The Charm of Units

Preda Mihăilescu
University of Göttingen

September 2017

God gave a name to all the animals, In the beginning, in the beginning. ${ }^{1}$

p irregular iff $p \mid B_{p-2 n+1}$!!! But does $p \mid h_{p}^{+}$occur ? ? ?

Preda Mihăilescu

Mathematisches Institut, Universität Göttingen.

Notations before facts

Let p be an odd (supersingular) prime.

- $\mathbb{K}^{\prime}=\mathbb{Q}(\zeta)=\mathbb{Q}[X] /\left(\Phi_{p}(X)\right), \zeta$ a primitive $p-$ th root of unity, $\mathbb{K}=\mathbb{Q}(\zeta+\bar{\zeta})$.
- $\mathbb{K}_{n}^{\prime}=\mathbb{Q}\left(\zeta_{n}\right), \zeta_{n}$ primitive p^{n+1} - th roots of unity.
-

$$
\begin{aligned}
\mathbb{K}_{\infty}^{\prime} & =\cup_{n} \mathbb{K}_{n}^{\prime}, \Gamma=\operatorname{Gal}\left(\mathbb{K}_{\infty}^{\prime} / \mathbb{K}^{\prime}\right) \cong \mathbb{Z}_{p} \\
\tau & \in \Gamma, T=\tau-1
\end{aligned}
$$

- Galois: $\sigma_{c}: \zeta \mapsto \zeta^{c}$ for $c \in \mathbb{F}_{p}^{\times} . G=\left\{\sigma_{c}: c \in P\right\}=\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$ and $\sigma \in G$ a generator (as cyclic mult. group).
- G lifts canonically to $G_{n}=\operatorname{Gal}\left(\mathbb{K}_{n} / \mathbb{Q}\right)$, tame ramification group of the unique prime above p in \mathbb{K}_{n}.

For arbitrary number fields \mathbb{M}, I denote:

$$
\begin{aligned}
A(\mathbb{M}) & =(\mathcal{C}(\mathbb{M}))_{p}, \quad E(\mathbb{M})=\mathcal{O}^{\times}(\mathbb{M}) \\
U(\mathbb{M}) & =\prod_{P \mid(p)} \mathcal{O}\left(\mathbb{M}_{P}\right)^{\times} \\
U^{\prime}(\mathbb{M}) & =\left\{u \in U(\mathbb{M}): \mathbf{N}_{\mathbb{M}_{p} / \mathbb{Q}_{p}}(u)=1\right\} .
\end{aligned}
$$

- The group ring $\mathbf{R}=\mathbb{Z}[G]$ acting multiplicatively on $\mathbb{K}^{\times}, E(\mathbb{K}), A(\mathbb{K})$ etc.:

$$
\Theta=\sum_{c=1}^{p-1} n_{c} \cdot \sigma_{c} \quad \rightarrow \quad \alpha^{\Theta}=\prod_{c \in P} \alpha^{n_{c} \sigma_{c}} .
$$

- The orthogonal idempotents of \mathbf{R} are

$$
\varepsilon_{j}=\frac{1}{p-1} \sum_{c=1}^{p-1} \omega\left(\sigma_{c}\right)^{j} \cdot \sigma_{c}^{-1}
$$

with ω the Teichmüller character.

$$
\varepsilon_{i} \cdot \varepsilon_{j}=\delta_{i, j} \varepsilon_{i}
$$

and $\sum_{j} \varepsilon_{j}=1$.

The Thaine Shift Assume that $A(\mathbb{K}) \neq\{1\}$ - Vandiver false

- Fix some \mathbb{L} / \mathbb{K}, real unramified extension of degree p, galois over \mathbb{Q}. Its existence is equivalence with Vandiver failing for p. We shall investigate the consequences of the assumption along the tower $\mathbb{L}_{n}=\mathbb{L} \cdot \mathbb{K}_{n}$, with particular focus on units and capitulation.
- Let $\Phi=\operatorname{Gal}(\mathbb{L} / \mathbb{K})$, generated by ν, and $s=\nu-1$.

$$
\mathcal{N}=\sum_{i=0}^{p-1} \nu^{i}=p+s f(s) \ldots
$$

- The ramified primes $\lambda_{n}=\left(\zeta_{n}-\bar{\zeta}_{n}\right)$ split complitely in \mathbb{L}_{n}, into principal ideals. Assume $\pi_{n} \in \mathbb{L}_{n}$ is such that $\left(\mathcal{N}\left(\pi_{n}\right)\right)=\left(\lambda_{n}\right)$.
- Let σ denote a generator of the tame ramification of $\left(\pi_{n}\right)$, and $\mu_{n}=\pi_{n}^{\sigma-1} \in E\left(\mathbb{L}_{n}\right)$.
Metacyclotomic unit, maps surjectively on cyclotomic units, via norm.

$$
\begin{aligned}
U\left(\mathbb{L}_{n}\right) & \cong \prod_{i=0}^{p-1} \mathcal{O}^{\times}\left(\mathbb{L}_{\nu^{i} \pi_{n}}\right), \\
x \in U\left(\mathbb{L}_{n}\right) & \mapsto\left(x_{0}, x_{1}, \ldots, x_{p-1}\right)=\left(\iota_{i}(x) \in \mathcal{O}^{\times}\left(\mathbb{L}_{\nu^{i} \pi_{n}}\right)\right)_{i=0}^{p-1} .
\end{aligned}
$$

Hilbert Theorems of CF

In Hilbert's Theorems, \mathbb{L} / \mathbb{K} is an arbitrary cyclic extensions of number fields.
H91 Let $\mathcal{E}=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\} \subset E(\mathbb{K})$ be a fundamental set of units. Then there are

$$
\begin{aligned}
H_{0} & ; \quad H_{1}, \ldots, H_{r} \in E(\mathbb{L}) \backslash E(\mathbb{L})^{s} \\
\mathcal{N}\left(H_{0}\right) & =1, \quad\left[\mathcal{N}\left(H_{i}\right), i>0\right]_{\mathbb{Z}}=\mathcal{N}(E(\mathbb{L}))
\end{aligned}
$$

H94 If \mathbb{L} / \mathbb{K} is unramified, then $H_{0}=\left(\gamma^{s}\right)$, and $(\gamma)=\mathfrak{A} \cdot \mathcal{O}(\mathbb{L})$, with $\operatorname{ord}([\mathfrak{A}])=p$. Capitulation and capitulation units

Units local and global.

- Recall that

$$
U^{2 j}\left(\mathbb{K}_{n}\right)=\varepsilon_{2 j} U\left(\mathbb{K}_{n}\right) \cong\left(\xi_{n}^{2 j}\right)^{\wedge},
$$

are Λ-cyclic, and $\iota_{k}(U(\mathbb{L})) \cong U\left(\mathbb{K}_{n}\right)$.

- Let

$$
U^{2 j}\left(\mathbb{L}_{n}\right)=\left\{u \in U\left(\mathbb{L}_{n}\right): \iota_{k}(u) \in U^{2 j}\left(\mathbb{K}_{n}\right)\right\}
$$

$\bar{E}_{n}^{2 j}=\left(\xi_{n}, 1, \ldots, 1\right)$ under the CRT, so

$$
U^{2 j}\left(\mathbb{L}_{n}\right)=\left(\Xi_{n}^{2 j}\right)^{\Lambda[s]}
$$

- The singular space, for $W=\Xi^{0}\left(\mathbb{L}_{0}\right)$,

$$
\mathcal{S}=U^{0}\left(\mathbb{L}_{0}\right)=W^{\mathbb{Z}_{p}[s]} .
$$

Let $\Theta_{n}=\left(\Delta_{n}, 1, \ldots, 1\right) \in U^{0}\left(\mathbb{L}_{n}\right)$ and

$$
\begin{aligned}
R_{n} & =\Theta_{n}^{\wedge[s]} \\
\Omega_{n} & =R_{n} \oplus \bigoplus_{j=1}^{d-1} U^{2 j}\left(\mathbb{L}_{n}\right) \subset U^{\prime}\left(\mathbb{L}_{n}\right) \\
U\left(\mathbb{L}_{n}\right) & =\mathcal{S} \bigoplus \Omega_{n}, \quad \mathcal{N}\left(\Omega_{n}\right)=\mathcal{N}\left(U^{\prime}\left(\mathbb{L}_{n}\right)\right)
\end{aligned}
$$

The natural map

$$
\iota_{r}: U\left(\mathbb{L}_{n}\right) \rightarrow \mathcal{S}
$$

acts also on $E\left(\mathbb{L}_{n}\right)$ via diagonal embedding.

- Singularity index $\ell: E\left(\mathbb{L}_{n}\right) \rightarrow \mathbb{N}_{>0}$,

$$
\begin{aligned}
\iota_{r}(e) & =W^{\text {unit.s }} s^{\ell(e)} \\
\ell\left(\mathbb{L}_{n}\right) & =\min _{e \in E\left(\mathbb{L}_{n}\right)}\left(\ell\left(\mathbb{L}_{n}\right)\right) .
\end{aligned}
$$

Theorem

There is a singular unit

$$
\delta_{n} \in E\left(\mathbb{L}_{n}\right) \backslash E\left(\mathbb{L}_{n}\right)^{(s, p)}
$$

such that $\left[\delta_{n}^{s^{i}}, \mu_{n}^{s^{i} T^{j}}\right]_{\mathbb{Z}}$ are independent of finite index in $E\left(\mathbb{L}_{n}\right)$. Moreover, $\iota_{r}\left(\delta_{n}\right) \neq 1$ and there is a non principal ideal $\mathfrak{A}_{n} \in a \in A\left(\mathbb{K}_{n}\right)[p]$, with

$$
\mathfrak{A}_{n} \mathcal{O}\left(\mathbb{L}_{n}\right)=\left(\gamma_{n}\right), \quad \delta_{n}=\gamma_{n}^{s} .
$$

Assume that $\left|A\left(\mathbb{K}_{n}\right)\right|$ are uniformly bounded (Greenberg λ-Conjecture)

Lemma

There is an integer n_{0} such that for all $n>n_{0}$, the following hold:

- $A\left(\mathbb{K}_{n}\right) \cong A\left(\mathbb{K}_{n_{0}}\right)$ and

$$
\operatorname{Ker}\left(\iota_{n, n+1}: A\left(\mathbb{K}_{n}\right) \rightarrow A\left(\mathbb{K}_{n+1}\right)\right)=A\left(\mathbb{K}_{n}\right)[p] .
$$

- The singular unit verifies $\ell\left(\delta_{n}\right)=\ell\left(\mathbb{L}_{n}\right)$.

Consequence and final

Lemma

For $n>n_{0}$ there are units $e_{n+1} \in E\left(\mathbb{L}_{n+1}\right)$ such that $\delta_{n}=e_{n+1}^{s}$. In consequence

$$
\ell\left(\mathbb{L}_{n+1}\right) \leq \ell\left(e_{n+1}\right)<\ell\left(\delta_{n}\right)=\ell\left(\mathbb{L}_{n}\right) .
$$

But then there is some n such that $\ell\left(\mathbb{L}_{n}\right)=0$, which is impossible.

