Dedicated to the memory of Ernst Specker

 by a former student and lifelong admirerThis talk is on the

Engeler-Specker Symposium, ETH Zurich, February 22, 2020

Summary

I will start my lecture by telling you a story about Ernst Specker that I learned from Raoul Bott. I will then tell you a few things I learned as an undergraduate student in Specker's course on linear algebra and by listening to him at a political gathering in down-town Zurich.
My main task is, however, to attempt to explain to you the KochenSpecker Theorem concerning the non-existence of hidden variables in Quantum Mechanics (QM). Some mathematical problems that arose from this theorem, as well as some recent ideas of how to complete the structure of QM and unravel its message will be sketched.

I will end by telling you some anecdotes and recalling some of Specker's non-scientific concerns.

And, of course, I would like to express my heartfelt best wishes to Erwin Engeler for a happy continuation of his journey!

ETH in $1965=$ "hub of the world" - at least for me!
Forefathers:

Theoretical Physicists:

A story about Specker's stay at the Institute for Advanced

 Study in PrincetonIn the first half of the $20^{\text {th }}$ Century, thanks to Heinz Hopf, ETH Zurich became a world centre of a rather new field in mathematics that Henri Poincaré had named "Analysis situs", nowadays called "algebraic topology". - After the completion of his PhD under the supervison of Hopf, Specker spent more than a year at the IAS in Princeton. He knew everything of relevance in algebraic topology. There he met the young Raoul Bott, an electrical engineer turned into a mathematician with an untamed curiosity in algebraic topology who would come up with a new conjecture almost every day and would then try it out on Specker. After he had succeeded in disproving several of Bott's conjectures, Specker proposed a bet to him: He would disprove everyone of Bott's conjectures within five minutes. For a while, Specker won the bet; but, after some time, the situation changed, and Bott became a famous topologist.
Here is another story I learned from Bott: Specker and the fire flies ...

Things I learned in Specker's lectures on linear algebra

Linear equations:

$$
\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & & \vdots \\
a_{n, 1} & \cdots & a_{n, n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)
$$

or

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
$$

When does this equation always have a solution?
What is "det (A) "? What does it have to do with Eq. (1)? What if the homogeneous equation has non-zero solutions? kernel, co-kernel, ... What is the group of permutations of n elements? What is a property
common to all permutations of $\{1, \ldots, 15\}$ appearing in

Why does a mirror image of your face exchange Left with Right, but not \Uparrow with \Downarrow ?

What is the shortest walk through a revolving door of a supermarket?
Etc., etc.

Things I learned from Ernst in the "Weisser Wind"

Nach den Globus-Kravallen: "Zürcher Manifest" - erschienen am 4.7.1968

Sechs Tage

Zürcher Manifest
4.-9. Septermber 1968
im Centre Le Corbusier,Höschgasse 8,
Wir stellen zur Diskussion:
Mittwoch, 4.9.1968. 20 Uhr
Leben wir in einer Scheindemokratie? Donnerstag. 5.9.1968, 20 Uhr Kultur oder Scheinkultur? reilag, 6.9.1968,20 Uhr riehung zum lasager? Sarnstag. 7. 7. 1968, 15 Uhr die Interessen der Arbeiter? Samstag, 7.9.1968, 20 Uhr Ruckkehr zum Kalten Krieg? Sonntag, 8.9.1968, 15 Uhr tadteplanung senkt die Mietpreise! Sonntag, 8.9.1968, 20 Uhr
Mensch und Sexualitat
Montag, 9,9.1968, 20 Uhr
Unrecht im Rechtsstaat
Während des Rests des Tages freie
Distussion und weitere Produlttionen wie Strassentheater, Wandzeitung,
Tageszeitung, Filmvorführungen usw.

Wandzeitung

King Asarhaddon's wise man from Ninive who taught at the school for prophets, named Arba'ilu

Ernst Specker's parable of the suitors of the wise man's daughter: 2 out of 3 boxes, A, B, C, are either empty or contain, each, a gem.


```
"Classical-like" prediction
("properties" exist in space-time
before mesurement):
x\in{1,0},y\in{1,0}
P(x,y|x\not=y)=2/3
P(x,y|x=y)=1/3
whatever pair of boxes is opened
```

"Quantum-like" prediction
$P(x, y \mid x \neq y)=1$
$P(x, y \mid x=y)=0$
whatever pair of boxes is opened.
\uparrow Contextuality for a "Bell pair"

The Assyrian prophet's contest
Illustration by A. Suarez

$$
A_{f} \Rightarrow B_{e} \Rightarrow C_{f}, \quad \text { but: } A_{f} \Rightarrow C_{e}, \text { etc. }
$$

Yet, not all of A, B, C can be verified simultaneously!

"Die Logik nicht gleichzeitig entscheidbarer Aussagen"

Ernst Specker, 1960
La logique est d'abord une science naturelle. - F. Gonseth
"Kann die Beschreibung eines quantenmechanischen Systems durch Einführung von zusätzlichen - fiktiven - Aussagen so erweitert werden, dass im erweiterten Bereich die klassische Aussagenlogik gilt ... ? [meaning that all statements/results of experiments on the system could be embedded in a Boolean lattice.]

Die Antwort auf diese Frage ist negativ, ausser im Fall von Hilbertschen Räumen der Dimension 1 und 2. ... Ein elementargeometrisches Argument zeigt, dass eine solche Zuordnung (such an embedding) unmöglich ist, und dass daher über ein quanten-mechanisches System (von Ausnahmefällen abgesehen) keine konsistenten Prophezeiungen möglich sind."

In his paper, Specker does not present any details concerning the "elementargeometrische Argument". They were provided in the famous paper by Kochen and Specker, seven years later, which I paraphrase next.

"The Problem of Hidden Variables in Quantum Mechanics"

Simon Kochen and Ernst Specker, 1967

Question: \exists a hidden-variables theory recovering the predictions of quantum mechanics; or, in other words, can the predictions of quantum mechanics be embedded in a Boolean lattice?

Let S be a physical system to be described quantum-mechanically. Its Hilbert space of pure state vectors is denoted by \mathfrak{H}; ...
If the answer to the above question were "yes" this would imply that \exists a measure space (Ω, \mathfrak{F}) and maps f and ρ,

$$
\begin{align*}
f: A=A^{*} \in B(\mathfrak{H}) & \mapsto f_{A}: \Omega \rightarrow \mathbb{R}, \tag{1}\\
\rho: \Psi \in \mathfrak{H} & \mapsto \rho_{[\Psi]}=\text { probability measure on }(\Omega, \mathfrak{F}),
\end{align*}
$$

with the following properties.
(P1) Preservation of expectation values: For every $A=A^{*} \in B(\mathfrak{H})$,

$$
\|\Psi\|^{-2}\langle\Psi, A \Psi\rangle=\int_{\Omega} f_{A}(\omega) d \rho_{[\Psi]}(\omega)
$$

Properties of a putative embedding in a Boolean lattice

(P2) If $u: \mathbb{R} \rightarrow \mathbb{R}$ is an arbitrary bounded measureable function then

$$
f_{u(A)}=u \circ f_{A}
$$

Note: (P1) and (P2) are compatible with each other (check!); and (P1) and (P2) imply the following fact:
(P3) Given any abelian algebra \mathfrak{M} of commuting self-adjoint operators acting on \mathfrak{H}, then

$$
f: A \in \mathfrak{M} \mapsto f_{A} \in L^{\infty}(\Omega)
$$

is an algebra homomorphism; i.e.,

$$
f_{A_{1} \cdot A_{2}}=f_{A_{1}} \cdot f_{A_{2}}, \quad \forall A_{1}, A_{2} \text { in } \mathfrak{M} .
$$

(Easy to prove if $\operatorname{dim}(\mathfrak{H})<\infty$!)

The Kochen-Specker Theorem

As already noticed by Specker in 1960, a hidden-variables theory satisfying (P1) - (P3) exists if $\operatorname{dim}(\mathfrak{H})=1$ or 2 , (QM of a spin- $\frac{1}{2}$ object - nowadays called "Qbit", which sounds more interesting).

Theorem. (Kochen \& Specker, 1967)
If $\operatorname{dim}(\mathfrak{H}) \geq 3$ a hidden-variables theory satisfying (P1)-(P3) does not exist.
Proof. We consider a particle, whose spin degree of freedom is described by a vector operator, \vec{S}, acting on the Hilbert space $\mathfrak{H}=\mathbb{C}^{3} \simeq \mathbb{R}^{3} \otimes \mathbb{C}$, (i.e., the particle has spin 1). Let ($\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}$) be the standard orthonormal basis in \mathbb{R}^{3} and set $S_{j}:=\vec{S} \cdot \vec{n}_{j}, j=1,2,3$. Then

$$
S_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), S_{2}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right), S_{3}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

One thus observes that the operators $P_{j}:=1-S_{j}^{2}, j=1,2,3$, are three mutually commuting orthogonal projections of rank 1 , with $\sum_{j=1}^{3} P_{j}=1$.

Arbitrary orthonormal bases in \mathbb{R}^{3}

More generally, for an arbitrary vector \vec{e} in $S^{2}, P(\vec{e}):=1-(\vec{S} \cdot \vec{e})^{2}$ is an orthogonal projection projecting onto the one-dimensional subspace of \mathfrak{H} spanned by \vec{e}. [Thus, the matrix elements of $P(\vec{e})$ in the basis $\left(\vec{n}_{1}, \vec{n}_{2}, \vec{n}_{3}\right)$ are given by $P(\vec{e})_{i j}=e_{i} e_{j}, \forall i, j$.]
For an arbitrary orthonormal basis, ($\left.\vec{e}_{1}, \overrightarrow{e_{2}}, \vec{e}_{3}\right)$, one then finds that

$$
\begin{equation*}
\sum_{j=1}^{3} P\left(\vec{e}_{j}\right)=1, \quad P\left(\vec{e}_{i}\right) \cdot P\left(\vec{e}_{j}\right)=\delta_{i j} P\left(\vec{e}_{i}\right) \tag{2}
\end{equation*}
$$

The projections $\left\{P\left(\vec{e}_{j}\right)\right\}_{j=1}^{3}$ are functions of a single self-adjoint operator

$$
\begin{equation*}
A:=\sum_{j=1}^{3} \alpha_{j} P\left(\vec{e}_{j}\right), \quad \alpha_{1}<\alpha_{2}<\alpha_{3} \tag{3}
\end{equation*}
$$

generating a maximally abelian subalgebra of $B(\mathfrak{H})=\mathbb{M}_{3}(\mathbb{C})$.

A fatal assumption

We now assume that \exists a hidden-variables theory satisfying properties (P1), (P2) and (P3).
Since $P(\vec{e})^{2}=P(\vec{e})$, it follows from (P2) that

$$
\begin{equation*}
P(\vec{e}) \mapsto f_{P(\vec{e})}=: \chi_{\vec{e}} \tag{4}
\end{equation*}
$$

is a characteristic function on Ω. Eq. (2) implies that, for an arbitrary orthonormal basis $\left(\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}\right)$,

$$
\begin{equation*}
\sum_{j=1}^{3} \chi_{\vec{e}_{j}}=1, \quad \text { a.e. on } \Omega \tag{5}
\end{equation*}
$$

For any point $\omega \in \Omega$,

$$
\begin{equation*}
\varphi_{\omega}(\vec{e}):=\chi_{\vec{e}}(\omega) \tag{6}
\end{equation*}
$$

defines a function on S^{2} with the following properties (which hold for a.e. $\omega \in \Omega$):

Strange functions on the unit sphere in \mathbb{R}^{3}

(i) It takes only the values 0 and 1, i.e.,

$$
\varphi_{\omega}(\vec{e})=0 \text { or } 1, \text { for any unit vector } \vec{e} \in S^{2}
$$

(ii) If \vec{e} belongs to any orthonormal basis $\left\{\vec{e}_{1} \equiv \vec{e}, \vec{e}_{2}, \vec{e}_{3}\right\}$ of \mathbb{R}^{3} then the value, $\varphi_{\omega}(\vec{e})$, of φ_{ω} on \vec{e} should be independent of the choice of \vec{e}_{2} and $\overrightarrow{e_{3}}$, and

$$
\sum_{j=1}^{3} \varphi_{\omega}\left(\vec{e}_{j}\right)=1
$$

This follows from Eqs. (5) and (6).
(iii) Properties (i) and (ii) imply that the function φ_{ω} is an additive measure on the lattice of orthogonal projections acting on $\mathbb{C}^{3}=\mathbb{R}^{3} \otimes \mathbb{C}$, for almost all $\omega \in \Omega$.

Das "elementargeometrische Argument"

The evaluation of a function φ_{ω} with properties (i) - (iii) on finitely many unit vectors in \mathbb{R}^{3}, which give rise to finitely many orthonormal bases in \mathbb{R}^{3}, leads to the contradiction that, for some unit vectors $\vec{e}, \varphi_{\omega}(\vec{e})=0$ and $\varphi_{\omega}(\vec{e})=1$, depending on which completion of \vec{e} to an orthonormal basis of \mathbb{R}^{3} is considered - "contextuality".
Kochen and Specker have found an explicit construction of finitely many unit vectors in S^{2} leading to this contradiction. By now the best variant of their construction appears to require only 18 unit vectors.
There is an abstract proof of the claim that functions φ_{ω} on S^{2} with properties (i) - (iii) do not exist, which is based on Gleason's theorem: ${ }^{1}$ Property (iii) says that the function φ_{ω} is an additive measure on the lattice of projections, for a.e. $\omega \in \Omega$. Gleason's theorem then says that
\exists a density matrix $\Phi_{\omega}>0$, with $\operatorname{tr}\left(\Phi_{\omega}\right)=1$, such that

$$
\left.\varphi_{\omega}(\vec{e})=\operatorname{tr}\left(\Phi_{\omega} P(\vec{e})\right)\right)=\left\langle\vec{e}, \Phi_{\omega} \vec{e}\right\rangle .
$$

This shows that \exists a unit vector \vec{e} such that $0<\varphi_{\omega}(\vec{e})<1$. But this contradicts property (i)!
${ }^{1}$ I am grateful to N. Straumann for having explained this argument to me $\overline{=}$

Connection to Kakutani's theorem ${ }^{2}$

We note that Gleason's theorem apparently implies that the functions $\varphi_{\omega}(\vec{e})$ are continuous in \vec{e}.
Thus, let us consider an arbitrary real-valued, continuous function, φ, on the n-dimensional sphere S^{n} in \mathbb{R}^{n+1} centered at the origin \mathcal{O}. Dyson's variant of Kakutani's theorem says that $\exists n+1$ points, $x_{1}, x_{2}, \ldots, x_{n+1}$, on S^{n} such that the $n+1$ unit vectors $\left\{\vec{e}_{j}:=\overline{\mathcal{O} x_{j}} \mid j=1,2, \ldots, n+1\right\}$ are mutually orthogonal, and

$$
\varphi\left(\vec{e}_{1}\right)=\varphi\left(\vec{e}_{2}\right)=\cdots=\varphi\left(\vec{e}_{n+1}\right) .
$$

For $n=2$, this contradicts properties (i) and (ii) of the functions φ_{ω} !

Remarks:

1. Ultimately, all the theorems asserting that there does not exist a hidden-variables theory reproducing the predictions of quantum mechanics exploit, in one way or another, the obvious fact that there does not exist a homomorphism from a non-commutative algebra into an abelian algebra. Mermin's version of KochenSpecker makes this particularly clear.
[^0]
Open problems

2. Gleason's theorem can be generalized as follows: Additive measures on the lattice of orthogonal projections of a general von Neumann algebra are given by normal states on the von Neumann algebra ${ }^{3}$.
3. It would be interesting to extend Huaxin Lin's theorem on almost commuting self-adjoint operators to the setting of pairs, (ω, X), of a state, ω, on a von Neumann algebra \mathfrak{M} and an operator $X \in \mathfrak{M}$ with the property that $a d_{X}(\omega)$ has a tiny norm.
4. Bell's inequalities: Consider correlations between outcomes of some family of commuting measurements on two "distant" systems. It turns out that if quantum-mechanical correlations are shrunk by a constant $K_{G}{ }^{-1}<1$ the resulting values lie inside the range of corresponding classical correlations; (Tsirelson's theorem). Here, $K_{G} \approx 1.782$ is the Grothendieck constant appearing in the theory of tensor products. - However, as Bell's inequality shows, the range of quantum-mechanical correlations is strictly larger than the range of corresponding classical correlations; (\nearrow blackboard!)
[^1]
The four pillars of full-fledged Quantum Mechanics

So far, we have considered a torso of QM, because we have not studied the roles played by "time", "events", and "evolution" in QM, yet.
Quantum Theory of isolated physical systems rests on 4 pillars:
(i) "Potential events possibly happening at time t or later" are represented by families of disjoint orthogonal projections in a v.N. algebra $\mathcal{E}_{\geq t}$. The descending filtration of algebras $\left\{\mathcal{E}_{\geq t}\right\}_{t \in \mathbb{R}}$ satistfies the "Principle of Diminishing Potentialities": $\mathcal{E}_{\geq t^{\prime}} \varsubsetneqq \mathcal{E}_{\geq t}, \forall t^{\prime}>t$.
(ii) "States at time t " are additive measures on the lattice of projections

$$
\text { in } \mathcal{E}_{\geq t} \equiv \text { normal states on } \mathcal{E}_{\geq t}, t \in \mathbb{R} ;(\nearrow 2 .)
$$

(iii) Heisenberg-picture "time evolution" (of operators by conjugation with a unitary propagator) acts on $\left\{\mathcal{E}_{\geq t}\right\}_{t \in \mathbb{R}}$ by shift of t; and
(iv) Definition of "(actual) events" ($\nearrow 3$.) $\ldots \rightarrow$ understanding the stochastic time evolution of states ${ }^{4}$, which branch when an "event" happens, the branching probabilities being given by Born's rule.
This view of QM (in particular (i) and (iv)) is recent and remains to be fully appreciated by the community at large. - It shows that ...
${ }^{4}$ i.e., "keine konsistenten Prophezeiungen möglich ..."
... Quantum Mechanics is intrinsically irreversible!

Past $=$ History of Events (Facts) $/$ Future $=$ Ensemble of Potentialities
Quantum Mechanics implements this fundamental dichotomy.

QM remains a great source of interesting math problems!

Some personal reminscences

Ernst Specker was born on 11/02/1920 and died on 10/12/2011. Notice that he was born on a day, the $11^{\text {th }}$, that is a prime number. (Incidentally, the year of his death, 2011, is prime, too.)
I was born on 04.07.1946; i.e., I was born on a day that is definitely not a prime number.
Back in 1976, I applied for a job in the math department of ETH. On that occasion, Ernst asked me on what day I was born. When I disclosed my birth date to him he said: "I am afraid you will never become a good mathematician". Why? "Because ..." - Luckily I didn't get the job. ${ }^{5}$
In any event, some years later, in 1982, I became a colleague of Ernst's, albeit in the physics department of ETH. We slowly developed amicable social contacts. And I also became aware of his interests in questions of religious faith and of his sermons in the "Predigerkirche". - Later, he gave me the booklet of his sermons as a present. I particularly like "Eine äthiopische Apostelgeschichte", which tells the story of Apezemak.

[^2]
Specker's interests in questions of faith

His interests in questions transcending rationality and logics are already apparent in his 1960 paper on quantum logics:
"Die Schwierigkeiten, die durch Aussagen entstehen, welche nicht zusammen entscheidbar sind, treten besonders deutlich hervor bei Aussagen über ein quantenmechanisches System. ... In einem gewissen Sinne gehören aber auch die scholastischen Spekulationen über die "Infuturabilien" hierher, das heisst die Frage, ob sich die göttliche Allwissenheit auch auf Ereignisse erstrecke, die eingetreten wären, falls etwas geschehen wäre, was nicht geschehen ist." -

In: "Die Logik nicht gleichzeitig entscheidbarer Aussagen"

At the end of a lecture for a general public by the theologian Pierre Bühler Ernst asked the speaker: "Glauben Kinder an den Osterhasen?" Bühler was perplexed. - I suppose that Ernst wanted to indicate that faith (Glauben) is not about "truth" and "existence", and that these categories have no place in debates of religious revelations.

"immer besser"

Evidently it is not factual that there is an easter-bunny hiding eggs in the garden. Yet, the "idea of the easter bunny" bringing eggs, symbols of life and fertility, to the children has meaning and impact and "exists" as an element in Plato's "Realm of Ideas" ("World of Universals").

Roughly fifteen years ago, my wife and I ran into Ernst somewhere in this wonderful building. Not knowing what to talk about, my wife asked:
"How are you doing, Ernst?" Whereupon he answered:

"Immer besser!"

And then he explained to us why he gave this answer ...; which converted a light conversation into one where a piece of worldly wisdom was communicated by someone who had reached the state of serenity. I imagine that the conditions of his "being", freed from the dungeon of "time" and "causality", would never stop improving were there "time" in the "World of Universals", where he resides. Though Ernst has reached "the state of the flame when it is extinct" (Buddha), "eggs" in the form of his thought-provoking ideas keep being (re-)discovered!

[^0]: ${ }^{2}$ See F. J. Dyson, Ann Math. 54, 534-536 (1951)

[^1]: ${ }^{3}$ see, e.g., L. J. Bunce \& J. D. Maitland Wright, BAMS, 26, 288-293 (1992)

[^2]: ${ }^{5}$ Much later I heard that, after my talk, Ernst had expressed a surprisingly positive opinion about me, but felt the job was not suitable for me. - I think he was right!

