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Computational Complexity Theory deals with the classification of problems into
classes of hardness called complexity classes. We define complexity classes
using general structural properties, such as the model of computation (Turing
Machine, RAM, Finite Automaton, PDA, LBA, PRAM, monotone circuits), the
mode of computation (deterministic, nondeterministic, probabilistic,
alternating, uniform parallel, nonuniform circuits), the resources (time, space,
# of processors, circuit size and depth) and also randomness, oracles,
interactivity, counting, approximation, parameterization, etc. The cost of
algorithms is measured by worst-case analysis, average-case analysis, best-case
analysis, amortized analysis or smooth analysis.

Inclusions and separations between complexity classes constitute central
research goals and form some of the most important open questions in
Theoretical Computer Science. Inclusions among some classes can be viewed as
complexity hierarchies. We will present some of these: the Arithmetical
Hierarchy, the Chomsky Hierarchy, the Polynomial-Time Hierarchy, a Counting
Hierarchy, an Approximability Hierarchy and a Search Hierarchy.
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Godel, Church, Kleene, Turing 30's, 40's: Unsolvability
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30's, 40's
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KALMAR ELEMENTARY:
Loop-Computable with number of nested for-loops < 2

PrimRec: Primitive Recursive, Loop-Computable

Rec: Recursive, Decidable, Computable

RE: Recursively Enumerable, Listable, Acceptable
ARITHMETICAL:

Definable in Arithmetic: N = (N; <; S; +; %; 0).

Definable by first-order quantified formula over a recursive

predicate. E.g.: 3x1Vx3x3 ... R(x1,...,xk) € X9

ANALYTICAL: Definable by a second-order quantified formula.
E.g., dset A, V function f, ...



Arithmetical Hierarchy

Oracle Notation vs. Quantifier Notation
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Chomsky, Rabin, Scott

50's: Formal Languages and Automata

Deterministic vs. Nondeterministic Model

Relation of C with coC

RE # coRE
CTS = coCS
CTF # coCF
R]I}G = coREG

T

FIN # coFIN



Chomsky, Rabin, Scott, Kleene
50's: Formal Languages and Automata
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FIN: finite

REG: decidable (acceptable) by a (Deterministic or
Nondeterministic) Finite Automaton, equivalently definable by a
Regular Expression, equivalently generatable by a Right-Linear
Grammar

CF': decidable (acceptable) by a (Nondeterministic) Push-Down
Automaton, equivalently generatable by a Context-Free Grammar

CS: decidable (acceptable) by a (Nondeterministic)
Linearly-Bounded Automaton, equivalently generatable by a
Context-Sensitive Grammar

RE: acceptable by a (Deterministic or Nondeterministic) Turing
Machine, equivalently generatable by a General Grammar



Hartmanis 60's: Computational Complexity (Space, Time)
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Hartmanis 60's: Computational Complexity (Space, Time)




Hartmanis 60's: Computational Complexity (Space, Time)

SUPEREXPTIME — DTIME(22“'2} n times)
EXPTIME = |J;»; DTIME(2")
PSPACE = J;», DSPACE(n’)

P = ;> DTIME(n')

L = DSPACE(log n)



Hartmanis 60's: Computational Complexity (Space, Time)

Hierarchy Theorems (Deterministic and Nondet.)

Theorem (Hartmanis, Lewis, Stearns, 1965)
SPACE(o(s(n))) € SPACE(s(n))

Theorem (Fiirer, 1982)
TIME(o(t(n))) & TIME(t(n))
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Cook, Karp, Savitch early 70’s: Nondeterminism and
Complexity, NP-completeness

PSPACE = NPSPACE

NP
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Karp, Savitch early 70's: Nondeterminism and
Complexity, NP-completeness
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NP = ;>; NTIME(n')

NL = NSPACE(log n)

Oracles
PA
NPA

PSAT PNP

NPSAT NPNP ZP
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Solovay, Gill
early 70's: Inclusions and Separations with Oracles
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Stockmeyer, Valiant, Gill late 70’s:

Probabilistic, Polynomial Hierarchy, Counting, Alternation
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Stockmeyer, Valiant, Gill late 70’s:
Probabilistic, Polynomial Hierarchy, Counting, Alternation
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BPP: Bounded-error Probabilistic Polynomial (both-sided error
possible), also known as Monte Carlo

+
LeBPP e 3Rep: (XL = T YRy
x¢ L= 3ty R(xy)
RP: Randomized Polynomial (one-sided error)

xel = Ity R(x,y)

Le RP < JR e P:
x¢L = Vy-R(xy)
ZPP: Zero-error Probabilistic Polynomial, also known as Las Vegas

ZPP = RP N coRP
ANP = NP N coNP, in general AC =C N coC



70's
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PP: Probabilistic Polynomial (the possibility of error is not
bounded away from 1/2); not a practical class

cl = 4 R
LePP«=3ReP: {" 1/2 ¥ R(x.y)

x¢L = 315y ~R(x,y)
PH: Polynomial Hierarchy
#P: the class of functions f for which there is a polynomial time
NDTM, whose computation tree has exactly f(x) accepting
computation paths (for input x).

AP: Alternating (Turing Machine) Polynomial Time
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Stockmeyer: Polynomial Hierarchy
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Goldwasser, Micali, Rackoff, Sipser, Wigderson, Z.
early 80's: Interactive Proofs
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Goldwasser, Micali, Rackoff, Sipser, Wigderson, Z.
early 80's: Interactive Proofs

/
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LelIP:

@ x € L = d prover P, such that verifier V accepts with
overwhelming probability.

o x ¢ L = V prover P, verifier V does not accept with
overwhelming probability.

It has been shown that the first condition can be equivalently
formulated:

@ x € L = d prover P, such that verifier V always accepts
(i.e., with probability 1)

PP and #P are Cook-interreducible
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80's

Valiant, Vazirani?, Papadimitriou, Allender, Z.
80's: Counting classes, One-Way Functions
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Valiant, Vazirani?, Papadimitriou, Allender, Z.
80's: Counting classes, One-Way Functions
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The model is a nondeterministic polynomial time TM.
The computation tree on input x s a full complete binary tree of

height p(|x|).

@P: if answer is ‘yes' then # accepting paths is odd, if answer is
‘no’ then # accepting paths is even (parity)

FewP: if answer is 'yes' then # accepting paths is bounded by a
polynomial w.r.t. size of input (fewness)

UP: if answer is ‘yes' then exactly one accepting path (uniqueness)

Theorem (Valiant - V. Vazirani): NP C RP®P
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éabai, Toda, Shamir, Z. 80's, 90's: Arthur-Merlin,

Classification of IP and PH

IP = PSPACE

P#P

AM = AM[k] RP®P

BPP

/ \NP
“\\P/ﬂ
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Merlin: Prover Arthur: Verifier

L € AM(k) iff 3 a k-move game where Arthur plays first and:

@ x € L = Arthur is convinced with overwhelming probability
that x € L

o x ¢ L = With overwhelming probability Arthur is not
convinced that x € L.

It has been shown that the first condition can be equivalently
formulated:

@ x € L = Arthur is convinced with probability 1

AM = AM(2) MA
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Immerman, Szelepcsényi

NSPACE(S(n)) = coNSPACE(S(n))
Corollary: CS = coCS LBA problem
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Pippenger, Cook, Borodin
80's: Below P (uniform circuit families)

polylogspace P

SC log?space NC
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Pippenger, Cook, Borodin
80's: Below P (uniform circuit families)
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(k> 0):
@ NCF: class of languages acceptable by

DLOGTIME-uniform circuit families of polynomial size and
O(logk n) depth, using bounded fan-in gates.

@ ACK: class of languages acceptable by
DLOGTIME-uniform circuit families of polynomial size and
O(logX n) depth, using unbounded fan-in gates.

@ TCK: class of languages acceptable by
DLOGTIME-uniform circuit families of polynomial size and
O(logX n) depth, using threshold gates.

@ SCk: class of languages acceptable by a DTM in polynomial
time and in O(logX n) space.
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NC = o NC*
AC = o ACK
TC = Uyso TCH
SC = U0 SC*
SL (Symmetric logspace):
all problems decidable by a symmetric logspace TM or

all problems reducible to undirected s-t connectivity

RNC (Randomized NC):
has the same relation to NC as RP has to P
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80's

Pippenger, Reingold (2004)

80's/90's: Connections
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80's

Pippenger, Reingold (2004) 80's/90's: Connections
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90's.

Fagin, Immerman, Kolaitis, Vardi, Gradel

Expressibility and Descriptive Complexity

o)
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FO(CFL) : : sac!
FO(TC) SO—Krom : NSPACE[log n]
FO(DTC) DSPACE[log n]
FO(REGULAR) : NC!
FOM) : ThC'
FO Logarithmic-Time Hiérarchy Ac“
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Fagin, Immerman, Kolaitis, Vardi, Gradel
Expressibility and Descriptive Complexity
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Yannakakis, Papadimitriou, Arora, Sudan, Safra, Dinur
90’s: PCP and Approximation




90's
[e]e]e] le]elele)

Yannakakis, Papadimitriou, Arora, Sudan, Safra, Dinur
90’s: PCP and Approximation
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NPO: the class of optimization problems for which the underlying
decision problem is in NP (with the condition that there are
feasible solutions for every instance)

PO: the class of optimization problems for which the underlying
decision problems is in P

APX: problems for which there exists a p-approximative algorithm
for some constant p > 0

log-APX: problems for which there exists a log n-approximative
algorithm (where n is the input size: n = |x|)

poly-APX: problems for which there exists a p(n)-approximative
algorithm for some polynomial p (where n is the input size:
n=|x|)
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PTAS: problems for which there exists a polynomial time
approximation scheme, i.e.,a (1+¢)-approximative algorithm for
any constant € > 0

FPTAS: problems for which there existsa fully polynomial time
approximation scheme, i.e., a (1+4¢€)-approximative algorithm for
any constant € > 0, where, the time needed is also polynomial
w.r.t. 1/e

APTAS: problems for which there exists an asymptotic
polynomial time approximation scheme, i.e., a

(1 + € + ppF)-approximative algorithm for any constant e > 0, for
some constant ¢
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L € PCP (Probabilistically Checkable Proofs):
@ x € L = d proof I such that the verifier V always accepts
(i.e., with probability 1),
@ x¢ L = V ‘proof’ I, the verifier V does not accept with
overwhelming probability.

PCP(r(n), g(n)) consists of languages L € PCP such that the
polynomial time verifier V' uses O(r(n)) random bits and queries
O(q(n)) bits of the proof.

PCP = PCP(poly(n), poly(n))= MIP = NEXP

P = PCP(0,0) NP = PCP(0, poly(n))
coRP = PCP(poly(n),0)

Theorem (Arora, Lund, Motwani, Sudan, Szegedy)
NP = PCP(logn, 1)

New Proof by Dinur (STOC 2006)
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Motwani, Szegedi

: PCP and Approximation
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Century 21: Conquering NP-hard problems

Mission Impossible: We can't solve them (a) in polynomial time
(b) exactly and (c) for all instances.

Efficiency-Polynomiality

Exact Solution Universality
(any input)
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Century 21

Century 21: Conquering NP-hard problems

@ Giving up condition (a):
e 1.003" <1.5"<2" <5< nl < n".
° nloglogn < nlogn < nlogl3n < n".

o Gl € QuasiP = DTIME[2rP°¥"g"] (Babai)
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Century 21

Christofidis, Arora, Tardos, Shmoys, Williamson
Century 21: Conquering NP-hard problems

(a) in polynomial time (b) exactly and (c) for all instances.

e Giving up condition (b): Approximation Algorithms.
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Century 21

Johnson, Downey, Fellows, Courcelle

Century 21: Conquering NP-hard problems

e Giving up condition (c): Find large subclasses of the class of
all instances for which the problem is solvable in polynomial
time: e.g. HORNSAT

o Pseudo-Polynomial, Strongly Polynomial.
o Parameterization, e.g. VERTEXCOVER in O(1.2738% + kn)
Parameterized Complexity (2€n¢, nk,...).

Courcelle's theorem: every graph property definable in the monadic
second-order logic of graphs can be decided in linear time on graphs of
bounded treewidth.
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Papadimitriou, Yannakakis, Daskalakis
Century 21: Search Hierarchy
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Century 21

Papadimitriou, Yannakakis, Daskalakis
Century 21: Search Hierarchy
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FP: e.g. find a perfect matching (any)

FNP: the class of partial multi-valued functions computed by an
NPTM. The computation tree for input x has leaves which answer
either ? or the signature of the path y satisfying R(x,y). e.g. find
a clique of size n/4

NPMYV: the class of partial multi-valued functions computed by
an NPTM. The computation tree for input x has leaves which
answer either ? or one of the possible output strings

NPSV: single-valued NPMV functions, e.g., factoring

TENP: FNP functions for which: Vx3yR(x, y). e.g. find a clique
of size n/4, but you know there exists one, e.g., factoring
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Century 21

TFNP subclasses based on inefficient proof of existence

PLS: Polynomial Local Search, based on: every finite directed acyclic
graph has a sink. e.g. find local optimum (e.g. POSNAE3FLIP, Pure
Nash Equilibrium in general congestion games)

CLS: Continuous Local Search, PLS analogue for continuous spaces and
functions. CLS contains search problems of local optimum approximation
of a continuous function, using an oracle for a continuous function f.

PPP:Polynomial Pigeonhole Principle, based on: pigeonhole principle

PPA: Polynomial Parity Argument, based on: all graphs of max degree 2
have an even number of leaves (e.g. given a Hamilton-cycle in an
odd-degree graph find another one)

PPAD: Polynomial Parity Argument Directed. Like PPA, but graph is
directed: find a sink or a source (e.g. Nash equilibrium, fixpoint
theorems, Sperner's Lemma)

PPADS: Polynomial Parity Argument Directed Sink. Like PPAD, but
find a sink
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Hemaspaandra, Kolaitis, Pagourtzis, Z., Jerrum, Sinclair
Goldberg Century 21: Counting

#PH #QBF,

#f\TP #HAMILTON SUBGRAPHS
#AP #SAT, #HAMILTONCYCLES
#IADE #SAT

ToAtP #PM, #DNF-SAT

T \ #NONCLIQUES, #INDSETSALL

FP SpanL #RANKING
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Century 21

Hemaspaandra, Kolaitis, Pagourtzis, Z., Jerrum, Sinclair
Goldberg Century 21: Counting
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#PH := (#P)"1
ANP = (#P) P

#PE = the subclass of #P that contains functions with easy
decision version

TotP := consists of all functions for which there exists a
polynomial-time nondeterministic Turing machine (NPTM) such
that the function value on x is equal to the total number of

computation paths of M on input x

SpanL. := ## distinct outputs of a logspace NTM transducer

o PH C PTOTP[I]
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Century 21

Century 21: Parameterized Complexity

Fixed Parameter Tractability (FPT): Solvability of problems in
O(f(k(x)) - p(|x])) time, for some computable function f, and a
parameter k.

The advantage of this approach is that we can concentrate the
hardness of a problem to a certain parameter.

As in the theory of NP-completeness, there is the class W[P] of
parameterized intractable problems.

ParaNP is the non-deterministic analogue of FPT.
XP is the parameterized analogue of EXP.

The question FPT vs W[P] is the parameterized analogue of P vs
NP.
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Century 21: Parameterized Complexity

paraNP XP
W[P] AH
WH

FPT
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Century 21

Century 21: Non-Uniform Circuit Complexity

P/poly is the class of languages decided by a circuit family, such
that each circuit has polynomial size, it properly contains P and
BPP, but also undecidable problems.

Theorem (Karp-Lipton (1982))
If NP C P/poly, then PH = ¥5.

Theorem (Razborov-Andreev-Alon-Boppana (circa 1990))

There exists an € > 0, s.t. Yk < n/4, the k-clique problem cannot
be decided by monotone circuits of size less than 2evk,

ACCPO is the non-uniform analogue of ACO and we use also
generalized parity (modulo) gates.

Theorem (Williams (2010))

NEXP ¢ ACC®
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Century 21

Non-Uniform Circuit Complexity (Razborov, Williams)
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Century 21

Century 21: Quantum Complexity

Quantum Complexity Theory adopts the quantum models of
computation, such as Quantum TMs and Quantum Circuits.

The gates of such circuits are unitary transformations of their

input.
1000
0100 1 (1 1 1 0
NOT=119 9001 |'" \@(1—1>’T_(0e'1’>
0010

Quantum Complexity Classes like BQP (the quantum analogue of
BPP), QMA (corresponding to MA), PQP (corresponding to PP)
and QIP (corresponding to IP) appeared, and related with the
classical model.
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Century 21

Century 21: Quantum Complexity

Theorem (Grover)

There is a quantum algorithm computing the position of an object
s in a list of size N in O(v/N) steps.

The well-known FACTORING problem is in BQP (Shor).
DISCRETE LOGARITHM is in BQP.

SUBGROUP NON-MEMBERSHIP (Given a subgroup (H, -) of a
group (G, ), is a given g € G not in H?) is in QMA.
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Century 21

Quantum Complexity (Feynman, Shor, Grover, U. Vazirani)
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QIP = PSPACE

PP = PQP
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Different ways of analyzing complexity

Worst-case Analysis: Usually

@ Average-case Analysis: Based on distribution of input
instances

Best-case Analysis: For cryptography, in order to avoid any
attack.

@ Amortized Analysis: Better performance for repeated actions
by rearranging data.

Smooth Analysis
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Century 21

Smooth Analysis

Shanghua Teng

Daniel Spielman

Stephen Smale, Michael Shub, René Beier, Berthold Vocking
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Century 21

Smooth Analysis

worst case

run time

smoothed

average =~ * :
complexity

case

input space input space

[llustrative example: Simplex (Dantzig)

Smooth analysis suggests that for problems where we have bad
worst instances it is worthy to perturb first.
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Thank You!
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