
SR

60 Years of Boolean Satisfiability Solving
From the Foundations of Mathematics to Industrial Applications

21 February 2020

Wolfgang Küchlin

Symbolic Computation Group
Wilhelm-Schickard-Institute of Informatics

Faculty of Mathematics and Sciences

Universität Tübingen

Steinbeis Technology Transfer Centre
Object- und Internet-Technologies (STZ OIT)

Wolfgang.Kuechlin@uni-tuebingen.de
http://www-sr.informatik.uni-tuebingen.de

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 2 SR

Foreword

 1986: My thesis: Equational Completion by Proof Simplification
 Simplifying equational proofs s = …. = t in term algebras, using critical pairs.
 Simplest proof has V-shape: reduce both s and t to unique normal form

 2003: Hilbert´s 24th problem [Thiele. American Math. Monthly 110]
 „The 24th problem in my Paris lecture was to be: Criteria of simplicity, or

proof of the greatest simplicity of certain proofs. … Attempts at judging the
simplicity of a proof are in my examination of syzygies, and syzygies
between syzygies.“ [Note left by Hilbert, see Thiele]

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 3 SR

Contents

 1960: The Origins of Boolean Satisfiability-Solving
 Proving First Order Inconsistency by Boolean Un-Satisfiability
 Davis-Putnam (1960): Variable Elimination by Resolution
 Davis-Logemann-Loveland (1962): Search for a model (DPLL)

 1996: Conflict Driven Clause Learning
 J. P. Marques-Silva, K. A. Sakallah (1996): CDCL

• Combine DPLL search with resolution where search for model fails

 2000+: Large Scale Industrial Applications
 Microelectronics, Car Configuration, Software Verification
 SAT ecosystem. Efficient algorithms for: Prime Implicants,

Explanations for SAT and UNSAT, Optimization, Bounded
Model Checking, SAT modulo Theories (SMT), …

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 4 SR

The origins of SAT Solving: First Order Proof

 Martin Davis, Hilary Putnam (1960)
“The hope that mathematical methods employed in the investigation of formal logic would lead
to purely computational methods for obtaining mathematical theorems goes back to Leibniz
and has been revived by Peano around the turn of the century and by Hilbert's school in the
1920's.
Hilbert, noting that all of classical mathematics could be formalized within quantification theory,
declared that the problem of finding an algorithm for determining whether or not a given
formula of quantification theory is valid was the central problem of mathematical logic.“
[Davis, Putnam. A Computing Procedure for Quantification Theory. J.ACM 7, 1960].

 First Order Proof by Herbrand´s Theorem
 Method: Enumerate the Herbrand Base of a Predicate Logic formula and check

each enumeration level for consistency in Propositional Logic.
• Herbrand Base: the set of non-variable („ground“) instances of the first order formula.

 Example: ∀x.P(x) ∧ ∃x.¬P(f(x)) ≌(Skolem) ∀x.P(x) ∧ ¬P(f(a))
• 1st level: {P(a), ¬P(f(a)}: consistent (with only a in the Herbrand Universe)
• 2nd level: {P(a), ¬P(f(a), P(f(a))}: inconsistent (with both a and f(a) in the universe)

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 5 SR

Origins of SAT Solving: Methods for First Order Proof

 Quine: A proof procedure for quantification theory, 1955.
 Method: Truth tables

 Gilmore: A proof method for quantification theory, 1960.
 Method: DNF conversion
 Implemented on IBM 704 (18KB magnetic core memory)
 „Gilmore formula“: ∃x,y ∀z[F(x,y) → (F(y,z)&F(z,z))

& ((F(x,y)&G(x,y)) → (G(x,z)&G(z,z)))]
 Failed at Herbrand level 7 after 21 minutes on IBM 704 (out of memory)

• Obviously due to DNF-Explosion

 IBM 704 Computer
 vacuum tube electronics, 12K floating point additions per sec
 18KB magnetic core memory
 5 tape units @ 4MB each
 123 units sold 1955 – 1960

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 6 SR

IBM 704 (1954 – 1960) (source: wikipedia)

 The IBM 704, introduced by IBM in 1954, is the first mass-produced computer with
floating-point arithmetic hardware. The 704 can execute up to 12,000 floating-point
additions per second. Like the 701, the 704 uses vacuum tube logic circuitry and 36-bit
binary words. Changes from the 701 include the use of core memory instead of Williams
tubes … IBM sold 123 type 704 systems between 1955 and 1960.

 Controls are included in the 704 for: one 711 Punched Card Reader, one 716 Alphabetic
Printer, one 721 Punched Card Recorder, five 727 Magnetic Tape Units and one 753
Tape Control Unit, one 733 Magnetic Drum Reader and Recorder, and one 737 Magnetic
Core Storage Unit. Weight: about 19,466 pounds (8.8 t).[15][16] 17]

 The 737 Magnetic Core Storage Unit serves as RAM and provides 4,096 36-bit words,
the equivalent of 18,432 bytes. The 727 Magnetic Tape Units store over five million six-bit
characters per reel.

https://en.wikipedia.org/wiki/IBM_704#cite_note-15
https://en.wikipedia.org/wiki/IBM_704#cite_note-16
https://en.wikipedia.org/wiki/IBM_704#cite_note-IBM_Archives_704-17

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 7 SR

Origins of SAT Solving: Methods for First Order Proof

 Davis & Putnam (1960): Eliminate variables by resolution
 In clause set F: (1) propagate Unit {x}; (2) eliminate clauses with pure literals.
 (3) with impure literals p, ¬p, rearrange F into F = (A´ ∨ p) ∧ (B´ ∨ ¬p) ∧ R
 F is SAT iff F´= (A´ ∨ B´) ∧ R is SAT
 Solved Gilmore Formula by hand in less than 30 minutes

• Trick: Checked only HB levels 10, 20, 30. Inconsistency first occurs at level 25!

 Example of variable elimination (DP 1960)
 S0 = {{x, y, z}, {¬x, y, z}, {¬x}, {z, ¬y}}
 Rule 3 (resolution on y): S1 = {{x, z}, {¬x, z}, {¬x}}
 Rule 1 (unit propagation ¬x): S2 = {{z}}
 Rule 2 (Pure Literal z): S3 = { }, hence consistent.

 DP(1960) solves the Existential QE problem ∃x1,…,xn.F
 But EQE is not really SAT-Solving, answer is just true or false
 Reason: We may not get a satisfying assignment on impure literals

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 8 SR

The origins of SAT Solving: DP vs. D(P)LL

 Davis, Putnam (1960): Eliminate variables by resolution
 F = (A´ ∨ p) ∧ (B´ ∨ ¬p) ∧ R is SAT iff F´= (A´ ∨ B´) ∧ R is SAT („Rule 3“)
 Linear in #variables! Easy hand computation on small examples.
 But clauses explode: (A´ ∨ B´) equals all n*m resolvents of A and B over p !

 Davis, Logemann, Loveland (1962): Backtrack search for model
 Try assignment {x, …}, if unsuccessful try {¬x, …}
 F is SAT iff F´= (A´ ∧ R) ∨ (B´ ∧ R) is SAT („Rule 3* “)
 Originally: create both formulas, solve one, put other on stack & solve later
 Today: Create (A´ ∧ R) as F[p=0], create (B´ ∧ R) as F[p=1] from same F.
 Formulas are sets of clauses, no clause deletion, creation, CNF conversion.
 Recursive backtrack search, easy for computers, hard for hand computation
 Implementation in „SAP“ Assembler „with many time-saving devices

employed“ [DLL 1962] on IBM 704 (32K words memory = 144KB)
 Gilmore´s example was proved automatically in under 2 minutes!

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 9 SR

Lessons Learned from Implementing D(P)LL

 „we hoped that some
mathematically
meaningful and,
perhaps nontrivial,
theorems could be
solved. The actual
achievements in this
direction were
somewhat
disappointing“.

[DLL 1962]

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 10 SR

Principle of Conflict Driven Clause Learning (CDCL)

 Learning to avoid a bad sequence of decisions
 A sequence of decisions and propagations may hit a root F=0.
 But not all of these decisions may be relevant for the root.

Key insight: start learning process with conflict clause K
 Conflict clause (failure clause) K is the clause which becomes

empty in Step 2 of DPLL, i.e. β(K)=0 under current assignment β
 The failure is caused by all literals in K becoming 0. This set is

already a small subset of β, but may contain propagated literals.
 Now we can find the subset of decisions, whose conjunction D

caused all these literals to become 0.
 Negating this conjunction gives us a clause L = ¬D which is

implied by F, hence can be added to F (learned).
• D implies ¬F, so ⊨(¬D ∨ ¬F), i.e. F implies ¬D = L.

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 11 SR

Example: Principle of Learning in CDCL

S0 = {{x, y}, {¬y, z}, {¬z, x}}. We make the assignments:
 x=0 (Decision)

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 12 SR

Example: Principle of Learning in CDCL

S0 = {{x, y}, {¬y, z}, {¬z, x}}. We make the assignments:
 x=0 (Decision), y=1 (Unit Propagation)

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 13 SR

Example: Principle of Learning in CDCL

S0 = {{x, y}, {¬y, z}, {¬z, x}}. We make the assignments:
 x=0 (Decision), y=1 (Unit Propagation), z=1 (Unit Propagation)
 Conflict clause is K={¬z, x}, Reason for conflict is R = {¬y, z}

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 14 SR

Example: Principle of Learning in CDCL

S0 = {{x, y}, {¬y, z}, {¬z, x}}. We make the assignments:
 x=0 (Decision), y=1 (Unit Propagation), z=1 (Unit Propagation)
 Conflict clause is K={¬z, x}, Reason for conflict is R = {¬y, z}
 Resolvent on conflict literal z (first learnt clause) is L1 = {x, ¬y}
 L1 is false under current assignment. It contains both a decision

variable x and a unit propagation variable y. After backtracking,
L1={x, ¬y} is not unit and not immediately useful.

 Remove ¬y by resolving with its reason {x, y}, {x, ¬y} ⊢ {x} = L2

 Now backtrack to before the assignment on x. There is no
decision left: x=1 now becomes a unit propagation of {x}.

 In general we continue learning clauses until we hit the first „UIP
clause“ (unique implication point): It contains a single variable on
the highest level of assignment. After backtracking, it is unit.

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 15 SR

CDCL based proof learning and UNSAT explanation

 Clause set S0 = { {x, y}, {x, ¬y}, {¬x, y}, {¬x, ¬y} }
 S0 [x=1] = { {1, y}, {1, ¬y}, {0, y}, {0, ¬y} } : choose UP y=1
 S0 [x=1, y=1] = { {1, 1}, {1, 0}, {0, 1}, {0, 0} } = 0 = conflict!
 A decision (x=1) forced conflicting propagations y=1 and y=0, obviously by 2

clauses containing {.., y, ..} and {.., ¬y, ..}
 Hence there is a resolvent on y, in this case {¬x, y}, {¬x, ¬y} ⊢ {¬x}.
 Add {¬x} to C, because it is a logical consequence of C.
 Backtrack to just before the decision on x (no matter how far!). Now x=0 is a

forced unit propagation by {¬x} (no more decision)
 S1 = { {¬x},{x, y}, {x, ¬y}, {¬x, y}, {¬x, ¬y} } : propagate x=0
 S1[x=0] = { {1}, {0, y}, {0, ¬y}, {1, y}, {1, ¬y} } : choose UP y=0
 S1[x=0, y=1] = { {1}, {0, 0}, {0, 1}, {1, 1}, {1, 0} } = conflict !
 Hence there is a resolvent on y, in this case {x, y}, {x, ¬y} ⊢ {x}, add {x} to S1

 Without any decision on x, we have a final conflict in S2 = {{¬x}, …, {x}} ⊢ □

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 16 SR

Resolution proof explaining UNSAT(C)

{x, y}, {x, ¬y}, … …, {¬x}Final proof of UNSAT(S0):

{x}

Resolution Proof of UNSAT(S0[x=1]),
respectively of S0 ⊨ {¬x} :

{¬x, y}, {¬x, ¬y}

{¬x}

{ }

S0 = { {x, y}, {x, ¬y}, {¬x, y}, {¬x, ¬y} }

The answer is easy if you take it logically (Paul Simon)

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 17 SR

Some Time-Points in SAT History
 1960/62: First order proof of Gilmore formula by SAT solving

 Davis, Putnam (J.ACM 1960); Davis, Logemann, Loveland (C.ACM 1962).
 1971: SAT is the first NP-complete problem

 Stephen Cook: The complexity of theorem-proving procedures. (STOC’71)
 1992 / 1994: SAT beats specialized application software

 H. Kautz, B. Selman. Planning as satisfiability. (ECAI'92)
 H. Zhang: SATO solver. McCune: Quasi-group existence problems (1994)

 1996: Clause Learning: Combining DPLL with resolution
 J. P. Marques-Silva, K. A. Sakallah (1996): GRASP solver (CAD 96)

 2000+: Industrial Applications (Analysis and Verification)
 N. Eén, N. Sörensson: Minisat Solver (in C). D. LeBerre: SAT4J (in Java)
 Hardware (Microelectronic Circuits): net-lists are switching algebra
 Software (Bounded Model Checking: compile software into Boolean circuit)
 Configuration (variant rich car configuration and parts selection rules)

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 18 SR

Literature

1. Paul C. Gilmore. A proof method for quantification theory. IBM J. Research
and Development 4 (1960), 28—35.

2. M. Davis and H. Putnam. A computing procedure for quantification theory.
J.ACM 7(3), 1960

3. M. Davis, G. Logemann and D. Loveland. A machine program for theorem
proving. C.ACM 5, 1962

4. A. Biere, M. Heule, H. van Maaren, T. Walsh (eds.). Handbok of Satisfiability.
IOS Press 2009. (Comprehensive current account of SAT based methods)

5. J. P. Marques-Silva. Search Algorithms for Satisfiability Problems in
Combinatorial Switching Circuits. PhD Thesis, U. Michigan, 1995

6. J. P. Marques-Silva, K. A. Sakallah. GRASP: A new search algorithm for
satisfiability. In: Intl. Conf. Computer Aided Design., Nov 1996.

7. J. P. Marques-Silva, K. A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. In: IEEE Transactions on Computers., May 1999.

8. D. E. Knuth. Satisfiability. The Art of Computer Programming Vol 4 Fasc. 6.
Addison Wesley, 2016

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 19 SR

Appendix: Some Boolean Decision Procedures

Bad news: SAT is NP-complete (Cook 1971)
Good News: SAT(F) is decidable and solves all NP-

complete problems!
 Truth Tables  guaranteed exponential (#variables), toy problems only

 Disjunctive normal form (DNF)  easily exp., small problems ok.

 Tableaux  similar to DNF, easily exponential, small problems ok.

 Boolean Polynomials  „Stone polynomials“, canonical form, little use.

 Binary Decision Diagrams (ROBDD)  model checking use, 100s
variables ok, O(1) SAT-solving, easy model counting, canonical form.

 Propositional Resolution  too many deductions, theoretical importance

 Davis-Putnam-Logemann-Loveland (DPLL)  small problems ok.

 DPLL based CDCL SAT-Solving  practically efficient for science and
industry, 100,000+ variables, method of choice, very robust, much research.

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 20 SR

Example: SAT-Solving with DPLL

S0 = {{x, y, z}, {¬x, y, z}, {z, ¬y}}
 Heuristically choose x as 1st decision variable (level 1):

• Case 1: let x=1
• S1 = S0[x=1] = {{x, y, z}, {¬x, y, z}, {z, ¬y}}

 Heuristically choose z as 2nd decision variable (level 2):
• Case 1: let z=0 in S1

• S2 = S0[x=1][z=0] = {{x, y, z}, {¬x, y, z}, {z, ¬y}}
• Unit propagate y=1:

S3 = S0[x=1][z=0][y=1] = {{x, y, z}, {¬x, y, z}, {z, ¬y}} = false
• Conflict! Backtrack to last decision!
• Case 2: let z=1 in S1

• S4 = S0[x=1][z=1] = {{x, y, z}, {¬x, y, z}, {z, ¬y}}
 Inspection of clauses shows that both y and x are „don‘t care“

• implicant {x, y, z} can be reduced to prime implicant {z}

Wolfgang Küchlin, WSI und STZ OIT, Uni Tübingen 04.03.2020 21 SR

The Idea of Conflict Driven Clause Learning (CDCL)

S0 = {{x, y, z}, {¬x, y, z}, {z, ¬y}}
 Heuristically choose x as 1st decision variable (level 1):

• Case 1: let x=1
• S1 = S0[x=1] = {{x, y, z}, {¬x, y, z}, {z, ¬y}}

 Heuristically choose z as 2nd decision variable (level 2):
• Case 1: let z=0 in S1

• S2 = S0[x=1][z=0] = {{x, y, z}, {¬x, y, z}, {z, ¬y}}
• Unit propagate y=1:

S3 = S0[x=1][z=0][y=1] = {{x, y, z}, {¬x, y, z}, {z, ¬y}} = false
• Conflict due to complementary literals y, ¬y!
• Learning: There is a resolvent {¬x, y, z}, {z, ¬y} ⊢ {¬x, z} we can learn.
• Backtrack to level 1: S0[x=1] ∪ {¬x, z} = {{x, y, z}, {¬x, y, z}, {z, ¬y}, {¬x, z}}
• Unit propagate z=1: {{x, y, z}, {¬x, y, z}, {z, ¬y}, {¬x, z}}
• We learned that x=1 implies z=1, no more decision on z.

	60 Years of Boolean Satisfiability Solving��From the Foundations of Mathematics to Industrial Applications� �21 February 2020
	Foreword
	Contents
	The origins of SAT Solving: First Order Proof
	Origins of SAT Solving: Methods for First Order Proof
	IBM 704 (1954 – 1960) (source: wikipedia)
	Origins of SAT Solving: Methods for First Order Proof
	The origins of SAT Solving: DP vs. D(P)LL
	Lessons Learned from Implementing D(P)LL
	Principle of Conflict Driven Clause Learning (CDCL)
	Example: Principle of Learning in CDCL
	Example: Principle of Learning in CDCL
	Example: Principle of Learning in CDCL
	Example: Principle of Learning in CDCL
	CDCL based proof learning and UNSAT explanation
	Resolution proof explaining UNSAT(C)
	Some Time-Points in SAT History
	Literature
	Appendix: Some Boolean Decision Procedures
	Example: SAT-Solving with DPLL
	The Idea of Conflict Driven Clause Learning (CDCL)

