure 17. We can observe quite some improvement
compared to the implicit FDS (figure 12). In figure 18, we furthermore show the results
of the UNI-LR-approach with parameters

N = 4000,

" = 0.003

t = 0.15,

"0 = 0.1 and

� = 0.1.

We can see a further improvement compared to the Monte-Carlo method from figure
17.

In figure 19, we show the histograms corresponding to the points (x, t) = (0.7, 0.15)
resp. (x, t) = (0.9, 0.15) generated with the UNI-LR-approach and parameters

N = 4000,

" = 0.006

t = 0.15,

"0 = 0.1 and

� = 0.1.

We can observe two broad peaks which presumably correspond to the maxima and
minima of the KdV oscillations. The fact that the right peak is higher is explained by
the fact that the KdV maxima are broader than the minima.

As a second example, we apply the UNI-LR-approach to the initial function u0(x) =
cos(x). We show the result with parameters

N = 4000,

" = 0.008

t = 0.23,

"0 = 0.1 and

� = 0.1

in figure 20. Not surprisingly, the picture looks similar to the one-bump case: The
non-atomicity is propagating out of the shock to the left.

5.2.2 Stability of the VDL Revisited

As in subsection 3.2.3, we would like to present numerical indication that the VDL
is stable with respect to small perturbation around atomic initial data. However this
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Figure 17: Approximative Young measure (mean and standard deviation) with
Crank-Nicolson FDS and MC-LR-approach resp. MC-UD-approach, compared
to simplified method of McLaughlin and Strain.
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Figure 18: Approximative Young measure (mean and standard deviation) with
Crank-Nicolson FDS and UNI-LR-approach, compared to simplified method of
McLaughlin and Strain.

time, we use the Crank-Nicolson FDS. We apply the UNI-LR-approach to the initial
function u0(x) = cos(x) but perturb it by an up-shift: u�0(x) = cos(x) + �. For each
�, we obtain an approximative Young measure ⌫�x,�. We then study the behavior of
the mean and standard deviation of ⌫�x,� as � ! 0 by measuring the L1-error with
respect to the numerical solution corresponding to � = 0:

error of mean�x(�) =
���
���E(⌫�x,�

x,t

)� E(⌫�x,0
x,t

)
���
���
L

1(0,2⇡)

error of standard deviation�x(�) =

����

����
q

Var(⌫�x,�

x,t

)�
q

Var(⌫�x,0
x,t

)

����

����
L

1(0,2⇡)

.

The resulting error plot with

N = 4000,

t = 0.23,

" = 0.008,

"0 = 0.1 and

� = 0.1

is shown in figure 21. We can clearly see that the errors are converging to zero as
� ! 0 which indicates that the VDL is stable with respect to small perturbation
around atomic initial data.

5.2.3 Resolving the KdV Solution

In subsection 4.7.5, we have seen that the implicit FDS failed to produce a good
approximation of the KdV solution for small dispersion coe�cients ". We now compute
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Figure 19: Histograms at the points (x, t) = (0.7, 0.15) resp. (x, t) = (0.9, 0.15),
generated with the Crank-Nicolson FDS and UNI-LR-approach.
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Figure 20: Approximative Young measure (mean and standard deviation) with
Crank-Nicolson FDS and UNI-LR-approach for cos(x)-initial data.
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Figure 21: Stability check with Crank-Nicolson FDS: Error plot for the mean
and standard deviation.

the KdV oscillations with the Crank-Nicolson FDS with parameters

" = 0.003,

N = 4000,

t = 0.15 and

� = 0.1

and compare it with the LaL KdV reference solution. The result is shown in figure
22. Even though there is a slight x-shift, we see that the Crank-Nicolson scheme
reproduces both shape and amplitude of the KdV oscillations much more accurately
than the implicit scheme, and this for a value of " which is more than 10 times smaller
than the first " in figure 15!

6 Conclusion, Summary

In this thesis, we have presented an implicit finite di↵erence scheme (FDS) with pertur-
bation of the initial data to compute the vanishing dispersion limit (VDL) of Burgers’
equation u

t

� (3u2)
x

= 0. This was motivated by the numerical work on systems of
conservation laws done by Fjordholm and co-workers [5] and by the theoretical work
of Lax and Levermore (LaL) on the VDL of Burgers’ equation [12],[13],[14]. The main
concept behind all considerations is the concept of measure valued (MV) solutions
introduced by DiPerna [4]. As opposed to the vanishing viscosity solution which is
atomic, the vanishing dispersion limit is indeed a non-atomic measure.

To theoretically sustain the validity of our computations, we attempted to show
that our numerical MV solution satisfies DiPerna’s characterization of the VDL, see
([4], section 7). This characterization includes infinitely many levels, called k-jets. We
could prove that for a fixed rate " = �xr of the dispersion coe�cient ", the numerical
MV solution satisfies the first k levels of DiPerna’s characterization provided that r is
small enough. Indeed, we have seen that r ! 0 as k ! 1. Our discretization of the
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Figure 22: KdV oscillations for " = 0.003 computed with Crank-Nicolson FDS
and compared to LaL reference.

dispersive term consists of both numerical dispersion and di↵usion:

D2
+D�u(x) ⇡ "2u

xxx

+
"2�x

2
u
xxxx

.

As r ! 0, the di↵usive term tends to zero faster than the dispersive term which lead
to the conjecture that the numerical MV solution converges to the VDL as r ! 0.
Since a smaller rate r means a better resolution of the KdV equation, these theoretical
considerations are also consistent with mere common sense.

To numerically sustain the validity of our computations, we mainly used the per-
turbation approach presented in [5] and compared the results with a simplified method
of McLaughlin and Strain which is based on the theoretical work of LaL [12]. This
indicated that at least the mean and variance of our numerical MV solution converge
to the correct limit. Also, in accordance with our theoretical results and conjecture,
the results get better for increasing dispersion coe�cients " if we keep �x fixed since
this imitates the behavior of a slower rate r.

Even though the theoretical and numerical results look promising at first sight,
the fact that we rely on resolving the KdV oscillations as accurately as possible raised
some concerns about the accuracy of the whole Young measure. Since the implicit FDS
is very di↵usive, it is di�cult to obtain a good approximation of the KdV solution for
small values of ". This is why we furthermore applied a Crank-Nicolson FDS for
which we can’t prove the theoretical result concerning the DiPerna characterization
but which resolves the KdV oscillations much better.

Comparing the finite di↵erence approach with the algorithm of McLaughlin and
Strain, we have to stress the following points: The McLaughlin method avoids exactly
the one challenge we faced throughout this whole thesis, namely resolving the KdV
solution. This big advantage however is overshadowed by the following three drawbacks
which are resolved by the finite di↵erence approach: First, McLaughlin is a local
method which means that for each point (x, t), a di↵erent minimization problem has
to be solved. This also makes an e�ciency comparison rather di�cult. Second, it only
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computes the mean and variance of the VDL. Third, it is only applicable to a very
small class of initial functions satisfying the requirements of the LaL theory.

We would like to stress that the theoretical results of this thesis are mainly based
on the special structure of the implicit FDS. We therefore doubt whether they can be
generalized to higher-dimensional problems. However, stability results might similarly
be obtained for higher-order dispersive regularization. Nevertheless, a characterization
in the spirit of DiPerna’s is only available for the third-order dispersion since it relies
on the special properties of the KdV equation.
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